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ABSTRACT 

DEEP MORPHOLOGICAL NEURAL NETWORKS 

by 
Yucong Shen 

Mathematical morphology is a theory and technique applied to collect features like 

geometric and topological structures in digital images. Determining suitable 

morphological operations and structuring elements for a give purpose is a cumbersome 

and time-consuming task. In this paper, morphological neural networks are proposed to 

address this problem. Serving as a non-linear feature extracting layers in deep learning 

frameworks, the efficiency of the proposed morphological layer is confirmed 

analytically and empirically. With a known target, a single-filter morphological layer 

learns the structuring element correctly, and an adaptive layer can automatically select 

appropriate morphological operations. For high level applications, the proposed 

morphological neural networks are tested on several classification datasets which are 

related to shape or geometric image features, and the experimental results have 

confirmed the tradeoff between high computational efficiency and high accuracy. 

  



DEEP MORPHOLOGICAL NEURAL NETWORKS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
Yucong Shen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
A Thesis 

Submitted to the Faculty of 
New Jersey Institute of Technology 

In Partial Fulfillment of the Requirements for the Degree of 
Master of Science in Computer Science 

 
Department of Computer Science 

 
May 2019 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE 
 

DEEP MORPHOLOGICAL NEURAL NETWORKS 
 

Yucong Shen 
 
 
 
 

 
Dr. Frank Y. Shih, Thesis Advisor      Date 
Professor of Computer Science, NJIT 
 
 
 
 
Dr. Zhi Wei, Committee Member      Date 
Associate Professor of Computer Science, NJIT 
 
 
 
 
 
Dr. Hai Phan, Committee Member      Date 
Assistant Professor of Informatics, NJIT 
 



BIOGRAPHICAL SKETCH 

Author: 	 Yucong Shen 

Degree: 	 Master of Science 

Date: 	 May 2019 

Undergraduate and Graduate Education: 

• Master of Science in Computer Science, 
New Jersey Institute of Technology, Newark, NJ, 2019 

• Bachelor of Science in Mathematics and Applied Mathematics, 
Central China Normal University, Wuhan, China, 2017 

Major: 	 Computer Science 

Presentations and Publications: 

F.Y. Shih, Y. Shen and X. Zhong, “Development of deep learning framework 
for mathematical morphology,” Int. J. Pattern Recognit. and Artificial Intell., vol. 33, 
no. 6, pp. 1954024, June 2019. 

Y. Shen, X. Zhong and F.Y. Shih, “Deep morphological neural networks,” 
under submission to IEEE trans Image Process.. 

iv 



 v 

 
 



 vi 

 
DEDICATION 

To Prof. Shih, 

I not only learned the approach of doing research from you, but also the integrity and 

commitment. 

 

To my family, 

Thank you for your  supports in all these years. 

 

To Prof. Gaofeng Zheng & Prof. Xiao-Fei Zhang, 

You set a great model to me when doing research. Thanks to you, I learned how to do 

research and the attitude towards acdemics. 

 

To my dear motherland, 

The rest of mine will be dedicated to you. 
  



 vii 

 

ACKNOWLEDGMENT 

 
Appreciate Prof. Frank Y. Shih, my thesis advisor, for guiding me for almost two years 

in this fantastic area. Thanks for the committee member, Prof. Zhi Wei and Prof. Hai 

Phan. They gave me great help on doing research and how to make my thesis work 

better. Thanks Dr. Xin Zhong for giving me great help and many valuable suggestions 

in these two years. 

  



 viii 

TABLE OF CONTENTS 

Chapter Page 

1 INTRODUCTION……………………………………………………….. 1 

2 DEEP MORPHOLOGICAL NEURAL NETWORK……………………. 4 

 2.1 Previous Work……………………………………………………... 4 

 2.2 The Weakness of MorphNet……………………………………….. 5 

 2.3 The Improvement of MorphNet……………………………………. 8 

 2.4 Learning the Morphology Operations by DMNN.…………………. 9 

  2.4.1 Learning the Structuring Elements of Single Morphology 
Operation…………………………………………………… 

 
9 

  2.4.2 Learning Multiple Morphology Operations………………… 10 

 2.5 Morphological Residual Neural Network………..…………………. 12 

  2.5.1 The Architecture of Morphological Residual Neural 
Network……………………………………………………... 

 
12 

  2.5.2 The Gradient of Morphological Residual Neural Network…. 14 

3 ADAPTIVE MORPHOLOGICAL LAYER……………………………... 15 

4 EXPERIMENTS RESULTS……………………………………………... 19 

 4.1 Results on Deep Morphological Neural Network………………….. 20 

  4.1.1 Learning the Binary Structuring Elements………………….. 20 

  4.1.2 Learning the Gray Scale Structuring Elements……………... 21 

  4.1.3 Learning the Multiple Morphological Operations by DMNN 22 

  4.1.4 Morphological Residual Neural Network for Classification.. 24 

 4.2 Results on Detecting Morphological Operations by Adaptive 
Morphological Neural Network…………………………………….. 

 
28 

5 CONCLUSIONS…………………………………………………………. 30 

 REFERNCES…………………………………………………………... 31 

 

 



 ix 

 

LIST OF FIGURES 

Figure Page 

2.1 Architecture of the single layer MorphNet…………………………….. 5 

2.2 The original structuring elements applied on input images and the 
structuring elements learned by the single dilation layer MorphNet…... 

 
6 

2.3 Architecture of the multi-layer deep morphological neural network….. 11 

2.4 The morphological residual model. ……………………………..…….. 12 

2.5 The architecture of morphological residual neural network.………....... 13 

3.1 The soft sign function and hyperbolic tangent function.……………..... 16 

4.1 The sample image from three dataset we adopt in experiments……….. 18 

4.2 The original structuring elements applied on input images and the 
structuring elements learned by the single dilation layer MorphNet after 
the improvement……………………………………………………….. 

