

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

MULTIFRAME CODED COMPUTATION
FOR DISTRIBUTED UPLINK CHANNEL DECODING

by
Brinell F. Monteiro

The latest 5G technology in wireless communication has led to an increasing demand

for higher data rates and low latencies. The overall latency of the system in a cloud

radio access network is greatly affected by the decoding latency in the uplink channel.

Various proposed solutions suggest using network function virtualization (NFV). NFV

is the process of decoupling the network functions from hardware appliances. This

provides the flexibility to implement distributed computing and network coding to

effectively reduce the decoding latency and improve the reliability of the system.

To ensure the system is cost effective, commercial off the shelf (COTS) devices are

used, which are susceptible to random runtimes and server failures. NFV coded

computation has shown to provide a significant improvement in straggler mitigation

in previous work. This work focuses on reducing the overall decoding time while

improving the fault tolerance of the system. The overall latency of the system can be

reduced by improving the computation efficiency and processing speed in a distributed

communication network. To achieve this, multiframe NFV coded computation is

implemented, which exploits the advantage of servers with different runtimes. In

multiframe coded computation, each server continues to decode coded frames of

the original message until the message is decoded. Individual servers can make up

for straggling servers or server failures, increasing the fault tolerance and network

recovery time of the system. As a consequence, the overall decoding latency of a

message is significantly reduced. This is supported by simulation results, which show

the improvement in system performance in comparison to a standard NFV coded

system.

MULTIFRAME CODED COMPUTATION
FOR DISTRIBUTED UPLINK CHANNEL DECODING

by
Brinell F. Monteiro

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Telecommunications

Helen and John C. Hartmann Department of Electrical and Computer
Engineering

May 2019

APPROVAL PAGE

MULTIFRAME CODED COMPUTATION
FOR DISTRIBUTED UPLINK CHANNEL DECODING

Brinell F. Monteiro

Dr. Joerg Kliewer, Thesis Advisor Date
Professor, New Jersey Institute of Technology

Dr. Ali Abdi, Committee Member Date
Professor, New Jersey Institute of Technology

Dr. Alexander Haimovich, Committee Member Date
Distinguished Professor, New Jersey Institute of Technology

BIOGRAPHICAL SKETCH

Author: 	 Brinell F. Monteiro

Degree: 	 Master of Science

Date: 	 May 2019

Undergraduate and Graduate Education:

• Master of Telecommunications,

New Jersey Institute of Technology, Newark, NJ, 2019

• Bachelor of Electronics and Telecommunication Engineering,
Don Bosco Institute of Technology, Mumbai University, India, 2016

Major: 	 Telecommunications

iv

From not being able to add 2+2 to completing a Master’s
Degree in Telecommunications with a thesis, you know I
could not have done it without you! You always told me
that ”Jack of all trades, master of none” was not meant
for me because I could master it all. And you sure were
right! I did it ’ma’! With God’s help and your support,
I found the patience and perseverance to complete this
work! I dedicate this work to you mom, I know it’s not
an Oscar but it definitely feels like one!

Brinell F Monteiro

v

ACKNOWLEDGMENT

When the going gets tough, the tough gets going! I learnt this the hard way and this

journey would not have been possible without the guidance and support of my thesis

advisor Dr. Joerg Kliewer, who motivated me to take on the toughest of problems.

Thank you for giving me the opportunity to pursue a master’s thesis, for believing

in me and encouraging me to aim high. I have learnt so much more than the ability

to do quality research such as patience, perseverance and how to use every failure

as a stepping stone. Thank you to Dr. Alexander Haimovich and Dr. Ali Abdi for

being a part of my thesis committee and an inspiration to us all through your work

and support. A special thanks to Dr. Roberto Rojas Cessa for the exceptional career

guidance and support throughout my Masters. It is very easy to lose sight of the

destination but you helped me stay on track and gave me the hope to try harder,

you have truly been the best mentor and guide. I would also like to thank Dr. James

Geller, for all the support and advice.

I thank all the students and faculty in the Center for Wireless Information

Processing for all the help, especially Salman Habib for helping me think about

the problem in more detail, Malihe Aliasgari for guiding me through the background

work, Sarah Obead for her advice and inspiration, Alireza Bagheri for the motivation,

Ishhanie Majumdar and Chen Yi for all the help and Anushreya Ghosh for being a

great friend through this journey. I thank my mom, dad and brother for everything

they have done to make this a possibility and for encouraging me till the end. Thank

you Sancho Felix for believing in me and helping me stay focused. And thank you to

all my friends that stood by me even when I had lost all hope. Last but not the least

I would like to thank NJIT for all I have learned at this institution and for shaping

me from a student into a professional.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Literature Review . 1

1.2 Cloud Radio Access Network (C-RAN) 3

1.2.1 Uplink Channel . 5

1.2.2 Cloud Computing . 7

1.2.3 Distributed Computing . 11

1.3 Network Function Virtualization (NFV) 13

1.3.1 Resource Virtualization . 14

1.3.2 NFV in 5G . 14

1.4 Channel Coding . 15

2 NFV CODED COMPUTATION . 19

2.1 System Model . 19

2.1.1 Message Encoding . 21

2.1.2 Channel Characteristics . 22

2.1.3 Cloud Decoding . 22

2.1.4 NFV Decoder . 23

2.2 Straggler Mitigation . 24

2.3 Linear Block Codes . 25

2.3.1 LDGM Codes . 28

2.3.2 Rateless Coding . 30

3 MULTIFRAME CODED COMPUTATION 31

3.1 Decoding Latency . 33

3.2 Error Probability . 35

4 EXAMPLE AND RESULTS . 37

5 DISCUSSION . 41

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

5.1 Benefits . 41

5.2 Limitations . 42

6 CONCLUSION . 43

REFERENCES . 44

viii

LIST OF FIGURES

Figure Page

1.1 C-RAN Architecture. 4

1.2 Distributed Computing. 12

1.3 Network Function Virtualization. 13

1.4 Error Probability in a noiseless channel. 16

1.5 Error Probability in a BSC. 16

1.6 Channel Coding. 17

2.1 System model. 20

2.2 Encoded Message. 21

2.3 BSC Channel. 22

2.4 Cloud decoding. 23

2.5 NFV Decoder. 23

2.6 Random runtime of servers. 25

2.7 Codeword with a systematic structure. 25

2.8 Dependency graph for Gc(2, 3). 27

2.9 Chromatic number of the dependency graph for Gc(2, 3). 27

2.10 Dependency graph of the (8,16) LDGM code. 29

3.1 Multiframe coded computation. 31

4.1 Decoding latency vs FUP for both a standard NFV and a multiframe
NFV model. Parameters: N1 = 3, N2 = 8,L1 = 252, L2 = 504,K1 = 2,
K2 = 4, dmin,1 = 2, dmin,2 = 3, r = 0.5, n = 252, δ = 0.07, µ = 1, a = 1. 37

4.2 Decoding latency vs FUP for both a standard NFV and a multiframe
NFV model. Parameters: N = 16, L = 1008, K = 8 r = 0.5, n = 252,
δ = 0.07, µ = 1, dmin = 3, a = 1. 39

4.3 Decoding latency vs FUP for both a standard NFV and a multiframe
NFV model comparing variance. Parameters: N = 16, L = 1008,
K = 8 r = 0.5, n = 252, δ = 0.07, µ = 1, dmin = 3, a = 1. 40

ix

CHAPTER 1

INTRODUCTION

1.1 Literature Review

The advancement in wireless communication systems has led to an increasing

demand for higher data rates and low latencies. The latest 5G technology aims

at improving the processing speed and fault tolerance of a network. In the

year 2010 China Mobile Research Institute introduced the cloud radio access

network (C-RAN) architecture, which brought about an architectural evolution in

distributed communication systems. The centralization of information processing and

resource pooling in the C-RAN architecture opened various research opportunities to

implement virtualization techniques in the cloud. Network virtualization techniques

introduced in LTE (Long Term Evolution) technology brought about significant

improvements to the network performance as seen in [37]. Virtual machines running

network functions are replicated to improve the fault tolerance of the network. Results

from [6] show the extensive application of cloud computing and virtualization. Cloud

computation is an evolving paradigm that has greatly improved the processing speed

of networks by implementing network function virtualization (NFV) techniques in

distributed computing. The most essential characteristic of cloud computing as

defined in [26] is its ability to provide computing capabilities such as processing

time and data storage on-demand. In a cloud radio access network, NFV provides

solutions to scalability problems by offloading baseband functions such as uplink

channel decoding to the cloud. In terms of latency, the uplink channel decoding is an

expensive baseband function as seen in [4]. To ensure the upcoming technologies are

cost effective, commercial off-the-shelf (COTS) devices are used in order to provision

cloud computing. The use of COTS hardware decreases the efficiency of the system as

1

the devices are more susceptible to malfunctions and random execution time. Coding

techniques are used in distributed computing as a method to mitigate straggling

servers and server failures as seen in [34]. Coded computation adds redundant

overhead which increases the processing time while decoding the information in the

cloud. However, in [21] we see that coded computation in distributed computing

has proven to improve the overall system performance. Since the processing time

of each server varies, the decoding latency is dependent on the processing speed

of individual servers. This allows straggling servers to increase the decoding time

significantly. In addition to straggling servers, the network is also susceptible to

faults in the network such as server downtime as described in [20]. The decoupling of

network functions from the hardware using NFV provides the flexibility to implement

coding techniques to reduce the decoding latency in the uplink channel. NFV coded

computation introduced in [3] has proven to reduce the decoding latency by mitigating

the work done by straggling servers. In this work, the standard NFV coded model

is improved using a multiframe coded computation scheme that allows each server to

process multiple frames of the same message. The multiframe model further reduces

the decoding latency and improves the fault tolerance of the network.

