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ABSTRACT

LOAD BALANCING AND SCALABLE CLOS-NETWORK PACKET
SWITCHES

by
Oladele Theophilus Sule

In this dissertation three load-balancing Clos-network packet switches that attain

100% throughput and forward cells in sequence are introduced. The configuration

schemes and the in-sequence forwarding mechanisms devised for these switches are

also introduced. Also proposed is the use of matrix analysis as a tool for throughput

analysis.

In Chapter 2, a configuration scheme for a load-balancing Clos-network packet

switch that has split central modules and buffers in between the split modules is

introduced. This switch is called split-central-buffered Load-Balancing Clos-network

(LBC) switch and it is cell based. The switch has four stages, namely input,

central-input, central-output, and output stages. The proposed configuration

scheme uses a pre-determined and periodic interconnection pattern in the input

and split central modules to load-balance and route traffic. The LBC switch has

low configuration complexity. The operation of the switch includes a mechanism

applied at input and split-central modules to forward cells in sequence. The switch

achieves 100% throughput under uniform and nonuniform admissible traffic with

independent and identical distributions (i.i.d.). The high switching performance and

low complexity of the switch are achieved while performing in-sequence forwarding

and without resorting to memory speedup or central-stage expansion. This discussion

includes both throughput analysis, where the operations that the configuration

mechanism performs on the traffic traversing the switch are described, and a proof of

in-sequence forwarding. Simulation analysis is presented as a practical demonstration

of the switch performance on uniform and nonuniform i.i.d. traffic.



In Chapter 3, a three-stage load balancing packet switch and its configuration

scheme are introduced. The input- and central-stage switches are bufferless crossbars

and the output-stage switches are buffered crossbars. This switch is called ThRee-

stage Clos-network swItch and has queues at the middle stage and DEtermiNisTic

scheduling (TRIDENT) and it is cell based. The proposed configuration scheme uses a

pre-determined and periodic interconnection pattern in the input and central modules

to load-balance and route traffic; therefore, it has low configuration complexity. The

operation of the switch includes a mechanism applied at input and output modules

to forward cells in sequence.

In Chapter 4, a highly scalable load balancing three-stage Clos-network switch

with Virtual Input-module output queues at ceNtral stagE (VINE) and crosspoint-

buffers at output modules and its configuration scheme are introduced. VINE uses

space switching in the first stage and buffered crossbars in the second and third stages.

The proposed configuration scheme uses pre-determined and periodic interconnection

patterns in the input modules for load balancing. The mechanism applied at the

inputs, used to forward cells in sequence, is also introduced. VINE achieves 100%

throughput under uniform and nonuniform admissible i.i.d. traffic. VINE achieves

high switching performance, low configuration complexity, and in-sequence forwarding

without resorting to memory speedup.

In Chapter 5, matrix analysis is introduced as a tool for modeling, describing

the internal operations, and analyzing the throughput of a packet switch.
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CHAPTER 1

INTRODUCTION

Clos-network switches are attractive for building large-size switches [19]. These

switches mostly employ three stages, where each stage uses switch modules as building

blocks. Each module is a small- or medium-size switch. Modules of the first, second,

and third stages are often called input, central, and output modules, and they are

denoted as IM, CM, and OM, respectively. Overall, Clos-network switches require

fewer crosspoint elements, each of which is the atomic switching unit of a packet

switch, than a single-stage switch of equivalent size, and thus they may require less

building hardware. This trait of a Clos network often comes at the cost of an increased

configuration complexity. In general, a Clos-network switch requires the configuration

of the modules in every stage before packets are forwarded through. Moreover, owing

to the multi-stage architecture of such switch, the time for switch reconfiguration

increases as the number of stages holding dependences increases. In a multi-stage

switch, there is a dependence when the configuration of a module is affected by the

configuration of another. The required configuration time dictates the internal data

transmission time, which in turn defines the minimum size of the internal data unit.

Therefore, the configuration time of such switch must be kept to the shortest possible

for a fast and efficient reconfiguration.

In the remainder of this dissertation, we consider the proposed packet switches

to be cell based; this is, upon arrival in an input port of a switch, packets of variable

size are segmented into fixed-size cells. Cells are forwarded through the switch to

their destined outputs. Packets are re-assembled at the outputs of the switch.

Based on whether a stage performs space- (S) or memory-based (M) switching,

Clos-network switches can be categorized into SSS (or S3) [12,44,47,60,81], MSM [11,
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16,28,33,40,41,73,80], MMM [13,17,23,82], SMM [42,46,50,78,83], and SSM [48,70,

71], among the most popular ones. From those, S3 switches require small amounts of

hardware but their configuration has been proven challenging as input-to-output path

setup must be resolved before cells are transmitted. On the other hand, inclusion of

memory in modules may relax the configuration complexity. However, configuration

complexity has remained high despite using memory in every switch module because

of internal blocking and the multiplicity of input-output paths associated with diverse

queuing delays [13, 24]. Specifically, switches with buffered central or output stages

are prone to forwarding packets out of sequence, making re-sequencing or in-sequence

transmission mechanisms an added feature. Moreover, the number and size of queues

in a module are restricted to the available on-chip real estate. This restriction plus

the adopted in-sequence measures may exacerbate internal blocking that, in turn,

may lead to performance degradation [23].

Minimizing the complexity of the central module of a Clos-network switch has

been of research interest in recent years. Hassen et. al proposed a Clos-network

switch that combines different switching stages [29]. In this work, central modules

are replaced with multi-directional networks-on-chip (MDN) modules. The switch

uses a static dispatching scheme from the input/output modules, for which every

input constantly delivers packets to the same MDN module, and adopts inter-central-

module routing to enable forwarding the cells to the final destination. However, this

switch may forward cells to output port out of sequence if cells from the same flow

are routed through different paths on the central modules.

Load balancing traffic prior to routing it towards the destined output is

a technique that not only improves switching performance but also reduces the

configuration complexity of a packet switch when the load-balancing and routing

follows a deterministic schedule [9]. Such a schedule may be obtained as an application

2



of matrix decomposition [5,43]. This technique enables high performance not only on

switches but also on a large number of network applications [22,35,76].

A switch that load-balances traffic may need at least two stages to operate;

one for load balancing and the other for routing cells to their destined outputs [9].

A switch with such a deterministic and periodic schedule may require the use of

queues between the load-balancing and routing stages. However, placing such queues

and enabling multiple interconnection paths between an input and an output make

load-balancing switches susceptible to forwarding cells out of sequence [9]. This issue

has been addressed by introducing either re-sequencing buffers at the output ports

[10] or mechanisms that prevent out-of-sequence forwarding [39, 64]. However, these

approaches are either complex or degrade switching performance.

Load balancing has been applied to Clos-network switches [13,84]. For example,

Zhang et al. [84] proposed an SMM switch that adopts the two-stage load-balanced

Birkhoff-von Neumann switch in each central module but has no input port buffers.

Here, a central module consists of two k×k bufferless crossbar switches and k buffers

in between the crossbars. The switch performs load balancing at the input module

and the first stage of the load-balanced Birkhoff-von Neumann switch. Each of these

queues accommodates up to one cell to guarantee the transmission of cells in sequence.

However, the distance between modules in a large switch requires larger queue sizes

for which this switch would suffer from out-of-sequence forwarding.

The switches discussed above, either suffer from limited switching performance,

high complexity, or out-of-sequence forwarding. These drawbacks then raise the

question, can a load-balancing Clos-network switch achieve high switching performance,

low configuration complexity, and in-sequence cell forwarding without resorting to

memory speedup?

In this dissertation, we aim at answering this question by proposing three

load-balancing Clos-network switches: A split-central-buffered Load-Balancing Clos-

3



network (LBC) switch, ThRee-stage Clos-network swItch with queues at the middle

stage and DEtermiNisTic scheduling (TRIDENT), and VINE: Load-Balancing

Clos-Network Switch with Virtual Input-Module Output Queues at Central Stage.

4



CHAPTER 2

A SPLIT-CENTRAL-BUFFERED LOAD-BALANCING

CLOS-NETWORK SWITCH WITH IN-ORDER FORWARDING

2.1 Introduction

In this chapter we propose a split-central-buffered Load-Balancing Clos-network

(LBC) switch. The switch has a split central module and queues in between. The

switch employs predetermined and periodic interconnection patterns to interconnect

the inputs and outputs of the switch modules. The switch load balances the incoming

traffic and switches the cells towards the destined outputs, both with minimum

configuration complexity. The result is a switch that attains high throughput under

admissible traffic with independent and identical distribution (i.i.d.) and uses a

configuration scheme with O(1) complexity. The switch also adopts an in-sequence

forwarding mechanism at the input queues to keep cells in sequence despite the

presence of buffers between the split CMs.

In summary, the contributions of this chapter are: 1) the proposal of a

configuration scheme for a split-central-buffered load-balancing switch such that the

attained throughput is 100% under admissible traffic while having O(1) scheduling

complexity, 2) the proposal of an in-sequence mechanism for forwarding of cells in

sequence throughout the switch, 3) presentation of throughput analysis of the LBC

switch for each of the stages that shows that the switch achieves 100% throughput

under i.i.d. admissible traffic, and proof of the in-sequence capability of the proposed

in-sequence forwarding mechanism.

The remainder of this chapter is organized as follows: In Section 2.2, we

introduce and describe the LBC switch. In Section 2.3, we analyze the throughput

performance of LBC. In Section 2.4, we analyze the in-sequence forwarding property
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of the LBC switch. In Section 2.5, we present a simulation study on the performance

of LBC. In Section 2.6, we present our conclusions.

2.2 Switch Architecture

The LBC switch has N inputs and N outputs, each denoted as IP (i, s) and OP (j, d),

respectively, where 0 ≤ i, j ≤ k − 1, 0 ≤ s, d ≤ n − 1, and N = nk. Figure 2.1

shows the architecture of the LBC switch. This switch has k n×m IMs and k m×n

OMs. Each central module is split into two modules called central-input and -output

modules, denoted as CIMs and COMs, respectively. The switch has m CIMs and the

same number of COMs. Each CIM and COM is a k × k switch. In the remainder of

this chapter, we set n = k = m for symmetry and cost-effectiveness. The IMs, CIMs,

and COMs are bufferless crossbars while the OMs are buffered ones.

The use of a split central module on this switch enables preserving staggered

symmetry and in-order delivery [31] by using a pre-determined configuration in the

IMs, CIMs, and COMs with a mirror sequence between CIMs and COMs. The

staggered symmetry and in-order delivery refers to the fact that at time slot t, IP (i, s)

is connected to COM(r), which in turn is connected to OM(j). In the next time

slot (t + 1), IP (i, s) is connected to COM((r + 1) mod m), which is connected

to OM(j). This property enables the configuration of IMs/CIMs and COMs to be

easily represented with a pre-determined compound permutation that repeats every

k time slots. This property also ensures that cells experience the same amount of

delay for uniform traffic and the incorporation of a simple in-sequence mechanism.

A switch with queues between IMs and CMs but without a split central module may

require more complex load balancing and routing configurations to achieve the same

objective.

Each input port hasN virtual output queues (VOQs), denoted as V OQ(i, s, j, d),

to store cells destined to output port d at OM(j). The combination of IMs and CIMs
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form a compound stage, called the IM-CIM stage. The COMs and OMs operate

as single stages. There are queues placed between CIMs and COMs to store cells

coming from an IM and destined to OMs. These central queues may be implemented

as virtual output port queues (VOPQs), as shown in Figure 2.2(a). Each VOPQ,

denoted as V OPQ(r, p, j, d), stores cells coming for OP (j, d) through LCIM(r, p). As

an alternative, to reduce the number of VOPQs for a large switch, we consider the

use of virtual output module queues (VOMQs) instead, as shown in Figure 2.2(b).

A VOMQ, denoted as V OMQ(r, p, j), stores cells for all OPs at OM(j). Each of

these queues stores cells coming from LCIM(r, p) and destined to OM(j). Compared

to VOPQs, VOMQs introduce the possibility of cells experiencing head-of-line (HoL)

blocking. However, as we show in Section 2.2.6, such HoL is not a concern when

the switch is loaded with admissible traffic. The remainder of this chapter considers

VOMQs, as this option stresses the load-balancing feature of LBC.

Every CIM has k LCIM ports. Every LCIM(r, p) of a CIM is connected to one

input IC(r, p) of the corresponding COM. The LCIM includes a set of k VOMQs,

one per OM. Each OP has m crosspoint buffers, each denoted as CB(r, j, d). A

flow control mechanism operates between VOMQs and VOQs, and between CBs and

VOMQs to avoid buffer overflow and this is described in Section 2.2.5. The VOMQs

are off-chip. The switch has N LCIMs, and therefore N sets of k VOMQs each. Table

2.1 lists the notations used in the description of the LBC switch.

The following is a walk-through description of how the switch operates: After

arriving at the IP, a cell is placed at the VOQ corresponding to its destination OP.

The IP arbiter selects a VOQ to be served in a round-robin manner. When a VOQ is

selected, the HoL cell is forwarded to a VOMQ at the LCIM identified by the current

configuration of the IM and CIM. The VOMQ is the one associated with the OM that

includes the destination OP of the cell. When the configuration of the COM permits

forwarding to the destination OM, the cell is forwarded to the OM and stored at

7



the crosspoint buffer (CB) allocated for cells from the source COM. The OP arbiter

selects CBs based on a round-robin manner. Upon selection of a CB, the HOL cell is

forwarded from the CB to the OP.

Table 2.1 Notations used in the Description of the LBC Switch

Term Description

N Number of input/output ports.

n Number of input/output ports for each IM and OM.

m Number of CIMs and COMs.

k Number of IMs and OMs, where k = N
n

.

IP (i, s) Input port s of IM(i), where 0 ≤ i ≤ k − 1, 0 ≤ s ≤ n− 1.

IM(i) Input module i.

OM(j) Output module j, where 0 ≤ j ≤ k − 1.

CIM(r) Central Input Module r, where 0 ≤ r ≤ m− 1.

COM(r) Central Output Module r.

V OQ(i, s, j, d) VOQ at IP (i, s) that stores cells destined to OP (j, d), where 0 ≤ d ≤ n− 1.

LIM(i, r) Output link of IM(i) connected to CIM(r).

LCIM(r, p) Output port p of CIM(r), where 0 ≤ p ≤ k − 1.

IC(r, p) Input port p of COM(r).

LCOM(r, j) Output link of COM(r) connected to OM(j).

V OMQ(r, p, j) VOMQ at output of CIMs that stores cells destined to OM(j).

V OPQ(r, p, j, d) VOPQ at output of CIMs that stores cells destined to OP (j, d).

CB(r, j, d) Crosspoint buffer at OM(j) that stores cells going through COM(r) and destined to OP (j, d).

OP (j, d) Output port d at OM(j).

2.2.1 Module Configuration

The IMs and CIMs in the IM-CIM stage are configured based on a pre-determined

sequence of disjoint permutations, applying one permutation every time slot. We

call a permutation disjoint from the set of permutations if an input-output pair

is interconnected in one and only one of the permutations. This pre-determined

sequence of permutations repeats every k time slots. Cells at the inputs of IMs are
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Figure 2.2 Split-central buffers with: (a) VOPQs and (b) VOMQs.
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forwarded to the outputs of the CIMs determined by the configuration of that time

slot. A cell is then stored in the VOMQ corresponding to its destination OM.

The COMs follow a configuration similar to that of the CIMs, but in a mirror

(i.e., reverse order) sequence. The HoL cell at the VOMQ destined to OM(j) is

forwarded to its destination when the input of the COM is connected to the input

of the destination OM(j). Else, the HoL cell waits until the required configuration

takes place. The forwarded cell is queued at the CB of its destination OP once it

arrives in the OM. At the OP, a CB (i.e., HoL cell of that queue) is selected from all

non-empty CBs by an output arbitration scheme.

The specific configurations of the bufferless modules, IM, CIM, COM, and OM

are as follows.

At time slot t, IM(i) is configured to interconnect input IP (i, s) to LIM(i, r),

with:

r = (s+ t) mod m (2.1)

Similarly, CIM input LIM(i, r) is interconnected to CIM output LCIM(r, p) at

time slot t with:

p = (i+ t) mod k (2.2)

The configuration of COMs is similar to that of IMs, but in a reverse sequence.

At time slot t, COM input IC(r, p) is interconnected to output LCOM(r, j) with:

j = (p− t) mod k (2.3)

Recall that a mod k = a+ (mutiples of k) > 0 when a < 0 (e.g., −2 mod 5 = 3)

Round-robin could also be used to select VOMQs and configure COMs. OM

buffers allow forwarding a cell from a VOMQ to the destination output without

requiring port matching [48].
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Figure 2.3 shows an example of the configuration of a 9 × 9 LBC switch. As

k = 3, the example shows the configuration of three consecutive time slots, after

which the configuration pattern repeats. Because similar connections are set for all

the IMs and CIMs and a different connection pattern is set for all COMs at each time

slot, Table 2.2 describes the configuration on the figure for IM(0), CIM(0), and

COM(0) at each time slot. In this example, we use → to denote an interconnection.

Table 2.2 Example of Configuration of Modules in a 9 × 9 LBC Switch

Configuration

Time slot IM(0) CIM(0) COM(0)

t = 0

IP (0, 0)→ LIM(0, 0) LIM(0, 0)→ LCIM(0, 0) Ic(0, 0)→ LCOM(0, 0)

IP (0, 1)→ LIM(0, 1) LIM(1, 0)→ LCIM(0, 1) Ic(0, 1)→ LCOM(0, 1)

IP (0, 2)→ LIM(0, 2) LIM(2, 0)→ LCIM(0, 2) Ic(0, 0)→ LCOM(0, 2)

t = 1

IP (0, 0)→ LIM(0, 1) LIM(0, 0)→ LCIM(0, 1) Ic(0, 0)→ LCOM(0, 2)

IP (0, 1)→ LIM(0, 2) LIM(1, 0)→ LCIM(0, 2) Ic(0, 1)→ LCOM(0, 0)

IP (0, 2)→ LIM(0, 0) LIM(2, 0)→ LCIM(0, 0) Ic(0, 2)→ LCOM(0, 1)

t = 2

IP (0, 0)→ LIM(0, 2) LIM(0, 0)→ LCIM(0, 2) Ic(0, 0)→ LCOM(0, 1)

IP (0, 1)→ LIM(0, 0) LIM(1, 0)→ LCIM(0, 0) Ic(0, 1)→ LCOM(0, 2)

IP (0, 2)→ LIM(0, 1) LIM(2, 0)→ LCIM(0, 1) Ic(0, 2)→ LCOM(0, 0)

2.2.2 Arbitration at Output Ports

An output port arbiter selects a HoL cell from the crosspoint buffers in a round-robin

fashion. Because there is one cell from each flow at these buffers, out-of-sequence

forwarding is not a concern at this stage. We discuss this case in Section 2.4. Here, a

flow is the set of cells from IP (i, s) destined to OP (j, d). The round-robin schedule

ensures fair service for different flows.
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Figure 2.3 Configuration example of LBC switch modules.

