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ABSTRACT 

 

THE USE OF ELECTRICAL RESISTANCE TOMOGRAPHY TO DETERMINE 

THE MINIMUM AGITATION SPEED FOR SOLIDS SUSPENSION IN STIRRED 

TANK REACTORS 

 

by 

 

Baran Teoman 
 
 
 
 

Njs, the minimum agitation speed needed to just suspend all the solid particles in a solid-liquid 

mixture stirred in an agitated vessel, is a critical parameter to properly operate industrial tanks 

in a large number of industrial operations. As a result, a significant literature on Njs is available. 

The oldest and the most common method to measure Njs experimentally is that of Zwietering’s 

(Chem. Eng. Sci., 1958, 8, 244-253), where Njs can be visually obtained by determining when 

the solids stay at the bottom of the tank for no more than 1-2 seconds before being swept away. 

Although this has been shown to be a reliable method, it still relies on visual observation of the 

bottom of the vessel and it is therefore potentially susceptible to observer’s bias. To address 

this issue new experimental approaches to determine Njs using measurements of the fraction of 

solids on the vessel bottom were previously developed by our research group. However even 

those methods are unsuitable to be used in opaque fluids or if images of the vessel bottom 

cannot be taken. 

 
In order to experimentally determine Njs even in systems where the tank content cannot 

be inspected, in this work a novel method using Electrical Resistance Tomography (ERT) was 

developed and tested. Accordingly, a sensor array probe consisting of a straight plastic rod 

mounting 16 electrodes was placed vertically in a tank containing water and non-conductive 

glass beads approximately 300 µm in diameter. The electrodes were connected to an external



ERT system and data acquisition apparatus (P2+ System, Industrial Tomography Systems, 

Manchester, UK) dynamically measuring the conductivity distribution and resistivity in the 

solid-liquid system data between the electrodes. The apparatus consisted of a signal source, 

voltmeters, electrode multiplexer array, signal demodulators, and a system controller, 

connected to a computer where image reconstruction algorithms generated 2-D images of 

the conductivity distribution inside the tank. The system generated Alternating Current 

(AC) between pairs of neighboring electrodes and the resulting voltage was measured 

across all other neighboring electrodes. Current injection was applied to all neighboring 

electrodes. Through this approach it was possible to measure the mean bulk resistance 

across the electrodes on the sensing array probe and also measure the conductivity 

distribution on a portion of a vertical place inside the tank. 

 
Here the array probe was placed in the tank, and after proper calibration, the mean bulk 

resistance of the solid-liquid mixture was obtained as the mixture was stirred by an impeller in 

the mixing tank at different values of the impeller agitation speed, N. As N increased, increasing 

larger fractions of the non-conducting solids became suspended, thus increasing the resistivity 

of the suspension measured by the ERT apparatus. A plot of the percent resistance variation 

vs. the agitation speed resulted in an S-shaped curve, which eventually reached an asymptotic 

limit value as all solids became suspended and dispersed in the liquid. In order to extract Njs 

from the data, a mathematical approach previously developed by our groups for a different 

system was used (Huang and Armenante, Chem. Eng. Sci., 1992, 47, 2865-2870). Accordingly, 

the experimental data were interpolated with cubic spline curves and the agitation speed at 

which the function Ф(N), equal to the ratio of the second derivative to the first derivative of



the combined spline curve function, showed a minimum point was takes as the Njs value (Njs-

ERT). The rationale for this approach is as follows: Ф(N) represents how the change in slope 

of the spline curve (second derivative) with respect to the spline curve slope (first 

derivative) varies with N. Ф(N) can be expected to reach a minimum value when the spline 

function is just about to bend to approach the asymptote. 

 

Experiments were conducted where Njs was obtained under different operating 

conditions, i.e., where the impeller type, impeller ratio-to-tank diameter ratio, and impeller 

clearance were varied. Njs was not only experimentally obtained using the proposed ERT 

approach but also using the Zwietering method as well as the method recently developed 

by Shastry and Armenante (Shastry, 2016). Then, parity plots were constructed in which 

Njs-ERT was plotted against the Njs values obtained with the other two methods. Excellent 

agreement was observed in all plots, indicating that the novel method proposed here can 

be effectively used for the experimental determination of Njs. 

 

The results of this work show that ERT combined with the analysis of the data 

proposed here can be used to effectively measure Njs in solid-liquid dispersion in 

mechanically stirred vessels. The proposed approach is observer-independent method and 

can be used even in systems that cannot be directly observed, such as industrial tanks. 

Therefore, it is expected that this approach could find extensive practical applications in 

the chemical, pharmaceutical and biopharmaceutical industries. 
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CHAPTER 1 

 

INTRODUCTION 
 

 

1.1 Background Information 

 

A large number of industrial operations involve the use of tanks equipped with impellers to 

conduct processes such as reactions, precipitations, dissolutions, crystallizations, and many 

others in which finely divided solids are contacted with the liquid in the tank. In this type of 

systems suspending solids off the tank bottom and bringing them in contact with the 

surrounding liquid is often a key requirement to achieve process objectives. Down-pumping, 

mixed or axial impellers are typically used for the purpose of suspending solids, since radial 

impellers require substantially higher power to achieve suspension. Radial impellers are, 

however, still relevant in solid-liquid mixing since this impeller geometry is often found in 

mixing tanks irrespective of their specific use. This design it is efficient for gas-liquid 

dispersion, although many such systems also contain solids, as in fermentation systems or 

three-phase reactors, which must be suspended (Paul et al., 2004). 

 
The degree of solid suspension in stirred vessels is generally classified into three levels: 

on-bottom motion, complete off-bottom suspension, and uniform suspension (Paul et al., 

2004). For many applications, it is often important just to provide enough agitation to 

completely suspend the solids off the tank bottom. Below this off-bottom particle suspension 

state, the total solid-liquid interfacial surface area is not completely or efficiently utilized. 