Various solutions have been suggested to improve the reliability of distributed

computing such as replicating the work on multiple servers as described in [11]

and [35] or replication of virtual machines to run network functions as proposed in

[27]. Network function virtualization (NFV) leverages flexibility to open network

capabilities to address various challenges, offering new strategies to design and

manage networks. Coded NFV as suggested in [8] enhances the robustness of channel

decoding by using the algebraic structure of the transmitted coded message. Diversity

based solutions are proposed in [2] by using channel coding to alleviate problems in

virtual network functions. Novel coded computing techniques are used to overcome

this problem by systematically addressing the performance analysis in a standard

2

coded NFV model used for C-RAN uplink decoding. Using this scheme provides a

substantial gain in using a software based virtual network such as the cloud over

traditional hardware based platforms. One of the main advantage is that the fault

tolerance of the network increases, making it more flexible to use COTS devices.

The makes the system cost effective. However using these COTS devices as servers

to perform decoding in the cloud causes processing delays due to their random

runtimes. Using coded computing to achieve reliability and low decoding latency

in cloud computing is analyzed in detail in [3]. Key concepts from [3] are used to

model the system in this work. By using suitable erasure codes operating over a

fraction of the original information, a function can be completed without having

to wait for all the servers to complete decoding. While this scheme works well to

overcome straggling servers, the system is tolerant to a small number of stragglers.

One of the suggested solutions to this problem would be to use rateless codes for load

balancing in distributed computing. Rateless codes mitigate the redundant work done

by stragglers, making the system much more efficient as suggested in [23]. This is

done by allowing servers with lesser processing time to decode more than one packet

without the master server performing any dynamic load balancing.

1.2 Cloud Radio Access Network (C-RAN)

In a traditional radio access network a connection is established between the base

station and the user. In the C-RAN network, the model is shifted from individual

baseband units (BBU) to a centralized control and processing terminal, referred to

as a BBU pool. The baseband resources required by the remote radio units (RRU)

are pooled together and made available at a centralized location. The BBU pool is

connected to the RRUs using high speed optical fiber. C-RAN is cloud computing

environment that dynamically handles interconnections within the network using

hardware and interface cards. With the upcoming technologies such as 5G and IoT,

3

C-RAN plays a significant role the network architecture, enabling easy deployment,

scalability and transition in technology as seen in [5]. C-RAN architecture supports

more users and provides better management and control solutions as described in

[14].

RRU RRU RRU

BBU Pool

Figure 1.1 C-RAN Architecture.

The CRAN architecture introduced by China Mobile Research Institute is the

concept of a collaborative, centralized, clean and cloud radio access network. The

architecture consists of a distributed base station network. C-RAN network has a

large coverage area, serving way more consumers than a traditional base station. As

defined in [30] a centralized base band unit (BBU) is connected to a many remote

radio units (RRU) via a fronthaul link. The BBU performs digital processing of the

information such as baseband processing and packet processing. The RRU performs

radio functions such as amplifying the signal, frequency conversion and analog to

digital data conversion or vice versa. Centralization is the aggregation of more

than one BBU into a single location. This improves the efficiency of the operation

and control at the BBU by enabling resource pooling and advanced virtualization

technologies. It also reduces the work load at the RRU, allowing deployment of

4

distributed RRUs especially in remote locations such as the edge of the network. Due

to the centralization of the BBU, collaboration is possible between BBU processes

such as information exchange and extensive computation. However this tends to

increase the latency of the system due to the fronthaul transmission between the

RRU and BBU. In such a network the control plane and the data plane are separated

to reduce the latency. The RRU performs retransmission control decisions while the

BBU performs data processing and decoding. The concept of integrating software

and hardware in a logical and physical completeness separated from the consumer is

adapted from cloud computing as in [14]. Distributed computing and virtualization

techniques are used to process the information received at the BBU. By adopting

the C-RAN architecture the spectral efficiency, as well as the energy efficiency of

the network is improved as seen in [6], benefiting both the service providers as well

as the consumers. The benefits of C-RAN as seen in [33] are reduction in cost,

improved energy efficiency, better utilization of the spectrum, and transformation

of the business model. The data processing depends largely on the quality of the

communication channel and not solely on the information bits.

1.2.1 Uplink Channel

As seen in [33], let the number of BBUs in a network by K. The number of users in

each BBU is M . The channel between the BBU and the users is given by a complex

coefficient matrix H. The complex precoding matrix for the BBUs is W and the

power allocation matrix is represent by P . Let x represent the signal for all M users.

The received signal at a BBU is given by

y = HW
√
Px+ n, (1.1)

where the quantity n = is an i.i.d. Gaussian noise vector such that n ∼ CN (0, I). In

order to calculate the weighting coefficients for the distributed antennas in different

5

BBUs, precoding and power allocations are performed. Iterative decoders that use

capacity approaching codes such as low density parity check codes (LDPC) or turbo

codes are commonly used. The system complexity is directly proportional to the

number of decoding iterations. However, executing more iterations can potentially

correct more errors thus allowing the system to operate at a low SNR. These decoders

dominate the computational complexity for the uplink channel, requiring a lot more

operations than a single process. The expected decoding complexity as proposed in

[30] is given as

C(γ,∆γ) ≈
r(γ,∆γ)

log2(ζ − 1)

[
log2

(
2− ζ
K ′

log10(ε̂channel)

)
− 2log2lk(γ,∆γ)

]
, (1.2)

where the quantity ε̂channel is the channel outage constraint and lk(γ,∆γ) = log2(1 +

γ)−r(γ,∆γ). The parameters ζ and K ′ are related to the connectivity of the decoder

when represented as a graph. The computational effort required by a receiver with

an iterative decoder is linear in the number of information bits and the number of

iterations. To overcome the noise in the uplink channel the message is encoded using

an LDPC code which is decoded using iterative decoding in the cloud.

The fronthaul is the link between the RRU and the BBU connected by optical

fibers. A large amount of fibers are required for centralization on a large scale. Various

schemes are suggested in [30] such as compression techniques, wavelength division

multiplexing, optical transport networks and microwave transmission. Practical

fronthaul has technology capacity or time delay constraints. As suggested in [29],

compression and large scale pre-coding and decoding with low overhead is required to

overcome the disadvantages of C-RANs imposed by the fronthaul constraints. Each

RRU in the uplink forwards a compressed version of the received signal as a soft

relay to the central BBU pool through the fronthaul link that has limited capacity.

A combined decoding of all the users based on the received signals is performed by

the centralized BBU pool. Signals received at multiple RRUs are often statistically

6

correlated as shown in [28]. Using distributed source coding stratergies instead of the

traditional independent compression at each RRU has a significant benefit due to the

correlation in the signals. The signals received from other RRUs is leveraged as side

information, reducing the rate of the compressed stream by introducing resolvable

uncertainty into the compressed signal. This improves the quality of the compressed

signal received at the RRU. The quality of side information which is known to the

encoder, determines the amount of reduction in rate that is allowed by the system

without incurring any error during decompression. Recent work in [38] has been

able to characterize the information theoretical capacity to within a constant gap.

The uplink channel can be modeled as an instance of a general relay network with

a single destination. In this work we consider only a single RRU communicating

with a BBU to evaluate the decoding latency at the BBU for a single message. The

suggested scheme can be extended to a model with multiple RRUs sending compressed

information to the BBU pool.

