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ABSTRACT

IMPAIRMENTS IN GROUND MOVING TARGET INDICATOR
(GMTI) RADAR

by
Phuoc Doan Huu Vu

Radars on multiple distributed airborne or ground based moving platforms are

of increasing interest, since they can be deployed in close proximity to the event

under investigation and thus offer remarkable sensing opportunities. Ground moving

target indicator (GMTI) detects and localizes moving targets in the presence of

ground clutter and other interference sources. Space-time adaptive processing

(STAP) implemented with antenna arrays has been a classical approach to clutter

cancellation in airborne radar. One of the challenges with STAP is that the minimum

detectable velocity (MDV) of targets is a function of the baseline of the antenna

array: the larger the baseline (i.e., the narrower the beam), the lower the MDV.

Unfortunately, increasing the baseline of a uniform linear array (ULA) entails a

commensurate increase in the number of elements. An alternative approach to

increasing the resolution of a radar, is to use a large, but sparse, random array. The

proliferation of relatively inexpensive autonomous sensing vehicles, such as unmanned

airborne systems, raises the question whether is it possible to carry out GMTI

by distributed airborne platforms. A major obstacle to implementing distributed

GMTI is the synchronization of autonomous moving sensors. For range processing,

GMTI processing relies on synchronized sampling of the signals received at the

array, while STAP processing requires time, frequency and phase synchronization

for beamforming and interference cancellation. Distributed sensors have independent

oscillators, which are naturally not synchronized and are each subject to different

stochastic phase drift. Each sensor has its own local oscillator, unlike a traditional

array in which all sensors are connected to the same local oscillator. Even when



tuned to the same frequency, phase errors between the sensors will develop over time,

due to phase instabilities. These phase errors affect a distributed STAP system.

In this dissertation, a distributed STAP application in which sensors are moving

autonomously is envisioned. The problems of tracking, detection for our proposed

architecture are of important.

The first part focuses on developing a direct tracking approach to multiple

targets by distributed radar sensors. A challenging scenario of a distributed

multi-input multi-output (MIMO) radar system (as shown above), in which relatively

simple moving sensors send observations to a fusion center where most of the baseband

processing is performed, is presented. The sensors are assumed to maintain time

synchronization, but are not phase synchronized. The conventional approach to

localization by distributed sensors is to estimate intermediate parameters from the

received signals, for example time delay or the angle of arrival. Subsequently, these

parameters are used to deduce the location and velocity of the target(s). These

classical localization techniques are referred to as indirect localization. Recently,

new techniques have been developed capable of estimating target location directly

from signal measurements, without an intermediate estimation step. The objective

is to develop a direct tracking algorithm for multiple moving targets. It is aimed

to develop a direct tracking algorithm of targets state parameters using widely

distributed moving sensors for multiple moving targets. Potential candidate for the

tracker include Extended Kalman Filter.

In the second part of the dissertation,the effect of phase noise on space-time

adaptive processing in general, and spatial processing in particular is studied. A

power law model is assumed for the phase noise. It is shown that a composite

model with several terms is required to properly model the phase noise. It is

further shown that the phase noise has almost linear trajectories. The effect of

phase noise on spatial processing is analyzed. Simulation results illustrate the



effect of phase noise on degrading the performance in terms of beampattern and

receiver operating characteristics. A STAP application, in which spatial processing

is performed (together with Doppler processing) over a coherent processing interval,

is envisioned.
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CHAPTER 1

INTRODUCTION

Detection, localization and tracking of ground moving targets are key radar functions

that contribute to continued U.S. warfighting dominance. Radars on multiple

distributed airborne or ground based moving platforms are of increasing interest,

since they can be deployed in close proximity to the event under investigation and

thus offer remarkable sensing opportunities [1]. For example, unmanned aerial vehicles

(UAVs) based radars play a significant role in disaster relief efforts by quickly flying

to the impacted area and providing the most accurate and updated information [2].

In urban sensing environments, potential targets may be obscured by buildings and

other man-made structures; with sensors on moving platforms, the subject area can

be probed from more favorable positions to yield enhanced detectability [3]. Other

applications of radar on moving platforms for military and civilian sensing operations

can be found in, e.g., [4], [5], [6].

Ground moving target indication (GMTI) radar [7]–[11] is an airborne radar

tasked with detecting the presence of moving targets in an environment where the

interference due to ground clutter can be severe. GMTI radars therefore is expected to

be able to perform target detection while suppressing the interference due to ground

clutter. The ground clutter as seen by the airborne radar, exists at every angle, in

addition, due to the platform velocity of the aircraft, the ground clutter also exists for

all Dopplers. To take advantage of the structure of the clutter ridge, researchers have

considered space-time adaptive processing (STAP) [12]–[14], which performs joint

processing in both spatial and temporal domains simultaneously. Since the clutter

does not occupy the entire angle-Doppler map, separating the target from the clutter
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is possible with STAP, assuming that the target is sufficiently far from the clutter

ridge on the angle-Doppler map.

The proliferation of airborne, inexpensive radio frequency sensors recently raises

interest in distributed implementation of radar systems. Figure 1.1 shows the two

design aspects of distributed radar systems. While STAP methods have improved over

Figure 1.1 Distributed Radar Architectures.

the years, including the latest developments reported above, STAP relies on a carefully

calibrated phased array, which implies a highly specialized plat- form dedicated to

the GMTI task. Moreover, the performance of STAP depends on the array baseline,

which is ultimately limited by the size of the platform. In this dissertation, we

proposed an approach radically different than STAP, in which sensors are assumed

to maintain global time synchronization (e.g., through GPS), but are not phase

synchronized. For example, the method would be suitable for implementation by

widely distributed, independently moving UAVs, each with its own free-running local

oscillator. To support Doppler processing, the oscillator at each sensor is assumed

to maintain coherency over the observation time interval, but unlike a phased array,

local oscillators are not phase synchronized to each other. To distinguish it from

conventional STAP, we refer to this method as distributed STAP. With a system
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that consists of simple, opportunistic sensors, the processing load is shifted to a

fusion center equipped with powerful processing capabilities. Figure 1.2 shows the

proposed distributed STAP architecture. Target detection and localization are only

Figure 1.2 Distributed STAP Architectures.

part of the functions required to achieve full situational awareness. There are several

challenges posed for a distributed STAP radar system. First, forming tracks and

target tracking using distributed sensors are important functions of radar and inquired

more understandings. Second, distributed sensors are impacted by independent phase

noise. Third, time and phase synchronization of distributed, airborne platforms need

to be carefully analyzed. Last, but not least, target detection from measurements by

distributed, moving platforms spaced irregularly at more than half-wavelength should

also be studied. In this dissertation, we look into certain aspects of a distributed

implementation of STAP and address each challenging aspects mentioned above.
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1.1 Direct Tracking of Multiple Targets in Distributed MIMO Radar

System

The conventional approach to localization by distributed sensors is to use signal

observations to first estimate parameters, such as time delay or the angle of incidence

of the wave, and subsequently apply these estimates to deduce the location and

velocity of targets. Since they rely on estimating intermediate parameters, classical

localization techniques may be referred to as indirect localization. Recently, new

techniques capable of estimating target location directly from signal measurements

without an intermediate estimation step have been developed. It is shown that in

some conditions, such techniques may provide significantly better performance [15].

Direct localization has been applied to Doppler estimation [16], to multiple input

multiple output (MIMO) radar [16], localization in multipath [17], and to tracking of

single targets [16].

When a target is in motion, the localization problem becomes a tracking

problem. The Kalman filter is a classical tracking algorithm applied to a state space

model that consists of a kinematic model and an observation model. The Kalman

algorithm estimates the state of a process in a way that minimizes the estimation

mean square error (MSE) [4], [5]. The extended Kalman filter is a variation of

the Kalman filter that may be applied when the observation model is non-linear

in the state parameters. In [6], a tracker based on the extended Kalman filter in

a widely-distributed MIMO radar setting, was developed for a single target. Each

sensor estimates the targets location and velocity locally, and sends the estimates to

a central fusion center, where the track is formed and maintained.

In contrast to the literature reviewed above, in this work, we are interested in

multiple targets tracking (MTT). MTT is a well known problem with a rich literature

[7-13], [18]. Given a varying number of targets as a function of time, with new

targets joining in and others dropping out, the purpose of multi-target tracking is to
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associate measurements with the targets that have generated them [19]. A primary

task of an MTT system is data association, i.e., partitioning the measurements into

disjoint sets, each set generated from a single target. The data association problem

may be formulated in several ways. For example, measurements may be classified

into tracks by determining the nearest neighbor observation to an existing track.

Other approaches seek to avoid the explicit data association step by generalizing

the state vector to incorporate multiple targets [20]. In Chapter 2, we propose a

tracker based on the extended Kalman filter that tracks multiple targets based on an

observation model in which radar observations are non-linear functions of the targets’

states. We refer to this tracker as direct, since it achieves tracking directly from radar

observations, rather than from time delays and Doppler shifts. It is noted that a direct

tracker based on a particle filter was proposed in [16], but that tracker was limited

to a single target.

Furthermore, we proposed new tracking algorithms and performance bounds for

multiple targets in non-coherent, multistatic MIMO radar. Specific contributions are:

(1) extension of a MIMO radar indirect tracking scheme originally proposed in [21]

for single target to two targets, by incorporating nearest neighbor data association;

(2) a new Kalman filter direct tracking scheme for multiple targets, in which tracks

are formed and maintained at a fusion center from observations communicated by

sensors of a MIMO radar.

1.2 Effect of Phase Noise and Other Impairments on Distributed STAP

Radars on multiple distributed airborne or ground based moving platforms are of

increasing interest, since they can be deployed in close proximity to the event under

investigation and thus offer remarkable sensing opportunities [1]. For example,

unmanned aerial vehicles (UAVs) based radars play a significant role in disaster

relief efforts by quickly flying to the impacted area and providing the most accurate
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and updated information [2]. In urban sensing environments, potential targets may

be obscured by buildings and other man-made structures; with sensors on moving

platforms, the subject area can be probed from more favorable positions to yield

enhanced detectability [3]. Other applications of radar on moving platforms for

military and civilian sensing operations can be found in, e.g., [4], [5], [6].

In ground moving target indicator (GMTI), of interest is to determine the

presence of targets and their ranges, azimuth angles, and Doppler shifts. Space-time

adaptive processing (STAP) enables GMTI radars to perform moving target detection

in the presence of ground clutter. STAP implemented with antenna arrays has

been a classical approach to clutter cancellation in airborne radar [22, 23]. The

proliferation of airborne, inexpensive radio frequency sensors raises interest in

distributed implementation of radar systems. In this work, we consider certain aspects

of a distributed implementation of STAP.

The power spectral density (PSD) of an ideal sinusoidal carrier observed over

t → ∞ is an impulse at f0. However, practical oscillators have amplitude and phase

deviations from the ideal oscillator that cause spreading of the spectrum. The phase

deviation of a practical oscillator from the nominal phase 2πf0t, where f0 is the carrier

frequency is known as phase noise. The study of phase noise has started more than

50 years ago, as reviewed in a recent retrospective [24]. As explained in [24], diverse

applications of oscillators led to a variety of analysis approaches. The lack of a unified

approach and the difficulty of the topic resulted in a large number of publications,

including in the IEEE Proceedings (for example [25, 26, 27, 28], to name a few).

Efforts to consolidate and standardize terms yielded an IEEE standard [29] and a

National Institute of Standards publication [30].

The characterization and the effects of phase noise on performance have been

topics of interest also to the radar community. Phase deviations accumulate over time,

hence the effect of phase noise becomes more pronounced over longer observation
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times. It is not surprising then that a significant body of literature addresses the

effect of phase noise on synthetic aperture radar (SAR) [31]-[32]. SAR integration

times are long and phase noise may have great effect on performance. Although

the observation time is not quite as long as in SAR, Doppler processing may also

be affected by phase noise, with publications spanning many years from [33] to [34].

