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ABSTRACT 

 

A STUDY OF MACHINE LEARNING AND DEEP LEARNING MODELS FOR 

SOLVING MEDICAL IMAGING PROBLEMS 

 

by 

Fadi G. Farhat 

 

 

Application of machine learning and deep learning methods on medical imaging aims to 

create systems that can help in the diagnosis of disease and the automation of analyzing 

medical images in order to facilitate treatment planning. Deep learning methods do well 

in image recognition, but medical images present unique challenges. The lack of large 

amounts of data, the image size, and the high class-imbalance in most datasets, makes 

training a machine learning model to recognize a particular pattern that is typically 

present only in case images a formidable task. 

Experiments are conducted to classify breast cancer images as healthy or non-

healthy, and to detect lesions in damaged brain MRI (Magnetic Resonance Imaging) 

scans. Random Forest, Logistic Regression and Support Vector Machine perform 

competitively in the classification experiments, but in general, deep neural networks beat 

all conventional methods. Gaussian Naïve Bayes (GNB) and the Lesion Identification 

with Neighborhood Data Analysis (LINDA) methods produce better lesion detection 

results than single path neural networks, but a multi-modal, multi-path deep neural 

network beats all other methods. The importance of pre-processing training data is also 

highlighted and demonstrated, especially for medical images, which require extensive 

preparation to improve classifier and detector performance. Only a more complex and 

deeper neural network combined with properly pre-processed data can produce the 

desired accuracy levels that can rival and maybe exceed those of human experts. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this study is to present applications of machine learning and deep 

learning methods on medical imaging to solve abnormality classification and 

segmentation problems. The ultimate goal is to develop systems that can aid in the 

diagnosis of disease, to automate the difficult and time-consuming tasks of reading and 

analyzing medical images, and to facilitate treatment planning. We want to be able to 

apply machine learning methods to automatically classify medical images (for example, 

breast x-ray or biopsy images) as healthy (non-cancerous) or not healthy (cancerous). 

Having isolated the unhealthy images, the next objective is to identify the regions in the 

image that have damaged tissue using segmentation, which is largely done by human 

experts, costing tremendous resources. Finally, diagnosis and treatment decisions can be 

made based on what is learned about the images. The hope is that automatic 

classification and segmentation can be performed using new and innovative deep 

learning techniques, and high levels of accuracy can be achieved. 

 

1.2 Background 

Deep learning methods have been used in image recognition for quite some time now. 

A popular dataset in this field of study is ImageNet, a database of over 15 million images 

that belong to 22,000 categories of common objects, fruits, vegetables, animals, and even 
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persons. While very high levels of accuracy (well over 80%; e.g., Jeremy Howard, 

fast.ai, 2018, 93%) have been achieved using models trained on the ImageNet data, 

medical images are hard to obtain and present unique challenges.  

Machine learning models perform better if trained on a large amount of data. 

Medical studies typically offer a very small number of images per study, usually under 

100, which makes machine learning more difficult. Medical images are also usually 

much larger than object images used in training recognition models. A typical object 

image is 32x32 pixels, or 64x64 pixels, but medical images can be 100 times that size. 

To add to the complexity, many medical studies produce 3D images, which increases 

the size of each sample drastically (200 to 300 times), requiring a lot more storage and 

compute resources. Additionally, classifiers in medical imaging applications are tasked 

with finding very subtle differences between almost identical images, which is harder 

than identifying a dog or a cat in a photo. It should also be noted that medical studies, 

not unlike other studies, generally produce highly imbalanced data, where the number 

of controls is larger than the number of cases. This also presents an added challenge 

when training a machine learning model to recognize a particular pattern that is typically 

present only in case images. 

In the past year, there has been a great increase in applying deep learning 

methods to medical imaging problems. While conventional algorithms like Support 

Vector Machine (SVM) and Random Forest (RF) do well for larger areas of damaged 

tissue, Deep Learning tends to do better in general, especially on smaller, harder to detect 

damaged areas, such as small lesions in brain MRI (Magnetic Resonance Imaging) scans 

(Yunzhe Xue, et al., Neuroimage Clinical, 2019).  
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Manual image annotation and abnormality tracing is complex and time 

consuming, so there is also a growing research interest in unsupervised anomaly 

detection methods. Although supervised deep learning is achieving the best results, it is 

often limited by the accuracy and reliability of the ground truth, which is provided by a 

human rater. A number of studies in this area (for brain segmentation) that came out in 

the past few months are worth noting: 

 

1. Deep Learning vs. Conventional Machine Learning: Pilot Study of WMH 

Segmentation in Brain MRI with Absence or Mild Vascular Pathology. 
 

Compares deep learning algorithms, namely the deep Boltzmann machine 

(DBM), convolutional encoder network (CEN) and patch-wise convolutional 

neural network (patch-CNN), with two conventional machine learning schemes: 

SVM and RF, for white matter hyperintensities (WMH) segmentation on brain 

MRI with mild or no vascular pathology (Rachmadi, M.F., et al., 2017). 

 

2. Robust Image Segmentation Quality Assessment without Ground Truth. 
 

Proposes a new method to protect neural networks from robustness problems 

(e.g. vulnerability to adversarial attacks), by utilizing the difference between the 

input image and the reconstructed image, which is obtained from the 

segmentation to be assessed. The deep-learning-based reconstruction network 

(REC-Net) is trained with the input image masked by the ground truth 

segmentation against the original input image as the target (Zhou, Leixin, et al., 

2019). 

 

3. Unsupervised Brain Lesion Segmentation from MRI using a Convolutional 

Autoencoder. 
 

Presents a novel unsupervised segmentation approach to address the problem of 

variability in lesion load, placement of lesions, and voxel intensities, using a 

convolutional autoencoder, which learns to segment brain lesions as well as the 

white matter, gray matter, and cerebrospinal fluid by reconstructing Fluid 

Attenuated Inversion Recovery (FLAIR) images as conical combinations of 

Softmax layer outputs (dense layer in a neural network) generated from the 

corresponding anatomical and FLAIR MRI images (Atlason, Hans E., et al., 

2018). 

 

4. Unsupervised Detection of Lesions in Brain MRI using Constrained 

Adversarial Auto-encoders. 
 

Detection of lesion regions is studied in an unsupervised manner by learning data 
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distribution of brain MRI of healthy subjects using auto-encoder based methods. 

The Human Connectome Project dataset is used to learn distribution of healthy-

appearing brain MRI and report improved detection, in terms of AUC (Area 

Under the Curve), of the lesions in the BraTS (Brain Tumor Segmentation) 

challenge dataset (Chen, Xiaoran & Konukoglu, Ender, 2018). 

 

 

The number of studies that address medical imaging problems using machine 

learning and deep learning methods is still relatively limited, but that seems to be 

changing. In 2018, the first edition of the International conference on “Medical Imaging 

with Deep Learning” (MIDL) was held in Amsterdam. The number of abstracts 

submitted was not huge, but interest is clearly growing, and as of the drafting of this 

document, the second MIDL conference is already scheduled for July 2019. 
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CHAPTER 2 

BREAST CANCER IMAGE CLASSIFICATION 

 

2.1 Description of Breast Cancer Datasets 

“Breast cancer is the second leading cause of cancer death among women. Each year it is 

estimated that over 252,710 women in the United States will be diagnosed with breast 

cancer and more than 40,500 will die” (National Breast Cancer Foundation, 2019). 

Analysis of breast cancer imaging data by humans is time consuming and inevitably ties 

up expert human resources that could otherwise focus more on patient care and treatment. 

Having reliable automated breast cancer diagnosis tools, such as cancer image 

classification, can help streamline analysis, reduce human error and speed up treatment. 

The breast cancer images used in this study are from two publicly available datasets 

obtained from the Digital Database for Screening Mammography (DDSM) and the 

Laboratory of Vision, Robotics and Imaging (LVRI) of the Federal University of Parana 

(UFPR) in Brazil. DDSM is a collection of mammograms from the following sources: 

Massachusetts General Hospital, Wake Forest University School of Medicine, Sacred 

Heart Hospital, and Washington University in St Louis School of Medicine. The Breast 

Cancer Histopathological Image Classification (BreakHis) database is a collection of 

microscopic biopsy images of cancer tissue and was built by LVRI in collaboration with 

the Prevention & Diagnosis Laboratory, in Parana, Brazil (prevencaoediagnose.com.br). 

Our first dataset, the CBIS-DDSM (Curated Breast Imaging Subset of DDSM), 

includes decompressed images in DICOM (Digital Imaging and COmmunications in 
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Medicine) format. The data set contains 753 calcification cases and 891 mass cases. 

Multiple x-ray images are provided per patient, for a total of 6671 samples, out of which 

3103 samples are actually full mammograms. Only these images are included in the final 

dataset we use for classification. The samples are pre-split into training and testing sets. 

80% of the data is designated for training, and the remaining 20% make up the testing set. 

The data split was performed in such a way to provide equal level of difficulty in the 

training and test sets. Table 2.1 below shows the number of benign and malignant cases for 

each set, and how the data is distributed. It is worth noting each type of abnormality found 

in the images (calcification or mass) can be benign or malignant. 

 

Table 2.1 Cases and Abnormalities in the Breast Cancer Mammogram X-Ray Images 

 Benign Cases Malignant Cases 

Calcification Training Set 
329 cases (552 

abnormalities) 

273 cases (304 

abnormalities) 

Calcification Test Set 
85 cases (112 

abnormalities) 

66 cases (77 

abnormalities) 

Mass Training Set 
355 cases (387 

abnormalities) 

336 cases (361 

abnormalities) 

Mass Test Set 
117 cases (135 

abnormalities) 

83 cases (87 

abnormalities) 

 

Source: Lee, R. S., et al. (2017). "A curated mammography data set for use in computer-aided detection 

and diagnosis research." Scientific Data 4: 170177. https://www.nature.com/articles/sdata2017177 

(accessed in April 2019) 

 

The Breast Imaging Reporting and Data System (BIRADS) was used to categorize 

the samples and create the train/test data splits. BIRADS was established by the American 

College of Radiology as a means to help radiologists organize the findings from 

https://www.nature.com/articles/sdata2017177


7 

mammogram screening (for breast cancer diagnosis) into a small number of well-defined 

categories. The samples were split for mass cases and calcification cases separately for 

machine learning research purposes.  

