

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PROBABILISTIC SPIKING NEURAL NETWORKS:
SUPERVISED, UNSUPERVISED AND ADVERSARIAL TRAININGS

by
Alireza Bagheri

Spiking Neural Networks (SNNs), or third-generation neural networks, are networks

of computation units, called neurons, in which each neuron with internal analogue

dynamics receives as input and produces as output spiking, that is, binary sparse,

signals. In contrast, second-generation neural networks, termed as Artificial Neural

Networks (ANNs), rely on simple static non-linear neurons that are known to be

energy-intensive, hindering their implementations on energy-limited processors such

as mobile devices. The sparse event-based characteristics of SNNs for information

transmission and encoding have made them more feasible for highly energy-efficient

neuromorphic computing architectures. The most existing training algorithms

for SNNs are based on deterministic spiking neurons that limit their flexibility

and expressive power. Moreover, the SNNs are typically trained based on the

back-propagation method, which unlike ANNs, it becomes challenging due to the

non-differentiability nature of the spike dynamics. Considering these two key issues,

this dissertation is devoted to develop probabilistic frameworks for SNNs that are

tailored to the solution of supervised and unsupervised cognitive tasks. The SNNs

utilize rich model, flexible and computationally tractable properties of Generalized

Linear Model (GLM) neuron. The GLM is a probabilistic neural model that was

previously considered within the computational neuroscience literature. A novel

training method is proposed for the purpose of classification with a first-to-spike

decoding rule, whereby the SNN can perform an early classification decision once

spike firing is detected at an output neuron. This method is in contrast with

conventional classification rules for SNNs that operate offline based on the number of

output spikes at each output neuron. As a result, the proposed method improves the

accuracy-inference complexity trade-off with respect to conventional decoding. For

the first time in the field, the sensitivity of SNNs trained via Maximum Likelihood

(ML) is studied under white-box adversarial attacks. Rate and time encoding, as well

as rate and first-to-spike decoding, are considered. Furthermore, a robust training

mechanism is proposed that is demonstrated to enhance the resilience of SNNs under

adversarial examples. Finally, unsupervised training task for probabilistic SNNs is

studied. Under generative model framework, multi-layers SNNs are designed for

both encoding and generative parts. In order to train the Variational Autoencoders

(VAEs), the standard ML approach is considered. To tackle the intractable inference

part, variational learning approaches including doubly stochastic gradient learning,

Maximum A Posterior (MAP)-based, and Rao-Blackwellization (RB)-based are

considered. The latter is referred as the Hybrid Stochastic-MAP Variational Learning

(HSM-VL) scheme. The numerical results show performance improvements using the

HSM-VL method compared to the other two training schemes.

PROBABILISTIC SPIKING NEURAL NETWORKS:
SUPERVISED, UNSUPERVISED AND ADVERSARIAL TRAININGS

by
Alireza Bagheri

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Helen and John C. Hartmann Department of
Electrical and Computer Engineering

May 2019

Copyright c© 2019 by Alireza Bagheri

ALL RIGHTS RESERVED

APPROVAL PAGE

PROBABILISTIC SPIKING NEURAL NETWORKS:
SUPERVISED, UNSUPERVISED AND ADVERSARIAL TRAININGS

Alireza Bagheri

Dr. Osvaldo Simeone, Dissertation Co-advisor Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Bipin Rajendran, Dissertation Co-advisor Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Alexander Haimovich, Committee Member Date
Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr. Ali Abdi, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Zhi Wei, Committee Member Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: Alireza Bagheri

Degree: Doctor of Philosophy

Date: May 2019

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ, 2019

• Master of Science in Electrical Engineering,
Semnan University, Semnan, Semnan, Iran, 2013

• Bachelor of Science in Electrical Engineering,
Islamic Azad University, Karaj, Alborz, Iran, 2009

Major: Electrical Engineering

Presentations and Publications:

A. Bagheri, O. Simeone, and B. Rajendran, “Adversarial Training for Probabilistic
Spiking Neural Networks,” IEEE Int. Wksh. Signal Process. Adv. Wireless
Commun. (SPAWC), June 2018.

A. Bagheri, O. Simeone, and B. Rajendran, “Training Probabilistic Spiking Neural
Networks with First-to-spike Decoding,” IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), Apr. 2018.

A. AL-Shuwaili, O. Simeone, A. Bagheri and G. Scutari, “Joint Uplink/Downlink
Optimization for Backhaul-Limited Mobile Cloud Computing with User
Scheduling,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, issue 4, Dec.
2017.

A. N. Al-Shuwaili, A. Bagheri and O. Simeone, “Joint uplink/downlink and
offloading optimization for mobile cloud computing with limited backhaul,”
IEEE Conf. Inf. Sci. Syst. (CISS), Mar. 2016.

iv

Dedicated to my family and friends.

v

ACKNOWLEDGMENT

I am very lucky to have so many people to thank. First and foremost, I would like to

express my sincere gratitude to my advisors Prof. Osvaldo Simeone and Prof. Bipin

Rajendran, for all of their guidances, supports and inspirations throughout my PhD

studies. None of this would have been possible without their helps.

Second, I would like to thank my committee members Prof. Alexander

Haimovich, Prof. Ali Abdi, and Prof. Zhi Wei for spending their valuable time

and constructive comments on my dissertation.

Third, I would like to express my thanks to my fellow group members who either

through discussions or collaborations have helped me in my graduate career. Amongst

many others, this includes Ali Najdi Al-Shuwaili, Shruti R Kulkarni, Anakha V Babu,

Bleema Rosenfeld, and Sarah Ali Obead.

Fourth, I would like to thank Ms. Kathleen Bosco and Ms. Angela Retino

for always being kind and ready to help me at the Elisha Yegal Bar-Ness Center for

Wireless Information Processing (CWiP), New Jersey Institute of Technology (NJIT).

Fifth, I would like to thank Dr. Durgamadhab (Durga) Misra, Ms. Teri Bass,

Ms. Clarisa Gonzalez-Lenahan and all the staff of the Department of Electrical and

Computer Engineering (ECE), the Office of Graduate Studies, and the Office of Global

Initiatives (OGI) at NJIT for their help and support with administrative matters

during my PhD studies.

Sixth, I would like to have special thanks on NSF, Ross and PhoneTel

Fellowships that entirely supported my PhD studies. My research works have

supported by the U.S. NSF under grants 1525629 and ECCS #1710009. O. Simeone

has also received funding from the European Research Council (ERC) under the

European Unions Horizon 2020 research and innovation program (grant agreement

#725731).

vi

Last but not least, I am deeply thankful to my parents, family and friends for

their constant support and encouragement, for always being in touch with me.

vii

TABLE OF CONTENTS

Chapter Page

1 MOTIVATION AND OVERVIEW . 1

1.1 Organization and Contributions . 1

2 TRAINING PROBABILISTIC SPIKING NEURAL NETWORKS WITH
FIRST-TO-SPIKE DECODING . 3

2.1 Introduction . 3

2.2 Spiking Neural Network with GLM Neurons 5

2.2.1 Architecture . 5

2.2.2 Rate Encoding . 5

2.2.3 GLM Neuron Model . 6

2.3 Training with Conventional Decoding 8

2.4 Training with First-to-spike Decoding 9

2.5 Numerical Results . 11

2.6 Conclusions . 14

3 ADVERSARIAL TRAINING FOR PROBABILISTIC SPIKING NEURAL
NETWORKS . 15

3.1 Introduction . 15

3.2 SNN-based Classification . 17

3.2.1 Network Architecture . 17

3.2.2 Information Encoding . 17

3.2.3 Information Decoding . 19

3.3 Designing Adversarial Examples . 21

3.4 Robust Training . 23

3.5 Numerical Results . 23

3.6 Conclusions . 27

4 UNSUPERVISED TRAINING OF PROBABILISTIC SPIKING NEURAL
NETWORKS WITH HYBRID STOCHASTIC-MAP VARIATIONAL
LEARNING . 28

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.1 INTRODUCTION . 28

4.2 Variational Autoencoder Based on Probabilistic SNNs 32

4.2.1 Training Data . 35

4.2.2 Decoding SNN . 35

4.2.3 Encoding SNN . 38

4.3 Background on Hybrid Stochastic-MAP Variational Learning 40

4.4 Hybrid Stochastic-MAP Variational Learning For a Two-Layer SNN . 47

4.5 Hybrid Stochastic-MAP Variational Learning For Multi-Layer SNN . 50

4.6 Performance Metrics . 51

4.6.1 Evidence Lower BOund (ELBO) 51

4.6.2 Reconstruction Error . 52

4.6.3 Data Generation . 52

4.7 Experiment Results . 53

4.8 Conclusions . 56

APPENDIX A CALCULATION OF GRADIENTS FOR FIRST-TO-SPIKE
DECODING . 57

APPENDIX B VARIANCE OF THE HSM-VL SCHEME COMPARED TO
THE STOCHASTIC SCHEME . 59

REFERENCES . 61

ix

LIST OF FIGURES

Figure Page

2.1 Two-layer SNN for supervised learning. 4

2.2 GLM neuron model. 6

2.3 Basis functions. 8

2.4 Test accuracy versus the number K of basis functions for both conven-
tional (rate) and first-to-spike decoding rules when T = 4. 12

2.5 Test accuracy versus per-class inference complexity for both conventional
(rate) and first-to-spike decoding rules. 13

3.1 Two-layer SNN for supervised learning. 16

3.2 Test accuracy for ML training under adversarial and random changes
versus ε with rate encoding for both rate and first-to-spike decoding
rules (T = K = 16). 24

3.3 Test accuracy for ML training under adversarial attacks versus ε with both
rate and time encoding rules for first-to-spike decoding (T = K = 16). 25

3.4 Test accuracy under adversarial attacks versus ε with rate encoding and
rate decoding with ML and adversarial training (T = K = 8). 26

3.5 Test accuracy under adversarial attacks versus ε with time encoding and
rate decoding with ML and adversarial training (T = K = 8). 27

4.1 Variational Autoencoder (VAE) based on two SNNs: a decoding SNN
defined by a generative model Pθ (x,h) and an encoding SNN defined by
an encoding model qφ (h|x). When the data is a natural (non-spiking)
signal, the block diagram includes a Spike domain-to-Natural signal
(S2N) decoder, and a Natural-to-Spike domain (N2S) encoder. 33

4.2 Decoding probabilistic SNNs used in the VAE of Figure 4.1: (a) two-layer
SNN (L = 1), and (b) multi-layer SNN (L ≥ 2). 33

4.3 Encoding probabilistic SNNs used in the VAE of Figure 4.1: (a) two-layer
SNN (L = 1), and (b) multi-layer SNN (L ≥ 2). 34

4.4 Basis functions used in Section 4.7 (a = 7500 and c = 1 in [1, Section
Methods]). 38

4.5 Data generation mechanism for a two-hidden layers network. 53

x

LIST OF FIGURES
(Continued)

Figure Page

4.6 Average reconstruction error percentage versus epoch over validation set
for stochastic, MAP and HSM-VL training schemes for a single-hidden-
layer SNN with nh = 10 and T = 2. 54

4.7 Average reconstruction error percentage versus spike train length, T , for a
single-hidden-layer SNN trained via the HSM-VL scheme with nh = 10,
τα = τβ = 32, and different Kα and Kβ values. 55

4.8 Average ELBO versus epoch over validation set for the HSM-VL training
scheme for a single-hidden-layer SNN with nh = 10, T = 8, Kα = Kβ =
1 and different τα and τβ values. 56

xi

CHAPTER 1

MOTIVATION AND OVERVIEW

In this dissertation, we develop biology-inspired learning methods for probabilistic

neural networks. The overall research goal is the establishment of a theoretical

framework to enable the design of flexible spike-domain learning algorithms that are

tailored to the solution of supervised and unsupervised cognitive tasks. This work

has centered around developing probabilistic frameworks for energy-efficient learning

and inference on third generation of neural networks, also referred to Spiking Neural

Networks (SNNs). SNNs are networks of computation units, called neurons, in which

each neuron with internal analogue dynamics receives as input and produces as output

spiking, that is, binary sparse, signals. The sparse event-driven characteristics of

SNNs have led them more feasible for highly energy-efficient neuromorphic computing

architectures. Some examples of such hardware implementations are the Loihi from

Intel, TrueNorth from IBM, SpiNNaker from the University of Manchester. We refer

to [2] for an overview of existing neuromorphic architectures and applications.

1.1 Organization and Contributions

In this section, the organization and contributions of the dissertation are outlined.

Chapter 2: In this chapter, the problem of training a two-layer SNN under a

probabilistic neuron model is studied, for the purpose of classification. We use the

flexible and computationally tractable Generalized Linear Model (GLM) that was

introduced in the context of computational neuroscience. Conventional decoding in

SNNs operates offline by selecting the output neuron, and hence the corresponding

class, with the largest number of output spikes. In contrast, we study here a first-

to-spike decoding rule, whereby the SNN can perform an early classification decision

once a spike firing is detected at an output neuron. This generally reduces decision

1

latency and complexity during the inference phase. We have demonstrated that the

proposed method improves the accuracy-inference complexity trade-off with respect

to conventional decoding. The material in this chapter has been reported in [3].

Chapter 3: Classifiers trained using conventional empirical risk minimization

or maximum likelihood methods are known to suffer dramatic performance degra-

dations when tested over examples adversarially selected based on knowledge of the

classifier’s decision rule. Due to the prominence of Artificial Neural Networks (ANNs)

as classifiers, their sensitivity to adversarial examples, as well as robust training

schemes, have been recently the subject of intense investigation. In this chapter,

for the first time, the sensitivity of SNNs, or third-generation neural networks, to

adversarial examples is studied. The study considers rate and time encoding, as well

as rate and first-to-spike decoding. Furthermore, a robust training mechanism is

proposed that is demonstrated to enhance the performance of SNNs under white-box

attacks. The material in this chapter has been reported in [4].

Chapter 4: This chapter presents unsupervised training for probabilistic

SNNs based on GLM neurons. We consider the problem of training a Variational

Autoencoder (VAE) in which the encoder and decoder probabilistic mappings are

both modeled with multiple hidden layers of SNNs. In order to capture the best

representation of data, we follow generative model framework. In this chapter,

for the first time, the Maximum A Posterior (MAP) and Hybrid Stochastic-MAP

Variational Learning (HSM-VL) training techniques developed for SNNs. Numerical

results present performance gains using the HSM-VL scheme for both feature learning

and data representation tasks.