In contrast, literature on the effect of phase noise on antenna arrays is difficult to

come by for the simple reason that spatial processing relies on differential phase

measurements between array elements. When the same oscillator drives all elements,

phase noise effects are canceled. However, in a distributed application, different

sensors are driven by different oscillators. Different oscillators develop different phase

noise characteristics as a function of time, making the array subject to the effect

of phase noise errors. Thus, at a given sensor, the phase noise associated with

the sensor’s oscillator affects Doppler processing, whereas the phase noise between

oscillators at different sensors affects spatial processing.

Besides phase noise, a distributed STAP system is also subject to other

impairments such as frequency offset, non-uniform motion characteristics of individual

sensors, non-uniform and potentially large spacing between array elements, and

sensors locations uncertainties, to name a few. Frequency offsets inevitably arise even

when all sensors are instructed to tune to the same frequency. Whereas a Doppler

shift is caused by relative motion, a carrier frequency offset is caused by the carrier

frequency mismatch between transmitter and receiver. A distributed STAP system is

subject to errors from carrier frequency offsets (CFO). In [35], the authors investigate

the effect of CFO on Doppler centroid estimation in Synthetic Aperture Radar (SAR)

and on Direction-Of-Arrival (DOA) estimation in array processing. To the best of our

knowledge, there is no past work done on the effect of frequency offset for distributed

STAP system.
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In addition to frequency offset due to different transmitters and receivers in a

distributed system, different sensors move autonomously, and thus may have different

velocities and direction of motion. This, in turn, leads to Doppler characteristics that

vary among sensors. As a result, space-time steering vectors may not be expressed

simply by a Kronecker product, as in traditional STAP. In this work, we analyze

the generalized motion of target and sensors in a multistatic setup and highlight

the effects of platform motion on the clutter problem. Further, classical STAP is

typically implemented with uniform linear arrays (ULA), half-wavelength spacing. A

distributed implementation leads to non-uniform and potentially much larger spacings

between the array elements. Finally, a rigid implementation on a single platform

enables to accurately measure the locations of the array’s elements. In a distributed

implementation, sensors relative locations vary over time, and any sensor localization

method (e.g., GPS) is subject to errors. Relevant to analysis of the effect of element

errors in a distributed array, is the analysis of the effect of element errors in arrays

with colocated elements [36]). In [37], Flanagan achieved array self-calibration with

large sensor position errors. Other papers, for example [38], derived the Cramer-

Rao lower bounds of the DOA estimation and array calibration precisions in the

case of determined and unknown signals based on the assumptions of small array

perturbations.

1.3 Motivation of the Dissertation

This dissertation focuses on certain aspects of a distributed implementation of STAP

and to the best of our knowledge address the challenges posed for a distributed STAP

radar system. We envisioned a STAP application, in which spatial and Doppler

processing are performed over a coherent processing interval.

The contributions of this dissertation are the following:
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1. Propose a tracker based on the extended Kalman filter that tracks multiple

targets based on an observation model in which radar observations are non-

linear functions of the targets’ states.

2. Propose new tracking algorithms and performance bounds for multiple targets

in non-coherent, multistatic MIMO radar. For this tracker, a new Kalman filter

direct tracking scheme for multiple targets is developed, in which tracks are

formed and maintained at a fusion center from observations communicated by

sensors of a MIMO radar.

3. Demonstrate that a power law phase noise PSD model is suitable for analyzing

the distributed radar system.

4. Propose a simplified time-domain model for the phase noise.

5. Develop analytical expressions that quantify the effect of phase noise on the

array beampattern as a function of time.

6. Propose a generalized motion model for distributed STAP system.

7. Demonstrate the effect of phase noise and other impairments on target detection

by numerical examples of receiver operating characteristics (ROC).

This dissertation is organized as follows: Chapter 2 presents the direct tracking

algorithms and performance bounds for multiple targets in distributed MIMO radar

system. In Chapter 3, a generalized motion model for distributed STAP system is

proposed and the effect of phase noise on distributed STAP system is demonstrated.

In Chapter 4, numerical results to demonstrate the effect of other impairments

pertaining to a distributed STAP system is shown. In Chapter 6 conclusions are

made.

The following notation will be used: boldface is used for matrices (uppercase)

and vectors (lowercase); ‖y‖p denotes p-norm; (·)T is the transpose operator, (·)∗
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is complex conjugate and (·)H is the complex conjugate transpose operator; given a

set S, and a matrix A, |S| denotes the cardinality of the set, AS is the sub-matrix

obtained by the columns of A indexed in S; similarly, if x is a vector, the vector

xS consists of the components of x indexed by S; ⊗ marks the Kronecker product

; E [·] denotes the expectation operator; ∼ CN (m,R) indicates the complex-valued

multivariate Gaussian distribution with mean m and covariance matrix R.
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CHAPTER 2

DIRECT TRACKING OF MULTIPLE TARGETS IN MIMO RADAR

2.1 Introduction

The conventional approach to localization by distributed sensors is to use signal

observations to first estimate parameters, such as time delay or the angle of incidence

of the wave, and subsequently apply these estimates to deduce the location and

velocity of targets. Since they rely on estimating intermediate parameters, classical

localization techniques may be referred to as indirect localization. Recently, new

techniques capable of estimating target location directly from signal measurements

without an intermediate estimation step have been developed. It is shown that in

some conditions, such techniques may provide significantly better performance [15].

Direct localization has been applied to Doppler estimation [16], to multiple input

multiple output (MIMO) radar [16], localization in multipath [17], and to tracking of

single targets [16].

In this work, we are interested in multiple targets tracking (MTT). MTT is

a well known problem with a rich literature [7-13], [18]. Given a varying number of

targets as a function of time, with new targets joining in and others dropping out, the

purpose of multi-target tracking is to associate measurements with the targets that

have generated them [19]. A primary task of an MTT system is data association,

i.e., partitioning the measurements into disjoint sets, each set generated from a

single target. The data association problem may be formulated in several ways.

For example, measurements may be classified into tracks by determining the nearest

neighbor observation to an existing track. Other approaches seek to avoid the explicit

data association step by generalizing the state vector to incorporate multiple targets

[20]. In this paper, we propose a tracker based on the extended Kalman filter that

11



tracks multiple targets based on an observation model in which radar observations

are non-linear functions of the targets’ states. We refer to this tracker as direct, since

it achieves tracking directly from radar observations, rather than from time delays

and Doppler shifts. It is noted that a direct tracker based on a particle filter was

proposed in [16], but that tracker was limited to a single target.

Bayesian Cramer-Rao bound (BCRB) sets the performance limits on target

tracking, providing useful tools for evaluating the effect of system parameters on

estimation accuracies. The radar is assumed to be distributed in the sense that

targets gains on the paths between transmitters and receivers of the MIMO system

are modeled as independent, identically distributed random variables. The results

obtained in this chapter assume that realizations of target gains remain fixed

throughout the experiment, i.e., a Swerling Type 1 model. Specific contributions are:

(1) extension of a MIMO radar indirect tracking scheme originally proposed in [21]

for single target to two targets, by incorporating nearest neighbor data association;

(2) a new Kalman filter direct tracking scheme for multiple targets, in which tracks

are formed and maintained at a fusion center from observations communicated by

sensors of a MIMO radar; (3) a new Bayesian Cramer-Rao bound (BCRB) on the

performance of the multi-target direct tracking scheme.

The paper is organized as follows: the signal model is formulated in Section II,

multiple target tracking algorithms and BCRBs are presented in Section III, numerical

examples are presented in Section IV, and concluding remarks are found in Section

V. Throughout the paper, matrices are denoted by boldface uppercase letters, and

vectors by boldface lowercase letters. The following notations are used: transpose

(·)T , complex conjugate transpose (·)H , expectation E(·), absolute value |·|, estimated

quantities (̂·), Frobenius norm ‖ · ‖2F .
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2.2 Signal Model

Assume N widely distributed radar receive elements and M widely distributed radar

transmit elements that have a common time reference. Each transmitter emits its

own waveform with complex envelope sm(t),m = 1, ...,M. The waveforms have

unit energy and are orthogonal (for example by being separated in the frequency

domain). The power of the transmitted waveforms is normalized such that the

aggregate power transmitted by the sensors is constant, irrespective of the number of

transmit sensors. Due to the distributed nature of the system, a target’s complex

gains are assumed multistatic and subsequently modeled as independent random

variables. Without loss of generality, assume sensors use pulse Doppler radars in

which waveforms of bandwidth B are transmitted at a pulse repetition interval (PRI)

Tr. A coherent processing interval (CPI) consists of P pulses, T
CPI

= PTr. In a typical

implementation, airborne platforms carry single transceivers (i.e., a transmit element

and a receive element) forming MN transmit-receive paths. One way to achieve

orthogonality of waveforms is to assign sufficiently separated carrier frequencies that

may be separated by filtering. Assume there are Q targets, and at the k-th CPI,

the q-th target is located at coordinates pqk = (xqk, y
q
k) and moves with velocity

vqk = (ẋqk, ẏ
q
k).

The complex envelope of the signal observed at receiver n due to the

transmission at transmitter m over time interval 0 ≤ t ≤ T
CPI

is given by

rmn,k (t) =
1√
M

Q∑
q=1

aq,mnsm
(
t− τ qmn,k

)
ej2πµ

q
mn,kt + wmn (t) , (2.1)

where aq,mn are target complex gains, τ qmn,k are time delays, µqmn,k are Doppler

shifts, and wmn (t) is circularly symmetric, zero-mean, complex Gaussian with

autocorrelation function σ2
wδ (t). The normalization by

√
M ensures that the total

transmitted power is independent of the number of emitters. Specifically, aq,mn is

the target complex gain associated with the path beginning at the m-th transmit

13



element, passing through the target q, and ending at the n-th receive element. The

propagation time delay associated with state k, transmitter m, receiver n, target q,

and location vector pqk = (xqk, y
q
k) is given by

τ qmn,k =
1

c

√
(xtm − xqk)2 + (ytm − yqk)2 +

1

c

√
(xrn − xqk)2 + (yrn − yqk)2, (2.2)

where (xtm, ytm) denote the coordinates of the m-th transmitting radar and (xrn, yrn)

the coordinates of the n-th receiving radar, respectively, and c is the speed of light.

The Doppler shift estimate of a signal transmitted on the mn-th path at state k is

given by

µqmn,k =
fc
c

[
(xqk − xtm)ẋqk + (yqk − ytm)ẏqk√

(xtm − xqk)2 + (ytm − yqk)2

]
+
fc
c

[
(xqk − xrn)ẋqk + (yqk − yrn)ẏqk√

(xrn − xqk)2 + (yrn − yqk)2

]
.

(2.3)

The term ẋqk represents the q-th target velocity along the x-axis and ẏqk for the q-th

target velocity along the y-axis, at state k.

Let rmn,kp (t) = rmn,k (t) , for (p − 1)Tr ≤ t ≤ pTr and p = 1, ..., P. Analysis

in the frequency domain is more convenient than in the time domain because in the

frequency domain, the time delays appear in the argument of the complex exponential

function. To make use of properties of the Fourier transform, we convert the time

domain measurements to the frequency domain. The `-th Fourier coefficient of the

observed signal at the mn-th path at state k is given by:

r̃mn,k(`, p) =
1√
Tr

∫ Tr

0

rmn,kp (t) e−j2π`t/Trdt. (2.4)

Using previously defined quantities, it is not difficult to show that the frequency

representation of the received signal is

r̃mn,k(`, p) =
1√
M

Q∑
q=1

aq,mne
−j2πlpej2πµ

q
mn,kpTr × e−j2πlτ

q
mn,k/Tr + w̃mn(`, p), (2.5)

for ` = 1, ..., L and p = 1, ..., P. In (2.5), w̃mn(`, p) is the Fourier coefficient of wmn (t)

in (2.1). Note that E
[
|w̃mn(`, p)|2

]
= σ2

w. For later use, define the MNLP×1 received
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vector at state k,

r̃k =
[
r̃T11,k, ..., r̃

T
MN,k

]T
(2.6)

where r̃mn,k = [r̃mn,k(1, 1), ..., r̃mn,k(L, P )]T .