 

20 

4.3 The result for gray scale structuring elements on MNIST dataset……... 21 

4.4 The result for learning the opening and closing operations by DMNN... 22 

 

 

  



 x 

LIST OF TABLES 

Table Page 

2.1 The Configuration of Morphological Residual Neural Network………. 13 

4.1 Comparison of Morphological Residual in Three Datasets……………. 23 

4.2 Configuration of MLeNet……………………………………………… 24 

4.3 Comparison of Morphological Residual with State-of-Art 
Convolutional Neural Network………………………………………… 

 
24 

4.4 Comparison of Number of Parameters in Feature Extraction Layer of 
Morphological Residual with State-of-Art Convolutional Neural 
Network………………………………………………………………… 

 

26 

4.5 Configuration of Residual CNN……………………………...………... 26 

4.6 Comparison of Morphological Residual and Residual CNN………….. 27 

 

 



 1 

 

CHAPTER 1 

INTRODUCTION 

 

Mathematical morphology, which is based on set theory, can extract features based on 

shapes, regions, edges, skeleton, and convex hull [12]. The elementary operations in 

mathematical morphology are dilation and erosion, which are enlarging and shrinking 

the object respectively. Mathematical morphology has a wide range of applications in 

defect extraction [3], edge detection [19], and image segmentation [13]. In computer 

vision problems, deep learning has become increasingly popular in recent years. LeNet 

[7] was proposed for document recognition and digital recognition. Recently, the 

development of computer hardware brings the increased computational capacity, and 

CNN is becoming deeper, making CNN success on many applications of computer 

vision tasks, especially image recognition [5,17]. 

It is a time-consuming and cumbersome task to determine the proper 

morphological operations and the corresponding structuring elements. Shih et al. 

proposed MorphNet [16] to combine the advantages of mathematical morphology and 

deep learning to solve such problems, and also to provide a non-linear feature extractor 

for deep learning framework. The history of morphological neural network can be dated 

back to 1990s. Ritter et al. [9] proposed the morphological neural network based on 

image algebra [10]. It shows the first attempt in formulating useful morphological 

neural network. With respect to the linear feature extractor of the convolutional layer 

in CNN, MorphNet provides a morphological layer by the approximation of maximum 

and minimum, which simulate dilation and erosion operations respectively. With the 

help of morphological layer, we can determine the proper shape of structuring elements 

corresponding to the specific morphological operations, and also capture the non-linear 
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features of the image contents, especially the shapes. 

Masci et al. [9] represented the dilation and erosion in deep learning framework 

using counter-harmonic mean. But they can only represent pseudo-dilation and pseudo-

erosion due to the limitation of the formula. In [16], MorphNet can represent dilation 

and erosion accurately, and learn the binary structuring elements roughly, but failed in 

learning the non-flat structuring elements. Besides, it limits in learning the shape of 

corresponding structuring elements of dilation and erosion, and cannot determine the 

proper morphological operations applied on the original images. 

In this paper, we propose the task of learning the structuring elements of two 

elementary operations of mathematical morphology, dilation and erosion. With the 

improvement of the MorphNet, we can learn the correct structuring elements by single-

layer morphological neural network. Within dilation and erosion, we adopt a smooth 

sign function and a hyperbolic tangent function to determine the morphological 

operation by a single adaptive morphological layer. With the framework of 

morphological neural network consists of adaptive morphological layer, further 

applications of determining the morphological operations can be explored. What’s 

more, because of the great property of mathematical morphology in extracting shapes 

features of image contents, we also propose a novel morphological layer based pipeline 

which captures the information of shapes.  

Our key contribution can be summarized as follows. We present morphological 

layers for learning the correct binary morphological structuring elements and equivalent 

gray scale structuring elements. A morphological residual neural network architecture 

is developed for shape classification. We propose an adaptive morphological layer that 

can easily determine the proper morphological operations from a bunch of input and 

desired output images. 
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The remainder of this paper is organized as follows. Chapter 2 introduces the 

morphology layers, and the morphological residual neural network for shape 

classifications. Chapter 3 presents an adaptive morphological layer for determining the 

proper morphology operations from the original images and the desired result images. 

Chapter 4 shows the experimental results. Finally, conclusions are drawn in Chapter 5. 
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CHAPTER 2 

DEEP MORPHOLOGICAL MORPHOLOGICAL NEURAL NETWORK 

 

In this section, we illustrate the improvements of MorphNet and the approach to learn 

the corresponding structuring elements of morphological operations. We present an 

adaptive morphological neural network to provide a tool to learn the proper 

morphological operations from a bunch of original images and target images. 

 

2.1 Previous Work 

Masci el al. [9] represented the dilation and erosion in deep learning framework using 

counter-harmonic mean. For a grayscale image 𝑓(𝑥) and a kernel 𝜔(𝑥), the PConv 

layer performs as below: 

                                 𝑃𝐶𝑜𝑛𝑣(𝑓;𝜔, 𝑃)(𝑥) = ./012∗45(6)
(/0∗4)(6)

= (𝑓 ∗7 𝜔)(𝑥)                  (2.1)        

where “∗” denotes the convolution operation, 𝑃 is a scalar which controls the type of 

operation (𝑃 < 0  pseudo-erosion, 𝑃 > 0  pseudo-dilation and 𝑃 = 0  standard liner 

convolution). Since 𝑃 cannot be infinity, this equation cannot represent the real erosion 

and dilation. 