Therefore, it is important to be able to determine the impeller agitation speed Njs, at which the 

just-suspended state is achieved by the particles (Armenante and Uehara-Nagamine 1998). As 

a result, a significant amount of work been conducted over the years on the experimental 

determination of Njs and on the establishment of equations 
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correlating Njs to a geometric and operational variables of relevance for solid-liquid 

systems. (Zwietering, 1958; Armenante et al, 1992) 

 

 

1.2 Objectives 

 

Before attempting to correlate Njs with other relevant variables it is critical to be able to 

experimentally obtain Njs simply and reliably. The typical method to measure 

experimentally Njs is that of Zwietering’s (1958). Accordingly, Njs is obtained by visually 

inspecting the tank bottom and visually determining the impeller agitation speed at which 

the solids are observed to rest on the tank bottom for no more than 1-2 seconds before being 

swept away. This method has been shown to have a reproducibility of about ±5%. Although 

this method is quite reliable and has been used extensively, there is clearly the need to 

develop a method that is not observer-dependent. In addition, this approach cannot be used 

in systems, such as industrial tanks and reactors, in which the vessel content or tank bottom 

cannot be observed. 

 
In a previous study conducted in the Mixing Laboratory at NJIT, Shriarjun Shastry 

developed a new experimental method to determine Njs (Shastry, 2016). Accordingly, images 

of the tank bottom were captured in .jpg format by a digital camera. Each image was processed 

with the appropriate software (Image J) to determine the area still covered by solids at that 

speed. Increasing the agitation speed increased the amount of solids being suspended, resulting 

in a decrease in the area covered by solids at the bottom of the tank. Plots of the area covered 

by the solids vs. the corresponding agitation speed resulted in a linear function, which, when 

extrapolated to A going to zero, yielded the expected value of Njs. The values so obtained for 

Njs were then compared to the Njs value determined 
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visually using Zwietering’s method the two approaches gave very similar results, thus 

validating Shastry’s approach. 

 

Although Shastry’s approach is observer-independent, it is still unusable unless the 

vessel bottom can be observed. Therefore, the objective of this study was to investigate a 

novel method based on the use of Electric Resistance Tomography (ERT) that is not only 

completely observer-independent but also applicable to opaque systems. The basic 

hypothesis was that by using ERT it should be possible to determine how the mean bulk 

resistivity changes as non-conductive solids become suspended in a conductive liquid when 

the agitation speed is increased. Then by properly analyzing the data a successful attempt 

was made to extract Njs from the data. The remainder of this document describes the 

experimental system used to achieve this objective and the results obtained to develop and 

validated a new method to obtain Njs experimentally using ERT. 
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CHAPTER 2 

 

EXPERIMENTAL APPARATUS, MATERIALS, AND METHODS 
 

 

2.1. Apparatus 
 
 
 
 

2.1.1. Electrical Resistance Tomography (ERT) Apparatus 

 

Electrical Resistance Tomography (ERT) provides the capability to measure the 

conductivity distribution and resistivity data in a liquid mixture inside a given processing 

unit, such as a stirred tank or reactor, delivering time-evolving, multi-dimensional 

information about the variation in uniformity of the liquid, which often enhances 

fundamental process understanding and improves the design and operation of the process 

equipment (Stanley and Bolton, 2008). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1 ITS P2+ ERT Tomography Apparatus, Also Showing The Rod Sensor with 

Electrodes In The Foreground. 
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The ERT system used in this work included a sensor system, a Data Acquisition 

System - DAS (hardware), and a PC with control and data processing software. Fig. 1 

shows a P2+ERT system manufactured by Industrial Tomography Systems (ITS) Inc. In 

general, ERT sensors consist of multiple electrodes placed on a rigid mounting probe. The 

distance between the electrodes are equal and they are usually manufactured from gold, 

platinum, stainless steel, brass, or silver. They probe must have characteristics such as low 

cost, ease of installation, good conductivity and resistance (Sharifi, M., Young, B., 2013). 

In previous work in mixing systems, stirred vessel with different kinds of baffle 

arrangements and mixing characteristics have been used, ranging in size from laboratory 

vessel 15-40 cm in diameter (Miettinen et al., 2003; Simmons et al., 2009) to tanks at the 

industrial plant scale with diameter up to 150 cm (Stanley et al., 2002). Fig. 2.2 shows the 

possible electrode arrangements on sensor probes used in work in stirred tanks.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Schematic Representations of Sensor Geometries Showing The Electrode 

Arrangements on a Sensor Probe. 
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For radial profile studies in circular tanks, the circular electrode arrangement is 

common. However, in this work, since the main focus was on the axial profile distribution 

of solids in a liquid, a single straight-rod probe was used (Fig. 2 (b)). This probe, also 

shown in Fig. 1, consisted of a straight plastic rod mounting 16 electrodes connected via a 

cable to the main unit. The electrodes have 1 cm height and 2 cm width, and there was a 1 

cm distance between each two following electrodes. 

 

The data acquisition system (DAS) is the component of the system responsible with 

injecting electric current in the liquid in the tank via the electrode on probe and collecting 

quantitative information describing the conductivity distribution inside the vessel. DAS 

consists of signal sources, voltmeters, an electrode multiplexer array, signal demodulators, 

and a system controller. It has a connection with the probe and to the PC equipped the 

image reconstruction algorithms. In the adjacent strategy, which is the most common 

strategy in conventional ERT due to minimal hardware requirements and fast image 

reconstruction, 

 

The DAS generates alternating current (AC) that is injected into the electrodes 

using a pair of neighboring electrodes. The resulting voltage is measured through all other 

neighboring electrodes. The current then goes to the next electrode pair and the process of 

injecting current to neighboring electrodes is repeated until all independent pairs have been 

covered (Mann et al., 1997). 
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2.1.2 Mixing Vessel and Impellers 

 

A flat-bottomed cylindrical tank was used in all experimental work. The tank was placed 

on a glass board and raised to the required height using laboratory jacks. This set up can 

be seen in the Figure 2.3. The glass was transparent so that the tank bottom could be seen 

clearly in order to takes images of the same. The tank was provided with 4 baffles, 25 mm 

in width and thus was considered a fully baffled system. The mixing tank was filled with 

water so that the liquid level, H, was equal to 39 cm (H/T = 0.86), corresponding to a liquid 

volume, V, of 24 liters. Experiments in this system were conducted under variety of 

geometric configurations, including different impeller types, C/T and D/T. 

