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ABSTRACT

MECHANICS OF BINDER-PARTICLE INTERACTIONS IN
COMPOSITE BATTERY ELECTRODES

by
Richard Johnson

A study into the particle level mechanics of polymer binder and active material used

in composite lithium-ion batteries (LIB) has been conducted. Silicon is highly sought

after material that can be used as an active material in a composite anode. Its high

theoretical capacity can result in batteries that can store more energy than current

LIBs, but high volume expansion of Si during charge/discharge cycles leads to rapid

capacity fade and poor cyclic life. Understanding the stress that is generated in

the binder and the active material due to the volume expansion has not been fully

understood. In this study an idealized composite electrode sample was created to

emulate the binder/particle interactions in a commercial composite electrode. The

sample was fabricated by etching micro pillars of Si into a crystal Si wafer in a periodic

array. Polyvinylidene fluoride (PVDF) and sodium carboxymethyl cellulose (CMC)

were then added to the system to form binder bridges between Si pillars. The stress

induced in this composite electrode during electrochemical cycling was measured in

situ using a multi-beam optical sensor (MOS). A preliminary finite element model was

generated which can be used to interpret the stress at the binder/particle interface.

During electrochemical cycling the liquid electrolyte in the LIB reacts with the

active particles to form a passivation layer called solid electrolyte interphase (SEI)

layer on the electrode surfaces. The location and composition of the SEI can influence

the interface properties between binder and active particles which will influence the

overall cyclic performance of batteries. However, the effect of binder on the SEI

formation has not been fully realized. To understand the effect of binder on the

location of the SEI, thin films of PVDF and CMC were spin coated onto crystal Si



wafers. The wafers were then cycled to grow a stable SEI layer. X-ray photoelectron

spectroscopy (XPS) coupled with depth profile analysis using C-60 ion sputtering

was then conducted to analyze the composition of SEI as well as the location of the

SEI compounds within the binder. The depth profiling data revealed that SEI forms

within the binder but not on the outer layer of the binder. These results can help

inform the optimization of Si containing anodes in commercial LIB.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The use of unmanned vehicles is of high interest to the United States Navy. This

interest arose in 1994 when the Navy identified an immediate need for a form

of anti-mine countermeasures to integrate into submarines. Unmanned undersea

vehicles (UUV) were found to be the perfect system to implement and thus a major

focus was placed on their development and implementation. Six major tasks were

then highlighted for these vehicles to take on. They were surveillance and recon-

naissance, mine countermeasures, anti-submarine warfare, inspection/identification,

oceanography, and payload delivery. A key advantage UUVs hold over submarines is

that, due to their variable size, they are capable of surveying shallow water[7].

In order to supply power to UUVs there are many options such as primary

batteries, rechargeable batteries, fuel cells, and hybrid systems containing multiple

forms of energy storage devices. Of these options, rechargeable lithium-ion batteries

(LIB) provide excellent current density and, unlike primary LIBs, they do not need

to be removed and replaced after their use. They also hold an advantage over fuel

cells in that no port holes are needed to supply more fuel to the UUV only a simple

charging port is needed to resupply the UUV with energy [6].

In order to keep a technological advantage over other countries there is

a need to improve upon the operational endurance of UUVs. The operational

endurance describes the maneuverability, the efficiency, and the resiliency for

sustained operations of a specific platform. To improve upon these key objectives

the energy storage and energy efficiency must be improved for the propulsion system,

weapon system, and sensors utilized by the UUVs. An improvement in operational
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efficiency will lead to a more agile and efficient UUV, while also increasing total

mission duration[6]

Another key area of improvement for UUV technology is the reduction of the

size of the energy storage system. By reducing the size of the energy storage system

there can be more volume within the UUV that can be dedicated to more sensing

equipment[6]. A challenge is made clear where there is a desire to improve upon the

performance of the energy storage system, while also reducing its size. In order to

meet these design parameters high energy density materials must be implemented

into LIBs. One key high energy density material is silicon, which has the capability

of outperforming current battery technology. The following section will provide a

background on LIBs in order to further explain how high energy density martials like

Si can be implemented, as well as, the key challenges that hinder their immediate

use.

1.2 Background Information: LIB

LIBs have the highest energy density when compared to other rechargeable batteries

making them the most popular energy storage device used in portable electronics

as well as electric vehicles[28]. LIBs are also capable of operating at a wide range

of temperatures (25 to 50◦) which will allow for their utilization in any undersea

environment. The schematic in Figure 1.1 highlights the basic components of a LIB.

The major components are the electrodes, the liquid electrolyte, and the polymer

separator. The anode is the negative electrode associated with the release of electrons

into the external circuit and the cathode is the positive electrode associated with

the gain of electrons from the external circuit. The liquid electrolyte between the

two electrodes consists of a solution of Li-salts dissolved in an organic solvent. The

electrolyte is ionically conductive but electronically insulating and allows for the

shuttling of Li-ions from the anode to the cathode as depicted in Figure 1.
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Figure 1.1 Schematic of a lithium-ion battery.

Between the two electrodes is a polymer separator depicted as a white barrier. The

separator is a porous media which is also electronically insulating. The separator

allows for the passage of ions between the two electrodes while preventing them from

touching, which would cause failure of the battery[30].

Taking a closer look at the two electrodes it can be seen through Figure 1

that they are comprised of multiple components. These components are the current

collector, active material, polymer binder, and conductive additives. Most commercial

rechargeable LIBs are comprised of composite electrodes which is why they are the

focus of this study. The current collectors used are typically copper for the anode

and aluminum for the cathode and they help to create an external circuit. These

two metals were chosen based on their incompatibility with Li at their respective

operating potentials. The active material is depicted as grey circles in Figure 1.1.

The active material is capable of reversibly reacting with Li in response to a voltage

change in order to generate an electrical current by means of a chemical reaction.

For typical commercial LIBs the active material in the anode is graphite, and the

typical active material in the cathode is a transition metal oxide such as LiMnO2.

The active material is then mixed with a conductive additive and adhered to the

current collector using a polymer binder. The binder used plays an important role
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in creating a cohesive matrix of active material and conductive additive, while also

adhering that matrix to the current collector. The result is an electrical network of

active material connect to the current collector.

LIBs function by shuttling charge carrying Li-ions from the anode to the

cathode. As the battery is discharged Li+ ions are released from the anode in

an oxidized state. They then pass through the electrolyte and into the cathode

where they are then be reduced and intercalated in to the cathode’s active material.

Intercalation is the insertion and extraction of Li into the crystal structure of the

active material. During charging the reverse reaction occurs in which the Li-ions

are intercalated into the graphite in the anode. As Li-ions travel between the two

electrodes, an electrical current flow from the current collectors through an external

circuit.

In order to improve upon the performance and efficiency of LIBs it is crucial to

identify the key elements of the battery that have the highest impact on the overall

performance. The two components that influence the performance to the highest

degree are the active material and the electrolyte. In this study the focus will be

placed on the active material. The active material plays a vital role in dictating the

energy density and cyclic life of the LIB. In order to achieve higher energy density, the

active material must be replaced with a high energy density material such as Si[20].

1.3 Stress Development Inside Composite Electrodes

Unlike graphite, Li does not intercalate into Si. Si undergoes a conversion reaction

in which crystalline Si becomes amorphous Si during the process of electrochemical

cycling. This process breaks the bonds between the Si atoms and results in large

volumetric expansion. It also allows for a higher concentration of Li to be added to

the Si when compared to an intercalation reaction. The theoretical capacity for Si is

4200 mAhg-1 while the theoretical capacity for graphite is 372 mAhg-1.
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Although the theoretical capacity of Si is an order of magnitude higher than

graphite there is one major issue that has prevented its implantation into LIBs. As

previously mentioned, the alloying/dealloying reaction of Li with Si results in large

volume expansion of the Si due to a crystalline to amorphous phase transformation.

This volume expansion can be up to 300% the original volume, which causes high

stress. The result is fracture and pulverization of the Si particles as the battery

cycles. When these particles fracture, they are removed from the electrical network

and become electronically isolated. This leads to rapid capacity fading, which is the

irreversible loss of capacity. Capacity fade in turn results in poor cyclic life, and it is

the major hindrance towards Si’s implementation into commercial LIBs.

As seen in Figure 1.1, a single particle of active material is constrained by the

neighboring particles as well as the current collector. The effect of these constraints

leads to most of the stress inside the composite anode. During cycling there exists

a gradient of Li concentration from the outer surface of a particle of Si to its core.

This can imply that at any point in the electrochemical cycle, or state of charge, the

Si can have different phases existing at once all with different material properties. As

previously stated, the constraints imposed by neighboring particles in a composite

electrode contribute to a majority of stresses, therefore this phenomenon is of key

interest.

At the particle level it can be seen through Figure 3.1 that between neighboring

particles of Si in a composite anode, binder bridges are formed[25]. These

binder bridges help to create the electrical network of the electrode and thus,

failure of these bridges leads to capacity fade and poor cyclic life. A funda-

mental understanding of the stress which are generated during cycling within the

binder at the particle level has not been fully explored. In recent studies, the

real-time stress experienced within the composite film was measured through an

optical curvature measurement. This was done by utilizing a multi-beam optical
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sensor (MOS) to track the change in curvature within the composite film.

Figure 1.2 Transmission electron microscopy (TEM) image of a thin slice (ca. 300
nm thick) prepared via FIB cross-section of a partially lithiated Si/CMC composite
electrode.

Source: Sethuraman, V. A., Nguyen, A., Chon, M. J., Nadimpalli, S. P. V., Wang, H., Abraham,

D. P., . . . Guduru, P. R. (2013). Stress Evolution in Composite Silicon Electrodes during

Lithiation/Delithiation. Journal of The Electrochemical Society, 160(4), A739–A746.

However, this methodology was only capable of interpreting the averaged stress

experienced throughout the film. This study aims to further the understanding of

the stresses developed at the particle level by creating an idealized composite anode

sample specifically designed to measure stress. This information will help to create

a finite element model of the binder/active material such that the stresses at the

interface can be interpreted. The information gained from this model can help in the

optimization of Si containing anode in commercial LIBs.
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1.4 Background Information: Solid Electrolyte Interphase Layer

Although the stress and subsequent fracture and pulverization of Si is the leading

cause of capacity fade, there is another phenomenon that exist which exacerbates the

irreversible capacity loss. That phenomenon is the growth of the solid electrolyte

interphase (SEI) layer. The SEI consists of a very thin ( 10 nm) layer of multiple

organic and inorganic compounds. This layer is formed instantaneously as a negative

potential is applied to Si. It forms as both the salt and solvent in the electrolyte

are reduced on the surface of the Si due to the thermodynamic instability of the

electrolyte at the low potentials in which the anode operates. The formation of this

layer consumes Li from the system and thus results in an irreversible capacity fade.