Having formulated the signal model (2.5), we proceed now to define the system

state model. To this end, define the 4× 1 state vector xk,

xk = [xk, yk, ẋk, ẏk] . (2.7)

If there are multiple targets, then the dimension of xk would be 4Q× 1. We continue

to write the model for single target. Extension to Q targets is straight forward. The

kinematic model is given by

xk+1 = Fxk + vk, (2.8)

where F is the transition matrix

F =



1 0 PTr 0

0 1 0 PTr

0 0 1 0

0 0 0 1


, (2.9)

and vk is modeled as white Gaussian process noise with covariance matrix:

Qv =



1
3
(PTr)

3 0 1
2
(PTr)

2 0

0 1
3
(PTr)

3 0 1
2
(PTr)

2

1
2
(PTr)

2 0 PTr 0

0 1
2
(PTr)

2 0 PTr


. (2.10)

The observation model is a non-linear function of the vector of state model:

yk = Hkxk + wk, (2.11)
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where Hk = [∇xk
d (xk)]xk=x̂k

is the linearization matrix that transforms the state

vector into the observations vector, yk is a suitably defined observations vector, d (·)

captures the non-linear relation between the observations yk and the state xk, and

wk is complex-valued, additive Gaussian noise process with covariance matrix R.

The extended Kalman filter addresses the problem of estimating state xk

of a discrete-time controlled process described by the kinematic model (2.8) and

observation model (2.11). The following quantities are defined for later use: the

filtered estimated state vector x̂k|k, the predicted state vector x̂k|k−1, and the

associated covariance matrices Pk|k and Pk|k−1, respectively. Specific expressions

for the computation of these quantities as part of a Kalman filter are given in the

next section.

2.3 Multiple Target Tracking

In this section, two tracking algorithms are proposed, both based on the extended

Kalman filter.

2.3.1 Indirect Tracking

Indirect techniques require a preliminary stage where TOAs and Doppler frequencies

are first estimated at the receiving radars, and then transmitted to the fusion center,

where localization is subsequently estimated by multilateration. This estimation

approach incorporates at state k an intermediate step of estimating the unknown delay

and velocity associated with each path and target. For m = 1, ...,M , n = 1, ..., N

and q = 1, ..., Q, the delay estimates are given by,

τ̂ qmn,k = arg max
τqmn,k

∣∣∣∣∣
L∑
`=1

P∑
p=1

r̃mn,k(`, p)e
j2πlτqmn,k/Tr

∣∣∣∣∣ . (2.12)
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Similarly, the Doppler shift estimates for the mn-path of target q at state k is given

by:

µ̂qmn,k = arg max
µqmn,k

∣∣∣∣∣
L∑
`=1

P∑
p=1

r̃mn,k(`, p)e
−j2πµqmn,kpTr

∣∣∣∣∣ . (2.13)

The 4 × 1 state vector for target q is xqk = [xqk, y
q
k, ẋ

q
k, ẏ

q
k] , and the associated 4 × 4

covariance matrices are Pq
k|k. The transition matrix for each target is F as given in

(2.9). The observation vector for indirect tracking with dimension 2MN×1 is defined

as:

yqk =
[
τ̂ q11,k, µ̂

q
11,k, ..., τ̂

q
MN,k, µ̂

q
MN,k

]
. (2.14)

For indirect tracking, the 2MN × 4 linearized matrix Hq
k in the observation model

(2.11) is defined as:

Hq
k = [∇xk

d (xk)]xk=x̂q
k
. (2.15)

Elements of matrices Hq
k are found from the derivative of the expressions in equations

(2.2) and (2.3) with respect to the state vector in (2.8).

To fully characterize the observation model for the indirect tracker, we need to

define the 2MN × 2MN measurement covariance matrix R. For the indirect tracker,

for which the observation (3.9) consists of delays and Doppler shift estimates, the

measurement covariance matrix R contains the estimation errors of the delays and

Doppler shifts. The matrix R serves as an input to the tracker, and thus has to be

derived extraneous to the tracker. In this work, we populate R with values of the

CRB for delay and Doppler shift estimation. Based on [39], it is not difficult to show

that for the signal model (2.6), the MN ×MN Fisher information matrix for delay

estimation is given by

Jτ =
8π2P 2B2

σ2
w

diag
(
|aq,11|2, ..., |aq,MN |2

)
, (2.16)
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and the MN ×MN Fisher information matrix for Doppler shift estimation is given

by

Jµ =
8π2T 2

CPI

σ2
w

diag
(
|aq,11|2, ..., |aq,MN |2

)
. (2.17)

From (2.55) and (2.56), the measurement covariance matrix R is defined for targets

q = 1, 2

Rq = diag(Jτ ,Jµ). (2.18)

For later use in the the tracking algorithm, we define the 2MN × 2MN innovation

matrix Kq
k and the 4 × 2MN Kalman gain matrix Gq

k. Both matrices are used in

computations of the filtered estimated state vector x̂k|k and the associated covariance

matrix Pk|k.

Data association techniques utilize a cost function, which is used to base

the assignment of observations to tracks. The cost function is the equation

which measures how likely new information is to belong to old information.

In this work, we apply nearest neighbor assignment. Given the 2MN × 1

observation vectors y1
k,y

2
k according to (3.9), the nearest neighbor cost function

is
[
yuk −Hv

kx̂
v
k|k−1

]H
Kv
k

[
yuk −Hv

kx̂
v
k|k−1

]
for u, v = 1, 2, and where the various

quantities (other than the observations) are evaluated as part of the tracking

algorithm, as detailed below. The details of the indirect tracking algorithm for a

two targets scenario are listed in Table 1 below.

18



Table 1 Indirect Tracking Algorithm for Two Targets

Input: Measurements y1
k, y2

k; R1, R2 from (3.10); P1
0|0 =

[
H1

0(R
1)−1(H2

0)
T
]−1

,

P2
0|0 =

[
H2

0(R
2)−1(H2

0)
T
]−1

1: Initialization: Compute by multilateration x̂1
0|0 based on y1

0 and x̂2
0|0 based on y2

0

2: At time k:

x̂qk|k−1 = Fx̂qk−1|k−1 (2.19)

Pq
k|k−1 = FPq

k−1|k−1F
T + Qv (2.20)

Kq
k = Hq

kP
q
k|k−1(H

q
k)
T + Rq (2.21)

Gq
k = Pq

k|k−1(H
q
k)
T (Kq

k)
−1 (2.22)

Nearest neighbor track association: compute[
yuk −Hv

kx̂
v
k|k−1

]T
Kv
k

[
yuk −Hv

kx̂
v
k|k−1

]
for u, v = 1, 2 and associate measurement

to track based on smaller distance

Output:

x̂qk|k = x̂qk|k−1 + Gq
k

(
yqk −Hq

kx̂
q
k|k−1

)
(2.23)

Pq
k|k = Pq

k|k−1 + Gq
kK

q
k(G

q
k)
T (2.24)

2.3.2 Direct Tracking

In the direct tracking approach, observations collected by the sensors are sent to the

fusion center, where they are jointly processed to produce localization information and

tracks without an intermediate step of estimating the unknown delay and velocity

associated with each path and target. In the direct tracking problem, the 4Q × 1
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compound-target state vector xk of Q targets is defined as:

xk =
[
(x1

k)
T , ..., (xQk )T

]T
. (2.25)

The transition matrix F is a 4Q × 4Q block matrix with diagonal blocks given by

(2.9), and the 4Q×4Q process noise covariance matrix Qv is a block diagonal matrix

with diagonal blocks given by (2.10). The 4Q × 4Q covariance matrix at state k is

defined as:

Pk|k = E
[
(xk − x̂k)(xk − x̂k)

T
]
. (2.26)

The MNLP × 1 observation vector is defined by,

yk = r̃k, (2.27)

where r̃k is given in (2.6). The MNLP × 4Q measurement matrix Hk for direct

tracking is obtained from the relation

Hk = [∇xk
d (xk)]xk=x̂k

.

Elements of matrices Hk are found from the derivative of the expressions in (2.5)

with respect to the compound state vector in (2.50). The estimation error covariance

matrix of the noise for direct measurements of received signal with dimension

MNLP × MNLP is R = σ2
wI4Q×4Q. For later use in the tracking algorithm, we

define the MNLP ×MNLP innovation matrix Kk and the 4Q ×MNLP Kalman

gain matrix Gk.

The algorithm is initialized with the state estimate of the Q targets. The 4Q×1

state estimate vector x0|0 of Q targets at initialization is given by,

x̂0|0 = maximize
x0

∣∣∣∣∣
M∑
m=1

N∑
n=1

L∑
`=1

P∑
p=1

[yk]m,n,l,p e
j2πlτqmn,k(x0)/Tre−j2πµ

q
mn,k(x0)pTr

∣∣∣∣∣ , (2.28)
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where [yk]m,n,l,p is the mnlp-component of vector yk.The details of the direct tracking

algorithm for a two targets scenario are listed in Table 2 below.

Table 2 Direct Tracking Algorithm for Two Targets

Input: Measurements yk ; R = σ2
wI4Q×4Q; P0|0 =

[
H0R

−1(H0)
T
]−1

1: Initialization: Compute x̂0|0 from (2.28) and (2.50)

2: At time k :

x̂k|k−1 = Fx̂k−1|k−1 (2.29)

Pk|k−1 = FPk−1|k−1F
T + Q (2.30)

Kk = HkPk|k−1H
T
k + Rk (2.31)

Gk = Pk|k−1H
T
kK−1k (2.32)

x̂k|k = x̂k|k−1 + Gk

[
yk −Hkx̂k|k−1

]
(2.33)

Pk|k = Pk|k−1 + GkKkG
T
k (2.34)

Output: x̂k|k,Pk|k. There is no data association problem for this tracking algorithm.

2.4 Bayesian Cramer-Rao Bound (BCRB) for Target Tracking

In this section, we derive BCRBs for indirect and direct tracking given the state model

formulated in the previous section. The BCRB for an unknown vector parameter x

estimated from an observation vector y is defined as the inverse of the Bayesian

information matrix (BIM) J−1B (x) [40], where the BIM is defined

JB(x) = Ey,x

[
− ∂2

∂x∂xT
log py,x(y,x)

]
. (2.35)

The BCRB is a lower bound in the following sense,

Ex,y

(
[x̂(y)− x][x̂(y)− x]T

)
≥ J−1B (x), (2.36)
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where the inequality means that the difference between the left- and right-hand sides

is a positive semi-definite matrix. We note for later use that the Fisher information

matrix is defined

J(x) = Ey|x

[
− ∂2

∂x∂xT
log py|x(y|x)

]
. (2.37)

The BCRBs of the individual components of the unknown vector parameter x =

[x, y, ẋ, ẏ] are obtained from diagonal terms of the inverse BIM J−1B (x) denoted as[
J−1B (x)

]
ii
, i = 1, ..., 4.

2.4.1 Direct Tracking for Single Target

In the direct tracking approach, observations collected by the sensors are sent to a

fusion center, where they are jointly processed to produce localization information and

tracks without the intermediate step of estimating the unknown delay and velocity

associated with each path and target. In the direct tracking for single target problem,

the 4× 1 compound-target state vector xk is defined in (2.8). The transition matrix

F is a 4× 4 matrix given by (2.9), and the 4× 4 process noise covariance matrix Qv

is given by (2.10). The MNLP × 1 observation vector is given by,

yk = r̃k, (2.38)

where r̃k is given in (2.6). The MNLP×4 measurement matrix Hk for direct tracking

is obtained from the relation

Hk = [∇xk
d (xk)]xk=x̂k

.

Elements of matrices Hk are found from the derivative of the expressions in (2.5) with

respect to the state vector in (2.8). It can be shown that:

Hk =
∂yk
∂xk

=

[
H1 H2 H3 H4

]
MNLP×4

, (2.39)
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where

[H1]m,n,l,p =

[
j2πpTr

fc
c

sin θm − j2πf`
1

c
(cos θm + cosφn)

]
r̃mn,k(`, p), (2.40)

[H2]m,n,l,p =

[
j2πpTr

fc
c

sinφn − j2πf`
1

c
(sin θm + sinφn)

]
r̃mn,k(`, p), (2.41)

[H3]m,n,l,p = j2πpTr
fc
c

[
sin2 θmẋk−sin(θm) cos(θm)ẏk√

(xtm−xk)2+(ytm−yk)2
+ sin2 φnẋk−sin(φn) cos(φn)ẏk√

(xrn−xk)2+(yrn−yk)2

]
r̃mn,k(`, p),

(2.42)

[H4]m,n,l,p = j2πpTr
fc
c

[
sin2 φnẋk−sin(φn) cos(φn)ẏk√

(xtm−xk)2+(ytm−yk)2
+ − sin(φn) cos(φn)ẋk+cos2 φnẏk√

(xrn−xk)2+(yrn−yk)2

]
r̃mn,k(`, p).