1.2.2 Cloud Computing

The internet as we know it, is rapidly expanding, causing tremendous change in

the world of computing. With the introduction of modern technologies such as

machine learning and artificial intelligence the need for data storage and processing

has increased exponentially. Cloud computing is used for efficient data access and

storage as well as computation, moving the data processing and data storage from

desktops and devices into large data centers as described in [16] and [9]. Cloud

computing was introduced way back in the 1960s, by John McCarthy in [24] when

he proposed the idea to one day organize computation as a public utility. As defined

by the U.S. National Institute of Standards and Technology (NIST) in [26], cloud

computing enables convenient, ubiquitous, and on-demand access to the network.

The computing resources are shared by a pool of users and can be provisioned rapidly

7

without any interaction with the service provider. Cloud computing includes software

services, hardwarde services as well as deployment models. The hardware and

software present at the data centers is what constitutes the cloud as in [18]. A cloud

can be available to a single organization, multiple organizations or both. Amazon

Web Services is one of the largest cloud services currently available to multiple

organizations. Cloud computing has provided opportunities for evolving technology

to multiple companies in the Information Technology (IT) and Telecommunication

industry. Companies such as Google are striving towards providing reliable, powerful

and cost-effective cloud platforms. Computing service users do not need to invest in

developing and maintaining IT infrastructure. Instead they pay providers only when

they need to access the computing services. The various challenges that need to be

addressed also open opportunities for research as described in [36]. An application

is developed based on three essential building blocks, a model for computation,

storage and communication. Cloud computing integrates existing technologies to

provide an operational model that meets the technical and economic requirements

of businesses across industries. Cloud computing is mainly aimed at improving the

effective utilization of distributed resources and pooling the resources to achieve a

much higher throughput and ability to process large scale computation. As seen

in [16] cloud technology enables virtualization of resources, maintaining quality of

service, providing scalable solutions and ensuring interoperability.

A cloud computing system can be explained with the help of a few essential

characteristics as described in [26] and [10]. To facilitate a clear understanding of

cloud computing we define key element of the system. The NIST has developed

standards, guidelines and minimum requirements to provide consistency across the

industry. The following characteristics are provided by NIST in [26] as a standard

definition for cloud computing. As per [26] the essential characteristics are as follows.

1. On-Demand Self-Service

8

Cloud computing capabilities such as processing time and data storage are provisioned

unilaterally as needed by a user without any interaction of a service provider. This

is possible with the help of automation. A consumer is expected to perform all the

necessary actions to acquire the resources by itself. This request is then automatically

processed by the cloud and the resources are made available to the consumer to use.

This requires a huge amount of planning and infrastructure management. With the

help of virtualization technologies the process of on-demand self-service has become

more flexible and feasible.

2. Broad Network Access

Computing capabilities hosted by a cloud should be accessible over a wide network

range that promote its usage over various heterogeneous platforms such as smart-

phones, desktops, laptops. Network access should be available to any location that

offers online access. Creating a cloud with a vast network access raises a number

of security concerns. However since most consumers use mobile devices the cloud

network is intended to reach as many consumers as possible.

3. Resource Pooling

Infrastructure is quite expensive and difficult to modify once installed. Cloud

computing resources such as processing time, bandwidth and data storage provided

by a service provider are pooled using a multi-tenanat model to service the increasing

demand of multiple consumers. Physical resources are virtualized so that based on

the consumer needs they can be dynamically allocated. The consumer does not have

any knowledge of the location of these resources but can specify their requirement at

the desired location. Each consumer is isolated from the other but share the same

underlying resource. This provides a layer of abstraction between the consumers and

the resources. Large scale IT resources are pooled in this way to service a growing

number of consumers. Advanced virtualization technologies have made this process

scalable and efficient to a high degree. It enables service providers to use the existing

9

resources in a cost effective and efficient way.

4. Rapid Elasticity

The computation capability should be allocated and released automatically or

elastically in such a way that the resources appear to be infinite to a consumer. At any

given the time the consumer should be able to access any amount of resources. The

resources need to be automated in a way to rapidly scale the outward and inward

commensurate of resources with demand. The cloud provides access instantly on

demand and releases the resources as soon as the task is complete to make it available

to other consumers, providing high scalablilty services. Allocation and re-allocation

of resources is modeled very strategically so that the provisioning is seamless to the

consumer and resources are available instantaneously.

5. Measured Service

Usage of services such as bandwidth, storage, processing time and active users need

to be constantly monitored and reported to service providers as well as consumers.

Since most resources are pooled the management and control of the usage need to be

transparent between the consumer and provider. Appropriate metering mechanisms

are adopted to measure the provisions of each individual consumer for billing and

also to evaluate the effective use of resources and planning of the system.

The advantages of cloud computing are seen in the services that the technology

provides. The cloud computing service models serve as a foundation for important

concepts in cloud computation. Each service can be developed and deployed

independently.

1. Software as a Service (SaaS)

Service providers have combined infrastructure of hardware as well as software.

Cloud computing provides the consumers capabilities to use applications running

on the infrastructure of a service provider. Applications are released on a host

device by the provider which can be accessible to the consumer through a program

10

interface or client interface from any client device such as a smartphone. The

service provider controls and manages the network infrastructure. A few applications

allow limited configuration access to consumers. Many different applications are

maintained in a single logical environment achieving high speed, maintenance, and

availability of services. Companies such Salesforce and Google provide Saas services

like salesforce.com and Google Mail.

2. Platform as a Service(PaaS)

Cloud computing provides users a full development cycles for softwares which

include programming languages, tools and libraries. Consumers can deploy acquired

applications and consumer created infrastructure onto the cloud. Consumers have

access to host applications and configure settings on the deployed applications. The

service provider controls and manages the infrastructure of a network such as servers

and operating systems.

3. Infrastructure as a Service(IaaS)

The ability to manage storage space, processing time, network access and other

resources is given to the consumer. The user can deploy and run software applications

and operating systems. The user has access to networking components such as

firewalls and hosts, but does not control or manage infrastructure in the cloud.

Cloud computing makes the system cost effective and improves the flexibility

for upcoming technologies. In this work we adopt the cloud computing model to

deploy the uplink channel decoding in the cloud.

1.2.3 Distributed Computing

The pooling of resources such as data storage and computation capability requires a

large amount of computation capacity. Since it is not practically possible for a single

server to perform computation on such a large scale the processing is divided by

multiple servers. A distributed computing system consists of one master server and

11

multiple slave servers. The master server performs administrative functions such as

allocating the frames to the slave servers for processing. The work is divided among

the slave servers and the information can be processed at a faster rate. The master

server is responsible for all control and maintenance functions, while the slave servers

process the information. Distributed computation is widely used in cloud computing

to improve the efficiency of the system and reduce the latency.

Master

Slave

Slave

Slave
Slave

Slave

Slave
Server

Server

Server

Server

Server

Server

Server

Figure 1.2 Distributed Computing.

To enable distributed computation in cloud computing, commercial off the shelf

devices (COTS) are used to ensure the technology is cost effective. The COTS devices

are susceptible to random runtimes and server failures, making the system unreliable.

Due to the random runtimes of the COTS devices the latency of the system is highly

dependent on the processing time of each individual server. This reduces the overall

latency of the system. The COTS devices are also highly susceptible to failures,

which introduce faults in the network. Improving the fault tolerance of the network

and reducing the latency introduced by stragglers is the main focus of our work.

Work has been done in the recent years to mitigate stragglers and improve the fault

tolerance of the network. One of the suggested approach to the problem is using

network function virtualization (NFV), which we will discuss in more detail.

12

1.3 Network Function Virtualization (NFV)

Network Function Virtualization (NFV) is a revolutionizing technology which enables

a new consumption model for network infrastructure. The cloud services as discussed

earlier are decoupled from their respective hardware resource and virtualized into

network functions. Service providers are transitioning into a new consumption model

based on the demand for services as described in [13]. NFV reduces operating

expenses, capital expenses and facilitates deployment of new services. The decoupling

of physical network equipment from their respective functions such as dispatching

a firewall to a service provider as an instance of plain software is an example of

implementing NFV. It is possible to consolidate various network equipment onto high

volume devices, storage and switches that can be located at the user, in distributed

networks or in large data centers. NFV provides a more efficient solution to controlling

and managing resources.

Virtualization Layer

Hardware

Network

Functions

Network

Functions

Network

Functions

Figure 1.3 Network Function Virtualization.

13

1.3.1 Resource Virtualization

A given service is decomposed into virtual network functions (VNFs). The VNFs

can later be used by software running on multiple servers as shown in [27]. Some

of the fundamental differences in network services that NFV provides is decoupling

of software from physical resources. Since the software and hardware are no

longer integrated, both can evolve independently as network elements and do

not need to depend on each other and be constrained by the limitations of one

element. The software and hardware can have separate development and maintenance

time lines. The virtualization of resources also provides flexible network function

deployment. Reassignment and sharing of infrastructure resources is possible due to

the detachment of software from hardware allowing each to services different functions

at different times. This makes deploying new network services over the same physical

infrastructure easier and faster for network operators. Resource virtualization also

enables dynamic scaling of resources. The VNF performance can be dynamically

scaled with great flexibility due to the decoupling of the network functions into

instantaneous software components such as a network operator provisioning capacity

based on live traffic.