Despite the irreversible loss of Li, the SEI is essential for the successful operation

of rechargeable LIBs. This is because the SEI is a passivating layer which has high

electronic resistance; therefore, it acts as a protective layer around the Si by preventing

the electrolyte from being constantly reduced during the life cycle of the LIB. The

layer is formed predominantly during the first cycle and the thickness of the layer is

determined by the range of electron tunneling. Once electron tunneling can no longer

occur the layer will no longer grow, and no more Li will be consumed.

The issue with the SEI formed is Si based anodes is that the volume expansion

which occurs during cycling is so great that the SEI is cracked. During this process

fresh Si is exposed, which then begins to react with the electrolyte forming a new layer

of SEI. Over multiple cycles the SEI layer continues to shed and thus unstable growth

of a thick layer of SEI occurs. This unstable growth leads to continued consumption

of the electrolyte and the Li resulting in capacity fade.

Furthermore, the effect the polymer binder has on the formation and location

of the SEI has not been fully understood. As mentioned in the previous section, the

key area of interest in a composite electrode is the interface between the binder and

the active material. Favorable interface properties between the binder and the active
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material is imperative for composite anodes that experience large stresses between

particles. The location of the SEI can influence these properties and effect the

adhesion between the binder and the active material, thus a better understanding

of the location of the SEI within the binder is needed as well as the mechanisms that

lead to SEI forming at different locations within the binder.

1.5 Objectives

The objective of this thesis is to fully understand the mechanics of the binder/active

material interactions at a particle level. This objective will be carried out by first

understanding the effect of binder on the location, as well as, the composition

of the SEI formed during electrochemical cycling. Two polymers, polyvinylidene

fluoride (PVDF) and sodium carboxymethylcellulose (CMC) will be considered in

this study. Next an idealized composite anode will be fabricated in order to emulate

the binder/active material interactions that occur in a standard composite electrode.

This will be done by etching micro pillars into a crystal Si wafer. The pillars will

be periodic in nature such that their geometry will be easy to model. A preliminary

finite element model will then be created to interpret the stresses in the binder bridges

between Si particles.
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CHAPTER 2

X-RAY PHOTOELECTRON SPECTROSCOPY OF THE CYCLED

BINDER COATED AND BARE SILICON ANODES

2.1 Background Information

As mentioned earlier, one of the main cause of poor cyclic life of LIBs is the failure

of binder bridges between Si particles, as well as, the pulverization of Si particles in

composite electrodes. It was observed that nanoscale Si particles resist pulverization

of Si, and there exists a critical particle size ( 150 nm) below which fracture would

not occur when Si is electrochemically cycled [15]. Although the nanoscale particles

were more fracture resistant, they still had poor first cycle efficiency due to failure of

binder bridges[29]. These reports have demonstrated that the binder plays a critical

role in the successful functioning of composite electrodes.

Many different binders have been investigated to understand the effect of their

properties such as adhesion to active particles and their ability to absorb electrolyte

on the performance of composite electrodes. The chemical structure of the binders

was also found to play a key role in the overall performance of the electrode[3] [13] [8]

[17][14][19]. The most commonly studied binders are polyvinylidene fluoride (PVDF)

and sodium carboxymethylcellulose (CMC). PVDF is a conventional binder material

and it adheres to Si with weak van der Waals forces, while CMC is a linear polymeric

derivative of cellulose that contains carboxylic functional groups, which can adhere to

the surface of the Si[12]. Initially it was believed that the use of elastomeric binders

such as PVDF would improve the performance of Si based anodes. However, Chen

et al. and Li et al. found that the CMC/SBR outperformed the PVDF in terms of

cyclic performance[4][13]. This result was unexpected since the PVDF was believed

to have favorable mechanical properties. It was concluded that PVDF’s ability to
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absorb electrolyte was the cause for its poor performance[3]. The adhesion of the

CMC to Si particles was attributed to its improved performance as stated by Li et

al. and Key et al.[13][10] Bridel et al. investigated the proper ratio of Si / binder

/ conductive additive to understand the effect of binder content on electrochemical

performance. It was found that a 1:1:1 ratio was the most optimal and the hydrogen

bonds between the carboxy groups in CMC and the hydroxyl groups on the surface

of the Si exhibit a self-healing behavior which helped to improve the performance of

the CMC-based electrode[1].

Polyacrylic acid (PAA) is another promising binder alternative and it consists of

carboxylic functional groups that bond to the hydroxyl groups on the Si surface[16].

Magasinski et al. compared the performance of PAA and CMC and showed that

the PAA outperformed CMC due to the presence of relatively higher percentage

of carboxylic groups which improved adhesion[16]. It was noted by Mazouzi et al.

that the pH level of a binder solution greatly affects the cyclic performance[18]. For

example, a CMC solution with a pH of 3 promoted better bonding between the CMC

and the Si. An acid CMC solution was then compared to PAA by Karkar et al. where

the performance of an acidic CMC was found to be comparable to PAA[9].

From the above, a key conclusion is that the adhesion and the binder’s ability

to swell with electrolyte are the key factors in determining the viability of the binder

in the next generation composite anodes for LIBs. What is lacking in the literature

is the understanding of the location of the SEI that is formed during electrochemical

cycling within the binder. The location of the SEI can affect the adhesion. The

binder’s ability to swell with electrolyte may further influence the location of the SEI.

In this study the effect the binder has on the location of SEI was studied using X-ray

photoelectron spectroscopy (XPS). XPS can be used to characterize the chemical

composition of the surface of the binder after cycling[22].
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X-ray photoelectron spectroscopy (XPS) is a surface analysis technique that

allows for the quantification of the elemental composition of a sample. XPS is also

capable of determining the type of bonding and oxidation state of a sample based

on the elemental signals that are recorded. This is possible due to the nature of the

analysis technique. X-rays with know energy levels are utilized to excite the surface

level electrons of the sample which get ejected from the sample. The ejected electrons

are known as photoelectrons because they are emitted due to interactions with high

energy photons. An electron energy analyzer is used to measure the energy of the

emitted photoelectrons. The kinetic energy of the photoelectron leaving the sample

is described by

KE = hν − (BE + ψsample) (2.1)

Where KE is the kinetic energy of the emitted photoelectron, BE is the binding

energy of the emitted photoelectron, h is Plank’s constant, ν is the photon frequency

(the speed of light divided by the photon wavelength), and ψsample is the work function

of the sample.

The BE of an emitted photoelectron describes the energy needed to remove that

electron from the surface of the sample. The BE of a photoelectron is influenced by

the type of bonds that are present, as well as, the oxidation state of the compound

the photoelectrons are emitted from. Thus, from the binding energy as well as the

intensity of the corresponding photoelectron peaks, the quantity and composition of

the sample’s surface can be determined.

When analyzing the data from an insulating sample, such as a polymer, there

is a need to correct the BE due to the charging of the specimen. As an insulating

sample is bombarded with X-rays it begins to gain a positive charge which can cause
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errors in the kinetic energy observed during analysis. Therefore, a charge correction

is needed. Typically, the charge correction is done such that the peak with the lowest

binding energy found in the carbon region of the sample is aligned with the known

peak position of adventitious carbon contamination. The BE of this peak is between

284.6 - 285.0 eV [2]. XPS is also capable of conducting a depth profile analysis by

utilizing Ar ions to mill into the sample. This technique allows for the characterization

of thin films as a function of depth and was utilized in this study to understand and

elucidate the location of SEI within thin films of polymer binders. Here both PVDF

and CMC were investigated.

PVDF has been shown to swell with electrolyte, while CMC does not[11].

Comparing the two binders will help to verify if the location of SEI within the binder

is dependent on the binder’s ability to absorb electrolyte. Thin films of the binders

will be spun onto crystal Si wafers. No conductive additives will be utilized such that

any results can be directly linked to the presence of the binder.

2.2 Experimental Methods

2.2.1 Thin Film Preperation

Double side polished (111) Si wafers (50.8 mm diameter, 0.5 mm thickness, N-type

doped with As, and R: 0.005-0.05 ohm.cm) were purchased from MTI Corporation.

The wafers were then sonicated in acetone for 10 mins followed by another 10 min

sonication in isopropyl alcohol (IPA).

PVDF (534,000 Mw) was purchased from Sigma-Aldrich and mixed with 1-

methyl-2-pyrrolidinone (NMP) from Sigma-Aldrich to make a 6 wt % solution of

PVDF in NMP. The solution was mixed at 70 ◦C at 700 RPMs for 24 hours. The

PVDF solution was then spun coat onto a cleaned Si wafer at 500 RPMs for 10

to distribute the binder solution then 5000 RPMs for 30 s to achieve the desired

thickness. The wafer was cured on a hot plate for 1 hr at 70 ◦C.
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CMC (250,000 Mw) was purchased from Sigma-Aldrich. Unlike PVDF, CMC

is not soluble in NMP and thus a different solvent was needed. Deionized water was

first used as the solvent, but adhesion issues between the aqueous solution and the Si

wafer hindered the creation of a continuous CMC film on Si. Ding et al. and Mazouzi

et al. both showed changing the pH of the aqueous solvent used would help to improve

adhesion of CMC to Si[17]. This is due to the promotion of covalent bonding between

Si and CMC. Glacial acetic acid was then purchased from Sigma-Aldrich, which was

diluted to make a pH 3 solution in deionized water. The pH3 solution was made by

diluting the glacial acetic acid into a 0.1 M solution of acetic acid in deionized water.

The acetic acid solution was then mixed with the CMC powder to make a 4.5 wt%

solution of CMC in acetic acid. The CMC solution was mixed at 70 ◦C for 24 hrs at

700 RPMs. The CMC solution was then spun coat onto a cleaned Si wafer at 7000

RPMs for 30 s and cured on a hot plate at 70 ◦C for 1 hr. The wafers with the cured

thin films were then diced into 0.5 x 0.5 cm squares, which were used as the working

electrode in a coin cell.

To check that the thin films fully coated the Si wafers, scanning electron

microscopy (SEM) was conducted. Following the SEM analysis, atomic force

microscopy (AFM) was conducted to measure the film thickness. To measure the

thickness of the films a razor blade was used to make a cut in the prepared films. The

blade was gently run over the sample to prevent piling of the film around the cut.

2.2.2 Coin Cell Fabrication and Electrochemical Testing

Two types of electrochemical tests were conducted: cyclic voltammetry (CV) and

galvanostatic test. The cyclic voltammetry (CV) is conducted by sweeping the voltage

of a cell at a fixed rate between two potentials and the current response is recorded.

