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ABSTRACT

DUAL-BATTERY EMPOWERED GREEN CELLULAR NETWORKS

by
Xilong Liu

With awareness of the potential harmful effects to the environment and climate

change, on-grid brown energy consumption of information and communications

technology (ICT) has drawn much attention. Cellular base stations (BSs) are among

the major energy guzzlers in ICT, and their contributions to the global carbon

emissions increase sustainedly. It is essential to leverage green energy to power BSs to

reduce their on-grid brown energy consumption. However, in order to furthest save

on-grid brown energy and decrease the on-grid brown energy electricity expenses,

most existing green energy related works only pursue to maximize the green energy

utilization while compromising the services received by the mobile users. In reality,

dissatisfaction of services may eventually lead to loss of market shares and profits

of the network providers. In this research, a dual-battery enabled profit driven

user association scheme is introduced to jointly consider the traffic delivery latency

and green energy utilization to maximize the profits for the network providers in

heterogeneous cellular networks. Since this profit driven user association optimization

problem is NP-hard, some heuristics are presented to solve the problem with low

computational complexity. Finally, the performance of the proposed algorithm is

validated through extensive simulations.

In addition, the Internet of Things (IoT) heralds a vision of future Internet

where all physical things/devices are connected via a network to promote a heightened

level of awareness about our world and dramatically improve our daily lives.

Nonetheless, most wireless technologies utilizing unlicensed bands cannot provision

ubiquitous and quality IoT services. In contrast, cellular networks support large-scale,

quality of service guaranteed, and secured communications. However, tremendous



proximal communications via local BSs will lead to severe traffic congestion and

huge energy consumption in conventional cellular networks. Device-to-device (D2D)

communications can potentially offload traffic from and reduce energy consumption

of BSs. In order to realize the vision of a truly global IoT, a novel architecture,

i.e., overlay-based green relay assisted D2D communications with dual batteries in

heterogeneous cellular networks, is introduced. By optimally allocating the network

resource, the introduced resource allocation method provisions the IoT services and

minimizes the overall energy consumption of the pico relay BSs. By balancing

the residual green energy among the pico relay BSs, the green energy utilization

is maximized; this furthest saves the on-grid energy. Finally, the performance of the

proposed architecture is validated through extensive simulations.

Furthermore, the mobile devices serve the important roles in cellular networks

and IoT. With the ongoing worldwide development of IoT, an unprecedented number

of edge devices imperatively consume a substantial amount of energy. The overall

IoT mobile edge devices have been predicted to be the leading energy guzzler in ICT

by 2020. Therefore, a three-step green IoT architecture is proposed, i.e., ambient

energy harvesting, green energy wireless transfer and green energy balancing, in this

research. The latter step reinforces the former one to ensure the availability of green

energy. The basic design principles for these three steps are laid out and discussed.

In summary, based on the dual-battery architecture, this dissertation research

proposes solutions for the three aspects, i.e., green cellular BSs, green D2D

communications and green devices, to hopefully and eventually actualize green

cellular access networks, as part of the ongoing efforts in greening our society and

environment.
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CHAPTER 1

INTRODUCTION

With awareness of the potential harmful effects to the environment and climate

change caused by carbon footprints and considering the depletion of brown energy

sources, much attention has been drawn from the society to reduce the usage

of brown energy. It is reported that by 2020, average annual Information and

Communication Technology (ICT) carbon emissions contribution will be 6%-8% [55].

Cellular networks account for more than 10% of ICT carbon emissions and base

stations (BSs) consume more than 50% total energy in cellular networks [51], [23].

Therefore, it is crucial and urgent to reduce the on-grid brown energy consumption

of BSs in cellular networks.

Ericsson has designed a wind-powered tower for BSs in cellular networks [5].

Nokia Siemens Networks has developed a green BS powered by solar and wind power

to reduce the grid electricity consumption. Powering BSs with green energy can

effectively reduce on-grid energy and CO2 footprints of cellular networks.

From the perspective of cellular networks providers, reducing on-grid energy

consumption is not only a matter of assuming environmental responsibility, but also

of substantially decreasing their operational expenditure (OPEX) [40]. It is estimated

that more than 10 billion dollars are spent by cellular network providers for electricity

per year, which is a significant portion of the OPEX [51]. As green energy technologies

advance, it is promising to leverage green energy, such as solar and wind energy [44], to

power BSs. Powering BSs with green energy can effectively reduce carbon footprints

and save on-grid electricity expenses.

Since both green energy generations and communication workloads at individual

BSs exhibit temporal and spatial diversities, the mismatch between the amount of
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available green energy and that of workload demanded energy leads to poor utilization

of green energy. Therefore, to furthest reduce the on-grid energy consumption,

maximizing the utilization of green energy has become a well pursued research

topic [8].

To maximize green energy utilization, the first significant step is to be aware of

the amount of available green energy in the network. However, most existing green

energy related works simply assume that the generation rate of green energy can be

perfectly predicted [23], [28]. In fact, it is difficult to predict the available green energy

or green energy generation rate in advance because green energy generation depends

on plenty of natural and human factors. Even though some weather prediction models

have been introduced, for particular BSs, they are grossly inaccurate in reality [44],

[39]. Inaccuracy will lead to the green energy wastage and network performance

degradation.

In this research, the dual-battery architecture is invented to harvest, store

and utilize green energy. First, by installing dual-battery at each BS, there is no

need to predict the available green energy; the amount of harvested green energy

in the battery is known and accurate. Second, dual-battery enables the BS with

concurrent green energy harvesting and BS powering, i.e., one battery is for charging,

the other one discharges to power BS, and they alternate their roles of charging

and discharging every time period. Third, without energy storage, instantaneously

available green energy from environment at a BS may not be sufficient to perform

effective transmission; by adopting dual-battery, the harvested green energy can be

stored and accumulated to a certain energy level during the time period.

Intuitively, in order to maximize green energy utilization and reduce on-gird

electricity expenses, most related works propose user-BS association schemes to

associate more mobile users to the BSs, which have more abundant green energy [44].

This is seemingly rational, but brings potential negative effects. First, disassociating
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mobile users from the original nearest BS and associating them to other far away

BSs will incur more overall transmission energy consumption to serve these users due

to the wireless propagation attenuation. Second, associating a large number of users

to a particular BS at once may also lead to heavy traffic congestion and high traffic

delivery latency. Degraded quality of service (QoS) leads to dissatisfaction on user

experience that will eventually lose customers and profits [28].

Taking into account of these issues comprehensively, in Chapter 2, the dual-

battery enabled profit driven user association scheme is presented to jointly consider

the green energy utilization and traffic delivery latency in a heterogeneous cellular

network. Since this profit driven user association optimization problem is NP-hard, a

heuristic algorithm is proposed to maximize the total profit with low computational

complexity.

In addition, Internet of Things (IoT) recently heralds a vision of future Internet

where all the physical things are connected through a network to exchange information

about themselves and their surroundings. IoT promotes a heightened level of

awareness about our world and bestows intelligence in our daily lives. Physical things

are embedded with electronics, software, sensing ability and network connectivity,

and are thus enabled to gather, share, forward information and collaborate with each

other. Examples of such things can be sensors, health care gadgets, mobile phones,

smart meters, home appliances, and even smart furnitures and vehicles. In general, all

these featured things are referred to as devices. IoT can enrich our lives and improve

our daily experience by providing a platform for connecting all the possible devices

cooperatively [38].

Wireless solutions to realizing IoT are critical owing to pervasiveness of emerging

mobile IoT devices. However, most wireless technologies, which utilize unlicensed

bands, cannot provision the ubiquitous, seamless and quality service required for

IoT. For instance, Zigbee only enables low data rate transmission, and single channel
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incurs dense interference; Bluetooth is limited to short range transmission and is

sensitive to fading and interference; Low Power Wide Area (LPWA) only allows

low data rate transmission and is sensitive to fading as well, and lacks scalability

for large-scale IoT [4]; WiFi suffers from poor mobility and roaming support, and

does not offer guaranteed quality of services (QoS), due to high interference caused

by sharing the unlicensed 2.4 GHz band with Zigbee, Bluetooth, and many other

unlicensed band technologies [52]. As compared to unlicensed band technologies,

cellular networks provide global coverage, resource management and QoS guaranteed

and secured services, as well as mobility and roaming support.

Stimulated by the emerging IoT market, the cellular providers are introducing

IoT functionalities into their networks [60], [35]. However, a large number of

proximal devices communicating through a local base station (BS) in a conventional

cellular network will incur severe traffic congestion, high latency, and huge energy

consumption at BS. Therefore, Device-to-Device (D2D) communications has received

much attention in cellular networks [60], in which the source and destination

devices can directly communicate with minimal assistance from BS, thus providing

multiple performance benefits. First, due to the short range communications,

proximal D2D devices can enjoy high data rates with low end-to-end delay and

low energy consumption. Second, it is more resource-efficient for proximal devices

to communicate directly than routing through an involved BS and possibly core

network [35]. Third, direct path offloads cellular traffic in BSs and network, thus

alleviating congestion, and consequently benefiting other non-D2D users as well [35].

In Chapter 3, the green device-to-device (D2D) communications is investigated.

In order to improve spectrum efficiency, existing D2D communications leverages the

underlay spectrum sharing approach in a homogeneous cellular network. In this

sharing approach, D2D transmissions reuse the spectrum of the cellular network, and

are thus subject to the interference caused by the cellular users; inversely, the cellular
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communications can also be interfered by D2D users. Many works have been proposed

to alleviate this interference issue. However, most of their bandwidth allocation and

power control problems are NP-hard. Although some heuristics have been proposed

to reduce the runtime, the interference still cannot be eliminated [36]. These works

are only tenable with dozens of active D2D devices in a macrocell. When the number

of D2D devices increases to realize the large-scale and ubiquitous IoT, the mutual

interference is insurmountable. In addition, in their underlay schemes, cellular users

are served with high priority [67], while D2D services are not guaranteed.

By taking into account of all these issues comprehensively, in order to actualize

the vision of a truly global IoT, in Chapter 3, a novel architecture, i.e., overlay

based green relay assisted Device-to-Device communications with dual-battery is

discussed and implemented in heterogeneous cellular networks for IoT. By leveraging

existing cellular infrastructure, the low power pico BSs act as the relay BSs to

facilitate D2D communications. IoT devices are assumed to be driven by the unified

D2D communications protocol. By optimally allocating the network resource, the

mentioned resource allocation method fulfills the required IoT service data rates

and minimizes the overall energy consumption of the relay BSs. To supplement

energy provisioning, the relay BSs are equipped with solar panels and dual-batteries

to harvest and utilize green energy. Also, the relay BSs are connected by networking

cables/fibers and electric transmission lines, for sharing the D2D routing information

and maximizing the green energy utilization, respectively.

Chapter 4 focuses on the green devices in IoT. IoT is empowering an intelligent

infrastructure, in which uniquely identifiable physical objects are capable of wirelessly

communicating with each other to find the state of interests, take proper actions, and

gain intelligence from the network. IoT promotes a heightened level of awareness

about our world and makes our life more intelligent, efficient and convenient.

Examples of such things include smartphones, sensors, health care gadgets, smart
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meters, home appliances, and even smart furnitures and vehicles. In general, all

these featured things are referred to as IoT devices. It is predicted that more than

50 billion IoT devices will be connected by 2020 in expanding IoT.

In this study, three steps are holistically envisioned to revolutionize and

actualize green IoT. First, IoT devices leverage green energy harvesting techniques to

harvest “free” energy from ambient energy sources to support their IoT functionalities.

When the available ambient green energy in the first step is insufficient to power

IoT devices, in the second step, nearby green femto base stations (FBSs) and green

pico base stations (PBSs) will intentionally wirelessly transfer green energy to power

IoT devices. These green FBSs/PBSs are equipped with solar panels and/or wind

turbines and batteries to harvest and store solar and/or wind energy, and then to

wirelessy charge IoT devices. As both the amount of harvested green energy and that

to be wirelessly transferred at individual FBSs/PBSs exhibit temporal and spatial

diversities, the third step is to balance green energy among the FBSs/PBSs to allow

more IoT devices to leverage green energy. The latter step reinforces the former one

to ensure the availability of green energy.

The rest of this research thesis is organized as follows. In Chapter 2,

dual-battery enabled green cellular BSs and profit driven user association scheme

are discussed and investigated. In Chapter 3, the green D2D communications is

designed and illustrated. Chapter 4 presents the energy solution and key challenges

in greening IoT edge devices. Future work is introduced in Chapter 5. Concluding

remarks are highlighted in Chapter 6.
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CHAPTER 2

GREEN CELLULAR BASE STATIONS

As aforementioned, as cellular bases stations (BSs) consume a huge amount of energy

in ICT, it is promising to utilize green energy to power the cellular BSs. Since both

green energy generations and communication workloads at individual BSs exhibit

temporal and spatial diversities, the mismatch between the amount of available green

energy and that of workload demanded energy leads to poor utilization of green

energy. Therefore, to furthest reduce the on-grid energy consumption, maximizing

the utilization of green energy has become a well pursued research topic [8]. To

maximize green energy utilization, the first significant step is to be aware of the

amount of available green energy in the network.

2.1 Markov Decision Process Intelligent Battery Management Scheme

In this research (the detail information can be referred to [43]), we first borrow the

idea from Markov Decision Process (MDP) to predict the solar energy and decide

the action of battery in the current time slot. An intelligent battery management

mechanism for BSs is implemented to optimize the green energy utilization. MDP is

suitable for solving sequential decision making and control problems. Markov chains

are built to model the available solar energy and BS workload demands for each

time slot, based on the historical data of solar radiation and workload demands at

individual BSs. According to the MDP optimal policy iteration algorithm, the optimal

battery management strategy is derived in individual time slots. By managing the

battery, we can regulate the renewable energy usage in individual time slots, and thus

enhance the utilization of renewable energy. However, owing to the dynamics of solar

radiation and BS workload demands, a large number of states are required to model

the system.
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2.1.1 System Model and Problem Formulation

In this research, we investigate how the solar energy and energy storage interact in

an individual BS, and how to use Markov chain to represent the solar radiation levels

and BS workload conditions. The energy system configuration of BS, as shown in

Figure 2.1, can be tailored from a residential solar energy system.

Figure 2.1 General configuration of a base station energy system with battery.

In the system, the time horizon is divided into multiple time slots. We denote

st, gt, lt and dt as the solar energy, primary power taken from the grid, workload

demanded energy in BS, and battery action in each time slot t, respectively.

The connected components of the energy system should achieve energy equilibrium,

i.e.,

gt + st − lt − dt = 0, (2.1)

where dt ∈ [−Dmax, Dmax]. The battery converting rate is Dmax, i.e., in each time

slot, the battery is at most charged and discharged of Dmax and −Dmax of energy,

respectively. A positive dt refers to the battery charging, a negative dt implies the

battery discharging, and zero means battery being idle. The current battery state is

bt ∈ [0, B] , where B is the battery capacity and bt+1 − bt = dt+1.
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In this research, we assume that the next 24 hours’ electricity prices can be

obtained in advance [31] as the day-ahead hourly electricity price is known from

utility companies’ websites [14]. At each time slot t, the electricity price is denoted

as at ∈ A.