 

 

Table 2.1 Geometric Characteristics of Mixing Tank 

 

Tank Diameter (T) 28 cm 

  

Tank Height 45 cm 

  

Liquid Height (H) 39 cm 

  

Tank Baffles 4 

  

Tank Volume 29 L 
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(a) (b) 
 
 

Figure 2.3 (a) Flat-bottom Glass-lined Tank System; (b) Bottom View of The Tank Bottom 

with Dispersed Solids. 
 

 

Five types of impellers, each type of different sizes. were used in this system, as shown in 

Figures 2.4 (a)-(e). These impellers which are scaled-down versions of impellers 

commonly used in the pharmaceutical industry and biopharmaceutical industry. The 

following are the impeller dimensions measured with a caliper: 

 
 

 

Impeller 1: Disk Turbine 

 

• impeller diameter (D) = 110 mm, 130 mm, 

 

• blade height = 25.4 mm; 

 
• blade thickness = 12.7 mm; and 

 

• impeller diameter-to-tank diameter ratio, D/T, of 0.39, 0.46. 
 
 
 
 

Impeller 2: Pitch Blade Turbine 

 

• impeller diameter (D) = 110 mm, 80mm; 
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• blade height = 25.4 mm; 

 

• blade thickness = 12.7 mm; 

 
• impeller diameter-to-tank diameter ratio, D/T= 0.39 and 0.28. 

 
 
 
 

Impeller 3: Flat blade turbine 

 

• impeller diameter (D) = 100 mm; 

 

• blade height = 25.4 mm; 

 

• blade thickness = 12.7 mm; and 

 
• impeller diameter-to-tank diameter ratio, D/T= 0.35. 

 
 
 
 

Impeller 4: A310 

 

• impeller diameter (D) = 100mm; 

 
• blade height = 25.4 mm; 

 

• blade thickness = 12.7 mm; and 

 
• impeller diameter-to-tank diameter ratio, D/T=0.35. 

 
 
 
 

Impeller 5: Propeller 

 

• impeller diameter (D) = 100 mm; 
 

• blade height = 25.4 mm; 

 

• blade thickness = 12.7 mm; and 

 

• impeller diameter-to-tank diameter ratio, D/T= 0.35. 
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(a) (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
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(e) 
 
 

Figure 2.4 Impellers Used In This work: (a) A310; (b) FBT impeller; (c) 6-PBT; (d) 

Propeller; (e) DT 
 

 

2.1.3. Agitation System 

 

A Heidolph RZR 2102 agitator was used in the study because of its high agitation 

capabilities (12-2000 rpm). It is re-calibrated before each trial. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.5 Agitation System 
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Table 2.2 Agitator Specifications 

  

   

AC/DC input  230 V 

feature  CE compliant 

mfr. no.  RZR 2102 Control 

measuring range  100,000 viscosity, (mPas) 

parameter  12-2000 rpm speed 

torque  ≤400 Ncm (peak overload) 

output  100 watts 

 

 

2.2. Materials 

 

Tap water at room temperature was used as the liquid in all experiments. The liquid height 

was equal to 39 cm in all cases. Glass beads having average of diameter of 300 µm were 

used as the disperse phase. In all of the experiments, the fraction of solids was equal to 

0.2% of the liquid weight (g/g), corresponding to 52.3 g, as measured by an analytical 

balance. 

 
2.3 Methods 

 

In a typical experiment, the liquid and the solids were first added to the mixing tank. Then 

the appropriate impeller was mounted on the shaft, which was inserted in the agitation 

system, and the tank was centrally placed under the agitation system and positioned at a 

level so that the impeller had the desired vertical distance from the tank bottom, i.e., the 

desired off-bottom clearance (C). The agitations was started and the minimum agitation 

speed Njs at which all solids were just suspended was determined using the methods 

describe below. 
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2.3.1 Zwietering’s Method to Determine Njs 

 

The most common technique reported in the literature to measure the just-suspension speed 

is that of Zwietering’s (Zwietering, 1958). Zwietering devised a simple visual technique in 

which the observer inspects the tank bottom, and visually determines the impeller agitation 

speed at which the solids stay on the tank bottom for no more than 1-2 seconds before being 

swept away. This agitation speed is considered as the just-suspension speed, Njs. Although 

this is a reliable method, it is clearly an observer-based and a novel method which does not 

depend on the observer would be preferred. 

 

 

2.3.2 ImageJ Thresholding Method to Determine Njs 

 

Another method to determine the just-suspension speed was developed previously in our 

laboratory. Digital photographic images of the tank bottom were obtained using a camera 

and sent to a computer in jpeg format for image analysis. By using ImageJ software 

(https://imagej.nih.gov/ij/), the images were converted to 8-bit images to quantitatively 

determine the area on the tank bottom covered by the solid particles at the time the image 

was taken. (Shastry, 2016) The internal diameter of the tank (28 cm) was used as a scale, 

as shown in Figure 2.7(a). A color threshold was set manually for the first image just to 

distinguish the black color portion of the image (corresponding to area occupied by solids) 

from the white areas (occupied by the water). With this approach the portion of the bottom 

covered by solids could be determined at any time and any agitation speed. This threshold 

was used for all other images to determine the area that is covered by the solids (As) at any 

agitation speed. 

 
 
 
 
 

 

13 

https://imagej.nih.gov/ij/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) 

 

Figure 2.6 Images of Tank Bottom Analyzed Using ImageJ: (a) Raw Image of Tank 
Bottom (b) Conversion Into an 8-bit Image 
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(a) (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 

 

Figure 2.7 Images of Tank Bottom Analyzed Using ImageJ: (a) Raw Image and Scaling 
(b) Threshold at 200 rpm; (c) 300 rpm; (d) 350 rpm 
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Figure 2.8 Agitation Speed vs. Area That Is Covered By Glass Beads 

 

 

As the agitation speed was increased, the black area decreased as fewer solids remained on 

the tank bottom (although always moving). Plotting the agitation speed vs. the black area 

yields a linear trendline. The intercept of the equation of this trendline was taken as the 

just-suspension speed, Njs. This is because the intercept corresponds to agitation speed the 

black area vanishes and all the solids become suspended. 