Shih et al. [16] represented the dilation and erosion using the soft maximum and 

soft minimum function. With the differential approximation of dilation and erosion. In 

dilation layer, the 𝑗-th pixel in the 𝑠-th feature map 𝑧 ∈ ℝ@, the size of the structuring 

elements (w.r.t. weights) is 𝑛 = 𝑎 × 𝑏, then 

                                                        𝑧DE = ln(∑ 𝑒4J6J@
KLM )                                        (2.2) 

where 𝑥K is the 𝑖-th element of the masked window of the input images, and 𝜔K is the 𝑖-

th element of the current weight. 
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 Similarly, in the erosion layer, the 𝑗-th pixel in the 𝑠-th feature map 𝑧 ∈ ℝ@, the 

size of the structuring elements (w.r.t. weights) is 𝑛 = 𝑎 × 𝑏, then 

                                                       𝑧DE = − ln(∑ 𝑒P4J6J@
KLM ),                                    (2.3) 

where 𝑥K is the 𝑖-th element of the masked window of the input images, and 𝜔K is the 𝑖-

th element of the sliding window. Eqs. (2.2) and (2.3) are rough approximations of 

dilation and erosion, which can simulate the dilation and erosion more accurately. In 

MorphNet, approximating dilation and erosion is a much more straightforward and 

efficient way as compared to [9]. 

 

2.2 The Weakness of MorphNet 

MorphNet also has a weakness when learning the correct structuring elements, although 

it represents the more accurate dilation and erosion theoretically. In [16], when single 

layer MorphNet learns the structuring elements from the input images and output 

images, there are missing points on the learned structuring elements with respect to the 

certain 3 × 3 and 5 × 5 structuring elements applied to original images. Fig. 2.1 shows 

the architecture of a single layer MorphNet when learning the structuring elements. Fig. 

2.2 shows the structuring elements learned by the single dilation layer MorphNet. It 

shows that the single dilation layer MorphNet can learn part of the structuring elements 

as original ones, there are some biases between them. 

 

Figure 2.1 Architecture of the single layer MorphNet. 
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It can be observed from the representation of morphological layer of MorphNet, 

the only trainable parameter is the weight, the structuring element. The soft maximum 

does not round off the corner of when computing the maximum pixels of the sliding 

window, which results in biases from the original maximum pixels, and neither does 

soft minimum function. This causes the biases between the original structuring 

elements when creating the target images and the learned structuring elements. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.2 The original structuring elements applied on input images and the 
structuring elements learned by the single dilation layer MorphNet. (a) The horizontal, 
diagonal, vertical, and diamond 3 × 3 structuring elements applied to input images 
when creating target images, (b) the corresponding structuring elements learned by the 
single dilation layer MorphNet, (c) the original 45° , crossing 5 × 5  structuring 
elements and horizontal line 1 × 5 structuring elements applied to the inputs images 
when creating target images, (d) the corresponding structuring elements learned by the 
single dilation layer MorphNet. 
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Definition 1 (Soft dilation): The 𝑗-th pixel of the result image 𝑧 ∈ ℝ@, is 

                                 𝑧D = ln(∑ 𝑒4J6J@
KLM ),                                                  (2.4) 

where 𝜔 is the structuring element, 𝜔K is the 𝑖-th element of the structuring element, 

the size of 𝜔 is 𝑛 = 𝑎 × 𝑏, 𝑥K is the 𝑖-th element of the masked window of the original 

image. 

 We call it soft dilation, and it can be denoted as 𝜔⊕ 𝑥, where the structuring 

element 𝜔 ∈ ℝ@, the original image 𝑥 ∈ ℝ@. 

Definition 2 (Soft erosion): The 𝑗-th pixel of the result image 𝑧 ∈ ℝ@, is 

                                𝑧D = −ln(∑ 𝑒P4J6J@
KLM ),                                            (2.5) 

where 𝜔 is the structuring element, 𝜔K is the 𝑖-th element of the structuring element, 

the size of 𝜔 is 𝑛 = 𝑎 × 𝑏, 𝑥K is the 𝑖-th element of the masked window of the original 

image. 

 We call it soft erosion, and it can be denoted as 𝜔⊖ 𝑥, where the structuring 

element 𝜔 ∈ ℝ@, the original image 𝑥 ∈ ℝ@. 

 MorphNet follows soft dilation and soft erosion, we will show that the weakness 

of them in theory. For soft dilation, when learning the binary dilation, there should have 

                ln(∑ 𝑒4J6J@
KLM ) = max	(𝜔K𝑥M, 𝜔\𝑥\, … , 𝜔@𝑥@),                          (2.6) 

indicates that 

                                 ln(∑ 𝑒4J6J@
KLM ) ≥ 𝑥K,                                              (2.7) 

then we have 

                                   ∑ 𝑒4J6J@
KLM ≥ 𝑒6J.                                               (2.8) 

 Clearly, equation (2.8) is invalid. Therefore, we adopt a constant 𝜁 , makes 

equation (2.8) shows as: 

                                 ∑ 𝑒4J6J@
KLM 𝜁 ≥ 𝑒6J,                                            (2.9) 
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then (2.9) is valid when 𝜁 ≥ `aJ
∑ `bJaJc
Jd2

.  

 We omit soft erosion in that it is similar to soft dilation. 

 

2.3 The Improvement of MorphNet 

Inspired by the convolutional neural network and equation (2.9), we introduce the bias 

to offset the bias caused by the soft maximum and soft minimum function. Therefore, 

in the dilation layer, the 𝑠-th feature map of the output 𝑧 of dilation layer will be: 

𝑧E = 𝜔⊖ 𝑥 + 𝑏,                                                     (2.10) 

where 𝜔 ∈ ℝ@ is the weights, 𝑥 ∈ ℝ@ is the input of dilation layer, and 𝑏 ∈ ℝ@ is bias. 