A Markov chain is a random process that undergoes transitions from one state

to another in a state space. It is usually characterized as “memoryless”, implying

that the probability of visiting the next state depends only on the current state and

not on the sequence of preceding events [29]. Some researchers [26], [70] utilized

Markov chains to model the weather condition and the solar radiation, in which they

claimed that the next (weather) state depends only on the current state, not on the

past few periods of the weather states. According to the historical meteorological

raw data, we first quantize the available solar energy into energy states (enumerated

by non-negative integers). Suppose the solar energy radiation in time slot t is s∗,

the quantized value is calculated as st = ⌊
s∗

∆s

⌋. Here, ∆s is a constant quantization

interval. Second, for each time slot, we build a Markov chain. We collect the statistics

of the quantized data, and obtain the transition probability between two possible

states in every two successive time slots. For example, we first define the time slot to

be an hour in this work and the time 7 A.M. has M states in total. For State 1, we

collect the statistics and obtain the probabilities p
s(7)
1,1 , p

s(7)
1,2 , ..., p

s(7)
1,M , where s(7) stands

for states that can be taken at 7 A.M. So, p
s(7)
1,j , j ∈ {1, 2, ...,M}, is the probability

of transiting from State 1 at 7 A.M. to State j in the next time slot, that is, 8 A.M..

Determining the transition probability matrix will be detailed later on. The solar

transition probability from the ith state to the jth state is represented as psi,j. Each

time slot has its own transition probability matrix p
s(t)
i,j .

According to the historical records of user traffic at individual BSs, we can

obtain the BS workload energy consumption based on the user activity trends, in

terms of time. Similar to the solar energy, we first quantize the BS workload
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energy demand into the workload energy state space, each state enumerated by a

non-negative integer. If the workload demanded energy in time slot t is l∗, we quantize

the workload energy state as lt = ⌊
l∗

∆l

⌋. Here, ∆l is a constant quantization interval.

We build a Markov chain for each time slot [31], [14]. We collect the statistics of the

quantized data about BS workload energy consumption, and obtain the transition

probability between two possible states in every two successive time slots. The BS

workload demanded energy transition probability from the ith state to the jth state

is pli,j. Each time slot has its own transition probability matrix p
l(t)
i,j .

The amount of energy taken from the grid in each time slot is gt, i.e., gt =

lt+dt−st, and the unit is kW . Since the time unit is one hour, kWh is equivalent to

kW in this research. The electricity price of the on-grid power associated with each

time slot is at, and the unit is $/kWh. We regulate each at with a reward function

R(at) in our model. The unit of R(at) is Reward/kWh. The relationship between

at and R(at) is monotonically decreasing, implying that if price at is low, the reward

R(at) is high. When the electricity price at is low, naturally we prefer to drain more

electricity from the grid during this time slot to reduce cost. The energy cost for the

BS operator is gt × at. The reward in the optimization problem in each time slot is

ut = gtR(at).

2.1.2 Optimal Policy and Objective

In each time slot t, according to the current solar energy state, BS workload demanded

energy state and the corresponding transition probabilities for the subsequent time

slots, the MDP optimal policy aims to compare each battery action, and then decides

how much energy in the battery should be exchanged in the next time slot that will

lead to the maximum long term average reward with the largest probability. Let π

denote a decision policy, T represent the whole optimization period, and ut be the

reward in each optimization time slot. Denote Π as all the possible policies and

10



U(π) =
1

T
ΣT

t=1ut as the long term average reward, which is a function of policy π.

Thus, the objective is to maximize the long term average reward as follows.

maxπ∈ΠU(π) (2.2)

s.t : gt + st − lt − dt = 0 (2.3)

−Dmax ≤ dt ≤ Dmax (2.4)

0 ≤ bt ≤ B (2.5)

bt+1 − bt = dt. (2.6)

Equation 2.3 imposes the connected components of the energy system to achieve

energy equilibrium. Equation 2.4 defines the range that the battery can be charged

or discharged in one time unit. Equation 2.5 constrains the battery state to be

between zero and its full capacity. Constraint 2.6 means the battery state difference

between two successive time slots is the battery action taken in that time slot.

Figure 2.2 State transition diagrams for the solar energy state.
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For a particular month or season, we collect the statistics of solar radiation

condition for each time slot. For instance, we define the time slot to be an hour in this

work. To calculate the transition probability, as mentioned before, according to the

historical and quantized data, for each time slot we obtain the transition probability

between two possible states in every two successive time slots. For example, consider

a typical day in one particular month or season. Collecting the statistics of the

quantized records, we find that State 1 at 7 A.M. remains State 1 at 8 A.M. m1 times,

transits to State 2 m2 times, ..., and transits to State M mm times, respectively.

Then, the corresponding transition probabilities are p
s(7)
1,1 =

m1

m1 +m2 + ...+mm

,

p
s(7)
1,2 =

m2

m1 +m2 + ...+mm

, ..., p
s(7)
1,M =

mm

m1 +m2 + ... +mm

, respectively. All the

probabilities p
s(7)
1,1 , p

s(7)
1,2 , ..., p

s(7)
1,M sum up to 1. The same rule is applied to calculate the

transition probabilities of State 2 to other states. This forms one chain and each chain

generates a transition probability matrix. We build the Markov chain and transition

probability matrix for each time slot (hour), p
s(t)
i,j . This satisfies the nature of solar

radiation variations and time variations. For example, we define the available solar

radiation strength into 10 levels. Level 1 stands for the weakest radiation level; Level

10 is the strongest level. For instance, at 7 A.M. and 6 P.M, the solar radiation

condition may be the same in a day: Level 3. However, at 7 A.M., the solar state has

a larger probability to transit to Level 4 in the next hour (8 A.M.) due to sunrise. In

contrast, at 6 P.M., the solar state has a larger probability to transit to Level 2 in

the next hour (7 P.M.), because of sunset. Therefore, each time slot is characterized

by its own transition probability matrix. The Markov solar state transition diagrams

are shown in Figure 2.2.

For the BS workload condition, similar to the solar radiation transition

probability matrix analysis, we collect the statistics of the BS workload demanded

energy value for each time slot (hour), and then build the transition probability matrix

for each time slot (hour), p
l(t)
i,j . This satisfies the user (human) activity variations in

12



terms of time in a certain area. Similar to the analysis of the solar radiation variation,

under the coverage of a particular BS, the users have particular trends to transit in

or out of this BS at different times. The Markov BS workload demanded energy state

transition diagrams are similar to those in Figure 2.2.

Thus, each time slot (hour) has a different transition probability matrix. For

example, one day has 24 hours; the solar and BS workload condition transition

probability matrices for each hour are ps(1), ps(2), ..., ps(24) and pl(1), pl(2), ..., pl(24),

respectively.

2.1.3 Fast Heuristics

Since the original MDP optimal policy iteration method incurs a high computational

complexity, we propose some heuristics to approximate the optimal energy dispatching

strategy with low computational complexity. First, the solar radiation level and BS

workload energy demand should be represented by a large number of states, but we do

not need to search for them all. In our heuristic algorithm, at each decision point, for

both the solar state and workload demand state, the algorithm just searches for the

top N(N < n) states (i.e., N largest transition probabilities) most likely transitioned

from the current state, instead of searching for all the n states in the Markov chain.

We do not search for the states with lower transition probabilities in the

algorithm because the probabilities of transitioning from the current state to those

states are very small. In other words, those states do not have much contribution on

the long term average reward. Eliminating these states does not impact the optimal

policy much but can significantly reduce the computational time. The number N

depends on the number of states to be quantified. This depends on the accuracy

required by the system, and the computational capability of the particular system.

If the chosen N is large, the computational time will be prolonged, but the accuracy

will be increased, i.e., the solution is more accurate, closer to the optimal one.
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Second, we can further reduce the computational complexity by limiting the

optimization period Γ. That is, at each decision point, we only determine the optimal

battery actions for a few time slots in the near future. For example, one day has 24

hours, and if the optimization period Γ is 12, we should have 2 calculation cycles

to complete today’s optimization. Having shorter Γ can significantly reduce the

computational time at each individual decision point. The optimization period Γ also

depends on the number of states to be quantified, the accuracy required by the system,

and the particular system’s computational capability. If Γ is large, the computation

is high but with increased accuracy. If Γ is small, the number of optimization cycles

will be increased and the solution accuracy is reduced. High accuracy means the

solution obtained is more accurate and closer to the optimal one.

Algorithm 1 Heuristic Algorithm

1: Initial ∀st+1, lt+1 ∈ S × L (with N largest transition probabilities states),

∀dt+1, at+1 ∈ D × A, STOP ← 0

2: while t = 0, STOP = 0 do

3: for each (st+1, lt+1) ∈ S(N)× L(N), (dt+1, at+1) ∈ D × A do

4:

Ut+1 ← maxdt+1
{rt+

Σ(st+1,lt+1,dt+1,at+1)∈S×L×D×APt+1 × Rt+1}

5: end for

6: if t = Γ then

7: STOP ← 1

8: end if

9: end while

10:

π(dt+1)← maxdt+1
{rt+

Σ(st+1,lt+1,dt+1,at+1)∈S×L×D×APt+1 ×Rt+1}

In the heuristic algorithm, we first initialize all the states, i.e., available solar

energy state, BS workload demanded energy state and battery state, according to
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those real conditions in the current time slot. This algorithm will keep searching for

all the possible battery actions and compare which action will lead to the largest

expected reward. The impact of the selected action (which yields the largest reward)

on the subsequent Γ time slots is weighed by the transition probabilities between

two successive states. If the optimization period Γ is reached, the algorithm stops.

Also, this algorithm can only search for the top N states with the highest transition

probabilities from the current state.

2.1.4 Simulation Results

According to the historical solar radiation data and the generated base station

workload energy demand data, we quantify both of them into 100 states. In the

simulation, we perform the one-day (24 hours) optimization by considering the top

40 and top 25 highest probability states, respectively. In our simulation, the battery

may perform five optional actions d(x) = −2,−1, 0, 1, 2, and the unit is kWh.
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Figure 2.3 Battery action for optimization period t =24 for different n.

Our heuristic algorithm only needs to have the knowledge of the current hour’s

information, such as the current hour’s solar state st, BS workload state lt, and

battery condition bt; it does not need to predict the future hours’ solar radiation

and BS workload energy demand information. The 24 hours’ transition probability

matrices for the solar state and BS workload energy demand state (p
s(t)
i,j and p

l(t)
i,j ) have

been obtained based on the historical data ahead. Electricity prices are known.
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Figure 2.4 Battery action for optimization period t =12 for different n.

Figures 2.2 and 2.3 show the results for t =24 and t =12 hours, respectively.

t =12 needs 2 optimization cycles, as compared with t =24. Note that the red curve

(n =40) is always closer to the blue curve (“opt”) than the black curve (n =25); this

is intuitive since the search space corresponding to the red curve with n =40 is larger

than that of the black curve with n =25.

In this research, we also observe that the performance of the proposed heuristic

algorithm is highly dependent on the fineness of the transition probability matrix,

i.e., if the the transition probability matrix is finer, the performance of the heuristic

algorithm is better. Therefore, another conclusion is that the accuracy of the

“predictor” is the key factor to manage the green energy in the cellular networks.

2.2 Dual-Battery and Min-max RGR User Association Scheme

As mentioned, solar energy generation depends on many factors, such as temperature,

sun light intensity, and geolocation. Coverage of a BS also exhibits temporal and

spatial diversities, leading to different user densities at different places and times.

This mismatch between the green energy generation and workload energy demands

in a BS results in inefficient green energy utilization.

In this study (the detail information can be referred to [44]), we invent the

dual-battery architecture for green energy harvesting. The dual-battery architecture

is shown in Figure 2.5. Unlike most existing works, we do not predict the available
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solar energy and solar energy generation rate, or pre-allocate green energy slot by

slot. By installing dual-batteries at BSs, the amount of available solar energy for

each time period is known and accurate. This time period is called the battery cycle

in this work. The operational mechanism is simple, in which the BS consumes the

solar energy stored in Battery 1 in the current battery cycle that was harvested in the

previous battery cycle. Then, in the next battery cycle, the BS consumes the solar

energy stored in Battery 2 that is harvested in the current battery cycle. That is, the

two batteries alternate their roles of harvesting and discharging every battery cycle.

If the green energy in the battery is sufficient, the BSs directly drain the energy from

the batteries in real time. In theory, if the amount of workload demanded energy is

more than the available harvested solar energy, the utilization of green energy in our

work can reach 100%, thus achieving the goal of furthest saving the on-grid energy

consumption.

Figure 2.5 Dual-battery architecture.

The advantages of adopting dual-battery at BSs are illustrated as follows. First,

by installing dual-battery at each BS, the “prediction” issue is avoided; there is no

need to predict the available green energy. The amount of available green energy in

the battery is known and accurate. Second, since electric current flow is directional, a

single rechargeable battery cannot discharge and be charged simultaneously at a BS.

Dual-battery achieves concurrent green energy harvesting and BS powering along
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the time domain. There is always one battery harvesting green energy at a BS,

and at the same time, one battery is discharging to power the BS; in this sense,

the green energy harvesting efficiency is maximized. Third, without energy storage,

instantaneously available green energy harvested from the environment at a BS is

most likely insufficient to perform effective transmission; by adopting dual-battery,

the harvested green energy can be stored and accumulated in each battery for a while

to reach a certain energy level, and then be consumed in the next battery cycle.

2.2.1 System Model and Problem Formulation

In this work, we propose a green energy driven user-BS association method to

maximize the utilization of green energy at BSs equipped with dual-battery systems.

In this network, BSs are powered by both on-grid and solar energy, and have solar

panels, wind turbines and dual-batteries installed. In this chapter, we consider a

cellular network with multiple macro cell BSs (MBSs) as shown in Figure 2.6. Each

MBS is powered by on-grid energy and green energy, and equipped with a dual-battery

system. We consider solar and wind energy as the green energy source in this work

though other renewal sources can be equally adopted. In our proposed system, the

maximum power consumption of a BS is set as Ptotal. If the solar energy stored in

the battery is sufficient to power the BS, then the BS directly drains the energy from

the battery in real time. If the solar energy in the battery has been exhausted, the

BS will draw the on-gird energy.

Consider a cellular network with M mobile users and N BSs. In each battery

cycle of T seconds, one battery harvests solar energy through solar panels; at the

same time, the other battery discharges its energy to power the BS. The BSs update

their cell sizes every τ seconds. T is selected to be an integer multiple of τ . In a

battery cycle, the BSs update their cell sizes T
τ
times. BSs update their cell sizes by

adapting their pilot signal power and switching on/off their sectors. This enables the
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Figure 2.6 Green energy powered cellular network with dual-battery system.

users to be associated with different BSs. The user-BS association matrix at the ith

cell size update is Xi = Xi(k, j). Let Xi(k, j) = 1 when user k is associated with BS

j; otherwise, Xi(k, j) = 0, where k ∈ {1, 2...,M} and j ∈ {1, 2..., N}. Assume the

BSs always have data transmission to mobile users during the τ seconds [22]. The

energy consumption of BS j during the ith time slot can be expressed as

Ci,j =
M
∑

k=1

Xi(k, j)P
t
k,jτ + P static

j τ, (2.7)

where P t
k,j is the transmission power of BS j for serving user k, P r

k,j = P t
k,j · PLk,j.

The received power P r
k,j is determined by the user′s QoS requirements. PLk,j is the

path loss between user k and BS j. P static
j is the static power consumption of BS j.