2

CHAPTER 2

TRAINING PROBABILISTIC SPIKING NEURAL NETWORKS
WITH FIRST-TO-SPIKE DECODING

2.1 Introduction

Most current machine learning methods rely on second-generation neural networks,

which consist of simple static non-linear neurons. In contrast, neurons in the human

brain are known to communicate by means of sparse spiking processes. As a result,

they are mostly inactive, and energy is consumed sporadically. Third-generation

neural networks, or Spiking Neural Networks (SNNs), aim at harnessing the energy

efficiency of spike-domain processing by building on computing elements that operate

on, and exchange, spikes [5]. SNNs can be natively implemented on neuromorphic

chips that are currently being developed within academic projects and by major

chip manufacturers. Proof-of-concept implementations have shown remarkable energy

savings by multiple orders of magnitude with respect to second-generation neural

networks (see, e.g., [6, 7]).

Notwithstanding the potential of SNNs, a significant stumbling block to their

adoption is the dearth of flexible and effective learning algorithms. Most existing

algorithms are based on variations of the unsupervised mechanism of Spike-Timing

Dependent Plasticity (STDP), which updates synaptic weights based on local input

and output spikes, and supervised variations that leverage global feedback [8, 9].

Another common approach is to convert trained second-generation networks to SNNs

[10, 11]. Among the learning methods that attempt to directly maximize a spike-

domain performance criterion, most techniques assume deterministic Spike Response

Model (SRM) neurons, and propose various approximations to cope with the non-

differentiability of the neurons’ outputs (see [12, 13] and references therein).

3

NX

NY

1

1

Output layer

Input layer

1

1

T 1

T 1

T 1

T΄

T΄

2

2

2

2

2

Figure 2.1 Two-layer SNN for supervised learning.

While the use of probabilistic models for spiking neurons is standard in the

context of computational neuroscience (see, e.g., [14]), probabilistic modeling has

been sparsely considered in the machine learning literature on SNNs. This is

despite the known increased flexibility and expressive power of probabilistic models

[15, 16]. In the context of SNNs, as an example, probabilistic models have the

capability of learning firing thresholds using standard gradient based methods, while

in deterministic models these are instead treated as hyperparameters and set by using

heuristic mechanisms such as homeostasis [17]. The state of the art on supervised

learning with probabilistic models is set by [18] that considers Stochastic Gradient

Descent (SGD) for Maximum Likelihood (ML) training, under the assumption that

there exist given desired output spike trains for all output neurons.

In this chapter, we study the problem of training the two-layer SNN illustrated

in Figure 2.1 under a probabilistic neuron model, for the purpose of classification.

Conventional decoding in SNNs operates offline by selecting the output neuron, and

hence the corresponding class, with the largest number of output spikes [18]. In

contrast, here we study a first-to-spike decoding rule, whereby the SNN can perform

an early classification decision once a spike firing is detected at an output neuron.

This generally reduces decision latency and complexity during the inference phase.

The first-to-spike decision method has been investigated with temporal, rather than

4

rate, coding and deterministic neurons in [19, 20, 21, 22], but no learning algorithm

exists under probabilistic neural models.

To fill this gap, we first propose the use of the flexible and computationally

tractable Generalized Linear Model (GLM) that was introduced in [1] in the context

of computational neuroscience (Section 2.3). Under this model, we then derive a novel

SGD-based learning algorithm that maximizes the likelihood that the first spike is

observed at the correct output neuron (Section 2.4). Finally, we present numerical

results that bring insights into the optimal parameter selection for the GLM neuron

and on the accuracy-complexity trade-off performance of conventional and first-to-

spike decoding rules.

2.2 Spiking Neural Network with GLM Neurons

In this section, we describe the architecture of the two-layer SNN under study and

then we present the proposed GLM neuron model.

2.2.1 Architecture

We consider the problem of classification using a two-layer SNN. As shown in

Figure 2.1, the SNN is fully connected and hasNX presynaptic neurons in the input, or

sensory layer, and NY neurons in the output layer. Each output neuron is associated

with a class. In order to feed the SNN, an input example, e.g., a gray scale image,

is converted to a set of NX discrete-time spike trains, each with T samples, through

rate encoding. The input spike trains are fed to the NY postsynaptic GLM neurons,

which output discrete-time spike trains. A decoder then selects the image class on

the basis of the spike trains emitted by the output neurons.

2.2.2 Rate Encoding

With the conventional rate encoding method, each entry of the input signal, e.g.,

each pixel for images, is converted into a discrete-time spike train by generating an

5

Bernoulli
r.v. gen.

αNX,i

xNX

+

ui,t g(ui,t)

T 1
τ'y yi

x1

t

τy

τy

t

t

T 1

1 T΄
activation
function

α1,i
γi

βi

Figure 2.2 GLM neuron model.

independent and identically distributed (i.i.d.) Bernoulli vectors. The probability

of generating a “1”, i.e., a spike, is proportional to the value of the entry. In the

experiments in Section 2.5, we use gray scale images with pixel intensities between 0

and 255 that yield a spike probability between 0 and 1/2.

2.2.3 GLM Neuron Model

The relationship between the input spike trains from the NX presynaptic neurons and

the output spike train of any postsynaptic neuron i follows a GLM, as illustrated in

Figure 2.2. To elaborate, we denote as xj,t and yi,t the binary signal emitted by the

j-th presynaptic and the i-th postsynaptic neurons, respectively, at time t. Also, we

let xbj,a = (xj,a, ..., xj,b) be the vector of samples from spiking process of the presynaptic

neuron j in the time interval [a, b]. Similarly, the vector ybi,a = (yi,a, ..., yi,b) contains

samples from the spiking process of the neuron i in the interval [a, b]. As seen in

Figure 2.2, the output yi,t of postsynaptic neuron i at time t is Bernoulli distributed,

with firing probability that depends on the past spiking behaviors {xt−1
j,t−τy} of the

presynaptic neurons j = 1, ..., NX in a window of duration τy samples, as well as

on the past spike timings yt−1
i,t−τ ′y of neuron i in a window of duration τ ′y samples.

Mathematically, the membrane potential of postsynaptic neuron i at time t is given

6

by

ui,t =

NX∑
j=1

αT
j,ix

t−1
j,t−τy + βTi yt−1

i,t−τ ′y + γi, (2.1)

where αj,i ∈ Rτy is a vector that defines the Synaptic Kernel (SK) applied on the

{j, i} synapse between presynaptic neuron j and postsynaptic neuron i; βi ∈ Rτ ′y

is the Feedback Kernel (FK); and γi is a bias parameter. The vector of variable

parameters θi includes the bias γi and the parameters that define the SK and FK

filters, which are discussed below. Accordingly, the log-probability of the entire spike

train yi = [yi,1, ..., yi,T]T conditioned on the input spike trains x = {xj}NXj=1 can be

written as

log pθi(yi |x) =
T∑
t=1

[yi,t log g (ui,t) + ȳi,t log ḡ (ui,t)], (2.2)

where g (·) is an activation function, such as the sigmoid function g (x) = σ (x) =

1/ (1 + exp (−x)), and we defined ȳi,t = 1− yi,t and ḡ (ui,t) = 1− g (ui,t).

Unlike prior work on SNNs with GLM neurons, we adopt here the parameterized

model introduced in [1] in the field of computational neuroscience. Accordingly, the

SK and FK filters are parameterized as the sum of fixed basis functions with learnable

weights. To elaborate, we write the SK αj,i and the FK βi as

αj,i = Awj,i, and βi = Bvi, (2.3)

respectively, where we have defined the matrices A = [a1, ..., aKα] and B =[
b1, ...,bKβ

]
and the vectors wj,i = [wj,i,1, ..., wj,i,Kα]T and vi =

[
vi,1, ..., vi,Kβ

]T
; Kα

and Kβ denote the respective number of basis functions; ak =
[
ak,1, ..., ak,τy

]T
and

bk =
[
bk,1, ..., bk,τ ′y

]T
are the basis vectors; and {wj,i,k} and {vi,k} are the learnable

weights for the kernels αj,i and βi, respectively. This parameterization generalizes

previously studied models for machine learning application. For instance, as a special

case, if we set Kα = Kβ = 1, set a1 and b1 as in [18, equations (4) and (5)], and

7

1 2 3 4 5 6 7 8

Time index t

0

1

1

2 3 4 5 6 7 8

Figure 2.3 Basis functions used in Section 2.5 (a = 7500 and c = 1 in [1, Section
Methods]).

fix the weights vi,1 = 1, equation (2.2) yields a discrete-time approximation of the

model considered in [18]. As another example, if we set Kα = τy, Kβ = τ ′y, ak = 1k,

bk = 1k, where 1k is the all-zero vector except for a one in position k, equation (2.1)

yields the unstructured GLM model considered in [23]. For the experiments discussed

in Section 2.5, we adopt the time-localized raised cosine basis functions introduced

in [1], which are illustrated in Figure 2.3. Note that this model is flexible enough to

include the learning of synaptic delays [24, 25].

2.3 Training with Conventional Decoding

In this section, we briefly review ML training based on conventional rate decoding

for the two-layer SNN. During the inference phase, decoding is conventionally carried

out in post-processing by selecting the output neuron with the largest number of

spikes. In order to facilitate the success of this decoding rule, in the training phase,

the postsynaptic neuron corresponding to the correct label c ∈ {1, ..., NY } is typically

assigned a desired output spike train yc with a number of spikes, while a zero output

is assigned to the other postsynaptic neurons yi with i 6= c.

Using the ML criterion, one hence maximizes the sum of the log-probabilities

equation (2.2) of the desired output spikes y (c) = {y1 (c) , ...,yNY (c)} for the correct

label c given the NX input spike trains x = {x1, ...,xNX}, i.e.,

L (θ) =

NY∑
i=1

log pθi(yi (c)|x). (2.4)

8

The sum is further extended to all examples in the training set. The parameter vector

θ = {W,V,γ} includes the parameters W = {Wi}NYi=1, V = {vi}NYi=1 and γ = {γi}NYi=1.

The negative log-likelihood −L (θ) is convex with respect to θ and can be minimized

via SGD. For a given input x, the gradients of the log-likelihood function L (θ) in

equation (2.4) for conventional decoding are given as

∇wj,iL (θ) =
T∑
t=1

ei,tρi,tA
Txt−1

j,t−τy , (2.5)

∇viL (θ) =
T∑
t=1

ei,tρi,tB
Tyt−1

i,t−τ ′y , (2.6)

and

∇γiL (θ) =
T∑
t=1

ei,tρi,t, (2.7)

where

ei,t = yi,t − g (ui,t) , (2.8)

is the error signal, and ρi,t is given as

ρi,t =
g′ (ui,t)

g (ui,t) ḡ (ui,t)
, (2.9)

where g′ (ui,t)
∆
=

dg(ui,t)

dui,t
.

2.4 Training with First-to-spike Decoding

In this section, we introduce the proposed learning approach based on GLM neurons

and first-to-spike decoding.

During the inference phase, with first-to-spike decoding, a decision is made

once a first spike is observed at an output neuron. In order to train the SNN for

this classification rule, we propose to follow the ML criterion by maximizing the

probability to have the first spike at the output neuron corresponding to the correct

9

label c. The logarithm of this probability for a given example x can be written as

L (θ) = log

(
T∑
t=1

pt (θ)

)
, (2.10)

where

pt (θ) =

NY∏
i=1,i 6=c

t∏
t′=1

ḡ (ui,t′)g (uc,t)
t−1∏
t′=1

ḡ (uc,t′), (2.11)

is the probability of having the first spike at the correct neuron c at time t. In

equation (2.11), the potential ui,t for all i is obtained from equation (2.1) by setting

yi,t = 0 for all i and t. The log-likelihood function L (θ) in equation (2.10) is not

concave, and we tackle its maximization via SGD.

To this end, the gradients of the log-likelihood function for a given input x can

be computed after some algebra as (see Appendix A for details)

∇wj,iL (θ)

=


−

T∑
t=1

ρi,thtg (ui,t) ATxt−1
j,t−τy i 6= c

−
T∑
t=1

ρc,t (htg (uc,t)− qt) ATxt−1
j,t−τy i = c

,
(2.12)

for the weights and

∇γiL (θ) =


−

T∑
t=1

ρi,thtg (ui,t) i 6= c

−
T∑
t=1

ρc,t (htg (uc,t)− qt) i = c

, (2.13)

for the biases, where we have defined

ρi,t =
g′ (ui,t)

g (ui,t) ḡ (ui,t)
, (2.14)

and

ht =
T∑
t′=t

qt′ = 1−
t−1∑
t′=1

qt′ , (2.15)

10

with

qt =
pt (θ)
T∑
t′=1

pt′ (θ)

. (2.16)

Note that we have ρi,t = 1 when g is the sigmoid function.

Based on equation (2.12), the resulting SGD update can be considered as

a neo-Hebbian rule [26], since it multiplies the contributions of the presynaptic

neurons and of the postsynaptic activity, where the former depends on x and the

latter on the potential ui,t. Furthermore, in equation (2.12)−equation (2.13), the

probabilities g (ui,t) and g (uc,t) of firing at time t are weighted by the probability ht

in equation (2.15). By equation (2.16), this is the probability that the correct neuron

is the first to spike and that it fires at some time t′ ≥ t, given that it is the first to

spike at some time in the interval [1, 2, ..., T].

As a practical note, in order to avoid vanishing values in calculating the weights

equation (2.16), we compute each probability term pt (θ) in the log-domain, and

normalize all the resulting terms with respect to the minimum probability as qt =

exp (at) /
∑T

t′=1 exp (at′), where at = ln (pt)−mint (ln (pt)).

2.5 Numerical Results

In this section, we numerically study the performance of the probabilistic SNN in

Figure 2.1 under conventional and first-to-spike decoding rules. We use the standard

MNIST dataset [27] as the input data. As a result, we have NX = 784, with one

input neuron per pixel of the x images. Following [7], we consider different number

of classes, or digits, namely, the two digits {5, 7}, the four digits {5, 7, 1, 9} and all

10 digits {0, ..., 9}, and we use 1000 samples of each class for training and the same

number for test set. We use a desired spike train with one spike after every three

zeros for training the conventional decoding. SGD with minibatch size of one with

200 training epochs is used for both schemes. Ten-fold cross-validation is applied for

11

1 2 3 4

K

40

50

60

70

80

90

100

T
es
t
A
cc
u
ra
cy

[%
]

Conventional (rate) dec.
First-to-spike dec.