 

 

2.3.3 Tomography Method to Determine Njs 

 

The third method, the main focus of this work, was the tomography method. By using the ITS 

P2+ electrical resistance tomography device, we speculated that the just-suspension speed can 

be related to the mean bulk resistivity data gathered from the tomography device. The 

tomography device consists of a linear probe, a data acquisition system and a software (ITS 

P2+). The linear sensor in the system contains 16 measurement electrodes and an earth 

electrode. The probe is made of glass, and the electrodes are made of embedded silver, 
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which provided a very good chemical compatibility. The bulk resistance data was used to 

estimate the just-suspension speed (Njs) because the definition of the bulk resistance relates 

to the mutual impedance as it is defined by the voltages measured across all electrodes by 

the injection current. (Ricard et al., 2005) Figure 2.9 illustrates the variation of the bulk 

resistance monitored as a function of PBT (Pitch Blade Turbine) impeller speed with 

C/T=0.25 for 0.2% solids loading. 
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Figure 2.9 Variation of Average Bulk Resistance R with Agitation Speed N for a PBT 

(D/T=0.39, C/T = 0.25) 
 

 

This figure shows that the % variation in the bulk resistance, R, of the vessel content 

increased as the agitation speed was increased, which is expected to be the case since as more 

non-conducting solid particles became suspended the average resistance of the mixture 

decreased until all solids are suspended, at which point the resistance no longer changed. More 

specifically, the S-shaped curve in this figure increased rapidly above an agitation speed of 

about 200 rpm (at very low agitation speeds all the solids are still on the bottom), and then 

passed through an inflexion point before becoming stable at a constant  
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value at very high impeller speeds. When the impeller was very close to the tank bottom 

(i.e. the clearance was very low) and axial impellers were used instead of radial impellers, 

or when the impeller blades were very close to the probe, a sudden increase in the resistance 

was observed just after the agitator was turned on. This led a double S-shaped plot of R vs. 

agitation speed. Figure 2.10 shows the variation of average bulk resistance with the 

agitation speed for propeller having the same clearance as the PBT impeller. The reason is 

that under these extreme low-C conditions, the impeller flow was mainly radial and 

directed outwards toward the tank wall which caused the immediate suspension of some 

centrally located particles at the vessel bottom. Thus, for best results, it was observed that 

the distance between the impeller blades and the probe should be no more than ¼ of the 

total length of the sensing probe. Nevertheless, even in those limit cases when the plot 

exhibited a double S-behavior, the determination of Njs was not affected since the just-

suspension agitation condition is related to the asymptotic achievement of maximum 

resistance variation, i.e., to the last S-shaped curve. 
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Figure 2.10 Variation of Average Bulk Resistance R with Agitation Speed N for a Propeller 

(D/T=0.35, C/T = 0.25). 
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The inflection point before the curve approached the asymptotic resistance value 

was related to the just-suspension speed, because when all the solids are suspended, the 

volume fractions of solids detected by the ERT sensor vary little. Here it was observed that 

that the achievement of approximately 99% of the variation in resistance corresponded to 

the attainment of the just-suspended conditions. 

 

However, here a more mathematically rigorous approach was used here to obtain Njs 

from plots of % resistance variations vs. N. To do so, an approach similar to that used by 

Armenante and Abu-Hakmeh (Armenante and Abu-Hakmeh, 1994). These authors studied the 

agitation speed to achieve the just-dispersed state, Ncd in immiscible liquid-liquid mixtures. 

They collected samples from the same position inside the mixture and determined the fractions 

of the liquids in the samples at increasing agitation speeds. As the agitation speed increased, 

the mixture contained a larger fraction of the dispersed phase. They constructed a curve of 

dispersed phase vs. the agitation speed to determine at what speed the mixture reaches the just 

complete dispersion point. They then constructed a 

 
cubic spline curve and they defined the function Ф(N), which represents the change in 

slope of the spline curve (second derivative) with respect to the spline curve slope (first 

 

derivative) varies with N. Ф(N) can be expected to reach a minimum value when the spline 

function is just about to bend to approach the asymptote. 

 

A similar approach was used here using the tomography method for Njs instead of 

the sampling method for Ncd. To do so, a cubic spline curve was first constructed using the 

R vs. N data. This curve passed through all the n points on the graph and resulted in a 

composite set of cubic polynomial equations, with one polynomial equation connecting 

two adjacent points. This set of polynomial equations formed the entire spline curve. The 
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conditions imposed to determine the four coefficients in each cubic polynomial were the 

following: 

 

• every polynomial must pass through exactly two points delimiting the interval for 

which the polynomial is being generated 

 
• the first and second derivative of all polynomials must be identical at the points 

where they touch their adjacent polynomial. 

 
• The second derivatives of the polynomial passing through initial point and of that 

passing through the final point must be equal to 0 (“Natural Spline”). 

 

The determination for Njs from the spline curve R= f(N) was conducted as follows. The 

function Ф(N)  was defined as: 

 

Ф(N) = 
f ''( N )  

 

f '( N ) (1) 
 

 
  

 

 

where f'(N) and f''(N) represent the first derivative and second derivative of f(N), 

respectively. The ratio f''(N)/f'(N) is the ratio of the rate of change of the slope of the curve, 

f''(N), with respect to the slope itself, f'(N). This ratio will be the greatest (in absolute value) 

when: 

 

Ф'( N ) = 0 (2)  
 

 

 

The value of N in correspondence to which Ф' (N) = 0 is taken to be the value of Njs.  The 

 

reason for this is the following. Since the function Ф(N) represents the ratio of the rate of 

change in the slope of the curve R = f(N) to the value of the slope of f(N) it follows that Ф(N) 

can be assumed to be the highest (in absolute value) in correspondence of the minimum 

agitation speed for complete solid suspension. In fact, when this happens the rate at which 
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new solids can be expected to become suspended drop significantly. In addition, since the 

experimental values of R increase with N at a declining rate in the neighborhood of Njs the 

 
function Ф(N) must be negative in correspondence of this point. The experimental Njs value 

obtained with this approach was labeled Njs-ERT. In order to distinguish the value of Njs so 

obtained from those obtained using the Zwietering method and ImageJ method of Shastry 

and Armenante, these two Njs were labeled Njs-Zwietering and Njs-ImageJ, respectively. 