At the beginning of each battery cycle, the total available solar energy in a

battery of BS j is E0
j , which was harvested in the previous battery cycle. E0

j can be

different values in the different battery cycles, and has to be less than or equal to

the full battery capacity. As time elapses during the battery cycle, the residual solar
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energy in the battery of BS j at the ith time slot is Er
i,j. 0 6 Er

i,j 6 E0
j constrains Er

i,j

to be between zero and the initial solar energy E0
j stored in the battery. Er

i,j at BS

j is updated for each time slot i. Since rechargeable energy storage devices cannot

both charge and discharge simultaneously [47], that is the reason we propose the

dual-battery system. In this dual-battery system, in each battery cycle, one battery

is only used to harvest and store solar energy through the solar panel; the other is only

used to power the BS. These two batteries supersede their roles in the next battery

cycle. In our work, we do not need to predict the solar radiation condition and green

energy generation rate. At the beginning of each battery cycle, the available solar

energy E0
j is known and accurate. As time elapses, the residual green energy in the

battery Er
i,j will be updated to BSs at each time slot.

We define the residual green energy ratio (RGR) of BS j at the ith time slot of

a battery cycle as

Ri,j =
Er

i,j

Ci,j

. (2.8)

Here, as mentioned above, Er
i,j is the residual solar energy stored in the battery of BS j

at the ith time slot of the battery cycle; Ci,j is the energy consumption for the ith time

slot based on the user association at BS j. If Er
i,j > Ci,j, then Er

i,j − Ci,j = Er
i+1,j ,

which means the solar energy Er
i,j is sufficient to support the energy consumption

Ci,j; subtracting the actual energy consumption from the residual solar energy at the

current time slot results in the residual solar energy for the next time slot Er
i+1,j . If

Er
i,j < Ci,j, which means the amount of the residual solar energy in the battery cannot

afford the energy consumption of the BS in this time slot, then the BS will draw the

additional amount of on-gird energy Ci,j − Er
i,j to power the BS [27]. Since the user

association optimization is achieved within each time slot, for brevity, we just omit

the subscript i for the rest of the research. For example, Ri,j is simplified as Rj , Ci,j

is simplified as Cj , and so on.
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In order to achieve the optimal green energy driven user association, we aim to

minimize the maximal Rj among theN BSs for each time slot. A large Rj is attributed

to plentiful available residual solar energy Er
j and/or small energy consumption Cj at

this BS at this time slot. The rationale behind this objective is to allow BSs with larger

RGRs to associate with more users. In other words, the BS with more residual solar

energy and/or with fewer mobile users at this time slot will try to serve more users

by utilizing its green energy, thus increasing the green energy utilization. Therefore,

the green energy driven user association optimization problem can be formulated as

min
X(k,j)

max{R1, R2..., RN} (2.9)

s.t. : Cj 6 Ptotalτ (2.10)

∑

j

X(k, j) = 1 (2.11)

∑

k

∑

j

X(k, j) = M. (2.12)

Since the transmission power of a BS is bounded and the BS cannot absorb unlimited

mobile users, Equation 2.10 imposes the BS energy consumption Cj to be less than or

equal to the maximum power consumption of a BS in each time slot. Equation 2.11

guarantees that a user is associated to only one BS and Equation 2.12 guarantees

that all users in this network are served.

Theorem 1. The problem that minimizes the maximal residual green energy ratio is

NP-hard.

Proof. Consider a case of the problem with only two BSs. By assuming the BSs have

the same amount of solar energy, the communications energy consumption of each

BS determines Rj . Each user k can be covered by either BS 1 or BS 2 in this time

slot. K1 and K2 denote the two user sets representing the users associated with BS
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1 and BS 2, respectively, i.e.,











X(k, 1) = 1, k ∈K1;

X(k, 2) = 1, k ∈K2.
(2.13)

K1 ∪K2 = K, and K is the set, which includes all the users in this network. If a

set of users associate with BS 1, the residual green energy ratio is R1; if a set of users

attach to BS 2, the ratio is R2. Minimizing the maximal residual green energy ratio

equals to finding the subset K1 ⊆K that satisfies

R1 = R2. (2.14)

By restricting the simple case of the problem to R1 = R2, and assuming the

total amount of energy consumption be evenly divisible by 2, the problem equals to

the partition problem [16], which is a well-known NP-hard problem.

2.2.2 Heuristic Algorithm

Since minimizing the maximal residual green energy ratio is NP-hard, the optimal

solution cannot be obtained in polynomial time. Therefore, we introduce heuristics to

solve this problem and at the same time avoid the ping-pong process, i.e., a nominal

greedy algorithm that dissociates users from a BS with smaller RGR and associates

them with the BS with the largest RGR will likely enrich the original BS to become

the one with the largest RGR, and will thus attract the users back to the original

BS, and vice versa. Therefore, to solve this problem, we first introduce the concept

of the energy dependent set (EDS).

Definition 1. Let Rj be the RGR of BS j at the current time slot. Then, EDS

D = {j|Rj = δ, j ∈ {1, 2..., N}}, where δ is the largest RGR among the N RGRs

prior to the user association optimization at this time slot.
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Guideline 1. Every BS in EDS with the largest RGR should absorb users from BSs

outside EDS by increasing its pilot signal power level and switching its sectors on. The

users once absorbed in a BS within EDS cannot be associated with those outside EDS

within the same time slot. When the BS in EDS enlarges its cell size and switches on

its sectors, the neighboring BSs outside EDS should shrink their cell sizes or switch

off their sectors accordingly.

Algorithm 2 Heuristic Algorithm

1: Initial user-BS association and E0
j , j ∈ {1, 2..., N};

2: In each time slot, calculate and sort Rj from the largest to the smallest, and find

δ and δ
′

;

3: Find the set D such that Rj = δ, ∀j ∈D

4: for n = 1 to |D| do

5: Associate more users to the BSs in EDS, and Rj will be decreased;

6: if Rj > δ
′

then

7: Continue to assign more users to the BSs in EDS;

8: end if

9: end for

10: Return the user-BS association;

Guideline 1 engineers the design of this heuristic algorithm from two aspects:

1) to feasibly solve the problem of minimizing the maximal residual green energy

ratio with low computational complexity, and 2) to identify which BSs in EDS should

increase their pilot power and adapt their sectors, and which BSs outside EDS should

reduce their pilot power or switch off sectors within the same time slot. The pseudo

code of this heuristic algorithm is shown in Algorithm 2.
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2.2.3 Simulation Results

In our work, we aim to maximize the green energy utilization of the whole cellular

network. Therefore, we consider the total harvested solar energy utilization in this

network and compare the utilizations between our algorithm and the Strongest Signal

First (SSF) algorithm [71] under the same simulation setting, i.e., the same number

of users and the same total solar energy of 120 kWh harvested by these 6 BSs in

one battery cycle. At the end of each battery cycle, the more solar energy leftover in

the batteries implies that more on-grid energy has to be drawn. We consider three

scenarios: 1) network with high user density with 210 users, 2) network with low user

density with 90 users, and 3) network with medium user density with 150 users. Figure

2.7 shows the performance of the two algorithms for Scenario 1. At the first several

time slots, these two algorithms achieve almost the same performance since all the BSs

have the solar energy to consume. As time elapses, in the middle part of the battery

cycle, since SSF can neither change BS cell size nor modify the user associations, some

of the BSs with more users exhaust the solar energy in their batteries earlier while

others with fewer users still have residual solar energy left in their batteries. On the

contrary, our algorithm can change the cell size and adapt user associations among

BSs; the BS with a larger RGR will serve more users as compared with the BS with

a smaller RGR. Thus, as shown in Figure 2.7, our proposed algorithm consistently

draws down the solar energy in the batteries. This highly dense network incurs large

energy consumption. At the end of battery cycle, for both algorithms, their solar

energy is used up and on-grid energy is drawn to power their BSs.

Scenario 2 with low user density also implies less energy consumption in the

network. As shown in Figure 2.8, these two algorithms exhibit almost the same

performance because all BSs have relatively plentiful solar energy to utilize. They

can all draw the solar energy to power the BSs. Since the total available solar energy

is more than the total BS workload demanded energy, in the end of the battery cycle,
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Figure 2.7 First scenario, network with high user density.
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Figure 2.8 Second scenario, network with low user density.

there are still some residual solar energy left in the batteries. In this scenario, both

of the algorithms will not consume on-grid energy.

In theory, if the amount of workload demanded energy is more than the available

harvested solar energy, the utilization of green energy in our work can reach 100%,

thus achieving the goal of furthest saving the on-grid energy consumption. However,

in each time slot optimization, the BS with maximal RGR may be assigned an
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excessive number of mobile users. Thus, traffic delivery latency is a potential issue of

this green energy driven user association scheme.

2.3 Dual-Battery Enabled Profit Driven User Association Scheme

Most existing works propose user-BS association schemes aiming to associate more

mobile users to the BSs, which have relatively abundant green energy, to maximize

the green energy utilization. This is seemingly rational, but brings latent negative

effects. First, disassociating users from the original BS and associating them to other

far away BSs will incur higher transmission power to serve these users, because of the

channel attenuation. This will exhaust the green energy quicker at those BSs or even

consume more on-grid energy if those BSs do not have enough residual green energy

to accommodate a larger number of users at once [13]. Second, a large number of

users crowded at a BS will lead to heavy traffic congestion and high traffic delivery

latency [28]. More mobile applications nowadays impose stringent requirements on

the traffic delivery latency [17].

Here, we first review some related works on user association for traffic load

balancing and user association for green energy utilization maximization in cellular

networks.

User association on traffic load balancing: Balancing traffic load in cellular

networks has been extensively studied in recent years [6]. The most practical traffic

load balancing approach is the cell range expansion technique that biases user’s

receiving signal-to-interference-and-noise-ratios (SINRs) from some BSs to prioritize

these BSs in associating with users [15]. A large bias is usually given to small BSs

to offload users, owing to the different transmission power of macro BSs and small

BSs [6]. Deriving the optimal bias for BSs is challenging. Singh et al. [58] investigated

the impact of the bias on network performances and provided a comprehensive

analysis on traffic load balancing using cell range expansion. An α-optimal user
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association algorithm was proposed by Kim et al. [31] to achieve flow level load

balancing under spatially heterogeneous traffic distribution. The result of convex

optimization varies by selecting the different values of α. Ye et al. [66] modeled

the traffic load balancing problem as a utility maximization problem and developed

distributed user association algorithms using the primal-dual decomposition. Aryafar

et al. [9] applied game theory to solve the traffic load balancing problem. They

modeled the problem as a congestion game in which users are the players and user

association decision are the actions. Tam et al. [59] proposed a new strategy on load

balancing in the downlink of a heterogeneous network by considering the backhaul

capacity at each BS to maximize the network sum rate.

User association on green energy utilization maximization: In cellular

networks, green energy utilization can be improved by associating mobile users among

different BSs, according to the available green energy at individual BSs. Zhou et

al. [70] proposed a handover parameter tuning algorithm for target cell selection, and

a power control scheme for coverage optimization to guide mobile users to access

the BSs with green energy supply. Liu and Ansari [44] proposed a user association

scheme to maximize the utilization of green energy by associating more users to

the BSs with relatively abundant green energy. Huang et al. [28] proposed a user

association algorithm to maximize the green energy utilization but the convergence

of the heuristic algorithm may not be guaranteed in some cases. A user association

framework was proposed to enhance the green energy utilization in cellular networks,

but most existing green energy related works simply assume that the amount of green

energy can be predicted and pre-allocated to the BSs along the time domain [24].

Actually, it is hard to engineer their algorithms in practice. Liu and Ansari [40]

jointly considered the green energy utilization and traffic delivery latency, but their

proposed heuristic algorithm does not have a traffic latency feedback mechanism,
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implying that new traffic congestion may be induced in maximizing the green energy

utilization.

Taking into account of these issues comprehensively, in this research, we propose

the dual-battery enabled profit driven user association scheme in a heterogeneous

cellular network by jointly considering the green energy utilization and traffic delivery

latency. Since this profit driven user association optimization problem is NP-hard, we

further provide some heuristics to maximize the total profit with low computational

complexity.

Degraded services lead to dissatisfaction on user experience that may eventually

lose customers and profits. According to current mobile service pricing policy, network

providers charge all the users subscribing the same level of service plan with the same

rate. However, users subscribing the same service plan may experience different

services in realty. Hence, in this work, we propose a novel pricing model based on

the real time service quality. Each user prepays to subscribe a level of service plan.

Each level of service plan has a guaranteed service quality threshold. If the user’s

received service is better than this quality threshold, the network providers can earn

100% of the user’s prepayment. If the user’s received service is worse than this quality

threshold, the network provider can only charge a percentage of the prepayment. The

worse service received by the user, the less percentage of the prepayment the network

provider can charge. This pricing model incentivizes the network providers to provide

better service quality to earn their profit as well as benefits mobile users.

In this research (the detail information can be referred to [41]), we consider one

macro cell in a heterogeneous cellular network. In each macro cell, there is one macro

BS (MBS) and multiple small BSs (SBSs), as shown in Figure 2.9. MBS has higher

transmission power than that of SBS. MBS and SBSs are equipped with solar panel,

wind turbine and dual-battery, and can be powered by both on-grid brown energy and

green energy. We consider solar energy and wind energy as the green energy source
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in this work though other green sources can be equally adopted. In the following

analysis, a BS generally refers to an MBS or an SBS. Denote B as the set of BSs in

a macro cell including both MBS and SBSs. The number of BSs in a macro cell is J ;

the BSs are indexed by j.

Figure 2.9 Framework of a green heterogeneous cellular network.

In a cellular network, the time scale of per-user channel and traffic variations

is up to tens of seconds; the time scale of the aggregated traffic demand variations

in a BS is tens of minutes [11]. The user association parameters are usually adapted

based on the aggregated traffic demand of a BS rather than that of an individual

user [11], [25]. Because of the difference in the time scales of per-user traffic variations

and that of the user association parameter, the impact of the user association

algorithms on a BS’s performance can be evaluated by using the steady-state model,

e.g., queuing models, without considering individual users’ instantaneous channel and

traffic variations [31]. Therefore, we can model the downlink traffic and traffic delivery

latency based on queuing and the time scale of a time slot for user association is tens

of minutes. The time duration and index of a time slot are τ and t, respectively. The

system models, problem formulation, heuristic algorithm and simulation results are

presented as follows.
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2.3.1 Dual-battery Model

We denote Γ as the length of the battery cycle and Γ is selected to be an integer

multiple of user association parameter adaption time slot τ . Both Γ and τ are

quantified in minutes. At the beginning of each battery cycle, the initial total

harvested green energy in a battery of BS j is E0
j , which was harvested in the previous

battery cycle. E0
j can be different in different battery cycles at the same or a different

BS j, and has to be less than or equal to the full battery capacity. As time elapses

during the battery cycle, the residual green energy in the battery of BS j at the tth

time slot is Ej(t). Ej(t) is to be between zero and the initial green energy E0
j stored

in the battery, i.e., 0 6 Ej(t) 6 E0
j . Ej(t) at the BS j is updated for each time slot t.

2.3.2 Traffic Model

We consider the BSs are deployed to provide downlink data transmission in a macro

cell. Since provisioning the profit driven green cellular networks is a network planning

problem, the user association solution depends on the traffic generation of a target

area. Therefore, in this research, we adopt a location-based traffic model. In the tth

time slot, the traffic (data requests) is assumed to arrive at location x according to

a Poisson process with the average arrival rate which equals to λ(x, t) per second,

and the traffic size (packet size) per arrival satisfies a general distribution with the

average traffic size of ν(x, t) bits. Here, λ(x, t) and ν(x, t) can be derived based on

the statistics of traffic data from traffic measurements; they may have different values

in different time slot t.