2.2.3 In-sequence Cell Forwarding Mechanism

The proposed in-sequence forwarding mechanism for the LBC switch is based on

holding cells of a flow at the VOQs so that no younger cell is forwarded from VOMQs

to OPs before any given cell of the same flow. The policy used for holding cells at an

IP is as follows: No cell of flow y at the IP is forwarded to a VOMQ for δk time slots

after cell τ of the same flow has been forwarded to a VOMQ, whose occupancy is δ

cells at the time of arrival at the VOMQ. For a cell that arrives at an empty VOMQ,

δ = 0. The flow control mechanism keeps IPs informed about VOMQ occupancy as

discussed in Section 2.2.5.

Figure 2.4 shows an example of this forwarding mechanism for flow A. Cells

from flow A are denoted as At, where t is the cell arrival time. In this example,

cells arrive at time slots 1, 2, 4, and 5, and they are denoted as A1, A2, A4, and A5,

respectively. VOMQ(k) denotes the kth VOMQ to where cells are forwarded. Here,
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the “X” mark indicates that the buffer at VOMQ(k) is occupied by cells from other

flows. Assuming k = 3 and no other cell arrival or departure during this time period,

A1 is the first cell of the flow with arrival time t = 1 and is sent to VOMQ(1) at time

slot t = 2. Because VOMQ(1) has no backlogged cells before A1, there is no waiting

time for A2. Therefore, A2 is sent to VOMQ(2) at t = 3. A2 finds three cells already

queued, so no cell from this flow is forwarded in 3 ∗ 3 = 9 time slots, or from time

slots t = 4 to t = 12. After that, A4 is sent to VOMQ(3) at t = 13. This cell finds

no other cell, so A5 is sent to VOMQ(1) at t = 14.

2.2.4 Implementation of In-sequence Mechanism

Each IP has an input port counter (IPC) for each VOMQ to which it connects. IPCs

keep track of the number of cells at these VOMQs. Each IP also has a hold-down

timer for each VOQ. The timer is used by the in-sequence forwarding mechanism. The

timer is triggered by the IPC count of the VOMQ where the last cell was forwarded.

When a cell is forwarded from a VOQ to VOMQ, and the IPC is updated to σ, this

update sets the hold-down timer for that VOQ for (σ−1)k time slots, where δ = σ−1.

A4 A2 A1A5

VOMQ(1)

VOMQ(2)

VOMQ(3)

t = 3

t = 2

t = 14

t = 13
XXX

X: cell of a flow different from flow A

Arrival time

Figure 2.4 Example of the operation of the proposed in-sequence forwarding
mechanism.
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2.2.5 Flow Control

There is a flow control mechanism between VOMQs and IPs and another between

CBs and VOMQs that extends to IPs. There are fixed connections between each

VOMQ and its k corresponding IPs and between each CB and its corresponding k

ICs. Each IP has mk = N occupancy counters, IPCs, one per VOMQ. Each VOMQ

updates the corresponding k IPCs about its occupancy. A VOMQ uses two thresholds

for flow control; pause (Tpv) and resume (Trv), where Tpv > Trv, in number of cells.

When the occupancy of VOMQ, |V OMQ|, is larger than Tpv, the VOMQ signals the

corresponding IPs to pause sending cells to it. When the |V OMQ| < Trv, the VOMQ

signals the corresponding IPs to resume sending cells to it. Here, Tpv is such that

CV OMQ−Tpv ≥ Dv, where CV OMQ is the size of the VOMQ and Dv is the flow-control

information delay.

Similar to VOMQs, CBs use two thresholds; pause (Tpc) and resume (Trc), where

Tpc > Trc, and Tpc is such that CCB−Tpc ≥ Dc, where CCB is the capacity of a CB and

Dc is the flow-control information delay between a CB and corresponding IPs. These

CB thresholds work in a similar way as for VOMQs. Different from IPs, VOMQs have

a binary flag to pause/resume forwarding of cells to CBs. When the occupancy of a

CB, |CB|, becomes larger than Tpc, the CB informs the corresponding VOMQs, and

in turn VOMQs inform corresponding IPs to pause forwarding cells to the VOMQ

for the congested OP. With IPs paused for traffic to a CB, traffic already at VOMQs

can still be forwarded to CBs as long as |CB| is such that Tpc < |CB| < CCB. When

|CB| < Trc, the CB signals the corresponding VOMQs to resume forwarding, and in

turn, VOMQs signal source IPs to resume forwarding cells for that destination OP.

2.2.6 Avoiding HoL Blocking in LBC with VOMQs

Concerns of HoL blocking, owning to the aggregation of traffic going to different OPs

at the same OM at a VOMQ, may arise. However, one must note that this HoL
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blocking may occur if and only if a CB gets congested. Here, we argue that the

efficient load-balancing mechanism and the use of one CB for each COM at an OP

avoids congestion of CBs even in the presence of heavy (but admissible) traffic. We

also show that CB occupancy does not build up. Let us consider the input traffic

matrix, R1, with input load, λi,s,j,d, which gets load-balanced to CIMs at rate of

λi,s,j,d
m

. The aggregate traffic arrival rate at an LCIM from all IMs, RLCIM , is:

RLCIM =
1

m

k∑
i=0

λi,s,j,d (2.4)

Therefore, the traffic arrival rate to a CB from COMs, RCB, is:

RCB =
1

mk

k∑ k∑
i=0

λi,s,j,d (2.5)

To test the growth of CBs, we consider three stressing traffic scenarios: a) All IPs in

the switch have traffic only for OPs in an OM; b) all IPs in an IM forward traffic to

all OPs in an OM; and c) a single flow, with a large rate, going from an IP to a single

OP.

Then, for a) the largest arrival rate at IPs while being admissible is:

λi,s,j,d =
1

N
(2.6)

Substituting (2.6) into (2.5) and m = n = k yields:

RCB =
1

k2

k∑ k∑
i=0

1

N
=

1

N
=

1

k2
(2.7)

Because round-robin is used as selection policy at an OP, the service rate, SCB, of a

CB would be:

1

k
≤ SCB ≤ 1

Yet, while considering the worst case scenario, or:

SCB =
1

k
(2.8)
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Therefore, CB occupancy does not grow because SCB > RCB.

For b), the arrival rate at IPs for admissibility is:

λi,s,j,d =
1

k
(2.9)

Substituting (2.9) into (2.5) yields:

RCB =
1

m

1

k

k∑ k∑
i=0

1

k
=

1

k
(2.10)

The service rate would be the same as in (2.8). Therefore, the CB would not become

congested as RCB = SCB.

For c), the arrival rate at the IP:

λi,s,j,d = 1 (2.11)

The traffic arrival rate to an LCIM is:

RLCIM =
1

m
λi,s,j,d =

1

m
(2.12)

The traffic arrival rate to a CB from COMs is:

RCB =
1

m

1

k

k∑
=

1

m
=

1

k
(2.13)

Therefore, the CB would not become congested because RCB ≤ SCB for admissible

traffic.

2.3 Throughput Analysis

In this section, we analyze the performance of the proposed LBC switch. Let us

denote the traffic coming to the IM-CIM stage, the COM stage, the OMs, OPs, and
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the traffic leaving LBC as R1, R2, R3, R4, and R5, respectively. Figure 2.1 shows

these analysis points. Here, R1, R2, and R3 are N × N matrices, R4 comprises N

m× 1 column vectors, and R5 comprises N scalars.

The traffic from input ports to the IM-CIM stage, R1, is defined as:

R1 = [λu,v] (2.14)

Here, λu,v is the arrival rate of traffic from input u to output v, where

u = ik + s (2.15)

v = jm+ d (2.16)

and 0 ≤ u, v ≤ N − 1.

In the following analysis, we consider admissible traffic, which is defined as:

N−1∑
u=0

λu,v ≤ 1,
N−1∑
v=0

λu,v ≤ 1 (2.17)

under i.i.d. traffic conditions.

The IM-CIM stage of the LBC switch balances the traffic load coming from the

input ports to the VOMQs. Specifically, the permutations used to configure the IMs

and CIMs interconnect the traffic from an input to k different CIMs, and then to the

VOMQs connected to these CIMs.

R2 is the traffic directed towards COMs and it is derived from R1 and the

permutations of IMs and CIMs. The configuration of the combined IM-CIM stage

at time slot t that connects IP (i, s) to LCIM(r, p) are represented as an N × N

permutation matrix, Π(t) = [πu,υ], where r and p are determined from (2.1) and

(2.2) and the matrix element:
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πu,υ =


1 for any u, υ = rk + p

0 elsewhere.

The configuration of the compound IM-CIM stage can be represented as a

compound permutation matrix, P1, which is the sum of the IM-CIM permutations

over k time slots as follows,

P1 =
k∑

Π(t) (2.18)

Because the configuration is repeated every k time slots, the traffic load from

the same input going to each VOMQ is 1
k

of the traffic load of R1. Therefore, a row of

R2 is the sum of the row elements of R1 at the non zero positions of P1, normalized

by k. This is:

R2 =
1

k
((R1 ∗ 1) ◦P1) (2.19)

where 1 denotes an N × N unit matrix and ◦ denotes element/position wise

multiplication.

There are k non-zero elements in each row of R2. Here, R2 is the aggregate

traffic in all the VOMQs destined to all OPs. This matrix can be further decomposed

into k N × N submatrices, R2(j), each of which is the aggregate traffic at VOMQs

designated for OM(j).

R2 =

j=k−1∑
j=0

R2(j) (2.20)

where j is obtained from (2.16) for all d. The configuration of the COM stage at time

slot t that connects Ic(r, p) to LCOM(r,j) can be represented as an N ×N permutation
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matrix, Φ(t) = [φu,v], and the matrix element;

φu,v =


1 for any u, v = jk + r

0 elsewhere.

(2.21)

Similarly, the switching at the COM stage is represented by a compound

permutation matrix P2, which is the sum of k permutations of the COM stage over

k time slots. Here

P2 =
k∑

Φ(t) (2.22)

The output traffic of COMs going to different OMs is described by matrix R3(j),

which is defined as

R3(j) = R2(j) ◦P2 (2.23)

where j is obtained from (2.16) for all d. The traffic destined to OP (j, d) at OM(j),

R3(j, d), is obtained by extracting the traffic elements from R3(j), or:

R3(j) =
d=k−1∑
d=0

R3(j, d) (2.24)

where d is obtained from (2.16) for the different j.

Ds is an m×N matrix, built by concatenating N k× 1 vector of all ones, ~1, as:

Ds = [~1, · · · ,~1] (2.25)

~A is a 1×k row vector, built by setting the first element to 1 and every other element

to 0, or:

~A = [1 · · · 0] (2.26)

~As is an N × 1 column vector, built by concatenating k ~A and taking the transpose,

or:

~As = [ ~As1 , · · · , ~Ask ]T (2.27)
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where ~As1 = ~Ask = ~A, such that

~As = [ ~A, · · · , ~A]T (2.28)

The traffic queued at the CB of an OP, R4(v), is the multiplication of Ds, R3(j, d),

and ~As, or:

R4(v) = Ds ∗R3(j, d) ∗ ~As (2.29)

The traffic leaving an OP, R5(v), is:

R5(v) = (~1)T ∗R4(v) (2.30)

Therefore, R5(v) is the sum of the traffic leaving OP (v).

Equations (2.19), (2.29), and (2.30) show that the admissibility conditions in

(2.17) are satisfied by the traffic at the VOMQ, CBs, and OP. Because R2, R4(v),

and R5(v) meet the admissibility conditions in (2.17), this implies that the sum of the

traffic load at each V OMQ, CB, and OP does not exceed their respective capacities.

From (2.29), we can deduce that R4 is equal to the input traffic R1, or:

R4(v) = R1(v) ∀ v (2.31)

From the admissibility of R2, R4(v), R5(v) and (2.31), we can infer that the input

traffic is successfully forwarded to the output ports.

As discussed in Section 2.2.2, the output arbiter selects a flow in a round-robin

fashion and if no cell of a flow is selected, the OP arbiter moves to the next flow.

This implies the queues are work conserving which ensures fairness and that cells

forwarded to OPs are successfully forwarded out of OPs. Hence, from (2.30), we can

infer that R5(v) is equal to R4(v), or:

R5(v) = (~1)T ∗R4(v) ∀ v (2.32)
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From (2.31) and (2.32), we can conclude that LBC successfully forwards all traffic at

IPs out of OPs.

The following example shows the different traffic matrices for a 4×4 (k = 2)

LBC switch. Let the input traffic matrix be

R1 =



λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3


First, R1 is decomposed into R2 at the IM-CIM stage. From (2.18), the

compound permutation matrix for the IM-CIM stage for this switch is:

P1 =



1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1


Using (2.19), we get:

R2 = 1
2



∑3
i=0 λ0,i 0 0

∑3
i=0 λ0,i

0
∑3

i=0 λ1,i
∑3

i=0 λ1,i 0

0
∑3

i=0 λ2,i
∑3

i=0 λ2,i 0∑3
i=0 λ3,i 0 0

∑3
i=0 λ3,i


From (2.20), the traffic matrix at VOMQs destined for the different OMs are:

R2(0) = 1
2



λ0,0 + λ0,1 0 0 λ0,0 + λ0,1

0 λ1,0 + λ1,1 λ1,0 + λ1,1 0

0 λ2,0 + λ2,1 λ2,0 + λ2,1 0

λ3,0 + λ3,1 0 0 λ3,0 + λ3,1
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R2(1) = 1
2



λ0,2 + λ0,3 0 0 λ0,2 + λ0,3

0 λ1,2 + λ1,3 λ1,2 + λ1,3 0

0 λ2,2 + λ2,3 λ2,2 + λ2,3 0

λ3,2 + λ3,3 0 0 λ3,2 + λ3,3


The rows of R2(v) represent the traffic from IPs, and the columns represent

V OMQ(r, p, j) at IC(r, p). From (2.22), the compound permutation matrix for the

COM stage for this switch is:

P2 =



1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1


From (2.23) and (2.24), the traffic forwarded to an OP is:

R3(0, 0) = 1
2



λ0,0 0 0 λ0,0

0 λ1,0 λ1,0 0

0 λ2,0 λ2,0 0

λ3,0 0 0 λ3,0



R3(0, 1) = 1
2



λ0,1 0 0 λ0,1

0 λ1,1 λ1,1 0

0 λ2,1 λ2,1 0

λ3,1 0 0 λ3,1



R3(1, 0) = 1
2



λ0,2 0 0 λ0,2

0 λ1,2 λ1,2 0

0 λ2,2 λ2,2 0

λ3,2 0 0 λ3,2
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R3(1, 1) = 1
2



λ0,3 0 0 λ0,3

0 λ1,3 λ1,3 0

0 λ2,3 λ2,3 0

λ3,3 0 0 λ3,3


The rows of R3(j, d) represent the traffic from V OMQ(r, p, j) at IC(r, p) and the

columns represent LCOM(r, j). DS and ~As are obtained from (2.25) and (2.28),

respectively, as:

Ds =

1 1 1 1

1 1 1 1


~As = [1 0 1 0]T

The traffic forwarded from CBs to the corresponding OP is obtained from (2.29):

R4(0) =
1

2

∑3
i=0 λi,0∑3
i=0 λi,0



R4(1) =
1

2

∑3
i=0 λi,1∑3
i=0 λi,1



R4(2) =
1

2

∑3
i=0 λi,2∑3
i=0 λi,2



R4(3) =
1

2

∑3
i=0 λi,3∑3
i=0 λi,3
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The rows of R4(v) represent the traffic from COM(r). Using (2.30), we obtain the

sum of the traffic leaving the OP, or:

R5(0) =
3∑
i=0

λi0

R5(1) =
3∑
i=0

λi1

R5(2) =
3∑
i=0

λi2

R5(3) =
3∑
i=0

λi3

We use the traffic analysis of the previous section to demonstrate that the LBC

switch achieves 100% throughput under admissible traffic. This demonstration is

provided in Appendix 2.3.1.

2.3.1 100% Throughput

In this section we prove that LBC achieves 100% throughput by using the analysis

presented on Section 2.3 and the concept of queue stability. A switch is defined as

stable for a traffic pattern if the queue length is bounded and a switch achieves 100%

throughput if it is stable for admissible i.i.d. traffic [57, 58]. With this, we set the

following theorem:

Theorem 1. LBC achieves 100% throughput under admissible i.i.d traffic.

Proof: Here, we consider the queue to be weakly stable if the drift of the queue

occupancy from the initial state is a finite integer ε ∀ t as limt→∞. Using the

definition above, we show that the queue length of VOQs, VOMQs, and CBs are
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weakly stable under i.i.d. traffic, and hence, achieves 100% throughput under that

traffic pattern.

Let us represent the queue occupancy of VOQs at time slot t, N1(t) as:

N1(t) = N1(t− 1) + A1(t)−D1(t) (2.33)

where A1(t) is the packet arrival matrix at time slot t to VOQs and D1(t) is the

service rate matrix of VOQs at time slot t. Solving (2.33) with an initial condition

N1(0), recursively yields:

N1(t) = N1(0) +
t∑

γ=0

A1(γ)−
t∑

γ=0

D1(γ) (2.34)

Let us consider s1u,v(t) as the service rate received by the VOQ at IP (u) for OP (v)

at time slot t or: 
1

N
≤ s1u,v(t) ≤ 1 for δ = 0

1

δNk
≤ s1u,v(t) ≤

1

δk
for σ > 1

(2.35)

Another way to express D1(t) is:

D1(t) = [s1u,v(t)] (2.36)

and recalling R1 as the aggregate traffic arrival to VOQs or:

R1 =
t∑

γ=0

A1(γ) (2.37)

Let us consider the worse case scenario in (2.35). Substituting (2.35) into (2.36), and

(2.36) and (2.37) into (2.34), yields:

N1(t) =


N1(0) + R1 −

t

N
∗ 1 for δ = 0

N1(0) + R1 −
t

δNk
∗ 1 for δ > 1

(2.38)
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From (2.38), we obtain:
lim
t→∞

R1

t
− 1

N
∗ 1 ≤ ε <∞ for δ = 0

lim
t→∞

R1

t
− 1

δNk
∗ 1 ≤ ε <∞ for δ > 1

(2.39)

where ε is a finite real number that determines the drift from the initial occupancy.

From the admissibility condition of R1, it is easy to see that for any value of t, (2.39)

is finite. Hence, from the admissibility of R1, (2.38) and (2.39), we conclude that

occupancy of VOQ is weakly stable.