Similarly, the erosion layer can be expressed by: 

𝑧E = 𝜔⊖ 𝑥 + 𝑏,                                                     (2.11) 

where 𝜔 ∈ ℝ@ is the weights, 𝑥 ∈ ℝ@ is the input of dilation layer, and 𝑏 ∈ ℝ@ is bias. 

 After the improvement, it easy to get equation (2.12) follows the mathematics 

in section B: 

                             (∑ 𝑒4J6J@
KLM ) ∙ 𝑒g ≥ 𝑒6J.                                            (2.12) 

Therefore, (2.12) will be valid if 𝑏 ≥ ln `aJ
∑ `bJaJc
Jd2

. Due to 𝑏  is a trainable 

variable, so the dilation layer will be correct if 𝑏 ≥ ln `aJ
∑ `bJaJc
Jd2

 after the training when 

learning the binary dilation. Then we get the proof correctness of erosion layer when 

learning the binary erosion in the same way. 

The gradient of such a layer is computed by back-propagation [6] with chain 

rule. The objective function can be denoted by 𝐽(𝜔, 𝑏; 𝑦, 𝑦j), where 𝜔 is the weight, 𝑏 

is the bias, 𝑦j is the output of the network, and 𝑦 is the label of the network. Below is 

the gradient 𝛿(l) of the 𝑙-th layer of the network with respect to weight ω: 

                                   𝛿(l) = op(4,g;q,qj)
o4(r)

.                                               (2.13) 
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Assume that the learning rate is 𝜂, the weight 𝜔 of the 𝑙-th layer will be updated 

by: 

                                𝜔K
(l) = 𝜔K

(l) − 𝜂𝛿(l),                                                (2.14) 

the bias 𝑏 will also be updated by back-propagation as: 

                              𝑏(l) = 𝑏(l) − 𝜂 op(4,g;q,qj)
og(r)

.                                          (2.15) 

We name the neural networks that consists of morphological layers as Deep 

Morphological Neural Network (DMNN). 

 

2.4 Learning the Morphological Operations by DMNN 

We present the approach of learning binary and gray scale mathematical morphology 

operations and their corresponding structuring elements in this section. 

 

2.4.1 Learning the Structuring Elements of Single Morphology Operation 

We’ve proved the correctness of improved morphological layer in learning the binary 

morphology operations and their corresponding structuring elements. Here we showed 

the condition that the improved morphological layers can correctly learn the gray scale 

morphology operations and their corresponding structuring elements. 

When learning the gray scale dilation, dilation layer, similar to (2.6), there 

should have 

ln(∑ 𝑒4J6J@
KLM ) + 𝑏 = max	(𝜔K + 𝑥M, … , 𝜔@ + 𝑥@).                     (2.16) 

 From (2.16), we can easily get 

𝑒g ∙ ∑ 𝑒4J6J@
KLM ≥ 𝑒6Jt4J,                                           (2.17) 

then (2.17) is valid when 𝑏 ≥ ln `aJ1bJ
∑ `bJaJc
Jd2

. 𝑏 is a trainable variable, so dilation layer will 

be correct if 𝑏 maintains the condition after the training when learning the gray scale 

dilation. Similar proof can be applied to erosion layer for learning the gray scale erosion. 
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When learning the single binary and gray scale morphology operations, the 

architecture of the single layer morphological neural network still follows Fig. 2.1. The 

network minimizes the distance between the prediction of network and the target 

images. 

 

2.4.2 Learning Multiple Morphology Operations 

With the help of morphological layers, we can learn the multiple morphology 

operations by constructing multi-layer DMNN. 

Assume the 𝑙-th layer of multi-layer DMNN is dilation layer, the 𝑠-th feature 

map of the output 𝑧 ∈ ℝ@ of current layer will be: 

𝑧E
(l) = 𝜔 ⊕ 𝑧(lPM) + 𝑏,                                            (2.18) 

where 𝜔 ∈ ℝ@ is the weight of current layer, and 𝑏 ∈ ℝ@ is the bias, 𝑧(lPM) ∈ ℝ@ is the 

output of (𝑙 − 1)-th layer. 

 If the 𝑙-th layer of multi-layer DMNN is erosion layer, the 𝑠-th feature map of 

the output 𝑧 ∈ ℝ@ of current layer will be: 

𝑧E
(l) = 𝜔 ⊖ 𝑧(lPM) + 𝑏,                                          (2.19) 

where 𝜔 ∈ ℝ@ is the weight of current layer, and 𝑏 ∈ ℝ@ is the bias, 𝑧(lPM) ∈ ℝ@ is the 

output of (𝑙 − 1)-th layer. 

The inputs are the original images while the outputs are the predictions of 

network after multiple morphological layers. The target images are created by sequence 

of morphological operations. The deep morphological neural network will determine 

the proper corresponding structuring elements by learning from the input and target 

images, and will minimize the distance between outputs of the network and target 

images. After the network converges, the weights of each morphological layer will be 

the proper structuring elements for each morphological operation. The deep 
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morphological neural networks which consist of few stacked morphological layers can 

learn the morphological operations pipeline and determine the proper structuring 

element for each step. 

 

Figure 2.3 Architecture of the multi-layer deep morphological neural network. 

 

The gradient of multi-layer DMNN is also computed by back-propagation with 

chain rule. The objective function can be denoted by 𝐽(𝜔, 𝑏; 𝑦, 𝑦j), where 𝜔  is the 

weight, 𝑏 is the bias, 𝑦j is the output of the network, and 𝑦 is the label of the network. 

The gradient 𝛿(l) of the 𝑙-th layer with respect to weight 𝜔: 

𝛿(l) = op(4,g;q,qj)
o4(r)

= op(4,g;q,qj)
ou(r)

o
o4
𝜎w.𝑧(l)5,                              (2.20) 

where 𝜎(∙) is the activation function. 