This test can help to identify the position of the oxidation and reduction reactions that

occur relative to the reference electrode (lithium metal). The voltage sweeping process
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is then repeated over multiple cycles to see if any new reactions occur. This test also

helps to determine the reversibility of the reactions. For a completely reversible

reaction the observed current magnitude during lithiation should be equal to the

current magnitude during delithiation.

The galvanostatic testing is done by applying a constant current for a given

amount of time with maximum and minimum voltages limits. In this study

galvanostatic cycling is done to determine the cycling efficiencies of binder coated

Si by comparing the total charge observed after lithiation to the total charge after

delithiation as shown in equation 2.2

Efficeincy =
Qdelith

Qlith

∗ 100 (2.2)

Where Qdelith is the total charge after delithiation and Qlith is the total after lithiation.

Any discrepancies in cycle efficiencies can be linked to the presence of the binder.

2032 coin cells were assembled by first sonicating the coin cell hardware (coin cell

cases, 100 µm spacer, and wave spring) in IPA for 10 minutes. A digital photograph

was taken of the Si chips prior to cycling. This was done to measure the surface

area of the diced chips using ImageJ software. Si electrode surface area was used to

normalize current density and observed capacity for each sample.

The hardware, working electrode (bare Si or binder coated Si), and polymer

separator (Celgard 2325) were then vacuum heated at 70◦C for 24 hrs to remove any

residual moisture. The coin cells were then assembled in an argon filled glovebox.

The coin cells consisted of a 500µm thick lithium foil counter electrode, 100 µL of

electrolyte, Celgard separator, working electrode, a single steel spacer, and a single

steel wave spring as seen in Figure 2.1. The coin cells were crimped at 750 psi
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Figure 2.1 Schematic of a single 2032 coin cell. This schematic highlights the
individual components of the cell as well as the order in which they are placed relative
to each other.

with a hydraulic crimper (MTI Corp) and then removed from the glovebox. The coin

cells’ voltage was then measured with a voltmeter to ensure that no short circuiting

occurred.

Electrochemical cycling was then performed on the fabricated coin cells. A

cyclic voltammogram (CV) study was conducted by cycling the cells between 0.01 V

and 2 V vs. Li/Li+ at a scan rate of 0.1 mV/s. Any peak density that was observed

was attributed to a chemical reaction that occurred within the cell. Peak current

density values as well as peak locations were compared to see how the presence of the

two binders affected the lithiation and delithiation of Si. The cells were cycled 5.5

times and terminated in their lithiated state.

A galvanostatic study was then conducted by applying a constant current

density of 25 µA/cm2. The voltage cutoffs for the test were 0.05 V vs. Li/Li+

for lithiation and 1.2 V vs. Li/Li+ for delithiation. Each step also had a time cutoff

of 25 hrs implemented. A time cut off was implemented such that the first lithiation

will occur and a set volume of Si will react with lithium and change its phase to

an amorphous lithiated Si. The cell will then fully delithiate and after subsequent

cycling, the time cut off will prevent more Si from alloying with lithium thus allowing
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for a set volume of active material to cycle. The cells were cycled 10 times and their

areal capacity was calculated for each lithiation/delithiation cycle.

2.2.3 XPS Analysis

After CV testing the coin cells were disassembled in an Ar filled glovebox with

moisture and oxygen content below 5 ppm. The electrodes were rinsed with

dimethylcarbonate (DMC) twice to remove any unwanted residual electrolyte. The

electrodes were then mounted into an inert transfer vessel using double sided-tape,

which helped to electronically isolate the samples. The samples were then inserted

into a Versaprobe II scanning X-ray photoelectron spectrometer Microprobe from

Physical Electronics USA, Inc. The Versaprobe II utilizes a monochromatic Al Kα

X-ray source which enhances lateral resolution to enable precise analysis of a desired

region of the sample. A duel neutralizing approach utilizing low-energy electrons and

low-energy Ar ions was applied.

A survey was first conducted to identify the elemental regions present in the

cycled films. Following the survey, multiplex measurements were taken in the C1s,

O1s, F1s, Li1s, Na1s, P2p, and Si2p photoelectron regions. The X-ray beam was

electronically rastered over the analyzed region to minimize the damage due to X-

ray exposure. The analyzer pass energy for the survey scans was set to 117.4 eV,

while the analyzer pass energy was set to 23.5 eV for the multiplex spectra. This

resulted in an analyzer resolution of 1.76 eV for the survey spectra and 0.35 eV for

the multiplex spectra. In the case of the pristine films, the BE was calibrated such

that the lowest BE peak in the C1s region corresponded to 284.8 eV of adventitious

carbon contamination. In the case of the cycled films the BE was calibrated such

that 685.0 eV represent LiF in the F1s region.

After the survey and multiplex were finalized, 30 mins of depth profiling was

conducted utilizing C-60 fullerene ions. The C-60 ions were utilized opposed to the
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standard Ar-ion milling because Ar-ion milling has been found to alter the chemical

state of certain compounds after long exposure. One specific compound is PVDF,

thus making it imperative to use the C-60 milling. The chemical degradation of

PVDF due to Ar-ion sputtering can be found in Appendix A (Figures A.1 and A.2).

During the 30 mins of sputtering, multiplex studies were conducted at 5 min,

10 min, 15 min, and 30 min. This was done such that high resolution scans could

be taken at different depths in the sample. By characterizing the compounds found

at different depths, it became possible to understand not only the location of SEI

compounds within the binder, but also the change in the atomic percentage of these

compounds as a function of depth.

The compositing and deconvolution of the elemental regions was performed

using XPSPEAK 4.1 software. The background was fit using a Shirley type

background function, while a mixed (80/20) Gaussian-Lorentzian peak was utilized.

The peak fitting process involved optimizing the peak parameters of a well resolved

region. The peak parameters include the full width half-maximum (FWHM), the peak

position, and the area. Once well resolved peaks were optimized, additional peaks

were added in order to minimize the chi-squared value. Doublet peaks were utilized

when deconvoluting the Si2p and P2p regions. The doublet peaks were constrained

such that they optimized together. Each photoelectron region was then compared to

ensure that the atomic percentage of like compounds were in accordance with each

other over their shared photoelectron regions (i.e., the atomic percentage of LiF in

the F1s region was similar to the atomic percentage of LiF in the L1s region).

2.3 Results and Discussion

Figure 2.2 shows the SEM images of both CMC (A) and PVDF (B) films, and it can

be noted that they uniformly coated the surface of the Si wafer. It is important to

note that the PVDF film shows an interesting pattern resembling grain structure in
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metals. Never the less the film is continuous, and the roughness is negligible relative

to the thickness. The PVDF film was measured to be 282.25 nm, while the CMC film

was measured to be 310 nm.

Figure 2.2 Scanning Electron Microscopy (SEM) micrographs of CMC (A) and
PVDF (B) on Si.

18



Figure 2.3 Atomic force microscopy (AFM) images of PVDF (A) and CMC (B)
with corresponding thickness measurements. The PVDF film was found to be 282.25
nm, while the CMC film was found to be 310 nm.

2.3.1 Electrochemical Performance

To understand the effect of binder on the cycling behavior of Si, CV studies were

performed. By performing these tests, the reactions that occur during cycling can be

observed in which a peak will form at a specific potential that represent a phase change

or chemical reaction. By comparing the bare Si sample to the binder coated samples,

any differences in electrochemical performance can be attributed to the presence of

the binder since all samples will be cycled similarly. Furthermore, if the magnitude

of the peak current density is different between the coated and bare samples, it can

be concluded that the binder will affect the kinetics of lithiation.
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Figure 2.4 Cyclic voltammetry response of bare Si (A), PVDF coated Si (B), and
CMC coated Si (C) after five cycles. The fifth cycle of each of the samples were
overlaid (D) to show their agreement.

Figure 2.4 shows the CV response of bare Si (A), PVDF coated Si (B), and

CMC coated Si (C). A comparison of the responses of these three samples was then

made in Figure 2.4 D in which the fifth cycle of each sample is overlaid. At 0.1 V

vs. Li/Li+ a sharp decrease in current was observed which was synonymous with the

onset of lithium alloying with Si[27]. As the cells delithiate two oxidation (or anodic)

peaks are observed at 0.35 V vs. Li/Li+ and 0.55 V vs. Li/Li+ which represent the

dealloying of lithium[24]. As the cells began their second lithiation a new peak was

observed at 0.2 V vs. Li/Li+ which represent the lithium alloying with Si [24]. With

each new cycle the peak current densityincreased in magnitude for all observed peaks,

which can be attributed to the electrochemical activation of additional crystalline Si

in each cycle. As the wafer cycles, cracks are formed on the surface which exposed
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more Si to subsequently react with lithium[24], thus increasing the observed peak

current density.

When comparing the CV response of the binder coated samples to the bare Si

sample, there is little to no difference observed in peak position. This comparison can

be seen in Figure 2.4 D where the fifth cycle of the PVDF coated Si, CMC coated Si,

and bare Si CVs were plotted. Each sample shows a peak reduction current density of

roughly -370 µA/cm2 and a peak oxidation current density of roughly 250 µA/cm2.

The comparable peak positions after 5 CV cycles helped to show that the presence

of binder did not affect the electrochemistry since no new observed peaks were found

when the binder was present.

To further verify that the PVDF and CMC had no effect on the electrochemical

performance of the Si, galvanostatic tests were conducted and the efficiency of the

cells were calculated and compared. This was done by first calculating areal capacity

of the cells and then plotting against the observed potential. The voltage plot of

cycled bare Si, PVDF coated Si, and CMC coated Si can be seen in Figure 2.5 After

five cycles their efficiencies were calculated and tabulated in Table 2.1. Overall, the

three samples show good agreement in both behavior and cycle efficiency[5]. The

observed first cycle efficiency of the PVDF coated sample was 65%, the first cycle

efficiency for the CMC coated sample was 69%, and the first cycle efficiency of the

bare Si sample was 71%. After five galvanostatic cycles, each sample reached 99%

efficiency.

21



Figure 2.5 Voltage curves of bare Si (black), PVDF coated Si (red), and CMC
coated Si (green) after their first and fifth cycle of galvanostatic testing. Each charge
cycle is represented by a solid line and each discharge cycle is represented by a dotted
line.

These results helped to verify the observed cycling behavior seen from the

CV testing because the first cycle efficiency of all three samples were comparable.