1.3.2 NFV in 5G

As proposed in [31], NFV addresses various problems on virtualization by providing

standard virtualized technologies to present multiple network devices. Clouds

consisting of software implemented on high capacity devices can be utilized instead

of using expensive routers and switches within the network. This helps to reduce

the cost of the infrastructure, improve the power efficiency, reduce the geographical

area required to deploy the equipment and the adaptation of the devices will be

facilitated. The service operators can also have more flexibility with services based

on geographical location and user demand. The resources from other operators can

14

be pooled more effectively at the same server. The advantages of moving from a

traditional radio resources architecture, to a cloud based model for Ethernet RRUs

and wireless BBUs is discussed in more detail in [39]. NFV overcomes a few problems

in cloud computing as stated in [1] such as optimizing resource provisioning for

reduced cost and power efficiency. It also mobilizes and scales VNFs between multiple

hardware resources. The performance guarantees such as maximum allowable latency,

maximum rate of failures for the operation of VNFs is ensured using the standards

set by NFV. NFV provides great benefits in very dense networks which is a key

requirement in the upcoming 5G technology. Unlike spare networks where cell

sites make nearly autonomous radio resource management decisions as previously

implement in 4G, in dense networks the terminal connects to the network through

cluster of closest cells, which cooperatively minimize the impact of interference from

neighbor clusters to which the terminal is not connected. In this way radio resource

management decisions are logically centralized in a C-RAN architecture. Scalabilty

issues in C-RAN are solved by deploying all control decisions that require cooperation

of many cells in VNFs near the network core and rapid decisions in VNFs near

the network edge. The logical centralization enables advanced algorithms to have

access to an accurate update overview of the network status, interference maps, flow

parameters and operator preferences as seen in [15]. Mobility management functions

can base their decisions on network parameters beyond local radio quality at the cell

cite, while still providing minimal service interruptions during handovers.

1.4 Channel Coding

A noiseless channel is depicted in Figure 1.4. The input binary digit is reproduced at

the output exactly as it is seen at the input. Thus we can say that the transmitted

bit is received without any error. During each transmission, we can reliably send

15

one binary digit to the receiver. In terms of capacity we see that the capacity of the

channel is 1 bit.

0 0

1 1

Figure 1.4 Error Probability in a noiseless channel.

Communication systems usually consist of noisy channels. It is not practically

possible to send information bits from the transmitter to the receiver without error.

For this purpose we consider a binary symmetric channel (BSC) as illustrated in

Figure 1.5. At the transmitter a binary input bit is sent through the channel and its

p

p
1 p�

1 p�

0

1

0

1

Figure 1.5 Error Probability in a BSC.

corresponding output received at the receiver is equal to the transmitted bit with a

probability 1 − p. The probability that transmitted bit is received in error is given

by p. The capacity of the BSC channel in bits per transmission as given in [7] is

calculated to be

C = 1 + plogp+ (1− p)log(1− p) (1.3)

The channel capacity is the limit on the rate of information communicated over

a given channel. The limit can be achieved by using codes with infinite block length

as shown in the channel coding theorem. Since practically implementing codes with

infinite block length has various complexity limitations, it is not possible to achieve

16

full capacity of the channel. Near capacity approaching codes are used such as LDPC

codes and turbo codes are used for practical implementation.

The operation on communication networks depends on the way information is

processed. A communication network consists of nodes and links. Link in the channel

in the network which can either be wired or wireless. A node is the point where

two or more links are connected such as routers and switches. A node can forward

received information and process independent incoming information. Independently

produced data streams need not be kept separate as they traverse through the

network. The information can be combined and later be extracted as individual

elements. Combining the information allows better network traffic flow. Network

coding utilizes COTS devices to increase the network throughput as described in

[12]. Different coding techniques are used to encode and decode the original message.

In this work we use coding not only to combat the channel noise by also to decode

the message efficiently. Traditionally channel coding is used to transmit information

bits through the channel to minimize error as described in [34].

Let us consider a message U consisting of k bits u1, u2, ..., uk is to be transmitted

over a noisy channel. To combat the noise in the channel, the message is encoded

at the transmitter using a (k, n) linear block code. The output of the encoder X =

x1, x2, ..., xn is sent over the channel. The output of the channel is Y = y1, y2, ..., yn.

The receiver decodes the received message to obtain an estimate Û of the original

message. The output yi at time i depends only on the input xi at time i. Given that

Encoder DecoderChannel

cC
Message Message

Estimate

U
^

Y
(/)p y x

X U

Figure 1.6 Channel Coding.

x1, x2, ..., xn is the input, the probability that y1, y2, ..., yn is the output of the channel

17

is given in [7] as
n∏
i=1

p(yi |xi). (1.4)

A symmetric channel has a transition matrix represented by Q. As described

in [25], an r − ary symmetric channel has a transition probability matrix r × r and

qxy = ε if x 6= y, and qxy = 1− (r − 1)ε if x = y, where 0 ≤ ε ≤ 1/(r − 1). For r = 2

we get the binary symmetric channel with crossover probability ε. For r = 4 we get

Q =



1− 3ε ε ε ε

ε 1− 3ε ε ε

ε ε 1− 3ε ε

ε ε ε 1− 3ε


(1.5)

The capacity of the r-ary symmetric channel is log r − H[1 − (r − 1)ε, ε, ..., ε] =

log r + (r − 1)ε log ε + (1 − rε + ε) log(1 − rε + ε). For any ε > 0 and R < C, for

a large n there exists a code of length n and rate ≥ R with at least 2Rn distinct

codewords and an appropriate decoding algorithm such that when the code is used

on the channel, the probability of error is < ε, where C is the capacity of the channel.

For an input X to the channel, the ith channel output Y is given by the equation

Y = X + Z, (1.6)

where Z describes the channel noise. The channel capacity can be defined as

C = max
p(x)

I(X;Y), (1.7)

where the maximum is taken over the input distribution p(x).

18

CHAPTER 2

NFV CODED COMPUTATION

NFV provides the flexibility to implement coded computation in the uplink channel

decoding as proposed in [3]. Coded computation is used to improve to reliability of

the system. The coded message received in the cloud is further encoded by the master

server to overcome the delays in processing and avoid straggling of servers. Using NFV

coded computation is seen to have a notable gain in reducing the decoding latency

at the cloud. The problem of straggling servers due to COTS devices is addressed in

this chapter with the help of NFV coding solutions. NFV enables offloading critical

baseband functions to the cloud. In terms of latency, uplink channel decoding is an

expensive function. Continuous work has been done on reducing the overall latency

in the uplink channel. This thesis addresses the problem of decoding latency in

a standard NFV coded model. In this chapter we discuss the system model of a

standard NFV coded model in a C-RAN network. We model the uplink channel and

the decoding in the cloud to accommodate our proposed extension to the standard

NFV model. In the standard NFV coded model the message is encoded by the user

and transmitted over a binary symmetric channel (BSC) to the RRU. The RRU then

sends the received message via the fronthaul link to the cloud to decode the message.

The message is decoded in the cloud using NFV coded computation. An overview of

the system model considered for this work is seen in Figure 2.1.

2.1 System Model

As illustrated in Figure 2.1, the mobile user sends an encoded message to the remote

radio unit (RRU) via a binary symmetric channel. The message is then sent from

the RRU to the cloud via the noiseless fronthaul link to decode the message. The

BSC is a simple model for the uplink channel, while the the noiseless fronthaul link

19

Master

Server
Server

U

y1

y2

yN

^

(YGc)

^

^

^

Server N

User

U
DeMux

u1

u2

uK

Encoder

x1

x2

xK

z1

z2

zK

y1

y2

yK

RRU

BSC

...

Uplink Channel Encoding

Message

u1gu,1

u2gu,2

uKgu,K

Cloud Decoding
Front haul

Y
Server 1

Server 2

Figure 2.1 System model.

accounts for a deployment with higher capacity fiber optic cables. The cloud performs

decoding of the information with the help of one master server and N slave servers.