 Assume that the learning rate is 𝜂, the weight 𝜔 of the 𝑙-th layer will be updated 

by: 

𝜔K
(l) = 𝜔K

(l) − 𝜂𝛿(l).                                           (2.21) 

 

2.5 Morphological Residual Neural Network 

Mathematical morphology always comes with shapes and structures [4, 18] in the 

applications. In pattern recognition, mathematical morphology is being used for 

preprocessing and feature extraction.  
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In morphological residual model, applying opening on the original image with 

circle structuring elements, then the edges of the shapes will become smoothly. Then 

after the subtraction of result image from original images, we can get the residuals. 

After morphological residual, we obtain the residuals of the geometric shapes. Fig. 2.4 

shows how the morphological residual model extracts the residuals from geometric 

shapes. With the help of morphological residual, it is easy to recognize the shapes by 

counting the number of residuals. 

 

Figure 2.4 The morphological residual model. Applying opening on the original image 
with circle structuring elements, then subtraction of result image from original image 
can obtain the morphological residuals. 
 

2.5.1 The Architecture of Morphological Residual Neural Network 

Followed by the morphological residual model, we construct morphological residual 

neural network for shape classification. Fig. 2.5 shows the architecture of the 

morphological residual neural network. The input of the neural network are batches of 

images, erosion layer and dilation layer are applying opening to the input images. After 

the subtraction layer, the neural network finishes the preprocessing progress and 

delivers the residuals to classifier. Before the classifier, there are two fully-connected 

layers for flattening the matrix to column vector and also data compression. At the end 

of the network, a softmax classifier is classifying the images and producing the outputs. 
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Figure 2.5 The architecture of morphological residual neural network. 

 

The configuration of the morphological residual neural network is followed by 

the modern convolutional neural network. In the erosion layer and dilation layer, we 

adopt 3 × 3 filter size to reduce the parameters. In the first three weights layer, the 

channel is 1  for grayscale images, and 3  for RGB images. Table 2.1 shows the 

configuration of the morphological residual neural network in detail. 

 

Table 2.1 The Configuration of Morphological Residual Neural Network 

 Input 

1 Erosion 3 × 3 × 1 

2 Dilation 3 × 3 × 1 

3 Subtraction 1 

4 FC-1024 

5 FC-512 

6 Soft-max 

 

2.5.2 The Gradient of Morphological Residual Neural Network 
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We also trained the morphological residual neural network by back-propagation. The 

weights of dilation layer, erosion layer and fully connected layers are updated by (2.20) 

and (2.21). In the subtraction layer, the weights will not be updated, it just transmits the 

gradient from fourth layer to second layer. 

Assume the gradient of fourth layer is 𝛿(x), the gradient of subtraction layer will 

be: 

𝛿(y) = 𝛿(x).                                                   (2.22) 
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CHAPTER 3 

ADAPTIVE MORPHOLOGICAL LAYER 

 

In the applications of mathematical morphology, deciding the proper operation is also 

a tough and time-consuming task. Especially there are various of morphological 

operations, such as dilation, erosion, opening, closing, etc. It is not difficult to make the 

decision on choosing dilation or erosion due to dilation enlarges the object in the image 

when erosion shrinks the object in the image. Yet, it is a time-consuming task when 

makes the decisions on large scale images dataset due to various features of the images 

and the needs. 

We can observe from the expression soft maximum and soft minimum functions 

that they are extracting maximum and minimum pixels in same way except soft 

minimum is the opposite of soft maximum. Therefore, the 𝑗-th pixel on the output 𝑧 ∈

ℝ@ of the dilation and erosion layer (we can name it as adaptive morphological layer) 

can be represented by: 

𝑧D = 𝑠𝑖𝑔𝑛(x) ∙ ln(∑ 𝑒EK{@(6)∙4J6J@
KLM ) + 𝑏,                             (3.1) 

where 𝑎  is an extra trainable variable aside from 𝜔K  and 𝑏 . If 𝑠𝑖𝑔𝑛(𝑥)  is +1 , the 

operation of current layer would be dilation; if 𝑠𝑖𝑔𝑛(𝑥) is −1, the operation of current 

layer would be erosion; otherwise, the operation of current layer neither will be dilation 

nor erosion. However, the sign function is not a continuous function and not differential 

so it cannot be introduced to the neural network. Then the smooth sign function can be 

adopted to replace the sign function. Note that there are various functions smooth in the 

interval [−1,1], such as soft sign function, hyperbolic tangent function, etc. Equation 

(3.2) and (3.3) show the soft sign function and hyperbolic tangent function. 

𝑓(𝑥) = 6
Mt|6|

                                                    (3.2) 
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𝑔(𝑥) = `aP`�a

`at`�a
                                                  (3.3) 

Therefore, we introduce hyperbolic tangent function and soft sign function to 

the adaptive morphological layer by replacing sign function with them. Then the 𝑗-th 

pixel on the output 𝑧 ∈ ℝ@ of the adaptive morphological layer in two ways: 

𝑧D =
�

Mt|�|
∙ ln(∑ 𝑒

�
21|�|∙4J6J@

KLM ) + 𝑏,                              (3.4) 

or 

𝑧D =
`�P`��

`�t`��
∙ ln(∑ 𝑒

������

��1���∙4J6J@
KLM ) + 𝑏,                        (3.5) 

where is a trainable variable, and 𝑎 ∈ ℝ. 𝜔K is also the 𝑖-th pixel in the sliding window, 

𝑏 is the bias.  

In the comparison of the soft sign function and hyperbolic tangent function, Fig. 