�

Now we prove VOMQs stability. As before, the queue occupancy matrix of

VOMQs at time slot t can be represented as:

N2(t) = N2(t− 1) + A2(t)−D2(t) (2.40)

where A2(t) is the arrival matrix at time slot t to VOMQs and D2(t) is the service

rate matrix of VOMQs at time slot t. Solving (2.40) recursively with consideration

of an initial condition for N2(t), yields:

N2(t) = N2(0) +
t∑

γ=0

A2(γ)−
t∑

γ=0

D2(γ) (2.41)

Because a VOMQ is serviced at least once every k time slots, the service rate of the

VOMQ at IC(r, p) for OP (v) at time slot t, d2µ,v(t) is:

d2µ,v(t) =
1

k
∀ µ and v

Then, the service matrix of VOMQs is:

D2(t) = [d2µ,v(t)] (2.42)
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and representing R2 as the aggregate traffic arrival to VOMQs or:

R2 =
t∑

γ=0

A2(γ) (2.43)

Substituting (2.42) and (2.43) into (2.41) gives:

N2(t) = N2(0) + R2 −
1

k
P1 (2.44)

R2 −
1

k
P1 ≤ ε <∞ (2.45)

Recalling that R2 is admissible, per the discussion in Section III.A, and by

substituting P1 and R2 into (2.45), it is easy to see that ε is finite. Hence, from

(2.44) and (2.45), we conclude that the occupancy of VOMQ is weakly stable.

�

Now we prove the stability of CBs. The queue occupancy matrix of CBs at time

slot t can be represented as:

N3(t) = N3(t− 1) + A3(t)−D3(t) (2.46)

where A3(t) is the packet arrival matrix at time slot t CBs, and D3(t) is the service

rate matrix of CBs at time slot t. Solving (2.46) recursively as before yields:

N3(t) = N3(0) +
t∑

γ=0

A3(γ)−
t∑

γ=0

D3(γ) (2.47)

Because a CB is serviced at least once every k time slots. Hence, the service rate of

the CB at OP (v) at time slot t, d3v(t) is:

1

k
≤ d3v(t) ≤ 1

and service matrix of CBs is:

D3(t) = [d3v(t)] (2.48)
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Similarly, the aggregate traffic arrival to the CB or:

R4 =
t∑

γ=0

A3(γ) (2.49)

Let us assume d3v(t) = 1
k
∀ v in (2.48), which is the worst case scenario at which a

CB gets served once every k time slots. Substituting (2.48) and (2.49) into (2.47)

gives:

N3(t) = N3(0) + R4 −
1

k
∗~1 (2.50)

where

R4 −
1

k
∗~1 ≤ ε <∞ (2.51)

With R4 being admissible, as discussed in Section III.A, and by substituting R4 into

(2.51), it is easy to see that ε is finite. Hence, from (2.50) and (2.51), we conclude

that the occupancy of CB is also weakly stable.

We have shown in Section III.A that R2, R4, R5 are admissible. We have also

shown in Section III.A that the traffic forwarded to IPs, R1, successfully arrives at

the CBs, R4, and is successfully forwarded out the OP, R5. In this section, we have

shown that the queue occupancy matrix at time slot t is finite because the drift from

the initial queue occupancy matrix is bounded.

Therefore, the LBC switch is stable and can achieve 100% throughput under

admissible i.i.d traffic.

�

This completes the proof of Theorem 1.

�
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2.4 Analysis of In-Sequence Service

In this section, we demonstrate that the LBC switch forwards cells in sequence

through the proposed in-sequence forwarding mechanism.

Table 2.3 lists the definition of terms used in the discussion of the properties of

the proposed LBC switch. Here, cy,τ (i, s, j, d) denotes the τth cell of traffic flow y,

which comprises cells going from IP (i, s) to OP (j, d) with arrival time tx. In addition,

tay,τ denotes the arrival time of cy,τ , and q1y,τ , q2y,τ , and q3y,τ denote the queuing delays

experienced by cy,τ at V OQ(i, s, j, d), V OMQ(r, p, j), and CB(r, j, d), respectively.

The departure times of cy,τ from these queues are denoted as d1y,τ , d2y,τ , and d3y,τ ,

respectively. In this chapter, we consider admissible traffic as defined in (2.17).

Here, we claim that the LBC switch forward cells in sequence to the output

ports, through the following theorem.

Theorem 2. For any two cells cy,τ (i, s, j, d) and cy,τ ′(i, s, j, d), where τ < τ ′,

cy,τ (i, s, j, d) departs the destination output port before cy,τ ′(i, s, j, d).

Table 2.3 Notations for In-sequence Analysis

cy,τ The τth cell of flow y from IP (i, s) to OP (j, d).

tay,τ Arrival time of cy,τ in V OQ(i, s, j, d) at IP (i, s).

q1y,τ Queuing delay of cy,τ at V OQ(i, s, j, d).

d1y,τ Departure time of cy,τ from V OQ(i, s, j, d) at IP (i, s).

q2y,τ Queuing delay of cy,τ at V OMQ(r, p, j).

d2y,τ Departure time of cy,τ from V OMQ(r, p, j) at LCOM(r, j).

q3y,τ Queuing delay of cy,τ at CB(r, j, d) of OP (j, d).

d3y,τ Departure time of cy,τ from CB(r, j, d).

This theorem is sectioned into the following lemmas.
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Lemma 1. For a single flow traversing the LBC switch, any cell of the flow

experiences the same delay. This is, let td be the delay experienced by a cell. Then,

for any cell traversing the LBC switch, tdy,τ = γ, where γ is a positive constant.

A constant delay for each cell implies that cells depart the switch in the same

order they arrived under the conditions of this lemma.

We analyze first the scenario of a single flow, i.e., y, traversing the switch,

whose cells arrive back to back, one each time slot. For simplicity but without losing

generality, let us also consider empty queues as an initial condition.

Proof:

For any cy,τ , the total delay time is defined as:

tdy,τ = q1y,τ + q2y,τ + q3y,τ (2.52)

in number of time slots. Here we consider fixed arbitration time at each queue and

this delay is included in the queuing delay. We are then interested in finding q1y,τ ,

q2y,τ , and q3y,τ .

For q1y,τ , under a single-flow scenario, let us consider any two cells of cy,τ with

arrival times k time slots apart, cy,τ−2k and cy,τ−k, they are forwarded to the same

VOMQ. Then, cy,τ is held at the VOQ (owing to the mechanism to keep cells in

sequence at the VOQ) if cy,τ−k finds one or more cells in the VOMQ, q1y,τ increases.

In this case, the empty queue initial condition makes the waiting factor δ = 0.

On the other hand, an OM is connected to a VOMQ every k time slots as per

the configuration scheme of COM. Therefore,

q2y,τ ≤ k − 1 (2.53)

This queuing delay is smaller than the arrival gap between these two cells as:

ay,τ−2k − ay,τ−k = k time slots
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Therefore, cy,τ is not backlogged further in VOMQ and there is no impact on

the time the cell is held in a VOQ, such that:

q1y,τ = 0 ∀ y, τ

For q2y,τ , let us now assume that cy,τ−k arrives at a time that it has to wait γ

time slots, where 1 ≤ γ ≤ k, to be forwarded to the destination OM, or

q2y,τ−k = γ

Then when cy,τ arrives, k time slots later, it finds exactly the same configuration in

the COM as found by cy,τ−k. Because cells arrive consecutively,

q2y,τ = γ ∀ τ

For q3y,τ , because there is a single flow traversing the switch and the configu-

ration scheme followed by COM, one cell arrives in the CB each time slot and one

cell departs OP at the same time slot. Therefore, no cell is backlogged in this case

and

q3y,τ = 0

From (2.52):

tdy,τ = γ ∀ τ

for empty queues as initial condition.

It is then easy to see that for any queued cells, q1y,τ would be increased by δk

time slots, and q2y,τ as well as q3y,τ remain unchanged.

Therefore, all cells of the flow experience the same delay and are forwarded in

sequence.
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Lemma 2. For any number of flows traversing the LBC switch, cells from the same

flow arrive at the OM in sequence.

Proof: Here, we consider the following traffic scenario: There are k flows

coming from different IPs, each from a different IM. In each of the flows, cells arrive

back to back and are destined to the same OP. Furthermore, the flows have one time

slot difference in their arrival times such that the cells with the same sequence number

of each different flow are stored in the same VOMQs. Here, each flow consists of k

cells. Table 2.4 shows an example of the arrival pattern of this traffic scenario for

three flows. The table shows the arrival of k cells from k flows at different IPs and

IMs that arrive at one time slot apart to enable these flows to be forwarded to the

same VOMQ, otherwise the flows would be forwarded to different VOMQs.

Table 2.4 Example of Back-to-back Arrivals of One Burst of k Flows

Cell arrival time

tx tx+1 tx+2 tx+3 tx+4

c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3

Table 2.5 shows that cells c1,1, c1,2, c1,3, c2,1, and c3,1 were successfully forwarded

to the VOMQ without any blocking. While the in-sequence mechanism holds back

the cells c2,2, c2,3, c3,2 and c3,3 to prevent out-of-sequence, because cells c2,1 and c3,1

were forwarded to a non-empty VOMQ.
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The configuration pattern used in the IMs and CIMs, and the in-sequence

mechanism determine the order in which cells arrive to the VOMQs. Table 2.5 shows

this order in our example.

Table 2.5 Time Slots in which Cells Arrive to VOMQs of a Single k-cell Burst

Time Slots cells arrive at the VOMQs

tx tx+1 tx+2 tx+3 tx+4 tx+5 tx+6 tx+7 tx+8 tx+9 tx+10 tx+11

c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3

In such arrival pattern, the departures from VOMQs follow the deterministic

configuration of the COMs. Table 2.6 shows the corresponding departures of the cells

from VOMQs of these three flows.

Table 2.6 Time Slots when Cells Depart VOMQs in Example of the In-sequence
Forwarding Mechanism

Cell departure time slots from VOMQs

tx tx+1 tx+2 tx+3 tx+4 tx+5 tx+6 tx+7 tx+8 tx+9 tx+10 tx+11 tx+12

c1,1 c1,2 c1,3

c2,1 c22 c2,3

c3,1 c3,2 c3,3

Table 2.6 shows that all the cells were forwarded out the VOMQ in the same

pattern they arrived and one cell each k time slots because the COM connects to the

OM once each k time slots.

Also, let us assume that the first cell of a flow at the LCIM arrives at least one

or more time slots before the configuration of the COM allows forwarding the cell to

its destination OM. Thus, cells may depart in the following or a few time slot after its
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arrival. A cell then may wait up to k−1 time slots for the designated interconnection

to take place before being forwarded to the OM.

Given k flows, with their τth cells being c1,τ to ck,τ , the arrival time of the first

arriving cell c1,τ is:

ta1,τ = tx (2.54)

The number of cells at the VOQ, N1(cy,τ ), upon the arrival of c1,τ is:

N1(c1,τ ) = 0 (2.55)

This condition holds because there is no cell at the VOQ when c1,τ arrives. Because

of (2.55), the queuing delay at the VOQ of c1,τ is:

q11,τ = 0 (2.56)

The departure time of a cell cy,τ from the VOQ is:

d1y,τ = tay,τ + q1y,τ (2.57)

Using (2.54) to (2.57), the departure time of c1,τ from the VOQ is:

d11,τ = tx + 1 (2.58)

Upon arriving at the VOMQ, c1,τ finds no cell ahead of it. Thus, the number of cells

at the VOMQ, N2(c1,τ ), upon the arrival of c1,τ is:

N2(c1,τ ) = 0 (2.59)

Based on the considered traffic pattern, c1,τ is stored in the VOMQ for additional

k − 1 time slots. Therefore,

q21,τ = k − 1 (2.60)
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The departure time of a cell cy,τ from the VOMQ is:

d2y,τ = d1y,τ + q2y,τ (2.61)

Using (2.58), (2.60), and (2.61), the departure time of c1,τ from the VOMQ is:

d21,τ = tx + k (2.62)

Let us consider now another cell from the same flow, c1,τ+θ, where 0 < θ < k,

with

ta1,τ+θ = tx + θ (2.63)

Upon the arrival of c1,τ+θ, there is no cell at the VOQ, or:

N1(c1,τ+θ) = 0 (2.64)

Because of (2.59) and (2.64), the queuing delay at the V OQ for c1,τ+θ is:

q11,τ+θ = 0 (2.65)

Using (2.57), (2.63), and (2.65), the departure time of c1,τ+θ from the VOQ is:

d11,τ+θ = tx + θ + 1 (2.66)

Upon arriving at the VOMQ, c1,τ+θ finds no cell ahead of it, or:

N2(c1,τ+θ) = 0 (2.67)

Because of the considered traffic, c1,τ+θ is queued extra k−1 time slots at the VOMQ,

hence:

q21,τ+θ = k − 1 (2.68)
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Using (2.61), and (2.66) to (2.68),

d21,τ+θ = tx + k + θ (2.69)

Using (2.62), therefore,

d21,τ+θ = d21,τ + θ (2.70)

In general, for cz,τ , where 1 < z ≤ k, the arrival time is

taz,τ = tx + (z − 1) (2.71)

and upon the arrival of cz,τ in the VOQ, there is no cell:

N1(cz,τ ) = 0 (2.72)

With (2.72),

q1z,τ = 0 (2.73)

Using (2.57), (2.71), and (2.73),

d1z,τ = tx + z (2.74)

However, upon arriving in the VOMQ, cz,τ finds δ cells ahead of it, or:

N2(cz,τ ) = δ (2.75)

δ = z − 1 (2.76)

where 0 < δ < k

q2z,τ = qHz,τ + (δ − 1)k + k (2.77)
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qHz,τ is the delay from the HoL cell in the VOMQ on cz,τ . (δ − 1)k is the delay

generated from the other (δ − 1) cells ahead of cz,τ in the VOMQ. The extra k time

slots is the delay cz,τ experiences as it waits for the configuration pattern to repeat

after the last cell ahead of it is forwarded to the OM. where

d21,τ = d1z,τ + qHz,τ (2.78)

Using (2.61), (2.77), and (2.78), the departure time of cz,τ from the VOMQ is:

d2z,τ = d21,τ + δk (2.79)

Using (2.62) and (2.76), then:

d2z,τ = tx + zk (2.80)

Let us now consider any other cell from flow z, cz,τ+θ, where 0 < θ < k. The

time of arrival of the cell cz,τ+θ is:

taz,τ+θ = tx + (z − 1) + θ (2.81)

Upon the arrival of cz,τ+θ, there could be zero or more at the VOQ, hence:

N1(cz,τ+θ) = γ (2.82)

where γ is the number of cells at the VOQ upon the arrival of cz,τ+θ and 0 ≤ γ < k.

Using (2.75) and (2.82), then:

q1z,τ+θ =


δk for γ = 0

δk +
θ−1∑
σ=1

q1z,τ+σ for γ > 0
(2.83)

where
θ−1∑
σ=1

q1z,τ+σ
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is the delay generated from the γ cells ahead of cz,τ+θ at the VOQ. Let

γq =
θ−1∑
σ=1

q1z,τ+σ (2.84)

Using (2.57), (2.81), (2.83), and (2.84), then:

d1z,τ+θ =


tx + (z − 1) + θ + δk for γ = 0

tx + (z − 1) + θ + δk + γq for γ > 0

(2.85)

The queuing delay of cz,τ+θ at the VOMQ is equal to (2.77). Therefore, using (2.61),

(2.77), and (2.85), the departure time of cz,τ+θ from the VOMQ is:

d2z,τ+θ =


d21,τ+θ + δk for γ = 0

d21,τ+θ + δk + γq for γ > 0

(2.86)

Using (2.70) and (2.76), then:

d2z,τ+θ =


d21,τ + (z − 1)k + θ for γ = 0

d21,τ + (z − 1)k + θ + γq for γ > 0

(2.87)

Using (2.62), then:

d2z,τ+θ =


tx + zk + θ for γ = 0

tx + zk + θ + γq for γ > 0

(2.88)

From (2.70),

d21,τ+θ − d21,τ = θ (2.89)

Using (2.80), gives:

d2z,τ+θ − d2z,τ =


θ for γ = 0

θ + γq for γ > 0

(2.90)
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The difference between the departure times of any two cells of a flow from

VOMQ is a function of θ, which is the arrival time difference of the two cells.

Therefore, cells of a flow are forwarded to the OM in the same order they arrived.

�

Lemma 3. For any number of flows traversing the LBC switch, the cells of each flow

arrive and are cleared at the output port (OP) in the same order the cells arrived at

the input port (IP).

In our discussion of this lemma, let us consider the following traffic scenario: The

switch has cells from only two flows, each arriving in a different IM (and therefore IP)

and both of them are destined to the same OP. In each flow, cells arrive back-to-back,

one at each time slot, and the first cell of both flows arrive at a time slot such that

the configuration pattern of IM-CIM stage would not enable forwarding them to the

COM immediately. With this condition, we analyze how these two flows are kept

from affecting each other, and therefore, the sequence in which cells may depart

the OP. This traffic scenario may present the greatest opportunity of experiencing

out-of-sequence forwarding by any two cells of a flow as cells from these two flows

interact at the CBs of the destination OP. Let us also consider empty queues as an

initial condition.

Given flows y and z, where the first cells of y and z, cy,τ and cz,τ , respectively,

arrive at their respective VOQs at time slot tx and the θth cells, cy,τ+θ and cz,τ+θ ∀

θ ≥ 1, arrive at time slot tx + θ. Therefore, according to this lemma cy,τ and cz,τ

must be forwarded and cleared from the output port OP (j, d) before cy,τ+θ and cz,τ+θ,

respectively.

Proof:
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We analyze the departure time of the cells cy,τ and cz,τ from the CBs. The

arrival times for cells cy,τ and cz,τ is:

tay,τ = taz,τ = tx (2.91)

Upon arriving in the VOQ, cy,τ and cz,τ are placed as HoL cells. Because there are

no backlogged cells, hence:

N1(cy,τ ) = 0 (2.92)

and

N1(cz,τ ) = 0 (2.93)

Using (2.92) and (2.93), the queuing delays of cy,τ and cz,τ at the VOQ are:

q1cy,τ = 0 (2.94)

and

q1cz,τ = 0 (2.95)

Using (2.57), (2.91), and (2.94) the departure time for cy,τ from the VOQ is:

d1y,τ = tx + 1 (2.96)

Using (2.57), (2.91), and (2.95) the departure time for cz,τ from the VOQ is:

d1z,τ = tx + 1 (2.97)

Thus, cy,τ and cz,τ are forwarded to the same CIM (so that these two cells would

share the same CB) and stored in their respective VOMQ. Because the VOMQs are

empty at the time the two cells arrive, hence:

N2(cy,τ ) = 0 (2.98)
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and

N2(cz,τ ) = 0 (2.99)

Based on the adopted traffic scenario, cy,τ and cz,τ are held at the VOMQ for β1 and

β2 time slots, respectively, before the configuration pattern enables forwarding them

to their destination OM. Here, 1 ≤ β1 < k and 1 ≤ β2 < k. Hence, the queuing delay

of cy,τ at the VOMQ is:

q2y,τ = β1 (2.100)

The queuing delay of cz,τ at the VOMQ is:

q2z,τ = β2 (2.101)

Assuming β1 < β2, hence cy,τ would be forwarded to the destination OM before cz,τ .