The master server encodes the received message into frames using a suitable linear

block code with a minimum Hamming distance dmin operating over a fraction of the

original data. A function can be computed as soon as any N − dmin + 1 frames

have completed their operation, where dmin is the minimum Hamming distance of

the generator matrix used by the master sever to encode the received message. We

assume that the number of slave servers N available for decoding is greater than the

number of received frames K. The master server then allocates one out of the N ≥ K

20

frames to each slave server to decode. The slave servers processes each frame and are

characterized by their random computing time. The system is highly dependent on

the decoding latency of the servers. Using a suitable (N,K) linear block code makes

the system tolerant to N−dmin straggling servers and while increasing N increases the

straggler tolerance, it also adds more redundant computation. The model is defined

in further detail through the rest of this chapter.

2.1.1 Message Encoding

The first stage of the system model is the encoding of the message at the user to

overcome noise in the BSC channel. An LDPC code is chosen as the user code due

to its reduced decoding complexity at the cloud. The user send a single message

U consisting of L bits. The message U is divided into K blocks of length n bits,

U = [u1, u2, ..., uK] with the help of a demultiplexer. In order to overcome the noise

U
DeMux

Message

1u

2u

Ku

1x

2x

Kx

()uGENC

ENC

ENC

()uG

()uG

Figure 2.2 Encoded Message.

in the BSC, the message is encoded using a generator matrix Gu ∈ Fn×k2 , where k = L
K

is the length of each frame before encoding and n = L
(rK)

is the length of each encoded

frame. Thus an (n, k) binary linear code Cu with rate r = k
n

is used to encode ul,

l = 1, 2, ..., K. The output of the encoder is given as

xl = ulGl, (2.1)

where xl has length n bits. The encoded frames x1, x2, ..., xK are sent to the RRU.

21

2.1.2 Channel Characteristics

The uplink channel is a binary symmetric channel with a crossover probability of δ.

Let Z = [z1, z2, ..., zK] represent the noise in the BSC. Z is a vector of i.i.d. Bernoulli

random variables with crossover probability δ. The user sends the encoded message

to the RRU. The output of the BSC is Y = {y1, y2, ..., yK}, where each frame yj

RRU

1x

2x

Kx

2z

Kz

1y

2y

Ky

1z

Figure 2.3 BSC Channel.

consists of n bits. The input to the RRU is seen as

Y =
K∑
j=1

yj =
K∑
j=1

xj +
K∑
j=1

zj. (2.2)

These received frames Y are sent to the cloud for decoding via the front haul link

which is assumed to be noiseless.

2.1.3 Cloud Decoding

The signal Y = [y1, y2, ..., yK] received at the RRU is sent to the cloud to decode.

The cloud consists of a distributed computing network, a master server that performs

administrative functions and N number of slave servers that process the decoding of

the frames. Y can be seen as an n×K binary matrix. Assuming that the number of

servers N is greater than the number of frames K, the frames are linearly encoded

22

by the master server into N blocks, using an (N,K) binary linear NFV code with

generator matrix Gc ∈ FN×K2 .

Master

Server
Server
()cYG

~ Server 1

Server 2

Server N

Y
1y

Ny

2y

U
^

~

~

Figure 2.4 Cloud decoding.

2.1.4 NFV Decoder

NFV Encoder

User Decoder

NFV Decoder

Server 1

()uG

User Decoder

User Decoder
()uG

()uG

Server 2

Server 3

()cG ()cG

Y

1y

2y

Ny

1u

2u

Nu

U

~

~

~

^

^

^

^

Figure 2.5 NFV Decoder.

The output of each server û is an estimate of a fraction of the original message

U . An (N,K) NFV code with minimum Hamming distance dmin is chosen, such that

the message U can be decoded once N − dmin + 1 frames have completed decoding.

The time that a server takes to complete decoding a single frame is represented by

23

Ti, defined by a shifted exponential distribution that has a cumulative distribution

function (CDF) given as

F (t) =

 1− e(−µn (t−an)), t ≥ an

0, otherwise

 . (2.3)

The time Ti has a shift of an, where a represents the minimum processing time per

input bit and n represents the number of bits in the frame. The average time needed

to process one bit is given by 1
µ
. We assume that the processing time Ti for each

server is mutually independent.

We now derive the probability of error of the system as a function of time. The

probability that i servers complete decoding by time t is given as

αi(t) = F (t)i(1− F (t))N−i, (2.4)

where F (t) is the CDF of time Ti. The parameter αi(t) is used to derive the bounds

on the probability of error as see in [17].

2.2 Straggler Mitigation

NFV coded computation was proposed by [3] as an effective strategy to mitigate

straggling servers in cloud decoding. The COTS devices used have random runtimes.

Each server i completes decoding a frame in a random time Ti. As illustrated in

Figure 2.6, the processing time for each server is different. The servers with very

large processing times introduce a significant latency into the system. The overall

latency of the system in a distributed computing network is dependent on the latency

of individual servers. NFV coded computation requires only N − dmin + 1 servers to

complete decoding to obtain an estimate of the message. Thus the system is tolerant

to dmin − 1 straggling servers. In Figure 2.6, once server 2 and 3 have completed

decoding the information can be retrieved and thus server 1 does not need to complete

24

decoding the message. As seen, the reliability of the system is significantly improved

using NFV coded computation.

A

B

A

B

A+B

iT

Figure 2.6 Random runtime of servers.

2.3 Linear Block Codes

A desirable property of linear block codes is its systematic structure of the codewords

as shown in Figure 2.7, in which a codeword is divided into two parts, the message and

the redundant checking part. The message part consists of k unaltered information

bits and the redundant checking part consists of n − k parity-check bits, which are

linear sums of the information bits. A linear block code with this structure is referred

to as a linear systematic block code as given in Figure 2.7.

Redundant

Check Bits
Message Bits

k digitsn-k digits

Figure 2.7 Codeword with a systematic structure.

A linear systematic (n, k) code is specified by a generator matrix G in the form

G = [P IG] , (2.5)

25

where P is a k × (n − k) matrix and IG is the k × k identity matrix of G. For any

k×n generator matrix G with k linearly independent rows, there exists an (n−k)×n

parity check matrix H with n− k linearly independent rows such that any vector in

the row space of G is orthogonal to the rows of H, and any vector that is orthogonal

to to the rows of H is in the row space of G as described in [32]. The parity check

matrix H is given as

H = [I P T], (2.6)

where P T is the transpose of the parity matrix P in G with dimension (n − k) × k

matrix and I is the (n−k)× (n−k) identity matrix. Linear block codes are generally

defined in terms of generator and parity-check matrices. The minimum Hamming

distance of a code dmin is defined as the smallest number of columns of H which need

to be summed up such that they are equal to the all zero vector. As an example let

N be the number of servers and K be the number of blocks the message is divided

into. The (K,N) generator matrix for Gc(2, 3) is given as

Gc =

 1 0 1

0 1 1


2×3

(2.7)

and the corresponding parity check matrix is given as

Hc =

[
1 1 1

]
. (2.8)

As we can see from Hc, the minimum Hamming distance for Gc(2, 3) is dmin = 2. The

generator matrix can also be represented by by a dependency graph. The dependency

graph consists of N nodes and has a link between each column in Gc that has a 1 in

common in the same row. The dependency graph from Gc(2, 3) as defined above can

be represented as shown in Figure 2.8.

26

1

32

Figure 2.8 Dependency graph for Gc(2, 3).

From the dependency graph we can obtain the chromatic number χ(Gc) of the

code. The chromatic number is defined as the minimum number of colors needed

to color the vertices of Gc such that no two adjacent vertices share the same color.

For the purpose of this book we represent each color by a shape, a different shape

represents a different color for illustration purposes only. The above dependency

graph can be colored as shown in Figure 2.9.

1

32

Figure 2.9 Chromatic number of the dependency graph for Gc(2, 3).

As seen in Figure 2.9, two distinct shapes representing two distinct colors that

are required to color the dependency graph such that no two adjacent nodes share

the same color. Thus the chromatic number χ(Gc) for the code is χ(Gc) = 2. Here

we see that the chromatic number is equal to the minimum Hamming distance of the

code. For a general case it can be shown easily that the minimum Hamming distance

of a code is the lower bound to the chromatic number of the code.