The microscopic biopsy images in our BreakHis dataset were collected from 82 

patients using different magnifying factors (40X, 100X, 200X, and 400X).  The images are 

provided in their raw PNG (Portable Network Graphic) format, without normalization or 

color standardization and are all the same size (700x460 pixels, 3-channel RGB, 8-bit depth 

per channel). The dataset is divided into two main groups: benign tumors and malignant 

tumors. A lesion is referred to as histologically benign when it does not match any criteria 

of malignancy. Malignant tumors are cancerous lesions that can invade and destroy 

adjacent structures (locally invasive) and spread to distant sites (metastasize) to cause 

death. The samples present in this dataset were collected by SOB (Surgical Open Biopsy) 

method, also called partial mastectomy or excisional biopsy. This type of procedure 

removes a large tissue sample and is done in a hospital with general anesthesia. 

The benign and malignant groups are further divided into sub-groups describing the 

specific kind of anomaly. For benign lesions, the anomalies present are fibroadenoma, 

Phyllodes tumor and tubular adenoma. For the malignant lesions, the anomalies present are 

ductal carcinoma, lobular carcinoma, mucinous carcinoma and papillary carcinoma. In our 

experiments, we will only consider images at the 400X magnification level, where we 

count a total of 1,606 samples. Out of that total, 374 samples are benign and 1,232 are 

malignant. We can see that this is a greatly imbalanced dataset in favor of malignant 

tumors. Table 2.2 below shows how the samples are distributed within each group. 
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Table 2.2 Benign and Malignant Tumor Distribution in the Breast Cancer Biopsy Images 

Benign Cases Malignant Cases 

Fibroadenoma (129 samples) Ductal Carcinoma (788 samples) 

Phyllodes Tumor (115 samples) Lobular Carcinoma (137 samples) 

Tubular Adenoma (130 samples) Mucinous Carcinoma (169 samples) 

 Papillary Carcinoma (138 samples) 

 

2.1.1 Breast Cancer Mammogram Dataset Exploration 

The 3103 full mammogram images included in the classification experiments are not all 

the same size. They will need to be resampled to make one uniform set. The original 

DICOM images are very large, some more than 25 MB in size. When converted to JPG, 

the images are much smaller (less than 1 MB at most, depending on the final resolution.) 

The images are also a mixture of left and right breasts. The angle and zoom level of the x-

ray image varies from image to image. Many images also have markings on them, like 

letters, numbers and other unidentified obstructions. Figure 2.1 below illustrates the 

variation in the images. 
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Figure 2.1 An illustration of the breast cancer images and their variations. Images shown 

have been resampled to the same aspect ratio and same size. 

 

2.1.2 Breast Cancer Tissue Biopsy Dataset Exploration 

The BreakHis images are relatively large in their native format. Each image is about 

about 500 KB on disk and a uniform size of 700x460 pixels, which would generate a 

feature vector of 315,000 features. To make these images more manageable, we 

downsized them to 350x230 pixels. This will require a lot less memory and less compute 

resources. Additionally, we note that the dataset contains about 6 times more ductal 

carcinoma images than all other classes (average of 136 samples per class). We will use 

augmentation (adding more samples by rotating and flipping the original images) to 

balance the samples, and we will test with both non-augmented and augmented datasets 

to evaluate and compare classifier performance. 
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2.2 Classification Methods 

In this section, we will look at classifying both breast cancer image sets first as two 

classes (cancer [class 1] or no cancer [class 0]), then later consider the specific 

anomalies in each dataset and label the images in a multi-class configuration. For the 

breast mammogram images, we will label the images in the following four classes: 

a. Calcification, Benign [class 0, tissue calcification, not cancerous] 

 

b. Calcification, Malignant [class 1, tissue calcification, cancerous] 

 

c. Mass, Benign [class 2, tissue mass, not cancerous] 

 

d. Mass, Malignant [class 3, tissue mass, cancerous] 

 

Figure 2.2 shows a sample of the images in each of the four classes used. In the 

two class machine learning experiments, mass and calcification are grouped in one 

category, and classified as cancerous or non-cancerous. 
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Figure 2.2 Sample mammogram images showing the 4 anomalies being classified. (a) 

Calcification, Benign [class 0: tissue calcification, not cancerous], (b) Calcification, 

Malignant [class 1: tissue calcification, cancerous], (c) Mass, Benign [class 2: tissue 

mass, not cancerous], (d) Mass, Malignant [class 3: tissue mass, cancerous]. 

 

For the breast cancer tissue biopsy images, we will label the images in the 

following seven classes: 

a. Ductal Carcinoma [class 0, malignant] 

b. Lobular Carcinoma [class 1, malignant] 

c. Mucinous Carcinoma [class 2, malignant] 

d. Papillary Carcinoma [class 3, malignant] 

e. Fibroadenoma [class 4, benign] 

f. Phyllodes Tumor [class 5, benign] 

g. Tubular Adenoma [class 6, benign] 
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Figure 2.3 shows a sample of the images in each of the seven classes we defined. 

In the two class machine learning experiments, images are classified as cancerous or 

non-cancerous. 

 

 

Figure 2.3 Sample biopsy images showing the 7 anomalies being classified. (a) Ductal 

Carcinoma [class 0, malignant], (b) Lobular Carcinoma [class 1, malignant], (c) 

Mucinous Carcinoma [class 2, malignant], (d) Papillary Carcinoma [class 3, malignant], 

(e) Fibroadenoma [class 4, benign], (f) Phyllodes Tumor [class 5, benign], (g) Tubular 

Adenoma [class 6, benign]. 

 

In the multi-class experiments, our classifiers will attempt to detect each of the 

individual anomaly as described above. Three methods are used for classifying both 

datasets: Random Forest (RF), Support Vector Machine (SVM) and Convolutional 

Neural Networks (CNN). In addition, the breast cancer biopsy images are classified 

using Logistic Regression (LR). 

 

 

2.2.1 Breast Cancer Mammogram Image Pre-Processing and Preparation 

Before our image data can be analyzed, it has to be converted to a format that is 

acceptable to the classifier functions. As mentioned previously, the raw breast cancer 

images are not uniform in size or aspect ratio. A decision was made to test with several 
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image sizes and aspect ratios. For some input datasets, the images were kept in the 

original 1-channel DICOM format; for others, the images were converted to 3-channel 

color JPG images. The following image sizes were used (in pixels): 750x500, 256x256, 

224x224, 130x80, 96x96. 

 Once the image parameters are set, the next step is to convert our image data to 

classifier friendly NumPy arrays (n-dimensional array structure in Python). Each image 

is flattened out and converted to a feature vector. Looking at the input image resolution, 

it becomes clear that the resulting vectors will have high dimensionality. For example, a 

750x500 DICOM image generates a vector with 375,000 features (which is the total 

number of pixels in a single image). A 256x256 JPG image generates a vector with 

196,608 features (a JPG image has 3 channels). For a DICOM image, the value of each 

dimension is equal to the HU value of the corresponding pixel. For a JPG image, the 

value of each dimension is equal to the RGB value of the corresponding pixel. The 

vectors can then be normalized if needed or required by the classification method. 

 In order to train and evaluate our classifier, a label vector that stores the true class 

of each data sample (e.g., [0,1] for two classes, [0,1,2,3] for four classes) is created and 

used as a true label input along with the sample data. We note that 1,385 samples are 

labeled as cancerous, and 1,718 samples as non-cancerous, for a total of 3103 samples. 

When considering the four classes, the samples are distributed as follows: 

• Class 0: Calcification, Benign; 885 samples. 

• Class 1: Calcification, Malignant; 626 samples. 

• Class 2: Mass, Benign; 833 samples. 

• Class 3: Mass, Malignant; 759 samples. 
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2.2.2 Breast Cancer Tissue Biopsy Image Pre-Processing and Preparation 

The breast biopsy images will be kept in their original 3-channel PNG format, and since 

they are already uniform in size, the images are simply downsized and stored in NumPy 

arrays. Each image is flattened out and converted to a feature vector. At 350x230 pixels, 

the feature vector will have 80,500 features, reducing memory requirements and training 

times. The vectors are then normalized if needed or required by the classification 

method. 

 In order to train and evaluate our classifier, a label vector that stores the true class 

of each data sample (e.g., [0,1] for two classes, [0,1,2,3,4,5,6] for seven classes) is 

created and used as a true label input along with the sample data. We note that for the 

non-augmented set, 1,232 samples are labeled as cancerous, and 374 samples as non-

cancerous for a total of 1,606 samples. Given that the data is imbalanced in favor of one 

of the cancer types, we augment the data to create a more balanced set. Augmentation is 

done only 1-fold on the most common class (ductal carcinoma) and 6-fold on all other 

classes. A combination of horizontal and vertical flip, rotation (180 degrees of rotation 

is used to maintain the shape of the image) and shifting is performed on the resized 

images to create more samples. Figure 2.4 shows the augmented versions of a biopsy 

sample. 

 



15 

 

Figure 2.4 Sample biopsy image with various augmentation transformations. (a) 

Original resized image, (b) Flipped upside down, (c) Flipped left/right, (d) Rotated 180o, 

(e) Shifted right 50%, (f) Rotated 180o and Shifted right 50%. 

 

Table 2.3 shows the number of breast cancer biopsy images by class in the 

original non-augmented dataset and the augmented dataset (1,606 vs. 8,120 samples), 

which is more balanced. 

Table 2.3 Tumor Class Distribution in the Original and Augmented Biopsy Datasets 

 Original Dataset Augmented Dataset 

Fibroadenoma 129 samples 1,032 samples 

Phyllodes Tumor 115 samples 920 samples 

Tubular Adenoma 130 samples 1,040 samples 

Ductal Carcinoma 788 samples 1,576 samples 

Lobular Carcinoma 137 samples 1,096 samples 

Mucinous Carcinoma 169 samples 1,352 samples 

Papillary Carcinoma 138 samples 1,104 samples 
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2.2.3 Support Vector Machine, Logistic Regression and Random Forest 

In this series of experiments, we perform our classification in Python using the Scikit-

Learn library which includes Support Vector Machine (SVM), Logistic Regression and 

Random Forest classifier implementations. In a binary class system, the SVM looks for 

a line or a hyperplane (in high dimensional space) that separates the two classes. The 

line or hyperplane is defined by a vector W. Figure 2.5 illustrates a binary classification 

problem which uses a non-linear kernel that maps the data into an alternate feature space 

where the two-class samples are linearly separable. In our case, we test both SVC 

(Support Vector Classifier) and Linear SVC, which uses a linear kernel, but also has 

more flexibility in the choice of penalties and loss functions and usually scales better to 

large numbers of samples. For SVC, we use the Sigmoid function for the non-linear 

kernel, and we set the tolerance for our stopping criteria at 10-6. 