From (2.61), (2.96), and (2.100), the departure time of cy,τ from the VOMQs is:

d2y,τ = tx + 1 + β1 (2.102)

From (2.61), (2.97), and (2.101), the departure time of cz,τ from the VOMQs is:

d2z,τ = tx + 1 + β2 (2.103)

When cy,τ and cz,τ arrive at the OM, they are stored at CBs before being

forwarded to the output port.

Let us now consider cy,τ+1 and cz,τ+1, which arrive at time slot tx + 1, hence:

tay,τ+1 = taz,τ+1 = tx + 1 (2.104)

Because there are no cells at the VOQ upon the arrival of cy,τ+1 and cz,τ+1, then:

N1cy,τ+1 = 0 (2.105)
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and

N1cz,τ+1 = 0 (2.106)

With (2.98) and (2.105), the queuing delay of cy,τ+1 at the VOQ is:

q1y,τ+1 = 0 (2.107)

With (2.99) and (2.106), the queuing delay of cz,τ+1 at the VOQ is:

q1z,τ+1 = 0 (2.108)

Using (2.57), (2.104), and (2.107), the departure time of cy,τ+1 from the VOQ is:

d1y,τ+1 = tx + 2 (2.109)

Using (2.57), (2.104), and (2.108), the departure time of cz,τ+1 from the VOQ is:

d1z,τ+1 = tx + 2 (2.110)

cy,τ+1 and cz,τ+1 are forwarded to the same CIM and stored in their respective

VOMQs. Based on the traffic scenario cy,τ+1 and cz,τ+1 are also stored for β1 and

β2 time slots, respectively, at the VOMQs before the configuration pattern of the

COM enables forwarding them to the destination OM. Hence, the queuing delay of

cy,τ+1 and cz,τ+1 at the VOMQ are equal to (2.100) and (2.101), respectively. From

(2.61), (2.100), and (2.109), the departure time of cy,τ+1 from the VOMQ is:

d2y,τ+1 = tx + 2 + β1 (2.111)

From (2.61), (2.101), and (2.110), the departure time of cz,τ+1 from the VOMQ is:

d2z,τ+1 = tx + 2 + β2 (2.112)
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Next, we analyze the departure time of the cells from the output port. Because

d2y,τ+1 > d2y,τ and d2z,τ+1 > d2z,τ , this means that cy,τ and cz,τ arrive at the output

module before cy,τ+1 and cy,τ+1, respectively. With the CB initially empty based on

the initial condition, then:

N3cy,τ = 0 (2.113)

With d2z,τ > d2y,τ , hence:

N3cz,τ = 0 (2.114)

With (2.113) and (2.114), the queuing delays of cy,τ and cz,τ at the CB are:

q3y,τ = 0 (2.115)

and

q3z,τ = 0 (2.116)

The queuing delay of cy,τ+1 and cz,τ+1 at the CB are equal to (2.115) and (2.116).

The departure time of a cell cc,τ from the CB is:

d3c,τ = d3c,τ + q3c,τ (2.117)

Therefore, using (2.102), (2.115), and (2.117), the departure time of cy,τ from the

output port is:

d3y,τ = tx + 2 + β1

Using (2.111), (2.115), and (2.117), the departure time of cy,τ+1 from the output port

is:

d3y,τ+1 = tx + 3 + β1
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Using (2.103), (2.116), and (2.117), the departure time of cz,τ from the output port

is:

d3z,τ = tx + 2 + β2

Using (2.112), (2.116), and (2.117), the departure time of cz,τ+1 from the output port

is:

d3z,τ+1 = tx + 3 + β2

Therefore, with d3y,τ+1 > d3y,τ and d3z,τ+1 > d3z,τ , cy,τ and cz,τ would depart the

output port before cy,τ+1 and cz,τ+1, respectively. Note that for N1(cy,τ ) > 0, δ > 0,

such that the cells from the same flow are forwarded with larger time separation from

each other, and there are fewer chances that they will be at the CBs at the same time

slot. Therefore, this property, as described by this lemma, applies to any two cells of

a flow.

�

This completes the proof of Theorem 1.

�

2.5 Performance Analysis

We evaluated the performance of the LBC switch through computer simulation under

both uniform and nonuniform traffic models. We also compared the performance of

the proposed switch with that of an output-queued (OQ) switch, a high-performing

Memory-Memory-Memory Clos-network (MMM) switch, and an MMM switch with

extended memory (MMeM). The MMM switch uses forwarding arbitration schemes

to select cells from the buffers in the previous stage modules and is agnostic to cell
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sequence, therefore delivering high switching performance. We considered switches

with sizes N = {64, 256}.

2.5.1 Uniform Traffic

We evaluated the LBC, OQ, MMM, and MMeM switches under uniform traffic with

Bernoulli and bursty arrivals. Figures 2.5 and 2.6 show the average delay under

uniform Bernoulli traffic arrivals for N = 64 and N = 256, respectively. The results

in the figures show that the LBC switch achieves 100% throughput under uniform

traffic with Bernoulli arrivals, indicated by the finite and moderate average queuing

delay. The high throughput performance by the proposed switch is the result of

using an efficient load-balancing process in the IM-CIM stage. However, this high

performance is expected under this traffic pattern as the distribution of the incoming

traffic is already uniformly distributed.

Figure 2.5 shows that the LBC switch experiences a similar delay as the MMeM

switch at high input load. Figure 2.6 shows that the LBC switch experiences a

slightly higher average delay than the OQ switch. This additional delay in the LBC

switch is caused by having cells wait in the VOMQs until a configuration that allows

forwarding the cells to their destination output modules takes place. Because MMeM

requires an excessive amount of memory to implement the extended set of queues, the

measurement of average cell delay cannot be measured for N=256 by our simulators.

This figure also shows that the LBC switch achieves a lower average delay than the

MMM switch with an input load of 0.95 and larger.

Uniform bursty traffic is modeled as an ON-OFF Markov modulated process,

with the average duration of the ON period set as the average burst length, l, with l =

{10, 30} cells. Figures 2.7 and 2.8 show the average delay under uniform traffic with

bursty arrivals for average burst length of 10 and 30 cells, respectively, for switches

with N=256. The results show that the LBC switch achieves 100% throughput under
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Figure 2.5 Average queueing delay under uniform traffic for N=64.
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Figure 2.6 Average queueing delay under uniform traffic for N=256.
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Figure 2.7 Average queuing delay under uniform bursty traffic with average burst
length l=10 for N=256.

bursty uniform traffic. In contrast, the MMM switch has a throughput of 0.8 and

0.75 for an average burst length of 10 and 30 cells, respectively. Therefore, the LBC

switch achieves a performance closer to that of the OQ switch. There is a very small

difference in the delay of the LBC. From this graph, we also observe that the LBC

switch achieves 100% throughput under bursty uniform traffic.

The uniform distributed nature of the traffic and the load-balancing stages

help to achieve this high throughput and low queueing delay. The slightly larger

average queueing delay of the LBC switch for very small input loads is caused by

the predetermined and cyclic configuration of the bufferless modules as some cells

wait for a few time slots to be forwarded and this is irrespective of the switch size.

Nevertheless, these two figures show that the queueing delay difference between the

LBC and the OQ switch is not significant for large input loads.
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Figure 2.8 Average queuing delay under uniform bursty traffic with average burst
length l=30 for N=256.

2.5.2 Nonuniform Traffic

We also compared the performance of the proposed LBC switch with the MMM,

MMeM, and OQ switches under unbalanced [72, 74] and hot-spot patterns as

nonuniform traffic. The unbalanced traffic can be modeled using an unbalanced

probability ω to indicate the load variances for different flows. Consider input port

IP (i, s) and output port OP(j, d) of the LBC switch, the traffic load is determined

by

ρi,s,j,d =


ρ(ω +

1− ω
N

), if i = j and s = d,

ρ
1− ω
N

, otherwise

(2.118)

where ρ is the traffic load for input IP (i, s) and ω is the unbalanced probability.

When ω=0, the input traffic is uniformly distributed and when ω=1, the input traffic

is completely directional; traffic from IP (i, s) is destined for OP (j, d).

The simulation results show that the throughput of the LBC switch is 100%

under this traffic pattern for all values of ω, matching those of MMM and MMeM
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Figure 2.9 Average queuing delay under unbalanced traffic with w = 0.6 for
N=256.

switches, which are also known to achieve high throughput but neglect in-sequence

forwarding. It has been shown that many switches do not achieve high throughput

when w is around 0.6 [72]. Therefore, we measured the average delay of the LBC

switch under this traffic pattern for ω=0.6, as shown in Figure 2.9, and compared

with the OQ switch as this switch is well-known to achieve 100% throughput. As the

figure shows, the average delay of the LBC switch is comparable to that of an OQ

switch. The load-balancing stage of the LBC switch distributes the traffic uniformly

throughout the switch.

We compared the performance of the proposed LBC switch with the MMM,

MMeM, and OQ switches under hot-spot traffic [64]. Hot-spot traffic occurs when all

IPs send most or all traffic to one OP. Consider input port IP (i, s) and output port

OP (j, d) of the LBC switch, the traffic load is determined by

ρi,s,j,d =


ρ(

1

N
), for jm+ d = h,

0, otherwise

(2.119)
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Figure 2.10 Throughput under hot-spot traffic for N=256.

where h is the hot-spot OP and 1 ≤ h ≤ N .

Our simulation shows that the LBC switch as well as the MMM and MMeM

switches achieve 100% throughput under admissible hot-spot traffic.

Figure 2.10 shows the measured average delay of the LBC switch under this

traffic pattern and that of an OQ switch. The figure shows that the average delay

of the LBC switch is comparable to that of an OQ switch. This is as a result of

effective load-balancing at the IMs, CIMs, and COMs of the multiple flows coming

from different inputs.

In addition to the analysis presented in Section 2.2.6, we also simulated the LBC

switch under two new traffic patterns, which we believe may stress the occupancy of

CBs and therefore increase the likelihood of occurrence of HoL blocking conditions.

The traffic patterns are: a) k flows from IPs at different IMs, each arriving at a rate of

1
k

for admissibility, are forwarded to all OPs at one OM. The source IPs of the flows are

selected such that they share VOMQs; i = s or IP (0, 0), IP (1, 1), · · · , IP (k−1, n−1).

50



1

10

100

1000

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

0
.9

9

A
v
er

ag
e 

d
el

ay
 (

ti
m

e 
sl

o
ts

)

Input load
LBC=64 LBC=256

Figure 2.11 Average queueing delay of LBC switch under k flows from k IMs to
all OPs in an OM

b) Each IP at an IM forwards cells at rate 1
k

to each OP at an OM (e.g., i = j).

Each OP in the destination OM receives traffic from all IPs of one IM. VOMQs

are also shared by different flows. Figures 2.11 and 2.12 show the average delay

under the first and second traffic patterns presented above, respectively. The results

in the figures show that LBC experiences a finite and moderate average queuing

delay, which implies that LBC achieves 100% throughput under both traffic patterns.

We also measured the average CB length and this length does not grow more than

one cell, indicating that no CB gets congested. This result is obtained because the

load-balancing mechanism spreads a flow to different VOMQs.

2.6 Conclusions

We have introduced a configuration scheme for a split-central-buffered load-balancing

Clos-network switch and a mechanism that forwards cells in sequence for this switch.

To effectively perform load balancing, the switch has virtual output module queues
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Figure 2.12 Average queueing delay of LBC switch under hot-spot per-Module
traffic

between these two central stages. With the split central module, the switch comprises

four stages, named IM, CIM, COM, and OM. The IM, CIM, and COM stages are

bufferless crossbars, while the OMs is a buffered one. All the bufferless modules

follow a pre-deterministic configuration while the OM follows a round-robin sequence

to forward cells from the CB to the output ports. Therefore, the switch does not

have to perform matching in any stage despite having bufferless modules, and the

configuration complexity of the switch is minimum, making it comparable to that

of MMM switches. We introduced an in-sequence mechanism that operates at the

inputs of the LBC switch to avoid out-of-sequence forwarding caused by the central

buffers. We modeled and analyzed the operations that each of the stages effects on

the incoming traffic to obtain the loads seen by the output ports. We showed that

for admissible independent and identically distributed traffic, the switch achieves

100% throughput. Unlike the existing switching architectures discussed in Section

1, LBC achieves high performance, configuration simplicity, and in-sequence service
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without memory speedup and central module expansion. In addition, we analyzed

the operation of the forwarding mechanism and demonstrated that cells are forwarded

in sequence. We showed, through computer simulation, that for all tested traffic, the

switch achieved 100% throughput for uniform and nonuniform traffic distributions.
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CHAPTER 3

TRIDENT: A LOAD-BALANCING CLOS-NETWORK PACKET

SWITCH WITH QUEUES BETWEEN INPUT AND CENTRAL

STAGES AND IN-ORDER FORWARDING

3.1 Introduction

In this chapter we propose a load-balancing Clos-network switch that has buffers

placed between the IMs and CMs. Furthermore, we use OMs implemented with

buffered crossbars with per-flow queues. The switch is called ThRee-stage Clos swItch

with queues at the middle stage and DEtermiNisTic scheduling (TRIDENT). This

switch uses predetermined and periodic interconnection patterns for the configuration

of IMs and CMs. The incoming traffic is load-balanced by IMs and routed by CMs

and OMs. The result is a switch that attains high throughput under admissible traffic

with independent and identical distribution (i.i.d.) and uses a configuration scheme

with O(1) complexity. The switch also adopts an in-sequence forwarding mechanism

at the input ports and output modules to keep cells in sequence.

We analyze the performance of the proposed switch by modeling the effect

of each stage on the traffic passing through the switch. In addition, we study the

performance of the switch through traffic analysis and by computer simulation. We

show that the switch attains 100% throughput under several admissible traffic models,

including traffic with uniform and nonuniform distributions, and demonstrate that the

switch forwards cells to the output ports in sequence. This high switching performance

is achieved without resorting to speedup nor switch expansion.

The remainder of this chapter is organized as follows: In Section 3.2, we

introduce the TRIDENT switch. In Section 3.3, we analyze the performance of

TRIDENT by modeling the effect of each stage on the traffic passing through the
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switch. We also present the throughput analysis of TRIDENT. In Section 3.4, we

present a proof of the in-sequence forwarding property of TRIDENT. In Section

3.5, we present a simulation study on the performance of TRIDENT by computer

simulation. In Section 3.6, we present our conclusions.

3.2 Switch Architecture

The TRIDENT switch has N inputs and N outputs, each denoted as IP (i, s) and

OP (j, d), respectively, where 0 ≤ i, j ≤ k − 1, 0 ≤ s, d ≤ n − 1, and N = nk.

Figure 3.1 shows the architecture of TRIDENT. This switch has k n × m IMs, m

k × k CMs, and k m × n OMs. Table 3.1 lists the notations used in the description

of TRIDENT. In the remainder of this chapter, we set n = k = m for symmetry

and cost-effectiveness. The IMs and CMs are bufferless crossbars while the OMs are

buffered ones. In order to preserve the staggered symmetry and in-order delivery [31],

this switch uses a fixed and predetermined configuration sequence, and a reverse

desynchronized configuration scheme in CMs. The staggered symmetry and in-order

delivery refers to the fact that at time slot t, IP (i, s) is connected to CM(r), which in

turn is connected to OM(j). Then at the next time slot (t+1), IP (i, s) is connected to

CM((r + 1) mod m), which in turn is connected to OM(j). This property enables

the configuration of IMs and CMs to be easily represented with a predetermined

compound permutation that repeats every k time slots. This property also ensures

that cells experience similar delay under uniform traffic, and the incorporation of

the in-sequence mechanism enables preserving this delay under nonuniform traffic, as

Section 3.4 shows.

The switch has virtual input-module output port queues (VIMOQs) between

the IMs and CMs to store cells coming from IM(i) and destined to OP (j, d), and

each queue is denoted as V IMOQ(r, i, j, d). Each output of an IM is denoted as

LI(i, r). Each output of a VIMOQ is connected to a CM, whose input and output are

55



denoted as IC(r, p) and LC(r, j), respectively. Each OP has Nk crosspoint buffers,

each denoted as CB(r, j, d, i, s) and designated for the traffic from each IP traversing

different CMs to an OP. A flow control mechanism between CBs and VIMOQs is used

to avoid buffer overflow and underflow [74].

Table 3.1 Notations used in the Description of the TRIDENT Switch

Term Description

N Number of input/output ports.

n Number of input/output ports for each IM and OM.

m Number of CMs.

k Number of IMs and OMs, where k = N
n

.

IP (i, s) Input port s of IM(i), where 0 ≤ i ≤ k − 1, 0 ≤ s ≤ n− 1.

IM(i) Input module i.

CM(r) Central Input Module r, where 0 ≤ r ≤ m− 1.

LI(i, r) Output link of IM(i) connected to CM(r).

IC(r, p) Input port p of CM(r).

LC(r, j) Output link of CM(r) connected to OM(j).

V IMOQ(r, i, j, d) VIMOQ at input of CMs that stores cells destined to OP (j, d).

CB(r, j, d, i, s) Crosspoint buffer at OM(j) that stores cells from IP (i, s) going through CM(r) and destined to OP (j, d).

OP (j, d) Output port d at OM(j).

3.2.1 Module Configuration

The IMs are configured based on a predetermined sequence of k disjoint permutations,

where one permutation is applied each time slot. We call a permutation disjoint from

the set of permutations if an input-output pair is interconnected in one and only one

of the permutations. Cells at the inputs of IMs are forwarded to the outputs of the

IMs determined by the configuration at that time slot. A cell is then stored in the

VIMOQ corresponding to its destination OP.

Similar to the IMs, CMs are configured based on a predetermined sequence

of k disjoint permutations. Unlike IMs, CMs follow a desynchronized configuration,

where each CM is configured with a different permutation and the configuration of
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Figure 3.1 TRIDENT switch.

each CMs changes counter-clockwise each time slot. The Head-of-Line (HoL) cell at

the VIMOQ destined to OP (j, d) is forwarded to its destination when the input of

the CM is connected to the input of the destined OM(j). Else, the HoL cell waits

until the required configuration takes place. The forwarded cell is queued at the CB

of its destination OP once it arrives in the OM.