 

Just to provide an example, the critical points that are necessary for the determination 

of Njs with the PBT impeller (with C/T=0.25, and D/T=0.28) as described in Figure 2.9, are the 

resistivity values corresponding to the ones between 200-400 rpm. The reason is that until 

N=200 rpm, there is no significant change in the behavior of the curve. Since after 400 rpm 

there wasn’t any change in the resistivity, the measurements at higher agitation speeds were 

not included because that would not have any effect on the curve.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MBR= 11.948 Ω m 
 
 
 
 

 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MBR= 11.948 Ω m 
 
 
 
 
 
 

(b) 
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MBR= 11.949 Ω m 
 
 
 
 
 

 

(c)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MBR= 11.955 Ω m  
 
 
 
 
 
 
 

 

(d)  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
    

MBR= 11.964 Ω m 

 
 

MBR=11.962 Ω m    
 

     
 

       
 

 
 
 
 
 
 
 
 

(e) (f) 
 
 

Figure 2.11 Mean Bulk Resistivity Lines Obtained From The ITS P2+ Software for PBT 

Impeller (with C/T=0.25, and D/T=0.28): (a) N=0 rpm, (b) N=100 rpm, (c) N=200 rpm, 

(d) N=300 rpm, (e) N=350 rpm, (f) N=400 rpm 
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Table 2.3 Mean Bulk Resistivity Output From The Tomography Device for a PBT 

(D/T=0.39, C/T = 0.25) 
 

 Mean Bulk 
Resistance  

N (rpm) Resistivity  

Variation, R (%) 
 

 
(Ω⋅m) 

 

  
 

0 11.948 0 
 

100 11.948 0 
 

200 11.949 6.25 
 

300 11.955 43.75 
 

350 11.962 87.5 
 

400 11.964 100 
 

500 11.964 100 
 

 

 

Figure 2.12 and 2.13 show the cubic spline curve and the interpolation output for 

the last 4 points of the data. An online cubic spline interpolator was used 

(https://tools.timodenk.com/cubic-spline-interpolation) for this manner. From the curve, it 

is clearly seen that Njs is somewhere between N=350 rpm and N=400 rpm as the curve 

became inflected in that interval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.12 Cubic Spline Curve for Critical Points (Resistivity vs. N graph) 
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Figure 2.13 Cubic Spline Interpolation Output 
 
 

Taking the first and second derivatives of the equation of the critical range (i.e. 350-400 

rpm) yields: 

 

f(x) = 1.0909.10
-8

.x
3
 - 1.3200.10

-5
.x

2
 + 5.3309.10

-3
.x + 1.1245.10

1
 

 

f’(x) = 3.2727.10
-8

.x
2
 – 2.6400.10

-5
.x + 5.3309.10

-3
 

 

f’’(x) = 6.5454.10
-8

.x – 2.6400.10
-5

 

 
 
 

 

Table 2.4 shows the derivative outputs for different agitation speeds. As it can be seen 

from the table, the ratio of the second derivative to the first derivative has the highest 

 
value (in absolute value) when N=388 rpm. As shown in Figure 2.14, at that point, Ф’(N)=0 

and it gives the just-suspension speed. Similarly, as shown in Figure 2.15, for propeller 

with C/T=0.25, and D/T=0.35, it was found that N=528 rpm was necessary for complete 

solid suspension. 
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Table 2.4 Derivative Table for PBT Impeller (with C/T=0.25, and D/T=0.28) 

 

x = RPM F'(x) F''(x) F''(x)/F'(x) 

350 9.99575E-05 -3.4911E-06 -0.0349258 

352 9.31062E-05 -3.36019E-06 -0.0360899 

354 8.65167E-05 -3.22928E-06 -0.0373255 

356 8.01891E-05 -3.09838E-06 -0.0386384 

358 7.41232E-05 -2.96747E-06 -0.0400343 

360 6.83192E-05 -2.83656E-06 -0.0415192 

362 6.2777E-05 -2.70565E-06 -0.0430994 

364 5.74966E-05 -2.57474E-06 -0.0447808 

366 5.2478E-05 -2.44384E-06 -0.0465688 

368 4.77212E-05 -2.31293E-06 -0.0484675 

370 4.32263E-05 -2.18202E-06 -0.050479 

372 3.89932E-05 -2.05111E-06 -0.0526018 

374 3.50219E-05 -1.9202E-06 -0.0548287 

376 3.13124E-05 -1.7893E-06 -0.0571435 

378 2.78647E-05 -1.65839E-06 -0.0595158 

380 2.46788E-05 -1.52748E-06 -0.0618944 

382 2.17547E-05 -1.39657E-06 -0.0641962 

384 1.90925E-05 -1.26566E-06 -0.0662911 

386 1.66921E-05 -1.13476E-06 -0.0679817 

388 1.45535E-05 -1.00385E-06 -0.0689765 

390 1.26767E-05 -8.7294E-07 -0.0688618 

392 1.10617E-05 -7.42032E-07 -0.067081 

394 9.70857E-06 -6.11124E-07 -0.0629468 

396 8.61723E-06 -4.80216E-07 -0.0557274 

398 7.78771E-06 -3.49308E-07 -0.0448538 

400 0.00000722 -2.184E-07 -0.0302493 
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Figure 2.14 F’(x)/F(x) vs N Graph for PBT Impeller (with C/T=0.25, and D/T=0.39)  
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Figure 2.15 F’(x)/F(x) vs N Graph for Propeller (with C/T=0.25, and D/T=0.35) 
 
 
 

 

After the determination of the Njs by using the described method, the Njs-ERT value 

is compared to the ones that were obtained from the first two methods (Zwietering and 

ImageJ methods). 
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Table 2.5 Derivative Table For Propeller (with C/T=0.25, and D/T=0.35) 

 

RPM F'(x) F''(x) F''(x)/F'(x) 
    