(2.43)

Here the indexes are m = 1, ...,M, n = 1, .., N, ` = 1, ..., L, p = 1, ..., P . θm is the

bearing angle of the target at transmitting sensor m and φn is the bearing angle of

the target at receiving radar n measured with respect to the x−axis. In mathematical

form, θm = tan−1
(
yk−ytm
xk−xtm

)
and φn = tan−1

(
yk−yrn
xk−xrn

)
.

The MNLP ×MNLP covariance matrix R of the noise in the observations

model is R = σ2
wI4. The evaluation of BCRB JB(xk) in (2.35) may be carried out

recursively [41],

JB(xk) = D22
k −D21

k

[
JB(xk−1)+D11

k

]−1
D12
k , (2.44)

where

D11
k = FTQ−1v F, (2.45)

D12
k = −FTQ−1v =

[
D21
k

]T
, (2.46)

and

D22
k = Q−1v + J(xk). (2.47)
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In the above equations, J(xk) is the standard Fisher information matrix, which may

be expressed as [21],

J(xk) = HT
kR−1Hk. (2.48)

Combining (23)-(26) and substituting in (22), the BIM recursion is then given by

JB(xk) = [Qv + FJB(xk−1)F
T ]−1 + HT

kR−1Hk. (2.49)

The recursion is initialized according to

JB(x0) = Q−1v + (H0)
T (R)−1H0, where H0 is the linearization matrix (16) taken

values at CPI k = 0.

2.4.2 Direct Tracking for Multiple Targets

In the direct tracking problem, the 4Q × 1 compound-target state vector xk of Q

targets is defined as:

xk =
[
(x1

k)
T , ..., (xQk )T

]T
. (2.50)

The transition matrix F is a 4Q × 4Q block matrix with diagonal blocks given by

(2.9), and the 4Q×4Q process noise covariance matrix Qv is a block diagonal matrix

with diagonal blocks given by (2.10). The observation noise covariance matrix for

Q targets is given by R = σ2
wI4Q×4Q. Elements of matrices Hk are found from the

derivative of the expressions in (2.5) with respect to the state vector in (2.50).

The evaluation of BCRB JB(xk) is carried out recursively using (2.49) with all

the parameters for multiple targets are obtained from the same parameters for single

target as outlined above.

2.4.3 Indirect Tracking for Single Target

Indirect techniques require a preliminary stage where time of arrivals (TOAs) and

Doppler frequencies are first estimated at the receiving radars, and then transmitted
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to the fusion center, where localization is subsequently estimated by multi-lateration.

This estimation approach incorporates at CPI k an intermediate step of estimating the

unknown delay and velocity associated with each path and target. For m = 1, ...,M ,

n = 1, ..., N and q = 1, ..., Q, the delay estimates are given by,

τ̂ qmn,k = arg max
τqmn,k

∣∣∣∣∣
L∑
`=1

P∑
p=1

r̃mn,k(`, p)e
j2πlτqmn,k/Tr

∣∣∣∣∣ . (2.51)

Similarly, the Doppler shift estimates for the mn-path of target q at state k are given

by:

µ̂qmn,k = arg max
µqmn,k

∣∣∣∣∣
L∑
`=1

P∑
p=1

r̃mn,k(`, p)e
−j2πµqmn,kpTr

∣∣∣∣∣ . (2.52)

The 4 × 1 state vector for target q is xqk = [xqk, y
q
k, ẋ

q
k, ẏ

q
k] . The transition matrix for

each target is F as given in (2.9). The observation vector for indirect tracking has

dimension 2MN × 1 and is defined:

yqk =
[
τ̂ q11,k, µ̂

q
11,k, ..., τ̂

q
MN,k, µ̂

q
MN,k

]
. (2.53)

For indirect tracking, the 2MN × 4 linearized matrix Hq
k in the observation model

(2.11) is defined as:

Hq
k = [∇xk

d (xk)]xk=x̂q
k
. (2.54)

Elements of matrices Hq
k are found from the derivative of the expressions in (2.2) and

(2.3) with respect to the state vector in (7).

To fully characterize the observation model for the indirect tracker, we need to

define the 2MN × 2MN observation covariance matrix R. For the indirect tracker,

for which the observation (3.9) consists of delays and Doppler shift estimates, the

measurement covariance matrix R contains the estimation errors of the delays and

Doppler shifts. The matrix R serves as an input to the tracker, and thus has to be

derived extraneous to the tracker. In this work, we populate R with values of the
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CRB for delay and Doppler shift estimation. Based on [39], it is not difficult to show

that for the signal model (2.5), the MN ×MN Fisher information matrix for delay

estimation is given by

Jτ =
8π2P 2B2

σ2
w

diag
(
|aq,11|2, ..., |aq,MN |2

)
, (2.55)

and the MN ×MN Fisher information matrix for Doppler shift estimation is given

by

Jµ =
8π2T 2

CPI

σ2
w

diag
(
|aq,11|2, ..., |aq,MN |2

)
. (2.56)

From (2.55) and (2.56), the measurement covariance matrix R for targets q is given

by

Rq = diag(Jτ ,Jµ). (2.57)

The evaluation of JB(xk) may be carried out recursively [41], under some

conditions met by our model, such as independent process and measurement noise.

For the indirect tracker, it is shown in [21] that the recursive BCRB is of the form

JB(xqk) =
[
Qv + FJB(xqk−1)F

T
]−1

+ J(xqk). (2.58)

where J(xk) is the standard Fisher information matrix, defined in (2.37). The FIM

J(xk) is derived using the chain rule

J(xqk) = (Hq
k)
T (Rq)−1Hq

k. (2.59)

Putting it all together, the BIM recursion for the indirect tracker is expressed,

JB(xqk) =
[
Qv + FJB(xqk−1)F

T
]−1

+ (Hq
k)
T (Rq)−1Hq

k. (2.60)

The recursion is initialized as JB(xq0) = Q−1v + (Hq
0)
T (Rq)−1Hq

0, where Hq
0 is the

linearization matrix (2.54) taken values at CPI k = 0. Next, a numerical analysis of
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the BCRBs is provided, leading to a better understanding of the tracking performance

in MIMO radar systems.

2.5 Numerical Examples

In this section, numerical examples are presented to illustrate the performance of the

proposed trackers. We assess the performance of the indirect and direct trackers by

means of a normalized localization error. Defining the range resolution in terms of

the speed of light c and bandwidth B, r = c/2B, and using it as a normalization

factor, we define the normalized root-mean-square error for target q at state k as:

rMSEq
k =

1

rZ

Z∑
z=1

√
[(x̂qk,z − x

q
k,z)

2 + (ŷqk,z − y
q
k,z)

2], (2.61)

where Z is the the number of Monte Carlo experiments, (x̂qk,z, ŷ
q
k,z) is the q-target’s

location estimate of the state model (xqk,z, y
q
k,z) for the z-th repetition.

The BCRBs in this case are the lower bounds on the normalized localization

error and can be defined as:

BCRBq
k =

1

rZ

Z∑
z=1

√[
J−1B (xqk)

]
11

+
[
J−1B (xqk)

]
22
, (2.62)

where JB(xqk) for indirect tracking is given in (2.60). For direct tracking the BCRB

for target q at state k, JB(xqk), is the q-th diagonal block, for q = 1, 2, .., Q, of the

expression JB(xk) as given in (2.49).

Assume the transmitted pulse is a rectangular pulse of duration Tp = 100 ns,

pulse repetition interval Tr = 100Tp, P = 10, and L = 100. The target gains aq,mn, for

q = 1, 2, .., Q, m = 1, 2, ..,M, n = 1, 2, .., N , were modelled as independent, complex

Gaussian random variables with E[|aq,mn|2] = 1. Monte Carlo simulations were run

over different instantiations of targets gains and noise. The average SNR was assumed

SNR = 1/σ2
w = 10 dB. For the numerical results presented below, the setup consisted

of a 2× 3 MIMO radar system and two targets as illustrated in Figure 2.1.
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Figure 2.1 Setup used for the simulations: a 2× 3 MIMO radar system and two

targets.
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Figure 2.2 Normalized localization error as function of time for tracking one and

two targets with indirect and direct tracking.

Figure 2.2 shows the normalized location root-mean-square-error as defined in

(2.61) as a function of time, for indirect and direct tracking of single and two targets.

It is observed that direct tracking provides better performance at low SNRs for a

single target and at all SNRs for multiple targets.

Figure 2.3 shows the performance of the trackers for single and two targets as

obtained from simulations and BCRBs. The BCRB for indirect tracking is given in

(2.60) and the BCRB for direct tracking is given in (2.49). BCRBs are averaged over

the target gains and are plotted as a function of time using (2.62), for indirect and

direct tracking of single and two targets. It is shown in Figure 2.2 that, the extended

Kalman filter achieves the BCRB asymptotically, hence the trackers for both direct

and indirect cases perform efficiently [39].
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Figure 2.3 Normalized localization error BCRBs as function of time for tracking

target(s) with indirect and direct tracking.
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Figure 2.4 Normalized localization error as a function of time for tracking two

crossing targets.

Figure 2.4 shows the normalized location root-mean-square-error as defined in

(2.61) as a function of time when the two targets are crossing. The BCRB for direct

tracking is given in (2.49). It is observed that as the distance between the two targets

is becoming smaller, there is an increase in the mean square error. The normalized

MSE is reduced when the targets are further separated.

Kalman filter provides the best minimum MSE linear estimator and the

extended Kalman filter provides an estimate that is a solution to the unconstrained

l2 minimization problem. In principle, a sparse vector can be recovered from the

least number of elements by solving the non-convex combinatorial l0-norm problem.

This constrained optimization problem can be solved in the framework of extended

Kalman filtering with additional step using Orthogonal Matching Pursuit (OMP).

OMP algorithm try to find the Q non-zero values one at a time and repeats until all Q

elements are chosen. Figure 2.5 shows the normalized location root-mean-square-error

as defined in (2.61) as a function of time with sparse framework. The BCRB for
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Figure 2.5 Normalized localization error as a function of time for tracking two

targets with sparse framework .

direct tracking is given in (2.49). It is observed direct tracking with OMP algorithm

improves the performance over regular direct tracking.

2.6 Concluding Remarks

In this chapter we proposed a new approach to solve the multiple moving target

tracking problem in MIMO radar systems. Based on this study, two tracking schemes

are proposed. The first is an indirect tracking approach, based on time delay and

velocity estimates and implicit nearest-neighbor data association at the fusion center.

The second is a direct scheme, based on radar observations tracking and the data

association of multiple targets is implicit. The later eliminates intermediate estimated

parameters and tracks the moving targets with higher accuracy. Numerical results
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show that for multiple targets, direct tracking algorithm outperforms indirect tracking

at all SNR values.
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CHAPTER 3

EFFECT OF PHASE NOISE ON STAP BY SENSORS WITH

INDEPENDENT OSCILLATORS

3.1 Introduction

Radars on multiple distributed airborne or ground based moving platforms are of

increasing interest, since they can be deployed in close proximity to the event under

investigation and thus offer remarkable sensing opportunities [1]. For example,

unmanned aerial vehicles (UAVs) based radars play a significant role in disaster

relief efforts by quickly flying to the impacted area and providing the most accurate

and updated information [2]. In urban sensing environments, potential targets may

be obscured by buildings and other man-made structures; with sensors on moving

platforms, the subject area can be probed from more favorable positions to yield

enhanced detectability [3]. Other applications of radar on moving platforms for

military and civilian sensing operations can be found in, e.g., [4], [5], [6].