Furthermore, as the sample underwent further cycling the efficiency were also

comparable implying that the binder did not influence the overall cycling performance.
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Table 2.1 Cycle Efficiency of Bare Si, PVDF Coated Si, and CMC Coated Si

Cycle Bare Si Efficiency PVDF Efficiency CMC Efficiency

1 71 65 69

2 81 82 84

3 93 93 94

4 98 98 98

5 98 99 98

2.3.2 Effect of Binder on SEI Formation

XPS analysis was first conducted on bare Si and uncycled films to obtain a benchmark

which then can be compared to all the cycled data. Figures 2.6 and 2.7 show the

deconvoluted C1s spectra of uncycled PVDF and uncycled CMC respectively. The

two large peaks at 285.9 eV and 290.4 eV shown in Figure 2.6 in the C1s region

associated with C-C and C-F bonding are representative of the PVDF film. In the

F1s region a single peak at 687.6 eV was observed, which was also representative of

the PVDF film. The peak parameters of the uncycled PVDF film are shown in Table

2.2. The atomic percentage of the two PVDF associated peaks in the C1s region

and the single peak in the F1s combined to make up ∼98% of the surface chemistry

implying the film was not chemically altered due to the sample preparation.

When analyzing the uncycled CMC film two peaks associated with the CMC

were seen in the C1s region located at 286.3 eV and 288.0 eV[23]. The third peak in the

C1s region is representative of hydrocarbons. When analyzing the O1s region there

were three peaks as well. One located at 531.1 eV representing the C-O bonding in the

CMC, one located at 532.7 eV representing the other oxygen containing compounds of

the CMC, and a final peak at 535.7 eV representing the Na Auger[23]. The Na Auger

is an artifact of the sodium that is in the film. Although the Auger appears in the O1s
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Figure 2.6 Deconvoluted C1s region (A) and F1s region(B) of uncycled PVDF on
Si.

Figure 2.7 Deconvoluted C1s (A), O1s (B), Na1s (C), and Si2p (D) regions of
uncycled CMC on Si.
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region it is not an oxygen containing compound. A single peak was then observed in

the Na1s region which represented the sodium found the CMC film. Finally, a low

atomic percentage SiO2 peak was observed at 102.1 eV. The presence of this peak

was due to Si contamination that was present due to dicing of the electrodes which

was based on the low atomic percentage observed.

Table 2.2 XPS Summary of Uncycled PVDF on Si. This Table Shows the Binding
Energy, FWHM, Atomic Percentage, and Assignment of all Deconvoluted Peaks. The
Shake Up Seen in the C1s Region Represents an Artifact of XPS Analysis

C1s

Peak BE FWHM Atomic % Assignment

1 284.8 1.2 1.5 C-H

2 285.9 1.2 24.6 C-C

3 287.6 1.7 2.6 Degraded PVDF

4 290.4 1.1 21.5 C-F

5 292.7 1.5 0.6 Shake Up

F1s

Peak BE FWHM Atomic % Assignment

1 687.6 1.7 49.1 C-F

Once the uncycled films were properly understood and characterized, the cycled

bare Si samples were analyzed. The bare Si samples were used to fully understand

the expected signature of the SEI formed during electrochemical cycling. C-60 depth

profiling was also conducted on these samples to fully understand the distribution of

SEI compounds as a function of depth.

The result of the XPS deconvolution of the surface of the bare Si samples can

be seen in Figure 2.8. The surface of the cycled Si is predominately comprised of

hydrocarbons, LiF, Li2CO3, and reduced electrolyte. The atomic percentages as well
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Table 2.3 Summary of Uncycled CMC on Si. This Table Shows the Binding Energy,
FWHM, Atomic Percentage, and Assignments of all Deconvoluted Peaks

C1s

Peak BE FWHM Atomic % Assignment

1 284.8 1.1 43.5 C-H

2 286.3 1.2 17.4 C-O

3 288 1.9 9.8 O=C-O

O1s

Peak BE FWHM Atomic % Assignment

1 531.1 1.5 7.4 C-O

2 532.7 1.7 16.2 CMC

3 535.7 2.1 1.6 Na Auger

Na1s

Peak BE FWHM Atomic % Assignment

1 1071 1.5 3.5 CMC

Si2p

Peak BE FWHM Atomic % Assignment

1 102.1 1.5 0.6 SiO2

as the peak location of these compounds can be seen in Table 2.4. The observed

compounds are synonymous with SEI and helped to verify that a stable SEI layer

was formed on the surface of the cycled electrodes while also providing valuable

information regarding the SEI composition that should be present in the binder coated

films[21]. C-60 sputtering was then conducted on the sample to further understand

the composition of SEI, specifically at the interface of SEI and Si.
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Figure 2.8 Deconvoluted C1s (A), O1s (B), F1s (C), and Li1s (D) regions of the
surface of bare Si after 5.5 cycles of CV tests.

Figure 2.9 shows the deconvoluted C1s (A), O1s (B), F1s (C), and Li1s (D)

regions of the cycled bare Si sample after C-60 sputtering. Table 2.5 shows the

summary of the peak parameters. From the C-60 sputtering, it was observed that

the atomic percentage of Li2O increased while the atomic percentage of Li2CO3 and

LiF were reduced. These observations were compared to the literature which states

that the composition of the SEI formed on Si should be dominated by Li2O at the

interface of SEI and Si. Thus, the results of the C-60 sputtering corresponded to the

expected results from the literature[21] [23].

27



Figure 2.9 Deconvoluted C1s (A), O1s (B), F1s (C), and Li1s (D) regions of the
bare cycled Si after C-60 sputtering.

With the composition of the SEI formed on bare Si characterized at both the

surface and the interface, the binder coated samples were then analyzed. XPS analysis

was conducted at the surface, within the binder, and at the interface between binder

and Si. The depth profiling was conducted by sputtering the samples for 30 mins

using C-60 ion milling. The samples were then analyzed after 5, 10, 15, and 30

mins. At each interval a high resolution scan was conducted to analyze the chemical

composition after sputtering. The relative location of the XPS analysis conducted

at each interval was found by first plotting the atomic percentage of both the C1s

and Si2p regions of the binders as a function of C-60 sputter time. As the sputter

time increased the atomic percentage of the C1s region decreased while the atomic

percentage of the Si2p region increased. The crossover point of these two elemental

regions represents the breakthrough point, or the interface between binder and Si.
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Table 2.4 XPS Summary of Bare Si After 5.5 Cycles of CV Testing. This Table
Shows the Binding Energy, FWHM, Atomic Percentage, and Assignments of all
Deconvoluted Peaks

C1s

Peak BE FWHM Atomic % Assignment

1 285 1.2 34 C-H

2 286 1.7 2.6 C=O/C-O

3 290 1.6 1.7 Li2CO3

O1s

Peak BE FWHM Atomic % Assignment

1 528 1.3 0.4 Li2O

2 532 2 6.6 Li2CO3

3 533 1.8 1.3 C=O/C-O

F1s

Peak BE FWHM Atomic % Assignment

1 685 1.5 19.8 LiF

2 687 2 2.9 LixPFyOz

Li1s

Peak BE FWHM Atomic % Assignment

1 54.2 2.3 4.8 Li2CO3

2 55.7 1.5 23.6 LiF

P2p

Peak BE FWHM Atomic % Assignment

1 134 2.2 0.2 LixPFyOz

2 137 1.7 0.3 LixPFy

Si2p

Peak BE FWHM Atomic % Assignment

102 1.8 0.8 SiOx

The time was then recorded and used to calculate the sputter rate. This was done by

diving the binder’s thickness by the breakthrough time. The breakthrough of both

PVDF and CMC can be seen in Figure 2.10.
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Table 2.5 XPS Summary of Bare Si After C-60 Sputtering. This Table Shows the
Binding Energy, FWHM, Atomic Percentage, and Assignments of all Deconvoluted
Peaks

C1s

Peak BE FWHM Atomic % Assignment

1 279.51 1.13 0.3 SiC

2 282.34 2 1 LiC

3 284.65 1.33 7.5 C-H

4 286.02 2 1.1 C-O

5 289.83 1.2 1.9 Li2CO3

O1s

Peak BE FWHM Atomic % Assignment

1 528.24 1.36 11.9 Li2O

2 529.94 1.68 4 R-O-Li

3 531.4 1.64 12.6 Li2CO3/C-O

F1s

Peak BE FWHM Atomic % Assignment

1 685 1.6 9.4 LiF

Li1s

Peak BE FWHM Atomic % Assignment

1 52.95 1.57 11.4 Li-Si

2 54.13 1.57 21.7 Li2O

3 55.54 1.57 13.6 LiF/Li2CO3/R-O-Li

Si2p

Peak BE FWHM Atomic % Assignment

1 95.95 1.37 2.4 Li-Si 2p3/2

2 96.55 1.37 Li-Si 2p1/2

3 97.72 1.72 0.4 Si 2p3/2

4 98.32 1.72 Si 2p1/2

5 100.28 1.72 0.7 SiC 2p3/2

6 100.88 1.72 SiC 2p1/2
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With the sputter rate calculated, the relative depth at which high resolution

scans were taken during C-60 sputtering were calculated and it was found that the

scans taken after 5 mins were 150 nm into the film. The breakthrough of the samples

occurred after 11 min of sputtering and thus the scan taken after 10 mins of sputtering

was used to quantify the chemical composition at the interface of binder and Si. The

results of the XPS analysis conducted on the surface, within, and at the interface

between PVDF and Si are shown in Figure 2.11. The peak parameters of the PVDF

coated sample at all three regions can be found in Appendix B.

Figure 2.10 Breakthrough of PVDF (A) and CMC (B). The crossover point of the
two curves represents the point at which the binder was milled away to expose the
underlying Si.

On the surface of the PVDF there were two major peaks in the C1s region

which represent the C-C and C-F bonding of PVDF. Unlike the bare Si sample there

is no Li2CO3 present on the top surface of the binder, however there is an increase

in the C-H peak as well as a new peak at 287.4 eV that represents C=O bonding.

The increase in atomic percentage of C-H bonding after cycling was ∼6%. In the O1s

region there was a single peak which is representative of the C=O bonding, and in

the Si2p region there was a peak at 102.3 eV representative of SiO2.

These findings were unexpected because the XPS analysis showed that there

was little to no characteristic SEI compounds on the surface of the PVDF. The C=O

31



peak in the O1s region and the increase is C-H in the C1s region can be linked to the

formation of organic SEI components, but they only represent ∼8% of the surface

chemistry. Li2CO3 and LiF were not present on the surface of the cycled PVDF

despite having a strong signal on the surface of cycled Si. This implies that SEI did

not form on the surface of the PVDF.