500 0.00009 -0.000003 -0.033333333 
    

502 0.00008412 -0.00000288 -0.034236805 
    

504 0.00007848 -0.00000276 -0.035168196 
    

506 0.00007308 -0.00000264 -0.036124795 
    

508 0.00006792 -0.00000252 -0.037102473 
    

510 0.000063 -0.0000024 -0.038095238 
    

512 0.00005832 -0.00000228 -0.03909465 
    

514 0.00005388 -0.00000216 -0.040089087 
    

516 0.00004968 -0.00000204 -0.041062802 
    

518 0.00004572 -0.00000192 -0.041994751 
    

520 0.000042 -0.0000018 -0.042857143 
    

522 0.00003852 -0.00000168 -0.043613707 
    

524 0.00003528 -0.00000156 -0.044217687 
    

526 0.00003228 -0.00000144 -0.044609665 
    

528 0.00002952 -0.00000132 -0.044715447 

530 0.000027 -0.0000012 -0.044444444 
    

532 0.00002472 -0.00000108 -0.04368932 
    

534 0.00002268 -0.00000096 -0.042328042 
    

536 0.00002088 -0.00000084 -0.040229885 
    

538 0.00001932 -0.00000072 -0.037267081 
    

540 0.000018 -0.0000006 -0.033333333 
    

542 0.00001692 -0.00000048 -0.028368794 
    

544 0.00001608 -0.00000036 -0.02238806 
    

546 0.00001548 -0.00000024 -0.015503876 
    

548 0.00001512 -0.00000012 -0.007936508 
    

550 0.000015 0 0 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 
 
 

 

3.1 Results of Solid Suspension Experiments 

 

In this section, the results of the experiments are presented and compared to the ones that 

were obtained with using Zwietering’s method and ImageJ method. Furthermore, 

reproducibility of the proposed method was also quantified. 

 
Using to the approach developed here to obtain Njs using the ERT method, mean 

bulk resistivity values were obtained from the tomography device at increasing values of 

the agitation speed, N. For every impeller, the experiment was repeated with different C/T 

(impeller off-bottom clearance). Different D/T values were also tested for PBT and DT 

impellers. Then, all the Njs results obtained with ERT method (Njs-ERT) were compared in 

parity plots with the Njs obtained using the other two methods (Njs-Zwietering and Njs-ImageJ) for 

the same systems. 

 

 

3.1.1 Results for A310 Impeller 

 

Table 3.1 presents the results obtained with the A310 impeller and Figure 3.1 and Figure 

3.2 parity plots in of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, respectively. As one can 

see, there is significant agreement between the newly proposed ERT method and the other 

two methods. The typical difference between Njs-ERT and the Njs-Zwietering was 2.05% and that 

between Njs-ERT and the Njs-ImageJ was 2.39%. 
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Table 3.1 Njs Values Obtained From 3 Different Methods with Using A310 Impeller with 

Different C/T. 
  

C/T Njs-ERT (rpm) Njs-Zwietering (rpm) Njs-ImageJ (rpm) 
    

0.25 482 470 474 

    

0.33 515 500 521 

    

0.5 665 660 674 
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Figure 3.1 Njs-ERT vs Njs-Zwietering Comparison for A310 Impeller with D/T= 0.35 and with 

C/T=0.25, C/T=0.33, C/T= 0.5 
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Figure 3.2 Njs-ERT vs Njs-ImageJ Comparison for A310 Impeller with D/T= 0.35 and with 

C/T=0.25, C/T=0.33, C/T= 0.5 
 
 
 
 

3.1.2 Results for PBT Impeller 

 

Table 3.2 presents the results obtained with the PBT impeller with D/T= 0.39 and Figure 

3.3 and Figure 3.4 parity plots in of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, 

respectively. Similarly, Table 3.3 presents the results with D/T=0.28 and Figure 3.5 and 

3.6 parity plots in of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, respectively. As one can 

see, there is significant agreement between the newly proposed ERT method and the other 

two methods. The typical difference between Njs-ERT and the Njs-Zwietering was 2.45% and that 

between Njs-ERT and the Njs-ImageJ was 2.38%. 
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Table 3.2 Njs Values Obtained from 3 Different Methods with Using PBT Impeller, 
D/T=0.39, with different C/T 
  

C/T 
Njs-ERT Njs-Zwietering Njs-ImageJ 

 

(rpm) (rpm) (rpm)  

 
 

0.25 388 365 378 
 

    
 

0.33 530 515 512 
 

    
 

0.4 655 675 668 
 

    
 

 

 

Table 3.3 Njs Values Obtained from 3 Different Methods with Using PBT Impeller, 
D/T=0.28, with Different C/T 
  

C/T Njs-ERT (rpm) 

Njs-Zwietering 

(rpm) Njs-ImageJ (rpm) 
 

    
 

0.2 432 430 440 
 

    
 

0.25 480 475 489 
 

    
 

0.33 690 680 708 
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Figure 3.3 Njs-ERT vs Njs-Zwietering Comparison for PBT Impeller with D/T= 0.39 and with 
C/T=0.25, C/T=0.33, C/T= 0.5 
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Figure 3.4 Njs-ERT vs Njs-ImageJ Comparison for PBT Impeller with D/T= 0.39 and with 

C/T=0.25, C/T=0.33, C/T= 0.5  
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Figure 3.5 Njs-ERT vs Njs-Zwietering Comparison for PBT Impeller with D/T=0.28 and with 

C/T=0.2, C/T=0.25, C/T= 0.33 
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Figure 3.6 Njs-ERT vs Njs-ImageJ Comparison for PBT Impeller with D/T=0.28 and with 
C/T=0.2, C/T=0.25, C/T=0.33 

 

 

3.1.3 Results for FBT Impeller 

 

Table 3.4 presents the results obtained with the FBT impeller with D/T=0.35 and Figure 

3.7 and Figure 3.8 parity plots in of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, 

respectively. As one can see, there is significant agreement between the newly proposed 

ERT method and the other two methods. The typical difference between Njs-ERT and the Njs-

Zwietering was 2.64% and that between Njs-ERT and the Njs-ImageJ was 1.61%. 

 

Table 3.4 Njs Values Obtained from 3 Different Methods with Using FBT Impeller, 
D/T=0.28, with Different C/T 
  

C/T 
Njs-ERT Njs-Zwietering Njs-ImageJ 

 

(rpm) (rpm) (rpm) 
 

 
 

0.25 380 390 381 
 

    
 

0.33 445 460 451 
 

    
 

0.4 520 530 533 
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Figure 3.7 Njs-ERT vs Njs-Zwietering Comparison for FBT Impeller with D/T=0.35 and with 
C/T=0.25, C/T=0.33, C/T= 0.4  
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Figure 3.8 Njs-ERT vs Njs-ImageJ Comparison for FBT Impeller with D/T=0.35 and with 

C/T=0.25, C/T=0.33, C/T= 0.4 
 
 
 
 
 
 
 
 

 

34 



3.1.4 Results for DT Impeller 

 

Table 3.5 presents the results obtained with the DT impeller with D/T=0.39 and Figure 3.9 and 

Figure 3.10 parity plots in of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, respectively. 