The configurations of the bufferless IMs and CMs are as follows. At time slot

t, IM input IP (i, s) is interconnected to IM output LI(i, r), as follows:

r = (s+ t) mod m (3.1)

and each CM input IC(r, p) is interconnected to output LC(r, j) as follows:

j = (p− t+ r) mod k. (3.2)
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The use of CBs at an OP allows forwarding a cell from of a VIMOQ to its destined

output without requiring port matching [48].

Table 3.2 shows an example of the configuration of the IMs and CMs of a 9×9

TRIDENT switch. Because k = 3, the example shows the configuration of three

consecutive time slots. In this table, we use w → x to denote an interconnection

between w and x. Figure 3.2 shows the configuration of the modules.

Table 3.2 Example of Configuration of Modules in a 9 × 9 TRIDENT Switch

Configuration

Time slot IM(0) CM(0) IM(1) CM(1) IM(2) CM(2)

t = 0

IP (0, 0)→ LI(0, 0) Ic(0, 0)→ LC(0, 0) IP (1, 0)→ LI(1, 0) Ic(1, 0)→ LC(1, 1) IP (2, 0)→ LI(2, 0) Ic(2, 0)→ LC(2, 2)

IP (0, 1)→ LI(0, 1) Ic(0, 1)→ LC(0, 1) IP (1, 1)→ LI(1, 1) Ic(1, 1)→ LC(1, 2) IP (2, 1)→ LI(2, 1) Ic(2, 1)→ LC(2, 0)

IP (0, 2)→ LI(0, 2) Ic(0, 2)→ LC(0, 2) IP (1, 2)→ LI(1, 2) Ic(1, 2)→ LC(1, 0) IP (2, 2)→ LI(2, 2) Ic(2, 2)→ LC(2, 1)

t = 1

IP (0, 0)→ LI(0, 1) Ic(0, 0)→ LC(0, 2) IP (1, 0)→ LI(1, 1) Ic(1, 0)→ LC(1, 0) IP (2, 0)→ LI(2, 1) Ic(2, 0)→ LC(2, 1)

IP (0, 1)→ LI(0, 2) Ic(0, 1)→ LC(0, 0) IP (1, 1)→ LI(1, 2) Ic(1, 1)→ LC(1, 1) IP (2, 1)→ LI(2, 2) Ic(2, 1)→ LC(2, 2)

IP (0, 2)→ LI(0, 0) Ic(0, 2)→ LC(0, 1) IP (1, 2)→ LI(1, 0) Ic(1, 2)→ LC(1, 2) IP (2, 2)→ LI(2, 0) Ic(2, 2)→ LC(2, 0)

t = 2

IP (0, 0)→ LI(0, 2) Ic(0, 0)→ LC(0, 1) IP (1, 0)→ LI(1, 2) Ic(1, 0)→ LC(1, 2) IP (2, 0)→ LI(2, 2) Ic(2, 0)→ LC(2, 0)

IP (0, 1)→ LI(0, 0) Ic(0, 1)→ LC(0, 2) IP (1, 1)→ LI(1, 0) Ic(1, 1)→ LC(1, 0) IP (2, 1)→ LI(2, 0) Ic(2, 1)→ LC(2, 1)

IP (0, 2)→ LI(0, 1) Ic(0, 2)→ LC(0, 0) IP (1, 2)→ LI(1, 1) Ic(1, 2)→ LC(1, 1) IP (2, 2)→ LI(2, 1) Ic(2, 2)→ LC(2, 2)

3.2.2 Arbitration at Output Ports

Each output port has a round-robin arbiter to keep track of the next flow to serve,

and N flow pointers to keep track of the next cell to serve for each flow. As before,

a flow is the set of cells from IP (i, s) destined to OP (j, d). An output port arbiter

selects the flow to serve in a round-robin fashion. For this selection, the output

arbiter selects the HoL cell of a CB if the cell’s order matches the expected cell order

for that flow. Because the output port arbiter selects the older cell based on the

order of arrival to the switch, this selection prevents out-of-sequence forwarding. We

discuss this property in Section 3.4. Furthermore, the round-robin schedule ensures

fair service for different flows. If there is no HoL cell with the expected value for a

particular flow, the arbiter moves to the next flow.
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Figure 3.2 Configuration example of a 9 × 9 TRIDENT switch modules.
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3.2.3 In-sequence Cell Forwarding Mechanism

The proposed in-sequence forwarding mechanism of TRIDENT is based on tagging

cells of a flow at the inputs with their arriving sequence number, and forwarding cells

from the crosspoint buffers to the output port in the same sequence they arrived in

the input. The policy used for keeping cells in-sequence is as follows: When a cell of

a flow arrives in the input port, the input port arbiter appends the arrival order to

the cell (for the corresponding flow). After being forwarded through LI(i, r), the cell

is stored at the VIMOQ for the destination OP. When the CM configuration permits,

the cell is forwarded to the destined OM and stored at the queue for traffic from the

IP to the destined OP traversing that CM. An OP arbiter selects cells of a flow in

the order they arrived in the switch by using the arrival order carried by each cell.

As an example of this operation, Table 3.3 shows the arrival times of cell c1,1, c2,1,

and c2,2, where cy,tx denotes flow y and arrival time tx to the VIMOQs. Cell c2,1 is

queued behind c1,1, and c2,2 is placed in an empty VIMOQ. Table 3.4 shows the time

slots when the cells are forwarded from the VIMOQ. For example, when c2,2 leaves

the VIMOQ before c2,1. Table 3.5 shows the time slots when the cells are forwarded

to the destination OP after the output-port arbitration is performed.

Table 3.3 Time Slots of Cell Arrival to VIMOQs in Example of the In-sequence
Forwarding Mechanism

Cell arrival time

tx tx+1 tx+2

c1,1

c2,1 c2,2
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Table 3.4 Time Slots of Cells Departure from VIMOQs in Example of the In-
sequence Forwarding Mechanism

Cell departure time slots from VIMOQs

tx tx+1 tx+2 tx+3 tx+4 tx+5 tx+6

c1,1

c2,2 c2,1

Table 3.5 Time Slots of Cells Departure from CBs in Example of the In-sequence
Forwarding Mechanism.

Cell departure time slots from CBs

tx tx+1 tx+2 tx+3 tx+4 tx+5 tx+6 tx+7 tx+8

c1,1

c2,1 c2,2

3.3 Throughput Analysis

In this section, we analyze the performance of the proposed TRIDENT switch.

Figure 3.3 shows the block representation of TRIDENT and the traffic at each stage.

The block on the left indicates the IM stage, the block in the middle denotes

the CM stage, and the small blocks on the right denote the OMs. Let us denote the

traffic coming to the IMs, CMs, OMs, OPs, and the traffic leaving TRIDENT as R1,

R2, R3, R4 and R5, respectively. Here, R1 and R2, and R3 are N ×N matrices, R4

comprises N N × 1 column vectors, and R5(v) is a scalar.

The traffic from input ports to the IM stage, R1, is defined as:

R1 = [λu,v] (3.3)
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Figure 3.3 Block representation of the TRIDENT switch. The first block is the IM
stage, the second block is the CM stage, and the last small blocks are the OMs.

Here, λu,v is the arrival rate of traffic from input u to output v, where

u = ik + s (3.4)

v = jm+ d (3.5)

and 0 ≤ u, v ≤ N − 1.

In the following analysis, we consider admissible traffic, which is defined as:

N−1∑
u=0

λu,v ≤ 1,
N−1∑
v=0

λu,v ≤ 1 (3.6)

and as i.i.d. traffic.

The IM stage of TRIDENT balances the traffic load coming from the input ports

to the VIMOQs. Specifically, the permutations used to configure the IMs forwards

the traffic from an input to k different CMs, and then to the VIMOQs connected to

these CMs in k consecutive time slots.

R2 is the traffic directed towards CMs and it is derived from R1 and the

permutations of IMs. The configuration of the IM stage at time slot t that connects
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IP (i, s) to LI(i, r) are represented as an N × N permutation matrix, Π(t) = [πu,υ],

where r is determined from (3.1) and the matrix element:

πu,υ =


1 for any u, υ = rk + i

0 elsewhere.

The configuration of the IM stage can be represented as a compound permu-

tation matrix, P1, which is the sum of the IM permutations over k time slots as

follows,

P1 =
k∑

Π(t)

Because the configuration is repeated every k time slots, the traffic load from

the same input going to each VIMOQ is 1
k

of the traffic load of R1. Therefore, a

row of R2 is the sum of the row elements of R1 at the non zero positions of P1,

normalized by k. This is:

R2 =
1

k
((R1 ∗ 1) ◦P1) (3.7)

where 1 denotes an N × N unit matrix and ◦ denotes element/position wise

multiplication, as before. There are k non-zero elements in each row of R2. Here, R2

is the aggregate traffic in all the VIMOQs destined to all OPs. This matrix can be

further decomposed into k N ×N submatrices, R2(j), each of which is the aggregate

traffic at VIMOQs designated for OM(j).

R2 =

j=k−1∑
j=0

R2(j) (3.8)

where j is obtained from (3.5) ∀ d. The configuration of the CM stage at time slot t

that connects Ic(r, p) to LC(r,j) may be represented as an N ×N permutation matrix,

Φ(t) = [φu,v], where j is determined from (3.2) and the matrix element:

φu,v =


1 for any u, v = jk + r

0 elsewhere.

Similarly, the switching process at the CM stage is represented by a compound

permutation matrix P2, which is the sum of k permutations of the CM stage over k
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time slots. Here,

P2 =
k∑

Φ(t)

The traffic forwarded to OMs, R3(j), is:

R3(j) = R2(j) ◦P2 (3.9)

where j is obtained from (3.5) ∀ d. The traffic destined to OP (j, d) at OM(j),

R3(j, d), is obtained by extracting the traffic elements from R3(j), or:

R3(j) =
d=k−1∑
d=0

R3(j, d) (3.10)

where d is obtained from (3.5) for the different j. The aggregate traffic at CBs of an

OP for the different IPs, R4(v), is obtained from the multiplication of R3(j, d) with

a vector of all ones, ~1, or:

R4(v) = R3(j, d) ∗~1 (3.11)

Each row of R4(v) is the aggregate traffic at the CBs from each IP. The traffic leaving

an OP, R5(v), is:

R5(v) = (~1)T ∗R4(v) (3.12)

Therefore, R5(v) is the sum of the traffic leaving OP (v).

The following example shows the operations performed on traffic coming to a

4×4 (k = 2) TRIDENT switch. Let the input traffic matrix be

R1 =



λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3
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First, R1 is decomposed into R2 at the IM stage. The compound permutation matrix

for the IM stage for this switch is:

P1 =



1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1


Using (3.7), we get

R2 = 1/2



∑3
i=0 λ0i 0

∑3
i=0 λ0i 0∑3

i=0 λ1i 0
∑3

i=0 λ1i 0

0
∑3

i=0 λ2i 0
∑3

i=0 λ2i

0
∑3

i=0 λ3i 0
∑3

i=0 λ3i


From (3.8), the traffic matrix at VIMOQs destined for the different OMs are:

R2(0) =
1

2



λ0,0 + λ0,1 0 λ0,0 + λ0,1 0

λ1,0 + λ1,1 0 λ1,0 + λ1,1 0

0 λ2,0 + λ2,1 0 λ2,0 + λ2,1

0 λ3,0 + λ3,1 0 λ3,0 + λ3,1



R2(1) =
1

2



λ0,2 + λ0,3 0 λ0,2 + λ0,3 0

λ1,2 + λ1,3 0 λ1,2 + λ1,3 0

0 λ2,2 + λ2,3 0 λ2,2 + λ2,3

0 λ3,2 + λ3,3 0 λ3,2 + λ3,3


The rows of R2(v) represent the traffic from IPs, and the columns represent

V IMOQ(r, i, j, d) at IC(r, p). The compound permutation matrix for the CM stage

65



for this switch is:

P2 =



1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1


From (3.9) and (3.10), the traffic forwarded to an OP is:

R3(0, 0) = 1
2



λ0,0 0 λ0,0 0

λ1,0 0 λ1,0 0

0 λ2,0 0 λ2,0

0 λ3,0 0 λ3,0


R3(0, 1) = 1

2



λ0,1 0 λ0,1 0

λ1,1 0 λ1,1 0

0 λ2,1 λ2,1

0 λ3,1 0 λ3,1



R3(1, 0) = 1
2



λ0,2 0 λ0,2 0

λ1,2 0 λ1,2 0

0 λ2,2 0 λ2,2

0 λ3,2 0 λ3,2


R3(1, 1) = 1

2



λ0,3 0 λ0,3 0

λ1,3 0 λ1,3 0

0 λ2,3 0 λ2,3

0 λ3,3 0 λ3,3


The rows of R3(j, d) represent the traffic from V IMOQ(r, i, j, d) at IC(r, p) and the

columns represent LC(r, j).

The traffic forwarded from CBs allocated for the different IPs to the corre-

sponding OP is obtained from (3.11):

R4(0) =



λ0,0

λ1,0

λ2,0

λ3,0


, R4(1) =



λ0,1

λ1,1

λ2,1

λ3,1


, R4(2) =



λ0,2

λ1,2

λ2,2

λ3,2


, R4(3) =



λ0,3

λ1,3

λ2,3

λ3,3


The rows of R4(v) represent the traffic from IP (i, s). Using (3.12), we obtain the

sum of the traffic leaving the OP, or:

R5(0) =
∑3

i=0 λi0, R5(1) =
∑3

i=0 λi1, R5(2) =
∑3

i=0 λi2, R5(3) =
∑3

i=0 λi3

Theorem 3. The TRIDENT achieves 100% throughput under any admissible i.i.d

traffic.
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Proof: From R4(0) to R4(3) above, we can deduce that R4 is equal to the

input traffic R1, or:

R4(v) = R1(v) ∀ v (3.13)

Also, since R2 and R4(v) meet the admissibility condition in (3.6), and R5(v) does

not exceed the service rate for any OP (v), this implies that the sum of the traffic

load at each V IMOQ, CB, and OP does not exceed their respective capacities. From

the admissibility of R2 and R4(v), and (3.13), we can infer that the input traffic are

successfully forwarded to the output ports.

As discussed in Section 3.2.2, the output arbiter selects a flow in a round-robin

fashion and a cell within that flow based on it’s order of arrival. If a cell of a flow is

not selected, the OP arbiter moves to the next flow. This ensures fairness and that

the cells forwarded to the OP are also forwarded out of the OP. Hence, from R5(0)

to R5(3) above, we can infer that R5(v) is equal to R4(v), or:

R5(v) = (~1)T ∗R4(v) ∀ v (3.14)

From (3.13) and (3.14), we can conclude that TRIDENT can achieve 100% throughput

under admissible traffic.

This completes the proof of Theorem 3. �

3.4 Analysis of In-Sequence Service

In this section, we demonstrate that the TRIDENT switch forwards cells in sequence

to the OPs through the proposed in-sequence forwarding mechanism. Table 3.6 lists

the terms used in the in-sequence analysis of the proposed TRIDENT switch. Here,

cy,τ (i, s, j, d) denotes the τth cell of traffic flow y, which comprises cells going from
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IP (i, s) to OP (j, d). In addition, tay,τ denotes the arrival time of cy,τ , and qVy,τ

and qCy,τ denote the queuing delays experienced by cy,τ at V IMOQ(r, i, j, d) and

CB(r, j, d, i, s), respectively. The departure times of cy,τ from the corresponding

VIMOQ and CB are denoted as dVy,τ and dCy,τ , respectively. We consider admissible

traffic in this analysis.

Here, we claim that TRIDENT forwards cells in sequence to the output ports,

through the following theorem.

Theorem 4. For any two cells cy,τ (i, s, j, d) and cy,τ ′(i, s, j, d), where τ < τ ′,

cy,τ (i, s, j, d) departs the destined output port before cy,τ ′(i, s, j, d).

Table 3.6 Notations used in the In-sequence Analysis of TRIDENT

cy,τ The τth cell of flow y from IP (i, s) to OP (j, d).

tay,τ Arrival time of cy,τ at IP (i, s).

NVy,τ The number of cells at V IMOQ(r, i, j, d) upon the arrival of cy,τ .

qHy,τ The residual queuing delay of the HoL cell at V IMOQ(r, i, j, d) upon the arrival of cy,τ .

qVy,τ Queuing delay of cy,τ at V IMOQ(r, i, j, d).

dVy,τ Departure time of cy,τ from V IMOQ(r, i, j, d) at IC(r, p).

NCy,τ The number of cells at CB(r, j, d, i, s) upon the arrival of cy,τ .

qCy,τ Queuing delay of cy,τ at CB(r, j, d, i, s) of OP (j, d).

dCy,τ Departure time of cy,τ from CB(r, j, d, i, s).

Lemma 4. For any flow traversing the TRIDENT switch, an older cell is placed

ahead of a younger cell from the same flow in the same crosspoint buffer.

Proof: From the architecture and configuration of the switch an IP connects to

a CM once every k time slots. If a younger cell arrives at the OM before an older cell

then the younger cell was forwarded through a different CM from the one the older

cell was buffered. Also, two cells of the same flow may be queued in the same CB if
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and only if the younger cell arrived at the VIMOQ k time slots later than the older

cell, and therefore, the younger cell would be lined up in a queue position behind the

position of the older cell.

�

Lemma 5. For any number of flows traversing the TRIDENT switch, cells from the

same flow are cleared from the OP in the same order they arrived at the IP.

Proof: Let us consider a traffic scenario where there are multiple flows

traversing the switch. We focus on one flow with cells arriving back to back. Let

us also consider as an initial condition that all CBs are empty, and that the VIMOQ

to where the first cell of the flow is sent has backlogged cells (from other flows) while

other VIMOQs to where the subsequent cells of the same flow are sent are empty.

This scenario would have the largest probability to delay the first cell of the flow and,

therefore; to forward the subsequent cells of the flow out of sequence. Also, let us

consider that the flow pointer at the output ports initially points to the cell arrival

order Lyθ, where y is the flow id and θ is the cell’s order of arrival.

Also, let us assume that the cells arrive at LI(i, r) one or more time slots before

the configuration of the CM allows forwarding a cell to its destined OM. Thus, a cell

may depart in the following or a few time slots after its arrival. This cell then may

wait up to k − 1 time slots for a favorable interconnection to take place at the CM

before being forwarded to the destined OM. In the remainder of the discussion, we

show that the arriving cells are forwarded to the destination OP in the same order

they arrive in the IP.