4 digits

2 digits

10 digits

Figure 2.4 Test accuracy versus the number K of basis functions for both
conventional (rate) and first-to-spike decoding rules when T = 4.

selecting between 10−3 or 10−4 for the constant learning rates. The model parameters

θ are randomly initialized with uniform distribution between -1 and 1.

We evaluate the performance of the schemes in terms of classification accuracy

in the test set and of inference complexity. The inference complexity is measured by

the total number of elementary operations, namely additions and multiplications, for

input image that are required by the SNN during inference. The number of arithmetic

operations needed to calculate the membrane potential equation (2.1) of neuron i at

time instant t is of the order of O
(
NXτy + τ ′y

)
. As a result, in the conventional

decoding method, the inference complexity per output neuron, or per class, is of

the order O (T (NXsx + sy)), where sx and sy are the fraction of spikes in x and y,

respectively. In contrast, with the first-to-spike decoding rule, the SNN can perform

an early decision once a single spike is detected, and hence its complexity order is

O (t (NXsx + sy)), where 1 ≤ t ≤ T is the (random) decision time.

We first consider the test classification accuracy as a function of the number K

of basis functions in the GLM neural model. The basis functions are numbered as in

12

0 100 200 300 400 500 600 700 800

Inference Complexity [# elem. op.]

95

95.5

96

96.5

97

97.5

98

98.5

99

T
es
t
A
cc
u
ra
cy

[%
]

Conventional (rate) dec.
First-to-spike dec.

T = 8

T = 16

ANN

T = 8

T = 32

T = 32

T = 16

T = 4

T = 4

Figure 2.5 Test accuracy versus per-class inference complexity for both conventional
(rate) and first-to-spike decoding rules.

Figure 2.3, and we set T = 4. From Figure 2.4, we observe that conventional decoding

requires a large number K in order to obtain its best accuracy. This is due to the

need to ensure that the correct output neuron fires consistently more than the other

neurons in response to the input spikes. This, in turn, requires a larger temporal

reception field, i.e., a larger K, to be sensitive to the randomly located input spikes.

We note that for small values of T , such as T = 4, first-to-spike decoding obtains

better accuracies than conventional decoding.

Figure 2.5 depicts the test classification accuracy versus the inference complexity

for both conventional and first-to-spike decoding rules for two digits when K = T .

The classification accuracy of a conventional two-layer artificial neural network (ANN)

with logistic neurons is added for comparison. From the figure, first-to-spike decoding

is seen to offer a significantly lower inference complexity, thanks to its capability

for early decisions, without compromising the accuracy. For instance, when the

classification accuracy equals to 98.4%, the complexity of the conventional decoding

13

method is five times larger than the first-to-spike method. Note also that conventional

decoding generally requires large values of T to perform satisfactorily.

2.6 Conclusions

In this chapter, we have proposed a novel learning method for probabilistic two-layer

SNN that operates according to the first-to-spike learning rule. We have demonstrated

that the proposed method improves the accuracy-inference complexity trade-off with

respect to conventional decoding. Additional work is needed in order to generalize

the results to multi-layer networks.

14

CHAPTER 3

ADVERSARIAL TRAINING FOR PROBABILISTIC SPIKING
NEURAL NETWORKS

3.1 Introduction

The classification accuracy of Artificial Neural Networks (ANNs) trained over large

data sets from the problem domain has attained super-human levels for many tasks

including image identification [28]. Nevertheless, the performance of classifiers trained

using conventional empirical risk minimization or Maximum Likelihood (ML) is

known to decrease dramatically when evaluated over examples adversarially selected

based on knowledge of the classifier’s decision rule [29]. To mitigate this problem,

robust training strategies that are aware of the presence of adversarial perturbations

have been shown to improve the accuracy of classifiers, including ANNs, when tested

over adversarial examples [29, 30, 31].

ANNs are known to be energy-intensive, hindering their implementation on

energy-limited processors such as mobile devices. Despite the recent industrial efforts

around the production of more energy-efficient chips for ANNs [5], the gap between

the energy efficiency of the human brain and that of ANNs remains significant [6, 32].

A promising alternative paradigm is offered by Spiking Neural Networks (SNNs), in

which synaptic input and neuronal output signals are sparse asynchronous binary

spike trains [5]. Unlike ANNs, SNNs are hybrid digital-analog machines that make

use of the temporal dimension, not just as a neutral substrate for computing, but as

a means to encode and process information [32].

Training methods for SNNs typically assume deterministic non-linear dynamic

models for the spiking neurons, and are either motivated by biological plausibility,

such as the spike-timing-dependent plasticity (STDP) rule [5, 8], or by an attempt

to mimic the operation of ANNs and associated learning rules (see, e.g., [33] and

15

NX

NY

1

1

Output layer

Input layer

1

1

T 1

T 1

T 1

T΄

T΄

2

2

2

2

2

Figure 3.1 Two-layer SNN for supervised learning.

references therein). Deterministic models are known to be limited in their expressive

power, especially as it pertains prior domain knowledge, uncertainty, and definition

of generic queries and tasks. Training for probabilistic models of SNNs has recently

been investigated in, e.g., [18, 34, 35, 3] using ML and variational inference principles.

In this dissertation, for the first time, the sensitivity of SNNs trained via ML

is studied under white-box adversarial attacks, and a robust training mechanism is

proposed that is demonstrated to enhance the performance of SNNs under adversarial

examples. Specifically, we focus on a two-layer SNN (see Figure 3.1), and consider

rate and time encoding, as well as rate and first-to-spike decoding [3]. Our results

illuminate the sensitivity of SNNs to adversarial example under different encoding

and decoding schemes, and the effectiveness of robust training methods.

The rest of the chapter is organized as follows. In Section 3.2, we describe the

architecture of the two-layer SNN with Generalized Linear Model (GLM) neuron, as

well as information encoding and decoding mechanisms. The design of adversarial

perturbations is covered in Section 3.3, while a robust training is presented in

Section 3.4. Section 3.5 presents numerical results, and closing remarks are given

in Section 3.6.

16

3.2 SNN-based Classification

In this section, we introduce the classification task and the SNN architecture under

study.

3.2.1 Network Architecture

We consider the problem of classification using the two-layer SNN illustrated in

Figure 3.1. The SNN is fully connected and has NX presynaptic neurons in the

input, or sensory layer, and NY neurons in the output layer. Each output neuron is

associated with a class. In order to feed the SNN, an input example, e.g., a gray scale

image, is encoded into a set of NX discrete-time spike trains, each with T samples.

The input spike trains are fed to the NY postsynaptic GLM neurons, which output

discrete-time spike trains. A decoder then selects the image class on the basis of the

spike trains emitted by the output neurons.

3.2.2 Information Encoding

We consider two encoding mechanisms.

Rate encoding With the conventional rate encoding method (see, e.g., [36]), each

entry of the input signal is converted into a discrete-time spike train by generating

an independent and identically distributed (i.i.d.) Bernoulli vector. The probability

of generating a “1”, i.e., a spike, is proportional to the value of the entry. In the

experiments in Section 3.5, we use gray scale images of USPS dataset with pixel

intensities normalized between 0 and 1 that yield a proportional spike probability

between 0 and 1/2.

Time encoding With the time encoding method, each entry of the input signal

is converted into a spike train having only one spike, whose timing depends on the

entry value. In particular, assuming intensity-to-latency encoding [19, 37, 36], the

17

spike timing in the time interval [1, T] depends linearly on the entry value, such that

the maximum value yields a spike at the first time sample t = 1, and the minimum

value is mapped to a spike in the last time sample t = T .

GLM Neuron Model The relationship between the input spike trains from the

NX presynaptic neurons and the output spike train of any postsynaptic neuron i

follows a Bernoulli GLM with canonical link function (see, e.g., [1, 3]). To elaborate,

we denote as xj,t and yi,t the binary signal emitted by the j-th presynaptic and the

i-th postsynaptic neurons, respectively, at time t. Also, we let xbj,a = (xj,a, ..., xj,b)

be the vector of samples from spiking process of the presynaptic neuron j in the

time interval [a, b]. Similarly, the vector ybi,a = (yi,a, ..., yi,b) contains samples from

the spiking process of the neuron i in the interval [a, b]. The membrane potential of

postsynaptic neuron i at time t is given by

ui,t =

NX∑
j=1

αT
j,ix

t−1
j,t−τy + βTi yt−1

i,t−τ ′y + γi, (3.1)

where αj,i ∈ Rτy is a vector that defines the synaptic kernel (SK) applied on the

{j, i} synapse between presynaptic neuron j and postsynaptic neuron i; βi ∈ Rτ ′y is

the feedback kernel (FK); and γi is a bias parameter. Note that τy and τ ′y denote

the lengths of the SK and FK, respectively. The vector of variable parameters θi

includes the bias γi and the parameters that define the SK and FK filters, which are

discussed below. According to the GLM, the log-probability of the output spike train

yi = [yi,1, ..., yi,T]T conditioned on the input spike trains x = {xj}NXj=1 can be written

as

log pθi(yi |x) =
T∑
t=1

[yi,t log g (ui,t) + ȳi,t log ḡ (ui,t)], (3.2)

where g (·) is an activation function, such as the sigmoid function g (x) = σ (x) =

1/ (1 + exp (−x)), and we defined ȳi,t = 1 − yi,t and ḡ (ui,t) = 1 − g (ui,t). As

18

per equation (3.2), each sample yi,t is Bernoulli distributed with spiking probability

g (ui,t).

As in [3], we adopt the parameterized model of [1] for the SK and FK filters.

Accordingly, we write the SK αj,i and the FK βi as

αj,i =
Kα∑
k=1

wj,i,kak = Awj,i, (3.3)

and

βi =

Kβ∑
k=1

vi,kbk = Bvi, (3.4)

respectively, where we have defined the fixed basis matrices A = [a1, ..., aKα] and B =[
b1, ...,bKβ

]
and the vectors wj,i = [wj,i,1, ..., wj,i,Kα]T and vi =

[
vi,1, ..., vi,Kβ

]T
; Kα

andKβ denote the respective number of basis functions; ak = [ak,1, ..., ak,τy]
T and bk =

[bk,1, ..., bk,τ ′y]
T are the basis vectors; and {wj,i,k} and {vi,k} are the learnable weights

for the kernels αj,i and βi, respectively. For the experiments discussed in Section 3.5,

we adopt the raised cosine basis functions introduced in [1, Section Methods].

3.2.3 Information Decoding

We also consider two alternative decoding methods, namely rate decoding and first-

to-spike decoding. 1) Rate decoding : With rate decoding, decoding is carried out

by selecting the output neuron with the largest number of spikes. 2) First-to-spike

decoding : With first-to-spike decoding, the class that corresponds to the neuron that

spikes first is selected.

ML training: Conventional ML training is performed differently under rate

and first-to-spike decoding methods, as briefly reviewed next.

1) Rate decoding : With rate decoding, the postsynaptic neuron corresponding to

the correct label c ∈ {1, ..., NY } is assigned a desired output spike train yc containing

a number of spikes, while an all-zero vector yi, i 6= c, is assigned to the other

19

postsynaptic neurons. Using the ML criterion, one hence maximizes the sum of

the log-probabilities equation (2.2) of the desired output spikes y (c) = {y1, ...,yNY }

for the given NX input spike trains x = {x1, ...,xNX}. The log-likelihood function for

a given training example (x, c) can be written as

Lθ (x, c) =

NY∑
i=1

log pθi(yi|x), (3.5)

where the parameter vector θ = {W,V,γ} includes the parameters W = {Wi}NYi=1,

V = {vi}NYi=1 and γ = {γi}NYi=1. The sum in equation (3.5) is further extended to all

examples in the training set. The negative log-likelihood (NLL) −Lθ is convex with

respect to θ and can be minimized via SGD [3].

2) First-to-spike decoding : With first-to-spike decoding, the class that corre-

sponds to the neuron that spikes first is selected. The ML criterion hence maximizes

the probability to have the first spike at the output neuron corresponding to the

correct label. The logarithm of this probability for a given example (x, c) can be

written as

Lθ (x, c) = log

(
T∑
t=1

pt (θ)

)
, (3.6)

where

pt (θ) =

NY∏
i=1,i 6=c

t∏
t′=1

ḡ (ui,t′)g (uc,t)
t−1∏
t′=1

ḡ (uc,t′), (3.7)

is the probability of having the first spike at the correct neuron c at time t. In

equation (3.7), the potential ui,t for all i is obtained from equation (2.1) by setting

yi,t = 0 for all i and t. The minimization of the log-likelihood function Lθ in

equation (3.6), which is not concave, can be tackled via SGD as proposed in [3].

20

3.3 Designing Adversarial Examples

In this dissertation, we consider white-box attacks based on full knowledge of the

model, i.e., of the parameter vector θ, as well as of the encoding and decoding

strategies. Accordingly, given an example (x, c), an adversarial spike train xadv is

obtained as a perturbed version of the original input x, where the perturbation is

selected so as to cause the classifier to be more likely to predict an incorrect label

c′ 6= c, while being sufficiently small.

We consider the following types of perturbations: (i) Remove attack : one or

more spikes are removed from the input x; (ii) Add attack : one or more spikes are

added to the input x; and (iii) Flip attack : one or more spikes are added or removed.

The size of the disturbance is measured for all attacks by the number of spikes that

are added and/or removed. Mathematically, this can be expressed as the Hamming

distance

dH
(
x,xadv

)
=

NX∑
j=1

T∑
t=1

1
(
xj,t 6= xadv

j,t

)
, (3.8)

where 1 (·) is the indicator function, i.e., 1 (a) = 1 if condition a is true and 1 (a) = 0

otherwise.

In order to select the adversarial perturbation of an input x, we consider the

maximization of the likelihood of a given incorrect target class c′ 6= c. According to

[38], an effective way to choose the target class c′ is to find the class cLL 6= c that is the

least likely under the given model θ. Mathematically, for a given training example

(x, c), the least likely class is obtained by solving the problem

cLL = argmin
c′ 6=c

Lθ (x, c′), (3.9)

where the log-likelihood Lθ (x, c′) is given by equation (3.5) for rate decoding and

equation (3.6) for first-to-spike decoding.

21

Algorithm 3.1 Greedy Design (θ, TA, ε)

Input: x, θ, TA, ε

1: Compute cLL from equation (3.9)

2: Initialize: xadv (0)← x

3: for i = 1 to bεNXT c do

4: xadv (i) ← xadv (i− 1) + p, where p is obtained by solving problem

equation (3.10) with xadv (i− 1) in lieu of x and pj,t = 0 for all t > TA.