Similarly, Table 3.6 presents the results obtained with the DT impeller with D/T=0.46 and 

Figure 3.11 and Figure 3.12 parity plots in of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, 

respectively. As one can see, there is significant agreement between the newly proposed ERT 

method and the other two methods. The typical difference between Njs-ERT and the Njs-Zwietering 

was 0.86% and that between Njs-ERT and the Njs-ImageJ was 2.00%. 

 

 

Table 3.5 Njs Values Obtained from 3 Different Methods with Using DT Impeller, 
D/T=0.39, with Different C/T  

C/T Njs-ERT (rpm) 
Njs-Zwietering 

Njs-ImageJ (rpm)  

(rpm)  

   
 

0.25 376 375 373 
 

    
 

0.33 378 375 374 
 

    
 

0.4 380 380 384 
 

    
 

 

 

Table 3.6 Njs Values Obtained from 3 Different Methods with Using DT Impeller, 
D/T=0.46, with Different C/T  

C/T Njs-ERT (rpm) 
Njs-Zwietering 

Njs-ImageJ (rpm)  

(rpm) 
 

   
 

0.33 305 310 317 
 

    
 

0.25 284 280 291 
 

    
 

0.2 278 275 286 
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Figure 3.9 Njs-ERT vs Njs-Zwietering Comparison for DT Impeller with D/T=0.39 and with 

C/T=0.25, C/T=0.33, C/T= 0.4  
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Figure 3.10 Njs-ERT vs Njs-Zwietering Comparison for DT Impeller with D/T=0.39 and with 

C/T=0.25, C/T=0.33, C/T= 0.4 
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Figure 3.11 Njs-ERT vs Njs-Zwietering Comparison for DT Impeller with D/T=0.46 and with 

C/T=0.2, C/T=0.25, C/T= 0.33  
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Figure 3.12 Njs-ERT vs Njs-ImageJ Comparison for DT Impeller with D/T=0.46 and with 

C/T=0.2, C/T=0.25, C/T= 0.33 
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3.1.5 Results for Propeller 

 

Table 3.7 presents the results obtained with propeller with D/T=0.35 and Figure 3.13 and 

Figure 3.14 parity plots in of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, respectively. As 

one can see, there is significant agreement between the newly proposed ERT method and 

the other two methods. The typical difference between Njs-ERT and the Njs-Zwietering was 

1.42% and that between Njs-ERT and the Njs-ImageJ was 0.47%. 

Table 3.7 Njs Values Obtained from 3 Different Methods with Using Propeller, D/T=0.35, 
with Different C/T 
  

C/T 
Njs-ERT Njs-Zwietering Njs-ImageJ 

 

(rpm) (rpm) (rpm) 
 

 
 

    
 

0.25 528 530 531 
 

    
 

0.33 538 545 548 
 

    
 

0.5 580 595 591 
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Figure 3.13 Njs-ERT vs Njs-Zwietering Comparison for Propeller with D/T=0.35 and with 

C/T=0.25, C/T=0.33, C/T= 0.5 
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Figure 3.14 Njs-ERT vs Njs-ImageJ Comparison for Propeller with D/T=0.35 and with 

C/T=0.25, C/T=0.33, C/T= 0.5 
 

 

For all the impellers, Njs increased with increasing impeller height. The reason is, if the 

impeller gets far away from the bottom, it should have more energy to create a similar flow 

that can reach the bottom. Furthermore, increasing impeller diameter decreased Njs, because 

bigger impellers create a similar flow more easily and they require less energy.  

 

 

3.1.6 Cumulative Results 

 

A parity plot showing comparisons of Njs-ERT vs. Njs-Zwietering and Njs-ERT vs. Njs-ImageJ, 

respectively for the all impellers and geometric configurations studied here is presented in 

Figure 3.15 and Figure 3.16. One can clearly observe that the agreement in both cases was 

good, indicating that novel method proposed here is appropriate for the determination of 

Njs. 
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The proposed approach could be especially valuable in all those systems, such as 

industrial vessels, in which Njs would be difficult to obtain with the other methods, which 

require transparent tanks and the ability to observe the tank bottom. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.15 Njs-ERT vs Njs-Zwietering Comparison for All The Impellers Used In Different C/T 

and D/T. 
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Figure 3.16 Njs-ERT vs Njs-ImageJ Comparison for All The Impellers Used In Different C/T 
and D/T. 

 
 
 
 

 

3.2 Reproducibility Analysis 

 

The reproducibility of the Njs measurement obtained with the ERC method was found by 

re-running some experiments 5 times and analyzing the data using an identical approach. 

The results are presented in Tables 3.8, 3.9 and 3.10 for different impellers. These tables 

show that the reproducibility was ±2% of the average value in all cases, corresponding to 

an error of the estimate Njs value of about 7 rpm. 
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3.2.1 Reproducibility Analysis for A310 Impeller with C/T = 0.25 

 

Table 3.8 Reproducibility Analysis for A310 Impeller with C/T = 0.25 

 

Trial # Njs-ERT 

1 484 

2 490 

3 472 

4 478 

5 482 

Sample Standard Deviation, s 6.723094526 

Variance (Sample Standard), s2 45.2 

Population Standard Deviation, σ 6.013318551 

Variance (Population Standard), σ2 36.16 

Sum: 2406 

Mean (Average): 481.2 

Standard Error of the Mean (SEx̄): 3.006659276 

Std. Dev/Mean 0.013971518 
 

 

3.2.2 Reproducibility Analysis for DT Impeller with C/T = 0.2 

 

Table 3.9 Reproducibility Analysis for DT Impeller with C/T = 0.2 

 

Trial # Njs-ERT 

  