 

 

Figure 2.5 Graphical representation of the support vector machine classifier with a non-

linear kernel, (a) complex binary pattern classification problem in input space, and (b) 

non-linear mapping into high-dimensional feature space where a linearly separable data 

classification takes place. 
 

Source: https://www.researchgate.net/figure/Graphical-presentation-of-the-support-vector-machine-

classifier-with-a-non-linear-kernel_fig1_299529384; available via CC BY 3.0 license 

(https://creativecommons.org/licenses/by/3.0/) (accessed in April 2019) 

https://creativecommons.org/licenses/by/3.0/
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Logistic Regression is a statistical method for predicting the value of a dependent 

variable which can only have one of two possible values (0 or 1, true or false, yes or no). 

For example, it can be utilized to find the probability of success or failure of an event. 

The formula is obtained by applying the Sigmoid function to the Linear Regression 

model. Figure 2.6 below illustrates how Logistic Regression can be used to solve binary 

classification problems. 

 

Figure 2.6 Comparison between Linear Regression and Logistic Regression. While 

Linear Regression generates continuous values, Logistic Regression gives only one of 

two possible values for the target variable. 
 

Source: Tech Differences. https://techdifferences.com/difference-between-linear-and-logistic-

regression.html. (accessed in April 2019) 

 

Random Forest uses an ensemble of decision trees to separate the data and 

identify the various classes. In our implementation, we use 2000 estimator trees, we 

place no restriction on tree depth, and we use “gini” (Gini impurity; see Appendix B on 

page 70 for background) as the function to measure the quality of a split (at the decision 

tree level). We will use the well-known IRIS dataset example to illustrate how the 

Random Forest algorithm identifies the different flower classes within the set. Figure 

https://techdifferences.com/difference-between-linear-and-logistic-regression.html
https://techdifferences.com/difference-between-linear-and-logistic-regression.html
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2.7 below provides a graphical representation of the decision-making process. 

 

 

Figure 2.7 Graphical illustration of Random forest decision tress using the IRIS dataset. 

The box color indicates the type of flower detected. 
 

Source: Will Koehrsen, Data Scientist at Cortex Intel, Data Science Communicator. 

https://towardsdatascience.com/how-to-visualize-a-decision-tree-from-a-random-forest-in-python-

using-scikit-learn-38ad2d75f21c. (accessed in April 2019) 

 

 Considering that our NumPy arrays have very high dimensions, we will use the 

feature selection method to find the top and most relevant features before the data is 

classified. Feature selection allows us to discard irrelevant information and greatly 

reduces training times. In our experiment, we will use the Pearson Correlation 

https://towardsdatascience.com/how-to-visualize-a-decision-tree-from-a-random-forest-in-python-using-scikit-learn-38ad2d75f21c
https://towardsdatascience.com/how-to-visualize-a-decision-tree-from-a-random-forest-in-python-using-scikit-learn-38ad2d75f21c
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Coefficient to select the top 10,000 features. For a pair of random variables (X,Y), the 

Pearson correlation is given by: 

 

 

 

(2.1) 

 

where cov(X,Y) is the covariance of random variables X and Y, σX and σY are the 

standard deviations of X and Y respectively. In our experiment, we will calculate the 

correlation between the target variable (true label) and each dimension in the feature 

vector. 

 

2.2.4 Convolutional Neural Networks 

Convolutional Neural Networks are typically composed of alternating convolution and 

pooling layers followed by a final flattened layer. A convolution layer is specified by a 

filter size and the number of filters in the layer. Each convolution layer performs a moving 

dot product against pixels given by a fixed filter of a predetermined size. The dot product 

is made non-linear by passing the output to an activation function such as a sigmoid or 

ReLU (Rectified Linear Unit) function. Three convolutional neural networks are used to 

classify the breast cancer images. A simple 3-layer CNN, the popular VGG-16 network, 

and the recently developed Random Depth-wise Convolutional Neural Network 

(RDCNN). This new network attempts to learn a feature space with random depth-wise 

convolutions on which a linear support vector machine or stochastic gradient descent is 

then applied. Figures 2.8, 2.9 and 2.10 below illustrate the three networks and give a brief 

description of each. 
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Figure 2.8 Flow diagram of a simple 3-layer convolutional neural network. The network 

consists of one convolutional layer (with ReLU activation), one pooling layer, and one 

fully connected dense layer (with Softmax activation). 

 

 

 

 

 

 

 

Figure 2.9 Flow diagram of the VGG-16 convolutional neural network. It contains 13 

convolutional layers (with ReLU activation), 5 pooling layers and 3 fully connected 

layers (with ReLU and Softmax activation). The model was proposed by K. Simonyan 

and A. Zisserman from the University of Oxford in the paper “Very Deep Convolutional 

Networks for Large-Scale Image Recognition.” 

Source: Muneeb ul Hassan. https://neurohive.io/en/popular-networks/vgg16/ (accessed in April 2019) 

 

 

Figure 2.10 A random depth-wise convolutional neural network with two layers. 

Diagram shows filter size of k, and m = 5 filters in each layer. 

Source: Yunzhe Xue and Usman Roshan. http://scinapse.io/papers/2808187103 (accessed in April 2019) 

 

https://neurohive.io/en/popular-networks/vgg16/
http://scinapse.io/papers/2808187103
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Our CNN experiments are conducted in Python using the Keras library 

implementations for the simple 3-layer CNN and VGG-16. The loss function used is 

Categorical Cross-entropy (since it generated the highest accuracy after many trials), and 

the SGD (Stochastic Gradient Descent) optimizer is selected, as it generated the best results 

with a learning rate of 10-4. For the 3-layer CNN, the following parameters are used: 

number of filters = 4; kernel dimension = 16x16 pixels; average pooling = 64x64 pixels. 

The networks are trained using an increasing number of epochs, starting with 10 epochs, 

up to 50 epochs, in steps of 10. For VGG-16, the following parameters were used: number 

of filters = 64, 128, 256, 512; kernel dimension = 3x3 pixels; max pooling = 2x2 pixels. 

For RDCNN, a TensorFlow implementation is used (faster than Keras). We 

experimented with the following parameters: models: STL10, Cifar10; number of features: 

2500, 10000; iterations: 5000; structures: 7 layers, 25 layers. In addition to using the full 

x-ray images, we also used cropped tissue images by removing most of the irrelevant 

background. This reduces the image size and makes the images more uniform. 

 

2.3 Classification Results 

We begin with the breast cancer x-ray image classification. For both 2-class and 4-class 

datasets, the Random Forest methods did best, followed by SVM. The 3-layer CNN, 

VGG-16 and RDCNN did not do as well. VGG-16 was the worst performer on the breast 

cancer images. Detailed results for the most significant experiments are given in sections 

2.3.1 and 2.3.2 below. (CNN-3 generated all zero output; results not included in table 

2.4). A possible explanation for why deep learning methods performed poorly on this 

dataset is given in Appendix A starting on page 68. 
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2.3.1 Two-class Breast Cancer Mammogram Image Classification Results 

Random Forest (with features selection) did quite well on the large DICOM images 

(750x500 pixels), with a validation accuracy of almost 68%. Other experiments with 

smaller images using the same method did not perform as well. The Random Forest 

results were also checked per class, and those accuracy results were comparable. The 

SVM methods (both SVC and Linear SVC implementations in Scikit-Learn) did not do 

as well, but the validation accuracy for Linear SVC came close to 51%, and it was 

confirmed that the SVM classifier was able to detect the classes (accuracy per class 

comparable to the overall accuracy). VGG-16 did better than the SVM classifiers but 

could not beat Random Forest. Several image sizes were attempted, but the result was 

about the same. Table 2.4 below outlines the most notable results from the dozens of 

experiments that were run on this dataset. 

 

Table 2.4 Two-Class Mammogram Image Classification Results 

Input Data Classifier 
Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

750x500; 

DICOM 
SVC 52.32% 43.79% 0.5 

750x500; 

DICOM 
Linear SVC 56.97% 50.79% 0.5 

750x500; 

DICOM 

Random 

Forest 
98.20% 67.80% 1 

750x500; 

DICOM 
VGG16 56.20% 55.00% 5 

224x224; 

DICOM 
VGG16 54.59% 53.67% 4 

230x146; 

DICOM 
VGG16 57.65% 55.71% 4 
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2.3.2 Four-class Breast Cancer Mammogram Image Classification Results 

In the four-class experiments, Random Forest did better than all other methods, but not 

as well as it did on the two-class datasets. Several experiments were conducted using 

RDCNN, but the results were not as good as Random Forest. Cropping the images and 

using more learned features (10K vs. 2.5K) helped boost RDCNN’s performance, but 

not significantly (increased only by 1.13%, see table 2.6). It remained lower than that of 

the Random Forest method. The 3-layer CNN came in third in performance, with 

validation accuracies hovering around 30%. Even when data augmentation was used 

with CNN-3 (by rotating and flipping the images), performance improved only 

marginally. Once again, VGG-16 did very poorly, and virtually generated a zero output 

for all classes.  

One of the biggest challenges of machine learning in general is training time. We 

note that conventional methods do not take as long to train as convolutional neural 

networks, which can have very long training times. While conventional methods 

typically require an hour or two to train, CNN’s can take many hours, and even days 

when very large datasets are trained on deep networks with a large number of layers. 