3.1 shows the figure of soft sign function and tanh function, it can be observed that 

value of both functions lie on the interval [−1,1]. Hyperbolic tangent function reaches 

−1 and +1 ahead of soft sign function in that the value of soft sign function is around 

−0.8 when tanh function reaches −1, similarly, the value of soft sign function lies on 

around 0.8 when tanh function almost reaches +1. Clearly, the gradient of the soft sign 

is always smaller than hyperbolic tangent function from the figure. Therefore, 

hyperbolic tangent function increases faster than soft sign function. If not considering 

the computing speed, the hyperbolic tangent function will have better performance than 

the soft sign function theoretically. 
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Figure 3.1 The soft sign function and hyperbolic tangent function. 

 

 Having the adaptive morphological layer, we can determine the correct single 

morphology operation by a single layer neural network, which consist of one adaptive 

morphological layer. The input of the single layer adaptive morphological neural 

network are the original images, the target images are dilated or eroded images. After 

feeding in batches of images data, the network minimizes the distance between network 

outputs and target images. If the value of soft sign function or hyperbolic tangent 

function approaches +1, the neural network will predict that the target images are 

dilated images; if the value of soft sign function or hyperbolic tangent function 

approaches −1, the neural network will predict that the target images are eroded images; 

otherwise, the neural network will predict that the target images are neither dilated 

image nor eroded images. 

The gradient of the adaptive morphological neural network will also be updated 

by back-propagation with the chain rule. The weight is being updated by gradient 

descent, which is a typical optimization algorithm for neural network. Assume that the 

objective function of such neural network is 𝐽(𝜔, 𝑏, 𝑎; 𝑦, 𝑦j), where 𝜔 is the weight, 𝑏 

is the bias, 𝑎 is a trainable variable for indicating the morphological operations, 𝑦j is the 

output of the network, and 𝑦 is the label of the network. The gradient 𝛿(l) of the 𝑙-th 

layer with respect to weight 𝑎 is: 
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𝛿(l) = op(4,g,�;q,qj)
o�(r)

= op(4,g,�;q,qj)
ou(r)

ou(r)

�(r)
= op(4,g,�;q,qj)

ou(r)
𝜑w(𝑎),             (3.6) 

where 𝜑(∙) is the soft sign or hyperbolic tangent function. 

Assume that the learning rate is 𝜂, the weight 𝑎 of the 𝑙-th layer will be updated 

by: 

𝑎(l) = 𝑎(l) − 𝜂𝛿(l).                                             (3.7) 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

 

Our implementation is done by the keras, the experiments are based on 4-GPU system, 

which equipped with four NVIDIA Titan X GPUs. We present our experimental results 

on MNIST, self-created geometric shapes dataset, GTSRB (German Traffic Sign 

Recognition Benchmark) dataset [15]. 

MNIST dataset is a database consist of 70,000 examples of handwritten digits 

0~9. It has 60,000 training images, and 10,000 testing images. They are all 28 × 28 

gray scale images in 10 classes.  

Self-created geometric shapes dataset is created by Python PIL library due to 

the limited resources of public geometric shape database. The images in this database 

are all 64 × 64 grayscale images. There are 5 classes: ellipse, line, rectangle, triangle, 

and five-edge polygon. The white shape object is randomly drawn on a black 

background, their size, position, and orientation are randomly initialized. In the training 

set, each class has 20,000 images, 100,000 images in total. In the testing set, each class 

has 5,000 images, 20,000 images in total. Fig. 4.1 shows examples from this database. 

 

Figure 4.1 The sample image from three dataset we adopt in experiments. The first row 
shows images from MNIST. The second row are the images from self-created 
geometric shapes. The third row are the images from GTSRB dataset. 
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GTSRB (German Traffic Sign Recognition Benchmark) [15] is a single- 

image, multi-class classification problem, there are 42 classes in total. The images 

contain one traffic sign each and each real-world traffic sign only occurs once. We 

resized all the images into 31 × 35, and select 31,367 images for training, 7,842 images 

for testing. During the preprocessing, we converted all the images to grayscale images. 

 

4.1 Results on Deep Morphological Neural Network 

We present the experimental results on MNIST in this part. In our experiment, we 

applied 10,000 images for training progress. 

 

4.1.1 Learning the Binary Structuring Elements 

After applying the improvement of MorphNet, we can successfully correct the error in 

Fig. 2.2. 

When learning a single binary structuring element, we construct single layer 

morphological neural network shown in Fig. 1, adopt MSE (Mean squared error) to 

measure the distance between the target images and predictions of the neural network. 

The target images are created by applying dilation or erosion on the original input 

images. We were minimizing the distance between predictions and target images by 

mini-batch SGD [8] with a batch size of 64, the learning rate is 𝜂 = 7.50. 

Fig. 4.2 shows the results after improvement, it is easy to see that Fig. 4.2 (a) 

and (b) are all the same. 
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(a) 

 

(b) 

Figure 4.2 The original structuring elements applied on input images and the 
structuring elements learned by the single dilation layer MorphNet after the 
improvement. (a) The diamond 3 × 3 structuring element, crossing 5 × 5 structuring 
element, horizontal line 1 × 5 structuring element applied to input images when created 
target images; (b) the corresponding structuring elements learned by single dilation 
layer morphological neural network after improvement. 
 

4.1.2 Learning the Gray Scale Structuring Elements 

We showed the result of learning the binary structuring elements by improved 

morphological neural network. But the grayscale morphology differs from binary 

morphological operations [14], and we’ve proved that morphological layer can simulate 

the grayscale morphology in theory. Therefore, we will show the effectiveness of 

morphological neural network on grayscale morphology by experiments in this part. 

