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ABSTRACT

FOULING AND AGING IN MEMBRANE FILTRATION: HYBRID AFM-BASED
CHARACTERIZATION, MODELLING AND REACTIVE MEMBRANE DESIGN

by
Wanyi Fu

Membrane filtration has been extensively used in water and wastewater treatment,
desalination, dairy making, and biomass/water separation. However, membrane fouling,
aging and insufficient removal efficiency for dissolved organic matters remain major
challenges for wider industrial applications. In order to tackle these challenges, this
doctoral dissertation investigates mechanisms of membrane fouling and development of
antifouling membrane filtration technologies. Specifically, four major research areas are
explored: (i) nanoscale physicochemical characterization of the chemically modified
polymeric membranes; (ii) quantitative modelling between membrane properties and
membrane fouling and defouling kinetics; (iii) development of quantitative structure-
activity relationships for membranes that undergo thermal and chemical aging treatments;
and (iv) design of microwave-assisted reactive and antifouling membrane filtration system.

The first research study focuses on the development and validation of atomic force
microscope (AFM) and hybrid AFM-IR techniques to acquire surface topography,
hydrophobicity and chemical distribution at nanoscale on polymeric membranes. AFM is
used to obtain the topography images that show the pore size, porosity and also surface
roughness of the polymeric membranes. Moreover, the chemical force mode of AFM is
applied to probe nanoscale hydrophobicity on modified membranes. Furthermore, the
AFM-IR technique offers accurate chemical identifications and distribution of additives on

modified membranes at nanoscale, which is not achievable by conventional FTIR due to



its low resolution or low sensitivity. The hybrid AFM techniques are believed to be critical
for the nanoscale characterization for material properties in a wide spectrum of applications.

In the second work, predictive models for membrane fouling and defouling kinetics
are developed. The models integrate membrane surface properties (i.e., hydrophobicity and
surface charge) and filtration performances with protein, saccharides and natural organic
matters (NOM) as model foulants. Positive correlations (R?=0.74-0.99) are obtained
between the fouling rates and the foulant deposition rates on different membrane-foulant
interaction systems. This correlation could be used for further developing predictive
models of membrane fouling.

In the third work, the chemical and thermal stability of surface chemically modified
polyether sulfone (PES) membranes are investigated. The membranes’ physical (i.e., pore
size, roughness), mechanical (i.e., tensile strength) and chemical characteristics (i.e., IR
spectrum, and hydrophobicity) are evaluated. The quantitative structure-activity
relationships (QSAR) for membrane filtration after aging are developed.

Sustaining high flux and diversified pollutant rejection are two crucial benchmarks
for membrane filtration. In the fourth work, a microwave-enhanced membrane filtration
process that uses microwave (MW) to energize catalyst-coated ceramic membranes is
designed. MW irradiation is selectively absorbed by catalysts and H202 to produce
“‘hotpots” on membrane surface and promote generation of radicals and nanobubbles. The
MW-Fenton-like reactions enhance chemical degradation of persistent organic pollutants
(i.e., 1,4-dioxane) and significant mitigation of fouling. MW irradiation can effectively
penetrate membrane modules and selectively promote surface reactions, which may open

new avenues toward reactive and antifouling membrane filtration techniques.
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CHAPTER 1

INTRODUCTION

1.1 Background and Challenges
During the last few decades, membrane filtration has been extensively used in water and
wastewater treatment,’> 2 desalination, * dairy making,’ and recovery of rare metals.
However, membrane fouling is one of the major challenges in the industrial applications.®
To mitigate the membrane fouling, three major methods were investigated: modification of
membrane to obtain antifouling membranes;”” periodic cleaning including hydraulic

cleaning and chemical cleaning;!*-!?

improvement of operation conditions including
pretreatment'>!> and additional force aided technology. Nevertheless, these methods still
have a number of limitations. Their problems and challenges would be discussed below.
First, a comprehensive characterization platform is in need for the modified
membranes. To mitigate the membrane fouling, chemical modification of membranes is a
popular way to enhance antifouling properties and durability.”® For the modification of
membranes, hydrophilized polymer membranes are broadly manufactured for industrial
applications as hydrophilic membranes are known to suffer less from membrane fouling in
water treatment.'® 17 Chemical modification of membrane surface chemistries are often
achieved by cross-linking, adsorption or covalent grafting of charged ionic species,
amphiphilic or hydrophilic additives.'® ' Even a small fraction of such chemical blending
at a local scale or nanoscale lengths of materials may substantially alter surface

characteristics, such as electric, mechanical, wetting properties and topography as well as

the interfacial properties. These characteristics eventually play a complex interplay the



resulting filtration performance in terms of solute-membrane inte