Not counting the feature learning (which can take more than 10 hours), RDCNN has the 

fastest training times, often measured in minutes. Tables 2.5 and 2.6 below display the 

most notable results obtained. 
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Table 2.5 Four-Class Mammogram Image Classification Results: RF, VGG16, CNN3 

Input Data Classifier 
Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

130x80; 

DICOM 
VGG16 25.00% 27.33% 5 

130x80; 

DICOM 
CNN3 29.70% 30.11% 4 

130x80; 

DICOM 

CNN3  

12,412 samples 
30.14% 30.84% 4 

224x224; 

DICOM; 

[cropped] 

 

RDCNN 64.54% 37.68% 1.24 

750x500; 

DICOM 

Random 

Forest (FS) 
97.92% 45.66% 0.16 

750x500; 

DICOM 

Random 

Forest (no 

FS) 

97.92% 44.69% 0.27 
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Table 2.6 Four-Class Mammogram X-Ray Image Classification Results: RDCNN 

Input Data Classifier 
Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

256x256; 

JPG 

STL10 

Model, 2500 

features 

98.19% 32.00% 0.35 

96x96; JPG cifar10 

Model, 2500 

features 

98.19% 31.72% 0.36 

224x224; 

DICOM 

STL10 

Model, 2500 

features 

77.24% 36.55% 0.53 

224x224; 

DICOM; 

[cropped] 

STL10 

Model, 10K 

features 

64.78% 36.71% 1.32 

224x224; 

DICOM; 

[cropped] 

STL10 

Model, 10K 

features, 5K 

iterations 

64.54% 37.68% 1.24 

256x256; 

DICOM; 

[full images] 

STL10 

Model, 10K 

feat., 5K 

iterations, 7- 

layer 

structure 

61.56% 34.14% 0.02 

256x256; 

DICOM; 

[full images] 

STL10 

Model, 10K 

features, 5K 

iterations, 

25-layer 

structure 

61.56% 34.14% 0.02 
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Next, we present the breast cancer biopsy image classification results. For both 

2-class and 7-class datasets, the RDCNN neural network did best, followed by VGG-16, 

then Random Forest, Logistic Regression and SVM. Detailed results for the most 

significant experiments are given in sections 2.3.3 and 2.3.4 below. 

 

2.3.3 Two-class Breast Cancer Biopsy Image Classification Results 

RDCNN performed very well in the two-class experiments, reaching a validation 

accuracy of over 92%. VGG did relatively well at about 80% accuracy. Random Forest, 

SVM and Logistic Regression came in last at around 75%. The biopsy images are clearly 

a lot easier to classify than the breast x-rays. Surprisingly, SVM and Logistic Regression 

did worse on the augmented data, but all other classifiers did better with 8,120 total 

samples. Training accuracies were very high, but the validation accuracies fell short for 

SMV and Logistic Regression. RDCNN did even better with the augmented dataset, with 

the accuracy reaching 98%. Although training times for RDCNN were in the order of 

minutes, it took about 20 hours to generate the new features and then train the Linear 

SVC classifier. Tables 2.7 and 2.8 below outlines the most notable results from the many 

experiments that were run on this dataset. A possible explanation for why linear 

classifications methods (SVM and Logistic Regression) performed worse on the two-

class augmented dataset is given in Appendix A starting on page 68. 
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Table 2.7 Two-Class Breast Biopsy Image Classification Results – No Augmentation 

Input Data Classifier 
Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

230x350; 

PNG 
SVM 100% 75.64% 0.08 

230x350; 

PNG 

Logistic 

Regression 
100% 75.43% 0.13 

230x350; 

PNG 

Random 

Forest 
100% 74.44% 0.17 

230x350; 

PNG 
VGG16 89.41% 80.49% 1 

230x350; 

PNG 
RDCNN 100% 92.55% 0.04 

 

Table 2.8 Two-Class Breast Biopsy Image Classification Results – Augmented Data 

Input Data Classifier 
Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

230x350; 

PNG 
SVM 100% 70.83% ↓ 1.5 

230x350; 

PNG 

Logistic 

Regression 
100% 71.53% ↓ 0.3 

230x350; 

PNG 

Random 

Forest 
100% 78.76% ↑ 2 

230x350; 

PNG 
VGG16 82.81% 81.78% ↑ 0.5 

230x350; 

PNG 
RDCNN 100% 98.77% ↑ 0.12 
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2.3.4 Seven-class Breast Cancer Biopsy Image Classification Results 

In the seven-class experiments, it is clear that the classes are harder to detect. The 

accuracies obtained were below 50%, with the exception of Random Forest which 

yielded a validation accuracy of about 53%, and RDCNN which reached a 67% accuracy 

on the original dataset (1,606 samples). SVM and Logistic Regression did worse on the 

augmented dataset, but the rest of the classifiers did considerably better. Random Forest 

went from 53% to 63%. VGG-16 went from about 46% to about 71%. RDCNN accuracy 

increased from 67% to about 95%. New feature generation took about 25 hours. 

Again, we note the very long training times for the deep learning methods (VGG16 and 

RDCNN if we include the feature generation time). Tables 2.9 and 2.10 below display 

the most notable results obtained. A possible explanation for why linear classifications 

methods (SVM and Logistic Regression) performed worse on the seven-class augmented 

dataset is given in Appendix A starting on page 69. 
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Table 2.9 Seven-Class Biopsy Image Classification Results – No Augmentation 

Input Data Classifier 
Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

230x350; 

PNG 
SVM 98.60% 43.79% 0.13 

230x350; 

PNG 

Logistic 

Regression 
98.60% 43.79% 0.25 

230x350; 

PNG 

Random 

Forest 
98.60% 53.42% 0.13 

230x350; 

PNG 
VGG16 98.60% 52.48% 0.5 

230x350; 

PNG 
RDCNN 98.60% 67.08% 0.28 

 

 

Table 2.10 Seven-Class Biopsy Image Classification Results – Augmented Data 

Input Data Classifier 
Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

230x350; 

PNG 
SVM 99.49% 35.45% ↓ 4 

230x350; 

PNG 

Logistic 

Regression 
99.49% 35.63% ↓ 3 

230x350; 

PNG 

Random 

Forest 
99.49% 63.05% ↑ 0.5 

230x350; 

PNG 
VGG16 99.14% 70.61% ↑ 7.5 

230x350; 

PNG 
RDCNN 99.49% 95.38% ↑ 1 
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CHAPTER 3 

BRAIN LESION MRI IMAGE CLASSIFICATION 

 

3.1 Description of Datasets Used 

Our OASIS dataset is a subset of the free and publicly available set provided by the Open 

Access Series of Imaging Studies (OASIS) Brains Project, which makes neuroimaging 

datasets freely available to the scientific community. “By compiling and freely 

distributing this multi-modal data, the hope is to facilitate future discoveries in basic and 

clinical neuroscience,” say the authors. The description adds that it “consists of a cross-

sectional collection of 416 subjects aged 18 to 96. For each subject, 3 or 4 individual 

T1-weighted brain MRI scans obtained in single scan sessions are included. The subjects 

are all right-handed and include both men and women.” (OASIS: D. Marcus, et al.). The 

OASIS samples used in our experiment have no lesion masks included. 

Our MCW dataset is from the Medical College of Wisconsin (MCW) in 

Milwaukee, Wisconsin. We obtained a subset of the data as part of a collaboration 

research project between NJIT and Rutgers University. The authors describe the 45 

participants as “patients with focal encephalomalacia from chronic left hemisphere 

stroke (males and females). Participants had to have at least minimal ability to read 

aloud, defined as greater or equal to 10% accuracy in single word reading, but were 

otherwise included regardless of behavioral profile. All participants were at least 180 

days post-stroke, native English speakers, and right-handed according to the Edinburgh 

Handedness Inventory (Oldfield, 1971).” (Binder et al., Brain, 2016). 
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3.1.1 OASIS Dataset Exploration 

Our OASIS subset contains 34 subjects of lesion-free brain MRI scans. The 3D scans 

are all the same size: 256x256x128 pixels, which is a volume of 128 2D images (or 

slices), each slice being 256x256 pixels. Additionally, all OASIS images are oriented 

the same way, have the skull intact, as well as non-brain matter tissue. These are the raw 

images produced by the scanner. A few sample slices from the same subject are shown 

in Figure 3.1 below for illustration purposes. 

 

Figure 3.1 Sample lesion-free brain MRI slices from the OASIS dataset. 
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3.1.2 MCW Dataset Exploration 

The MCW subset included in our study has 20 subjects. The 3D scans are all the same 

size: 256x256x136 pixels, which is a volume of 136 2D images (or slices), each slice 

being 256x256 pixels. Additionally, all MCW images are oriented the same way, appear 

to have the skull intact, as well as non-brain matter tissue. We note that these images are 

not in the same reference space as the OASIS images. We will discuss this in more detail 

in the next section when we describe the classification experiments which will use a 

combined dataset containing both OASIS and MCW samples. For each patient, we will 

use two images to construct our dataset. An anatomical scan (T1 weighted image), and 

the corresponding 3D lesion mask, which is traced by a human specialist. Both images 

are used for preparing the image data for the classifier and labeling it. Figure 3.2 shows 

two sample MCW MRI slices from the same subject and their corresponding true lesion 

masks. We note that the MCW images are not oriented the same way as the OASIS 

images and will need to be re-oriented (or re-aligned) before they can be combined in 

one dataset to be fed to the classifier.  
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Figure 3.2 Sample brain MRI slices and their lesion masks from the MCW dataset. 

 

Overall, the MCW dataset appears to have large lesions. These are chronic lesions, which 

means that the scans were taken a long time (about 6 months) after the stroke occurred. 

The graph in figure 3.3 below shows the lesion volume distribution for all samples used 

in this study. 
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Figure 3.3 Lesion volume distribution (in voxels) of all MCW MRI scans included in 

this study. The lesions are chronic, and therefore appear to be relatively large. 

 

3.2 Classification Methods 

In this section, we will look at classifying the brain MRI images automatically (lesion 

or no lesion) using three methods: Random Forest (RF), Support Vector Machine (SVM) 

and Convolutional Neural Networks (CNN). The machine learning models used were 

trained using a combined dataset containing both healthy and unhealthy scans (80% of 

the total samples) and tested on the remaining 20% of the data. 

 

3.2.1 Data Pre-Processing and Preparation 

In the experiments that follow, we create our classification datasets based on individual 

2D slices taken from the 3D MRI scans, as well as patches taken from the 2D slices. To 

perform two-class classification (lesion/no lesion), we combine both OASIS and MCW 
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images into one dataset. The lesion-free OASIS images are used as controls and the 

MCW images as cases. Before the images can be combined, some pre-processing is 

required. The images have to be skull stripped, all non-brain matter removed, and they 

need to be re-aligned to the same template space. As explained previously, the raw 

images are not oriented the same way, nor would the 2D slices be the same size if simply 

rotated. This is an important step to be able to create a uniform set that can be used as a 

classifier input. The template used to warp the raw images will generate scans of shape 

193x229x193, which can be viewed as a volume of 229 slices, each slice being 193x193 

pixels. 