In ground moving target indicator (GMTI), of interest is to determine the

presence of targets and their ranges, azimuth angles, and Doppler shifts. Space-time

adaptive processing (STAP) enables GMTI radars to perform moving target detection

in the presence of ground clutter. STAP implemented with antenna arrays has

been a classical approach to clutter cancellation in airborne radar [22, 23]. The

proliferation of airborne, inexpensive radio frequency sensors raises interest in

distributed implementation of radar systems. In this work, we consider certain aspects

of a distributed implementation of STAP.

The power spectral density (PSD) of an ideal sinusoidal carrier observed over

t → ∞ is an impulse at f0. However, practical oscillators have amplitude and phase

deviations from the ideal oscillator that cause spreading of the spectrum. The phase
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deviation of a practical oscillator from the nominal phase 2πf0t, where f0 is the carrier

frequency is known as phase noise. The study of phase noise has started more than

50 years ago, as reviewed in a recent retrospective [24]. As explained in [24], diverse

applications of oscillators led to a variety of analysis approaches. The lack of a unified

approach and the difficulty of the topic resulted in a large number of publications,

including in the IEEE Proceedings (for example [25, 26, 27, 28], to name a few).

Efforts to consolidate and standardize terms yielded an IEEE standard [29] and a

National Institute of Standards publication [30].

The characterization and the effects of phase noise on performance have been

topics of interest also to the radar community. Phase deviations accumulate over time,

hence the effect of phase noise becomes more pronounced over longer observation

times. It is not surprising then that a significant body of literature addresses the

effect of phase noise on synthetic aperture radar (SAR) [31]-[32]. SAR integration

times are long and phase noise may have great effect on performance. Although

the observation time is not quite as long as in SAR, Doppler processing may also

be affected by phase noise, with publications spanning many years from [33] to [34].

In contrast, literature on the effect of phase noise on antenna arrays is difficult to

come by for the simple reason that spatial processing relies on differential phase

measurements between array elements. When the same oscillator drives all elements,

phase noise effects are canceled. However, in a distributed application, different

sensors are driven by different oscillators. Different oscillators develop different phase

noise characteristics as a function of time, making the array subject to the effect

of phase noise errors. Thus, at a given sensor, the phase noise associated with

the sensor’s oscillator affects Doppler processing, whereas the phase noise between

oscillators at different sensors affects spatial processing.

Besides phase noise, a distributed STAP system it is also subject to other

impairments such as frequency offset, non-uniform motion characteristics of individual
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sensors, non-uniform and potentially large spacing between array elements, and

sensors locations uncertainties, to name a few. Frequency offsets inevitably arise even

when all sensors are instructed to tune to the same frequency. Whereas a Doppler

shift is caused by relative motion, a carrier frequency offset is caused by the carrier

frequency mismatch between transmitter and receiver. A distributed STAP system

with is subject to errors from carrier frequency offsets (CFO). In [35], the authors

investigate the effect of CFO on Doppler centroid estimation in Synthetic Aperture

Radar (SAR) and on Direction-Of-Arrival (DOA) estimation in array processing. To

the best of our knowledge, there is no past work done on effect of frequency offset for

distributed STAP system.

In addition to frequency offset due to different transmitters and receivers, in a

distributed system, different sensors move autonomously, and thus, may have different

velocities and direction of motion. This, in turn, leads to Doppler characteristics that

vary among sensors. As a result, space-time steering vectors may not be expressed

simply by a Kronecker product, as in traditional STAP. In this work, we analyze

the generalized motion of target and sensors in a multistatic setup and highlight

the effects of platform motion on the clutter problem. Further, classical STAP is

typically implemented with uniform linear arrays (ULA), half-wavelength spacing. A

distributed implementation leads to non-uniform and potentially much larger spacings

between the array elements. Finally, a rigid implementation on a single platform

enables to accurately measure the locations of the array’s elements. In a distributed

implementation, sensors relative locations vary over time, and any sensor localization

method (e.g., GPS) is subject to errors. Relevant to analysis of the effect of element

errors in a distributed array, is the analysis of the effect of element errors in arrays

with colocated elements [36]). In [37], Flanagan achieved array self-calibration with

large sensor position errors. Other papers, for example [38], derived the Cramer-

Rao lower bounds of the DOA estimation and array calibration precisions in the
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case of determined and unknown signals based on the assumptions of small array

perturbations.

In this chapter, we study the effect of phase noise and other impairments on

STAP with distributed antenna arrays. We envision a STAP application, in which

spatial and Doppler processing are performed over a coherent processing interval.

Specific contributions are: (1) demonstrate that a power law phase noise PSD model

is suitable for analyzing the distributed radar system, (2) propose a simplified time-

domain model for the phase noise, (3) develop analytical expressions that quantify

the effect of phase noise on the array beampattern as a function of time, (4) propose

a generalized motion model for distributed STAP system, (5) demonstrate the effect

of phase noise and other impairments on target detection by numerical examples of

receiver operating characteristics (ROC). The chapter is organized as follows: the

signal model is formulated in Section II, phase noise modelling is presented in Section

III, effect of phase noise on STAP is analyzed in Section IV, and performance of

distributed STAP is presented in Section V.

3.2 Signal Model

Consider a distributed radar system in which relatively simple sensors on multiple

platforms send observations to a fusion center, where most of the baseband processing

is performed. The platforms are assumed to move independently with different

velocities and directions, but for simplicity of presentation it is assumed that the

observation time of interest, the sensors form a linear array. The spacing between

the elements of the array may be non-uniform and arbitrary. The distributed sensors

are further assumed to be time-synchronized (e.g., with the help of GPS), but not

phase synchronized. Let the number of distributed sensors that form the array be Ns.

The envisioned application is a STAP system, in which the Ns sensors collect echoes

resulting from the transmission of a finite train of Np coherent pulses. The pulses are
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emitted by a single transmitter and feature a Tr pulse repetition interval (PRI). The

coherent processing interval (CPI) is then T
CPI

= NpTr. The radar operating carrier

wavelength is λ, and the wave number is defined k0 = 2π/λ. The sensor positions are

assumed to be given by the sequence (z1, z2, ..., zNs) expressed in units of wavelength.

The length of the array aperture is Z = |zn − z1|.

Let u = sin θ denote the spatial frequency associated with the azimuth angle

θ measured with respect to the normal to the array. The Ns × 1 spatial steering

vector b(u) represents the noise-free signal received at the array elements from a unit

amplitude target at spatial frequency u, and is given by

b(u) =
1√
Ns

[ejk0z1u ejk0z2u . . . ejk0zNsu]T . (3.1)

Applying the vector b∗(u) steers the array to spatial frequency u, hence b(u) is known

as a steering vector. The spatial array factor is defined

b0(u) = bH(u′ − u)b(u′)

=
1

Ns

Ns∑
n=1

ejk0znu. (3.2)

The beampattern is defined as the magnitude of the array factor. The main lobe of

the beampattern is the region |u| ≤ 1/Z, while the sidelobe region is |u| > 1/Z.

Since sensors move independently, the Doppler shift due to the sensor-target

motion is sensor-dependent. Figure 3.1 shows the parameters associated with the

motion of the target and one of the sensors. Since the Doppler shift depends only on

the sensor’s velocity and direction, and not on its location, the shows the axes origin

arbitrarily located at the sensor. The horizontal axis is colinear with the array. Let

vS and γS be the sensor’s velocity and direction of motion, and vT and γT be the

target’s likewise parameters. Let vS and vT be the respective velocity vectors. The

target motion relative to the sensor is then vST = vS − vT . The magnitude of vST ,
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Figure 3.1 Generalized motion for distributed STAP architecture.

vST is given by the law of cosines

vST =
√
v2S + v2T − 2vSvT cos(γS − γT ). (3.3)

and angle of vST , γST is given by the law of sines

γST = 180o + γT − arcsin

(
vS
vT

sin (γS − γT )

)
. (3.4)

It is not difficult to show that the radial velocity between the target and the sensor

is given by

v = vST sin (γST + θ) (3.5)

Given a radial velocity v, and letting f = v/λ be the normalized frequency, the

steering vector formed by time samples has elements with phase function of frequency:

d(f) =
[
1, ej2πfTr , ..., ej2π(Np−1)fTr

]T
(3.6)
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Applying the vector d∗(f) steers the time samples to frequency f. The Doppler array

factor is defined

d(f) = dH(f ′ − f)d(f ′)

=
1

Np

Np∑
m=1

ej2π(m−1)fTr . (3.7)

When elements of the array move independently, the temporal steering vector

depends on the motion of the sensor, hence the sensor index n, 1 ≤ n ≤ Ns is added

to the notation in (3.7). Let N = NsNp, then the N × 1 space-time steering vector

with spatial frequency u and frequency parameters f1 = v1/λ, ..., fNs = vNs/λ is given

by

a(u, f) =
1√
N

[
dT (f1)e

jk0z1u, ...,dT (fNs)e
jk0zNsu

]T
(3.8)

where the argument f denotes the frequencies f1, ..., fNs and the normalization ensures

that aH(u, f)a(u, f) = 1. This model of steering vectors implies that while the array

is distributed and sensor move independently, targets provide a coherent response

across the array from which angle of arrival information may be developed.

After match filtering and sampling, the N × 1 complex vector received at the

array from a target at spatial frequency u, Doppler f and complex gain x, and in the

presence of clutter ec and thermal noise ew, is expressed

y = xa(u, f) + ec + ew. (3.9)

Both ec and ew are assumed zero mean and Gaussian vectors. It is common to

treat the ground clutter and thermal noise as uncorrelated. The N ×N interference

covariance matrix R is then given by

R = E
[
(ec + ew)(ec + ew)H

]
= Rc + Rw. (3.10)
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Here Rw is the covariance matrix of the thermal noise given by Rw = σ2I where σ2

is the power of thermal noise. A typical model for the clutter covariance matrix Rc

[2] is

Rc =

∫ 1

−1
s(u)a (u, βu) aH (u, βu) du (3.11)

where s is the power of the clutter scatterer at spatial frequency u with the normalized

Doppler frequency fTr = βu, β = 4vSTr/λ. For high pulse repetition radar for which

there is no Doppler aliasing, β = 1 [22].

The operation of the array is subject to phase errors stemming from sensors

driven by independent oscillators. Even assuming perfect calibration at some time

instant, phase errors between the sensors develop over time due to the different phase

noise contributed by each oscillator. Phase noise is the phase deviation φ (t) of a

practical oscillator from the nominal phase 2πf0t, where f0 is the carrier frequency.

The cumulative effect of the phase noise increases as a function time. In the envisioned

STAP setting, the time interval of interest is the CPI time, T
CPI

defined previously.

To incorporate phase noise in our model (3.9), let the diagonal matrix of phase noise

processes

D = diag[ejφ1(t), . . . , ejφNs (t)], (3.12)

where φn (t) is the phase noise process at the n-th sensor. With phase noise, the

signal model becomes

y = xDa(u,v) + e. (3.13)

In the STAP system, the time instants of interest are the sampling times for Doppler

processing (slow time) associated with a specific range.

In the next section, we will discuss phase noise model and present some examples

of typical oscillators.
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3.3 Phase Noise Model

Phase noise of oscillators is modeled as a stochastic process that may be characterized

in the time or frequency domains. Time-domain models are suitable for analysis of

timing jitter [42, 43, 29], whereas frequency domain models are often used for analysis

of short term stability [44, 28, 29]. Next, we review frequency domain characterization

of phase noise, present two specific example oscillators, and develop a simple time-

domain model suitable for the two oscillators over an observation time of interest.

3.3.1 Frequency-Domain Characterization of Phase Noise

The output of a practical oscillator may be expressed

V (t) = V0e
j(2πf0t+φ(t)), (3.14)

where f0 is the carrier frequency and φ(t) is phase noise. The power spectral density

(PSD) of an ideal sinusoidal carrier observed over a time interval t → ∞ is an

impulse at f0. The PSD of V (t) differs from an impulse function, and thus contains

information on the effect of phase noise. For the application of interest in this paper,

it is reasonable to assume (as illustrated by example later on) that the phase noise

meets a small angle approximation, meaning that over the time observation of interest,

|φ(t)| << 1, from which it follows that ejφ(t) ≈ 1 + jφ(t).