1 284 

2 282 

3 276 

4 278 

5 290 

Sample Standard Deviation, s 5.477225575 

Variance (Sample Standard), s2 30 

Population Standard Deviation, σ 4.898979486 

Variance (Population Standard), σ2 24 

Total Numbers, N 5 

Mean (Average): 282 

Standard Error of the Mean (SEx̄): 2.449489743 

Std. Dev/Mean 0.019422786 
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3.2.3 Reproducibility Analysis for PBT Impeller with C/T = 0.25 

 

Table 3.10 Reproducibility Analysis for PBT Impeller with C/T= 0.25 

 

Trial # Njs-ERT 

  

1 372 

2 388 

3 376 

4 378 

5 388 

Total numbers (N): 5 

Mean (average) value: 380.4 

Population standard deviation (σ): 6.499230724 

Population variance (σ2): 42.24 

Sample standard deviation (s): 7.26636085 

Sample variance (s2): 52.8 

Standard Error of the Mean (SEx̄): 2.449489743 

Std Dev/Mean 0.019101895 
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CHAPTER 4 

 

CONCLUSION 

 

In this work, the minimum agitation speed, Njs, to achieve the just-solid suspension state in 

stirred tanks was investigated using a novel experimental approach based on the use of 

Electrical Resistance Tomography (ERT) was investigated. To do so a lab-scale flat 

bottomed vessel geometrically, similar to those used in pharmaceutical and chemical 

industries, provided with different types of impellers (six-blade disk turbine, six-blade 

pitched-blade turbine, A310 turbine, six-blade turbine or propeller) with different D/T, and 

C/T was used under fully baffled conditions. 

 

By using commercially available ERT device, mean bulk resistivity values R were 

obtained at increasing higher agitation speeds. Plotting R vs. N resulted in an S shaped 

curve, in which there was a sudden increase in R with increasing agitation speeds before 

the curve went through an inflexion point and eventually reached an asymptotic value. 

Lifting solids caused these changes in mean bulk resistivity. Greater resistivity was 

measured with increasing solids suspension. Once all the solids were lifted up, the mean 

bulk resistivity did not change anymore. 

 

In order to extract Njs from the data, a mathematical approach previously developed 

by our group for a different system but now applied to the data obtained with the ERT 

device was used. The reproducibility of replicate experiments showed that the 

measurement were highly reproductible (within 2%), which proved that the tomography 

method is a quite reliable method for the determination of Njs. 
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Experiments were conducted where Njs was obtained under different operating conditions, 

i.e., where the impeller type, impeller ratio-to-tank diameter ratio, and impeller clearance 

were varied. Njs was not only experimentally obtained using the proposed ERT approach 

but also using the Zwietering method as well as the method previously developed by our 

group. Then, parity plots were constructed in which Njs-ERT was plotted against the Njs 

values obtained with the other two methods. Excellent agreement was observed in all plots, 

indicating that the novel method proposed here can be effectively used for the experimental 

determination of Njs. 

 

The results of this work show that ERT combined with the analysis of the data 

proposed here can be used to effectively measure Njs in solid-liquid dispersion in 

mechanically stirred vessels. The proposed approach is observer-independent method and 

can be used even in systems that cannot be directly observed, such as industrial tanks. 

Therefore, it is expected that this approach could find extensive practical applications in 

the chemical, pharmaceutical and biopharmaceutical industries. 
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APPENDIX 
 
 

 

Table A1: Overall Njs Results 

 

    Impeller Type & Diameter  
 

         
 

Clearance Method DT PBT    
 

    

FBT Propeller A310 

 

  DT DT 
PBT 1 PBT 2  

  
1 2 

   
 

       
 

 Njs-Zwietering N/A 275 N/A 430 N/A N/A N/A 
 

         
 

0.2 Njs-ERT N/A 278 N/A 432 N/A N/A N/A 
 

         
 

 Njs-ImageJ N/A 286 N/A 440 N/A N/A N/A 
 

         
 

 Njs-Zwietering 375 280 365 475 390 530 470 
 

         
 

0.25 Njs-ERT 376 284 388 480 380 528 482 
 

         
 

 Njs-ImageJ 373 291 378 489 381 531 474 
 

         
 

 Njs-Zwietering 375 310 515 680 460 545 530 
 

         
 

0.33 Njs-ERT 378 305 530 610 445 538 515 
 

         
 

 Njs-ImageJ 374 317 512 708 451 548 521 
 

         
 

 Njs-Zwietering 380 N/A 675 N/A 530 N/A N/A 
 

         
 

0.4 Njs-ERT 380 N/A 655 N/A 520 N/A N/A 
 

         
 

 Njs-ImageJ 384 N/A 668 N/A 533 N/A N/A 
 

         
 

 Njs-Zwietering N/A N/A N/A N/A N/A 595 660 
 

         
 

0.5 Njs-ERT N/A N/A N/A N/A N/A 580 665 
 

         
 

 Njs-ImageJ N/A N/A N/A N/A N/A 591 674 
 

         
   

Diameters: DT 1 = 11 cm, DT 2 = 13 cm, PBT 1 = 11 cm, PBT 2 = 8 cm, FBT = 10 cm, Propeller = 10 cm, A310 = 10 cm  
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APPENDIX 

 

(Continued) 

 

Table A2: Overall Reproducibility Results 

 

Trial # 
Njs-ERT (DT) Njs-ERT (A310) Njs-ERT (PBT) 

 

(C/T=0.2) (C/T=0.25) (C/T=0.25)  

 
 

1 284 484 372 
 

    
 

2 282 490 388 
 

    
 

3 276 472 376 
 

    
 

4 278 478 378 
 

    
 

5 290 482 388 
 

    
 

Sample Standard Deviation, s 5.477225575 6.723094526 5 
 

    
 

Variance (Sample Standard), 
30 45.2 1902  

s
2
  

   
 

Population Std. Dev., σ 4.898979486 6.013318551 380.4 
 

    
 

Variance (Population 
24 36.16 6.499230724  

Standard), σ
2
  

   
 

Total Numbers, N 5 5 42.24 
 

    
 

Sum: 1410 2406 7.26636085 
 

    
 

Mean (Average): 282 481.2 52.8 
 

    
 

Standard Error of the Mean 
2.449489743 3.006659276 2.449489743  

(SEx̄):  

   
 

Std. Dev/Mean 0.019422786 0.013971518 0.019101895 
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