5: end for

Output: xadv

Then, in order to compute the adversarial perturbation p, we maximize the

likelihood of class cLL under model θ by tackling the following optimization problem

max
p∈C

Lθ
(
x + p, cLL

)
s.t. ‖p‖0 ≤ εNXT ,

(3.10)

where ‖p‖0 denotes the number of non-zero elements of p. In equation (3.10), the

perturbation ε > 0 controls the adversary strength. In particular, the adversary is

allowed to add or remove spikes from a fraction ε of the NXT input samples, i.e., T

samples for each input neuron. The constraint set C in problem equation (3.10) is

given by the set of binary perturbations, i.e., C = {0, 1}NXT , for add attacks, since

spikes can only be added; C = {0,−1}NXT for remove attacks; and C = {0,±1}NXT

for flip attacks.

The exact solution of problem equation (3.10) requires an exhaustive search

over all possible perturbations of εNXT samples. In the worst case of flip attacks, the

resulting search space is hence exponential in NX and T . Therefore, here we resort to

a greedy search method. As detailed in Algorithm 3.1, at each of the bεNXT c steps,

the method looks for the best spike to add, remove or flip, depending on the attack

type. We further reduce complexity by searching only among the first TA ≤ T samples

22

Algorithm 3.2 Adversarial Training (TA, εA)

Input: Training set, basis functions A and B, learning rate η, TA, and εA

Initialize: θ

1: for each iteration do

2: Choose example (x, c) from the training set

3: Compute xadv and cLL from Algorithm 3.1 with input θ, TA and εA

4: Update θ: θ ← θ + η∇θLθ
(
xadv, c

)
5: end for

Output: θ

across all input neurons. As a results, the complexity of each step of Algorithm 3.1

is at most NXTA.

3.4 Robust Training

In order to increase the robustness of the trained SNN to adversarial examples, in this

section, we propose a robust training procedure. Accordingly, in a manner similar to

[31], during the SGD-based training phase, each training example (x, c) is substituted

with the adversarial example xadv obtained from Algorithm 3.1 for the current iterate

θ. The training algorithm is detailed in Algorithm 3.2. Note that, the robust training

algorithm is parameterized by TA and εA, which determine the parameters of the

assumed adversary during training.

3.5 Numerical Results

In this section, we numerically study the performance of the described probabilistic

SNN under the adversarial attacks. We use the standard USPS dataset as the input

data. As a result, we have NX = 256, with one input neuron per pixel of the 16× 16

images. Unless stated otherwise, we focus solely in the classes {1, 5, 7, 9} and we set

T = K = 16. We assume the worst-case TA = T for the adversary during the test

23

0 0.002 0.004 0.006 0.008 0.01 0.012

ǫ

0

10

20

30

40

50

60

70

80

90

100

T
es
t
A
cc
u
ra
cy

[%
]

Flip
Add
Remove
Rate Dec
First-to-spike Dec

Adversarial

Random

Figure 3.2 Test accuracy for ML training under adversarial and random changes versus
ε with rate encoding for both rate and first-to-spike decoding rules (T = K = 16).

phase. For rate decoding, we use a desired spike train with one spike after every

three zeros. SGD is applied for 200 training epochs and early stopping is used for

all schemes. Holdout validation with 20% of training samples is applied to select

between 10−3 and 10−4 for the constant learning rate η. The model parameters θ are

randomly initialized with uniform distribution between -1 and 1.

We first evaluate the sensitivity of different encoding and decoding schemes

to adversarial examples obtained as explained in Section 3.3. For reference, we

consider also perturbations obtained by randomly and uniformly adding, removing

and flipping spikes. Figure 3.2 illustrates the test accuracy under adversarial

and random perturbations when performing standard ML training. The accuracy

is plotted versus the adversary’s power ε assuming rate encoding and both rate

and first-to-spike decoding rules. The results highlight the notable difference in

performance degradation caused by random perturbations and adversarial attacks. In

particular, adversarial changes can cause a significant drop in classification accuracy

even with small values of ε, particularly when the most powerful flip attacks are used.

24

0 0.002 0.004 0.006 0.008 0.01 0.012

ǫ

0

10

20

30

40

50

60

70

80

90

100

T
es
t
A
cc
u
ra
cy

[%
]

Flip
Add
Remove
Rate Enc
Time Enc

Figure 3.3 Test accuracy for ML training under adversarial attacks versus ε with both
rate and time encoding rules for first-to-spike decoding (T = K = 16).

First-to-spike decoding is seen to be more resistant to add and flip attacks, while

it is more vulnerable than rate decoding to remove spike attacks. The resilience of

first-to-spike decoding can be interpreted as a consequence of the fact that the log-

likelihood equation (3.6), unlike equation (3.5) for rate decoding, associates multiple

outputs to the correct class, namely all of those with the correct neuron spiking

first. Nevertheless, removing properly selected spikes can be more deleterious to

first-to-spike decoding as it may prevent spiking by the correct neuron.

The comparison between rate and time encoding in terms of sensitivity to

adversarial examples is considered in Figure 3.3 under the assumption of first-to-spike

decoding. Time encoding is seen to be significantly less resilient than rate encoding.

This is due to the fact that time encoding, in the form considered here of

intensity-to-latency encoding, which associated a single spike per input neuron [36],

can be easily made ineffective by removing selected spikes.

We then evaluate the impact of robust adversarial training as compared to

standard ML. To this end, in Figure 3.4, we plot the test accuracy for the case of flip

25

0 0.005 0.01 0.015 0.02 0.025

ǫ

0

10

20

30

40

50

60

70

80

90

100

T
es
t
A
cc
u
ra
cy

[%
]

Adv flip
Adv remove
ML Tr
Adv Tr (8, 5/2048)
Adv Tr (8, 10/2048)

Figure 3.4 Test accuracy under adversarial attacks versus ε with rate encoding and rate
decoding with ML and adversarial training (T = K = 8).

and remove attacks for both ML and adversarial training when T = K = 8. Here,

we also focus solely on the two classes {5, 7}. We recall that the adversarial training

scheme is parametrized by the time support TA of the attacks considered during

training, here TA = 8, and by its power εA, here εA = 5/2048 and εA = 10/2048. It

is observed that robust training can significantly improve the robustness of the SNN

classifier, even when εA is not equal to the value ε used by the attacker during the test

phase. Furthermore, increasing εA enhances the robustness of the trained SNN at the

cost of a higher computational complexity. For instance, for an attacker in the test

phase with ε = 10/2048, i.e., with 10 bit flips, conventional ML achieves an accuracy

of 45%, while adversarial training with εA = 10/2048 (i.e., 10 bit flips) achieves an

accuracy of 87%. The results show that the classifier remains resilient against other

type of attacks, despite being trained assuming the flip attack.

Finally, under the same conditions as in Figure 3.5, we study the effect of

limiting the power of the adversary assumed during training by considering TA =

1 and TA = 8 with the same εA = 5/2048. We assume time encoding and rate

26

0 0.005 0.01 0.015

ǫ

0

10

20

30

40

50

60

70

80

90

100

T
es
t
A
cc
u
ra
cy

[%
]

Adv flip
Adv remove
ML Tr
Adv Tr (1, 5/2048)
Adv Tr (8, 5/2048)

Figure 3.5 Test accuracy under adversarial attacks versus ε with time encoding and rate
decoding with ML and adversarial training (T = K = 8).

decoding. It is observed that robust training can still improve the robustness of the

SNN classifier, even when TA � T during training. For instance, for an attacker in

the test phase with ε = 5/2048, i.e., 5 bit flips, conventional ML achieves an accuracy

of 34.2%, while adversarial training with εA = 5/2048 and TA = 1 and 8 achieves

accuracy levels of 60.3% and 77.5%, respectively.

3.6 Conclusions

In this chapter, we have studied for the first time the sensitivity of a probabilistic two-

layer SNN under adversarial perturbations. We considered rate and time encoding,

as well as rate and first-to-spike decoding. We have proposed mechanisms to build

adversarial examples, as well as a robust training method that increases the resilience

of the SNN. Additional work is needed in order to generalize the results to multi-layer

networks.

27

CHAPTER 4

UNSUPERVISED TRAINING OF PROBABILISTIC SPIKING
NEURAL NETWORKS WITH HYBRID STOCHASTIC-MAP

VARIATIONAL LEARNING

4.1 INTRODUCTION

The classical task of unsupervised learning is to find the best representation of the

unlabeled data. This type of machine learning aims to capture as much information

about the data as possible, while preserving the representation of the data simpler in

terms of lower dimensionality, sparsity or independency of features [39]. Generative

models provide promising framework towards this goal. The intuition behind of this

approach follows a famous quote from Richard Feynman: “What I cannot create, I

do not understand”. In a generative model, the observations, or the sensory input,

is assumed to be generated, or caused, by the state of the hidden variables [40]. In

this chapter, we design probabilistic-based generative models for SNNs. SNNs have

recently gained a lot of attentions on a variety of machine learning tasks by both

academia and industry sectors (see, e.g., [41, 2] and references therein).

The most existing training algorithms for SNNs are based on deterministic

computation units, called neurons. The Leaky Integrate-and-Fire (LIF) neuron is

indeed the simplest and the most popular one for building such SNNs [11]. However,

the conventional training algorithms for SNNs mainly suffer from two big issues:

1) the SNNs are typically trained based on back-propagation method, which unlike

ANNs, it becomes challenging due to the non-differentiability nature of the spike

dynamics. Although many works have proposed to tackle this problem by introducing

approximated derivative approaches [42], this non-differentiability of the spike activity

yet greatly challenges the effective learning of SNNs. 2) the deterministic-based

dynamics of neurons that limit their flexibility and expressive power [15]. Motivated

by this, we consider the problem of training a probabilistic model for SNNs utilizing

28

rich model properties of Generalized Linear Model (GLM) neuron, which will be

discussed in continue. It should be noted that, the research work on probabilistic

models for SNNs has been mostly done in the computational neuroscience literature

with two main models: 1) neural sampling, in which information is encoded in the

steady-state behavior of a subpopulation of neurons [43, 44]; and 2) finite-presentation

time models in which the spiking behavior of the network over a given amount of time

encodes information (see, e.g., [35, 45, 46, 47], and references therein).

The papers on probabilistic SNNs operating over a finite interval of time adopt

either heuristic approximations of the Expectation-Maximization (EM) algorithm [18]

or a variational EM based on simple variational posterior [35]. To the best of our

knowledge, there is no work on probabilistic models, except [3, 4, 48] on generalized

neuromorphic and Statistical Parametric Mapping (SPM).

Many probabilistic models are difficult to train because of their intractable

inference part. In the context of deep learning, the challenge of inference refers to the

difficult problem of predicting the value of some variables, e.g. latent variables, given

other variables, e.g. visible variables, or predicting the probability distribution over

some variables given the value of other variables. In fact, the inference problem

arise from interactions between latent variables in a structured graphical model.

While in undirected models there are direct interactions, in directed models, these

interactions are due to explaining away interactions between mutual ancestors of

the same visible unit [39]. Several techniques have been proposed to confront the

intractable inference problems. The Expectation Maximization (EM) algorithm is the

popular training algorithm developed in [49]. EM is not an approach to approximate

inference, but rather an approach to learning with an approximate posterior [39].

The Maximum A Posterior (MAP) inference computes the single most likely value of

the missing variables, rather than to infer the entire distribution over their possible

values [39]. In other words, MAP inference enable us to learn using a point estimate

29

of posterior rather than inferring the entire distribution. Variational learning [50],

instead of computing the log probability of the observed data, uses a variational lower

bound, called the Evidence Lower BOund (ELBO), to optimize. There are also many

other techniques to confront the intractable inference problems such as amortized

variational inference [51], Wake-Sleep (WS) learning [52], adversarial learning [53],

and many more.

Sigmoid Belief Networks (SBNs), as directed graphical models, were considered

in [54]. In SBN, the data can be generated using ancestral sampling with a fully

generative process. However, it has been noted that training a deep directed

generative model can be difficult due to the explaining away property. In [55], the

mean field approximations have used for SBNs. In [56], the difficulty raised from

explaining away has tackled by introducing the idea of complementary priors. The

Deep Belief Network (DBN) [56] is a SBN whose top hidden layers is replaced by the

RBM that is undirected. It has shown that the RBM can provide a good initialization

to the DBN. In [57], Neural Variational Inference and Learning (NVIL) method for

directed latent variable models has proposed. This scheme uses a feedforwad network

for sampling from the variational posterior for the given observation. The inference

network is trained jointly with the model by maximizing the variational lower bound

on the log-likelihood. In order to reduce the variance of estimating all the required

gradients, NVIL uses a model-independent variance reduction technique. NVIL

extends the wake-sleep algorithm [52] to training fast variational approximations

for the SBN. In [58], a Gibbs sampling algorithm and mean field Variational Bayes

(VB) approximation are developed for learning and inference of model parameters

for deep SBNs with sparsity-encouraging priors placed on the model parameters

via data augmentation. In [59], a Bayesian inference method is proposed based on

doubly stochastic gradient Markov Chain Monte Carlo (MCMC) for Deep Generative

Models (DGMs) in a continuous parameter space. At each MCMC sampling step, the

30

algorithm randomly draws a mini-batch of data samples to estimate the gradient of

log-posterior and further estimates the intractable expectation over hidden variables

via a Neural Adaptive Importance Sampler (NAIS), where the proposal distribution

is parameterized by a deep neural network and learnt jointly.

In [60, 61], a Maximum A Posteriori (MAP) inference method is used for deep

SBNs. In this work, unlike variational methods that often use an auxiliary network to

approximate the posterior probability inference, MAP scheme is used to maximally

preserve the dependencies among latent variables. More specifically, in learning

step, the data marginal log-likelihood is maximized directly with a max operation

to overcome the exponential number of latent configurations, while in inference step,

the pseudo-likelihood method is used to preserve dependencies of latent variables.

In [62], the gradient of a quadratic loss function for supervised learning is

approximated by solving two MAP problems with respect to the hidden variables.

The first MAP problem corresponds to an unsupervised learning set-up as it does

not use information about the labels, yielding the anti-Hebbian component of the

gradient. In contrast, the second MAP problem solves a supervised learning problem,

and it yields the Hebbian component of the gradient.

In this chapter, we consider unsupervised training task for probabilistic SNNs.