Given flow y, the arrival time of the first cell cy,τ is:

tay,τ = tx (3.15)

69



Upon arriving in the IP, cy,τ is tagged with Ly0 and forwarded to the VIMOQ. Based

on the backlog condition, cy,τ is placed behind γ cells from other flows upon arriving

at the VIMOQ. Therefore, the VIMOQ occupancy, NVy,τ , is:

NVy,τ = γ (3.16)

Using (3.16) the queuing delay of cy,τ at the VIMOQ is:

qVy,τ = qHy,τ + (γ − 1)k + k (3.17)

where qHy,τ is the time it takes the HoL cell to depart the VIMOQ and (γ − 1)k is

the delay generated by the other (γ− 1) cells ahead of cy,τ in the VIMOQ. The extra

k time slots are the delay cy,τ experiences as it waits for the configuration pattern to

repeat after the last cell ahead of it is forwarded to the OM.

Using (3.15) and (3.17), the departure time of cy,τ from the VIMOQ is:

dVy,τ = tay,τ + qHy,τ + γk (3.18)

When cy,τ arrives at the output module it is stored at the corresponding output buffer

before being forwarded to the output port.

Let us now consider the next arriving cell from flow y, cy,τ+θ, where 0 < θ < k.

The time of arrival of cy,τ+θ is:

tay,τ+θ = tx + θ (3.19)

Upon arrival, cy,τ+θ would have Lyθ appended to it and forwarded to the VIMOQ.

Based on the traffic scenario, cy,τ+θ would be forwarded to an empty VIMOQ. The

queuing delay at the V IMOQ for cy,τ+θ is:

qVy,τ+θ = β (3.20)
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where β is the number of time slots before the configuration pattern enables

forwarding cy,τ+θ to the destined OM. Using (3.18), (3.19), and (3.20), the departure

time of cy,τ+θ from the VIMOQ is:

dVy,τ+θ = tx + θ + β (3.21)

At the output port, the pointers all initially pointed to Ly0 based on the initial

condition. Therefore, irrespective of dVy,τ+θ < dVy,τ , for θ + β < qHy,τ + γk, cy,τ+θ

remains stored at the output buffer until cy,τ is cleared from the output port, because

the pointer points to Ly0. Because CBs are empty as initial condition, the CB

occupancy, NCy,τ , upon cy,τ arrival is:

NCy,τ = 0 (3.22)

and the occupancy of the CB, NCy,τ+θ , upon cy,τ+θ arrival is

NCy,τ+θ = 0 (3.23)

Using (3.22), the queuing delay, qCy,τ , at the CB for cy,τ is:

qCy,τ = 0 (3.24)

From (3.18), (3.21), and (3.23), the queuing delay, qCy,τ+θ , at the CB for cy,τ+θ is:

qCy,τ+θ = qHy,τ + γk − β (3.25)

From (3.15), (3.18), and (3.24), the departure time of cy,τ from the OP, dCy,τ , is:

dCy,τ = tx + 1 + qHy,τ + γk (3.26)

From (3.19), (3.21), and (3.25), the departure time of cy,τ+θ from the OP, dCy,τ+θ , is:

dCy,τ+θ = tx + 1 + θ + qHy,τ + γk (3.27)

71



Using (3.26) and (3.27),

dCy,τ+θ − dCy,τ = θ (3.28)

The difference between the departure times of any two cells of a flow from the CB is

a function of θ, which is the arrival time difference between any two cells. Therefore,

cells of a flow are forwarded to the OP in the same order they arrived.

�

This completes the proof of Theorem 4.

�

3.5 Performance Analysis

We evaluated the performance of TRIDENT through computer simulation under

uniform traffic model and compared with that of an output-queued (OQ) and a

Memory-Memory-Memory Clos-network (MMM) switch. We also evaluated the

performance of TRIDENT through computer simulation under nonuniform traffic

model and compared with that of an output-queued (OQ), Memory-Memory-Memory

Clos-network (MMM), and MMM switch with extended memory (MMeM) switches.

The MMM switch selects cells from the buffers in the previous stage modules

using forwarding arbitration schemes and is prone to serving cells out of sequence.

Considering that most load-balancing switches based on Clos networks deliver low

performance, we select these switches for comparison because they achieve the highest

performance among Clos-network switches, despite been categorized as different

architectures. We considered switches with size N = {64, 256}. For performance

analysis, queues are assumed long to avoid cell losses and to identify average cell

delay.
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Figure 3.4 Average queueing delay under uniform traffic for N=64.

3.5.1 Uniform Traffic

Uniform distribution is mostly considered to be benign and the average rate for each

output port λi,s,j,d = 1
N

. where IP (i, s) is the source IP and OP (j, d) is the destination

OP. Hence, a packet arriving at the IP has an equal probability to be destined to any

OP. Figures 3.4 and 3.5 show the average under uniform traffic with Bernoulli arrivals

for N = 64 and N = 256, respectively. The finite and moderate average queuing delay

indicated by the results shows that TRIDENT achieves 100% throughput under this

traffic pattern. This is the result of the efficient load-balancing process in the IM

stage. However, such a high performance is expected for uniformly distributed input

traffic.

TRIDENT switch experiences a slightly higher average delay than the OQ

switch, this is a result of cells being queued in the VIMOQs until a configuration

occurs that enables forwarding the cells to their destined output modules. Due to

the amount of memory required by MMeM to implement the extended set of queues,

our simulator can only simulate small MMeM switches for queueing analysis, so we

simulated the switches under this traffic pattern for N = 64. This figure also shows

that TRIDENT achieves a lower average delay than the MMM switch.
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Figure 3.5 Average queueing delay under uniform traffic for N=256.
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Figure 3.6 Average queuing delay under uniform bursty traffic with average burst
length l=10.

Uniform bursty traffic is modeled as an ON-OFF Markov modulated process,

with an average duration of the ON period set as the average burst length, l, with

l = {10, 30} cells. Figures 3.6 and 3.7 show the average delay under uniform traffic

with bursty arrivals for average burst length of 10 and 30 cells, respectively. The

results show that TRIDENT achieves 100% throughput under bursty uniform traffic

and it is not affected by the burst length, while the MMM switch has a throughput

of 0.8 and 0.75 for an average burst length of 10 and 30 cells, respectively. Therefore,

TRIDENT achieves a performance closer to that of the OQ switch.
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Figure 3.7 Average queuing delay under uniform bursty traffic with average burst
length l=30.

The uniform distribution of the traffic and the load-balancing stage helps to

attain this low queueing delay and high throughput. Figures 3.4, 3.5, 3.6, and 3.7

show that the queueing delay difference between TRIDENT and the OQ switch is

not significant. These figures also show that the effective load balancing reduces the

average delay and also eliminates the offset in delay for light load.

3.5.2 Nonuniform Traffic

We also evaluated the performance of TRIDENT, MMM, MMeM, and OQ switches

under nonuniform traffic. We adopted the unbalanced traffic model [72, 74] as

a nonuniform traffic pattern. The nonuniform traffic can be modeled using an

unbalanced probability ω to indicate the load variances for different flows. Consider

input port IP (i, s) and output port OP (j, d) of the TRIDENT switch, the traffic load

is determined by

ρi,s,j,d =


ρ(ω +

1− ω
N

), if i = j and s = d,

ρ
1− ω
N

, otherwise

(3.29)
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where ρ is the input load for input IP (i, s) and ω is the unbalanced probability.

When ω=0, the input traffic is uniformly distributed and when ω=1, the input traffic

is completely directional; traffic from IP (i, s) is destined for OP (j, d).

Figure 3.8 shows the throughput of TRIDENT, MMM, and MMeM switches.

The figure shows that TRIDENT switch attains 100% throughput under this traffic

pattern for all values of ω, matching the performance of MMeM and outperforming

that of MMM. These two buffered switches are known to achieve high throughput at

the expense of out-of-sequence forwarding.

We also tested the average queueing delay of TRIDENT under this nonuniform

traffic. It has been shown that many switches do not achieve high throughput when

ω is around 0.6 [72]. Therefore, we measured the average delay of TRIDENT under

this unbalanced probability, as Figures 3.9 and 3.10 show for N = 64 and N = 256,

respectively, and compared it with MMM, MMeM, and OQ switches. It should be

noted that due to the limited scalability of MMM and MMeM, the comparison of

TRIDENT for N = 256 under this traffic conditions only includes an OQ switch.

As Figure 3.9 for N = 64 shows, the average delay of TRIDENT is lower

than the delay achieved by MMM and MMeM under high input loads while also

achieving a comparable delay of an OQ switch. The small performance difference

between TRIDENT and OQ is similar for N = 256, as Figure 3.10 shows. These

results are achieved because the load-balancing stage of TRIDENT distributes the

traffic uniformly throughout the switch. Therefore, the queuing delay is similar to

that observed under uniform traffic. These results also show that high switching

performance of TRIDENT is not affected by the in-sequence mechanism of the switch

and the load-balancing effect is more noticeable under nonuniform traffic.
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Figure 3.8 Throughput under unbalanced traffic for 0 ≤ w ≤ 1.0 and N=256.

3.6 Conclusions

We have introduced a three-stage load-balancing packet switch that has virtual

output module queues between the input and central stages, and a low-complexity

scheme for configuration and forwarding cells in sequence for this switch. We call

this switch TRIDENT. To effectively perform load balancing TRIDENT has virtual

output module queues between the IM and CM stages. Here, IMs and CMs are

bufferless modules, while the OMs are buffered ones. All the bufferless modules

follow a predeterministic configuration while the OM selects the cell of a flow to

be forwarded to destined output port based on the cell’s arrival order and uses

round-robin scheduling to select the flow to be served. Therefore, the switch does not

have to pursue port matching despite having bufferless modules, and the configuration

complexity of the switch is minimum, making it comparable to that of MMM switches.

We introduced an in-sequence mechanism that operates at the outputs based on

arrival order inserted at the inputs of TRIDENT to avoid out-of-sequence forwarding

caused by the central buffers. We modeled and analyzed the operations that each

of the stages effects on the incoming traffic to obtain the loads seen by the output

ports. We showed that for admissible independent and identically distributed traffic,
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Figure 3.9 Average queuing delay under unbalanced traffic with w = 0.6 for N=64.
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Figure 3.10 Average queuing delay under unbalanced traffic with w = 0.6 for
N=256.

the switch achieves 100% throughput. This high performance is achieved without

resorting to speedup nor switch expansion. In addition, we analyzed the operation of

the forwarding mechanism and demonstrated that it forwards cells in sequence. We

showed, through computer simulation, that for all tested traffic, the switch achieves

100% throughput for uniform and nonuniform traffic distributions.
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CHAPTER 4

VINE: LOAD-BALANCING CLOS-NETWORK SWITCH WITH

VIRTUAL INPUT-MODULE OUTPUT QUEUES AT CENTRAL

STAGE

4.1 Introduction

Although Clos-network switches reduce the amount of hardware required for their

implementation, configuration complexity stills limits their scalability [23]. In

chapters 2 and 3, we introduced LBC and TRIDENT, respectively. But LBC requires

an extra stage and its delay is high as compared to an OQ switch, while TRIDENT

requires too many queues per output port for its in-sequence mechanism and also

its delay is high when compared to an OQ switch. These factors might limit the

scalability of a switch. In this chapter, we address these limiting factors by proposing

a novel load-balancing Clos-network switch with Virtual Input module at ceNtral

stagE (VINE). The proposed switch has virtual output queues (VOQs) at input

ports, virtual input-module output queues (VIMOQs) at CMs, and crosspoint buffers

(CBs) at OMs. The switch is based on cell switching, this is, a variable-length packet

is segmented into cells at arrival, and it is reassembled before departure at output

ports. The transmission time of a cell defines a time slot. We also propose using

periodic configurations at IMs to load-balance traffic with minimum IM configuration

complexity. CMs and OMs are buffered crossbars and crosspoint buffers at CMs are

split to accommodate one queue per IM and per output. Incoming traffic is then

load-balanced at IMs and forwarded to VIMOQs at CMs, then cells are forwarded to

CBs at OMs, and finally sent through output ports. We also propose an in-sequence

mechanism, operating at the input ports, to forward cells in sequence as queueing at

CMs and OMs raise the possibility of out-of-sequence forwarding. The configuration
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of VINE is low as no matching is required; IMs follow deterministic and periodic

configurations, and CMs and OMs use simple arbitration to select a queue. The

application of traffic load-balancing at IMs and buffering at CMs and OMs enable

VINE to attain 100% throughput under admissible traffic with independent and

identical distributions (i.i.d.) while resorting to low-complexity configuration and

using an in-sequence mechanism. Our contribution is the proposal of VINE, as a

high-performance and scalable Clos-network packet switch. The performance of VINE

is comparable to that of an output queue (OQ) switch in terms of throughput and

average delay on the tested traffic patterns. This high performance and in-sequence

forwarding of VINE are both achieved without memory speedup nor central-stage

expansion.

The remainder of this chapter is organized as follows: In Section 4.2, we

introduce the VINE switch. In Section 4.3, we analyze the throughput performance

of the proposed switch and proves that it attains 100% throughput. In Section 4.4,

we analyze the delay of the proposed switch. In Section 4.5, we present a simulation

study on the performance of the proposed switch. In Section 4.6, we present our

conclusions.

4.2 Switch Architecture

VINE has N input ports (IPs) and N output ports (OPs), each denoted as IP (i, s)

and OP (j, d), respectively, where 0 ≤ i, j ≤ k − 1, 0 ≤ s, d ≤ n − 1, and N = nk.

In addition, n = k = m for symmetry and cost effectiveness. The switch has k n× k

IMs, m k × k CMs, and k k × n OMs. Figure 4.1 shows the architecture of VINE.

Table 4.1 lists the notations used in the description of VINE. A VOQ, V OQ(i, s, j, d),

stores cells at IP (i, s) for OP (j, d). An IM is a bufferless crossbar and an OM and

CM are buffered ones. In addition, a crosspoint buffer (queue) of CM is split per OP.

Each VIMOQ is denoted as V IMOQ(i, r, j, d), where 0 ≤ r ≤ m− 1.

80



Each IM output, LI(i, r), connects to CM(r). The k VIMOQs at a CM directed

to OM(j), or
∑

0≤d≤k−1 V IOMQ(i, r, j, d), contend for access to the CM output

link, LC(r, j). Each OP has k crosspoint buffers, each denoted as CB(j, d, r) and

designated for queueing cells from CM(r). VINE uses a flow control mechanism to

avoid queue overflow and underflow between VIMOQs and VOQs, and between CBs

and VIMOQs. The flow control mechanism uses counters to keep track of occupancy

and two thresholds to stop and continue forwarding. The settings of thresholds

considers propagation delays between queues, in number of cells. Therefore, a CB

may be large enough to store multiple cells. Cells sent from IPs are load-balanced to

VIMOQs and queued before they are forwarded to their destination OPs.
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Figure 4.1 VINE: load-balancing Clos-network Switch with Virtual Input-module
output queues at CMs (VINE) and crosspoint buffers at OMs.
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Table 4.1 Notations used in the Description of the VINE Switch

Term Description

N Number of input/output ports.

n Number of input/output ports for each IM and OM.

k Number of IMs and OMs, where k = N
n

.

IP (i, s) Input port s of IM(i), where 0 ≤ i ≤ k − 1, 0 ≤ s ≤ n− 1.

IM(i) Input module i.

CM(r) Central module r.

OM(j) Output module j, where 0 ≤ j ≤ k − 1.

V OQ(i, s, j, d) VOQ at IP (i, s) that stores cells destined to OP (j, d), where 0 ≤ d ≤ n− 1.

V IMOQ(i, r, j, d) VIMOQ at output of IMs that stores cells destined to OP (j, d).

LI(i, r) Output link of IM(i) connected to CM(r).

LC(r, j) Output link of CM(r) connected to OM(j).

CB(j, d, r) Crosspoint buffer at OM(j) that stores cells going through CM(r) and destined to OP (j, d).

OP (j, d) Output port d at OM(j).

4.2.1 Input Module Configuration

Each IP uses a round-robin policy to select a VOQ from which a cell is forwarded

to a CM. Eligible VOQs have one or more cells and are enabled by the flow control

mechanism.

Each IM uses a fixed and pre-determined sequence of k permutations, one for

each time slot, at IMs to reduce configuration complexity. Each permutation consists

of a unique input-output interconnection and such that any IP is connected to any

other OP after k permutations. Cells at IPs are forwarded to the output of the IMs

based on the configuration at that time slot and stored in the VIMOQ corresponding

to its destination OP.

At time slot t, IM(i) is configured to interconnect input IP (i, s) to LI(i, r),

where

r = (s+ t) mod k (4.1)
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4.2.2 Selection of VIMOQ at Central Modules.

Each LC(r, j) uses a hierarchical static round-robin arbiter that selects a cell to be

forwarded to the OM, and thus to the corresponding CB at the destination OP.

The arbiter selects the IM first and the destined OP second. Each LC(r, j) also has

pointers to keep track of the selected IM and OP to avoid starvation.

4.2.3 Selection at Output Ports.

VINE uses round-robin arbitration at an OP to select the CB that forwards a cell to

the OP in the following time slot. Because there is no two (or more) cells of the same

flow at CBs, as per the in-sequence mechanism applied to IPs, round-robin arbitration

at OPs provides service to CBs without concerns of out-of-sequence forwarding. As

before, a flow is the set of cells from IP (i, s) destined to OP (j, d).

4.2.4 In-sequence Cell Forwarding Mechanism

Cells of a flow are held at VOQs when there is a possibility that they could be delayed

at VIMOQs longer than a cell of the same flow that arrives at a later time, and thus

preventing out-of-sequence forwarding.

Each IP and CM have a counter, σr,j, respectively, to track the occupancy at

CMs of cells that are destined to the same OM at CM(r). σr,j is updated each time

a cell arrives or departs any VIMOQ for each particular OM. The IP uses the count

as a hold-down timer for each VOQ, triggered by σr,j ≥ 1 as found by a cell from

that VOQ at arrival to the CM and notified back to the IP. Here, σr,j is defined as:

σr,j =
i=k−1∑
i=0

d=n−1∑
d=0

V IMOQ(i, r, j, d) (4.2)

and the hold-down time is σr,j time slots. Therefore, no cell from this VOQ is

forwarded to VIMOQs for σr,j time slots, while cells at other VOQs at that IP may

still be forwarded.
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4.2.5 Flow Control

The switch uses two flow control mechanisms, one flow control mechanism between

VIMOQs and IPs and another between CBs and VIMOQs. A VIMOQ has two

thresholds it uses for flow control; pause (Tmp) and resume (Tmr), where Tmp >

Tmr, in number of cells. When the occupancy of VIMOQ, |V IMOQ|, is larger than

Tmp, the VIMOQ signals the corresponding IPs to pause sending cells to it. When

the |V IMOQ| < Tmr, the VIMOQ signals the corresponding IPs to resume sending

cells to it. Here, Tmp is such that CV IMOQ − Tmp ≥ Dvq, where CV IMOQ is the size

of the VIMOQ and Dvq is the flow-control message delay.