 The next step is to carefully choose a lower boundary and upper boundary for 

the slices to be included in our dataset. It turns out that the top and bottom 15% of the 

slices can be discarded, as they do not contain any significant brain tissue, with most of 

those slices containing no tissue at all. The last step in the image preparation stage is to 

trim the slices to reduce the background area, the overall data size, and therefore reduce 

training times. The final image size in the dataset is 145x170 pixels. Once the image 

shape is finalized, we convert our image data to classifier friendly NumPy arrays. Our 

combined image sets are split into training and test datasets. When the OASIS and MCW 

images are warped (aligned) to the same template space, they are stored as NIfTI 

(Neuroimaging Informatics Technology Initiative) volumes, which like DICOM 

images, are 1-channel (HU value based) color images. A 145x170 NIfTI image generates 

a vector with 24,650 features (equal to the total number of pixels in a single image). 

Figure 3.4 shows what the final (re-aligned) OASIS and MCW images look like. 
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Figure 3.4 Sample brain MRI slices that have been aligned to the same template space. 

(samples shown are from the MCW and OASIS datasets.) 

 

3.2.2 Full Image Datasets 

For the full image datasets, we use individual scan slices from both MCW and OASIS 

datasets as our samples. All samples obtained from the MCW dataset are given the label 

(1), meaning that the lesion is present, while samples obtained from the lesion-free 

OASIS images are given the label (0). Looping through both sets of scans yields a dataset 

of 8,480 slices. 80% are used for training and 20% for testing. The sample labels break 

down as follows: 

• Out of 1,760 test samples, 640 are labeled as having lesions. 

• Out of 6,720 train samples, 2560 are labeled as having lesions. 

 

3.2.3 Patch Datasets 

For the patch dataset, we use only four random MCW scan images. The idea is to create 

a dataset that contains both lesion and lesion-free patches (obtained from slices), which 

can be used as cases and controls respectively. Each slice is cut in half. Only the upper 

part (or left side of the brain) is retained. The lower part, which has no damaged tissue, 
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is discarded. The proposed method is to split the slices of the left side of the brain into 

patches, and then compare them to their corresponding lesion mask patches. The brain 

patches are then classified based on the content of their masks. If the mask patch contains 

damage tracing, the MRI patch is classified as (1). If not, it is classified as (0). The 

dimensions of the half slices are 128x256. Multiples of 2 are used in creating the patches 

to make sure the whole image is accounted for. After experimenting with several patch 

sizes, we determined that 64x64 is the most optimal for this image size, which yields 8 

patches per half slice. Figure 3.5 shows 8 patches that come from the same slice and 

their corresponding masks.  

 

 

 

 

 

 

 
 

Figure 3.5 Sample brain MRI patches obtained from a single MCW 2D image. The eight 

patches and their lesion masks shown represent the left side of a single MRI slice.  

 

 Similar to the slice datasets, the patch dataset is split into training and test sub-

sets, with 80% for training and 20% for test. Here is how it breaks down: 

• Train Data [80%]: 16 MRI scans, 6808 samples, each sample is a 64x64 image 

• Test Data [20%]: 4 MRI scans, 2008 samples, each sample is a 64x64 image 

 

3.2.4 Random Forest, Support Vector Machine and Logistic Regression 

The classification experiments on the MCW and OASIS datasets are performed in 

Python using the Scikit-Learn library which includes Random Forest, Support Vector 
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Machine (SVM) and Logistic Regression classifier implementations described in 

Section 2.2.2. For SVM, we use the Sigmoid function for the non-linear kernel, and we 

set the tolerance for our stopping criteria at 10-6. In our Random Forest experiments, we 

use 2000 estimator trees, we place no restriction on tree depth, and we use “gini” (Gini 

impurity) as the function to measure the quality of a split (at the decision tree level). For 

Logistic Regression, we set the maximum iterations at 1000, and use 0.1 for the C 

parameter. 

 

 

3.2.5 Convolutional Neural Networks 

The Python Keras based VGG-16 network described in section 2.2.3 is used to classify the 

full MCW/OASIS brain MRI images. The Binary Cross-entropy loss function is used, and 

the SGD (Stochastic Gradient Descent) optimizer is selected again, as it generated the best 

results on the MRI images with a learning rate of 10-4. For the 3-layer CNN, the following 

optimized parameters (through experiments) were used: number of filters = 4; kernel 

dimension = 16x16 pixels; average pooling = 64x64 pixels. The networks are trained using 

an increasing number of epochs, starting with 10 epochs, up to 50 epochs, in steps of 10. 

For VGG-16, the following optimized parameters were used: number of filters = 64, 128, 

256, 512; kernel dimension = 3x3 pixels; max pooling = 2x2 pixels. 

 

3.3 Classification Results 

The flattened vectors have only 24,650 features, which is not a very high number. No 

feature selection was performed on the data. We start with the full image dataset results. 

VGG-16 did best, even after just a few epochs of training, followed by Random Forest 
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then Logistic Regression. SVM did not do as well but was not too far behind. Although 

the deep learning method produced the highest accuracy, its training time was at least 3 

times more than Random Forest, and 6 times more than the other methods. Detailed 

results for the most notable experiments are given in tables 3.1 below. 

 

Table 3.1 Full Image Brain MRI Classification Results 

Input Data Classifier 
CV / Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

145x170; 

NIfTI 
SVM 88.69% 87.57% 0.5 

145x170; 

NIfTI 

Logistic 

Regression 
89.37% 88.13% 0.5 

145x170; 

NIfTI 

Random 

Forest 
91.06% 88.75% 1 

145x170; 

NIfTI 
VGG16 98.68% 94.63% 3 

 

For the patch image dataset, no feature selection is performed with only 4,096 

features. The accuracies obtained were not as good as those for the full image datasets, 

but the performance order was the same with VGG-16 yielding the best performance 

and SVM coming in last. Detailed results for the most notable experiments are given in 

tables 3.2 below. 
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Table 3.2 Patch Image Brain MRI Classification Results 

Input Data Classifier 
CV / Training 

Accuracy 

Validation 

Accuracy 

Training Time 

[hours] 

64x64; NIfTI SVM 67.00% 61.09% 1.5 

64x64; NIfTI 
Logistic 

Regression 
67.48% 64.34% 0.5 

64x64; NIfTI Random Forest 79.20% 68.13% 1 

64x64; 

NIfTI 
VGG16 82.74% 72.05% 3 

 

In addition to classifying the patches (lesion / no lesion), the classification accuracy per 

slice is also calculated by getting the ratio of patches classified correctly to the total 

number of patches per slice. For example, consider the following example: 

Slice true label vector: [ 0, 1, 1, 0, 0, 1, 0, 0] (0: no lesion in patch, 1: lesion in patch) 

Slice predicted label vector: [ 0, 1, 1, 1, 0, 1, 0, 0]. In this case, the accuracy for the slice 

would be 7/8, as 7 out of the 8 patches were classified correctly. The last step is to 

average all slice accuracies per patient. The results are shown in table 3.3 below. 

 

Table 3.3 Average Brain MRI Scan Classification Results Based on Patch Accuracies 

Patient ID Number of Patches Averaged Accuracy 

1 696 68.53% 

2 344 75.58% 

3 544 56.25% 

4 424 59.43% 
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Lastly, we calculate the DICE similarity coefficient, Precision and Recall for 

every MRI scan in the validation set. Results are shown in table 3.5. These metrics are 

defined by: 

 

𝐷𝐼𝐶𝐸 =
2 ∗ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

2 ∗ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

(3.1) 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

(3.2) 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

(3.3) 

 

 A true predicted class (positive or negative) is one that was predicted correctly. 

Similarly, classes predicted incorrectly are called false. The confusion matrix in table 3.4 

below tabulates these quantities and clarifies what they represent.  

 

Table 3.4 Confusion Matrix Showing Relationships Between True and False Predictions 

 Predicted Negative Predicted Positive 

Actual Negative True Negative False Positive 

Actual Positive False Negative True Positive 
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Table 3.5 Patch Image Brain MRI Classification Results – Dice, Precision and Recall 

Patient ID DICE Coefficient Precision Recall 

1 54.09% 60.56% 48.86% 

2 59.29% 77.78% 47.91% 

3 43.14% 34.20% 48.41% 

4 36.37% 44.21% 30.88% 
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CHAPTER 4 

BRAIN MRI LESION DETECTION 

 

4.1 Description of Datasets Used 

Our Kessler dataset is provided by the Kessler Foundation as part of a joint research 

project between NJIT and Rutgers University. The samples are brain MRI scans with 

lesion, and according to the authors, “data were collected from patients (males and 

females) who were undergoing inpatient rehabilitation. Inclusion criteria: right-

handedness prior to stroke, English as first language, left-hemisphere stroke within five 

weeks of study enrollment, and ability to carry out the experimental tasks. Exclusion 

criteria: contraindication to MRI (claustrophobia, pregnancy, extreme obesity, inability 

to lie flat, implanted ferromagnetic devices), uncorrectable hearing or vision difficulties, 

dementia, head trauma, tumor, multiple infarcts, severe psychiatric illness, and pre-

stroke diagnosis of a reading or learning disability.” (Boukrina et al., Frontiers in Human 

Neuroscience, 2015). 

Our ATLAS (Anatomical Tracings of Lesions After Stroke) Release 1.1 is an 

open-source dataset consisting of 220 T1-weighted MRIs with manually segmented 

diverse lesions and metadata. The authors state that “the goal of ATLAS is to provide 

the research community with a standardized training and testing dataset for lesion 

segmentation algorithms on T1-weighted MRIs. These images were collected from 

research groups in the ENIGMA Stroke Recovery Working Group consortium.” (Sook-

Lei Liew, et al.) The images are anatomical MRIs of individuals after stroke and were 
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collected primarily for research purposes and are not representative of the overall general 

stroke population.  

Note: the MCW dataset described in Chapter 3 is used again in the 

experiments included in this chapter. 

 

4.1.1 Kessler Dataset Exploration 

Our Kessler brain MRI subset contains a total of 28 subjects. The 3D scans are all the 

same size: 161x191x151 pixels, which is a volume of 151 2D images (or slices), each 

slice being 161x191 pixels. Additionally, all images are aligned to the standard MNI-

152 (Montreal Neurological Institute) template, have the skull stripped, as well as non-

brain matter tissue removed. Figure 4.1 shows two samples of the Kessler MRI slices, 

and their corresponding lesion masks. 

 

 

Figure 4.1 Sample brain MRI slices and their lesion masks from the Kessler dataset. 
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Generally, the Kessler dataset appears to have smaller lesions than the MCW set. 

These are subacute lesions, which means that the scans were taken a short time after the 

stroke occurred. Below is a graph that shows the lesion volume distribution for all 

samples used in this study (figure 4.2). 