Similar to the procedure of learning the binary structuring elements, the target 

images are created by applying dilation or erosion on the original input images, the 

distance between predictions of neural network and target images is measured by MSE 

(Mean squared error). We were minimizing the distance between predictions and target 

images by mini-batch SGD with a batch size of 64, the learning rate is 𝜂 = 10.00 for 

learning eroded images, and 𝜂 = 7.50 for learning dilated images. 

After 20 epochs, the MSE loss was being minimized to be around 5.19 × 10Px 

when training dilation. Fig. 4.3 (a) shows the result for learning dilation by single 

dilation layer morphological neural network. The target images and the output of the 

network is visually equal by human eyes. When the single erosion layer morphological 

neural network minimizes the MSE loss to be around 5.84 × 10Px. Fig. 4.3 (b) shows 
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the result for single erosion layer morphological neural network. The single erosion 

layer morphological neural network can also learn the same output of the network as 

the target images. 

 

                                 (a)                                                                (b) 

Figure 4.3 The result for gray scale structuring elements on MNIST dataset. The first 
row shows the original images, the second row shows the target images, and the third 
row shows the output of the network after training 20 epochs. (a) shows the result of 
learning dilation; (b) shows the result of learning erosion. 
 

4.1.3 Learning the Multiple Morphological Operations by DMNN 

In mathematical morphology, opening and closing are also important morphological 

operations. Assume that dilation is denoted by 𝐴 ∙ 𝐵, where 𝐴 is the original image and 

𝐵 is the structuring element, and erosion is denoted by 𝐴 ∘ 𝐵, where 𝐴 is the original 

image and 𝐵 is the structuring element. The opening will be denoted by (𝐴 ∘ 𝐵) ∙ 𝐶, 

where 𝐴 is the original image and 𝐵 and 𝐶 is the structuring element. The closing will 

be denoted by (𝐴 ∙ 𝐵) ∘ 𝐶, where 𝐴 is the original image and 𝐵 and 𝐶 is the structuring 

element. Therefore, we construct two-layer DMNNs to learn opening and closing 

operations. 

When learning opening, we random initialize a 3 × 3 structuring element to 

create the target images. Then we construct a two-layer DMNN with an erosion layer, 

and a dilation layer after the erosion layer. When learning closing, we also random 

initialize a 3 × 3 structuring element to create the target images, then construct a two-
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layer DMNN with a dilation layer, and an erosion layer after dilation layer. We learn 

opening and closing operations by these two DMNNs.  

For training, we also adopted mini-batch SGD algorithm, the batch size is set to 

be 64, and the learning rate is 𝜂 = 10.0. The loss will converge in 10 epochs when 

learning opening and closing. Fig. 4.4 shows the experimental results for learning 

opening and closing. 

 

                                    (a)                                                              (b) 

Figure 4.4 The result for learning the opening and closing operations by DMNN. The 
first row shows the original images, the second row shows the target images, and the 
third row shows the output of the network after training 20 epochs. (a) shows the result 
of learning opening, (b) shows the result of learning closing. 
 

From Fig. 4.4 (a) and (b), it is easy to see that the target images and predictions 

of DMNN is visually identical. 

 

4.1.4 Morphological Residual Neural Network for Classification 

We present our result of classification on MNIST, self-created geometric shapes, and 

GTSRB dataset. 

For training, we used mini-batch algorithm, the batch size is 64 and the learning 

rate is 𝜂 = 0.0001. We follow the architecture shown in Fig. 2.5, and the configuration 

in Table 3.1. The morphological residual can converge in 10 epochs when training on 

self-created geometric shape dataset, and converges in 70 epochs when training on 
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GTSRB dataset. The testing accuracy of the morphological residual is 98.89% on self-

created geometric shape dataset, and 95.35% on GTSRB, and 98.93% on MNIST 

dataset. We added a dropout layer after the second fully-connected layer due to the 

overfitting problem when training on the GTSRB, the testing accuracy increased to 

96.49%. Table 4.1 shows the configurations of morphological residual neural networks 

when training on three datasets, 𝑎 indicates the number of filters applied in each layer. 

 

Table 4.1 Comparison of Morphological Residual in Three Datasets 

 MNIST Self-created 

Geometric Shapes 

GTSRB 

Erosion layer 3 × 3 × 𝑎 3 × 3 × 𝑎 3 × 3 × 𝑎 

Dilation layer 3 × 3 × 𝑎 3 × 3 × 𝑎 3 × 3 × 𝑎 

Subtraction layer 28 × 28 × 𝑎 64 × 64 × 𝑎 64 × 64 × 𝑎 

Fully-connected 

layer 

120 1024 1024 

Fully-connected 

layer 

84 512 512 

Output 10 5 43 

 

Morphological residual has great classification rate on self-create dataset and 

real images dataset. We modify LeNet [15], and name it as Modified LeNet (MLeNet). 

Table 4.2 shows the configuration of MLeNet. In MLeNet, we add one more 

convolutional layer to extract more features, decrease the size of the filters from 5 × 5 

to 3 × 3 to save parameters. 