Similar to VIMOQs, CBs have two thresholds; pause (Tcp) and resume (Tcr),

where Tcp > Tcr, and Tcp is such that CCB − Tcp ≥ Dcq, for a CB size, CCB,

and flow-control message delay between a CB and corresponding VIMOQs, Dcq.

When the occupancy of a CB, |CB|, becomes larger than Tcp, the CB signals the

corresponding VIMOQs to pause sending cells to it. When |CB| < Tcr, the CB

signals the corresponding VIMOQs to resume forwarding.

4.3 Throughput Analysis

In this section, we analyze the performance of VINE and also prove that it achieves

100% throughput using the concept of queue stability. A switch is defined as stable for

a traffic pattern if the queue length is bounded and a switch achieves 100% throughput

if it is stable for admissible i.i.d. traffic [57, 58]. With this, we set the following

theorem:

Theorem 5. VINE achieves 100% throughput under admissible i.i.d traffic.

Proof: Here, we consider the queue to be weakly stable if the drift of the queue

occupancy from the initial state is a finite integer ε ∀ t as limt→∞. Using the

definition above, we show that the queue length of VOQs, VIMOQs, and CBs are
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weakly stable under i.i.d. traffic, and hence, achieves 100% throughput under that

traffic pattern.

Let us represent the queue occupancy of VOQs at time slot t, N1(t) as:

N1(t) = N1(t− 1) + A1(t)−D1(t) (4.3)

where A1(t) is the packet arrival matrix at time slot t to VOQs and D1(t) is the

service rate matrix of VOQs at time slot t. Solving (4.3) with an initial condition

N1(0), recursively yields:

N1(t) = N1(0) +
t∑

γ=0

A1(γ)−
t∑

γ=0

D1(γ) (4.4)

Let us consider d1u,v(t) as the service rate received by the VOQ at IP (u) for OP (v)

at time slot t or:

d1u,v(t) =


1

N
≤ d1u,v(t) ≤ 1 for σr,j = 0

1

σr,jN
≤ d1u,v(t) ≤

1

σr,j
for σr,j ≥ 1

(4.5)

Another way to express D1(t) is:

D1(t) = [d1u,v(t)] (4.6)

Let us denote the traffic from input ports to the IM stage, R1, as:

R1 = [λu,v] (4.7)

Here, λu,v is the arrival rate of traffic from input u to output v, where

u = ik + s (4.8)

v = jk + d (4.9)
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and 0 ≤ u, v ≤ N − 1.

We consider admissible traffic in this analysis, which is defined as:

N−1∑
u=0

λu,v ≤ 1,
N−1∑
v=0

λu,v ≤ 1 (4.10)

under i.i.d. traffic conditions.

Because R1 is the aggregate traffic arrival to VOQs it can also be denoted as:

R1 =
t∑

γ=0

A1(γ) (4.11)

Substituting (4.5) into (4.6), and (4.6) and (4.11) into (4.4), yields:

N1(t) =


N1(0) + R1 −

t

N
∗ 1 for σr,j = 0

N1(0) + R1 −
t

σr,jN
∗ 1 for σr,j > 1

(4.12)

From (4.12), we obtain:
lim
t→∞

R1

t
− 1

N
∗ 1 ≤ ε <∞ for σr,j = 0

lim
t→∞

R1

t
− 1

σr,jN
∗ 1 ≤ ε <∞ for σr,j > 1

(4.13)

From the admissibility condition of R1, it is easy to see that for any value of t, (4.13)

is finite. Hence, from (4.10), (4.12) and (4.13), we conclude that occupancy of VOQ

is weakly stable.

�

Now we prove VIMOQs stability. As before, the queue occupancy matrix of

VIMOQs at time slot t can be represented as:

N2(t) = N2(t− 1) + A2(t)−D2(t) (4.14)

where A2(t) is the arrival matrix at time slot t to VIMOQs and D2(t) is the service

rate matrix of VOMQs at time slot t. Solving (4.14) recursively with consideration
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of an initial condition for N2(t), yields:

N2(t) = N2(0) +
t∑

γ=0

A2(γ)−
t∑

γ=0

D2(γ) (4.15)

Because VIMOQs are serviced using round-robin, this means a VIMOQ is serviced at

least once every N time slots. The service rate of the VIMOQs at time slot t, d2µ,v(t)

is:

1

N
≤ d2µ,v(t) ≤ 1

Then, the service matrix of VOMQs is:

D2(t) = [d2µ,v(t)] (4.16)

Let us represent the aggregate traffic arrival to VIMOQs as R2, which is the

traffic directed towards OMs and it is derived from R1 and the permutations of

IMs. The configuration of IMs at time slot t that connects IP (i, s) to LI(i, r) are

represented as an N ×N permutation matrix, Π(t) = [πu,υ] and the matrix element:

πu,υ =


1 for any u, υ = rk + i

0 elsewhere.

The configuration of IMs can be represented as a compound permutation matrix,

P1, which is the sum of IMs permutations over k time slots is:

P1 =
k∑

Π(t) (4.17)

Because the configuration is repeated every k time slots, the traffic load from the

same input going to each VIMOQ is 1
k

of the traffic load of R1. Therefore, a row of

R2 is the sum of the row elements of R1 at the non zero positions of P1, normalized
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by k. This is:

R2 =
1

k
((R1 ∗ 1) ◦P1) (4.18)

Because R2 is the aggregate traffic arrival to VIMOQs it can also be denoted as:

R2 =
t∑

γ=0

A2(γ) (4.19)

Because R1 is admissible, R2 would be admissible. Let us assume that VIMOQs

are serviced at least once every N time slots. Hence, d2µ,v = 1
N
∀ µ and v in (4.16).

Substituting (4.16) and (4.19) into (4.15) gives:

N2(t) = N2(0) + R2 −
1

N
P1 (4.20)

From (4.20), we get:

R2 −
1

N
P1 ≤ ε <∞ (4.21)

Recalling that R2 is admissible and by substituting P1 and R2 into (4.21), it is easy

to see that ε is finite. Hence, from (4.20) and (4.21), we conclude that the occupancy

of VIMOQ is weakly stable.

�

Now we prove the stability of CBs. The queue occupancy matrix of CBs at time

slot t can be represented as:

N3(t) = N3(t− 1) + A2(t)−D3(t) (4.22)

where A3(t) is the packet arrival matrix at time slot t CBs, and D3(t) is the service

rate matrix of CBs at time slot t. Solving (4.22) recursively as before yields:

N3(t) = N3(0) +
t∑

γ=0

A3(γ)−
t∑

γ=0

D3(γ) (4.23)
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Because a CB is serviced at least once every k time slots. Hence, the service rate of

the CB at OP (v) at time slot t, d3v(t) is:

1

k
≤ d3v(t) ≤ 1

and service matrix of CBs is:

D3(t) = [d3v(t)] (4.24)

We define a k×N matrix, Ds, built by concatenating k k×n diagonal matrices,

D, as: Ds is an m×N matrix, built by concatenating N k × 1 vector of all ones, ~1,

as:

Ds = [~1, · · · ,~1] (4.25)

We define a 1×k row vector, ~A, built by setting the first element to 1 and every

other element to 0, or:

~A = [1 · · · 0] (4.26)

~As is an N × 1 column vector, built by concatenating k ~A and taking its transpose,

or:

~As = [ ~As1 , · · · , ~Ask ]T (4.27)

where ~As1 = ~Ask = ~A, such that

~As = [ ~A, · · · , ~A]T (4.28)

The traffic queued at the CB of an OP, R3(v), is the multiplication of Ds, R2(j, d),

and a vector of all ones, ~As, or:

R3(v) = Ds ∗R2(j, d) ∗ ~As (4.29)

Because R2 is admissible, R3 is also admissible.
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Hence, aggregate traffic arrival to the CB can also be written as:

R3 =
t∑

γ=0

A3(γ) (4.30)

Let us assume d3v(t) = 1
k
∀ v in (4.24), which is the worst case scenario at which a

CB gets serviced once every k time slots. Substituting (4.24) and (4.30) into (4.23):

N3(t) = N3(0) + R3 −
1

k
∗~1 (4.31)

where

R3 −
1

k
∗~1 ≤ ε <∞ (4.32)

With R3 being admissible, and by substituting R3 into (4.32), it is easy to see that

ε is finite. Hence, from (4.31) and (4.32), we conclude that the occupancy of CB is

also weakly stable.

�

This completes the proof of Theorem 5.

�

4.4 Delay Analysis

In this section, we analyze the delay a cell experiences while traversing VINE and

also show that this delay approximately equal to the delay the cell experiences while

traversing an OQ switch for any admissible i.i.d. traffic through the following theorem.

Table 4.2 lists the definition of terms used in the discussion

Theorem 6. The difference between the maximum delay a cell experiences while

traversing VINE and an OQ switch is infinitesimal under admissible i.i.d. traffic.
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We selected two traffic scenarios that causes cells to contend for LC(r, j) towards

the destination OM, stresses the occupancy CBs of VINE, and also shows the

advantage of OQ’s speedup.

Table 4.2 Notations used in the Delay Analysis of VINE

cy,τ The τth cell of flow y from IP (i, s) to OP (j, d).

ta1,τ Arrival time of cy,τ in V OQ(i, s, j, d) at IP (i, s) of VINE.

ta2,τ Arrival time of cy,τ in V IMOQ(r, i, j, d) of VINE.

ta3,τ Arrival time of cy,τ in CB(r, j, d) of VINE.

tdvτ Departure time of cy,τ from CB(r, j, d) of VINE.

tdmvτ Maximum departure time of cy,τ from CB(r, j, d) of VINE.

WVτ Waiting time of cell cy,τ at CB(r, j, d) of VINE.

Rτ Residual waiting time of cy,τ at CB(r, j, d) of VINE.

St Expected service time of cy,τ at CB(r, j, d) of VINE.

tIτ Arrival time of cy,τ at IP (u) of OQ switch.

tOτ Arrival time of cy,τ at OP (v) of OQ switch.

tdoτ Departure time of cy,τ at OP (v) of OQ switch.

WOτ Waiting time of cell cy,τ at OP (v) of OQ switch.

tdmoτ Maximum Departure time of cy,τ from OP (v) of OQ switch.

We prove this theorem using lemmas.

Lemma 1. Considering a hot-spot traffic pattern, where all IPs send a cell

to the same OP. The difference between the maximum delay a cell experiences while

traversing VINE and an OQ switch is one time slot.

Proof: We assume that there are previously no cells in the switch. Firstly we

consider VINE, let the arrival time of cell, cy,τ , to a VOQ, ta1,τ , be:

ta1,τ = tx (4.33)
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Because the VOQs were initially empty, the arrival time of cells to VIMOQs, ta2,τ , is:

ta2,τ = tx + 1 (4.34)

Also because VIMOQs were initially empty, the arrival time of cells to the CB, ta3,τ ,

is:

ta3,τ = tx + 1 + θτ = ta2,τ + θτ (4.35)

where βτ is the position of the cell based on the round-robin arbitration at the CM

and 1 ≤ βτ ≤ k. The departure time of a cell cy,τ from the CB is:

tdvτ = ta3,τ +WVτ (4.36)

WVτ = Rτ + St (4.37)

where Rτ is the time it takes for the cell ahead of cy,τ at the CB to be forwarded out

the OP and St = 1. Because 1 ≤ βτ ≤ k and there are N source IPs based on the

traffic scenario, the maximum number of cells ahead of cy,τ at the CB upon arrival is:

N − k

Therefore, the waiting time of cy,τ , WVτ , is

WVτ = (N − k) + 1 (4.38)

Substituting (4.38) into (4.36) yields:

tdvτ = ta3,τ + (N − k) + 1 (4.39)

From (4.34) and (4.35), the maximum departure time from the CB is:

tdmvτ = tx + 2 +N (4.40)
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Let us now consider the OQ switch. Let the arrival time of cell, cτ , to IPs, tIτ ,

be:

tIτ = tx (4.41)

Because OQ switch uses speedup, the arrival time of cells to the output port queue,

tOτ , is:

tOτ = tx + 1 (4.42)

The departure time of a cell cy,τ from the OP queue is:

tdoτ = tOτ +WOτ (4.43)

where 1 ≤ WOτ ≤ N .

Therefore, the maximum departure time from the OP queue is:

tdmoτ = tOτ +N = tx + 1 +N (4.44)

From (4.40) and (4.44), we see that the difference in the maximum delay

observed by a cell while traversing VINE or OQ under the hot-spot traffic is one

time slot.

�

Lemma 2. Considering a traffic pattern where all IPs in the same IM send a

cell to different IPs in the same OM and no other traffic traverses the switch. The

difference between the maximum delay a cell experiences while traversing VINE and

an OQ switch is one time slot.

Firstly we consider VINE. Let the arrival time of cell, cy,τ , to a VOQ, ta1,τ , be:

ta1,τ = tx (4.45)
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Because the VOQs were initially empty, the arrival time of cells to VIMOQs, ta2,τ , is:

ta2,τ = tx + 1 (4.46)

Also since VIMOQs were initially empty, the arrival time of cells to the CB, ta3,τ , is:

ta3,τ = ta2,τ + 1 = tx + 2 (4.47)

The departure time of a cell cy,τ from the CB is:

tdτ = ta3,τ + 1 (4.48)

Therefore, the maximum departure time from the CB is:

tdmvτ = tx + 3 (4.49)

Let us now consider the OQ switch. For the OQ switch the traffic pattern is

between n IPs and OPs. Let the arrival time of cell, cy,τ , to IPs, tIτ , be:

tIτ = tx (4.50)

The arrival time of cells to the output port queue, tOτ , is:

tOτ = tx + 1 (4.51)

The departure time of a cell cy,τ from the OP queue is:

tdoτ = tOτ + 1 (4.52)

Therefore, the maximum departure time from the OP queue is:

tdmoτ = tx + 2 (4.53)
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From (4.49) and (4.53), we see that the difference in the maximum delay

experienced by a cell while traversing VINE or OQ under the above traffic pattern is

one time slot.

�

This completes the proof of Theorem 6.

�

4.5 Performance Analysis

The performance analysis of VINE are obtained through computer simulation under

uniform and non uniform traffic models. The performance of VINE is compared

with that of an output-queued (OQ), an Memory-Memory-Memory Clos-network

(MMM) switch, and MMM switch with extended memory (MMeM). We have chosen

these switches for comparison because the OQ switch is an ideal switch, while

MMM and MMeM achieve the highest performance among Clos-network switches,

despite been categorized as different architectures. We considered switches with size

N = {64, 256}.

4.5.1 Uniform Traffic

Figures 4.2 and 4.3 show the average delay under uniform traffic with Bernoulli

arrivals for N = 64 and N = 256, respectively. The figures show VINE and OQ

experiences the same average delay, which is consistent with the claims in Section

4.4. The figures also show that the high performing MMM and MMeM switches

experiences delay higher than VINE. This high performance is attributed to the

unique switch architecture, efficient load-balancing, and in-sequence mechanisms.

Our simulator can only simulate small MMeM switches for queueing analysis due
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to their high memory requirement. So we simulated the switch under uniform traffic

pattern for N = 64.
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Figure 4.2 Average queueing delay under uniform traffic for N=64.

4.5.2 Nonuniform Traffic

We also evaluated the throughput of VINE, MMM, MMeM under unbalanced [74]

and diagonal [63] patterns as nonuniform traffic. Figure 4.4 shows the performance

of VINE, MMM, and MMeM under unbalanced traffic for unbalanced probability 0 ≤

w ≤ 1. The results show that VINE attains 100% throughput, outperforming MMM

and sharing similar performance to that of MMeM, however, with lower complexity

and while forwarding cells in sequence. One should note that MMeM forward cells out

of sequence. Figure 4.6 shows that the average delay of VINE under unbalanced traffic

for N = 256. The result shows that VINE experiences the same average delay as the

high-performing OQ switch. Figure 4.5 shows the throughput of VINE, MMM, and

MMeM switches under diagonal traffic for diagonal probability 0 ≤ g ≤ 1. Also the

figure shows that VINE attains 100% throughput, outperforms MMM, and matches
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Figure 4.3 Average queueing delay under uniform traffic for N=256.

MMeM under this traffic pattern. These results are the product of the load-balancing

operation in VINE.

4.6 Conclusions

We introduced a scalable and high-performing load-balancing Clos-network switch

that uses virtual input-module output queues at CMs and crosspoint buffers at OMs.

The IMs are bufferless modules and the OMs are buffered ones. Irrespective of IMs

being bufferless, the switch does not use module or port matching. Instead the switch

uses a low-complexity configuration scheme, where IMs follow a predeterministic

configuration (O(1)), while IP, CM, and OM links use round-robin arbitration.

We adopted an in-sequence mechanism that operates at the inputs of VINE that

ensures forwarding of cells in-sequence. The switch architecture, load-balancing,

and in-sequence mechanisms makes VINE outperform the MMM switches, while

performing like an OQ switch. We modeled and analyzed the performance of VINE

and showed that for admissible independent and identically distributed traffic, the
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Figure 4.4 Throughput under unbalanced traffic for N=256.

switch achieves 100% throughput and performs like an OQ switch. This high

performance is achieved without switch expansion nor speepdup. We showed, through

computer simulation, that for all tested traffic, the switch achieves 100% throughput

for uniform and nonuniform traffic distributions.
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CHAPTER 5

MODELING OF NETWORK PACKET SWITCHES USING MATRIX

ANALYSIS

5.1 Introduction

The operation of a packet switch (or just switch for brevity) is to forward Internet

packets from inputs to outputs. An N × N switch may have its inputs indexed

by 0 ≤ u ≤ N − 1 and its outputs by 0 ≤ v ≤ N − 1. Different packet switch

architectures require different configuration schemes. These schemes have a direct

effect on the operation of switching traffic from inputs to outputs and, therefore, on

the performance of the switch. Performing switch analysis is a critical tool to which

designers resort to determine the worthiness of a switch architecture. Moreover,

these tools can be specifically targeted at identifying a performance metric, such as

stability, throughput, or delay among the most demanded. However, analyzing the

different performance metrics of the switch also requires different tools, some of which

sometimes come at the expense of high complexity or are rendered complex to apply.

Here, we consider that a packet switch may receive variable length Internet

packets and segment them into fixed-size cells for internal switching, and re-

assembling them before packets depart the switch. In this way, the time it takes

to switch a cell from inputs to outputs is also fixed, and it is referred to a time slot.