 

Figure 4.2 Lesion volume distribution (in voxels) of all 28 Kessler MRI scans included 

in this study. The lesions are smaller than those found in the MCW dataset. 

 

4.1.2 ATLAS Dataset Exploration 

Our ATLAS brain MRI subset consists of 54 subjects. These subjects were selected from 

a pool of 220 scans based on certain conditions required by our study. We only included 

T1-weighted scans (some T2-weighted scans were provided in the dataset). We also only 

include scans that have a single lesion (cortical or sub-cortical but not both) in the left 

hemisphere, and no lesion anywhere else in the brain. It turns out that most 

neuropsychological studies exclude patients with more than one stroke (indicated by a 

lesion), likely because multiple strokes can have super-additive effects (Dr. William 

Graves, Rutgers University – Newark). 

The 3D scans are all the same size: 193x229x193 pixels, which is a volume of 
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193 2D images (or slices), each slice being 193x229 pixels. Additionally, all images are 

oriented the same way, have the skull intact, as well as non-brain matter tissue. Figure 

4.3 shows two samples of the ATLAS MRI slices, and their corresponding lesion masks. 

 

 

Figure 4.3 Sample brain MRI slices and their lesions mask from the ATLAS dataset. 

 

 

Overall, the ATLAS dataset lesions appear to be smaller than those in the MCW 

set. Below is a graph that shows the lesion volume distribution for all samples used in 

this study. 
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Figure 4.4 Lesion volume distribution (in voxels) of all 54 ATLAS MRI scans included 

in this study. The lesions are generally smaller than those found in the MCW dataset. 

 

 

4.2 Lesion Detection Methods 

In this experiment, we use pre-trained models to perform automatic segmentation of 

brain MRI scans with lesions that have been manually traced by a radiologist. The 

automatic segmentation generates a predicted mask which is compared to the true mask 

using the Dice Similarity Coefficient (DSC). Once we obtain the DSC values, we plot 

them against the lesion volumes for all subjects to determine if there is any correlation 

between the prediction quality and the lesion volume. Lastly, the results of the automatic 

segmentation methods are compared to a multi-modal CNN developed in a related 

research project. Note: the data preparation described in the next section is not relevant 

to the multi-modal CNN method for which data pre-processing and experiments were 

conducted in a separate study. 
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4.2.1 Data Pre-Processing and Preparation 

The datasets used in the segmentation experiments are not uniform or standardized in 

any way. Some are raw images, some are skull stripped, and they are not all in the same 

warp space. After several segmentation attempts, it was determined that our chosen 

methods perform best when the input MRI scans have the skull intact since they perform 

skull stripping as part of the segmentation process, and optimal segmentation results are 

obtained when the MRI scans are aligned to the standard template (MNI-152). 

Experiments are conducted on both raw and aligned images. The outcomes are discussed 

in detail in the results section. 

 To perform the alignment and brain matter segmentation we use a suite of tools 

referred to as AFNI (Analysis of Functional NeuroImages), which are C programs 

originally developed at the Medical College of Wisconsin to work with neuroimaging 

and are currently maintained by the National Institute of Mental Health. Figure 4.5 

shows a sample ATLAS image from a raw scan, and what is looks like after alignment. 

 

 

Figure 4.5 Sample ATLAS brain MRI slice before and after alignment. The aligned 

image is properly centered and is resampled to the dimensions of a pre-selected template. 
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 Unlike the previous classification methods used in this study, the lesion 

segmentation methods discussed in this chapter take the whole 3D scan as input, are 

somewhat interactive, and process (test) one scan at a time. 

 

4.2.2 Lesion Gaussian Naïve Bayes (Lesion GNB) 

When the arteries to the brain become narrow or get blocked, the blood flow is greatly 

reduced causing what is called ischemia. The voxel-based Gaussian Naïve Bayes method 

proposes automatic segmentation of ischemic stroke lesions in individual T1-weighted 

MRI scans and is distributed as a MATLAB toolbox developed by Dr. Joseph Griffis 

from Washington University in St. Louis. The pre-processing of the data includes 

probabilistic tissue segmentation and image algebra to create feature maps encoding 

information about missing and abnormal tissue. Leave-one-case-out training and cross-

validation is used to obtain out-of-sample predictions for each of 30 cases with left 

hemisphere stroke lesions. This GNB toolbox uses the SPM12 MATLAB software 

package, which has been designed for the analysis of brain imaging data sequences. The 

flow chart in figure 4.6 explains the training and testing procedures of the Lesion GNB 

method, which output a predicted lesion mask that can be compared to the manually 

traced mask. 
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Figure 4.6 Training and testing procedures in the Lesion GNB segmentation method. 

Diagram (A) shows the training phase. Diagram (B) explains how the trained model is 

applied on a new, unseen T1-weighed MRI scan. 
 

Source: Dr. Joseph Griffis. https://www.researchgate.net/figure/fig10_282019589 (accessed in April 

2019) 

 

 Running the trained Lesion GNB model on the unseen MRI scan generates a 

predicted lesion mask. Before it can be compared to the true mask, the author 

recommends running a smoothing step and a thresholding step, which is similar to what 

is normally done on manually delineated lesions. Figure 4.7 shows that post-processing 

improves the prediction results. 

 

 

 

https://www.researchgate.net/figure/fig10_282019589
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Figure 4.7 Dice Similarity Coefficients (DSCs) for 30 predicted lesions. (A) Plots of 

Dice Similarity Coefficients (DSCs) for all 30 predicted lesion delineations without (red) 

and with (blue) post-processing. (B) Boxplots of DSCs for all 30 predicted lesion 

delineations without and with post-processing. 
 

Source: Dr. Joseph Griffis. https://www.researchgate.net/figure/A-Plots-of-dice-similarity-coefficients-

DSCs-for-all-30-predicted-lesion-delineations_fig4_282019589 (accessed in April 2019) 
 

4.2.3 Lesion Identification with Neighborhood Data Analysis (LINDA) 

The authors describe LINDA (Lesion Identification with Neighborhood Data Analysis) 

as “an automated (Random Forest based) segmentation algorithm capable of learning 

the relationship between existing manual segmentations and a single T1‐weighted MRI.” 

LINDA was developed in R programming language and uses the ANTsR (Advanced 

Normalization Tools for R) library. 

The algorithm was trained on a dataset of 60 left hemispheric chronic stroke 

patients and was tested with k‐fold and leave‐one‐out procedures. The method was also 

tested on a dataset of 45 patients, achieving high accuracy rates and confirming its cross‐

study value according to the authors. 

 The authors explain the training algorithm as follows: “a series of Random Forest 

(RF) models are trained at different image resolutions, starting at low resolution and 

https://www.researchgate.net/figure/A-Plots-of-dice-similarity-coefficients-DSCs-for-all-30-predicted-lesion-delineations_fig4_282019589
https://www.researchgate.net/figure/A-Plots-of-dice-similarity-coefficients-DSCs-for-all-30-predicted-lesion-delineations_fig4_282019589
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ending at high resolution. At each level, a matrix containing data from all subjects is 

used to train the RF model. Each row of the matrix contains information about a single 

voxel of a single subject and includes values from neighboring voxels on all features as 

columns. Thus, the model is trained to classify voxels based not only on the value of the 

voxel itself but also on its neighbors. The status of the voxel (e.g., 1=healthy, 2=lesion) 

is used as ground truth outcome to train the RFs. Once training is performed at the 

coarsest resolution level, it is immediately applied to the same subjects in order to obtain 

a set of additional features consisting of posterior probability maps (i.e., posterior 

probability of healthy tissue, posterior probability of lesion). These new features are 

passed to the next (usually finer scale) resolution step together with the existing features, 

and a new RF model is trained at this resolution. Then, a new set of posterior 

probabilities is obtained and passed at the successive resolution step. This procedure is 

repeated hierarchically up to the highest resolution, and RF models are produced at all 

resolutions (i.e., three RF models for three resolution steps).” (Dorian Pustina, et al.) 

Figure 4.8 depicts the LINDA workflow, as well as the Random Forest algorithm. 

 The trained model can be applied to segment new cases. To predict the lesion 

map in new MRI scans, the algorithm follows the same hierarchical steps, but uses the 

trained RF models to create the posterior probabilities at each resolution step and predict 

the unknown outcome/label. Probabilities at the highest resolution are converted into a 

discrete class map, meaning that each voxel is given the class with the higher probability. 

(i.e., 60% healthy and 40% lesioned is classified as healthy). 
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Figure 4.8 Depiction of the LINDA workflow. The multi-resolution voxel neighborhood 

random forest algorithm is displayed in the lower part of the image. 
 

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783237/figure/F1/ (accessed in April 2019) 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783237/figure/F1/
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4.2.4 Multi-Modal Convolutional Neural Network (MMCNN) 

The Multi-Modal multi-path Convolutional Neural Network (MMCNN) was recently 

developed in a related joint Deep Learning research project between NJIT and Rutgers 

University. The system has nine end-to-end U-Nets that take as input 2D slices and 

examines all three planes (taken from the 3D MRI scan) with three different 

normalizations. Outputs from the nine paths are collected and the 2D slices are arranged 

into a 3D volume that is fed into a 3D convolutional neural network for a final prediction. 

An overview of the MMCNN architecture is shown in figure 4.9. 

 

Figure 4.9 Overview of entire 9-path U-Net based MMCNN architecture. 
 

Source: Yunzhe Xue, Fadi G. Farhat, Olga Boukrina, A. M. Barrett, Jeffrey R. Binder, Usman W. 

Roshan, William W. Graves, "A multi-path 2.5-dimensional convolutional neural network system for 

segmenting stroke lesions in brain MRI images", Preprint submitted to Neuroimage Clinical, March 31, 

2019. 

 

 The model was trained and tested on the same datasets used in this chapter: 

Kessler, ATLAS and MCW. To demonstrate cross-study validity, the network was also 

trained on a combined Kessler and MCW dataset and tested on ATLAS. Results are 

discussed in detail in section 4.3. 
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4.3 Lesion Detection Results 

Both Lesion GNB and LINDA methods proved to be sensitive to lesion size in the brain. 

The bigger the lesion, the better the Lesion GNB and LINDA prediction masks are. We 

provide correlation coefficients (see page 63 for definition) and p-values (based on t-

distribution test that measures the difference in the means between lesion volumes and 

dice values; p-value < 0.05 is desirable). Results were very poor for small lesions. Lesion 

GNB performed better than LINDA on the ATLAS and Kessler datasets. For the MCW 

set, LINDA yielded a higher accuracy. The MMCNN performed better than both LINDA 

and Lesion GNB, and did significantly better on smaller lesions, making it less sensitive 

to lesion size, and therefore more useful when segmenting lesions that are hard to detect 

using other methods. 