We utilize GLM neurons for building the SNNs. The problem of training a Variational

Autoencoder (VAE) is studied including two-layer and multi-Layers SNNs for both

probabilistic generative and encoding parts. In order to train the VAEs, we consider

the standard Maximum Likelihood (ML) approach. For the first time in the field,

we develop MAP-based variational learning, as well as Hybrid Stochastic-MAP

Variational Learning (HSM-VL) schemes for SNNs. The latter is developed based

on Rao-Blackwellization estimator. We also consider the doubly stochastic gradient

learning method for the comparison purpose. Numerical results show performance

improvements using HSM-VL compared to the other two training schemes.

31

The rest of this chapter is organized as follows. Variational autoencoder based

on probabilistic SNNs is discussed in Section 4.2. Section 4.3 briefly discusses

backgrounds on Hybrid Stochastic-MAP Variational Learning (HSM-VL). HSM-VL

for a two-layer and multi-Layer SNNs are developed in Sections 4.4 and 4.5,

respectively. Performance metrics and numerical results are provided, respectively, in

Sections 4.6 and 4.7, followed by conclusion in Section 4.8.

4.2 Variational Autoencoder Based on Probabilistic SNNs

In this chapter, we consider the problem of training a Variational Autoencoder (VAE)

[50] in which the encoder and decoder probabilistic mappings are both modeled as

SNNs. SNNs are networks of spiking neurons, in which each neuron receives as

input and produces as output spiking, that is, binary sparse, signals. As shown in

Figure 4.1, the decoder SNN includes: (i) a generative probabilistic SNN illustrated in

Figure 4.2, whose behavior is defined by a parameterized joint distribution Pθ (x,h)

over visible spiking signals x and hidden spiking signals h; and (ii) an encoder SNN

shown in Figure 4.3, whose output spiking signals h are distributed according to a

parameterized distribution qφ (h|x) given the visible spiking signals x. The term

“visible” refers to the fact that examples for spiking signals x are included in the

training set, as further discussed below, while “hidden” variables are not observed.

As seen in Figure 4.1, the VAE may also contain a Natural-to-Spike (N2S) encoder to

convert a natural signal, such as an image, into spiking signals, and a Spike-to-Natural

(S2N) decoder to recover a natural signal from a spiking signals. As further discussed

below, N2S and S2N converters are typically based on rate, time, or population

encoding principles [63].

32

N2S
xEncoding SNN

S2N
Decoding SNN

h

 q h x

 ,Pθ x h

x̂

Figure 4.1 Variational Autoencoder (VAE) based on two SNNs: a decoding SNN
defined by a generative model Pθ (x,h) and an encoding SNN defined by an encoding
model qφ (h|x). When the data is a natural (non-spiking) signal, the block diagram
includes a Spike domain-to-Natural signal (S2N) decoder, and a Natural-to-Spike
domain (N2S) encoder.

iW
ix

jh

(a)

 2

jh

 L

jh

 1

jh

ix
 1

iW

 2

1W

 
1

L
W  1L

j


h

(b)

Figure 4.2 Decoding probabilistic SNNs used in the VAE of Figure 4.1: (a) two-layer
SNN (L = 1), and (b) multi-layer SNN (L ≥ 2).

33

hnW

ix

jh

(a)

ix

 

 
1

1

h
n

W

 2

1W

 2

jh

 L

jh

 1L

j


h

 1

jh

 
1

L
W

(b)

Figure 4.3 Encoding probabilistic SNNs used in the VAE of Figure 4.1: (a) two-layer
SNN (L = 1), and (b) multi-layer SNN (L ≥ 2).

Training a VAE amounts to the problem of identifying suitable values for

parameter vectors θ, for the decoding SNN, and φ, for the encoding SNN, such

that the trained encoding SNN operating according to the generative model Pθ (x,h)

outputs spiking signals x that are approximately distributed according to the same

distribution underlying the generation of the available training data. In other

words, the cascade of the decoding SNN qφ (h|x) as applied to input spiking signals

x and of the encoding SNN behaving according to the conditional distribution

Pθ (x|h) = Pθ (x,h) /Pθ (h) reconstructs a signal similar, in some specified sense,

to the input spiking signal x.

In the rest of this section, we first describe in more details training data and the

models for the decoding SNN defined by generative model Pθ (x|h) and the encoding

SNN defined by probability qφ (h|x).

34

4.2.1 Training Data

Each example xm ∈ {0, 1}nv×T with m = 1, ...,M in the training set is a collection

of nv sequences of T binary samples with value “1” representing a spike. Parameter

nv is hence the number of observed, or visible, spike trains. All M examples in the

training set X = {xm}Mm=1 are conventionally assumed to be independent identically

distributed (i.i.d.) according to a given true data distribution. As illustrated in

Figure 4.1, each sample xm in the training set X may be obtained by using an N2S

block that converts a natural signal into discrete-time spike signals. As an example,

for the case of images, a standard solution is to encode each of the nv pixels of the input

image into a spike train. This can be done by using different methods such as time

encoding, whereby the value of the pixel is encoded in the timings of the spikes, or rate

encoding, which converts a pixel value into a proportional number of spikes [63, 4].

Alternatively, the data points {xm} may be directly obtained from neuromorphic

or time-based sensors. Examples include data obtained from neuromorphic vision,

auditory, and olfactory sensors [64], and time-based sensors [65].

As illustrated in Figure 4.1, we define the generative model by means of an SNN

whose output layer provides the desired nv×T binary samples x. If the desired output

is a natural signal, the spiking signals x need to be decoded so as to be converted

in the desired natural domain by using an S2N block. As for the N2S converter,

S2N conversion can be done in different ways. For instance, each spike train may

be converted into the pixel of an image by selecting an intensity proportional to the

spiking rate or the spike timings. We refer to [63] for an overview of N2S and S2N

solutions.

4.2.2 Decoding SNN

For the decoding SNN, we consider a multi-layer SNN model with L + 1 layers. As

seen in Figure 4.2, the SNN has L layers of hidden, or latent spiking neurons, and

35

an output layer of observed neurons. The l-th hidden layer has n
(l)
h hidden neurons,

each producing a spike train of T binary samples. The matrix of T binary samples

produced by the n
(l)
h neurons in the l-th layer is defined as h(l) = {h(l)

1 , ...,h
(l)

n
(l)
h

}.

We set h(0) = x as the input layer, so that the input x can be modeled as being

generated via the cascade of stochastic layers h(L) → h(L−1) → ...→ h(1) → h(0) = x.

The special case of a two-layer SNN, i.e., L = 1, is illustrated in Figure 4.2(a). For

reference, in the experiments of Section 4.7, we will also consider a stochastic binary

ANN with the same architecture (see, e.g., [61]).

In order to provide mathematical details, we consider first the two-layer SNN as

illustrated in Figure 4.2(a). This SNN model has visible spike trains x = {x1, ...,xnv}

and a single layer of latent spike trains h = {h1, ...,hnh}. The joint distribution of x

and h is modeled as

Pθ (x,h) = Pθ (h)Pθ (x|h) =

nh∏
j=1

Pθj (hj)
nv∏
i=1

Pθi (xi|h), (4.1)

where θ = {{θi}nvi=1 , {θj}
nh
j=1} is the vector of parameters that define the prior

distribution Pθ (h) of the latent spike trains and the conditional distribution Pθ (x|h).

As in most related works, the latent variables {hj} are assumed to be independent

from each other [50, 66, 53]. Furthermore, each latent spike train hj = [hj,1, ..., hj,T]T

is assumed to have i.i.d. Bernoulli samples, so that its distribution is

Pθj (hj) =
T∏
t=1

σ ((2hj,t − 1) θj), (4.2)

where θj is the prior log-likelihood ratio for every sample hj,t ∈ {0, 1}, and σ (x)
∆
=

1/ (1 + exp (−x)) is the sigmoid function. As for the distribution of each of the nv

visible spike trains xi, when conditioned on the latent variables h, we adopt the

GLM spiking neuron model, also known as Spike Response Model (SRM), which is

widely used in computation neuroscience (see, e.g., [67, 1]). Accordingly, spike trains

{xi}nvi=1 are conditionally independent given the latent variables h, and we have the

36

conditional distribution

Pθi (xi|h) =
T∏
t=1

σ ((2xi,t − 1)ui,t), (4.3)

where ui,t is the membrane potential of the i-th visible neuron at time t. The

membrane potential ui,t evolves over time as a dynamic system that depends on the

past spiking behavior of the hidden neurons and of the visible neuron i, as explained

next.

Define as zba = [zb, ..., za]
T the (b− a+ 1)×1 vector describing the value of time

sequence zt in the interval t ∈ [a, b]. Assuming a feedforward synaptic memory of τα

samples and a feedback memory of τβ samples, the membrane potential is given as

[1, 3]

ui,t =

nh∑
j=1

αT
j,ih

t−1
j,t−τα + βTi xt−1

i,t−τβ + γi, (4.4)

where αj,i ∈ Rτα×1 is the synaptic filter, or kernel, for the synapse between hidden

neuron j and visible neuron i, and βi ∈ Rτβ×1 is the feedback filter for spike history

dynamics of neuron i. Following [1, 3], we model the feedforward and feedback filters

as the linear combination of Kα ≤ τα and Kβ ≤ τβ basis functions, respectively:

αj,i = Awj,i =
Kα∑
k=1

wj,i,kak, (4.5)

and

βi = Bvi =

Kβ∑
k=1

vi,kbk, (4.6)

where we have defined the matrices A = [a1, ..., aKα] and B = [b1, ...,bKβ
] and the

vectors wj,i = [wj,i,1, ..., wj,i,Kα]T and vi = [vi,1, ..., vi,Kβ
]T ; ak = [ak,1, ..., ak,τα]T and

bk = [bk,1, ..., bk,τβ]T are the basis vectors; and {wj,i,k} and {vi,k} are the learnable

weights for the kernels αj,i and βi, respectively; and the parameter vector θi =

{Wi,vi, γi} includes Wi = {wj,i}nhj=1. For the experiments discussed in Section 4.7,

37

we adopt the raised cosine basis functions introduced in [1, Section Methods] and

illustrated in Figure 4.4.

1 2 3 4 5 6 7 8

Time index t

0

1

84321 5 6 7

Figure 4.4 Basis functions used in Section 4.7 (a = 7500 and c = 1 in [1, Section
Methods]).

In the case of multi-layer SNN with L ≥ 2, the prior probability for a variable of

the top layer P
θ
(L)
j

(h
(L)
j) is defined as in equation (4.2) with log-likelihood θ

(L)
j , while

the conditional probability for the remaining layers is given by the GLM

P
θ
(l−1)
i

(h
(l−1)
i |h(l)) =

T∏
t=1

σ((2h
(l−1)
i,t − 1)u

(l−1)
i,t), (4.7)

where

u
(l−1)
i,t =

n
(l)
h∑

j=1

(
α

(l−1)
j,i

)T
h

(l),t−1
j,t−τα +

(
β

(l−1)
i

)T
h

(l−1),t−1
i,t−τβ + γ

(l−1)
i , (4.8)

is the membrane potential for neuron i in layer l − 1, which is defined in a manner

similar to equation (4.4). In particular, the feedforward and feedback filters are

parameterized by weight vectors w
(l−1)
j,i and v

(l−1)
i , respectively, as in equation (4.5)-

equation (4.6). Note that, neurons in layer l−1 depend solely on the spiking behavior

of the upper layer l.

4.2.3 Encoding SNN

For the encoding SNN, we consider a multi-layer SNN model with L + 1 layers,

as illustrated in Figure 4.3. Considering h(0) = x as the input layer, we have the

38

following cascade of stochastic layers h(0) = x → h(1) → ... → h(L−1) → h(L), that

are generated based on variational distributions, as explained next. The special case

of a two-layer SNN, i.e., L = 1, is illustrated in Figure 4.3(a).

The variational distribution in the best choice is equal to the actual posterior

distribution

Pθ (h|x) =
T∏
t=1

Pθ (ht|x), (4.9)

where ht = (h1,t, ..., hnh,t). As illustrated by this expression, when conditioning of

the input x, the hidden variables ht at any time t are mutually dependent and

they are also dependent on the entire history of x. In fact, past value xt′ with

t′ ≤ t are generally correlated with the future values xt′ with t′ > t, which in turn

depend on the hidden variables ht through the membrane potentials equation (4.4).

Considering a distribution akin to Pθ (h|x) for the variational distribution generally

yields distributions that are difficult to sample from due to the mutual correlation

among the latent variables. They also call for the introduction of many variational

parameters in order to capture the mutual dependence of all samples ht and their

dependence on the entire history of x.

For the reasons explained above, the typical approach is to define a variational

distribution that has the following simplifying properties: 1) the latent variables ht

at each time sample t are conditionally independent across the latent neurons; and

2) the dependency of the latent variables ht on the input x is limited. For point 2),

one possibility is to make ht depend only on the past values of x (see, e.g., [48]).

This approach yields distributed learning rules [48], but it may not capture the most

significant correlations between ht and the values xt′ with t′ > t that are causally

influenced by ht through the membrane potential equation (4.4). Therefore, here we

consider an alternative model, also adopted in [68, 46] in which, under the variational

distribution, the values ht depend only on τα future values of xt and τβ future values

39

of ht. More specifically, we assume that the variational distribution over the hidden

variables given x factorizes over the latent variables as

qφ (h|x) =

nh∏
j=1

T∏
t=1

σ ((2hj,t − 1) ũj,t), (4.10)

where we have defined the variational membrane potential

ũj,t =
nv∑
i=1

w̃T
j,iA

Txt+ταi,t+1 + ṽTj BTh
t+τβ
j,t+1 + γ̃j, (4.11)

with variational parameters φ =
{
φj

}nh
j=1

and φj = {W̃j, ṽj, γ̃j}; Basis matrices A

and B are defined as in equation (4.4)–equation (4.6). As compared to the membrane

potential equation (4.4), the variational membrane potential is characterized by

distinct parameters {w̃j,i}, {ṽj}, and {γ̃j}. Furthermore, the variational membrane

potential evolves backwards, rather than forwards in time.

4.3 Background on Hybrid Stochastic-MAP Variational Learning

In this section, we review the recently proposed Rao-Blackwellized (RB) gradient-

based training method as applied to VAEs [69]. The RB stochastic gradient method

generalizes techniques based on doubly stochastic variational learning, such as [57],

and MAP-based variational learning, such as [61]. We emphasize that neither RB

methods nor MAP based techniques have been previously derived for SNNs. All of

these techniques aim at approximately maximizing the likelihood of the training data

X = {xm}Mm=1. Maximum Likelihood (ML) is a standard method to train generative

probabilistic models [70]. In order to introduce the approach, in this section, we

provide a general presentation that will be specialized to SNN models in the next

sections.