We assume that there is only one user at location x. When a mobile user at

location x is associated with the jth BS, the user’s data rate rj(x) can be generally

expressed as a logarithmic function of the perceived signal-to-interference-plus-noise

ratio (SINR), i.e., SINRj(x), according to the Shannon-Hartley Theorem [56],

rj(x) = Wj(1 + SINRj(x)). (2.15)

30



Here, Wj is the bandwidth in BS j, and

SINRj(x) =
pjgj(x)

σ2 +
∑

m∈Ij
Im(x)

. (2.16)

Note that pj is the transmission power of BS j; gj(x) is the channel gain between

BS j and the user at location x; σ2 denotes the noise power level. Ij represents the

set of interfering BSs and is defined as the set of BSs which interfere the jth BS’s

transmission. Im(x) is the average interference seen by a user at location x from the

mth BS.

In cellular networks, various downlink scheduling algorithms have been proposed

to properly share the limited radio resource in a BS. For analytical simplicity, we

assume that mobile users at a BS are served based on the round robin fashion. Then,

the average traffic load density at location x in BS j is calculated as

̺j(x, t) =
λ(x, t)ν(x, t)ηj(x)

rj(x)
. (2.17)

Here,
rj(x)

ν(x,t)
is the service rate provisioned by BS j. ηj(x) is an indicator function. If

ηj(x) = 1, the use at location x is served by BS j; otherwise, the user is not served

by the BS. η = (η1(x), ..., ηJ(x)). Denoting A as the coverage area of the macro cell,

the traffic load on the jth BS can be expressed as

ρj(t) =

∫

x∈A

̺j(x, t)dx. (2.18)

This value of ρj(t) indicates the utilization of BS j, i.e., the fraction of time BS j is

busy in the tth time slot.

Since the traffic arrival (user requested data) processes for individual users are

independent and Poisson, the traffic arrival at the j BS is the sum of the traffic arrivals

of users associated with it, i.e.,
∫

x∈A
λ(x, t)ηj(x)dx, which still follows a Poisson

process. The BS’s service rate
rj(x)

ν(x,t)
follows a general distribution. Assuming mobile
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users share the BS’s radio resources and are served based on the round robin fashion,

consequently, the downlink traffic delivery in the BS realizes an M/G/1-PS (processor

sharing) queue [32].

A mobile user at location x, who is associated with BS j, is assumed to have

average traffic size ν(x, t) in the tth time slot. To fulfill the user’s traffic demand, the

required service time is

γj(x, t) =
ν(x, t)

rj(x)
. (2.19)

According to [32], since the traffic delivery process in a BS realizes a M/G/1-PS

queue, the average traffic delivery time for the user in BS j is

Tj(x, t) =
ν(x, t)

rj(x)(1 − ρj(t))
. (2.20)

The average waiting time for the traffic load ν(x, t) in BS j is

Wj(x, t) = Tj(x, t)− γj(x, t) =
ρj(t)ν(x, t)

rj(x, t)(1− ρj(t))
. (2.21)

Denote µj(x, t) as the latency ratio of BS j for a user at location x in time slot t, and

it indicates how much time a user must “sacrifice” at BS j in waiting for per unit

service time,

µj(x, t) =
Wj(x, t)

γj(x, t)
=

ρj(t)

(1− ρj(t))
. (2.22)

Since µj(x, t) only depends on the traffic load in BS j and time slot t, we define

µj(ρj(t)) =
ρj(t)

(1− ρj(t))
(2.23)

as the latency ratio of BS j. For simplicity, we use µj(t) to represent µj(ρj(t)). µj(t)

is a strictly increasing function of ρj(t). A larger µj(t) indicates that BS j introduces

higher latency to its associated users.

Proposition 2. µj(t) is a strictly increasing function.
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Proof. Since

µj(t) =
ρj(t)

(1− ρj(t))
, (2.24)

the first order derivative of µj(t) is

µ′
j(t) =

(1− ρ(t))− ρ(t)(−1)

(1− ρ(t))2
=

1

(1− ρ(t))2
. (2.25)

Since µ′
j(t) > 0, µj(t) is a strictly increasing function.

2.3.3 Pricing Model

In order to incentivize the network provider to provision better service quality, i.e.,

shortening the traffic delivery latency, and to enhance the fairness among the mobile

users, a novel pricing model is introduced. In this pricing model, each user prepays,

for example, to subscribe a level of service plan for one month. The payment includes

two parts. The first part is network admission fee. The admission fee payment of a

user per month can be pro-rated (converted) to every time slot as cd (in $), which is

charged for every time slot. The second part is service fee. The pro-rated (converted)

service fee is cu (in $), which is only charged when the mobile user is served in that

time slot. cu is much larger than cd. Assume this price is determined by market

research, and agreeable to both the mobile users (customers) and network provider.

Since the proposed BS transmission system is time slotted, when a mobile user

is served by BS j in a time slot, the network provider charges

cr = cd + cuθj . (2.26)

Here, θj is a function reflecting/mapping the latency ratio of BS j to the revenue,

θj =











1, µj(t) ≤ µthres

1
µj(t)

, µj(t) > µthres

, (2.27)
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where µthres is the service plan guaranteed latency ratio threshold and µthres > 1. If

the user experienced latency in that time slot is less than or equal to the network

provider’s promised traffic latency threshold µthres, i.e., the service, in terms of traffic

delivery latency, is good enough, the network provider can earn 100% of the user’s

prepayment; otherwise, it can only earn a percentage of the user’s prepaid payment.

According to Equation 2.27, the higher traffic latency is experienced by the user, the

network provider earns a less percentage, θj , of the user’s prepayment and has to

refund cu(1− θj) to the user. Suppose the number of mobile users who are scheduled

to be served by BS j in time slot t is Lj ; the revenue gained at the jth BS in time

slot t is

Rj = Ljcr. (2.28)

2.3.4 Energy Model

The BS’s energy consumption includes two parts: the static energy consumption

and the dynamic energy consumption [10]. The static energy consumption is the

energy consumed by a BS without carrying any traffic load. The dynamic energy

consumption refers to the additional energy consumption incurred by traffic load in

the BS, which can be represented by a linear function of the traffic load in a time

slot [10]. As the BS performs the full transmission power, ρj(t) indicates the fraction

of time BS j is busy in the tth time slot [30]. The time slot duration is τ . Denote psj

as BS j’s static power consumption in a time slot. Then, BS j’s energy consumption

in the tth time slot is

Pj(t) = pjρj(t)τ + psjτ. (2.29)

Here, ρj(t)τ is the amount of time within a time slot that BS j performs downlink

transmission to serve users.
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According to the residual green energy Ej(t) and energy consumption Pj(t), the

on-grid energy consumed in the jth BS in time slot t is

Gj = {Pj(t)−Ej(t)}
+, (2.30)

where the positive function {•}+= max{•, 0}. We denote the on-grid electricity price

as ce (in $/kWh).

2.3.5 Problem Formulation

In this work, we aim to maximize the profit for the network provider by considering

the BS’s traffic delivery latency and green energy utilization. We have obtained the

traffic latency ratio reflected revenue and the cost of on-grid energy in the macro for

each time slot. The dual-battery enabled profit driven user association optimization

problem can be formulated as

max
η

(
∑

j∈B

Rj − ce
∑

j∈B

Gj) (2.31)

s.t. 0 ≤ ρj(t) < 1, (2.32)

∑

j∈B

ηj(x) = 1. (2.33)

In Equation 2.31, the first item is the traffic latency reflected revenue and the second

item is the cost of on-grid brown energy. Equation 2.32 is to guarantee the queuing

system in each BS J is stable. Equation 2.33 implies each active user is associated with

a BS. This dual-battery enabled profit driven user association optimization problem

is NP hard.

Proposition 3. The dual-battery enabled profit driven user association optimization

problem is NP-hard.

Proof. This profit maximization user association optimization problem is equivalent

to (can be converted to) the cost minimization user association problem because
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provisioning service to mobile users incurs cost, such as energy consumption and traffic

latency increment, from the perspective of network provider. Since the weighted

vertex cover problem is a well-known NP hard problem [16], we will reduce it to the

cost minimization user association problem.

For a given instance of weighted vertex cover problem with a graphD = (V,E),

v ∈ V , e ∈ E. Here, v stands for the vertex and e represents the edge. Each vertex

has its weight av ≥ 0. In this problem, the goal is to find a subset of vertexes V ′ ⊆ V

that covers all the edges e ∈ E in this graph with the minimum total weight, i.e.,

min
∑

v∈V ′ avxv. Here, xv ∈ {0, 1} indicates that vertex v is either in subset V ′ or

not.

We construct an instance of cost minimization user association problem.

Suppose the user e ∈ E can be associated to surrounding BS v ∈ V within the

macro cell. Here, e stands for the user and v represents the BS. In each time slot,

all the active users e should be served by their surrounding BSs. Serving a user by

different BSs incurs different costs av ≥ 0 (equivalent to the “weights” in the weighted

vertex cover problem), in terms of traffic latency or the on-grid energy expenses. The

goal is to find the subset of BSs V ′ ⊆ V serving all the active users e ∈ E with proper

user-BS association xv ∈ {0, 1} that leads to the minimum cost, i.e., min
∑

v∈V ′ avxv.

Since the weighted vertex cover problem can be reduced to the cost minimization

user association problem, and the cost minimization user association problem is

equivalent to the profit maximization user association problem. Therefore, the profit

driven user association optimization problem is NP-hard.

2.3.6 The Heuristic Algorithm

Since the profit driven user association optimization problem is NP-hard, the optimal

solution cannot be obtained within polynomial time. Therefore, we provision some

heuristics to maximize the profit with low computational complexity. Modifying
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user-BS association in a cellular network, on one aspect, can adjust the traffic latency

among the BSs, and on the other one aspect, can change the BSs’ transmission energy

consumption to enhance the green energy utilization in the network. In order to

maximize the profit for the network provider, according to the objective function, the

intuition can be seen from two perspectives. The first is to associate users from the

BSs with high traffic delivery latency to the less congested BSs to gain the revenue.

The second is to let the BSs having more green energy to absorb more users to reduce

the cost of on-grid electricity. Therefore, based on the system model, in the PDU

heuristic algorithm, the BSs with relatively abundant residual green energy Ej(t)

and small traffic delivery latency ratio µj(t) are the candidate BSs to serve more

surrounding users.

We first define the residual green energy to traffic latency ratio, Hj =
Ej(t) + ε

µj(t)
.

Here, ε is an arbitrary small positive constant to guarantee Hj to be positive, even if

the amount of residual green energy Ej(t) at a BS is zero. Also, in order to avoid the

ping-pong process (i.e., a nominal greedy algorithm that may dissociate users from a

BS first and then attract the users back later to the original BS) [40], we stipulate

that the mobile users once associate to other BSs will not be associated back to the

original BS within the same time slot.

In the heuristic algorithm, the user-BS association is initialized based on the

default user-BS association scheme, strongest-signal-first (SSF) scheme [24], i.e., the

users are initially associated to the BS with the strongest signal. For each time slot,

sort Hj from the largest to the smallest, and index the BSs by k, ranging from 1 to

J . Find the BS with the largest Hk, and define the set B
′

k, which includes all the

adjacent BSs around BS k, |B
′

k| = B′
k. Then, sort the Hj for the BSs in set B

′

k from

the smallest to the largest, and index the BSs in this set by y, ranging from 1 to

B′
k. Sort the SINRs between the users originally associated with BS k and the yth

BS, from the highest to the lowest, and index the users with respective SINRs by l,
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ranging from 1 to L. Suppose the number of users at BS y is Ly. Define the initial

total profit of all the BSs in the macro cell as M ′, and after each iteration, denote the

total profit as M . The pseudo code of this heuristic algorithm is shown in Algorithm

3.

In this heuristic algorithm, by sorting Hj from the highest to the lowest, the BS

with the highest Hj is to serve more surrounding users because it has more abundant

green energy and/or lower traffic delivery latency. Its adjacent BS in B
′

k which has

the lowest Hj is the one to be offloaded immediately because this BS has less residual

green energy and/or higher traffic latency ratio. According to the sorted SINRs

between the users and the BS with the highest Hj , users are associated to the BS

k one by one. This guarantees that the increment of the energy consumption and

that of latency ratio at BS k increase gradually. Calculating the total profit after

each iteration, we set three joint conditions to continue the next iteration, 1) the

total amount of profit is greater than that of previous iteration; 2) we add a latency

feedback mechanism, i.e., BS k should satisfy µk(t) < µthres; 3) the BS with the

higher Hj still has enough green energy to serve more surrounding users. Otherwise,

the PDU heuristic algorithm stops the current loop, maintains the previous iteration’s

user association and starts the next loop. Since our heuristic algorithm uses sorting

and avoids the ping-pong process to guarantee convergence, it can avoid unnecessary

search to reduce the runtime.

The PDU heuristic algorithm has three sorting procedures and three loops.

The computational complexity of sorting J BSs is O(J log J). The computational

complexity of sorting B′
k BSs around BS k is O(B′

k logB
′
k). The computational

complexity of sorting Ly user at BS y is O(Ly logLy). Assuming the heuristic

algorithm search all the BSs and users in the macro cell, the worst case computational

complexity of PDU heuristic algorithm is O(J3Z2 log(J + Z)), with respect to the
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Algorithm 3 The PDU Heuristic Algorithm

1: Initialize the user-BS association based on SSF, calculate M ′ and calculate Hj

for all BSs, j ∈ {1, 2, ..., J};

2: Sort the BSs from the highest Hj to the lowest Hj, and index the BSs by k,

k ∈ {1, 2, ..., J}, find the BS with the largest Hk;

3: for k = 1 to J do

4: Denote the set of BSs around BS k as B
′

k, |B
′

k| = B′
k, index the BSs in B

′

k by

y , and sort the BSs from the smallest Hy to the largest Hy;

5: for y = 1 to B′
k do

6: Sort the SINRs between the users originally associated with BS k and the

yth BS, from the highest to the lowest, and index the users with respective SINRs

by l; the number of scheduled users is Ly;

7: for l = 1 to Ly do

8: Associate user l to BS k and calculate the current profit as M ;

9: if M < M ′ ‖ µk(t) > µthres ‖ Ek(t) < Pk(t) then

10: Maintain the user association of the previous iteration and stop the

current loop;

11: else

12: M →M ′, continue to do the next iteration, i.e., associate the next

user;

13: end if

14: end for

15: end for

16: end for

17: Return the user-BS association η;
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number of BSs J and number of users Z. Theoretically, this PDU heuristic algorithm

is a pseudo polynomial time algorithm.

2.3.7 Simulation Results

Simulations are set up to evaluate the performance of the proposed heuristic solution

for maximizing the profit of the network provider in a macro cell. In the simulation,

we consider six BSs deployed in a 5km× 5km area; one MBS is located at the center

of macro cell and five SBSs are deployed surrounding the MBS. Their locations are

fixed, as shown in Figure 2.9. The mobile users are distributed to represent the

traffic generation in that area according to the historical traffic statistics which are

randomly generated in the simulations. The channel propagation model is based

on COST 231 Walfisch-Ikegami distance-dependent channel model [2]. The channel

model and parameters are summarized in Table 2.1. Here, PLMBS and PLSBS are

the path loss between the users and MBS and SBS, respectively. d is the distance

between users and BSs. The total bandwidth is 10 MHz, and the spectrum reuse

factor is 1.

The time slot τ is 20 minutes and the battery cycle is 60 minutes. In simulations,

each user pays $100 per month to the network provider, i.e., $20 is the network

admission fee and $80 is the service fee. The pro-rated prepaid admission fee and

service fee for each time slot are $9.25 × 10−3 and $3.7 × 10−2, respectively. The

on-grid electricity price for powering BS is 6.92 × 10−2$/kWh. The initial available

green energy E0
j at the beginning of the battery cycle for the six BSs are randomly

assigned between 0.8kWh and 1.6kWh, and we set the amount of total initial available

green energy at these six BSs to be 8kWh.