It is common for oscillators to be characterized in terms of the PSD of φ(t) rather

than the PSD of ejφ(t); hence it is important to elucidate the relation between the

two PSDs. Accounting for the small angle approximation, the time autocorrelation

of the oscillator output is

RV (τ) = E[V (t)V ∗(t− τ)] = V 2
0 E[(1 + jφ(t))(1− jφ(t− τ))]. (3.15)

If the phase noise process is zero-mean,

RV (τ) = V 2
0 (1 +Rφ(τ)), (3.16)
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where Rφ(τ) = E[φ(t)φ(t− τ)]. Assuming wide sense stationarity (WSS), the Fourier

transform may be applied to obtain,

SV (f0 + f) = V 2
0 (δ (f − f0) + Sφ(f)) (3.17)

where SV (f0 + f) is the PSD of the oscillator output and Sφ(f) is the PSD of the

phase noise. The relation in (3.17), may be also written

Sφ(f) =
SV (f0 + f)

V 2
0

, f 6= f0 (3.18)

In (3.18), the phase noise PSD is measured in units of dBc/Hz. From this relation,

we conclude that the noise PSD Sφ(f) informs on the effect of phase noise on the

oscillator output PSD SV (f0 + f).This expression justifies the characterization of

oscillators via the PSD of the phase noise rather than the oscillator output, at least

in so far as WSS holds. However, as discussed below, in general, phase noise is not

WSS. In [45], a relation similar to (3.18) is developed from a direct expansion of V (t)

into its components at various frequencies, without assuming WSS.

Often, an oscillator product sheet provides information on the phase noise power

spectral at one frequency fa, but the PSD is of interest at another frequency fb. In

this case, the power spectral densities are related according to [46]

Sφ(fb) = Sφ(fa) + 20 log

(
fb
fa

)
(3.19)

One of the best known models for the PSD of phase noise is the Leeson model

[27]. This model is a power law model f ν with three regions ν = −3, ν = −2 and

ν = 0. Other models have more terms ν ∈ {−4,−3,−2,−1, 0, } [47, 48]. Here, we

assume that the phase noise PSD follows the model

Sφ(f) = af−4 + bf−3 + cf−2 + df−1 + e. (3.20)
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According to this model, the phase noise process is constituted from multiple

independent noise processes. Each process is dominant in a frequency range. The

parameters a, b, c, d, e, are related to five different types of noise components.

Random processes whose spectral densities consist of power laws f ν for ν < −1,

are non-integrable as f → 0. It follows that these processes are also not stationary.

Such power law processes belong to the class of random processes with stationary

n-th increments [49]. For processes with power law PSD, stationarity is met only

for a white noise process ν = 0. For white FM noise (ν = −2), the infinite power

at low frequency has been resolved by assuming a Lorentzian PSD. Lorentzian is

the shape of the power spectrum of stationary white noise passing through a one-pole

lowpass filter. Thus, Lorentzian phase noise is stationary and lends itself to analytical

expressions. Lorentzian PSD is often assumed in the literature addressing the effect

of phase noise on communication systems [50, 51, 52, 53]. However, the Lorentzian

model is not necessarily suitable for the longer observation times typical to radar

measurements. For example, the effect of phase noise on SAR it typically based on

a full power law model, such as (3.20). For further insight on the effect of phase

noise on STAP, the analysis and numerical examples in this paper are based on two

specific oscillators: an ultra stable oscillator (USO) used in SAR systems as specified

in [32], and a lower cost voltage controlled oscillator (VCO), specifically a Wenzel

crystal oscillator [54]. The characterization of phase noise for each of the oscillators

is discussed below in further detail.

3.3.2 Ultra Stable Oscillator (USO)

USO have a variety of applications in radar. For example, they are used in SAR

systems where longer term stability is important [31, 55, 56, 57, 32]. It is of interest

to estimate from the spec PSD figure the values of the parameters a through e in the

model (3.20). In [58], the authors provided a parametric estimation method to match
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the spectrum to the model (3.20). The USO analyzed in this work has the following

specification at 10 MHz [32]: a = −95 dB, b = −90 dB, c = −200 dB, d = −130 dB,

and e = −155 dB. Assuming a radar operating at f0 = 5 GHz, and applying (3.19),

the following parameters are obtained for the oscillator: a = −68 dB, b = −63 dB,

c = −173 dB, d = −103 dB, and e = −128 dB. Figure 2 shows the composite phase

noise PSD characteristic as well each of the components of the power law model of

the USO. From the figure it is observed that each component dominates a frequency

range in the spectrum. For example, from 1 Hz to 100 Hz, bf−3 term is dominant.

From 100 Hz to 1000 Hz, the PSD is dominated by the df−1. At higher frequencies,

the e term is the strongest.

In the envisioned STAP application, we assume a PRI of the order of

milliseconds and a CPI of the order of over 100 milliseconds. This implies that

the frequencies of interest are between 1 Hz and 1000 Hz. It is observed from Figure

3.2 that the parameters ν = 0, −1 and −3 are best suited to model the phase noise

of the USO in the frequency range 1 ≤ f ≤ 1000 Hz. We conclude from that model

(3.20) is better suited for this oscillator than the simpler Lorentzian model.

3.3.3 Voltage Controlled Oscillators (VCO)

The VCO was modeled according to the product sheet [54] of a commercial off-the-

shelf crystal oscillator. In addition to the phase noise spectrum. The VCO analyzed

in this work has the following specification at 10 MHz : a = −60 dB, b = −60 dB,

c = −90 dB, d = −140 dB, e = −155 dB. Converting the power law parameters to

5 GHz, the following coefficients are obtained for power terms in (3.20): a = −33

dB, b = −33 dB, c = −63 dB, d = −113 dB, e = −138 dB. Figure 4 shows the

individual power law components of the phase noise. It is observed from the figure

that from 1 Hz to 100 Hz, the af−4, bf−3 terms are dominant terms. From 100 Hz

to 1 kHz, the bf−3, cf−2, df−1 terms dominate. Thus, the VCO requires four power
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Figure 3.2 Phase noise power spectral density and constituent terms of an USO.

law components to model the phase noise PSD in the frequency range 1 ≤ f ≤ 1000

Hz. Again, the simpler Lorentzian model is not suitable.

In conclusion, for both oscillators, it is important to use the full model provided

by (3.20), rather than simpler, approximate models used in other applications.

However, the PSD (3.20) is not a rational function, and the phase noise process

is non-stationary, making difficult to obtain analytical results. Next, we propose

a simple time-domain model that holds within the time and frequency parameters

relevant to the envisioned STAP application.

3.3.4 Time-Domain Model

To develop the time-domain model, we are interested to generate by simulation time

series that exhibit the power law spectrum (3.20). Such a method has been proposed

in [59], and recently applied to the simulation of phase noise [60]. Given the PRI

Tr, and the CPI T
CPI

= NpTr, M Fourier frequencies are selected such that highest
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Figure 3.3 Phase noise power spectral density and constituent terms of an VCO.
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frequency is fmax = 1/ (2Tr) , fm = (m/M) fmax, m = 1, ...,M and M ≥ Np. For each

m, a complex number wm is drawn from a zero-mean unity variance complex Gaussian

distribution. Since the time series representing phase values is real, the complex

numbers for the negative frequencies are chosen w−m = w∗m. A frequency domain

series of length 2M is obtained multiplying wm by
√
Sφ (fm). This construction

avoids the problematic fm = 0. Application of the inverse discrete Fourier transform

converts the frequency domain series to a time series representing phase noise values

φk =
M∑

m=−M/2

wm

√
Sφ (fm)e−j2πmk/M . (3.21)

Figures 3.5 and 3.6 both show several realizations of phase noise trajectories

as a function of time. The time axis is scaled in units of PRI Tr, where Tr = 8.33

ms. The observation time is a CPI, T
CPI

= 16Tr = 133.33 ms. It is noted that all

realizations result in approximately linear trajectories over the CPI. In Figure 3.4,

the observation time is much longer, and the trajectories are not linear any more.

Thus, from empirical observations, during a CPI, the phase noise at a sensor may be

modeled by a stochastic process

φ (t) = αt+ ψ(t), (3.22)

where α is a random variable representing the slope of the phase trajectory and ψ(t) is

a stochastic process representing the deviation from the linear term. By construction,

and since the wm in (3.21) are zero mean, the phase noise process is zero mean,

E [φ (t)] = 0. The zero-mean property implies that E [α] = 0, and E [ψ(t)] = 0. For

later use, we note that

E
[
φ2 (t)

]
= E

[
α2
]
t2 + E

[
ψ2 (t)

]
. (3.23)

The phase noise processes are mutually independent betwen sensors.
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Figure 3.4 Examples of phase trajectories at longer time interval for VCO.
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Figure 3.5 Examples of phase trajectories for USO.

The time interval of interest is Tr ≤ t ≤ T
CPI

corresponding to the frequency

interval 1/T
CPI
≤ f ≤ 1/Tr. For a process φ (t) with power spectral density Sφ(f),

the variance σ2
φ is given by

σ2
φ =

∫ 1/Tr

1/T
CPI

Sφ(f)df. (3.24)

In the time domain, from (3.23), the variance of φ (t) is time-dependent. The variance

σ2
φ may also be obtained by averaging E [φ2 (t)] over the coherent processing interval

σ2
φ =

1

T
CPI

∫ T
CPI

0

E
[
φ2 (t)

]
dt. (3.25)

From the empirical almost linear phase trajectories shown in Figure 3.5 , and to

simplify the analysis, assume that E [ψ2 (t)]� E [α2] t2. Then, from (3.23),

E
[
φ2 (t)

]
≈ σ2

αt
2 (3.26)
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Figure 3.6 Examples of phase trajectories for VCO.
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where σ2
α = E [α2] . Substituting E [φ2 (t)] from (3.26) into (3.25) and evaluating the

integral, we obtain an expression for the average variance of the phase noise over the

observation interval

σ2
φ =

σ2
αT

2

CPI

3
(3.27)

From this expression, the average variance grows quadratically with the length of the

coherent processing interval. Given the average phase noise variance σ2
φ (3.24), the

variance of the slopes of the phase noise trajectory may be computed from

σ2
α =

3σ2
φ

T 2
CPI

. (3.28)

This relation is applied in the next section to quantify the effect of phase noise on

the array beampattern and Doppler response.

3.4 Effect of Phase Noise on Space-Time Adaptive Processing (STAP)

In this section, we will study the effect of phase noise on the distributed STAP system.

These phase errors affect a distributed STAP system two ways: (1) cause errors in

spatial processing, (2) cause errors in Doppler processing. In this section, the effect

of phase noise on spatial processing is evaluated first, followed by an analysis of the

effect of phase noise on Doppler processing. This is followed by a discussion on the

effect of phase noise on STAP, which combines spatial and Doppler processing.

3.4.1 Effect of Phase Noise on Spatial Processing

Assume an array formed by sensors, each with its own independent local oscillator.

Further, assume that at time t = 0, the array is perfectly calibrated, meaning

that there are no phase errors, and the array factor is given by (3.2). From the

previous discussion, the phase noise at the n-th antenna element index is modeled by

a stochastic process φn(t) = αnt + ψn(t). The array factor in the presence of phase
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noise is a function of time and may be expressed

b(u; t) =
1

Ns

Ns∑
n=1

ej(k0znu+φn(t)) (3.29)

where t is the time elapsed from calibration. We are interested in the effect of phase

noise in the sidelobe region |u| > 1/Z, where |b(u; t)| � 1. Applying the small phase

approximation ejφn(t) ≈ 1 + φn (t),

b(u; t) =
1

Ns

Ns∑
n=1

ejk0znu (1 + jφn (t)) . (3.30)

Since φn (t) are zero-mean and independent between sensors:

E [b(u; t)] =
1

Ns

Ns∑
n=1

ej2πznu = b0(u) (3.31)

where b0(u) is the array factor of the ideal array (no phase errors) given by (3.2).