27

2.3.1 LDGM Codes

Low-density parity-check (LDPC) codes represent the leading edge in modern channel

coding. Their near-capacity performance on a large variety of data transmission and

storage channels have drawn attention of coding theorists and practitioners. Since

their decoders can be implemented with minimum complexity as seen in [22], LDPC

codes are preferred over other codes such as turbo codes. In this work we use low

density generator matrix (LDGM) codes, which are the dual codes of LDPC codes,

as NFV codes. We construct an (8,16) LDGM code with low minimum distance and

chromatic number. The generator matrix for a systematic LDGM code is given by

G = [P I], (2.9)

Like LDPC codes, LDGM codes are represented and decoded using a dependency

graph as in [19]. The master server receives the input Y and re-encodes the message

using a coded NFV constructed with the help of LDGM. The large deviation bounds

derived in [17] show that the error probability of the system decreases with increasing

minimum Hamming distance of the NFV code and increases with increasing chromatic

number of the NFV code. In order to find an optimal trade off between dmin and

χ(Gc) we designed a code that has dmin = χ(Gc). The parity matrix of the code was

designed by generating a binary random 8 × 8 parity matrix, and then computing

dmin and χ(Gc). An exhaustive search was performed over all parity matrices until

a code with dmin = χ(Gc) = 3 was obtained. The LDGM code used to encode the

28

message is

Gc =



1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1



. (2.10)

The minimum distance of the code dmin = 3 and the chromatic number of the code

is given by the dependency graph in Figure 2.10. The minimum number of distinct

2
1

3

16

4

5

6

7

8

9

11

15

14

13

12

10

Figure 2.10 Dependency graph of the (8,16) LDGM code.

colors required to color the graph is 3. Thus the chromatic number is χ(Gc) = 3.

29

2.3.2 Rateless Coding

Rateless fountain coding is a coding strategy proposed in [23] to mitigate straggling

processors in distributed matrix-vector multiplication. Rateless coding is used for

load balancing in systems with varying processing speeds, minimizing the overall

computation time. A perfect load balancing scheme dynamically assigns one row

vector product computation task to each other worker node as soon as the node

finishes its current task. Thus faster nodes complete more tasks than slower nodes

collectively completing the entire task. The rateless scheme achieves load balancing

without communication overhead of dynamically allocating tasks. MDS codes use

results from K nodes, and ignore the remaining N −K nodes and thus do not adjust

to the different degrees of node slowdown. Rateless codes achieve a much lower

decoding latency as compared to MDS codes. An (N,K) MDS coded computation is

robust to N −K stragglers. Reducing K, increases the straggler tolerance but adds

redundant computation. Rateleass coding can tolerate up to N − 1 stragglers in the

best case, with negligible redundant computation overhead. In order to use fountain

codes we would require an infinite block length of information, which is not practically

implementable. Thus we use the concept of rateless coding to develop a multiframe

coded computation technique to reduce the decoding latency in distributed coded

computation.

30

CHAPTER 3

MULTIFRAME CODED COMPUTATION

We propose a multiframe coded computation scheme as an extension to the standard

NFV coded computation model. The multiframe coded computation scheme aims at

improving the straggler tolerance of the system and reducing the decoding latency.

The standard NFV coded model does not exploit the processing time of individual

servers. In stead of each server decoding a single frame as seen in the standard NFV

model, what if each server decodes multiple frames? By exploiting the variance in

the server runtimes, we propose a model in which each server can decode multiple

frames. In this way, the servers with low processing time can decode more frames

achieving a significant gain in the overall decoding latency of the system.

A

B A+B

A+B

Server 1

Server 2

Server 3

Time t1t 2t

Figure 3.1 Multiframe coded computation.

Figure 3.1 illustrates the timing diagram for 3 servers. Each server begins

decoding for a random time T il , where l is the frame number and i is the server number.

Once a server has completed decoding the first frame a new frame is allocated. We

31

assume a genie model that performs perfect dynamic allocation of frames. As seen

in Figure 3.1, at time t1 server 2 completes decoding two frames thus the master

server can now retrieve the original message at time t1. In a standard NFV model

the master would complete decoding the message at time t2. Thus we see that the

decoding latency of the system is reduced. The standard NFV coded model does not

exploit the processing time of individual servers. Although it uses coding to mitigate

stragglers, servers with very high processing time increase the decoding latency. Since

we need N − dmin + 1 frames to decode the message, in the multiframe scheme we

allow each server to decode upto N − dmin + 1 frames. In the multiframe model if

only one server is running and all others fail, the message can still be decoded. The

multiframe model is tolerant to N − 1 stragglers in the best case, in comparison to

the dmin − 1 straggler tolerance of the standard NFV model.

In this chapter we design a decoding algorithm in a C-RAN network based on

the NFV coded computation model discussed in Chapter 2. We model the uplink

channel and the decoding in the cloud based on a multiframe decoding scheme. As

illustrated in Figure 2.1, the mobile user sends an encoded message to the remote

radio unit (RRU) via a binary symmetric channel. The message is then sent from the

RRU to the cloud via the noiseless fronthaul link to decode the message. The uplink

channel decoding is a critical baseband function that is offloaded to the cloud. The

BSC is a simple model for the uplink channel as discussed in Chapter 2, while the

noiseless fronthaul link accounts for a deployment with higher capacity fiber optic

cables. We assume that the number of slave servers N available for decoding is

greater than the number of received packets K. The cloud performs decoding of the

information with the help of one master server and N slave servers. The master

server encodes the received message into frames using a suitable linear block code

operating over a fraction of the original data such that a function can be computed

as soon as any N − dmin + 1 frames have completed their operation, where dmin is

32

the minimum Hamming distance of the generator matrix used by the master sever

to encode the received message. The master server then allocates one out of the

N ≥ K packets to each slave server to decode. The slave servers process each frame

and are characterized by their random computing time. Once a server has completed

decoding the first frame, another frame out of the N frames is allocated to the server

until the master server receives N − dmin + 1 frames. The proposed multiframe

decoding scheme allows each server to decode multiple frames. If the servers have a

large variance in processing time this model shows a significant gain in the decoding

latency. The multiframe model can tolerate upto N − 1 stragglers with negligible

redundant computation overhead improving not only the straggler tolerance but also

increasing the fault tolerance of the system.

3.1 Decoding Latency

The decoding latency of the system is the overall decoding time for the master server

to complete decoding the received message. The master server re-encodes the received

coded message into frames using an NFV code and allocates the frames to the slave

servers to decode. The master server completes decoding a message as soon as any

N − dmin + 1 frames have completed decoding. The output of the master server is

Ỹ = [Y Gc], (3.1)

where Ỹ = [ỹ1, ỹ2, ..., ỹN] is an n×N matrix and Y = [y1, y2, ..., yK] is an n×K matrix.

Let gc,ji be the (j, i)th entry of matrix Gc for the jth packet where j ∈ {1, 2, ..., K}

and ith server where i ∈ {1, 2, ..., N}. Therefore we get

ỹi =
K∑
j=1

yjgc,ji =
K∑
j=1

xjgc,ji +
K∑
j=1

zjgc,ji. (3.2)

Since xjgc,ji is a linear combination of di codewords for a binary linear code with

generator matrix Gu and rate r, it is a code word of the same code. The quantity Z

33

is the noise vector of i.i.d. Bern(γi) elements defined by the transition matrix of the

BSC Q that has a crossover probability δ. The bit flipping probability γi is given by

γi = 2

di−1∑
j=0

δ2j+1(1− δ)di−2j−1. (3.3)

where the Hamming weight denoted by di is the number of non-zero elements in the

ith column of the generator matrix Gc. The NFV codes considered in this work have

a column weight of 1 and 2. For di = 1, the bit flipping probability is

γi = 2δ (3.4)

For di = 2, the bit flipping probability is

γi = 2δ(1− δ) + 2δ3(1− δ)−1. (3.5)

As the value of di increases γi decreases. The crossover probability for each frame

depends on the column weight of the NFV code used.

The frame unavailability probability (FUP) denoted by Pu(t) is defined as the

probability that the ith server decodes a frame
∼
Yi successfully if the server completes

decoding the entire frame within time t and without any errors. The FUP is given as

Pu(t) = Pr[
∧
u(t) 6= u], (3.6)

where Pu(t) = 0 if the number of servers that successfully complete decoding is larger

than N − dmin + 1. The time taken by a server to complete decoding a frame is given

by Ti. Since each server can decode multiple frames we assume the processing time Ti

is mutually independent for each server and each frame. The master server is able to

decode the message when N − dmin + 1 servers have successfully completed decoding.

In the multiframe model, each server can decode upto N −dmin + 1 frames. The time

taken by the ith server to complete decoding the lth frame is denoted by T il , defined

34

as

T il =

N−dmin+1∑
l=1

(an+ Al), (3.7)

where Al is an exponential random variable with mean n
λ
. The largest l which satisfies

the inequality
N−dmin+1∑

l=1

an < t (3.8)

provides an upper bound to the maximum possible frames a server can decode by time

t, which is represented by M . The time taken by a server to complete decoding M

frames is the sum of exponential random variables for each frame. The summation

of l i.i.d. exponential distributions with rate λ can be represented as an Erlang

distribution with parameter l
λ

and shape l. The time for a server to complete decoding

multiple frames T iM is given by an Erlang distribution with CDF

FM(t) =


1−

M−1∑
l=0

e
−(λn)

l
(t−lna)l

l!