When analyzing the XPS results taken within the PVDF a peak at 289.7 eV

repressing Li2CO3 was observed in the C1s region as well as peaks repressing C-C,

C-F, C=O, and C-H bonding. In the O1s region there were peaks observed at 528.4

eV and 531.2 eV. These two peaks represented Li2O and Li2CO3 respectively. Like the

surface of the PVDF, there was also a peak at 532.8 eV representing C=O bonding.

The Si2p region showed two peaks, one at 96.3 eV and one at 101.1 eV. These two

peaks represented Li-Si and Si, though their atomic percentage was ∼0.1%. It is

important to also note that the atomic percentage of LiF within the binder was 35%

which is comparable to the 40% found in the top surface of the cycled Si. Unlike the

surface of the PVDF, the results of the XPS analysis conducted within the binder

showed that SEI was formed and that the composition was similar to the composition

of the SEI found on the top surface of the bare Si.

Finally, XPS analysis was conducted at the binder/PVDF interface. In the C1s

region there were peaks representing SiC, LiC, C-H, C-C, C=O, C-F, and Li2CO3.

The presence of SiC was due to the C-60 sputtering process in which carbon was

embedded into the Si with an increase in sputter time. Like the cycled bare Si, the

Li2CO3 peak was reduced at the PVDF / Si interface. When analyzing the O1s region

a strong Li2O peak was observed at 528.3 eV. When comparing the atomic percentage

of Li2O at the PVDF / Si interface to the atomic percentage of Li2O at the Si / SEI

interface of the bare Si sample it was found that the PVDF sample was 23% while the

Si sample was 33%. Again, these two values are comparable and help to show that
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the SEI formed in the PVDF was similar to the SEI formed at the SEI / Si interface

of the cycled bare Si sample.

With all three regions of the PVDF sample analyzed it was clear that SEI

formed predominately in the binder, while little to no SEI formed on the top surface.

The region analyzed that was roughly in the center of the PVDF film showed an SEI

composition that was comparable the SEI formed on the top surface of the bare Si

sample. The composition of the SEI at the PVDF / Si interface was similar to the SEI

/ Si interface of the bare Si sample which was conclude based on both samples being

dominated by Li2O. The location of the SEI within the binder is in accordance with

the fact that PVDF swelled with electrolyte. Since the electrolyte was present within

the PVDF, SEI compounds were formed with it. This result is of vital importance

because it shows that SEI was present within the binder, which could affect the

adhesion of PVDF to Si and thus explain its poor performance when compared to

CMC and other binders.

CMC was then analyzed to understand the location of the SEI formed within

it. The deconvoluted peaks of the CMC at the surface, within the binder, and at the

CMC / Si interface is shown in Figure 2.12. The peak parameters of the CMC can

be found in Appendix B.

On the top surface of the cycled CMC sample there were three peaks in the C1s

region representing C-H, C-O, and O=C-O bonding. When compared to the uncycled

CMC sample there were little to no discrepancies in the C1s region and no Li2CO3

was observed. The O1s region of the cycled sample again showed little to no deviation

from the uncycled CMC film. However, two major SEI compounds were observed in

the F1s region which were LiF and LixPFyOz. The LiF made up 5% of the chemical

composition, while the reduced electrolyte made up 11% of the chemical composition.

Unlike the PVDF sample, the CMC sample had SEI compounds observed on the top

surface, but it was not comparable to the SEI seen in the bare Si sample. This is
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Figure 2.11 Deconvoluted XPS spectra of PVDF on the surface of the binder,
within the binder, and at the binder / Si interface. The C1s, O1s, and Si2p regions of
the surface of the binder are shown in (A-C). The C1s, O1s, and Si2p regions within
the binder are shown in (D-F). The C1s, O1s, and Si2p regions of the binder / Si
interface are shown in (G-I).

because the CMC sample had substantially more reduced electrolyte on its top surface

when compared to the bare Si sample, as well as less LiF and no Li2CO3.

The chemical composition of the CMC sample after 5 mins of sputtering was

then observed to verify if SEI compounds formed within the it. The C1s region

showed the same three peaks as the top surface of the sample, but the intensity of

the C-O peak was drastically reduced. The O1s region also showed a reduction of

the peak associated with the CMC at 530.5 eV. Interestingly, the F1s region showed

a drastic change in which the peak associated with the reduced electrolyte was no

longer present, but the LiF signal was the same. What was more interesting was that

there was no signal for lithium at all during sputtering. This is interesting because
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Figure 2.12 Deconvoluted XPS spectra of CMC on the surface of the binder, within
the binder, and at the binder / Si interface. The C1s, O1s, and Si2p regions of the
surface of the binder are shown in (A-C). The C1s, O1s, and Si2p regions within the
binder are shown in (D-F). The C1s, O1s, and Si2p regions of the binder / Si interface
are shown in (G-I).

the majority of the characteristic SEI compounds contain lithium, so the lack of a

presence of these compounds implies a lack of SEI within the CMC sample.

The interface of CMC and Si was then analyzed. In the O1s region there

was a peak associated with Li2O at 528.4 eV, but its atomic percentage was only

2.5% which was low when compared to the 23% and 33% found in the PVDF and

bare Si sample. All other elemental regions showed a similar lack of SEI containing

compounds. Despite the lack of SEI there was still Li-Si found at the interface of

the CMC sample. The presence of Li-Si proves that the CMC sample was properly

lithiated. The presence of Li-Si coupled with the comparable electrochemical response

of the CMC sample to both the PVDF and the bare Si sample implies that unlike

PVDF, CMC does not allow for the formation of SEI within it. This result helps
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to further explain CMC’s performance when compared to PVDF when utilized in a

composite electrode. Since no SEI is present within the film, the adhesion between

CMC and Si would not be altered due to electrochemical cycling and thus CMC would

have improved performance.

2.4 Conclusions

Thin films of both PVDF and CMC were spun coat onto crystal Si wafers and

electrochemically cycled. The results of the electrochemical cycling showed that the

presence of the thin films did not alter the electrochemistry during cycling. The cycled

samples were then disassembled and XPS analysis was conducted in connection with

C-60 sputtering. The results of the XPS analysis of the top surface of the bare Si

showed that a characteristic SEI layer was formed during cycling that was comparable

to the literature. The surface chemistry of the PVDF coated sample showed little

to no SEI compounds, while the surface of the CMC sample showed a large atomic

percentage of reduced electrolyte as well as a small percentage of LiF. C-60 sputtering

was then conducted to characterize the SEI found within the binders. The PVDF

sample had an SEI composition that was comparable to the SEI found on the top

surface of bare Si, while the CMC sample showed no SEI formation. C-60 sputtering

was then continued until the binder was milled through and the interface between

binder and Si could eb characterized. At the interface of PVDF and Si there was

again a characteristic SEI layer observed. At the interface of CMC and Si there was

only a small percentage of Li2O.

These results show that PVDF allowed for the formation of SEI within it, while

the CMC prevented SEI formation. This information sheds light onto the improved

cyclic performance of composite anodes that incorporate CMC. Since no SEI forms

within the CMC the interface properties will not change due to the presence of new

SEI compounds. PVDF however allows for the formation of SEI within it and thus
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the interface properties are altered as SEI forms in the binder as well as on the Si.

The formation of SEI in the PVDF was attributed to the PVDF’s ability to swell

with electrolyte.
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CHAPTER 3

FABRICATION OF AN IDEALIZED COMPOSITE ANODE

3.1 Background Information

Due to its high theoretical capacity, silicon is a highly sought after material to

incorporate into the anode of LIBs. Despite the extremely high theoretical capacity

of Si, there is one major drawback to the material that has prevented it from being

incorporated in commercial cells and that is the large volume expansion that occurs

during cycling. As the Si is lithiated, it can expand up to 300% its original volume

only to then reduce in size during delithiation. This extreme volume expansion and

contraction can generate stresses that can pulverize the Si while also breaking binder

bridges that keep Si particles connected to the electronic network of the anode. Figure

1.1 and Figure 1.2 highlight these binder bridges. Removal from the electronic network

electrically isolates the Si which leads to poor cyclic life. Due to the vital role of

polymer binders in the composite anode’s performance, various binders have been

extensively investigated.

To properly predict the cyclic life and performance of Si-based anodes, the

quantification and understanding of the stresses that occur within the composite

film needed to be understood. Real-time stress measurements coupled with electro-

chemical response can shed light onto the failure mechanisms that lead to binder

bridge failure within the anode. One such real time stress measurement technique

is an optical curvature measurement known as multi-beam optical sensing (MOS).

Sethuraman et al. used MOS technique to measure the stresses developed in a Si thin

film due to electrochemical cycling[26]. In this study amorphous Si was deposited onto

an elastic substrate, and it was observed that the substrate constrained the in-plane

volume expansion of the thin film which caused a compressive stress to generate within
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the film during lithiation. After a compressive stress of 1.7 GPa was reached, the film

appeared to flow with further lithiation until the compressive stress was recorded to

be 1 GPa. When delithiating the sample there was an initial elastic response until 1

GPa of tensile stress was observed. At this point the film began to flow in tension in

order to accommodate the reduction in size corresponding to a reduction in lithium

concentration. The stress increased until a tensile stress of 1.75 GPa was recorded.

This study characterized the stress response of cycled amorphous Si for the first time.

To characterize the stress response of crystal Si, Chon et al. cycled a Si wafer

coupled with MOS measurements[5]. A single cycle of lithiation and delithiation was

conducted and the stress response of the crystal wafer was recorded. During lithiation

they observed that the crystal wafer experienced a linear increase in compressive stress

until the end of the lithiation cycle. They also observed a peak compressive stress

of 0.5 GPa. This result implied that the biaxial stress in the amorphous Si layer

formed during lithiation was constant. During delithiation there is a sharp linear

jump in tensile stress due to the sharp change in lithium concentration. The linear

region ends after a stress of 0.5 GPa is recorded, which can be implied as the yield

stress of the amorphous Si. As more lithium is removed from the Si, the tensile

stress continues to increase until 1.5 GPa of stress is observed. At this point a sharp

curvature change occurred which represented the cracking of the Si wafer. They then

conducted SEM analysis to confirm the cracking. SEM analysis also showed that the

thickness of the amorphous layer formed during cycling was ∼ 1 µm. Transmission

electron microscopy (TEM) was also conducted to show the phase boundary between

amorphous and crystalline Si was atomically sharp.

To further understand the failure mechanisms of the polymer binder, Sethuramen

et al. experimentally measured the stress of a composite anode using MOS [25].