ML Learning. Consider a general generative model, whereby each example

x in the training set is generated from some hidden variables h, so that the joint

40

probability of x and h is given as

Pθ (x,h) = Pθ (h)Pθ (x|h) . (4.12)

In equation (4.12), functions Pθ (h) and Pθ (x|h) denote the prior probability of the

latent variables and the conditional probability of the visible variables x given latent

variables h, respectively. For a given example x, the log marginal probability of the

observed data x is given as

logPθ (x) = log

(∑
h

Pθ (x,h)

)
. (4.13)

The marginalization over h in equation (4.13) involves summing over all possible

configurations of the hidden variables. This entails a complexity that is exponential

with the number of hidden variables. Therefore, the exact calculation of equation (4.13)

is prohibitively expensive for problems of practical interest. ML learning of the model

parameters θ would require the solution of the problem

maximize
θ

M∑
m=1

logPθ (xm) =
M∑
m=1

log
∑
h

Pθ (xm,h), (4.14)

which maximizes the marginal log-likelihood over training set {xm}Mm=1. The

intractable marginalization over the latent variables h in equation (4.14) motivates

the use of variational methods as discussed next.

Variational Autoencoder (VAE). In variational learning, the marginal-

ization in equation (4.14) is replaced by an optimization over an auxiliary distribution,

known as variational distribution [50, 66, 57, 71, 45]. The variational distribution

plays the role of the encoding model qφ (h|x) in a VAE architecture. The key

step in the derivation of variational learning methods definition of a lower bound

on the log-likelihood logPθ (x), referred as the Evidence Lower BOund (ELBO), that

depends on the variational, or encoding, distribution qφ (h|x). For any distribution

41

qφ (h|x) parameterized by a vector φ, the ELBO is given as [72]

logPθ (x) ≥ Eqφ(h|x)

[
log

Pθ (x,h)

qφ (h|x)

]
∆
= Lθ,φ (x) , (4.15)

where the expectation is taken over the hidden variables h ∼ qφ (h|x) distributed

according to the variational distribution. The ELBO is tight when the difference

between approximate and true posterior is zero, i.e., qφ (h|x) = pθ (h|x), and the

tightness of the bound depends on the Kullback-Leibler (KL) divergence of qφ (h|x)

and pθ (h|x) [72]. Therefore, the variational distribution “encodes” the observation

x into hidden variables h that are ideally obtained as samples from the posterior

Pθ (h|x).

Doubly Stochastic Gradient Learning. VAE aims at solving the problem

[50]

maximize
θ,φ

M∑
m=1

Lθ,φ (xm). (4.16)

This maximizes a lower bound on the log-likelihood in equation (4.14). A key novel

element of VAEs is the reuse of the same encoding distribution qφ (h|x) for all training

points in X , a choice also known as amortized variational inference [51, 73, 74]. This

allows the simultaneous learning of the generative model Pθ (x,h) and of the encoding

model qφ (h|x) (recall discussion in Section 4.2). Optimization is typically done by

means of stochastic gradient methods, as discussed next.

In stochastic gradient descent, one example x, or more generally a minibatch

of examples are selected at random from the training set. The parameters θ and

φ are then updated in the directions of the gradients ∇θLθ,φ (x) and ∇φLθ,φ (x),

respectively. The gradient of the ELBO for an example x with respect to the model

parameters θ can be calculated as

∇θLθ,φ (x) = Eqφ(h|x) [∇θ logPθ (x,h)] . (4.17)

42

The expectation in equation (4.17) can be approximated by the Monte Carlo average

as

∇θLθ,φ (x) ≈ 1

N

N∑
n=1

∇θ logPθ (x,hn), (4.18)

where samples {hn}Nn=1 are drawn i.i.d. from the distribution qφ (h|x). The estimate

equation (4.18) of the gradient ∇θLθ,φ (x) is unbiased and hence it can be used to

perform maximization of the ELBO in equation (4.15) through stochastic gradient

ascent [75, 59]. This yields the doubly stochastic gradient update θ ← θ + η∆θ,

where the double stochastically arises from the random choice of x and of h.

The gradient of the ELBO for an example x with respect to the inference

parameters φ can be instead calculated as

∇φLθ,φ (x) = Eqφ(h|x) [lφ (x,h)∇θ log qφ (h|x)] , (4.19)

where

lφ (x,h) = logPθ (x,h)− log qφ (h|x) (4.20)

is defined as the learning signal (see, e.g., [57]). Eq. equation (4.19) is derived by using

the identity ∇φqφ (h|x) = qφ (h|x)∇φ log qφ (h|x). This approach is known as the

Likelihood-Ratio (LR) estimator [76, 71, 77, 78], the REINFORCE gradient [79], or

score gradient estimator [80]. An unbiased estimate of gradient equation (4.19) using

Monte Carlo sampling is given by

∇φLθ,φ (x) ≈ 1

N

N∑
n=1

lφ (x,hn)∇φ log qφ (hn|x), (4.21)

where {hn}Nn=1 are drawn i.i.d. from the distribution qφ (h|x). Unlike the estimator in

equation (4.18), the variance of the estimator equation (4.21) can be very high due to

the high variability of the learning signal [57]. Therefore, the estimate equation (4.21)

is typically not directly used in as update step as in equation (4.18).

43

In fact, doubly stochastic gradient methods, such as NVIL [57], reduce the

variance of the estimate equation (4.21) by adding a control variate in the form of a

baseline term C. The control variate does not depend on h and is subtracted from

the learning signal in equation (4.21). The resulting estimate

∇φLθ,φ (x) ≈ 1

N

N∑
n=1

(lφ (x,hn)− C)∇φ log qφ (hn|x), (4.22)

is still unbiased but it may have reduced variance depending on the choice of C [81].

A typical choice for C is a moving average of previous values for the learning signal

[57]. This yields the doubly stochastic update φ← φ + η∆φ.

MAP-based Learning. A MAP-based method still uses the update equation (4.18)

for parameters θ, but it substitutes the empirical average in equation (4.21) with a

MAP estimate of the hidden variables as

∇φLθ,φ (x) ≈ lφ (x,hMAP)∇φ log qφ (hMAP|x) , (4.23)

where

hMAP = argmax
h

qφ (h|x) , (4.24)

is the MAP estimate of h under the variational distribution qφ (h|x). Note that, we

have assumed in equation (4.24) that qφ (h|x) is unimodal so that a single maximizer

exists, which is the one for typical choice of qφ (h|x). In [61], the MAP approach

equation (4.23) is introduced for the special case in which the variational distribution

qφ (h|x) equals the exact posterior pθ (h|x) = pθ (x,h) /pθ (x). Note that, unlike the

stochastic approximation methods, MAP does not require the variational distribution

to be easy to sample from, but the optimization in equation (4.24) should be feasible.

The MAP estimate equation (4.23) of the gradient ∇φLθ,φ (x) is biased but it may

have a lower variance, as we will further discuss in Section 4.7.

44

RB-based Learning. In [69], a technique is proposed that can be derived as

the result of a Rao-Blackwellization step on the stochastic gradient equation (4.21).

The resulting gradient estimate is unbiased and its variance is guaranteed to be no

larger than for the estimator equation (4.21) [69]. A proof of this result is provided

for completeness in Appendix B. The RB gradient estimate is given as

∇φLθ,φ (x) ≈qφ (hMAP|x) (lφ (x,hMAP)− C)∇φ log qφ (hMAP|x)

+ (1− qφ (hMAP|x))
1

N

N∑
n=1

(lφ (x,hn)− C)∇φ log qφ (hn|x).
(4.25)

The estimate equation (4.25) can be interpreted as a weighted average of the MAP

estimator equation (4.23) and of the doubly stochastic estimator equation (4.22).

The weights are given by the probability qφ (hMAP|x) and by its complement

1− qφ (hMAP|x). Note that in equation (4.25), we have subtracted a baseline C

also for further reduction in variance of the estimator. Algorithm 4.1 describes the

resulting RB-based, also referred to as HSM-VL, scheme.

45

Algorithm 4.1 Hybrid Stochastic-MAP Variational Learning (HSM-VL)

Input: Training set X ; constant λ and learning rate η

Initialize: Model parameters θ and variational parameters φ

1: repeat

2: Randomly choose a minibatch of data with size K from the training set

3: for each example xi in the minibatch do

4: Compute MAP estimate hiMAP = argmax
h

qφ (h|xi)

5: Draw a sample hi ∼ qφ (h|xi)

6: Compute the MAP learning signal: liMAP ← logPθ (xi,hiMAP) −

log qφ (hiMAP|xi)

7: Compute the stochastic learning signal: li ← logPθ (xi,hi)− log qφ (hi|xi)

8: end for

9: C̄b ← mean
(
l1, ..., lK

)
10: C̄ ← λC̄ + (1− λ) C̄b

11: ∆θ ← 0, ∆φ← 0

12: for each example i in the minibatch do

13: ∆θ ← ∆θ + qφ (hiMAP|xi)∇θ logPθ (xi,hiMAP) +

(1− qφ (hiMAP|xi))∇θ logPθ (xi,hi)

14: ∆φ← ∆φ + qφ (hiMAP|xi)
(
liMAP − C̄

)
∇φ log qφ (hiMAP|xi)

+ (1− qφ (hiMAP|xi))
(
li − C̄

)
∇φ log qφ (hi|xi)

15: end for

16: Update model parameters: θ ← θ + η∆θ

17: Update variational parameters: φ← φ + η∆φ

18: until training converged

Output: θ

46

4.4 Hybrid Stochastic-MAP Variational Learning For a Two-Layer SNN

In this section, we propose an implementation of the HSM-VL learning rule

summarized in Algorithm 4.1 for a VAE based on two-layer probabilistic SNN, as

illustrated in Figure 4.2(a) the decoding SNN and in Figure 4.3(a) for the encoding

SNN. The extension to multi-layer SNNs will be presented in Section 4.5. The key

challenge is the definition of a computationally feasible way of evaluating the MAP

estimate in equation (4.24). In fact, a brute-force calculation would have a complexity

that is exponential in the product nhT .

We start by recalling that ML learning of a general multi-layer SNN with the

model parameters θ = {θ(1),θ(2), ...,θ(L)} requires the solution of the problem

maximize
θ

M∑
m=1

log
∑
{h(l)}

Pθ
(
xm,h(1),h(2), ...,h(L)

)
, (4.26)

where one needs to marginalize over the hidden layers l = 1, ..., L. As mentioned, in

this section we focus on the case L = 1. Considering the prior distribution Pθ (h) of

the latent spike trains in equation (4.2), and the conditional distribution Pθ (x|h) of

the visible spike trains x given latent spike trains h in equation (4.3), the gradients

of the model parameters θ in equation (4.17) can be easily computed as

∇wj,i logPθ (x,h) =
T∑
t=1

(xi,t − σ (ui,t)) ATht−1
j,t−τα , (4.27)

∇vi logPθ (x,h) =
T∑
t=1

(xi,t − σ (ui,t)) BTxt−1
i,t−τβ , (4.28)

∇γi logPθ (x,h) =
T∑
t=1

(xi,t − σ (ui,t)), (4.29)

and

∇θj logPθ (x,h) =
T∑
t=1

(hj,t − σ (θj)). (4.30)

47

These expressions can be directly used to update the decoding SNN parameters θ.

With the variational distribution equation (4.10), the gradients of the variational

parameters φj can be similarly computed as

∇w̃j,i log qφj (hj|x) =
T∑
t=1

(hj,t − σ (ũj,t)) ATxt+ταi,t+1, (4.31)

∇ṽj log qφj (hj|x) =
T∑
t=1

(hj,t − σ (ũj,t)) BTh
t+τβ
j,t+1, (4.32)

∇γ̃j log qφj (hj|x) =
T∑
t=1

(hj,t − σ (ũj,t)). (4.33)

The update of the encoding SNN for φ, however, requires also to compute the

MAP estimate of h for a given example x. To tackle the discussed complexity

of this calculation, we propose to maximize the pseudo-likelihood [82], rather than

directly maximizing the likelihood. Pseudo-likelihood maximization, also referred as

coordinate-ascent variational inference [70], iteratively optimizes each parameter of

the likelihood, while holding the others fixed. Accordingly, this method climbs the

likelihood to a local optimum.

The pseudo-likelihood function for parameter φj can be written as

hMAP = argmax
h

nh∏
j=1

qφj(hj|h−j,x), (4.34)

where h−j is the set of all latent variables except hj. Accordingly, the maximization

of function equation (4.34) can be carried out in parallel for each hidden neuron j.

Furthermore, for each such neuron, optimization can be carried out in parallel for all

times t by solving

hMAP
j,t = argmax

hj,t

qφj(hj,t|hj,−t,x)

= argmax
hj,t

t∏
t′=1

σ ((2hj,t′ − 1) ũj,t′),

(4.35)

48

where hj,−t is the set of all elements of hj except hj,t. Considering the definition

of variational membrane potential in equation (4.11), hj,t appears only in the time

interval t′ ∈ [t, t+ τβ], optimization equation (4.35) can be rewritten as

hMAP
j,t = argmax

hj,t

t∏
t′=max(1,t−τβ)

σ ((2hj,t′ − 1) ũj,t′). (4.36)

To summarize, the pseudo-likelihood optimization in equation (4.36) is carried in

parallel for each time sample t ∈ [1, ..., T] and latent variable j ∈ {1, ..., nh} for given

previous values of all other variables. This procedure is iterated until convergence

as detailed in Algorithm 4.2. Since hj,t is a binary variable, each iteration of this

approach requires 2nhT evaluations of the function in equation (4.36). This is in

contrast to the exhaustive optimization of equation (4.24).

A further reduction by noting that there is no need to compute ũj,t′ in

equation (4.36) separately for hj,t and for its complementary value h̄j,t = 1 − hj,t.

In fact, once we compute ũj,t′ for a value of hj,t, the corresponding ũj,t′ for the h̄j,t,

can be obtained readily as

ũj,t′ |h̄j,t = ũj,t′ |hj,t + (1− 2hj,t)αj,i,t′−t+τβ+1, (4.37)

when t′ < t and ũj,t′ |h̄j,t = ũj,t′ |hj,t when t′ = t. This reduces the number of

calculations of the ... by half as compared to a naive computation. Moreover, the part

of the membrane potential ũj,t′ that depends only on x and γ̃j needs to be computed

only once for all values of h. Only, the second part that is given as

β̃
T

j h
t′+τβ
j,t′+1 =

τβ∑
k=1

β̃j,khj,t′+τβ+1−k, (4.38)

needs to be evaluated as is function of hj,t. Overall, the complexity of each

maximization equation (4.36) is of the order O(τβ), and hence, the total compu-

tational complexity for the maximization in equation (4.24) is of the order O(τβnhT).