(
λ
n

)l
(t− lna)l, t ≥ lna

0, otherwise

 (3.9)

3.2 Error Probability

The probability that the ith server completes decoding the lth frame in time t is given

by an Erlang distribution with PDF

pil(t) =

(
λ

n

)l
(t− lna)l−1e−(λn)(t−lna)

(l − 1)!
(3.10)

for t > lna and pil(t) = 0, otherwise. The frame error rate (FER) measures the

probability that a server fails to decode a frame correctly at time t. Considering

N − dmin + 1 frames have completed decoding by time t, the FER is defined as

Pe = lim
t→∞

Pu(t) (3.11)

35

The FER is dependent on the crossover probability of the channel. The probability

that the ith server corrects the errors caused by the BSC and decodes a frame correctly

is given by 1− pie, with

pie = 1{ ∧ui 6= ui}, (3.12)

To find the FUP at each time t we define a discrete indicator random variable Ii (t) ∈

{0, 1, 2, ..., N −dmin + 1}, i ∈ {1, 2, 3..., N} with a distribution given by 1−ηLi (t) with

ηi(t) =
M∑
l=0

pil(t)p
i
e, (3.13)

denoting the average error probability at time t that L frames have been processed

at server i, M = 0, 1, 2, ..., N − dmin + 1. The FUP is then given as

Pu(t) = Pr

[
N∑
i=1

Ii(t) ≤ N − dmin

]
. (3.14)

The decoding latency versus FUP is simulated in the next chapter to evaluate the

system performance of the multiframe NFV model.

36

CHAPTER 4

EXAMPLE AND RESULTS

We observe the frame unavailability probability (FUP) as a function of the decoding

latency. The multiframe NFV model is compared to a standard NFV model. In this

implementation we consider the transmission of a single frame in a binary symmetric

channel (BSC) for uplink communication. We consider a genie model that performs an

allocation of frames without repetition for the multiframe decoding scheme. The FUP

measures the probability that a frame might not be decoded correctly or is unavailable

at time t. The standard NFV model with single frame decoding is compared to

the proposed multiframe decoding scheme. The error probabilities are evaluated via

Monte Carlo simulations. In Figure 4.1 we consider the transmission of a message

0 500 1000 1500 2000 2500 3000

Time

10-3

10-2

10-1

100

F
U

P

FUP for 3 servers and 8 servers

Standard NFV N=3
Multiframe NFV N=3
Standard NFV N=8
Multiframe NFV N=8

Figure 4.1 Decoding latency vs FUP for both a standard NFV and a multiframe
NFV model. Parameters: N1 = 3, N2 = 8,L1 = 252, L2 = 504,K1 = 2, K2 = 4,
dmin,1 = 2, dmin,2 = 3, r = 0.5, n = 252, δ = 0.07, µ = 1, a = 1.

37

with length L1 = 252 and a number of servers of N1 = 3. We use an LDPC user

code with rate r = 0.5 and block length n = 252. The number of received frames is

K1 = 2. We use a (2,3) NFV code Cc with generator matrix Gc given as

Gc =

 1 1 0

1 0 1

 . (4.1)

The minimum distance of the code is dmin = 2. The crossover probability of the BSC

channel is selected to be δ = 0.07, which leads to γ1 = 0.14 and γ2 = 0.1309. The

minimum processing delay parameter is a = 1. As the decoding latency of the servers

increase, the FUP decreases for t > n. Increasing the frame length increases the

decoding latency. We consider a large variance in the processing times, and therefore

select a value of µ = 1. The master server finishes decoding as soon as N−dmin+1 = 2

servers have finished decoding. As illustrated in Figure 4.1 the output shows that

the decoding latency decreases with the multiframe decoding scheme. Using multiple

servers in parallel for decoding and exploiting the processing time of each server yields

significant gain in the trade-off between the decoding latency and the FUP.

In Figure 4.1 we also consider the transmission of a message with length L2 =

504 and a number of servers of N2 = 8. For the same LDPC user code as selected

above for N = 3. The number of received frames is K2 = 4. We use a (4,8) NFV

code Cc with generator matrix Gc given as

Gc =



1 0 0 0 0 1 1 0

0 0 0 1 1 0 0 1

0 1 0 0 0 0 1 1

1 0 1 0 1 0 0 0


. (4.2)

The minimum distance of the code is dmin = 3. The crossover probability of the BSC

channel is again δ = 0.07, which leads to γ1 = 0.14 and γ2 = 0.1309. The delay

parameters are chosen again as a = 1 and µ = 1. The master server finishes decoding

38

as soon as N − dmin + 1 = 6 servers have finished decoding. As already observed for

N = 3, the multiframe NFV model shows a much lower decoding latency compared

to the standard NFV model for N = 8 servers as well. We can also observe from

Figure 4.1, that increasing the number of servers, results in a lower error floor. In

addition, the reduction in decoding latency compared to the standard NFV model is

much larger for N = 8 servers.

0 500 1000 1500 2000 2500 3000

Time

10-3

10-2

10-1

100

F
U

P

FUP for 16 servers

Standard NFV =1

Multiframe NFV =1

Figure 4.2 Decoding latency vs FUP for both a standard NFV and a multiframe
NFV model. Parameters: N = 16, L = 1008, K = 8 r = 0.5, n = 252, δ = 0.07,
µ = 1, dmin = 3, a = 1.

In Figure 4.2 we consider the transmission of a single frame with length L = 1008

and a number of servers of N = 16. The number of received frames if K = 8.

The crossover probability of the BSC channel is again δ = 0.07, which leads to

γ1 = 0.14 and γ2 = 0.1309. All other parameters are kept constant as in Figure

4.1. We use an (8,16) NFV code Cc with generator matrix Gc given in equation

(2.10). The master server finishes decoding as soon as N −dmin+1 = 14 servers have

finished decoding. Figure 4.2 shows that the decoding latency decreases with the

39

multiframe decoding scheme, where the improvement in delay performance is much

more significant compared to the results for N = 3 and N = 8, respectively.

0 500 1000 1500 2000 2500 3000

Time

10-3

10-2

10-1

100
F

U
P

FUP for 16 servers with =0.5 and =1

Standard NFV =0.5

Multiframe NFV =0.5
Standard NFV =1

Multiframe NFV =1

Figure 4.3 Decoding latency vs FUP for both a standard NFV and a multiframe
NFV model comparing variance. Parameters: N = 16, L = 1008, K = 8 r = 0.5,
n = 252, δ = 0.07, µ = 1, dmin = 3, a = 1.

Finally, Figure 4.3 shows the comparison between the standard NFV model

and the multiframe model for N = 16 servers for both µ1 = 0.5 and µ2 = 1. All

other parameters are kept the same as in Figure 4.2. We can see that as the variance

increases the decoding latency of the multiframe model decreases. Thus, there exists

a notable gain for the multiframe model in the system performance for systems with

a large variance in the processing time of the servers.

40

CHAPTER 5

DISCUSSION

5.1 Benefits

Leveraging multiple server processing times in parallel for decoding yields significant

gain in terms of the trade off between latency and FUP. Comparing the performance

against the standard NFV coded scheme shows an improvement in the decoding

latency of the system. The multiframe decoding scheme mitigates the redundant

work done by stragglers, making the system much more efficient. This is done by

allowing servers with lesser processing time to process multiple frames, collectively

reducing the overall decoding time. One of the main advantage is that the fault

tolerance of the network increases, making it more flexible to use COTS devices.

This approach is based on a linear combination of the received frames prior to their

distribution to the servers and the exploitation of the algebraic properties of linear

channel codes. The simulation results demonstrate that linear coding of received

frames yield trade offs between decoding latency, reliability and FUP. A specific

decoding latency can be obtained by selecting a code that has a specific minimum

distance and chromatic number. We also explained that the chromatic number is

lower bounded by the minimum distance. Finding the chromatic number of a graph

is NP-hard. However the chromatic number plays an important role in the analysis of

the system. The larger the chromatic number, the higher is the probability of error.

Thus the chromatic number should be small while the minimum distance of a code

should by large. Increasing the minimum distance of a code increases the chromatic

number. Thus for optimal results, the minimum distance is equal to the chromatic

number. The multiframe NFV model works well for systems with a high variance

in server processing time. We see from the simulations results that increasing the

41

number of servers improves the error flow of the system. The multiframe NFV model

improves the system efficiency, reduces the decoding latency and increases the fault

tolerance of the system.