Composite films comprised of Si particles, conductive additive, and either PDVF

or CMC was spun onto Si substrates. During lithiation the composite electrodes
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formulated with CMC showed an initial linear increase in compressive stress, followed

by a plateau. The plateau was interpreted as being caused by inter-particle sliding.

During lithiation of the PVDF based composite film, failure was observed. This was

due to the breaking of binder bridges as the particles increased in size during lithiation.

These results showed that CMC out performed PVDF, while also characterizing the

stress response of a composite film on an elastic substrate. What was not possible

was the measurement the stress at the particle level. The stress that was measured

was only the averaged stress throughout the film. This was due to the geometric

complexities of the Si particles used in the film.

In order to measure the stress between the active material and the polymer

binder, an idealized composite electrode geometry is proposed. A regular array of

micro sized cylinders of Si can be used to idealize the distribution of Si particles

in a composite anode. Polymer binder can then be added to the system to form

binder bridges between the pillars. The idealized anode can then be galvanostaticly

cycled, while the curvature is measured. This allows for in situ measurements of both

stress and electrochemical response. The idealized composite anode was prepared

by microfabrication techniques such that the diameter of the pillars was comparable

to micro-sized Si particles used in compote anodes. Both PVDF and CMC were

then added to the anode to form binder bridges. The idealized anodes were then

electrochemically cycled, and the curvature response was measured. Estimation of

the stresses in the binder bridges was attempted by developing a finite element model

of the sample.
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3.2 Experimental Procedures

3.2.1 Photolithography

Photolithography is one of the most common microfabrication techniques which allows

for the transfer of a pattern to a desired material. Photolithography involves multiple

steps which are highlighted in Figure 3.1. The first step is to develop a desired pattern

using computer aided design (CAD) software.

Once the desired pattern is created the design is transferred to a mask. This

process involves depositing chrome onto a quartz substrate. The chrome is then

removed such that the pattern created with the CAD software remains, while the

rest of the chrome is removed. Once the mask is created, photoresist is spin coated

onto a desired substrate.

Figure 3.1 Transmission electron microscopy (TEM) image of a thin slice (ca. 300
nm thick) prepared via FIB cross-section of a partially lithiated Si/CMC composite
electrode.

Source: Toner, M., Buettner, H. (1998). Microfabrication in biology and medicine. Biotechnology

Progress, 14(3), 355–355. https://doi.org/10.1021/bp980203f
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Photoresist is a photosensitive polymer that reacts when exposed to ultraviolet

(UV) light. Photoresists are broken up into two categories, positive and negative.

Positive photoresist are polymers that become weak when exposed to UV light. The

weakened photoresist can then be dissolved in a developer solution leaving the desired

pattern on the substrate. Figure 3.1 depicts the results of using a positive photoresist.

Negative photoresists work in the opposite fashion. When a negative photoresist is

exposed to UV light it become stronger and all unexposed photoresist can be dissolved

away.

After spin coating the substrate with photoresist, the mask is held over the

sample and UV light is transmitted through the mask exposing all uncovered

photoresist. A developer solution is then utilized to dissolve any unwanted

photoresist. Photolithography can also be done without a mask in which a tool

is needed to directly write the pattern onto the photoresist. The most common tool

for mask-less photolithography is known as a Heidelberg DW66+. In this study both

standard photolithography and mask-less photolithography were attempted, but the

mask less photolithography showed better results and thus utilized for all final sample

fabrication.

3.2.2 Multi-beam Optical Sensing

Multi-beam optical sensing (MOS) is an experimental technique that utilizes laser

beams to measure the in situ curvature change of an elastic substrate. This is done

by first splitting a single laser beam into a two-dimensional array of laser beams. The

initially generated laser beam is passed through a series of etalons, which splits the

initial beam into an equally spaced two-dimensional array of beams. The array of laser

beams is then projected and reflected off the backside of an elastic substrate. The

reflected beams are captured with a high-resolution CCD camera and the centroid

of each reflected laser beam is tracked with image processing software. Since laser
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beams are tracked in two orthogonal directions, a two-dimensional measurement of

the curvature is made. Furthermore, measurements made with MOS is inherently less

sensitive to vibrations of the sample because the simultaneous tracking of the array

of lasers. A schematic of the MOS system can be seen in Figure 3.2.
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Figure 3.2 Schematic of the Multi-beam optical sensor (MOS).

Source: https://www.k-space.com/wp-content/uploads/MOS Product Specs.pdf

The curvature of the sample is calculated by measuring the relative change in

position of the centroids of each laser beam and then utilizing the following equation
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κ =
d− do
do

∗ 1

Am

(3.1)

Where κ is the curvature of the substrate, d is the current distance between laser

spots, do is the initial distance between laser spots, and A−m is the mirror constant

of the MOS system. The mirror constant is a constant value that depends on the

length in which the lasers must travel as well as the incident angle in which the

beams are reflected off the substrate. The mirror constant is experimentally found

by first establishing a flat reference. This is done by measuring the curvature of a

flat reference mirror. A curved reference mirror with known curvature is then utilized

and the mirror constant is then measured.

The stress of a function of the film thickness can then be interpreted by utilizing

the following equation

σ ∗ hf =
Esh

2
sκ

6(1 − νs)
(3.2)

Where σ is the stress in the film, hf is the film thickness, Es is the elastic modulus of

the substrate, κ is the curvature of the substrate, and νs is the Poisson ratio of the

substrate.

3.2.3 Pillar Fabrication

Double side polished (111) Si wafers (50.8 mm diameter, 0.5 mm thickness, N-type

doped with As, R: 0.005-0.05 ohm.cm) were purchased from MTI Corporation. A

regular pattern of circles was generated using Layout Editor software. The diameter

of the circles was 10 µm and the pitch between circles was 2 µm. A 51 mm by 51 mm
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square of these circles was then created such that it would fully encompass the 50.8

mm diameter Si wafer. The Si wafers were then brought to the Princeton Institute

for the Science and Technology of Materials (PRISM) facility for photolithography.

The first step in the photolithography process was to apply a layer of photoresist

onto the Si wafer. The photoresist used was AZ 1518. AZ 1518 is a positive photoresist

which means that as it is exposed to ultraviolet (UV) light the polymer would react

such that the polymer chains are weakened and thus the exposed photoresist can

be easily dissolved in a developer solution. This means that after the photoresist is

exposed to UV light and developed, an exact copy of the circles created in Layout

editor would remain while area between the circles would be left clean of photoresist.

Since the height of the pillars was required to be 10 µm, the layer of photoresist had

to be more than 1 µm thick. This is because the AZ 1518 is removed during the

etching process at a rate of 1 µm for every 10µm of Si removed. Spin coating a thick

layer of photoresist directly onto Si wafers typically results in uneven films due to

streaks cause by bubbles that form during the spin coating process. To alleviate this

issue the surface of the Si wafer was treated in order to improve the adhesion between

photoresist and Si which prevents the uneven films from occurring. To improve the

adhesion between SI and photoresist a thin layer of bis(trimethylsilyl)amine (HMDS)

was deposited onto the surface of the wafer.

HMDS was applied to the wafer by first dehydrating the wafer to remove any

residual moisture trapped within the surface of the wafer. Removing the residual

moisture on the surface of the wafer allowed for the HMDS to bond directly with the

native oxide layer on the Si wafer. The HMDS layer applied was thinner than the

oxide layer on the wafer. With the HMDS applied, the AZ 1518 was then spin coated

onto the wafer at 4000 RPMs for 40 s. This allowed for a layer of photoresist that was

over 1 µm thick to be created. After spinning the resist, the wafer was transferred to

a hot plat set to 95◦C and baked for 60 s.
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The wafers were then brought to a Heidelberg DWL66+ to expose the wafers to

UV light. The Heidelberg operates by directly writing a pattern onto the surface of the

photoresist making it a mask-less photolithography technique. Prior to exposing the

wafer to UV light, the desired pattern was uploaded to the Heidelberg computer and

the standard 10 mm write head was used. The write head determines the resolution

of the pattern and dictates the smallest possible feature size that can be created.

The parameters used for the exposure were 95% UV light intensity coupled with 10%

focus. No offset in the X or the Y directions were needed. The pattern was centered

with the center of the wafer such that the 51 mm square fully encompassed the wafer.

Exposure was then conducted for 20 mins.

Once the Heidelberg finished writing the pattern onto the wafer, AZ300MIF

developer was used to remove the exposed photoresist. This process involved soaking

the wafer in developer for 60 s when gently stirring the wafer in the developer

to propagate the removal of exposed photoresist. An optical microscope was then

utilized to verify that the circular pads of photoresist were properly created, while

also verifying that all exposed photoresist was removed. The wafers were then placed

in wafer carriers and brought to the Center for Functional Nanomaterials (CFN) at

Brookhaven national Lab for Si etching and metal deposition.

Prior to etching the wafer were de-scummed to remove any residual HMDS as

well as any residual photoresist. This process was not initial conducted which resulted

in uneven walls around the etched pillars. SEM images were taken of the photoresist

pads prior to etching and it was found that there was thin layer of “scum” or residual

photoresist at the edges. The layer of scum influenced the final geometry of the

pillars and thus had to be removed. This was done by placing the wafer into an O2

plasma oven for 60 s. This process removed the nanoscale residual photoresist that

was present around the edges of the photoresist pad.
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An Oxford-F DRIE etcher was then utilized in which a cryo-etch procedure was

run for 4 minutes to ensure a pillar height of 15 µm. The cryo-etch procedure involved

lowering the temperature of the etcher to -100 ◦C. Fluorine gas was then utilized to

remove any Si that was not covered with photoresist. Once the etching process was

over, O2 plasma was utilized to remove the photoresist that was present on the top

surface of the now etched pillars. The wafer was removed from the etcher and cooled

only to then be cleaned with acetone and IPA. The geometry of the etched pillars

was then characterized with SEM images.

After etching, a 5 nm layer of titanium and a 200 nm layer of copper were

deposited on the backside of the wafer using a Lesker sputterer. This was done by

adhering the etched wafer inside the sputterer and bringing the tool to ultra-high

vacuum. The Ti and Cu targets were the sputtered with O2 plasma to coat the

backside of the wafer. The time in which the samples were sputtered corresponded

to the sputter rate of those materials. Ti and Cu were sputtered onto the backside

of the wafer in order to uniformly distribute current throughout the Si wafer during

electrochemical cycling. Ti was utilized as an adhesive layer due to poor adhesion

between Cu and Si. The Cu acts as current collector and was imperative for the

proper cycling of the wafers. Etched wafers were initially cycled without the metal

layers on the backside, which resulted in a poor connection and thus failure of

the electrochemical tests. The addition of the Ti / Cu layer improved the current

distribution and allowed for proper electrochemical testing.