49

Algorithm 4.2 Pseudo-MAP Successive Inference

Input: x and variational parameters φ

Initialize: h

1: repeat

2: for each latent variable j ∈ {1, ..., nh} do

3: for each time sample t ∈ [1, 2, ..., T] do

4: Optimize the pseudo MAP of hj,t using equation (4.36).

5: end for

6: end for

7: until convergence or for a fixed number of iterations

Output: hMAP

4.5 Hybrid Stochastic-MAP Variational Learning For Multi-Layer SNN

In the case of multi-layer SNN with L ≥ 2, the variational distribution for the lth

layer is given by

q
φ

(l)
j

(
h

(l)
j

∣∣∣h(l−1)
)

=
T∏
t=1

σ
((

2h
(l)
j,t − 1

)
ũ

(l)
j,t

)
, (4.39)

where

ũ
(l)
j,t =

n
(l−1)
h∑
i=1

(
α̃

(l)
j,i

)T
h

(l−1),t+τ
α(l)

i,t+1 +
(
β̃

(l)

j

)T
h

(l),t+τ
β(l)

j,t+1 + γ̃
(l)
j , (4.40)

where ũ
(l)
j,t is the membrane potential for neuron j in layer l, which is defined in a

manner similar to equation (4.10).

In order to train the deep SNN in equation (4.26), we perform successively the

following two steps until convergence.

Layer-wise Pre-training In this pre-training procedure, we start to learn the

deep model from the first layer (l = 1) to the last layer (l = L). At the first step, we

apply Algorithm 4.1 to the two-layer network considering of the observed variables x

50

and of the latent layer h(1). At each step l > 1, Algorithm 4.1 is used with the MAP

estimate or the stochastic sample ĥ(l−1) obtained at the end of Algorithm 4.1 for step

l − 1 as input, while the hidden layer variables are given by layer h(l).

Global Fine-tuning In this fine tuning procedure, which is performed for every

three consecutive hidden layers, we include the effects of upper and lower layers for

the given middle layer. The learning parameters are initialized by the parameters

learned by layer-wise learning
{
θ̂, φ̂

}
, and the hidden variables are initialized to the

values ĥ(1), ĥ(2), ..., ĥ(L) obtained from the pre-training procedure for each training

example x. Accordingly, MAP inference of the latent spike trains from l = 1 to

l = L− 1 can be obtained by solving the problem

h
(l)
MAP = argmax

h(l)

qφ(l)

(
h(l)
∣∣h(l−1)

MAP

)
qφ(l+1)

(
ĥ(l+1)

∣∣∣h(l)
)
, (4.41)

while for the last hidden layer l = L we need to tackle the following problem

h
(L)
MAP = argmax

h(L)

qφ(L)

(
h(L)

∣∣h(L−1)
MAP

)
. (4.42)

4.6 Performance Metrics

In order to evaluate the performance of different training methods for VAEs, we

consider the following metrics that have been widely considered in prior works.

4.6.1 Evidence Lower BOund (ELBO)

The Negative Log-Likelihood (NLL) is a direct measure of how well the generative

model Pθ (x) =
∑
h

Pθ (x,h) learned actual distribution of the data. Assuming the

availability of MT text examples {xm}MT

m=1, distinct from the training examples in X ,

the NLL is defined as

NLL = −
MT∑
m=1

logPθ (xm). (4.43)

51

Evaluating the NLL in equation (4.43) requires to marginalize over the hidden

variables h. In order to estimate the corresponding average, we use here the ELBO.

As it discussed before, the ELBO for a given x and h can be calculated as

L (x|h) = logPθ (h) + logPθ (x|h)− log qφ (h|x) . (4.44)

In the experiments of Section 4.7, the ELBO for each sample x of the test set is

calculated after making average over N stochastic samples of h as given by

L (x) =
1

N

N∑
n=1

L (x|h (n)), (4.45)

where {h (n)}Nn=1 ∼ qφ (h|x). Note that, the ELBO estimator is asymptotically

unbiased, i.e., it converges to the ground truth log-likelihood logPθ (x) when N →∞.

4.6.2 Reconstruction Error

The other way of measuring the performance of the model is to compute the mean

reconstruction error of the model on the test set. In this metric, we first encode the

input image x to its hidden representation h. Then, the decoder maps back from h

to the input space x̂. The reconstruction error is hence defined as the Mean Squared

Error (MSE) between x and x̂ given as

MSE = ‖x− x̂‖2 =
1

nvT

nv∑
i=1

T∑
t=1

(xi,t − x̂i,t)2. (4.46)

4.6.3 Data Generation

Data generation is a qualitative performance metric that we use to visualize the

generative performance of the learned models. Accordingly, we randomly generate

samples x on the following ancestral sampling:

h(L) ∼ Pθ(L)

(
h(L)

)
↘ h(L−1) ∼ Pθ(L−1)

(
h(L−1)

∣∣h(L)
)
↘ ...↘ x ∼ Pθ(1)

(
x|h(1)

)
(4.47)

52

More specifically, in the generative model, the top layer is first sampled following the

prior distribution Pθ(L)

(
h(L)

)
. Then, the following layers are sampled and conditioned

on their upper layers, and so on, until finally we sample x. Figure 4.5 describes the

data generation mechanism for a two-hidden layers network. As it clear, since we have

here directed graphical models, producing samples with the ancestral sampling from

the joint distribution represented by the model is generally very fast and convenient.

Numerical Results
• Generator model

– Samples x are generated based on the following ancestral sampling:

 

 

    
 

      

  2 2 1

2 2 1 1 2 1
P P P 
θ θ θ

h h h h h x x h

x

 1
θ

 1
h

 2
θ

 2
h  

  2

2
P
θ

h

 

    2

1 2
P
θ

h h

 

  1

1
P
θ

x h

Figure 4.5 Data generation mechanism for a two-hidden layers network.

4.7 Experiment Results

In this section, we evaluate performance of the described training algorithms for SNNs

with single-hidden layer and multi-hidden layers based on the metrics introduced in

Section 4.6. We use the digits dataset from the UCI machine learning repository

[83] as the input data. As a result, we have nv = 64 visible neurons, one visible

neuron per pixel of the 8 × 8 gray scale handwritten digits images. We randomly

pick 60%, 20%, and 20% of the dataset to build training, validation, and test sets.

Pixel values scaled between 0 and 1. SGD is applied for 500 full pass of dataset

samples (each pass termed as an epoch) with batch size of 20 and early stopping is

used for all schemes. Holdout validation is applied to select from log-spaced values

10−1, 10−2 and 10−3 for the constant model and inference learning rates. The model

and variational parameters {θ,φ} are randomly initialized with uniform distribution

53

between -1 and 1. We assume T ≥ τα = τβ and K ≤ τα = τβ. Rate encoding is used

to map pixel values to spike sequences with a proportional spike probability between

0 and 1/2.

Figure 4.6 depicts the average reconstruction error, measured in terms of the

percentage of samples recovered incorrectly, versus epoch for a single-hidden-layer

SNN with nh = 10 and T = 2. The average is done over the examples of validation

set as well as 100 random realizations of hidden variables for each given example.

In the figure, the lines and shaded boundaries represent, respectively, the mean and

the standard deviation of reconstitution errors for the stochastic, MAP and HSM-VL

training methods. It is observed that the HSM-VL scheme brings less errors in terms

of both mean and variance compared to the other two schemes.

0 50 100 150 200 250 300 350 400 450 500

Epoch

10

15

20

25

30

35

40

45

50

A
ve
ra
ge
R
ec
on
st
ru
ct
io
n
E
rr
or
[%
]

Stochastic

MAP

HSM-VL

Figure 4.6 Average reconstruction error percentage versus epoch over validation set
for stochastic, MAP and HSM-VL training schemes for a single-hidden-layer SNN
with nh = 10 and T = 2.

Figure 4.6 illustrates the average reconstruction error percentage versus T for

a single-hidden-layer SNN trained over 50 epochs using the HSM-VL scheme with

nh = 10. The figure illustrates that, the performance of SNNs improves through

increasing spike train length, T , as well as increasing Kα and Kβ. The latter brings

54

larger model capacity that enables to have better learning over the shapes of the

synaptic and feedback filters with including more basis functions.

2 4 8 16 32

Spike Train Length (T)

18.5

19

19.5

20

20.5

21

21.5

22

22.5

A
ve
ra
ge

R
ec
on
st
ru
ct
io
n
E
rr
or

[%
]

K, = K- = 1
K, = K- = 2
K, = K- = 8
K, = K- = 32

Figure 4.7 Average reconstruction error percentage versus spike train length, T , for a
single-hidden-layer SNN trained via the HSM-VL scheme with nh = 10, τα = τβ = 32,
and different Kα and Kβ values.

Figure 4.8 shows the average ELBO versus epoch for a single-hidden-layer SNN

trained using HSM-VL scheme with nh = 10. In this figure, we change the history

size of previous inputs τα, and previous outputs τβ for the encoder SNN. As it clear,

increasing the window size, the receptive field, helps to improve the performance.

55

5 10 15 20 25 30 35 40

Epoch

-210

-205

-200

-195

-190

-185

-180

-175

A
ve

ra
ge

E
L
B
O

=, = 1; =- = 1
=, = 8; =- = 1
=, = 1; =- = 8
=, = 8; =- = 8

Figure 4.8 Average ELBO versus epoch over validation set for the HSM-VL training
scheme for a single-hidden-layer SNN with nh = 10, T = 8, Kα = Kβ = 1 and different
τα and τβ values.

4.8 Conclusions

In this chapter, the problem of training multi-layers VAEs with probabilistic

generative and encoding SNNs were considered. Variational learning schemes

including the doubly stochastic gradient learning, MAP-based variational learning,

and HSM-VL were developed for SNNs. The HSM-VL showed superior performance

compared to the other two schemes.

56

APPENDIX A

CALCULATION OF GRADIENTS FOR FIRST-TO-SPIKE
DECODING

In this appendix you will find the details of calculations for the gradient of L (θ) with

respect to wj,i given in equation (2.12).

The gradient of L (θ) with respect to wj,i for i 6= c can be calculated as:

∇wj,iL (θ) = ∇wj,i log

(
T∑
t=1

pt (θ)

)

=

T∑
t=1

∇wj,ipt (θ)

T∑
t=1

pt (θ)

=
T∑
t=1

ki,t∇wj,i

t∏
t′=1

ḡ (ui,t′),

(A.1)

where

ki,t =

NY∏
i′=1,i′ 6=i,c

t∏
t′=1

ḡ (ui′,t′)g (uc,t)
t−1∏
t′=1

ḡ (uc,t′)

T∑
t′=1

pt′ (θ)

. (A.2)

Using the generalized product rule for derivative of k factors [84] as

d

dx

k∏
i=1

fi (x) =
k∑
i=1

(
d

dx
fi (x)

∏
j 6=i

fj (x)

)

=

(
k∏
i=1

fi (x)

)(
k∑
i=1

f ′i (x)

fi (x)

)
,

(A.3)

we have

∇wj,i

t∏
t′=1

ḡ (ui,t′) = −
t∏

t′=1

ḡ (ui,t′)
t∑

t′=1

g′ (ui,t′)

ḡ (ui,t′)
∇wj,iui,t′

= −
t∏

t′=1

ḡ (ui,t′)
t∑

t′=1

ρi,t′g (ui,t′)∇wj,iui,t′ ,

(A.4)

57

where we have used the equality ḡ′ (u) = −g′ (u) and ρi,t is defined as in

equation (2.14). After substituting equation (A.4) into equation (A.1), we have

∇wj,iL (θ) = −
T∑
t=1

qt

t∑
t′=1

ρi,t′g (ui,t′)∇wj,iui,t′

= −
T∑
t=1

htρi,tg (ui,t)∇wj,iui,t,

(A.5)

where we have defined qt and ht as in equation (2.16) and equation (2.15), respectively.

Given that we have the equality ∇wj,iui,t = ATxt−1
j,t−τy , we have equation (2.12) for

∇wj,iL (θ) when i 6= c.

The gradient of L (θ) with respect to wj,i for i = c can be calculated as:

∇wj,cL (θ) =
T∑
t=1

kc,t∇wj,c

(
g (uc,t)

t−1∏
t′=1

ḡ (uc,t′)

)
, (A.6)

where

kc,t =

NY∏
i=1,i 6=c

t∏
t′=1

ḡ (ui,t′)

T∑
t′=1

pt′ (θ)

. (A.7)

Using equation (A.3), we have

∇wj,cL (θ) =
T∑
t=1

qt

[
g′ (uc,t)

g (uc,t)
∇wj,cuc,t −

t−1∑
t′=1

g′ (uc,t′)

ḡ (uc,t′)
∇wj,cuc,t′

]

=
T∑
t=1

qt

[
ρc,t∇wj,cuc,t −

t∑
t′=1

ρc,t′g (uc,t′)∇wj,cuc,t′

]
.

(A.8)

Thus, by substituting ∇wj,cuc,t = ATxt−1
j,t−τy into equation (A.8) and after simplifi-

cation, equation equation (2.12) is obtained for i = c, which completes the proof. Note

that, the same procedure is done for ∇γiL (θ) by considering the equality ∇γiui,t = 1

for all i.

58

APPENDIX B

VARIANCE OF THE HSM-VL SCHEME COMPARED TO THE
STOCHASTIC SCHEME

In this appendix, we will quantify the variance reduction by the HSM-VL scheme

compared to the stochastic scheme.