In the simulations, our proposed PDU heuristic algorithm first initiates the

user association based on the SSF scheme, which associates users to the BS with the

strongest received signal. The network set-up topology and initial user-BS association
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Table 2.1 Channel Parameters

Parameters Values

PLSBS(dB) PLSBS = 140.7 + 36.7log10(d[km])

PLMBS(dB) PLMBS = 113.1 + 37.6log10(d[km])

Shadowing 10dB Log Normal Fading

Antenna gain 15dB

Noise power level −174dBm

is shown in Figure 2.10. The six red circles are the six BSs. The other six kinds of

colored circles denote the six groups of users associated with the six BSs, respectively.
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BS 6

BS 2

Figure 2.10 Network set-up topology and initial user association.

According to the proposed PDU heuristic algorithm, the BSs with larger Hj will

serve more mobile users from their surrounding BSs with smaller Hj. In Figure 2.11,

BS 6 is the BS with the largest Hj in this experiment. It first intends to absorb more

users from its surrounding BS with the smallest Hj, i.e., BS 5 in this experiment.
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In each iteration, it serves one more user from BS 5. When BS 6’s residual green

energy is insufficient to serve more users, or the latency ratio of BS 6 reaches the

predefined threshold, or serving one more user from BS 5 leads to more cost, BS 6

stops absorbing more users. Figure 2.11 shows that BS 6 associates some users from

BS 5. The purple stars stand for the users associated with BS 6 after modifying user

association.
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Figure 2.11 BS with the largest Hj assists the BS with the smallest Hj .

BS 6 associates one more user from BS 1 (pointed out by the arrow), as shown

in Figure 2.12. BS 1 is the BS with the second smallest Hj around BS 6. Since the

latency ratio of BS 6 reaches its predefined threshold µthres, it stops serving more

users from surrounding BSs because the higher latency ratio, which exceeds µthres,

will lead to “penalty” in terms of losing profit. BS 2 is with the second largest Hj

in this macro cell because it has a small µj(t). BS 1 is the BS with the smallest

Hj around BS 2 (among BS 1, 6 and 3). Hence, as shown in Figure 2.13, BS 2

absorbs some users from BS 1 to reduce the energy consumption and/or alliterate

traffic congestion for BS 1 in order to increase profit for this macro cell. The blue
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stars stand for the users associated with BS 2 after modifying user association. Then,

the BS with the third largest Hj repeats this process to check whether it can help its

surrounding BSs to gain the profit for this macro cell. Then, the fourth one repeats,

and so on. For brevity, we just show the association modifications for the BS with

the largest Hj and the BS with the second largest Hj.
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Figure 2.12 BS with the largest Hj assists the BS with the second smallest Hj .

In this work, we compare the performances of our proposed PDU heuristic

algorithm, the Min-max Residual Green energy Ratio (RGR) algorithm [44], Profit

User association Heuristic (PUH) algorithm [40] and the SSF scheme from different

aspects and set them with the same simulation settings. Figure 2.14 shows the growth

of traffic latency as the number of mobile users increases in the macro cell. In order to

maximize the green energy utilization, the Min-max RGR algorithm always forces the

BS with the most residual green energy to serve a large number of users and does not

consider the latency issue in the network. Hence, its overall traffic latency ratio is the

highest among the four algorithms. Since SSF does not change BS coverage or modify

the user associations based on the traffic, its traffic latency simply goes up with the
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Figure 2.13 BS with the second largest Hj assists its surrounding BS with the
smallest Hj.
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Figure 2.14 Traffic latency ratio vs. number of mobile users.

increase of users. PUH intends to maximize profit in the network but it does not have

a latency feedback mechanism in the algorithm, i.e., a congested BS with less residual
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green energy will always offload its users to the adjacent BS with abundant green

energy, but this may lead to new traffic congestion at its adjacent BS. Our proposed

PDU algorithm has the latency feedback mechanism in the algorithm. A BS stops

absorbing more users when its traffic latency ratio reaches the predefined latency ratio

threshold µthres, even if it still has surplus residual green energy. Therefore, the PDU

algorithm will not cause new local traffic congestion, and so the overall traffic latency

ratio does not grow rapidly.
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Figure 2.15 Total residual green energy in a battery cycle.

Figure 2.15 shows the total residual green energy in the discharging batteries in

a macro cell of these four algorithms for serving 200 mobile users during one battery

cycle. Since SSF does not associate users based on the green energy, it retains the most

green energy at the end of the battery cycle among the four algorithms, i.e., the green

energy is not fully used. Min-max RGR maximizes the green energy utilization, and so

it exhausts green energy earlier than the other three algorithms. As aforementioned,

PUH does not have latency feedback mechanism in the algorithm, a BS with relatively

abundant residual green energy will keep absorbing mobile users from the surrounding
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BSs with insufficient residual green energy as long as the profit increases. Thus, its

amount of residual green energy is close to that of the Min-max RGR algorithm. The

proposed PDU has the latency feedback mechanism in the algorithm. Even through a

BS still has some surplus residual green energy, when its traffic latency ratio reaches

the predefined latency ratio µthres, it will stop absorbing more users from surrounding

BSs to avoid instigating new traffic congestion. Therefore, its green energy utilization

is less than that of PUH.
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Figure 2.16 Profit vs. number of mobile users.

Figure 2.16 shows the total profit increasing trend versus the number of mobile

users in this macro cell; we apply the same pricing model to the comparison

algorithms. Since SSF does not modify user-BS association based on the traffic and

green energy, its profit grows with the increase of users. Min-max RGR can reduce

on-grid energy consumption by maximizing the green energy utilization, i.e., the BS

with more residual green energy will associate more mobile users, thus inducing some

local traffic congestions that leads to “penalties” based on the pricing model. Since

the PUH algorithm does not have latency feedback mechanism in the algorithm, local
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traffic congestions will also cause “penalties” in the overall profit. In our proposed

PDU heuristic algorithm, the BSs with larger Hj are the candidates to serve more

users; when their traffic latency ratios reach the predefined latency ratio µthres, they

will not bring more traffic into their downlink transmission. This algorithm jointly

considers the traffic delivery latency and green energy utilization to balances traffic

load among BSs while making good use of green energy; the network provider profits

from both aspects. The achieved profit of the PDU heuristic algorithm is slightly

higher than that of the PUH algorithm. Even though the green energy utilization is

not higher than that of the PUH algorithm, the PDU heuristic algorithm incorporates

the importance of the network provider in provisioning users with the promised QoS.

2.4 Summary

In this chapter, we have proposed the dual-battery architecture to harvest and manage

green energy in the cellular network. By installing dual-battery, the amount of

available green energy at each BS is known and accurate for every time period. We

have also proposed the profit-driven user association scheme to jointly consider the

green energy utilization and traffic delivery latency in the network to maximize the

profits of the network providers.
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CHAPTER 3

GREEN D2D COMMUNICATIONS

As aforementioned, a large number of IoT applications are emerging. For example,

in the residential area, smart homes can be facilitated by IoT via home appliance

automation control. In hospitals, various medical facilities can sense and cooperate to

provide prompt patient services. In factories and farms, instruments can collaborate

with each other to enhance the performance and efficiency of factory and farm

operations. IoT also enables vehicle-to-vehicle and vehicle-to-person communications

to improve traffic management and transportation safety. There are many other

IoT application scenarios, such as context aware smart space, proximal files sharing,

proximal social networking and fog computing.

It is imperative to decouple D2D communications from the occupied cellular

spectrum to facilitate ubiquitous, seamless and quality services required for IoT. By

leveraging the overlay spectrum sharing approach, D2D and cellular communications

are to be accommodated on separated spectra to avoid the mutual interference. This

is beneficial to both cellular and D2D users. There is a constant demand for new

spectral bands to boost the new generation of communications [7], [1]. In fact,

on July 14, 2016, FCC voted to open up almost 11 GHz of spectrum for wireless

communications [3]. Besides utilizing licensed spectrum, portions of unlicensed

spectrum have been proposed to be integrated into Long-Term Evolution (LTE)

cellular networks to facilitate IoT and D2D communications [65], [53]. Therefore, we

assume additional spectrum will be dedicated for D2D communications in realizing

IoT.

In this work (the detail information can be referred to [39]), consider a

heterogeneous cellular network with multiple macro BSs and pico BSs (pico BSs
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act as relay BSs) as shown in Figure 3.1. The macro BSs are evenly placed according

to a hexagonal grid. In this work, the spectrum reuse factor for cellular frequency

planning is 1/3, which implies that 3 adjacent macrocells, for example, Cells 1, 2

and 3, cannot utilize the same spectral band. Thus, two adjacent macrocells will

have no interference [63], [20]. We adopt the overlay spectrum sharing approach

to facilitate D2D communications, and there is no interference between D2D and

cellular network. All the macro BSs and relay BSs in this network are synchronized

and coordinated. Assume the relay BSs within a macrocell can cooperatively cover

this macrocell completely, and so any device within this macrocell can be served by

the relay BSs.

Figure 3.1 Framework of green relay assisted D2D communications with dual-
battery system in a heterogeneous cellular network.

3.1 System Model

3.1.1 Direct D2D Communications Group

For each picocell, the channel state information (CSI) between the devices, and that

between the devices and the relay BS are assumed known by the relay BS [63], [62].

CSI includes multiple channel state factors, such as path loss, shadowing and fading.
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According to CSI in every time slot, we partition the devices within a picocell into

two groups. If the channel state in a source-destination (SD) device pair is better

than the channel state between the source device and the relay BS, this SD pair is

classified into the direct D2D group, in which the source device can directly transmit

data to the destination device. As shown in Figure 3.2, the solid line represents the

direct D2D transmission.

Figure 3.2 Direct and relay D2D communications.

Let M be the number of SD pairs in the direct D2D group under the coverage of

a particular relay BS j; denote SDirect = (s1, s2, ..., sm) and DDirect = (d1, d2, ..., dm) as

the source and destination devices in this group, respectively. Single-carrier frequency

division multiple access (SC-FDMA) is adopted in the transmission between devices

[45]. So, there is no interference within a picocell. Different picocells carve up and

utilize all the orthogonal channels of this macrocell [37]. Hence, there is no interference

between the picocells within the same macrocell. As aforementioned, there is no

inter-macrocell interference, and hence, the transmission data rate for the mth SD
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pair is

CSD
m,j = W S

m,jlog2(1 +
P S
m,jh

SD
m,j

N0W S
m,j

). (3.1)

Here, P S
m,j is the transmission power of the mth source device in picocell j, hSD

m,j

the channel gain between the mth source and destination device in picocell j, N0

the power spectral density of additive white Gaussian noise (AWGN), and W S
m,j the

bandwidth allocated to the mth SD pair in the jth picocell.

3.1.2 Relay Assisted Dual-hop D2D Communications Group

According to CSI, if the channel state between the source device and the relay BS is

better than or equal to that in an SD pair, this SD pair is classified into the relay

assisted dual-hop D2D group (for simplicity, relay D2D group), because the channel

state favors the transmission from the source device to the relay BS. The relay BS

can relay the information for the source device to its corresponding destination device

with an equal or higher data rate. In this case, the source device saves energy by

sending data to the relay BS, instead of being constrained from transmitting to the

destination device in a poor quality link. As shown in Figure 3.2, the dash line refers

to the relay D2D transmission.

Let N be the number of SD pairs in the relay D2D group under the coverage

of the relay BS j, and SRelay = (s
′

1, s
′

2, ..., s
′

n) and DRelay = (d
′

1, d
′

2, ..., d
′

n) denote the

sets of source and destination devices, respectively. Similarly, without interference,

the transmission data rate from the nth source device to relay BS (SR link) is

CSR
n,j = W S

n,jlog2(1 +
P S
n,jh

SR
n,j

N0W
S
n,j

). (3.2)

Here, P S
n,j is the transmission power of the nth source device in the jth picocell. hSR

n,j

is the channel gain between the nth source device and the relay BS j. W S
n,j is the

bandwidth allocated to the nth source device.
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The transmission data rate for the relay BS for serving the nth destination

device (RD link) is

CRD
n,j = WR

n,jlog2(1 +
PR
n,jh

RD
n,j

N0W
R
n,j

). (3.3)

Here, PR
n,j is the transmission power of the jth relay BS for serving the nth destination

device. hRD
n,j is the channel gain between the relay BS j and the nth destination device.

WR
n,j is the bandwidth allocated for serving the nth destination device.

For the relay assisted dual-hop D2D communications, the nth source device

sends the data to the relay BS in the first time unit, and then the relay BS sends the

received data to the nth destination device in the second time unit [69], and hence

the effective data rate of this SD pair is

CSD
n,j =

1

2
min

{

CSR
n,j , C

RD
n,j

}

. (3.4)

3.2 Network Resource Allocation Optimization

Our proposed architecture facilitates not only intra-picocell D2D communications,

but also multi-hop inter-pico/macrocell D2D communications by sharing the routing

information among pico/macro BSs. The source device will first inquire the IP/MAC

addresses of the destination device at the local relay BS, and if the destination device is

in the same picocell, the relay BS will establish the intra-picocell D2D transmission for

this SD pair; otherwise, the local relay BS will schedule a routing path for this source

device, i.e., the relay BS first relays the information to an intermediate device located

at its coverage boundary, and then this intermediate device will be guided to associate

with the neighboring relay BS in the next time slot, and forward the information to

that neighboring relay BS or to other device guided by that neighboring relay BS.

The information being delivered among different picocells or macrocells is eventually

delivered to the destination device.
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Within the coverage of a relay BS, no matter whether the transmission is a

complete transmission of intra-picocell D2D communications or a partial transmission

of multi-hop inter-pico/macrocell transmission, there always involves one SD pair

under the coverage of a relay BS. Therefore, we perform the resource allocation

optimization for the two groups of SD pairs within the relay BSs of each macrocell

in each time slot.

3.2.1 Resource Allocation for the Direct D2D Group

Consider there are J picocells in one macrocell. P S
m,j is the transmission power of

the mth source device in the direct D2D group in the jth picocell. Different types

of devices have different transmission power P S
m,j , and for the same source device its

P S
m,j can also be different in different time slots. In this work, we assume in each

time slot, P S
m,j of each device is fixed and known by the relay BS through the control

link before the transmission [21]. Denote CSD
m req,j as the required data rate of the

IoT application of the mth SD pair; CSD
m req,j can be different in different time slots

for different SD pairs; assume they are fixed and known by the relay BS for each

time slot. The channel gain hSD
m,j and noise power spectral density N0 in Equation

3.1 remain constant within each time slot. The resource allocation scheme for the

devices in the direct D2D group is to assign the proper bandwidth for each SD pair’s

data rate CSD
m,j to reach its required service data rate CSD

m req,j, i.e.,

CSD
m,j = CSD

m req,j = W S
m,jlog2(1 +

P S
m,jh

SD
m,j

N0W S
m,j

). (3.5)

Here, W S
m,j is the only variable in Equation 3.5. According to Shannon’s Theorem [56],

for a fixed P S
m,j , by increasing its transmission bandwidth W S

m,j, the data rate will

be increased accordingly. Also, note that CSD
m,j is a concave increasing function of

W S
m,j for a fixed P S

m,j [12]; by increasing W S
m,j , the transmission data rate CSD

m,j will

be increased. Therefore, properly allocating bandwidth to each SD pair in the direct
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D2D group can facilitate the data rate to satisfy their application required service

data rate. The occupied bandwidth for the direct D2D group in the jth picocell is

WDirect,j =
∑M

m=1W
S
m,j . Thus, the occupied bandwidth for the direct D2D group in

this macrocell is WDirect =
∑J

j=1WDirect,j.