 

Table 4.2 Configuration of MLeNet 
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 Input 

1 Convolutional layer 3 × 3 × 16 

2 Max pooling 2 × 2 

3 Convolutional layer 3 × 3 × 32 

4 Max pooling 2 × 2 

5 Convolutional layer 3 × 3 × 64 

6 Max pooling 2 × 2 

7 Fully-connected 2048 × 1 

8 Fully-connected 1024× 1 

9 Softmax 

 

Table 4.3 Comparison of Morphological Residual with State-of-Art Convolutional 
Neural Network 

Classifier Dataset Testing accuracy Number of 

parameters 

MCDNN [2] MNIST 99.77% 2,682,470 

Morphological 

residual 

MNIST 98.93% 104,181 

MLeNet Self-created 

geometric shapes 

99.50% 10,493,795 

Morphological 

residual 

Self-created 

geometric shapes 

98.89% 4,721,175 

MLeNet GTSRB 

(Grayscale) 

97.94% 4,202,339 

Morphological 

residual 

GTSRB 

(Grayscale) 

96.49% 1,594,903 
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When 𝑎 = 1 , table 4.3 shows the comparisons with the state-of-the-art 

convolutional neural network on our current result. Although morphological residual 

loses on the testing accuracy compared to state-of-the-art convolutional neural network, 

morphological residual has much fewer parameters. We significantly cut off the number 

of parameters of the deep neural network and provide a tradeoff between the number of 

parameters and the testing accuracy. Especially in the feature extraction layers (the 

weights layers except for fully connected layers, such as convolutional layer and 

morphological layer), morphological residual has only 20 parameters in total, we show 

the comparison of the number of parameters in feature extraction layer of 

morphological residual with state-of-art convolutional neural network in table 4.4. 

From table 4.3 and 4.4, we can observe that morphological residual uses much fewer 

parameters in feature extraction, but does not lose too much accuracy compared to 

convolutional neural networks. Morphological residual has great a tradeoff between the 

efficiency of extracting features from image contents and testing accuracy. 

We conclude that morphological residual is efficient in extracting features, and 

saves parameters of trainable weights of the neural net. 

 

Table 4.4 Comparison of Number of Parameters in Feature Extraction Layer of  
Morphological Residual with State-of-Art Convolutional Neural Network 

Model Number of parameters in feature 

extraction layers 

Morphological residual 20 

MLeNet 2,912 

MCDNN 739,900 
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Moreover, we show the advantages of morphological layers in shape 

classification task. We construct a CNN that has same configuration as morphological 

residual neural network, and compare its performance with morphological residual 

neural network on classification. 

 Table 4.5 shows the configuration of the CNN that we construct in the 

comparison with morphological residual neural network, we name it as residual CNN. 

𝑏 indicates the number of filters in each layer. 

 

Table 4.5 Configuration of Residual CNN 

 Input 

1 Convolutional layer 3 × 3 × 𝑏 

2 Convolutional layer 3 × 3 × 𝑏 

3 Subtraction layer 3 × 3 × 𝑏 

4 Fully-connected 2048 × 𝑏 

5 Fully-connected 1024× 𝑏 

6 Softmax 

  

Table 4.6  shows the comparison of residual CNN and morphological residual 

neural network on the classification tasks. 

 

Table 4.6 Comparison of Morphological Residual and Residual CNN 

 Morphological 

residual (𝑎 =

1) 

Residual CNN 

(𝑏 = 1) 

Morphological 

residual (𝑎 =

16) 

Residual CNN 

(𝑏 = 16) 

MNIST 98.93% 97.14% 97.78% 98.18% 



 28 

Self-created 

geometric 

shapes 

98.89% 98.25% 98.90% 98.91% 

GTSRB 96.49% 90.60% 97.48% 93.39% 

 

 In table 4.6, when 𝑎 = 1 and 𝑏 = 1, morphological residual neural network has 

better testing accuracy on all three datasets than residual CNN; when a= 16 and 𝑏 =

16, morphological residual has better testing accuracy on GTSRB dataset. Therefore, 

morphological layer performs better than convolutional layers if both neural networks 

have same structure. Especially on GTSRB dataset, morphological layer significantly 

improves the testing accuracy. It indicates that morphological layer has advantages on 

classifying shapes, and can gain shape information more efficient. 

 

4.2 Results on Detecting Morphological Operations by  

Adaptive Morphological Neural Network 

In this section, we random selected 10,000 images from the MNIST dataset for 

training. We applied dilation or erosion on the original images to get the target images 

(unknown to the neural network), the target images can be considered as desired result 

images in industrial applications. 

We were using mini-batch SGD to optimize the network, the batch size is 64, 

and the learning rate is 𝜂 = 10.0 . We construct a morphological neural network 

consists of one adaptive morphological layer. We also measure the distance between 

the predictions and the target images by MSE loss. 

 After 20 epochs, the single adaptive morphological neural network converges, 

the MSE loss between the target images and the prediction decreases to around 

3 × 10Px. We test both (3.4) and (3.5) with the same configuration of the network, 
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optimization method, epochs, loss function and learning rate. When evaluating the 

results, if the value of the smooth sign function larger than 0.8 but not larger than 1.0, 

we would round it off to 1.0, if the value of the smooth sign function smaller than -0.8 

but not smaller than -1.0, we would round it off to -1.0. Due to the properties of two 

smooth sign function we adopt, the value of smooth sign function will not exceed the 

interval [−1,1].  

 We train the single adaptive morphological layer neural network 100 times each 

on two smooth sign function and dilated target images, eroded target images, it achieved 

100% detection accuracy on detecting dilation and erosion both by soft sign function 

and hyperbolic tangent function. 
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CHAPTER 6 

CONCLUSIONS 

 

We have presented the framework of deep morphological neural network. After the 

improvement, the morphological layers can learn the correct binary structuring 

elements and equivalent non-flat structuring elements. We provide the architecture of 

morphological residual neural network for shape classification. Morphological residual 

neural network achieves a great tradeoff between model accuracy and number of 

parameters, and significantly decreases the model parameters. We also show the 

advantages of morphological layer in extracting shape features of objects in images. 

The adaptive morphological layer provides a tool to determine the proper morphology 

operations from original images and desired result images, the adaptive morphological 

neural network can automatically learn single morphology operation by a single 

adaptive morphological layer. Deep morphological neural network provides a non-

linear feature extraction layer for deep learning frame work, and also solutions to 

cumbersome image morphology industrial applications. 
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