Polymer binder was then added to the pillared side of the wafer. PVDF (534,000

Mw) was purchased from Sigma-Aldrich and mixed with 1-methyl-2-pyrrolidinone

(NMP) from Sigma-Aldrich to make a 6 wt% solution of PVDF in NMP. The PVDF

solution was then spun coat onto the etched wafer at 1000 RPMs for 30 s to distribute

the polymer evenly between the pillars. The sample was then vacuum heated at 70

◦C for 24 hrs in an Ar environment. A 5 wt% solution of CMC was then made by
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mixing CMC (Mw 250,000) with a pH 3 solution of acetic acid in deionized water.

The solution was first coated onto the wafer with a spatula such that the entire wafer

was uniformly covered in the CMC solution prior to spin coating. The wafer was then

spun at 1000 RPMs for 30s and vacuum dried at 70◦C for 24 hrs in an Ar environment.

The polymer binder bridges that formed between the pillars where characterized by

SEM analysis.

3.2.4 Beaker Cell Fabrication

Prior to cycling, the pillared wafers are vacuum dried in Ar for 24 hrs at 70◦C to

ensure that any residual moisture is removed. Along with the wafer, Celgard is also

vacuum dried to remove any possible moisture in the material. Once the wafer and

Celgard are dried, they are inserted into an MBraun Glovebox, which maintains an

Ar environment with O2 and H2 below 5 ppm.

Unlike Chapter 2, the electrochemical cycling was conducted in a custom made

beaker cell opposed to a coin cell configuration. This was done such that in situ stress

measurements could be taken as the cell electrochemically cycled. A schematic of the

custom beaker cell is shown in Figure 3.3 which also highlights how the MOS lasers

reflect off the wafer.

To assemble the beaker cell configuration, a disc of lithium was first cut out

and a copper wire was attached to it. The lithium disc acted as a reference electrode

in this experimental set up. The Celgard was then placed over the Li disc and 2

mL of electrolyte (1 molar LiPF6 in 1:1:1 vol. ratio of EC:DC:DMC) was added to

the system. The pillared wafer was the added to the beaker cell and an electrical

connection was made by connecting a Cu wire to the wafer with a Cu clip. A steel

cap with a glass window was then screwed onto the top of the beaker cell with a

gasket between the steel and the Teflon to ensure a tight seal.
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Figure 3.3 Schematic of the custom made beaker cell utilized in this study. The
housing of the beaker cell was made of Teflon, while the cover was made of steel. In
the cover was a glass window which allowed the laser beams of the MOS system to
project onto the backside of the pillared wafer.

3.2.5 Electrochemical Testing

A galvanostatic study was conducted by applying a constant current density of 25

µA/cm2. Prior to cycling the top surface of the wafer was imaged using a digital

camera, and the area was calculated using ImageJ software. The voltage cutoffs for

the test were 0.05 V vs. Li/Li+ for lithiation and 1.2 V vs. Li/Li+ for delithiation.

The cell was then cycled 2.5 times where each (de)lithiation was set for 25 hrs. After

cycling, the cell was then disassembled and rinsed with DMC and SEM analysis was

conducted to characterize the change in volume due to electrochemical cycling.

3.3 Results and Discussion

After developing the desired patterned of circles onto the first set of Si wafers, an

optical microscope was used to verify that all residual photoresist was removed.

The image taken from the optical microscope can be seen in Figure 3.4.
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Figure 3.4 Photoresist pads after 60 s of developing.

The initial pads of photoresist seen in Figure 3.4 were properly sized and all residual

photoresist was removed, so the samples were etched using a cryo-DRIE etching

process. The etched wafers were then characterized using SEM. The geometry of a

single pillar on an etched wafer can be seen in Figure 3.5. The pillars had undesirable

geometry in which a “shell” structure could be seen wrapped around the pillars. Due

to this result SEM images were then taken of developed photoresist pads in order

to fully characterize the pad of photoresist at a much higher magnification than the

optical microscope would allow.

From the SEM imaging it was found that there was considerable residual

photoresist, or scum, around the edges of the developed pad. This result can be

seen in Figure 3.6A where there is a dark region around the pad of photoresist. This

region created the shell structure around the pillars after etching. To alleviate the

issues a 60 s de-scumming procedure was conducted. SEM images were taken after

de-scumming, which can be seen in Figure 3.6 B. The 60 s de-scumming process
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Figure 3.5 Etched pillar without de-scumming process. A “shell” can be seen
around the pillar.

removed all the scum around the phot resist pad. This result allowed for the creation

of pillars with proper geometry.

SEM images of the pillars created after utilizing a 60 s de-scumming process

can be seen in Figure 3.7. Figure 3.7 A shows a field of micro pillars of Si etched

onto the Si wafer. Higher magnification images were then taken in order to properly

measure the geometry of the pillars. Figure 3.7 B shows a high magnification SEM

of a single pillar. The diameter of the pillar was 9.7 µm and the pitch between the

pillars was measured to be 2 µm. The wafer was then tiled by 25◦ in order to see the

side walls of the pillars, which is shown in Figure 3.7 C. Finally, SEM images were

taken from the side to characterize the vertical walls of the etched pillars, as well as,
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Figure 3.6 Photoresist pad before (A) and after (B) de-scumming.

measure the height of the pillars after etching. Figure 3.7 D shows the side image

of the etched pillars where the height was measured to be 15 µm and the wall were

shown to be vertical with little to no tapering.

Once the pillars were able to be created with the desired geometry, electro-

chemical testing was conducted coupled with in situ curvature measurements. The

pillared sample was cycled galvanostaticly without binder for 2.5 cycles in order to

properly characterize the curvature change as the pillars expanded and contracted.

The results of the galvanostatic testing can be seen in Figure 3.8 and the curvature

measurements can be seen in Figure 3.9.

From Figure 3.8, the voltage curves associated with lithiation and delithiation

can be seen. During the first cycle of lithiation the sample’s potential drops to

0.1 V and a voltage plateau was observed. This voltage plateau corresponds to

a moving phase boundary which was in accordance with the observed behavior of

crystalline Si in the literature. The delithiation of the sample was also characteristic

of a crystalline Si wafer, and thus it was confirmed that the pillared sample was

properly electrochemically cycled.

From Figure 3.9, the curvature behavior of the sample can be understood.

Initially there is no curvature change as the cell lithiates. During this time the
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Figure 3.7 Si pillars after etching. Top views (A-B) show the diameter of the pillars
to be 10 µm and the pitch between them to be 2µm. SEM Images were taken with a
25 ◦ tilted view (C) to show the side walls of the etched pillars. SEM images take on
the side (D) of the pillars were taken to measure the height after etching which was
15 µm.

pillars are not touching but are expanding as they react with lithium. After roughly

15 hours of lithiation, there is sharp increase in compressive stress associated with

the touching of the pillars due to volume expansion. The observed compressive stress

increases until the time constant imposed on the lithiation step of the galvanostatic

cycle was completed. During delithiation, the volume of the pillars was reduced which

results in a sharp increase in tensile stress that occurs over the course of only a few

hours. After this point, the continuation of a liner increase in tensile stress was

observed until the end of delithiation.
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Figure 3.8 Results of the galvanostatic testing done to the bare pillared Si wafer.

During the second lithiation there is an unexpected increase in tensile stress

over the course of a few hours. The reason for this behavior is not known, but it can

be hypothesized that it is due to the fusing of touching pillars. Subsequent curvature

behavior was then observed to be like that of the wafer during the first lithiation and

delithiation. SEM analysis was then conducted on the wafer after its third lithiation

to fully understand the volume expansion that occurred, as well as, to verity the

touching of pillars.

SEM analysis was conducted in three different areas of the cycled wafer as

illustrated in Figure 3.10. From Figure 3.10 SEM analysis was conducted in the

middle of the wafer, and at the two extreme ends of the wafer. Point 1 represents the

location in which the connection was made to the wafer, point 2 represent the middle

of the wafer, and point 3 represents the area furthest away from the connection. These

three points were chosen to verify that the morphology of the pillars were similar over

the entirety of the wafer.
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Figure 3.9 Stress response of the bare Si wafer after 2.5 cycles of galvanostatic
testing. The applied current is also shown in red.

Figure 3.11 shows the images captured with SEM at each of the three point. At

point 1 (Figure 3.11A and 3.11B) the pillars were touching after the third lithiation.

There was also substantial volume expansion of the outer walls of the Si pillars.

Interestingly there was no observed volume expansion of the top surface of the wafer.

This was due to the anisotropic lithiation of Si in which the Si has preferred directions

in which lithiation is favorable. Goldman et al. showed this behavior by etching bars

of Si into a (111) crystal Si wafer. The side walls of the etched bars had 110 planes,

while the top surface had 111 planes. During electrochemical cycling the side walls

expanded, while the top surface did not. This result showed that the lithiation of

crystal Si was preferred on the 110 plane. In this study, similar crystal wafers were
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Figure 3.10 Location of SEM analysis conducted on the cycled wafer.

etched, thus similar which explains why the tops of the pillars did not experience any

volume change during cycling.

At point 2 (Figure 3.11 C and 3.11D) similar volume expansion of the side walls

of the pillars as well as touching of the neighboring pillars was observed. Cracking of

the pillars was observed at both points. At point 3 (Figure 3.11E and 3.11F) there

was an extreme amount of fracture. The fracture of the Si was predominantly at the

interface between amorphous lithiated Si and bulk crystal Si.
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Figure 3.11 SEM Images taken at location 1 (A-B), location 2 (C-D), and location
3 (E-F). Cracking can be seen in the pillars.

With the geometry of the cycled Si pillars properly characterized after electro-

chemical cycling, both PVDF and CMC were added to the sample. Prior to cycling

the formation of binder bridges between pillars was characterized using SEM analysis
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shown in Figure 3.12. Both PVDF (Figure 3.12A and 3.12B) and CMC (Figure 3.12C

and 3.12D) show binder bridges that connect all pillars together. This formation of

binder bridges between the Si pillars, coupled with the proper electrochemical cycling

of the bare Si pillars helped to validate the use of this idealized composite electrode.

Figure 3.12 SEM Images of PVDF (A and B) binder bridges between Si pillars
and CMC (C and D) binder bridges between Si pillars.

The samples were then cycled with both PVDF and CMC added. The resulting

voltage curves of both PVDF and CMC can be seen in figure 3.13. From the results of

the electrochemical cycling not only did the PVDF and CMC samples behave similar

to the bare Si sample, but they also behaved similarly to each other. This was an

expected result after it was observed in Chapter 2 that the presence of the binder did
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Figure 3.13 Voltage curves of PVDF (A) and CMC (B) after 2.5 galvanostatic
cycles.

not affect the kinetics or the electrochemical response. These results help to further

verify the proper lithiation of the pillars.