The variance of the array factor in the sidelobe region, is a measure of the sidelobes

generated by the phase errors between the elements. The variance σ2
b (u; t) of the

spatial array factor in the sidelobe region is given by

σ2
b (u; t) = E

[
|b(u; t)|2

]
− (b0(u))2 . (3.32)

To compute σ2
b (u; t) substitute (3.30) in (3.32), apply E [φ (t)] = 0 as discussed

previously, and after some manipulations, it can be shown that

E
[
|b(u; t)|2

]
=

1

Ns

E
[
φ2 (t)

]
+ b0(u) (3.33)

from which it follows that

σ2
b (u; t) =

1

Ns

E
[
|φ (t)|2

]
. (3.34)

Thus, the variance σ2
b of the array pattern is a function of time, but not a function

of the angle of arrival of the signal, σ2
b (u; t) = σ2

b (t). An analytical expression for σ2
b
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is obtained from (3.26) and (3.28):

σ2
b (t) =

1

Ns

σ2
αt

2 =
3σ2

φt
2

NsT 2
CPI

(3.35)

The significance of this expression is that phase noise produces changes in the

sidelobes of the beampattern. The sidelobes due to phase noise are independent

of the space variable u, but increase with the time elapsed from phase calibration.

3.4.2 Effect of Phase Noise on Doppler Processing

Assume zero phase errors at time m = 0, and let φ ((m− 1)Tr) , m = 1, ..., Np

represent the phase noise at samples taken at the radar receiver at the pulse repetition

frequency 1/Tr. Modifying (3.7) to account for the presence of phase noise, the

Doppler array factor is expressed

d (f) =
1

Np

Np∑
m=1

ej2πf(m−1)Tr+φ((m−1)Tr). (3.36)

We are interested in the effect of phase noise on both the mainlobe and sidelobes

of the Doppler array factor. For the mainlobe analysis, we apply the approximation

φ ((m− 1)Tr) ≈ α ((m− 1)Tr) (see (3.22)),

d (f) =
1

Np

Np∑
m=1

ej2πf(m−1)Tr+α(m−1)Tr (3.37)

After a little algebra, it can be shown that conditioned on the trajectory slope α, the

magnitude of the array factor may be expressed

|d (f)| =
∣∣∣∣sin ((Np − 1) π(f + α/2π)Tr)

Np sin (π(f + α/2π)Tr)

∣∣∣∣ . (3.38)

Comparing this expression with the ideal case of no phase noise (α = 0) ,

|d0 (f)| =
∣∣∣∣sin ((Np − 1) πfTr)

Np sin (πfTr)

∣∣∣∣ (3.39)
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the effect of phase noise is observed to be an offset ∆f = −α/ (2π) in the mainlobe.

The sidelobes for the Doppler array factor are in the region |f | > 1/T
CPI

.

Applying the small phase approximation, ejφn((m−1)Tr) ≈ 1+ jφ ((m− 1)Tr) in (3.36),

the array factor is given by

d(f) =
1

Np

Np∑
m=1

ej2πf(m−1)Tr (1 + jφ ((m− 1)Tr)) . (3.40)

Since φ ((m− 1)Tr) is zero mean, the mean value of the array factor is

E [d(f)] =
1

Np

Np∑
m=1

ej2πf(m−1)Tr = d0 (f) . (3.41)

The variance of the Doppler array factor in the sidelobe region, is a measure of the

sidelobes generated by the phase errors between the time samples used to estimate

Doppler. The variance is given by

σ2
d(f) = E

[
|d(f)|2

]
− (d0(f))2 . (3.42)

To compute σ2
d(f) substitute d(f) from (3.40) in (3.42), apply E [φ ((m− 1)Tr)] = 0,

and after some manipulations, it can be shown that

E
[
|d(f)|2

]
=

1

N2
p

Np∑
m=1

E
[
φ2 ((m− 1)Tr)

]
+ d0(f). (3.43)

It follows that

σ2
d =

1

N2
p

Np∑
m=1

E
[
|φ ((m− 1)Tr)|2

]
. (3.44)

The last expression is not a function of the frequency f, which implies that the

variance of the Doppler array pattern is constant across the sidelobes. An analytical

expression for σ2
d is obtained by approximating the integral in (3.25) with the sum in
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(3.44):

σ2
φ =

1

T
CPI

∫ T
CPI

0

E
[
φ2 (t)

]
dt

≈ 1

T
CPI

Np∑
m=1

E
[
|φ ((m− 1)Tr)|2

]
Tr

=
1

Np

Np∑
m=1

E
[
|φ ((m− 1)Tr)|2

]
. (3.45)

Comparing (3.44) and (3.45), it follows that

σ2
φ = Npσ

2
d (3.46)

Finally, substituting (3.27) and since T
CPI

= NpTr.

σ2
d =

σ2
φ

Np

=
Npσ

2
αT

2
r

3
(3.47)

The sidelobe variance increases linearly with the number of pulses used for Doppler

processing and quadratically with the pulse repetition interval.

3.5 Effect of Phase Noise on STAP

As discussed in the previous subsections, phase noise affects STAP via multiple

mechanisms. First, phase errors between independent oscillators affect spatial

processing, second, phase errors accumulate as a function of time, and interfere with

Doppler processing. In particular, low frequency components of phase noise cause

an offset in the mainlobe of the Doppler array factor. In this subsection, the effect

of phase noise on target detection is demonstrated by numerical examples of the

clutter rank, the signal to noise and interference ratio (SINR) and receiver operating

characteristics (ROC). The analysis assumes ideally calibrated sensors at time t = 0.

The clutter covariance matrix quantifies the correlation between all pairs of

space-time measurements due to reflections from ground clutter. The rank of the
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clutter covariance matrix determines the amount of data required to train an adaptive

processor as well as the overall detection performance of the system. Accurate clutter

rank estimation is important for the design of computationally feasible, reduced-rank

adaptive processing algorithms. Therefore, characterization of clutter rank is an

important step for understanding STAP performance. Clutter rank is well understood

for uniform, linear arrays aligned along the radar platform velocity vector. The

equation that governs this case is called Brennan rule [6], [7]. The clutter rank

observed by arbitrary arrays, however, is not as well understood.

Doppler processing discriminates targets that have radial velocity relative to the

antenna elements. Clutter from direction perpedincular to the flight path appears

stationary since it has zero radial velocity. The challenge in GMTI is that clutter

in directions other than perpendicular to the flight path has non-zero Doppler shifts.

These clutter returns may hinder the detection of slow-moving targets. SINR as a

function of Doppler shift is a useful metric for estimating the minimum detectable

velocity (MDV) at which a target may be discriminated from the clutter.

In this section, numerical results are presented for a filled uniform linear array

(ULA) with Ns = 20 elements and Np = 16 time samples. Antenna elements are

assumed to operate with autonomous oscillators. The signal to noise ratio SNR = 15

dB and the clutter to noise ratio CNR = 30 dB. The covariance matrix used to

obtain the numerical results is the theoretical covariance matrix (3.10). The clutter

covariance matrix was computed from a numerical approximation to (3.11). Given

the covariance matrix R, the SINR was computed from the expression

SINR(u, f) = aH(u, f)R−1a(u, f). (3.48)

Figure 3.7 shows the effect of phase noise on the clutter rank for the two

examples of oscillators considered in this work. STAP relies on the fact that the

rank of the clutter covariance matrix Rc is much lower than the dimensionality of
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the signal space. In this case, whitening of the clutter interference does not result in

significant loss of target SNR. In a filled ULA, the clutter map (defined as the plot

of aH(u, f)Rca(u, f) obtained by u and v sweeping through their domains |u| < 1,

|fTr| < 0.5), forms a diagonal ridge in the u-f plane. The clutter rank is a measure

of the area in u-f space covered by the clutter ridge. A lower clutter rank generally

implies better STAP performance. The clutter rank shown in Figure 3.7 is an average

of 150 simulation runs. An increase in the clutter rank is observed when phase noise

affects the operation of the array. The increase in clutter rank is larger for the VCO,

which has larger phase noise.

Figure 3.7 Effect of phase noise on clutter rank.

Figure 3.8 demonstrates the effect of phase noise on the signal to interference

and noise ratio (SINR) of STAP with USO and VCO. From Figure 3.8 it is observed
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that the MDV is with phase noise is similar to the ideal case, but the maximum SINR

degrades with the phase noise, with the degradation being higher for the VCO.

Figure 3.8 Effect of phase noise on SINR.

Figure 3.9 shows the effect of phase noise on the ROC of a STAP system

implemented as a distributed array. The ROCs shown are averaged over 100 runs.

Phase noise reduces detection performance, but an array equipped with USOs has

better performance than array equipped with VCOs.
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Figure 3.9 Effect of phase noise on ROC.
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CHAPTER 4

IMPAIRMENTS IN DISTRIBUTED STAP AND PROPOSED

METHOD FOR SYNCHRONIZATION AND CALIBRATION

In this chapter the effects on STAP performance of various errors stemming from the

distributed architecture: frequency offsets, generalized motion, sparse aperture, and

sensor location errors are evaluated . Performance is first evaluated subject to each

type of impairment assuming ideal conditions with respect to the other impairments.

The combined effect of all impairments, including phase noise, is also evaluated.

The performance metrics for individual impairments are the clutter rank and SINR,

while the combined effect of all impairments is also measured by ROCs. The second

part of this chapter outlines a technique for phase and sensor location calibration

for distributed STAP system. We presented a STAP calibration algorithm, followed

by the numerical results. Unless specified otherwise, the parameters used for the

simulations are the same as in Chapter 3.

4.1 Frequency Offset

In the previous chapter the effect of phase noise on STAP was discussed. In addition

to phase noise, distributed sensors, each equipped with its own oscillator, are subject

to frequency offset errors. Even though all sensors are instructed to tune to the same

frequency, the carrier frequency of a sensor would typically have some error (offset)

relative to the nominal frequency setting. The frequency offset is in addition to the

effect of phase noise, but its effect is first evaluated assuming oscillators without phase

noise.

Figure 4.1 shows the effect of frequency offset on the clutter rank (left panel)

and SINR (right panel) of a distributed STAP system with parameters specified in

Section IV.C. Two levels of frequency offsets typical to commercial oscillators were
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evaluated, 0.1 ppm and 0.5 ppm. Figure 4.1 shown are averages of 150 runs. A slight

increase is observed in the clutter rank, with the higher clutter rank corresponding

to the larger higher frequency offset. The SINR curve shows a degradation of 2-4 dB

in SINR, but no visible effect on the MDV.

Figure 4.1 Effect of frequency offset on clutter rank (left) and SINR (right).

4.2 Generalized Motion

In this performance evaluation, the radar sensors’ local oscillators are assumed

perfectly synchronized in phase and frequency, but each sensor moves independently

in terms of speed and direction. For convenience, it is assumed that during the CPI of

interest, and the independent motion parameters notwithstanding, the sensors form

a ULA. The motion parameters for an arbitray sensor and target are shown in Figure

3.1. The origin of the coordinate system is arbitrarily located at the first sensor, and

the horizontal axis of the coordinate system is colinear with the array. Numerical

examples are shown for two sets of motion parameters. In the first case, each sensor

has a velocity chosen from a uniform distribution in the range 50 to 70 m/s and a

direction chosen from a uniform distribution with the range ±π/10 radians. In the
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second case, each sensor has a velocity chosen from a uniform distribution in the

range 40 to 80 m/s and a direction chosen from a uniform distribution with the range

±π/5 radians. Figures shown are averages of 150 runs.

Figure 4.2 shows the effect of individual sensor motion on clutter rank (left

panel) and SINR (right panel). The figure indicates an increse in clutter rank and a

decrease in SINR for the generalized motion cases. The higher the variation between

motion parameters of sensors, the larger the change in clutter rank and SINR relative

to the ideal case in which all sensors have the same motion parameters.

Figure 4.2 Effect of sensors moving autonomously on clutter rank (left) and SINR

(right).

4.3 Large Aperture Random Array

The numerical results presented sofar were obtained assuming a ULA. In a distributed

system, sensors are likely to be spaced irregulary and intervals larger than λ/2. Large

aperture, but sparse element-wise arrays are known in the literature as random arrays

[61] [62]. The beamwidth of a linear random array is determined by the aperture

length, while average and peak sidelobes are controlled by the number of elements in
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the array. The spatial array factor b0(u) (3.2) may be viewed as a stochastic process,

where the element locations zn are random variables. The properties of such random

arrays were analyzed in [61], [62], while the performance of random arrays in STAP

has been analyzed in [63].