3.2.2 Resource Allocation for the Relay D2D Group

Suppose the total available spectrum bandwidth for IoT D2D communications in a

macrocell is WD2D. We have obtained the occupied bandwidth for the direct D2D

group in this macrocell as WDirect, and so the remaining bandwidth for the relay D2D

group is WRelay = WD2D−WDirect. The transmission of the relay D2D group concurs

with that of the direct D2D group within the same time slot. In order to schedule

the transmission and optimize the resource allocation for the relay D2D group, the

time slot for the relay D2D transmission is further evenly divided into two sub-time

slots, as shown in Figure 3.3. The first sub-time slot is for the source device to the

relay BS (SR link) transmission; the second sub-time slot is for the relay BS to the

destination device (RD link) transmission. The available bandwidth for the relay

D2D group WRelay is fully used in the first sub-time slot, and then fully used in the

second sub-time slot again.

First Sub-time Slot Resource Allocation Optimization Again, consider J

picocells in a macrocell. For all the devices in the relay D2D groups of these J

picocells, in the first sub-time slot, each relay BS will allocate the bandwidth to

each source device within its own picocell coverage. The optimization objective is to

maximize the overall data rates from all the source devices to their corresponding relay

BSs, i.e., maximizing the overall data rates at the SR links for all these J picocells,

while guaranteeing half of the data rate of each SR link 1
2
CSR

n,j not to be lower than

the application required data rate of each SD pair CSD
n req,j, according to Equation

3.4. Here, CSD
n req,j is the required data rate by the IoT application of the nth SD pair;
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Figure 3.3 Resource allocation framework within one time slot.

CSD
n req,j can be different in different time slots for different SD pairs; CSD

n req,j is assumed

fixed and known by the relay BS for each time slot. The rationale of this objective

is to maximize the overall data rate for all the source devices and at the same time

reduce their energy consumption. From the perspective of a device, transmitting the

same amount of data at a higher data rate incurs less transmission time. Less time

multiplied by the fixed transmission power indicates less energy consumption in the

device. The objective for the first sub-time slot is to maximize the sum rate of all

the source devices, i.e.,

max
{WS

n,j
}

J
∑

j=1

N
∑

n=1

CSR
n,j (3.6)

s.t. CSD
n req,j ≤

1

2
CSR

n,j (3.7)

J
∑

j=1

N
∑

n=1

W S
n,j ≤WRelay (3.8)

0 < W S
n,j . (3.9)

Here, Equation 3.7 constrains half of the data rate at the SR link not to be less

than the data rate required by the nth SD pair. Equation 3.8 implies that the total
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allocated bandwidth for the source devices should be less than or equal to the available

bandwidth for the relay D2D group WRelay in this macrocell. W S
n,j is the bandwidth

to be allocated to the nth source device in the jth picocell. From Equation 3.2, it can

be seen that CSR
n,j is a concave increasing function of W S

n,j . The summation of concave

functions, Equation 3.6, is still concave [12]. Hence, this optimization problem can be

solved efficiently. Each W S
n,j will lead to a corresponding data rate CSR

n,j for each SR

link. Therefore, the data rates of the SR links are known and fixed for the resource

allocation optimization for the subsequent second sub-time slot.

Second Sub-time Slot Resource Allocation Optimization In the first sub-

time slot, we have obtained the optimal data rate CSR
n,j for each source device, which

has been guaranteed to be 1
2
CSR

n,j ≥ CSD
n req,j already. According to Equation 3.4,

the minimal of CSR
n,j and CRD

n,j determines the effective data rate between the source

and destination device, because one of them will be the bottleneck. Thus, in the

second sub-time slot resource allocation optimization, we should guarantee CRD
n,j ≥

CSR
n,j to achieve the IoT application required data rate. By leveraging the relay BS

transmission power, the relay BS can enable the RD link to achieve a higher data rate

than that of the SR link because the relay BS has much higher transmission power

than the mobile device. Therefore, the optimization objective in the second sub-time

slot is to minimize all the picocell relay BSs’ transmission power for serving all the

destination devices in the relay D2D groups in this macrocell, while guaranteeing

CRD
n,j ≥ CSR

n,j . It is desired to minimize all the relay BSs’ energy consumption, no

matter whether the relay BSs are powered by green energy or on-grid energy. The

objective for the second sub-time slot resource allocation optimization is to minimize
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the transmission power of the relay BSs, i.e.,

min
{PR

n,j ,W
R
n,j}

J
∑

j=1

N
∑

n=1

PR
n,j (3.10)

s.t. CSR
n,j ≤ CRD

n,j (3.11)

J
∑

j=1

N
∑

n=1

WR
n,j ≤WRelay (3.12)

N
∑

n=1

PR
n,j ≤ PTotal,j (3.13)

0 < WR
n,j (3.14)

0 < PR
n,j. (3.15)

Here, Equation 3.11 guarantees the data rate of the RD link not to be less than the

data rate of the SR link. WR
n,j is the bandwidth for serving the nth destination device

in the jth picocell. Equation 3.12 implies the total allocated bandwidth for serving

the destination devices not to exceed the available WRelay in this macrocell. PR
n,j is

the relay BS transmission power for serving the nth destination device. Owing to

the hardware limitation, PTotal,j is the maximum transmission power of the relay BS

j; Equation 3.13 imposes the total transmission power for serving the destination

devices not to exceed its maximum transmission power PTotal,j . It can be proved that

this optimization problem is a convex problem, and hence its optimal solution can be

obtained efficiently.

Proposition 4. The second sub-time slot resource allocation optimization problem is

a convex problem.

Proof. According to Equation 3.13, the transmission power at the jth relay BS for

serving the nth destination device PR
n,j can be expressed as

PR
n,j = (2

CRD
n,j

WR
n,j − 1) ·

N0W
R
n,j

hRD
n,j

. (3.16)
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Hence, the objective function Equation 3.10 and its constraints can be re-written as

min
{WR

n,j ,C
RD
n,j }

J
∑

j=1

N
∑

n=1

(2

CRD
n,j

WR
n,j − 1) ·

N0W
R
n,j

hRD
n,j

(3.17)

s.t. CSR
n,j ≤ CRD

n,j (3.18)

J
∑

j=1

N
∑

n=1

WR
n,j ≤WRelay (3.19)

N
∑

n=1

PR
n,j ≤ PTotal,j (3.20)

0 < WR
n,j (3.21)

0 < CRD
n,j . (3.22)

Here, WR
n,j and CRD

n,j are the only variables in Equation 3.17; the values of other

notations are all given. By calculating the second-order derivatives, the Hessian

matrix of Equation 3.16 is positive semidefinite. That is, Equation 3.16 is a convex

function [12]. The summation of convex functions, Equation 3.17, is still convex

[12]. The inequality constraints (Equations 3.18-3.20) are also convex. Hence, this

optimization problem is convex.

3.2.3 Green Energy Balancing Optimization with Dual-Battery

By installing dual-batteries at relay BSs, the amount of available green energy for

each time period is known and accurate. We consider solar energy harvested from

solar panels at the relay BSs as the green energy source in this work though other

renewal sources can be equally adopted. We denote T as the battery cycle and T is

selected to be an integer multiple of time slot τ . At the beginning of each battery

cycle, the initial total available green energy in a battery of relay BS j is E0
j , which

was harvested in the previous battery cycle. E0
j can be different in different battery

cycles at the same or a different relay BS j, and has to be less than or equal to the full

battery capacity. As time elapses during the battery cycle, the residual green energy
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in the battery of relay BS j at the tth time slot is Et
j . 0 6 Et

j 6 E0
j constrains Et

j

to be between zero and the initial green energy E0
j stored in the battery. Et

j at the

relay BS j is updated for each time slot t. In Equation 3.10, we have obtained the

energy consumption
∑N

n=1 P
R
n,j for each relay BS of each time slot. Since this amount

of energy is only consumed in every second sub-time slot, the energy consumption of

relay BS j during the tth time slot can be expressed as

Kt
j =

∑N

n=1
PR
n,j

τ

2
+ P static

j τ, (3.23)

and P static
j is the static power consumption of BS j.

Based on our proposed architecture, the relay BSs are connected with each other

not only by networking cables/fibers, but also connected by electric transmission

lines for balancing residual green energy. Transferring green energy among local relay

BSs is more efficient than delivering on-grid energy from a remote power plant, in

terms of electricity transmission loss [50]. In every time slot, according to the energy

consumption Kt
j of the relay BSs and the residual green energy Et

j in their batteries,

the green energy balancing execution policy adopts the guideline below. Guideline 1

is motivated by the following intuition. When some relay BSs do not have sufficient

green energy to accommodate their communication workloads, the other relay BSs

with abundant green energy may transmit electricity to supplement those relay BSs

with insufficient green energy. Thus, those relay BSs can first temporally utilize green

energy, instead of consuming on-grid energy immediately. This guideline maximizes

the utilization of the available green energy in a macrocell and furthest reduces on-grid

energy consumption.

Guideline 1.

1) When all the relay BSs have sufficient residual green energy to supplement their

workloads demanded energy in each time slot, i.e., Et
j ≥ Kt

j , the relay BSs directly

drain the energy from their own batteries.
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2) Once one relay BS has insufficient residual green energy to accommodate its

communication workload in the current time slot, i.e., Et
j < Kt

j , then this relay

BS is classified into a set, S1. The rest of relay BSs with sufficient residual green

energy are classified into the other set, S2, and each relay BS in this set is indexed

by i. According to the amount of their residual green energy, the relay BSs in S2 will

transmit their electricity to the relay BS in S1, to supplement the shortage of green

energy.

3) As more relay BSs exhaust their green energy, the number of relay BSs in S1

increases. Relay BSs in S2 continuously transmit electricity to relay BSs in S1.

When the total green energy shortage in S1,
∑

j∈S1

(Kt
j −Et

j), is larger than the total

surplus green energy in S2,
∑

i∈S2

(Et
i −Kt

i ), the relay BSs in S2 only transmit green

energy to those in a subset of S1, i.e., S
′

1
⊂ S1, with

∑

j∈S′

1

(Kt
j − Et

j) <
∑

i∈S2

(Et
i −Kt

i ).

4) When all the relay BSs belong to S1, the relay BSs stop transmitting electricity

between each other.

In practice, the electric power transmission efficiencies of the electric trans-

mission lines between each pair of relay BSs are different. Transmitting electricity

through the electric transmission lines leads to some electricity loss. Here, our goal

is to minimize the electricity loss when the electricity is transmitted among the

relay BSs, i.e., maximizing the amount of effective electricity transmitted along the

transmission lines. We will determine which relay BSs in S2 should transmit to which

relay BSs in S1 or S′
1
by how much electricity for the above Steps 2) and 3). Assume

every two relay BSs in a macrocell are connected by an electric transmission line. We

use i, j to denote two different relay BSs in a macrocell, respectively. Here, i ∈ S2

and j ∈ S1 or S′
1
. θi,j is the electric transmission line loss-rate between relay BS i

and j. 0 < θi,j < 1 is assumed known in advance, according to the distance between

the relay BSs and the material of the electric transmission line. A higher θi,j implies

a larger electricity transmission loss, i.e., lower electricity transmission efficiency. δi,j
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represents the amount of electricity (green energy) to be transmitted from relay BS

i to relay BS j. The objective is to minimize the amount of electricity transmission

loss in this macrocell, and so the objective is to

min
{δi,j}

∑

i∈S2,j∈S′

1

θi,jδi,j (3.24)

s.t.
∑

i∈S2,j∈S′

1

(1− θi,j)δi,j =
∑

j∈S′

1

(Kt
j −Et

j) (3.25)

0 ≤ δi,j ≤ Et
i −Kt

i (3.26)

0 < θi,j < 1. (3.27)

The left side term of Equation 3.25 is the effective amount of electricity transmitted

from the relay BSs in S2 to those in S′
1
in this macrocell, and the right side term

of Equation 3.25 is the amount of energy requested from the relay BSs in S′
1
to

supplement their green energy shortage. The left side term equaling to the right

side term means all the requested energy from S′
1
is fulfilled by the relay BSs in

S2. Equation 3.26 constrains δi,j to be between zero and the amount of surplus

green energy of relay BS i at current time slot t. Since this green energy balancing

problem is a linear programming problem and δi,j is the only variable, it can be solved

efficiently. This green energy balancing optimization policy guarantees all the green

energy harvested in this network to be fully utilized first, thus achieving the goal of

furthest reducing the on-grid energy consumption.

3.2.4 Simulation Results

Simulations are set up as follows. One macrocell contains six picocells. The radius

of this macrocell is 750m. The picocell relay BSs are deployed uniformly within this

macrocell, and their locations are fixed. The distribution of devices is generated by the

Poisson point process (PPP) in this macrocell [34]. The distance-dependent channel

model [63] is adopted in simulations. Within each time slot τ = 10ms, the devices’
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locations are fixed. Each device is arbitrarily assigned one level of transmission power,

either 200mW or 300mW ; within each time slot, the transmission power of a source

device is fixed. Within the coverage of each picocell, the pairing for the SD pairs

is arbitrarily assigned. Also, the IoT application required data rate of each SD pair

is arbitrarily assigned among 2Mbps, 6Mbps and 10Mbps; within each time slot,

the required data rate is fixed. The total available bandwidth in a macrocell for

D2D communications is 20MHz. The electric transmission line loss-rate θi,j between

every two relay BSs are randomly generated between 5% and 10%, and fixed in the

experiments.
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Figure 3.4 Average available bandwidth for relay D2D group.

Figure 3.4 shows the average available bandwidth for the relay D2D group versus

the number of SD pairs in the direct D2D group in a macrocell. This figure presents

the Monte Carlo result obtained from one thousand repeated experiments. In these

experiments, we fix the total number of SD pairs as 1000 and record the number of

SD pairs in the direct D2D group of this macrocell and the corresponding average

available bandwidth for the relay D2D group. The decreasing line implies that the

more SD pairs belong to the direct D2D group, the less available bandwidth for the
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relay D2D group because we allocate the spectrum to the direct SD pairs first in

executing our resource allocation method. In each experiment, as the number of SD

pairs in the direct D2D group increases, the required bandwidth increases. As the

total bandwidth for IoT D2D communications is fixed, the more bandwidth used by

the direct D2D group, the less available bandwidth left for the relay D2D group. In

theory, if all the SD pairs belong to the direct D2D group (owing to the proximity

of SD devices with very good channel condition), then there will be no SD pairs

in the relay D2D group and we can allocate all the spectrum for the direct D2D

transmissions. If this is the case, our architecture achieves the pure and ideal D2D

communications, i.e., all the SD pairs can directly communicate, and no energy is

consumed at the relay BSs for relaying data.
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Figure 3.5 Average data rate of SD pairs in the direct D2D group.