 

4.3.1 Lesion Segmentation Predictions using Lesion GNB & LINDA 

We start with the ATLAS dataset. The MRI scans used were aligned to warp space with 

the skull intact, as required by both the Lesion GNB and LINDA methods. Lesions in 

this set of scans are relatively small with an average lesion volume of 33,093 voxels. For 

Lesion GNB, the average Dice Similarity Coefficient (DSC) was 0.32. It was almost the 

same with the LINDA method with 0.30. Figures 4.10 and 4.11 show a graph of the DSC 

results for both methods. We note that for some subjects, there was no lesion detection 

at all. All subjects have been sorted by increasing lesion volume. We can clearly see how 

the models perform better for subjects with large lesion volumes. 
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Figure 4.10 Dice Similarity Coefficient (DSC) graph for ATLAS data samples (Lesion 

GNB method). The average DSC accuracy for this dataset is 0.32 (average lesion volume 

is 33,093). Subjects are sorted by increasing lesion volume. 

 

 

 

Figure 4.11 Dice Similarity Coefficient (DSC) graph for ATLAS data samples (LINDA 

method). The average DSC accuracy for this dataset is 0.30 (average lesion volume is 

33,093). Subjects are sorted by increasing lesion volume. 

 
 

 

Figures 4.12 and 4.13 show the strong correlations (high correlation coefficients 

and small p-values) between true lesion volume and the DSC value for the ATLAS 
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dataset. Lesion mask predictions for MRI scans with larger lesions tend to be much 

better. The graphs below illustrate how both the Lesion GNB and LINDA methods 

generated very poor or no predictions at all for subjects with small lesions. 

 

 

Figure 4.12 A plot of lesion volume versus Dice value for the ATLAS dataset (Lesion 

GNB method). Correlation Coefficient = 0.804; p-value(t-test) = 0.0000130234. 

 

 

Figure 4.13 A plot of lesion volume versus Dice value for the ATLAS dataset (LINDA 

method). Correlation Coefficient = 0.745; p-value(t-test) = 0.0000130233. 

 

The Kessler scans we used had the skull already stripped, which was not ideal for our 

methods. Samples with the skull intact were not available. We note that LINDA did a 
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lot worse than Lesion GNB on this dataset which has relatively small lesions with an 

average volume of 26,101 voxels. The average DSC we obtained is 0.25 for Lesion 

GNB, and a mere 0.02 for LINDA. Again, we observe that the models perform better 

with large lesion volumes. Results are shown in figures 4.14 and 4.15. 

 

 

Figure 4.14 Dice Similarity Coefficient (DSC) graph for Kessler data samples (Lesion 

GNB method). The average DSC accuracy for this dataset is 0.25 (average lesion volume 

is 26,102). Subjects are sorted by increasing lesion volume. 

 

 

 

Figure 4.15 Dice Similarity Coefficient (DSC) graph for Kessler data samples (LINDA 

method). The average DSC accuracy for this dataset is 0.02 (average lesion volume is 

26,102). Subjects are sorted by increasing lesion volume. 
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The strong/moderate correlations (high correlation coefficients and small p-

values) between true lesion volume and the DSC value for the Kessler dataset is shown 

in figures 4.16 and 4.17. Lesion mask predictions for MRI scans with larger lesions tend 

to be much better. Overall, Lesion GNB performed better on this dataset. 

 

 

Figure 4.16 A plot of lesion volume versus Dice value for the Kessler dataset (Lesion 

GNB method). Correlation Coefficient = 0.690; p-value(t-test) = 0.0000064261. 

 

 

Figure 4.17 A plot of lesion volume versus Dice value for the Kessler dataset (LINDA 

method). Correlation Coefficient = 0.595; p-value(t-test) = 0.0000064256. 
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For the MCW dataset, the segmentation methods were run on samples with the 

skull intact. The average lesion volume on MCW is relatively high at 56,190 (68,078 on 

raw images), and so the average DSC obtained was 0.48 for Lesion GNB and 0.54 for 

LINDA. Figures 4.18 and 4.19 display the results obtained from both methods. 

 

 

Figure 4.18 Dice Similarity Coefficient (DSC) graph for MCW data samples (Lesion 

GNB method). The average DSC accuracy for this dataset is 0.48 (average lesion volume 

is 56,190). Subjects are sorted by increasing lesion volume. 

 

 

Figure 4.19 Dice Similarity Coefficient (DSC) graph for MCW data samples (LINDA 

method). The average DSC accuracy for this dataset is 0.54 (average lesion volume is 

56,190). Subjects are sorted by increasing lesion volume. 
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Figures 4.20 and 4.21 show the strong correlations (high correlation coefficients 

and small p-values) between true lesion volume and the DSC value for the MCW dataset. 

Predictions for these MRI scans were generally much better that those obtained for 

ATLAS and Kessler. The graphs below illustrate how both the Lesion GNB and LINDA 

methods generated valid mask predictions for all subjects in the set. 

 

 

Figure 4.20 A plot of lesion volume versus Dice value for the MCW dataset (Lesion 

GNB method). Correlation Coefficient = 0.684; p-value(t-test) = 0.0000016864. 
 

 

 

Figure 4.21 A plot of lesion volume versus Dice value for the Kessler dataset (LINDA 

method). Correlation Coefficient = 0.611; p-value(t-test) = 0.0000016864. 
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4.3.2 Lesion Segmentation Predictions using MMCNN 

In this section, we compare the results we obtained using Lesion GNB and LINDA with 

the MMCNN Deep Learning results from a related study. In addition to our methods, 

MMCNN was compared to U-Net, UResNet and DeepMedic (Yunzhe Xue, et al., 

Neuroimage Clinical, 2019). The network was trained on a combined dataset of Kessler 

and MCW images and was tested on the ATLAS dataset. This is particularly challenging 

since most existing systems perform poorly in cross-study testing. MMCNN performed 

better than all other methods with a mean DSC value of 0.54. Table 4.1 shows all Dice 

values obtained in the tests on the ATLAS dataset. 

 

Table 4.1 Mean Dice Coefficients of All Models Tested on the ATLAS Dataset 

Method MMCNN UNet UResNet DeepMedic LINDA GNB 

Mean Dice 0.54 0.47 0.45 0.47 0.30 0.32 

 

Figure 4.22 provides more details and comparisons from the same experiment. 

The Raincloud plots show the distribution of Dice coefficients across all test images as 

well as the five summary values: median (middle horizontal line), Q3 (upper horizontal 

line), Q1 (lower horizontal line), minimum (lowermost bar), and maximum (uppermost 

bar). All models except for LINDA and GNB are trained on KES+MCW. Deep learning 

methods which are based on convolutional neural networks look promising and are 

already surpassing other methods that are based on conventional machine learning 

algorithms like Random Forest or SVM. 

 

 



63 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Raincloud plots of Dice coefficient values of all models (trained on 

Kessler+MCW and tested on ATLAS.) 
 

Source: Yunzhe Xue, Fadi G. Farhat, Olga Boukrina, A. M. Barrett, Jeffrey R. Binder, Usman W. 

Roshan, William W. Graves, "A multi-path 2.5-dimensional convolutional neural network system for 

segmenting stroke lesions in brain MRI images", Preprint submitted to Neuroimage Clinical, March 31, 

2019. 

 

The correlation coefficient calculated for lesion volumes and dice values in this 

chapter is given by: 

 

  

(4.1) 

 

 

 

where n is the number of data points, x is our first variable (lesion volume), y is our 

second variable (DSC values), μx, μy are the means of variables x and y respectively and 

σx, σy are the standard deviations of variables x and y. 

When describing the correlation coefficient values, we will use the following    

naming convention: 0-0.19 will be considered very weak, 0.2-0.39 weak, 0.40-0.59 

moderate, 0.6-0.79 as strong and 0.8-1 as very strong correlation.
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

5.1 Work Summary 

In this work, we’ve presented comparisons of several machine learning and deep 

learning methods to solve medical imaging problems using two types of images: 2D 

breast cancer images (x-ray and biopsy) and 3D MRI brain scans. For image 

classification, we used conventional machine learning methods like Random Forest, 

Logistic Regression and Support Vector Machine, as well as deep learning methods like 

a simple 3-layer CNN, and deeper convolution neural networks like VGG16 and 

RDCNN. For lesion detection, existing Random Forest and Gaussian Naïve Bayes 

methods (LINDA and Lesion GNB) were tested and compared to the newly developed 

deep learning system, MMCNN (tested against UNet, UResNet and DeepMedic in a 

related study). 

 On the breast cancer x-ray image data, Random Forest beat all other 

classification methods, including the CNN’s. SVM also performed better than neural 

networks on this dataset. The great variation in the images and the abundance of zero-

pixel background in the images made it especially hard for the computer vision methods 

to detect the anomalies in the otherwise very similar breast tissue images. Further pre-

processing and possibly zoomed in views of the x-ray images may improve neural 

network performance. 

 On the breast cancer biopsy image data, deep learning methods, especially 

RDCNN, beat all other classifiers. While augmenting the data actually degraded the 
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performance of SVM and Logistic Regression, it helped produce better Random Forest 

results, and greatly improved the performance of deep learning methods, in particular 

that of RDCNN, with a validation accuracy reaching 98% on the two-class datasets. 

 On the combined MCW/OASIS MRI brain scan image and patch datasets, 

VGG16 outperformed all other classification methods followed by Random Forest, then 

Logistic Regression and SVM. The neural network achieved an average accuracy of 

more than 94% in the full image classification experiments, and around a 72% accuracy 

on the patch dataset. The actual brain tissue was more uniformly distributed across the 

entire image than in the case of the breast x-rays. The images were also aligned to the 

standard MNI-152 template. These factors gave the neural network the advantage and 

allowed it to detect the classes more easily, especially for the full image dataset. 

 For lesion detection, images that are pre-processed and properly aligned yielded 

the best performance in all systems that were tested in this study. Also, lesion size in 

brain scans played a key role. The larger the lesions, the easier they are to detect. The 

MCW dataset produced the best segmentation results, in part due to the large lesions in 

its subject scans. The ATLAS and Kessler datasets did not do as well, partially due to 

their smaller lesion size. Neural network-based systems as well as the LINDA and 

Lesion GNB methods performed best on subjects with large lesions. Smaller lesions 

were difficult to detect, and MMCNN was the least sensitive system to lesion size 

(Yunzhe Xue, et al., Neuroimage Clinical, 2019). 