All the arrays analyzed in this section have Ns = 20 elements. A 20-element

ULA has a 10λ aperture. Random arrays analyzed had apertures 50λ and 100λ. Note

that a 100λ array with 20 elements has only 1/10 of the number of elements of a

100λ ULA. For each of the 150 runs, the location of two elements was set at each

end of the array, while the locations of the other 18 elements was chosen randomly

from a uniform distribution with range 100λ. Figure 4.3 shows the effect of random,

sparse arrays on clutter rank (left panel) and SINR (right panel). The clutter rank

increases significantly since it is determined by the number of elements in a filled

array. Thus the clutter rank of the 100λ random array is the same as that of a

100λ ULA. For example, the clutter rank for the STAP system shown in the figure

is N ′s + Np − 1 = 100 + 16 − 1 = 115, where N ′s is the number of elements in a

100λ ULA. The significantly more degrees of freedom engaged in clutter cancellation

are expected to lower the SINR. This is confirmed by the SINR plot, which shows

SINR losses between 2 and 10 dB. On the positive side, a larger aperture is expected

to produce a narrower beam, which in turn leads to a reduction in MDV. This is

confirmed by the figure.
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Figure 4.3 Effect of aperture size for a fixed number of array elements Ns = 20 on

clutter rank (left) and SINR (right).

4.4 Sensor Location Errors

As discussed previously, a typical implementation of distributed STAP entails a

large, sparse array. Unlike an array mounted on a single platform, which may be

manufactured as one unit with high precision spacing between the elements, in a

distributed architecture sensor locations will be known with finite accuracy. In this

part is investigated the effect of sensor location errors on STAP performance. Sensor

location errors are specified according to the standard deviation of the error assuming

a uniform distribution. The effects of two levels of sensor location errors were studied:

λ and 2λ. For each case, the location of each sensor of a filled ULA was offset by a

random amount.

Figure 4.4 shows effect of array sensor location errors on on clutter rank (left

panel) and SINR (right panel). From the figure is observed a slight increase in clutter

rank, made larger for the larger location errors. Similarly there is a slight loss of

SINR, made larger for larger sensor location errors.
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Figure 4.4 Effect of sensor location errors on clutter rank (left) and SINR (right).

4.5 Combined Effect of Impairments

The combined effects on STAP performance of various errors stemming from the

distributed architecture: frequency offsets, generalized motion, sparse aperture, and

sensor location errors are analyzed in this section. We compared the ideal case, with

phase noise only, and with phase noise and other impairments studied in this section

for distributed STAP system. The array analyzed in this section contained Ns = 20

elements. The level of frequency offsets were evaluated at 0.5 ppm, corresponding

to typical commercial oscillators. Figures shown were averages of 150 runs. Each

sensor has a velocity chosen from a uniform distribution in the range 40 to 80 m/s

and a direction chosen from a uniform distribution with the range ±π/5 radians. The

sensor location errors were set at 2λ.

Figure 4.5 shows the clutter rank illustrating combined effects of PN, FO,

random array, motion, location. From the figure is observed a noticeable increase

in clutter rank, made larger for the case of combined errors.
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Figure 4.5 Effect of combined effect of impairments on clutter rank (top) and

SINR (bottom)

Figure 4.6 shows the effect on ROC curve for SNR = 15 dB of the combined

effect of impairments. Similarly there is a significant loss of SINR, made larger for

larger combined errors.
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Figure 4.6 Combined effect of impairments on ROC

4.6 Synchronization and Calibration for Distributed STAP

In the previous sections, we consider certain aspects of a distributed implementation

of STAP. It has been shown that one of the main challenges of a distributed

implementation is that each sensor has its own local oscillator, unlike a traditional

array in which all sensors are connected to the same local oscillator. Even when tuned

to the same frequency, phase errors between the sensors will develop over time, due to

phase instabilities. Hence phase synchronization, or phase noise calibration, needs to

be done on the distributed STAP system. Besides, other aspects of synchronization,

for example time synchronization, frequency synchronization or frequency offset

calibration, sensor location and sensor velocity calibration are also of important to

be considered when these oscillators are let run freely.

Figure 4.7 shows the synchronization and calibration architecture for distributed

STAP system. We assume the distributed platforms carry out location and phase

calibration with the aides from airborne command center, ground command center
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(which can be cell tower or radio transmitter tower), ground calibration targets (for

example, illuminators or corner reflectors on the ground), and even ground clutter.

Figure 4.7 Synchronization and Calibration Architectures

There are several papers spanning over the past years discussing certain aspects

of distributed radar system and calibration techniques. In [64], the authors describes

ground-based distributed coherent aperture system. In [65], Abari et. al. presents

AirShare, a primitive that provides ground-based distributed coherent transmission

for MIMO radar system. Other works, for example [66], Brown describes a distributed

coherent transmission scheme for communication systems and Yang [67] proposes

a ground-based wideband distributed coherent aperture radar. To the best of our

knowledge, there has not been any work done on calibration of STAP system. In our

proposed synchronization architecture, the pilot or reference signals are exploited from

the following sources: (1) Ground based command center; (2) Airborne command

center; and (3) Measurements subject to Doppler shifts due to ground clutter. In the

previous standard documentation, the LTE requirements are base station frequency
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accuracy within +/- 0.01 ppm, User equipment frequency accuracy +/- 0.1 ppm,

frequency synchronization accuracy within 16− 50 ppb. It has been also noted that

these requirements are stringent for a communication systems. For a radar system,

there has not been any specific guidelines on these calibration values.

Figure 4.8 shows the system model for phase and sensor location calibration of

a distributed STAP system. We assume perfect frequency offset and time calibration.

The calibration system is based on ground targets at nominally known locations and

this technique is built on random array calibration work from [68]. In this radar

array system, there consists of a transmitter and N receive sensors. Targets may be

present in the far field to the array. Reference targets are targets intentionally placed

in the field of view, whose angles of arrival are known nominally. The goal of the

system is to detect targets at unknown locations moving with unknown velocities. The

radar coordinate system is arbitrarily assumed to be collocated with the transmitter.

The locations of the receive sensors are known only approximately. Moreover, the

receive sensors are not phase synchronized among themselves or to the transmitter.

To detect targets, the system needs to rely on phase synchronized sensors and known

sensor locations. Our objective is to develop a method that detects targets based

on their angle of arrival and velocity, while at the same time resolves the system

unknowns (phase synchronization, accurate sensors locations and accurate reference

target locations).

It can be shown that the phase synchronization and sensor location estimation

can be solved by a least-squares approach. The main challenge is that phase

measurements at each sensor include an unknown number of cycles. The number

of cycles cannot be measured directly, but impacts the estimation of the sensors

location, and subsequently impacts the localization of unknown targets. The number

of cycles depends on the locations of the sensors. The exact locations of the sensors are

also unknown, but based on information available a priori, it is possible to determine
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Figure 4.8 Phase and sensor location calibration system model.
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a range of possible number of cycles associated with the phase measured at each

sensor. Then using these estimations of sensor locations, we subsequently perform

targets localization using Matching Pursuit (MP).

Figure 4.9 lists an algorithm to jointly estimate sensors locations and phases

information.

Figure 4.9 STAP calibration algorithm.
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Next, numerical results are presented for a distributed array with Ns = 10

elements and Np = 16 time samples. Antenna elements are assumed to operate with

autonomous oscillators. The signal to noise ratio SNR = 15 dB and the clutter

to noise ratio CNR = 30 dB. The covariance matrix used to obtain the numerical

results is the theoretical covariance matrix (3.10). The clutter covariance matrix was

computed from a numerical approximation to (3.11).

Figure 4.10 shows the receiver operating curve for target detection using three

methods: (1) STAP under ideal conditions of known sensor locations and no phase

errors, (2) STAP under non-ideal conditions with phase errors, (3) the proposed

approach including calibration and detection by MP. It is observed from Figure 4.10

that without calibration, STAP detection experiences a high false alarm rate and low

detection probability. Applying the proposed method for phase calibration and target

detection improves detection performance dramatically placing it only slightly below

the ideal case. For example, with calibration and MP detection, the probability of

detection is about 0.9 at a false alarm probability of 10−3.
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Figure 4.10 STAP calibration algorithm.

4.7 Concluding Remarks

In this chapter, we study the effect of phase noise and other impairments on clutter

rank, SINR and receiver operating characteristics. Performance of distributed STAP

with respect to system aspects and impairments specific to a coherent distributed

system is also analyzed. It is shown that a composite power law model with several

terms is required to properly model the phase noise. Simulation results illustrate the

effect of phase noise on degrading the performance of target detection using spatial

and Doppler processing. Given that phase noise reduces detection performance, an

array equipped with USOs exhibits better performance than an array equipped with

VCOs. The combined effects on STAP performance stemming from the distributed

architecture: frequency offsets, generalized motion, sparse aperture, and sensor

location errors are also analyzed. Simulation results illustrate the effect of individual

impairment and combined errors on degrading the performance of target detection.
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Synchronization and calibration of distributed airborne system present challenging

problems that need to be addressed.
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CHAPTER 5

CONCLUSIONS

In this dissertation, we propose an approach radically different than STAP, in which

sensors are assumed to maintain global time synchronization (e.g. through GPS), but

are not phase synchronized. For example, the proposed method would be suitable

for implementation by widely distributed, independently moving UAVs, each with its

own free-running local oscillator. To support Doppler processing, the oscillator at

each sensor is assumed to maintain coherency over the observation time interval, but

unlike a phased array, local oscillators are not phase synchronized to each other. To

distinguish it from conventional STAP, we refer to the proposed method as distributed

STAP. With a system that consists of simple, opportunistic sensors, the processing

load is shifted to a fusion center equipped with powerful processing capabilities.

In Chapter 2, we propose a tracker based on the extended Kalman filter that

tracks multiple targets based on an observation model in which radar observations are

non-linear functions of the targets’ states. We refer to this tracker as direct, since it

achieves tracking directly from radar observations, rather than from time delays and

Doppler shifts. Bayesian Cramer-Rao bound (BCRB) sets the performance limits on

target tracking, providing useful tools for evaluating the effect of system parameters

on estimation accuracies. In this new approach the multiple moving target tracking

problem in MIMO radar systems can be solved. Based on this study, two tracking

schemes are proposed. The first is an indirect tracking approach, based on time delay

and velocity estimates and implicit nearest-neighbor data association at the fusion

center. The second is a direct scheme, based on radar observations tracking and

the data association of multiple targets is implicit. The later eliminates intermediate

estimated parameters and tracks the moving targets with higher accuracy. Numerical
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results show that for multiple targets, direct tracking algorithm outperforms indirect

tracking at all SNR values.

In Chapter 3, we study the effect of phase noise and other impairments on

STAP with distributed antenna arrays. We envision a STAP application, in which

spatial and Doppler processing are performed over a coherent processing interval. We

demonstrate that a power law phase noise PSD model is suitable for analyzing the

distributed radar system. Then we propose a simplified time-domain model for the

phase noise, develop analytical expressions that quantify the effect of phase noise on

the array beampattern as a function of time, and propose a generalized motion model

for distributed STAP system. It is demonstrated that the effect of phase noise and

other impairments on target detection by numerical examples of receiver operating

characteristics (ROC).

The main focus of this work was on the development of a distributed architecture

for GMTI radar. We study the effect of phase noise and other impairments on clutter

rank, SINR and receiver operating characteristics. Performance of distributed STAP

with respect to system aspects and impairments specific to a coherent distributed

system is also analyzed. It is shown that a composite power law model with several

terms is required to properly model the phase noise. Simulation results illustrate the

effect of phase noise on degrading the performance of target detection using spatial

and Doppler processing. Given that phase noise reduces detection performance, an

array equipped with USOs exhibits better performance than an array equipped with

VCOs. The combined effects on STAP performance stemming from the distributed

architecture: frequency offsets, generalized motion, sparse aperture, and sensor

location errors are also analyzed. Simulation results illustrate the effect of individual

impairment and combined errors on degrading the performance of target detection.
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