Figure 3.5 shows the average data rate of the direct SD pairs in a picocell

with different numbers of SD pairs in the direct D2D group. We randomly choose a

picocell in the macrocell to observe the performance of different resource allocation

methods on the average data rate with different numbers of direct SD pairs. The

top blue curve with diamond marks nearly remains unchanged as the number of SD
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pairs in the direct D2D group increases because our proposed resource allocation

method allocates the spectrum to the direct D2D group first to fulfill their IoT

applications required bandwidth. We serve the direct SD pair as the “preferred user”,

and the remaining spectrum is allocated for the relay D2D group. Since the average

required data rate of different types of D2D devices in the network is stable, the

blue curve keeps nearly unchanged. The red curve with triangle marks represents

the performance of a comparison method [34], which partitions the cellular spectrum

into two parts, one part for cellular usage and the other part for D2D usage. The red

curve performs almost the same as our proposed method with a small number of D2D

pairs, but it deteriorates when more SD pairs transmit because in their proportional

overlay spectrum sharing method, D2D users share channels to transmit; when more

D2D users start their transmissions, their data rates are affected by the co-channel

interference. Thus, the decreasing rate of the red curve is determined by the spectrum

partition factor in [34]. The purple curve with circular marks is the performance of

another comparison method [63], which degrades rapidly because in their iterative

combinatorial auction underlay spectrum sharing method, the D2D user has to adjust

its transmission power in order to avoid harmful interference to the cellular users, but

it receives the interference from other co-channel D2D users as well as cellular users.

Figure 3.6 shows the average data rate of the relay SD pairs and the relay

BS transmission power versus the number of SD pairs in the relay D2D group in

a picocell. As the number of relay SD pairs increases, the average data rate of

the relay SD pair in this group decreases because when more relay SD pairs share

the limited bandwidth left for the relay D2D group, the available bandwidth for

facilitating individual transmissions is less. Meanwhile, as the number of SD pairs

increases, the total relay BS transmission power for serving the destination devices

also increases because more RD links are served by the relay BS.
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Number of SD Pairs in Relay D2D Group in a Picocell
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Figure 3.6 Average data rate and the relay BS total transmission power.

Time (hour)

0 1 2 3 4

R
es

id
u
al

 G
re

en
 E

n
er

g
y
 (

k
W

h
)

0

2

4

6

8
O

n
-g

ir
d
 E

n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

0

4

8

12

16

20

Figure 3.7 Performance comparison between the scenarios with single-battery and
dual-battery.

Figure 3.7 shows the performance comparison between the scenarios with single-

battery and dual-battery for serving 1500 SD pairs. In the single battery scenario,

each relay BS is equipped with single battery. When the battery exhausts its green

energy, it starts to harvest green energy (recharge); when the next battery cycle
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begins, all the single batteries in the network start to power the relay BSs. In Figure

3.7, the blue curve with star marks and the red curve with circular marks indicate the

residual green energy and on-grid energy consumption of the single battery scenario,

respectively. The green curve with diamond marks and the purple curve with cross

marks present the residual green energy and on-grid energy consumption of the dual-

battery scenario, respectively. The two scenarios perform the same in the first battery

cycle (Hour 1) because we initialize the same residual green energy for both scenarios

and assume they experience the same communications workload. In the beginning of

the second battery cycle (Hour 2), the single battery scenario’s total harvested green

energy is less than that in the dual batteries scenario because in the single battery

scenario, in Hour 1, the single battery first spends some time to power the relay BS to

exhaust its green energy, then turns into the recharging mode to harvest green energy.

Its green energy harvesting (recharging) time is less than a full battery cycle. In

comparison, in the dual-battery scenario, the two batteries alternately harvest green

energy and power the relay BS, and therefore, when the first battery cycle ends, the

second battery is well recharged by harvesting green energy; its harvested green energy

is more than that in the single battery scenario. In the single battery scenario, less

harvested green energy is exhausted quicker in each battery cycle; less portion of time

utilizing green energy implies more on-grid energy to be supplementarily consumed.

3.3 Summary

A resource allocation scheme has been proposed in this chapter to facilitate green

D2D communications such that in each macrocell, the required data rates of the SD

pairs of IoT applications are satisfied and all the relay BSs’ overall communication

energy consumption is minimized. The utilization of green energy is maximized by

balancing the residual green energy among the relay BSs, thus achieving the goal of

furtherest saving on-gird energy.
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CHAPTER 4

GREEN DEVICES

Global grandiose IoT implementations inevitably induce an unprecedented huge

amount of energy consumption for powering IoT devices. IoT devices are predicted

to be the leading energy guzzler in Information and Communications Technology

by 2020 [49]; it has also been estimated that the global energy consumption of

IoT edge devices approaches 46TWh by 2025, which is equal to Portugal’s entire

annual electricity consumption in the year of 2015 [49]. With the awareness of the

depletion of brown energy sources on earth and the potential harmful environmental

impacts caused by carbon emissions, it is essential to leverage green (renewable)

energy to power IoT devices, in line with global environment-friendly and sustainable

development of modern society.

Energy-constrained mobile IoT devices are required to be periodically tethered

to the electric sockets (grid) cumbersomely for battery charging. The charging-cord

(or even charging-pad) is the last barrier for mobile IoT devices to attain true

“wireless” and convenience in modern life. Replacing batteries of IoT devices may

be an alternative way to maintain operations, but usually incurs high costs and is

inconvenient, hazardous, or even impossible (e.g., sensors embedded in human bodies

or inside building structures). Intuitively, it is desirable to enable IoT devices with the

green energy harvesting and wireless charging capabilities to realize their greening,

independence and self-sustainability.

In this work (the detail information can be referred to [42]), we envision three

steps to revolutionize and actualize green IoT. In Step 1, IoT devices can be self-

powered by harvesting ambient energy, and we propose dual-battery green energy

harvesting architecture for IoT devices. When the harvested ambient green energy in
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Step 1 is insufficient to support IoT devices, in Step 2, nearby green pico base stations

(PBSs) and femto base stations (FBSs) will leverage green energy to intentionally

wirelessly charge the outdoor and indoor IoT devices by radio frequency (RF) waves.

In the rest of this chapter, a BS is generally referred to as a PBS or a FBS. These

green BSs are equipped with solar panels, wind turbines and dual-batteries to harvest

green energy. Even though the wireless charging efficiency is relatively low, the BSs

can keep emitting RF energy for a long time to charge the surrounding IoT devices;

even though the BSs will consume a large amount of energy in this step, the energy

sources of these BSs are green. As both the amount of harvested green energy and

that to be wirelessly transferred at BSs exhibit spatial and temporal diversities, Step

3 is to balance green energy among the BSs to allow more BSs to leverage green

energy. The latter step reinforces the former one to ensure the availability of green

energy. The proposed innovation and energy flow for greening IoT is depicted and

summarized in Figure 4.1.

The rest of this chapter is organized as follows. In Section 4.1, we first introduce

some ambient green energy sources and propose dual-battery green energy harvesting

architecture for IoT devices. Section 4.2 elaborates on a number of the latest

technological breakthroughs in improving the wireless charging efficiency and realizing

green energy wireless charging, while highlighting the corresponding key challenges

and research directions. In order to further ensure the availability of green energy

at individual BSs, cooperative green energy wireless charging and wired green energy

balancing are proposed in Section 4.3. A summary is presented in Section 4.4.

4.1 Ambient Energy Harvesting for Green IoT

According to Energy Conservation Law, energy can neither be created nor destroyed;

rather, it transforms from one form to another [54]. In the physical world, various

ambient energies are “embedded” in the environment in different forms. They
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Figure 4.1 Framework for greening IoT.

are subsidiary products of natural phenomena or human activities, i.e., are not

generated by intentionally consuming other additional brown energy, and thus they

are “free” and “green”. The significant concept of ambient energy harvesting is

that the energy harvesting techniques should be wisely adopted according to the IoT

devices’ particular circumstances. In this section, we first list three typical ambient

energies commonly present in our daily lives and the corresponding energy harvesting

scenarios. Dual-battery green energy harvesting architecture is then proposed for IoT

devices.
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4.1.1 Ambient Energies and Harvesting

Piezoelectric: Electrical energy is converted from mechanical energy by straining a

piezoelectric material. The straining of a piezoelectric material produces an electric

field and consequently a voltage drop proportional to the stress applied.

Every footstep onto an electric shoe (monitoring human health) can generate

electricity spontaneously. Human motion has been studied to power IoT devices

[18]. Roadside monitoring sensors and smart traffic lights can leverage the vibration

generated by vehicles running over the roads. To send or receive an important message

via a smartphone with depleted energy, one may shake the smartphone and thus power

it to do so.

Thermoelectric: The thermoelectric effect refers to a temperature gradient in

a conducting material that leads to the diffusion of electric charge carriers. Thus, a

voltage difference is created by the flow of charge carriers between the hot and cold

regions.

IoT devices can be designed to harvest thermal energy in thermal environments

to support their IoT functionalities [61]. A cup of hot coffee can potentially power

its surrounding IoT devices.

Photovoltaic: By leveraging the photovoltaic effect, electricity is generated

by converting the light shone onto semiconducting materials. A typical photovoltaic

system deploys a number of solar cells, which convert the light into electrical energy.

Apparently, outdoor IoT devices can utilize photovoltaic effect to leverage solar

energy to power themselves when the sunlight is sufficient. For IoT devices located

inside buildings, no matter at workplace or at home, they actually can be trickle-

charged spontaneously, as long as the interior environment has good illumination.

Yue et al. [68] proposed to use indoor photovoltaic energy to power IoT devices.

Besides the ones listed above, many other kinds of ambient energy can also be

leveraged to power IoT devices. Multiple kinds of ambient energy could be utilized by
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one IoT device. Main existing challenges in ambient energy harvesting for green IoT

include 1) ambient energy is not always available because its availability depends on

various natural and man-made factors; 2) for the same reason, it is difficult to schedule

IoT device functionalities based on the available green energy prediction; 3) the

ambient energy harvesting efficiencies of the up-to-date harvesters are not sufficiently

high; even though the ambient energy is always present, the instantaneously harvested

green energy may still be not sufficient to support the IoT device functionalities;

4) conventional single-battery IoT devices cannot achieve concurrent ambient energy

harvesting and IoT functionalities because a single rechargeable battery cannot

be charged and discharges simultaneously as electric current flow is directional.

Motivated by these challenges, we propose dual-battery green energy harvesting

architecture to mitigate these constraints for IoT devices.

4.1.2 Dual-Battery Green Energy Harvesting Architecture for IoT Devices

Here, we propose to adopt dual-battery green energy harvesting architecture for IoT

devices. Each IoT device is equipped with dual-battery, ambient energy harvester,

energy converter, transceiver and Antenna 1 and 2, as shown in Figure 4.2. Ambient

energy harvester is to harvest the ambient energy. One IoT device may leverage

multiple kinds of ambient energy, and multiple ambient energy harvesters can be

integrated into an IoT device. Energy converter converts the harvested energy into

the direct current (DC) to charge battery. Transceiver and Antenna 1 are used to

transmit and receive signals. Antenna 2 is used to harvest green RF energy, which

will be introduced in Section 4.2.

The dual-battery is operated such that in the current time period (defined as

a battery cycle), Battery 1 is to store the harvested ambient energy from the energy

harvester and energy converter; at the same time, Battery 2 is discharging energy (the

energy was harvested in the previous battery cycle) to power the IoT device. When
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Figure 4.2 Dual-battery green energy harvesting architecture for IoT device.

the next battery cycle begins, Battery 1 starts to discharge its energy (the energy

was harvested in the last battery cycle) to power the IoT device. That is, the two

batteries alternate their roles of harvesting and discharging in every other battery

cycle.

Below are the merits of dual-battery architecture.

1) Dual-battery eliminates the need to predict available ambient energy along

the time domain. The amount of harvested ambient energy in the discharging battery

is known and accurate. IoT devices can schedule their IoT functionalities along the

time domain according to the residual energy in their batteries.

2) Without energy storage, instantaneously harvested ambient energy may not

be sufficient to power each individual IoT device; with dual-battery, the harvested

ambient energy can be accumulated for a while to reach a certain energy level in the

charging battery, and then be utilized to power the IoT device in the next battery

cycle.

3) Since a single rechargeable battery cannot be charged and discharges

simultaneously, dual-battery facilitates concurrent ambient energy harvesting and
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Figure 4.3 Ambient energy distribution and available green energy in different
battery scenarios: (a) instantaneous ambient energy distribution; (b) harvested
residual green energy for the single-battery scenario vs. dual-battery scenario.
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IoT functionalities. There is always one battery harvesting ambient energy, and the

other one is discharging to power the IoT device.

We conduct simulations on the ambient energy and the corresponding residual

harvested green energy in an IoT device for different battery scenarios in Figure 4.3(a)

and Figure 4.3(b), respectively.

Simulations on the instantaneously available ambient energy: The

blue-dashed curve in Figure 4.3(a) simulates the instantaneously available ambient

energy for an IoT device. The ambient energy is randomly generated between 6mWs

and 12mWs along the time axis. Energy loss in converting the instantaneously

available ambient energy to power the IoT device is assumed negligible in the

simulations. The red-solid curve represents the IoT device’s required energy threshold

(i.e., 10mWs) for its functionalities. Without energy storage, the IoT device can only

perform functionalities when the amount of instantaneously available ambient energy

is larger than the IoT device’s energy threshold (i.e., the blue curve is above the red

curve). In this case, as shown in Figure 4.3(a), the duration of the IoT device that

can effectively perform IoT functionalities along the time domain is rather limited.

Simulations on the corresponding residual harvested green energy

in different battery scenarios: In Figure 4.3(b), the black-dashed curve stands

for the residual harvested energy during the discharging mode in the conventional

single-battery scenario. In the first battery cycle (each battery cycle lasts 4 minutes),

the IoT device harvests the ambient energy (which is generated as shown in Figure

4.3(a)). In Figure 4.3(b), when the second battery cycle begins, the single-battery

starts to discharge electricity to power the IoT device. If the residual green energy in

the battery is less than the energy threshold (10 mWs), the single-battery switches to

the charging mode to harvest ambient energy, and discharges in the next battery cycle,

and so on. The green-solid curve refers to the residual harvested energy during the

discharging mode in the dual-battery scenario, in which the IoT device is equipped
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with dual-battery. To execute the same IoT functionality, the two scenarios (with

single- and dual-battery) perform the same in the second battery cycle because they

harvest the same amount of ambient energy in the first battery cycle. In Figure 4.3(b),

the single-battery’s total harvested green energy is less than that of dual-battery at

the beginning of the third battery cycle because the single-battery first spends some

time to power IoT device in the second battery cycle, i.e., the single-battery’s ambient

energy harvesting (recharging) time is less than a full battery cycle. In contrast,

the dual-battery has two batteries which can alternately power the IoT device and

harvest ambient energy; there is always a battery to harvest ambient energy from the

beginning to the end of each battery cycle. The same phenomenon can be observed

in subsequent battery cycles.

The key challenges and research directions in realizing dual-battery architecture

include: 1) since two batteries are embedded in one IoT device, batteries with large

capacity but small size are desired; 2) properly defining battery capacity and battery

cycle is critical to maximize the ambient energy utilization; 3) high charging and

discharging efficiencies and long lifetime batteries require further research; 4) in order

to leverage as many kinds of ambient energy as possible, multiple kinds of energy

harvesters may be integrated into one IoT device, and hence the miniaturization of

energy harvesters is another key challenge.

4.2 Green Energy Wireless Charging

Wireless charging was not widely adopted in past decades because of both low

charging efficiency and brown energy source; tremendous brown energy is consumed

at the transmitter but little can be harvested by the receiver [57]. Here, we propose

to utilize green energy to wirelessly power IoT devices (even though the wireless

charging efficiency is not relatively high, the BSs can keep emitting RF energy for a

long time to charge the surrounding IoT devices and the energy sources are green)
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and also highlight the latest technological breakthroughs to enhance the efficiency of

wireless charging. If the ambient energy sources in the first step are not often present

or the ambient energy harvesting rate is too low, the IoT devices will request nearby

green BSs for energy replenishment. The nearby green BSs will then emit green RF

energy to wirelessly power the IoT devices. Besides other ambient energy harvesters,

an IoT device is equipped with Antenna 2 to receive green RF energy, i.e., green color

antenna, as shown in Figure 4.2. The green RF energy can be transmitted upon one

or multiple public dedicated wireless charging spectrum bands, and thus Antenna 2

can be a single band antenna or multi-band antenna.