 

5.2 Contribution and Limitations 

The findings in this work demonstrate the promise of automatic classification and 
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segmentation systems in aiding with the diagnosis and treatment of disease. While none 

of the solutions presented can replace human experts, they can surely help with time 

consuming tasks that involve performing tedious and repetitive tasks on large amounts 

of data. For breast cancer images for example, the automatic classification methods can 

be used to quickly classify a new test subject and with high accuracy. For brain lesion 

detection problems, new MRI images can be automatically segmented, then given to a 

human expert for further assessment and review. The same processes can be easily 

adapted to other medical imaging applications and other types of medical images. 

As explained throughout this paper, all methods described are supervised which 

rely primarily on and are limited by the accuracy of human expertise. Another limitation 

to be mindful of is the absence of a unified method for data preparation and pre-

processing. While critical in any Machine Learning or Deep Learning system, data 

preparation varies greatly for medical images based on application objectives, specific 

data type and format, as well as methods used. We’ve also shown that the success of any 

system depends highly on the subject data, and while Deep Learning techniques seem to 

offer the best performance in general, non-linear classifiers such as Random Forest can 

still play an important role in the design of computer aided diagnosis systems. 

The most serious limitation of the automatic systems presented is probably the 

absence of an end to end integrated solution that can solve problems with minimal human 

intervention. Current systems require trial and error at every step, from data preparation, 

to system training and testing, all the way to system deployment and implementation. 

Although these systems can be a great aid for experts, getting them to perform efficiently 

and adequately still requires a lot of time, close supervision and plenty of resources. 
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5.3 Future Work 

The research presented in this work can be thought of as a sampling of select Machine 

Learning and Deep Learning methods that are currently available, and is by no means 

an exhaustive comparative study, and much work remains to be done. More types of data 

(in terms of image formats and human anatomy) are needed to evaluate the application 

of these methods more broadly. Other Deep Learning networks (Like U-Net, ResNet and 

DeepMedic) should be tested on medical imaging problems. More cross study 

experiments are also needed to ensure the portability of the presented solutions. 

Unsupervised learning methods need to be explored further. This may allow us to 

surpass human expertise which currently limits the performance of supervised methods. 

 Once we reach acceptable levels of accuracy in classification and segmentation, 

the scope of automation can be expanded to include the interpretation and usage of the 

results to take the next action. For breast cancer, this can be automatic recommendation 

of treatment plans for example. For brain MRI, this can be automatically correlating 

predicted lesion findings with impact on cognition and/or behavior, then recommending 

treatment or appropriate care. 

 

5.4 Final Thought 

Current classification and anomaly detection systems in medical imaging applications 

continue to improve and are quickly approaching the performance of human experts. 

With the help of new and innovative methods, automated systems may even outperform 

humans and become reliably more accurate. Expert human resources will be more 

empowered and will be able to focus more on other critical aspects of medical care. 
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APPENDIX A 

BREAST CANCER IMAGES AND CLASSIFIER PERFORMANCE 

 

A.1 Deep Learning Performance on the Breast Cancer X-Ray Dataset 

 

 

The breast cancer x-ray images proved to be a challenge for the Deep Learning methods 

that we tested on this dataset, namely CNN-3, VGG16 and RDCNN. Surprisingly, Support 

Vector Machine (SVM) methods competed with the convolutional neural networks 

(CNN’s), while Random Forest (RF) performed best. Actually, when looking at the 

prediction accuracy per class (especially the case or “1” class), both SVM and RF did better 

than CNN’s whose predictions were mostly “0”, with only a small percentage correctly 

predicted as “1”. Two factors may have contributed to these results: the image content, as 

well as how each classifier interprets and processes input data. 

 The breast cancer x-rays all contain the image of the same object, albeit in varied 

sizes, shapes and orientations. The images are taken at the macroscopic level, and therefore 

do not show the differences between cancerous and non-cancerous tissue clearly. The 

images also contain a large area of zero-value pixel background, which normally does not 

provide any information to a classifier, especially a computer vision method such as a 

convolutional neural network. In contrast, the breast biopsy images are more easily 

distinguishable, even to the naked eye. Also, being at the microscopic level, the biopsy 

images show distinct objects of different shapes and even colors in some cases, which 

computer vision methods are very good at detecting. 

 Both RF and SVM classifiers treat their input as a single feature vector. These 

classifiers do not recognize images. In fact, when images are fed to a conventional 
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classifier, they are flattened to one dimension first, and if they have multiple channels, each 

channel is flattened as a vector, and all channels are concatenated into one feature vector 

as well. Similarly, a 3D image has to be flattened to one vector before it is fed to an SVM 

or RF classifier. An image essentially becomes a sequence of numbers, with each number 

being in a specific column (also called feature or dimension) as far as the classifier is 

concerned. When learning the correlation between the class (target variable) and the 

features, a linear classifier (such as SVM) considers all features at once, which means all 

pixel values for a particular image enter in the calculation (such as a dot product for 

example) at the same time. Using all features could have helped the classifier detect the 

subtle differences in the breast tissue pixel values in this case. 

 We should point out that although RF uses the entire feature vector to classify a 

sample, it uses decision trees over a large number of iterations to predict the class. Decision 

trees consider one or more features at a time to cluster samples in similar groups, but 

eventually test all features and generate one predicted label for each sample. 

 Computer vision methods work differently. To begin with, a CNN takes the actual 

image (2D or 3D) as input. Rather than looking at it as a flat feature vector, a CNN uses a 

kernel (typically 2D) to interpret the local contents of an image patch and tries to find 

objects that are similar in images that are in the same class. It should be obvious by 

inspection that the breast cancer x-ray images do not contain distinct objects that a CNN 

might correlate with a class, but rather one object, which is the breast itself. The difficulty 

is that the same object appears in all classes, which could explain the poor performance of 

the neural networks on these images. 
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A.2 Linear Classifier Performance on the Breast Cancer Biopsy Dataset 

 

 

In general, data augmentation improves classifier performance. It is an established fact that 

classifiers learn better with more data. When it comes to image data and linear classifiers, 

this does not appear to be the case. Let’s look at what is involved when augmenting image 

data in terms of flattened feature vectors. 

 Image data is typically augmented by flipping and rotating the original sample 

images. This is good for a CNN as augmentation creates more instances of the same object 

in the image. The object may be flipped or rotated, it may even be in a different part of the 

image, but it is still the same object, and a CNN is very good at detecting objects, even if 

they are relocated within the image. For SVM, this can be detrimental and can degrade 

performance. When an image is flipped or rotated, the location of each pixel in the modified 

image changes, and when the augmented image is flattened into a feature vector, the 

features of the original vector are now in different columns, and for SVM, the location of 

a feature in the vector matters. 

Consider a vector VO (representing the original image) and its flipped equivalent 

VF. If VO contains the following features: [f1, f2, f3, f4, f5, f6, f7, f8], then VF might look 

like this: [f5, f6, f7, f8, f1, f2, f3, f4]. In a classification scenario, these two vectors are 

given the same label of course, since they are in the same class, but as far as SMV, the 

correlation between features and label is now different. This could explain why both SVM 

and Logistic Regression did worse with the augmented breast biopsy images. This 

hypothesis can be tested using simple (and small) text examples that can be manually 

observed and analysis. 
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APPENDIX B 

CLASSIFIER BACKGROUND INFORMATION 

 

B.1 Gini Impurity Index in the Random Forest Algorithm 

 

 

Random Forest is based on the CART (Classification And Regression Trees) algorithm, 

which refers to decision trees used for classification (and regression), as illustrated in figure 

2.7 on page 18. A decision tree uses stumps (a line in a two-dimensional space) to split 

samples that may not be linearly separable. The graph in figure B.1 shows a two-

dimensional dataset that contains two classes: circles (C1) and squares (C2). The first split 

“S1” splits the data at a random value of f1 (the first feature or dimension) and creates two 

child nodes (subsets of the whole dataset, which is the parent node). The second split “S2” 

splits the data again at a random value of f2 and creates four child notes (by splitting their 

parent nodes). After the two splits are made, all data points are classified, albeit with a 

small margin of error (samples shown in red on the graph). 

Since a split can introduce classification errors, the goodness of the split has to be 

measured to determine if it is the best split or if a better split (with less error) can be found. 

The Gini Impurity Index is one way to measure the quality of a split. Next, we will define 

the Gini Impurity Index or “gini” and use a simple one-dimensional dataset example to 

explain how it is calculated. 
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Figure B.1 Illustration of a classification decision tree with two stumps. Although splits 

S1 and S2 (created by the stumps) introduce some impurity (or misclassification), they 

classify the data with high accuracy. 

 

 In a binary classification system (classes 0 and 1), we define Zi as the number of 

class 0 instances in child node i, Ci as the total number of instances in child node i, and N 

as the number of instances in the parent node. The objective is to find a split that minimizes 

the Gini Impurity Index which is given by: 

 

𝑔𝑖𝑛𝑖 = ∑
𝑍𝑖

𝑁
∗ ( 1 −  

𝑍𝑖

𝐶𝑖
  ) 

 

(B.1) 

 

Which is the weighted sum of impurities in all child nodes created by the split. 

Consider the one-dimensional dataset: [0 0 0 1 1 1 1 0]. We define a split after the 

first data point to create two nodes. The dataset will be as follows after the split:  

[0 | 0 0 1 1 1 1 0]. Next, we will calculate the gini for this split using N = 8, Z1 = 1, C1 = 

1, Z2 = 3, C2 = 7. 
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gini = 1/8 * (1 – (1/1)) + 3/8 * (1 – (3/7)) = 0.2143. 

To check if we can find another split that would give a smaller impurity index, we 

will define a split after the fourth data point this time. The dataset will now be as follows: 

[0 0 0 1 | 1 1 1 0]. We repeat the gini calculation we did before, but this time using N = 8, 

Z1 = 3, C1 = 4, Z2 = 1, C2 = 4. 

gini = 3/8 * (1 – (3/4)) + 1/8 * (1 – (1/4)) = 0.1875. 

 The second split is clearly better than the first. When gini = 0 for a node, it means 

that all instances in the node are of the same class, and we say that the node is pure. In 

practice, the minimum gini is found by trying all possible splits and calculating the gini for 

each split across all child nodes. 
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