In general, we can consider h ∈ {hMAP,hS} where hMAP is defined as in

equation (4.24) and hS is a random sample from the distribution qφ (h|x) with the

assumption that hS 6= hMAP, i.e., hS ∼ qφ (h|h 6= hMAP,x) where

qφ (h|h 6= hMAP,x) =
qφ (h|x)

qφ (h 6= hMAP|x)
=

qφ (h|x)

1− qφ (hMAP|x)
. (B.1)

Accordingly, we consider h = hbMAPh1−b
S where b is a Bernoulli random variable with

probability of qφ (hMAP|x), i.e., b ∼ Bern (qφ (hMAP|x)). With this fact, the RB

estimation of equation (4.19) can be obtained as

ĝRB (x) = Eb∼Bern(qφ(hMAP|x))
[
g
(
x,hbMAPh1−b

S

)∣∣hS

]
= qφ (hMAP|x) g (x,hMAP) + (1− qφ (hMAP|x)) g (x,hS) ,

(B.2)

where g (x,h) = lφ (x,h)∇φ log qφ (h|x). It is straightforward to show that the RB

estimator is unbiased, i.e.,

B [ĝRB (x)] = Eh∼qφ(h|x) [ĝRB (x)]−∇φLθ,φ (x) = 0. (B.3)

Considering the stochastic estimator for equation (4.19) given as

ĝS (x) = g (x,h) , (B.4)

where h ∼ qφ (h|x), the conditional variance decomposition gives us

var [ĝS (x)] = var [ĝRB (x)] + EhS∼qφ(h|h6=hMAP,x)

[
var
[
g
(
x,hbMAPh1−b

S

)∣∣hS

]]
. (B.5)

59

Following the non-negativity of the second term in equation (B.5), it is clear that

var [ĝRB (x)] ≤ var [ĝS (x)].

60

REFERENCES

[1] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky,
and E. P. Simoncelli, “Spatio-temporal correlations and visual signalling in a
complete neuronal population,” Nature, vol. 454, no. 7207, pp. 995–999, 2008.

[2] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou,
“Low-power neuromorphic hardware for signal processing applications,” arXiv
preprint arXiv:1901.03690, 2019.

[3] A. Bagheri, O. Simeone, and B. Rajendran, “Training probabilistic spiking
neural networks with first-to-spike decoding,” IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), 2018.

[4] ——, “Adversarial training for probabilistic spiking neural networks,” IEEE
Int. Wksh. Signal Process. Adv. Wireless Commun. (SPAWC), 2018.

[5] H. Paugam-Moisy and S. Bohte, “Computing with spiking neuron networks,”
Hdbk. Natrl. Comput., pp. 335–376, 2012.

[6] J. Vincent, “Intel investigates chips designed like your brain to turn the AI
tide,” https://www.theverge.com/2017/9/26/16365390/intel-investigates-chips-
designed-like-your-brain-to-turn-the-ai-tide, accessed Sept. 26, 2017.

[7] A. Diamond, T. Nowotny, and M. Schmuker, “Comparing neuromorphic
solutions in action: implementing a bio-inspired solution to a benchmark
classification task on three parallel-computing platforms,” Front. Neurosci.,
vol. 9, p. 491, 2016.

[8] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks
with ReSuMe: sequence learning, classification, and spike shifting,” Neural
Comput., vol. 22, no. 2, pp. 467–510, 2010.

[9] R. V. Florian, “Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity,” Neural Comput., vol. 19, no. 6, pp. 1468–1502,
2007.

[10] P. O’Connor and M. Welling, “Deep spiking networks,” arXiv preprint.
arXiv:1602.08323, 2016.

[11] E. Hunsberger and C. Eliasmith, “Spiking deep networks with LIF neurons,”
arXiv preprint. arXiv:1510.08829, 2015.

[12] N. Anwani and B. Rajendran, “NormAD-normalized approximate descent based
supervised learning rule for spiking neurons,” IEEE Int. Joint Conf. Neural
Netw. (IJCNN), 2015.

61

[13] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Front. Neurosci., vol. 10, p. 508, 2016.

[14] J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. J. Chichilnisky,
“Prediction and decoding of retinal ganglion cell responses with a probabilistic
spiking model,” J. Neurosci., vol. 25, no. 47, pp. 11 003–11 013, 2005.

[15] D. Koller and N. Friedman, Probabilistic graphical models: principles and
techniques. Cambridge, MA: MIT Press, 2009.

[16] O. Simeone, “A brief introduction to machine learning for engineers,” arXiv
preprint arXiv:1709.02840, 2017.

[17] R. Jolivet, A. Rauch, H. Lüscher, and W. Gerstner, “Predicting spike timing
of neocortical pyramidal neurons by simple threshold models,” J. Comput.
Neurosci., vol. 21, no. 1, pp. 35–49, 2006.

[18] B. Gardner and A. Grüning, “Supervised learning in spiking neural networks
for precise temporal encoding,” PloS ONE, vol. 11, no. 8, p. e0161335, 2016.

[19] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual features
through spike timing dependent plasticity,” PLoS Comput. Biol., vol. 3, no. 2,
p. e31, 2007.

[20] M. Mozafari, S. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and
M. Ganjtabesh, “First-spike based visual categorization using reward-
modulated STDP,” arXiv preprint arXiv:1705.09132, 2017.

[21] J. Wang, A. Belatreche, L. P. Maguire, and T. M. McGinnity, “SpikeTemp: An
enhanced rank-order-based learning approach for spiking neural networks with
adaptive structure,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 1, pp.
30–43, 2017.

[22] Z. Lin, D. Ma, J. Meng, and L. Chen, “Relative ordering learning in spiking
neural network for pattern recognition,” Neurocomputing, vol. 275, pp. 94–106,
2018.

[23] J. Shlens, “Notes on generalized linear models of neurons,” arXiv preprint
arXiv:1404.1999, 2014.

[24] P. Baldi and A. F. Atiya, “How delays affect neural dynamics and learning,”
IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 612–621, 1994.

[25] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “DL-ReSuMe: a delay
learning-based remote supervised method for spiking neurons,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3137–3149, 2015.

[26] N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules,” Front. Neural Circuits,
vol. 9, 2015.

62

[27] Y. LeCun, “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, accessed Sept. 26, 2017.

[28] R. Ranjan, S. Sankaranarayanan, A. Bansal, N. Bodla, J.-C. Chen, V. M.
Patel, C. D. Castillo, and R. Chellappa, “Deep learning for understanding faces:
Machines may be just as good, or better, than humans,” IEEE Signal Process.
Mag., vol. 35, no. 1, pp. 66–83, 2018.

[29] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” Int. Conf. on Learn. Repr. (ICLR), 2015.

[30] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “The robustness of deep
networks: A geometrical perspective,” IEEE Signal Process. Mag., vol. 34, no. 6,
pp. 50–62, 2017.

[31] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[32] J. E. Smith, “Research agenda: Spacetime computation and the neocortex,”
IEEE Micro, vol. 37, no. 1, pp. 8–14, 2017.

[33] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: VGG and residual architectures,” arXiv preprint
arXiv:1802.02627, 2018.

[34] S. Guo, Z. Yu, F. Deng, X. Hu, and F. Chen, “Hierarchical bayesian inference
and learning in spiking neural networks,” IEEE Trans. Cybern., vol. 49, no. 1,
pp. 133–145, 2019.

[35] D. J. Rezende, D. Wierstra, and W. Gerstner, “Variational learning for recurrent
spiking networks,” Adv. Neural Inf. Process. Syst., pp. 136–144, 2011.

[36] E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-Barranco, “An
event-driven classifier for spiking neural networks fed with synthetic or dynamic
vision sensor data,” Front. Neurosci., vol. 11, pp. 1–17, 2017.

[37] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“STDP-based spiking deep neural networks for object recognition,” arXiv
preprint arXiv:1611.01421, 2016.

[38] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv preprint arXiv:1607.02533, 2016.

[39] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
Cambridge, MA: MIT Press, 2016.

[40] G. E. Hinton and Z. Ghahramani, “Generative models for discovering sparse
distributed representations,” Philos. Trans. R. Soc. Lond., B, Biol. Sci., vol.
352, no. 1358, pp. 1177–1190, 1997.

63

[41] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities &
challenges,” Front. Neurosci., vol. 12, p. 774, 2018.

[42] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for
training high-performance spiking neural networks,” Front. Neurosci., vol. 12,
2018.

[43] L. Buesing, J. Bill, B. Nessler, and W. Maass, “Neural dynamics as sampling:
a model for stochastic computation in recurrent networks of spiking neurons,”
PLoS Comput. Biol., vol. 7, no. 11, p. e1002211, 2011.

[44] D. Pecevski, L. Buesing, and W. Maass, “Probabilistic inference in general
graphical models through sampling in stochastic networks of spiking neurons,”
PLoS Comput. Biol., vol. 7, no. 12, p. e1002294, 2011.

[45] A. Mnih and D. J. Rezende, “Variational inference for monte carlo objectives,”
arXiv preprint arXiv:1602.06725, 2016.

[46] J. Brea, W. Senn, and J.-P. Pfister, “Sequence learning with hidden units in
spiking neural networks,” Adv. Neural Inf. Process. Syst., pp. 1422–1430, 2011.

[47] H. Jang, O. Simeone, B. Gardner, and A. Grüning, “Spiking neural networks:
A stochastic signal processing perspective,” arXiv preprint arXiv:1812.03929,
2018.

[48] H. Jang and O. Simeone, “Training dynamic exponential family models with
causal and lateral dependencies for generalized neuromorphic computing,”
arXiv preprint arXiv:1810.08940, 2018.

[49] R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies
incremental, sparse, and other variants,” Learn. graphical models, pp. 355–368,
1998.

[50] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[51] S. Gershman and N. Goodman, “Amortized inference in probabilistic
reasoning,” Cogsci., vol. 36, no. 36, 2014.

[52] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The wake-sleep algorithm
for unsupervised neural networks,” Science, vol. 268, no. 5214, pp. 1158–1161,
1995.

[53] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Adv. Neural Inf.
Process. Syst., pp. 2672–2680, 2014.

[54] R. M. Neal, “Connectionist learning of belief networks,” AI, vol. 56, no. 1, pp.
71–113, 1992.

64

[55] L. K. Saul, T. Jaakkola, and M. I. Jordan, “Mean field theory for sigmoid belief
networks,” J. Artif. Intell. Res. (JAIR), vol. 4, pp. 61–76, 1996.

[56] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[57] A. Mnih and K. Gregor, “Neural variational inference and learning in belief
networks,” arXiv preprint arXiv:1402.0030, 2014.

[58] Z. Gan, R. Henao, D. Carlson, and L. Carin, “Learning deep sigmoid belief
networks with data augmentation,” AI and Stats. (AISTATS), pp. 268–276,
2015.

[59] C. Du, J. Zhu, and B. Zhang, “Learning deep generative models with doubly
stochastic gradient MCMC,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 7, pp. 3084–3096, 2018.

[60] S. Nie, Y. Zhao, and Q. Ji, “Latent regression bayesian network for data
representation,” Int. Conf. Pattern Recog. (ICPR), pp. 3494–3499, 2016.

[61] S. Nie, M. Zheng, and Q. Ji, “The deep regression bayesian network and its
applications: Probabilistic deep learning for computer vision,” IEEE Signal
Process. Mag., vol. 35, no. 1, pp. 101–111, 2018.

[62] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation,” Front. Comput. Neurosci., vol. 11,
p. 24, 2017.

[63] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge, UK: Cambridge University Press, 2002.

[64] A. Vanarse, A. Osseiran, and A. Rassau, “A review of current neuromorphic
approaches for vision, auditory, and olfactory sensors,” Front. Neurosci., vol. 10,
p. 115, 2016.

[65] C. Posch, D. Matolin, and R. Wohlgenannt, “An asynchronous time-based
image sensor,” Int. Sym. Circuits Syst. (ISCAS), pp. 2130–2133, 2008.

[66] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropa-
gation and approximate inference in deep generative models,” arXiv preprint
arXiv:1401.4082, 2014.

[67] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge, UK:
Cambridge University Press, 2014.

[68] J. W. Pillow and P. E. Latham, “Neural characterization in partially observed
populations of spiking neurons,” Adv. Neural Inf. Process. Syst., pp. 1161–1168,
2008.

65

[69] R. Liu, J. Regier, N. Tripuraneni, M. I. Jordan, and J. McAuliffe, “Rao-
blackwellized stochastic gradients for discrete distributions,” arXiv preprint
arXiv:1810.04777, 2018.

[70] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY:
Springer-Verlag, 2006.

[71] S. Gu, S. Levine, I. Sutskever, and A. Mnih, “Muprop: Unbiased backpropa-
gation for stochastic neural networks,” arXiv preprint arXiv:1511.05176, 2015.

[72] O. Simeone, “A brief introduction to machine learning for engineers,” Fdn.
Trends Signal Process., vol. 12, no. 3-4, pp. 200–431, 2018.

[73] D. J. Rezende and S. Mohamed, “Variational inference with normalizing flows,”
arXiv preprint arXiv:1505.05770, 2015.

[74] J. Marino, Y. Yue, and S. Mandt, “Iterative amortized inference,” arXiv
preprint arXiv:1807.09356, 2018.

[75] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan, and L. Song, “Scalable
kernel methods via doubly stochastic gradients,” Adv. Neural Inf. Process. Syst.,
pp. 3041–3049, 2014.

[76] P. W. Glynn, “Likelihood ratio gradient estimation for stochastic systems,”
Commun. ACM, vol. 33, no. 10, pp. 75–84, 1990.

[77] D. Ritchie, P. Horsfall, and N. D. Goodman, “Deep amortized inference for
probabilistic programs,” arXiv preprint arXiv:1610.05735, 2016.

[78] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” arXiv preprint
arXiv:1611.00712, 2016.

[79] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine Learning, vol. 8, no. 3-4, pp. 229–256,
1992.

[80] M. C. Fu, “Gradient estimation,” Hdbk. Ops. Res. Mngmt. Sci., vol. 13, pp.
575–616, 2006.

[81] J. Paisley, D. Blei, and M. Jordan, “Variational bayesian inference with
stochastic search,” arXiv preprint arXiv:1206.6430, 2012.

[82] J. Besag, “Statistical analysis of non-lattice data,” J. R. Stat. Soc. Series D
Stat. Methodol., vol. 24, no. 3, pp. 179–195, 1975.

[83] A. Frank and A. Asuncion, “UCI machine learning repository,”
http://archive.ics.uci.edu/ml, accessed Apr. 12, 2019.

[84] Wikipedia, “Product rule,” https://en.wikipedia.org/wiki/Product rule,
accessed Oct. 27, 2017.

66

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Motivation and Overview
	Chapter 2: Training Probabilistic Spiking Neural Networks with First-To-Spike Decoding
	Chapter 3: Adversarial Training for Probabilistic Spiking Neural Networks
	Chapter 4: Unsupervised Training of Probabilistic Spiking Neural Networks With Hybrid Stochastic-Map Variational Learning
	Appendix A: Calculation of Gradients for First-To-Spike Decoding
	Appendix B: Variance of the HSM VL Scheme Compared to the Stochastic Scheme
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