Figure 4.4 Green energy wireless charging architecture.

The green FBSs can be deployed in the indoor environment and equipped with

their own dual-batteries, as shown on the right side of Figure 4.4. WiFi access points

or Low Power Wide Area (LPWA) transmitters can also be modified and adopted as

green FBSs. Via an electric cable, the dual-battery is connected to the solar panel

and wind turbine mounted on the roof or exterior wall of a building. As shown on the

left side of Figure 4.4, in the outdoor environment, the cellular PBSs are equipped

with dual-batteries and powered by green energy as well. Considerable green energy
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can be harvested via either a solar panel or wind turbine [48]. Note that solar and

wind energy complement each other well in powering the BSs, both on daily and

seasonal timescales [48]. The operation of dual-battery at BS is the same as that of

aforementioned IoT devices. Benefits of equipping IoT devices with dual-battery are

also applicable to equipping green BSs with dual-battery.

Figure 4.5 Green energy wireless charging efficiency.

When a BS wirelessly transfers green energy to charge an IoT device, as shown

in Figure 4.5, the actual energy received by the IoT device’s battery can be expressed

as

EBR = ETX · ηTX · ηPL · ηRX · ηRC · ηCB. (4.1)

Here, EBR is the amount of energy received at the IoT device’s battery. ETX is

the amount of green energy wirelessly transmitted by the BS. ηTX is the transmitter

antenna efficiency, which describes how efficiently the antenna converts transmission

power into radio waves headed in a specified direction. ηPL is the wireless transfer

efficiency due to wireless propagation. ηRX is the receiver antenna efficiency, which

describes how efficiently the receiver antenna converts radio waves arrived from a
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specified direction into alternating current (AC) electrical power. ηRC is the energy

efficiency of the IoT device’s circuit for converting the received AC to the battery-like

DC. ηCB is the energy efficiency of storing energy into the battery. Thus, the end-

to-end green energy wireless charging efficiency is
EBR

ETX

; achieving high end-to-end

efficiency is the ultimate goal in wireless charging. The low end-to-end efficiency is

the major barrier in past decades for actualizing wireless charging. In Equation 4.1,

we can see several terms (factors) that impact the effective green energy received by a

battery. In this section, a number of the latest breakthroughs in wireless technologies

that can essentially improve green energy wireless charging efficiency are delineated.

4.2.1 Antenna Array and MIMO

A key concern for wireless charging is the attenuation of energy being transferred

over a long transmission distance. This issue is especially severe for a single-antenna

transmitter. A radical approach to enhance wireless charging efficiency is to deploy

multiple antennas at the transmitter and receiver, resulting in a multiple-input and

multiple-output (MIMO) system. Antenna array at the green PBSs can focus energy

onto small regions of space to yield a large gain. FBSs can also adopt multiple

antennas (if the size of antennas can be accommodated in a particular manner).

It has been reported in [33] that massive MIMO can enhance the wireless energy

transfer efficiency by 100 times; thus, ηTX and ηRX in Equation 4.1 will be effectively

improved. This exceptional energy efficiency has made MIMO one of the promising

technologies for wireless energy transfer. Therefore, as shown in Figure 4.2, multiple

antennas at Antenna 2 are desired for IoT devices.

Owing to the limitation of the size and weight, some IoT devices may not

be able to be equipped with multiple antennas for receiving green RF energy.

Multiple-input and single-output (MISO) does not perform as well as MIMO, but

still outperforms single-input and single-output (SISO). Miniaturization of antennas
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in terms of size and weight at both wireless transmitter and IoT device sides requires

further investigation.

4.2.2 Beamforming and Localization

Beamforming can be employed in antenna array and MIMO to improve the efficiency

of wireless charging. Multiple antennas collaboratively concentrate green RF energy

to a desired direction toward the target IoT device to enhance ηTX in Equation 4.1.

By radiating the same amount of green RF energy, omni-directional broadcast leads

to the lowest wireless charging efficiency; when a number of IoT devices located at

the same direction request energy replenishment at the same time, directional green

RF beam achieves higher wireless charging efficiency.

In this context, the green BSs should first be aware of the locations of the

target IoT devices, and the green RF beams can then be directed toward them. IoT

devices with self-localization capability can send their location information to the

green BSs with their green energy replenishment requests. IoT devices can also be

localized by green BSs. In order to enhance the accuracy of localization, multiple BSs

may cooperate to localize IoT devices based on the strength or the time difference of

arrivals of the received request signals. For a dynamically changing environment with

non-line-of-sight and multi-path propagation, multiple fingerprints of the received

request signals may be leveraged to localize the IoT devices [19]. Accurate localization

is desirable because the beamforming direction highly depends on the accuracy of each

IoT device’s localization.

4.2.3 Millimeter-Wave

Millimeter-wave (mm-Wave) (30GHz-300GHz) is a promising candidate for wireless

charging. First, mm-Wave systems typically adopt the directed beams, which can

exploit directivity gains to improve ηTX and ηRX in Equation 4.1. Second, the antenna
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size is smaller than those of the lower frequency techniques because of the shorter

wavelength. Thus, a large number of antennas can be easily deployed in an mm-

Wave system at green FBSs and PBSs to serve IoT devices. Also, multiple antennas

can be easily integrated into an IoT device, due to small antenna sizes, to realize

MIMO (instead of MISO). Third, mm-Wave PBSs are expected to be densely deployed

for next generation communications. The distance between an IoT device and the

serving green PBS/FBS is expected to be shortened, thus decreasing the wireless

propagation path loss, i.e., increasing ηPL in Equation 4.1. Fourth, since mm-Wave

energy transfer operates in higher frequencies, it has little impact on the existing

cellular transmissions. However, the diffusion by rain on mm-Wave is more severe

than on other microwave frequencies.

4.2.4 IoT Device Circuit Design and Battery Design

There are two crucial aspects in the IoT device circuit design. The first is impedance

matching, which is to reduce the electrical transmission loss from an antenna to

a rectifier circuit [46]. A matching circuit is made with reactive component, e.g.,

capacitors and coils. Maximum energy conversion is realized when the impedance at

the antenna and that at the load are conjugate of each other [46]. The second aspect

is to design a rectifier, which converts the green RF input captured by antenna into

DC voltage; it is usually made with diodes, a diode bridge and a voltage rectifier

multiplier. It is challenging to generate a battery-like voltage from low input green

RF power in the rectifier. The aforementioned two aspects can enhance the energy

conversion efficiency in the circuit of an IoT device, i.e., ηRC in Equation 4.1. The

state-of-art energy conversion efficiency from an IoT device’s receiving antenna to the

battery can reach 80% [57]. However, there is still room for further improvement.

Some electrical energy will be lost due to the battery chemical process. The

higher charging efficiency of a battery, i.e., ηCB, the more converted DC can be
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stored into the battery of an IoT device. As aforementioned, achieving high charging

efficiency, small size, large capacity and long lifetime battery is the key challenge and

the goal of future battery research.

4.2.5 SWIPT

The simultaneous wireless information and power transfer (SWIPT) is another

attractive technology. Theoretically, RF information reception and energy harvesting

can be performed from the same RF signal input because RF signal carries both

information and energy. It is ideal if the IoT devices can be self-powered by

receiving data. However, information cannot be readily decoded from the current

state-of-the-art energy harvester because information embedded in received signals

is lost during the energy harvesting process; inversely, current circuit designs are

not yet able to absorb RF energy directly from the decoded information carrier

[46]. Advanced entropy retrieval methods deserve further exploration to decode

information from the energy harvester [64].

Our proposed dual-battery green energy harvesting architecture achieves SWIPT.

As shown in Figure 4.2, Antenna 1 connected with the transceiver is for information

transmission and reception, and Antenna 2 equipped with the energy converter is to

harvest energy from the RF information signal, thus enabling SWIPT.

4.3 Green Energy Balancing

In the second step, the BSs wirelessly transfer green energy to power the IoT devices.

Different BSs may receive different numbers of requests and the required energy

replenishment time may also be different, and thus the green energy consumption at

each BS varies. The harvested green energy at each BS exhibits temporal and spatial

diversities as well. Hence, some of the green BSs may have abundant harvested green

energy but serve few IoT devices, while some of them need to power a substantial
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Figure 4.6 Cooperative green energy transfer and wired green energy balancing.

number of surrounding IoT devices but have little residual green energy. The IoT

devices in the latter case will lose their opportunities to tap on the main green

energy sources. Therefore, in order to further ensure the green energy availability,

cooperative wireless green energy transfer and wired green energy balancing are

proposed.

4.3.1 Cooperative Green Energy Wireless Charging

As mentioned earlier, some green BSs may not have sufficient green energy to

power their surrounding IoT devices. Before this happens, they can seek help from

adjacent green BSs. If the adjacent green BSs have abundant green energy, they can

cooperatively wirelessly transfer green energy toward the target IoT devices, as shown

in Figure 4.6.

The drawback of cooperative wireless green energy transfer is that the adjacent

green BSs will consume more green energy to power the IoT devices which are further

away because of the severe wireless attenuation. Therefore, advanced cooperative
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wireless green energy transfer optimization is needed. It is essential and challenging

to determine which green BSs should participate in the cooperative wireless green

energy transfer, for how much time, toward which direction and by which level of

transmission power. In considering the safety for humans and other living things

being exposed to RF waves, sophisticated techniques for channel estimation, power

control and adaptive beamforming should be adopted to ensure safety in cooperative

green energy transfer.

4.3.2 Wired Green Energy Balancing

Wired green energy balancing is another approach to alleviate the mismatch between

the harvested green energy and that to be wirelessly transferred. The green BSs

with abundant green energy can transfer green energy to those with insufficient green

energy via the electric transmission lines, to supplement their green energy shortages,

as shown in Figure 4.6.

The electricity transmission efficiency of electric transmission lines is not 100%;

some electrical energy is lost as heat when the electricity traverses the electric

transmission lines. The electricity transmission efficiency depends on the distance

and material of the electric transmission line between the two BSs. The rationale of

this approach is to transfer more electricity through the electric transmission lines

with high electricity transmission efficiency among the BSs.

In this approach, the key challenge is to determine which green BSs should

transmit to which green BSs by how much electricity to achieve the goal of fulfilling

the green energy requirement while minimizing the overall electricity loss during the

electricity transmissions. Liu and Ansari [39] proposed to classify the local green

BSs into two sets: Set 1 includes the green BSs with insufficient green energy and

Set 2 includes those with sufficient green energy. For each time period, the green

PBSs in Set 2 transmit electricity to those in Set 1. According to the different
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electricity transmission efficiencies of different electric transmission lines, they have

minimized the total electricity transmission loss while alleviating the green energy

shortages for the BSs in Set 1. In their solution, single-hop wired electricity (green

energy) transmission is considered, i.e., electricity is directly transmitted from the

BSs in Set 2 to those in Set 1. Some finer electricity transmission schemes, i.e.,

multiple-hop green energy transmission, may worth further investigation to achieve

higher wired electricity transmission efficiency for balancing green energy among BSs.

Furthermore, joint optimization of cooperative green energy transfer and wired green

energy balancing is another important future research direction.

4.4 Summary

A three-step green IoT architecture has been proposed: 1) IoT devices can

harvest ambient energy to be self-powered, in which we have proposed to adopt

dual-battery green energy harvesting architecture for powering IoT devices; 2) green

BSs intentionally emit RF energy to wirelessly charge the surrounding IoT devices, in

which advanced techniques for improving the end-to-end wireless charging efficiency

are elaborated; 3) cooperative green energy wireless charging and wired green energy

balancing are considered to mitigate the mismatch between the harvested green energy

and that to be wirelessly transferred to individual BSs. The latter step reinforces the

former one to ensure the green energy availability for IoT devices.
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CHAPTER 5

FUTURE WORK

There are mainly three approaches to enhance the green energy utilization in green

cellular networks. The first one is mobile user association, the second one is wired

green energy transfer, and the third is joint mobile user association and wired green

energy transfer. In the first approach, the intuition is to “balance” the communication

workloads among BSs to alleviate the mismatch between the available green energy

and communication workload demanded energy to achieve a higher green energy

utilization. In the second approach, instead of “moving” mobile users among the BSs,

we intend to transfer green energy via electric transmission line to ”balance” the green

energy among the BSs. Our previous works focus on the first approach. Therefore,

the future works will focus on the second and third approaches. The performance

comparisons among these three approaches will be conducted to achieve the highest

green energy utilization. Since many other ICT technologies can be powered by green

energy, we also plan to apply dual-battery mechanism to the researches of green data

center and green cloudlets.

In addition, the research on green energy wireless charging will be completed

in the future. As aforementioned, a number of advancing technologies can further

improve the efficiency of wireless charging. We plan to first complete the analytical

research in wireless charging. Secondly, We will build the test-bed and implement

the prototype of short range wireless charging. Eventually, We will realize the high

efficiency green energy wireless charging for mobile IoT devices.
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CHAPTER 6

CONCLUSION

In this dissertation, we have proposed and investigated the dual-battery enabled profit

driven user association scheme to maximize the profit for network providers in green

heterogeneous cellular networks. Unlike most existing green energy related works,

there is no need to predict the available green energy; in our work, by equipping dual-

battery, the amounts of available green energy at BSs for each time period are known

and accurate. We provision a novel pricing model to incentivize network provider

to provision lower traffic delivery latency and to gain fairness among mobile users.

According to the pricing model and the residual green energy traffic latency ratio, our

proposed PDU heuristic algorithm jointly considers the utilization of green energy

and traffic delivery latency to associate more mobile users to the BSs with higher

residual green energy to traffic latency ratio. We have validated the performance of the

proposed algorithm through extensive simulations, and the proposed user association

methodology maximizes the profit for the network providers.

Furthermore, in order to facilitate green D2D communications for IoT, we have

proposed a novel architecture by adopting the overlay spectrum sharing approach and

green relay BSs in heterogeneous cellular networks. In each macrocell, by optimizing

the network resource allocation, the required data rates of the SD pairs of IoT

applications have been satisfied and all the relay BSs’ overall communication energy

consumption is minimized. By equipping dual batteries at each relay BS, unlike most

existing green energy related works, we do not need to predict the available green

energy. The amount of available green energy at a relay BS in each time period is

known and accurate. By balancing the residual green energy among the relay BSs,

the utilization of green energy has been maximized and the goal of furtherest saving
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on-grid energy is achieved. We have validated the performance of the proposed novel

architecture through extensive simulations.

Moreover, we have proposed green energy solutions to power IoT devices (i.e.,

green devices). Three steps for greening IoT have been systematically provisioned: 1)

IoT devices can harvest ambient energy to be self-powered, in which we have proposed

to adopt dual-battery green energy harvesting architecture for powering IoT devices;

2) green BSs (powered by green energy) will intentionally emit RF energy to wirelessly

charge the surrounding IoT devices, in which advanced techniques for improving the

end-to-end wireless charging efficiency are elaborated; 3) cooperative green energy

wireless charging and wired green energy balancing are considered to mitigate the

mismatch between the harvested green energy and that to be wirelessly transferred

for individual BSs. The latter step reinforces the former one to ensure the green

energy availability for IoT devices. We have also identified the corresponding key

challenges as future research directions in line with the three steps. This dissertation

will hopefully foster readers for further research to realize green IoT.
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