Unfortunately, there were issues with gathering the curvature data of the PVDF

and CMC samples. During lithiation and delithiation, the curvature the wafer

experienced was so great that it caused the lasers of the MOS system to move out

of the area designated for taking measurements. The CMC sample lost almost all

its curvature data, but the curvature data of the PVDF sample was enough to make

some general observations. The curvature data of the PVDF sample can be seen in

Figure 3.14. Similarly to the bare Si sample, there is initially no change in curvature

of lithiation occurs. After 12 hours of lithiation there is a non-linear increase in

compressive stress followed by a linear region of compressive stress, which occurs

after 16 hours. The observed non-uniform stress was most likely due to the presence

of the PVDF. Similar behavior was observed for all subsequent lithiation cycles. All

data that was lost encompassed the delithiation of the sample, thus the behavior of

the sample during delithiation was not able to be understood. After 2.5 galvanostatic

cycles, SEM analysis was conducted. Much like the bare Si sample, three areas were

analyzed to verify uniform lithiation.
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Figure 3.14 Stress response as a function of film thickness of a pillared Si sample
with PVDF binder bridges. Some data was missing due to issues with curvature
measurements, which resulted in gaps within the data.

The results of the SEM analysis showed that all three locations had similar

geometries. That characteristic geometry is shown in Figure 3.15 in which both

top views (3.15A and 3.15B) and tilted views (3.15C and 3.15D) were taken so see

if fracture or touching occurred. From the SEM images it was observed that no

touching occurred, as well as no cracking. From these results it can be conclude that

the PVDF constrained the pillars such that fracture did not occur. Furthermore, the

presence of the binder altered the final geometry of the pillars when compared to the

sample without PVDF.
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Figure 3.15 SEM images of cycled pillars with PVDF binder bridges. Top view of
the sample (A and B) shows a “flower” pattern after 2.5 galvanostatic cycles. 25◦ tilt
images (C and D) shows the structure of the outer wall of the pillars.

3.4 Conclusions

A microfabricated anode with idealized geometry was created to emulate the binder /

particle interactions in a composite anode. Photolithography coupled with cryo-DRIE

etching was utilized to etch a field of micropillars into a crystal Si wafer. The sample

was then electrothermally cycled while curvature measurements were taken. The

results of the curvature measurements were in accordance with the behavior of cycled

crystalline Si as reported in the literature. SEM images of the cycled pillars showed

that after 2.5 galvanostatic cycles, the side walls of the pillars expanded, while the

top surfaces of the pillars did not. Touching of the pillars was also recorded.
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Both PVDF and CMC were added to the sample to create binder bridges

between the Si pillars. Both samples were then galvanostaticly cycled but, due

to excessive curvature, the data was not properly recorded. The electrochemical

cycling however did show that the pillars were lithiated properly but touching of the

pillars was not seen in the PVDF sample. SEM imaging of the CMC sample was not

completed.

The results of this study helped to verify the use of the idealized anode

geometry. The Si pillars electrochemically cycled resulted in characteristic voltage

curves. Binder bridges were then created between the pillars using both PVDF and

CMC. To properly interpret the stresses at the particle level between the Si and binder

a FEA model is needed to properly model the expansion of Si, while also modeling

the response of the constrained polymer binder.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

The following conclusions were drawn from each chapter. In Chapter 2 thin films of

PVDF and CMC were spun coat onto bare Si wafers and electrochemically cycled.

The presence of the binder films did not alter the kinetics of the lithiation of Si, and

characteristic CV curves of Si were observed. XPS analysis was conducted on the

bare Si sample and showed that a characteristic SEI layer was formed. XPS analysis

on PVDF showed that SEI did not form on the surface but did form inside the binder

due to its ability to absorb electrolyte. XPS analysis of CMC showed that SEI formed

on the surface of the binder, although it was not like the characteristic SEI formed in

the Si sample. XPS further showed that SEI did not form within the binder. These

XPS results fully characterized the location of SEI in PVDF and CMC, which has

not been understood previously.

In Chapter 3 a field of Si micro pillars were etched into a Si wafer and

electrochemically cycled. The volume expansion during cycling was enough to

cause the pillars to touch when fully lithiated. Curvature measurements and stress

estimations were made from the cycled bare Si sample with pillars. The addition of

both CMC and PVDF allowed for the formation of binder bridges between Si pillars.

Electrochemical cycling of the binder bridge samples was conducted but curvature

measurements could not be made due to the large curvature change.

4.2 Future Work

In this thesis the interactions between polymer binder and Si were investigated. This

was done by creating a sample capable of emulating the complex geometry of a

composite anode. The sample was also able to emulate the binder bridges found
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within a composite electrode. In order to further the understanding of the binder

particle interactions a finite element model is needed. The model should be able to

accurately infer the stresses generated within the polymer binder as electrochemical

cycling occurs. This can be done by cycling the idealized composite sample created

in this thesis and utilizing both the curvature measurements as well as the observed

volume expansion of the pillars.
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APPENDIX A

PVDF DEGRADATION DUE TO AR-ION SPUTTERING

Both Figure A.1 and A.2 show the degradation of PVDF due to Ar-ion sputtering.
Figure A.1 shows the degradation of the C1s region in which the C-F peak associated
with PVDF is completely degraded after only 1 30s sputter. The C-C peak associated
with the PVDF also experiences a shift in BE, which is associated with a chemical
degradation. Figure A.2 shows the chemical degradation of the F1s region. Again,
the single peak associated with the PVDF film is almost completely removed after
only one 30s sputter.

Figure A.1 Degradation of the C1s region of PVDF after Ar-ion sputtering.
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Figure A.2 Degradation of the F1s region of PVDF after Ar-ion sputtering.
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APPENDIX B

XPS ANALYSIS CONDUCTED WITHIN THE BINDERS AND AT

THE BINDER / SI INTERFACE

This section shows the peak parameters of both PVDF and CMC after C-60 ion
milling. Table B.1 shows the peak parameters of PVDF which was analyzed within
the binder and Table B.2 shows the peak parameters of PVDF at the binder / Si
interface.Tables B.3 and B.4 show the peak parameters of CMC within the binder
and at the binder / Si interface.

Table B.1 PVDF Peak Parameters of XPS Conducted Within the Binder

C1s
Peak BE FWHM Atm % Assignment

1 285 1.7 11.2 C-H
2 286.1 1.4 6.4 C-C (PVDF)
3 287.6 2 3.9 C=O
4 289.7 1.9 1.9 Li2CO3
5 290.6 1.3 4.7 C-F (PVDF)
6 293 1 0.2 Shake-Up

O1s
Peak BE FWHM Atm % Assignment

1 528.4 1.6 1.4 Li2O
2 531.2 1.8 12.6 Li2CO3/C-O

532.8 2 1.2 C=O
F1s

Peak BE FWHM Atm % Assignment
1 685 1.6 17.1 LiF
2 687.7 2 13.3 PVDF

Li1s
Peak BE FWHM Atm % Assignment

1 54.1 2 4.7 Li2O
2 55.5 1.8 20.9 LiF/Li2CO3

Si2p
Peak BE FWHM Atm % Assignment

1 96.3 1.5 0.1 Li-Si 2p3/2
2 96.9 1.4 Li-Si 2p1/2
3 101.1 2 0.1 Si 2p3/2
4 101.7 2 Si 2p1/2
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Table B.2 PVDF Peak Parameters of XPS Conducted at the PVDF / Si Interface

C1s
Peak BE FWHM Atm % Assignment

1 279.8 1.0 0.3 SiC
2 282.4 1.9 0.8 LiC
3 284.8 2.0 9.2 C-H
4 286.0 1.4 1.7 C-C (PVDF)
5 287.4 1.9 1.5 C=O
6 290.0 1.8 2.9 C-F (PVDF) /Li2CO3

O1s
Peak BE FWHM Atm % Assignment

1 528.3 1.9 7.2 Li2O
2 531.2 2.0 16.8 Li2CO3/C-O

F1s
Peak BE FWHM Atm % Assignment

1 685.0 1.7 10.1 LiF
2 687.5 2.0 3.1 PVDF

Li1s
Peak BE FWHM Atm % Assignment

1 52.9 1.2 9.2 Li-Si
2 54.2 1.7 15.8 Li2O
3 55.5 1.7 14.9 LiF/Li2CO3

Si2p
Peak BE FWHM Atm % Assignment

1 96.4 1.3 5.2 Li-Si 2p3/2
2 97.0 1.3 Li-Si 2p1/2
3 97.9 1.5 0.5 Si 2p3/2
4 98.5 1.5 Si 2p1/2
5 100.3 1.7 0.6 SiC 2p3/2
6 100.9 1.7 SiC 2p1/2

Table B.3 CMC Peak Parameters of XPS Conducted Within the Binder

C1s
Peak BE FWHM Atomic % Assignment

1 284.8 1.9 40.4 C-H
2 286.4 1.1 8.1 C-O
3 288.1 2.0 11.0 O=C-O

O1s
Peak BE FWHM Atomic % Assignment

1 530.9 1.9 13.8 C-O
2 532.7 1.7 6.2 CMC
3 535.5 2.4 5.3 Na Auger

F1s
Peak BE FWHM Atomic % Assignment

1 683.5 1.3 11.6 NaF
2 685.2 1.5 2.1 LiF

Na1a
Peak BE FWHM Atomic % Assignment

1 1071.1 1.6 16.5 Na-CMC
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Table B.4 CMC Peak Parameters of XPS Conducted at the CMC / Si Interface

C1s
Peak BE FWHM Atomic % Assignment

1 284.3 2.0 23.3 C-H
2 286.0 1.5 5.3 C-O
3 287.9 2.0 5.7 O=C-O

O1s
Peak BE FWHM Atomic % Assignment

1 528.4 1.4 2.5 Li2O/ROLi
2 530.5 2.0 13.8 C-O
3 532.3 1.4 1.9 CMC
4 534.7 3.0 7.1 Na Auger

F1s
Peak BE FWHM Atomic % Assignment

1 682.8 1.6 12.2 NaF
2 685.0 2.0 1.5 LiF

Na1a
Peak BE FWHM Atomic % Assignment

1 1070.4 2.0 28.0 Na-CMC
Si2p

Peak BE FWHM Atomic % Assignment
1 96.4 1.0 10.2 LiSi
2 97.0 1.0
3 100.4 2.0 2.9 SiC
4 101.0 2.0
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