5.2 Limitations

The multiframe decoding scheme reduces the decoding latency only if the variance

in the processing times of the servers is large. If the variance is small the system

performance is the same as a standard NFV model with single frame decoding as

seen in the results. To evaluate the multiframe scheme in this work we assume a ginie

model that performs perfect allocation of frames without repetition. The performance

we see in the simulation results is the upper bound to the system performance using a

multiframe scheme due to the assumption of perfect frame allocation. The multiframe

decoding model requires additional administrative function by the master server to

store the frames and reallocate the frames to the servers once they have completed

decoding a frame. This requires additional memory and processing at the master

server. The processing time of a server for each frames in the multiframe NFV model

is dependent on the processing time of the previous frame at that server this makes

the system complex. Since the indicator variable in the multiframe model is non

binary, it is not possible to obtain tight bounds on the system performance. The

probability of allocating repeated frames introduces redundant computation by the

servers. The multiframe NFV model can be extended to achieve more practical results

by considering the probability of repeated frames.

42

CHAPTER 6

CONCLUSION

In this report we propose a multiframe decoding scheme for distributed uplink channel

decoding. The proposed scheme was simulated to evaluate the performance of the

system based on the frame unavailability probability. The scheme was compared to a

standard NFV scheme with single frame decoding and showed significant improvement

in the overall performance of the system. The simulation results illustrate considerable

improvement in decoding latency. The proposed model also increases the fault

tolerance of the system and improves the straggler tolerance. An upper bound can be

derived for the proposed scheme. However, since the indicator variable is non binary

and dependent on the processing time of the previous frame, a tight bound might not

be possible for this scheme. The multiframe decoding model can also be extended to

other channels. In this work the model applies to additive noise channels in which

the user code is an additive group. An open issue is finding the optimal trade off

between the variance in processing time and the decoding latency. The multiframe

scheme performs better for a larger variance in the processing time.

43

REFERENCES

[1] Sherif Abdelwahab, Bechir Hamdaoui, Mohsen Guizani, and Taieb Znati. Network
function virtualization in 5G. IEEE Communications Magazine, 54(4):84–91,
2016.

[2] Ali Al-Shuwaili, Osvaldo Simeone, Joerg Kliewer, and Petar Popovski. Coded network
function virtualization: Fault tolerance via in-network coding. IEEE Wireless
Communications Letters, 5(6):644–647, 2016.

[3] Malihe Aliasgari, Jörg Kliewer, and Osvaldo Simeone. Coded computation against
processing delays for virtualized cloud-based channel decoding. IEEE
Transactions on Communications, 67(1):28–38, 2019.

[4] Islam Alyafawi, Eryk Schiller, Torsten Braun, Desislava Dimitrova, Andre Gomes, and
Navid Nikaein. Critical issues of centralized and cloudified LTE-FDD radio
access networks. In 2015 IEEE International Conference on Communications
(ICC), pages 5523–5528. IEEE, 2015.

[5] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation computer
systems, 25(6):599–616, 2009.

[6] I Chih-Lin, Jinri Huang, Ran Duan, Chunfeng Cui, Jesse Xiaogen Jiang, and Lei Li.
Recent progress on C-RAN centralization and cloudification. IEEE Access,
2:1030–1039, 2014.

[7] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley
& Sons, 2012.

[8] Anindya B Das and Aditya Ramamoorthy. C3LES: Codes for coded computation
that leverage stragglers. arXiv, 2018.

[9] Marios D Dikaiakos, Dimitrios Katsaros, Pankaj Mehra, George Pallis, and Athena
Vakali. Cloud computing: Distributed internet computing for IT and scientific
research. IEEE Internet computing, 13(5):10–13, 2009.

[10] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues
and challenges. In 2010 24th IEEE international conference on advanced
information networking and applications, pages 27–33. Ieee, 2010.

[11] Nuwan S Ferdinand and Stark C Draper. Anytime coding for distributed computation.
In 2016 54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 954–960. IEEE, 2016.

44

[12] Christina Fragouli, Emina Soljanin, et al. Network coding fundamentals. Foundations
and Trends R© in Networking, 2(1):1–133, 2007.

[13] Ken Gray and Thomas D Nadeau. Network function virtualization. Morgan
Kaufmann, 2016.

[14] Mesud Hadzialic, Branko Dosenovic, Merim Dzaferagic, and Jasmin Musovic. Cloud-
RAN: Innovative radio access network architecture. In Proceedings ELMAR-
2013, pages 115–120. IEEE, 2013.

[15] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network
function virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine, 53(2):90–97, 2015.

[16] Yashpalsinh Jadeja and Kirit Modi. Cloud computing-concepts, architecture and
challenges. In 2012 International Conference on Computing, Electronics and
Electrical Technologies (ICCEET), pages 877–880. IEEE, 2012.

[17] Svante Janson. Large deviations for sums of partly dependent random variables.
Random Structures & Algorithms, 24(3):234–248, 2004.

[18] Anthony Josep, Randy Katz, Andy Konwinski, Lee Gunho, David Patterson, and
Ariel Rabkin. A view of cloud computing. Communications of the ACM,
53(4), 2010.

[19] Frank R Kschischang, Brendan J Frey, Hans-Andrea Loeliger, et al. Factor graphs
and the sum-product algorithm. IEEE Transactions on information theory,
47(2):498–519, 2001.

[20] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. A unified coding
framework for distributed computing with straggling servers. In 2016 IEEE
Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2016.

[21] Songze Li, Mohammad Ali Maddah-Ali, Qian Yu, and A Salman Avestimehr. A
fundamental tradeoff between computation and communication in distributed
computing. IEEE Transactions on Information Theory, 64(1):109–128, 2018.

[22] Gianluigi Liva, Shumei Song, Lan Lan, Yifei Zhang, Shu Lin, and William E Ryan.
Design of LDPC codes: A survey and new results. 2006.

[23] Ankur Mallick, Malhar Chaudhari, and Gauri Joshi. Rateless codes for near-perfect
load balancing in distributed matrix-vector multiplication. arXiv preprint
arXiv:1804.10331, 2018.

[24] John McCarthy. Programs with common sense. RLE and MIT computation center,
1960.

[25] Robert McEliece. The theory of information and coding, volume 3. Cambridge
University Press, 2002.

45

[26] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing. 2011.

[27] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, and
Raouf Boutaba. Network function virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials, 18(1):236–262, 2016.

[28] Seok-Hwan Park, Osvaldo Simeone, Onur Sahin, and Shlomo Shamai. Robust
and efficient distributed compression for cloud radio access networks. IEEE
Transactions on Vehicular Technology, 62(2):692–703, 2013.

[29] Mugen Peng, Chonggang Wang, Vincent Lau, and H Vincent Poor. Fronthaul-
constrained cloud radio access networks: Insights and challenges. arXiv
preprint arXiv:1503.01187, 2015.

[30] Tony QS Quek and Wei Yu. Cloud radio access networks: Principles, technologies,
and applications. Cambridge University Press, 2017.

[31] Tara Salman. Cloud RAN: Basics, advances and challenges. A Survey of C-RAN
Basics, Virtualization, Resource Allocation, and Challenges, 2016.

[32] Puripong Suthisopapan, Mongkol Kupimai, Rangsan Tongta, and Virasit Imtawil.
Design of high-rate LDGM codes. In 2009 Fourth International Conference
on Communications and Networking in China, pages 1–4. IEEE, 2009.

[33] Jun Wu, Zhifeng Zhang, Yu Hong, and Yonggang Wen. Cloud radio access network
(C-RAN): A primer. IEEE Network, 29(1):35–41, 2015.

[34] Raymond W Yeung. Information theory and network coding. Springer Science &
Business Media, 2008.

[35] Qian Yu, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. Straggler
mitigation in distributed matrix multiplication: Fundamental limits and
optimal coding. In 2018 IEEE International Symposium on Information
Theory (ISIT), pages 2022–2026. IEEE, 2018.

[36] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18,
2010.

[37] Liang Zhao, Ming Li, Yasir Zaki, Andreas Timm-Giel, and Carmelita Görg. LTE
virtualization: From theoretical gain to practical solution. In Proceedings of the
23rd International Teletraffic Congress, pages 71–78. International Teletraffic
Congress, 2011.

[38] Yuhan Zhou and Wei Yu. Optimized backhaul compression for uplink cloud
radio access network. IEEE Journal on Selected Areas in Communications,
32(6):1295–1307, 2014.

46

[39] ZhenBo Zhu, Parul Gupta, Qing Wang, Shivkumar Kalyanaraman, Yonghua Lin,
Hubertus Franke, and Smruti Sarangi. Virtual base station pool: towards a
wireless network cloud for radio access networks. In Proceedings of the 8th
ACM international conference on computing frontiers, page 34. ACM, 2011.

47

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: NFV Coded Computation
	Chapter 3: Multiframe Coded Computation
	Chapter 4: Example and Results
	Chapter 5: Discussion
	Chapter 6: Conclusion
	References

	List of Figures