The performance of a switch may be determined by different metrics. Some of

the more sought after are:

Throughput. In general, throughput of a switch is conveniently represented as a

normalized estimate; that is, the ratio of the number of cells that left the outputs

of the switch to the arrived cells at the inputs of the switch. The throughput of a
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switch is one the the most important performance metrics as it enables us to evaluate

other parameters, such a delay. The delay of a cell (or packet) can be evaluated only

if the throughput of a switch for a given input load is full; that is, the number of

cells leaving the switch equals that entering the switch. The throughput of a switch

may be estimated by computer simulation, probabilistic analysis, direct estimation,

or tight or loose bound estimation for cases where absolute estimation is complex

[1, 2, 25, 36, 37, 46, 49, 66, 69]. In the particular case 100% throughput is expected

under 100% input load (full load that inputs may sustain), stability of the queues,

and therefore, the switch may be analyzed as binary test [20,32,55–58,67].

Stability. A switch is considered to be stable if for any admissible input traffic, the

switch is capable of forwarding the incoming traffic to the respective output(s), such

that the queue occupancy of the switch does not grow infinitely.

We define admissible traffic as

N−1∑
u=0

λu,v ≤ 1,
N−1∑
v=0

λu,v ≤ 1 (5.1)

where, λu,v is the arrival rate of traffic from input u to output v of a switch. Such

admissibility is considered here under independent and identically distributed (i.i.d.)

traffic conditions.

In this case, the queue occupancy is not expected to grow if the input is

admissible. However, some queueing may occur for short periods of time but as

long as the average profile of the input load remains admissible, queues are not

expected to grow infinitely, should input buffers have sufficient capacity [55–58]. The

finite queue occupancy of a switch can be evaluated by computer simulation [59],

modeling the queueing system of the switch [65], by using a fluid model to determine

its stability [20], or by using a stability criteria such as Lyapunov analysis. For a

switch with queue occupancy matrix L(n) at time n, state vector

Y (n) = (L(n), X(n)) (5.2)
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where X(n) is an integer vector, and a Lyapunov function

V (L(n)) = L(n) Z L(n)T (5.3)

If there is a symmetric copositive. An N×N matrix B is copositive if LBLT ≥ 0 ∀ L ∈

R
+N matrix Z ∈ RN×N , and two positive numbers ε ∈ R+ and U ∈ R+, such that:

E[V (L(n+ 1)− V (L(n)|L(n)] < −ε||L(n)|| ∀ Y (n) :

||L(n)|| > U (5.4)

the switch is considered to be stable [3, 51, 55–58,68,75].

Queueing delay. The queueing delay, or just delay, is the time a cell waits in a queue

before being forwarded to the destination output. This waiting time may depend on

both the presence of other cells in other queues contending to be forwarded to the

output and on the scheme used to select the next cell to be forwarded. Then, the

average queueing delay of a switch is the average estimate on the cells passing through

the switch. For analysis of a switch under i.i.d. traffic, the average switch delay of

switch is equivalent to that experienced by traffic coming through one of the outputs.

The average queueing delay of a switch may be measured through computer

simulation or by modeling the queues as a Markov process model and analyzing the

model, or queueing analysis [4,10,34,36,51,52,61,65,75]. However, the last option is

difficult to adapt for various switch architectures, traffic types, and selection schemes.

These issues raise the question, can the throughput of a switch be analyzed

using a simpler method that provides insight into the switching fabric and numeric

throughput values?
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We propose the use of matrix analysis as a tool for analyzing the operation of

a switch on the incoming traffic and thus, to analyze the performance of a switch.

Matrix analysis provides a deep insight into the operation of the switching fabric, and

also with this analysis we may obtain a numeric throughput.

The use of matrix decomposition as a configuration scheme, has been previously

applied to a few switching architectures. In [43], a matrix decomposition algorithm

was presented to route cells in a rearrangeable three-stage Clos network by performing

a row-wise matrix decomposition. In [7, 8, 45], a scheduling algorithm that uses the

results from Birkhoff decomposition [5] and von Neumann algorithms [79] for a doubly

stochastic matrix was proposed for an input-buffered crossbar switch.

Different from those applications, our objective is to apply matrix analysis

in modeling the operation of the switch on the incoming traffic and to estimate

the performance of the switch. In this chapter, we show that matrix analysis

can be applied to both single and multi-stage switch architectures that use either

pre-determined or random arbitration schemes.

The remainder of this chapter is organized as follows: Section 5.2, introduces our

matrix analysis approach in general terms. Section 5.3, describes several application

cases, from single to multi-stage switches that may use load-balancing functions or

other configuration schemes. In this examples, we estimate the switch throughput or

verify that a switch achieves 100% throughput. Section 5.4, presents our conclusions.

5.2 Throughput Analysis through Matrix Analysis

For any single or multistage switching architecture, the internal configuration of the

switch can be represented by a compound permutation P, or a set of permutations

P1, · · · ,Pγ−1. where γ is the number of stages in the multistage architecture and

γ > 1.
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Let’s consider that the traffic incoming to a switch, or input matrix R1, is

defined as:

R1 = [λu,v] (5.5)

where R1 is admissible.

The traffic at the output port of a single-stage switch, R2, is:

R2 = R1αP (5.6)

where α is defined by the configuration of the switch and P is the connection provided

by the configuration. Moreover, for a multistage switch architecture with γ stages,

the matrix at the output port, Rγ, is:

Rγ = (((R1αP1)αP2) · · ·αPγ−1) (5.7)

The throughput of a single-stage or multi-stage switch with input R1 and output

R2 or Rγ, respectively, is calculated by dividing the sum of the columns in R2 or Rγ

by the sum of the columns in R1 and adding up the results. For an output matrix,

RO, or:

RO = [λµ,v] (5.8)

where RO = R2 for a single-stage and RO = Rγ for a multi-stage switch, the

throughput of the switch is calculated by:

Throughput =
∑(N−1∑

µ=0

λµ,v|v = 0, · · · , N − 1

N−1∑
u=0

λu,v|v = 0, · · · , N − 1

)
(5.9)
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5.3 Application Examples of Matrix Analysis on Switch Architectures

In this section, we apply this technique to an output queued (OQ), input-queued,

a load-balancing Birkhoff-von-Neumann (LBvN) switches, which can be classified

as single (e.g., OQ and IQ) and multi-stage switches (e.g., LBvN and MMeM),

with deterministic (e.g., LBvN) and non-deterministic configuration patterns. These

switches are selected because of their high performance and herein, we show that the

proposed approach can be used to estimate the switch throughput. The architecture

of the switches used in the examples are shown in Figure 5.1.

5.3.1 Output-queued (OQ) Switch

In this section, we analyze the performance of an output-queued (OQ) switch. An

OQ switch has queues at the outputs. Figure 5.1(a) shows the architecture of an

OQ switch. Output queueing enables forwarding multiple cells at the same time

to the same output, where they are queued before being forwarded out of output

port [18, 30, 38]. However, the queues of an OQ switch operate at N times the

speed of the line rate [15, 21, 38, 53]. When the line rate is high or the switch size is

large, implementing this speedup of the queues becomes infeasible [6, 14, 55, 62, 77].

The OQ switch is considered an ideal switch; the throughput is 100% under any

admissible traffic pattern and cells are available for leaving the switch right after

arrival. However, the order in which cells leave an output depends on the forwarding

policy applied at the output queues. By using matrix analysis, we show that the OQ

switch effectively achieves 100% throughput.

Let us denote the traffic coming to the input ports and then leaving to the

output ports of the OQ switch as R1, R2, respectively. Here, R1 and R2 are N ×N

matrices.
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Figure 5.1 Switch architectures of example switches.
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Here, R1 is obtained from (5.5), the configuration of the OQ switching fabric

at time slot t that connects IP (i) to OP (j) is represented as an N ×N permutation

matrix, Π(t) = [πu,v], and the matrix element:

πu,υ =


1 if u connects to v

0 otherwise.

(5.10)

The configuration of the OQ switch can be represented as a compound

permutation matrix, P, as follows,

P =
∑
t

Π(t) (5.11)

While R2 is:

R2 = (R1 ◦P) (5.12)

where ◦ denotes element/position wise multiplication.

As example, we calculate the throughput for a 4×4 OQ switch for any input

traffic pattern. Let the input traffic matrix be:

R1 =



λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3


From (5.11), the compound permutation matrix of the OQ switch is:

P =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
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Using (5.12), we get R2, the traffic matrix at the output ports:

R2 =



λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3


(5.13)

From (5.13), we see that R1 = R2 and this is achieved over one time slot, which

implies a speedup of N . By using (5.9), it is easy to see that the OQ switch attains

100% throughput under admissible traffic and this result is equivalent to the well-

known performance of this switch.

5.3.2 Input-queued (IQ) Switch with iterative Round Robin Matching

(iRRM)

In this section, we analyze an input queue (IQ) switch which uses iterative round

robin matching (iRRM) as the configuration scheme [54]. An IQ switch has queues

at the inputs and usually virtual output queues (VOQs), which are used to queue cells

for each destination output. Figure 5.1(b) shows the architecture of an IQ switch.

iRRM works as follows: At time slot t, all the unmatched IPs with one or more

queued cells for an OP sends a request to the OP.

The OP chooses the request that appears next in a round-robin schedule starting

from the OP with the highest priority, and notifies each requesting IP whether the

request is granted. The round-robin pointer of the OP is updated to one location

beyond the granted IP (modulo u).

The IP accepts the grant from an OP in a round-robin schedule starting from

the OP with the highest priority and updates the round-robin pointer to one location

beyond the accepted OP (modulo v).
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Let us denote the traffic coming to the input and the output ports of the IQ

switch as R1, R3, respectively, as N ×N matrices.

The traffic matrix at the input port is obtained from (5.5), the configuration

of the IQ switch at time t can be represented as an N × N permutation matrix,

Π(t) = [πu,v], and the matrix element:

πu,υ =


1 if u connects to v

0 otherwise.

(5.14)

Because each IP connects to an OP in a round-robin fashion under the presence

of traffic for that OP at the IP, the configuration of the switch can be represented as

a pre-deterministic sequence of periodic permutations.

P(t) =
∑

Π(t) (5.15)

A permutation then indicates the connections from an IP to the OP for which it has

traffic. This permutation may change as a pattern, in a round-robin schedule, each

time slot.

The traffic matrix at the output ports after each time slot t, RP(t), is:

RP(t) = RP(t− 1)− αtP(t) (5.16)

where αt is the smallest weight element of RP(t) at non-zero positions of P(t). In

(5.16), RP(t = 0) is the input matrix R1. Therefore, the traffic matrix at the output

ports after N time slots, or the matrix for the matched connections, R3, is:

R2 = R1 −RP(t = N) (5.17)

where RP(t = N) is the matrix of unmatched connections.

109



5.3.2.1 Example of an IQ Switch with iRRM under Uniform Traffic In

this example, we consider a uniformly distributed input traffic for a 4×4 IQ switch.

Let the input traffic matrix be:

R1 =



λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3


R1 is decomposed into R1(t) for each time slot t. From (5.15) and (5.16), we

obtain:

RP(1) =



0 λ0,1 λ0,2 λ0,3

λ1,0 0 λ1,2 λ1,3

λ2,0 λ2,1 0 λ2,3

λ3,0 λ3,1 λ3,2 0



RP(2) =



0 λ0,1 λ0,2 0

0 0 λ1,2 λ1,3

λ2,0 0 0 λ2,3

λ3,0 λ3,1 0 0



RP(3) =



0 λ0,1 0 0

0 0 λ1,2 0

0 0 0 λ2,3

λ3,0 0 0 0
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RP(4) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


where RP(4) is the matrix for unmatched connections, but by being a null matrix, it

indicates that all connections are matched.

Using (5.17), we obtain R2, the traffic matrix at the output ports after N time

slots, or:

R2 =



λ0,0 λ0,1 λ0,2 λ0,3

λ1,0 λ1,1 λ1,2 λ1,3

λ2,0 λ2,1 λ2,2 λ2,3

λ3,0 λ3,1 λ3,2 λ3,3


(5.18)

As stated above, each IP connects to each OP once every N time slots. Because

R1 is uniformly distributed, each IP forwards traffic at a rate of 1
N

, which for this

example, it is represented as:

R1 =



0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25


(5.19)

Therefore,

R2 =



0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25


(5.20)
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From (5.18) and (5.20), we see that R1 = R2. By using (5.9), it is clear that this

switch achieves 100% throughput under uniform traffic.

5.3.2.2 Example of an IQ Switch with iRRM under Nonuniform Traffic

In this example, we consider a nonuniform input matrix and show the throughput of

IQ with iRRM. Let R1 be:

R1 =



0.4 0.2 0.2 0.2

0.2 0.4 0.2 0.2

0.2 0.4 0.1 0.3

0.2 0 0.5 0.3


(5.21)

From (5.15) and (5.16), we obtain:

RP(1) =



0.3 0.2 0.2 0.2

0.2 0.3 0.2 0.2

0.2 0.4 0 0.3

0.2 0 0.5 0.2



RP(2) =



0.3 0.2 0.2 0

0 0.3 0.2 0.2

0.2 0.2 0 0.3

0.2 0 0.3 0.2



RP(3) =



0.3 0.2 0 0

0 0.3 0.2 0

0 0.2 0 0.3

0.2 0 0.3 0.2
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RP(4) =



0.3 0 0 0

0 0.3 0 0

0 0.2 0 0.1

0 0 0.3 0.2


RP(4) is the matrix of unmatched connections.

From (5.17), we obtain R2, the traffic matrix at the output ports after N time

slots, or the traffic for the matched connections is:

R2 =



0.1 0.2 0.2 0.2

0.2 0.1 0.2 0.2

0.2 0.2 0.1 0.2

0.2 0 0.2 0.1


(5.22)

Using (5.9), we obtain for throughput by summing the columns of (5.22), and dividing

each sum by the sum of the same column of R1, and summing the results, or:

Throughput = 0.7 + 0.5 + 0.7 + 0.7 = 0.65 (5.23)

Therefore, the attained throughput is 65% under this nonuniform traffic and after N

time slots.

5.3.3 Load Balanced Birkhoff-von Neumann (LBvN) Switch

We consider a Load Balanced Birkhoff-von Neumann (LBvN) switch [9, 10] in this

section. This switch consists of two stages, the first stage load balances the input

traffic by using periodic permutations in its configuration, and the second stage,

which is a Birkhoff-von Neumann input-queued switch, switches the load-balanced

traffic toward the destinations. Figure 5.1(c) shows the architecture of LBvN and the

traffic matrix representation of each stage.
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Let us denote the traffic coming to the first stage, leaving the first stage, entering

the second stage, and leaving the LBvN switch as R1, R2, R3, and R4, respectively.

Here, R1, R2, and R3 are N ×N matrices and R4 is an N × 1 column vector.

The configuration of the first stage that connects input port, IP (i), to the

output of the first stage, or internal output port, IOP (i), at time slot t is represented

as an N ×N permutation matrix, ΠBvN(t) = [πu,v], and the matrix element:

πu,υ =


1 for any u, v = (u+ t) mod N

0 elsewhere.

(5.24)

The configuration of the first stage can be represented as a compound

permutation matrix, P, which is the sum of the permutations used on the first stage

over N time slots, as follows:

P =
N∑

ΠBvN(t) (5.25)

Because a switch configuration is repeated every N time slots, the traffic load

from the same input going to each VOMQ is 1
N

of R1. The traffic matrix R2 is

obtained by using:

R2 =
1

N
((R1 ∗ 1) ◦P) (5.26)

Given that

P = 1

where 1 denotes an N ×N unit matrix. Hence:

R2 =
1

N
(R1 ∗P) (5.27)

Here, R2 is the aggregate output traffic from the first stage destined to all OPs.

This matrix can be further decomposed into N N×N matrices, R2(v), each of which
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is the aggregate traffic at the input of the second stage destined to OPv.

R2 =
N−1∑
v=0

R2(v) (5.28)

The second stage of this switch runs a sequence of periodic connection patterns that

repeats every N time slots. Hence, the configuration of the second stage can be

represented as a compound permutation matrix, P, which is similar to the compound

permutation used by the first stage of the switch. Therefore, the traffic forwarded to

an OP is:

R3(v) = (R2(v) ◦P) ∗~1 (5.29)

The traffic forwarded to all OPs, R3, is:

R3 = [R3(0), · · · ,R3(N − 1)] (5.30)

The traffic leaving an OP, R4(v) is:

R4(v) = (~1)T ∗R3(v) (5.31)

The traffic leaving all OPs, R4 is:

R4 = [R4(0), · · · , R4(N − 1)]T (5.32)

5.3.3.1 Example of a LBvN Switch under Nonuniform Traffic We apply

the method on a 4×4 LBvN switch under a nonuniform input matrix to evaluate the

throughput of the switch. From Section 5.3.2.1, it is easy to see that LBvN attains

100% throughput under uniform traffic. Let R1 be the same used in (5.21).
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The input traffic into the second stage, R2, is generated from R1. From (5.25),

the compound permutation matrix of the first stage is:

P1 =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


This permutation enables connecting each IP to OP and forwarding at a rate of 1

N
,

or 1
4
. Using (5.27), we get R2, the input traffic matrix of the second stage:

R2 =
1

4



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


From (5.28), the traffic matrix at the input of the second stage destined to OPs

are:

R2(0) =



0.1 0.1 0.1 0.1

0.05 0.05 0.05 0.05

0.05 0.05 0.05 0.05

0.05 0.05 0.05 0.05



R2(1) =



0.05 0.05 0.05 0.05

0.05 0.05 0.05 0.05

0.025 0.025 0.025 0.025

0 0 0 0
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R2(2) =



0.05 0.05 0.05 0.05

0.05 0.05 0.05 0.05

0.025 0.025 0.025 0.025

0.125 0.125 0.125 0.125



R2(3) =



0.05 0.05 0.05 0.05

0.05 0.05 0.05 0.05

0.075 0.075 0.075 0.075

0.075 0.075 0.075 0.075


The columns of R2(v), are the traffic at the queues of the IP of the second stage

(IIP), and the rows are the traffic from the IP of the first stage. Using (5.29), the

traffic forwarded into the second stage destined for each OP, R3(v), is:

R3(0) =



0.4

0.2

0.2

0.2



R3(1) =



0.2

0.4

0.4

0



R3(2) =



0.2

0.2

0.1

0.5
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R3(3) =



0.2

0.2

0.3

0.3


The rows of R3(v) represent the traffic from IPs forwarded through an IIP.

Using (5.30), the aggregate traffic forwarded into the second stage, R3, is:

R3 =



0.4 0.2 0.2 0.2

0.2 0.4 0.2 0.2

0.2 0.4 0.1 0.3

0.2 0 0.5 0.3


The traffic leaving each OP is obtained from (5.31):

R4(0) = 1 (5.33)

R4(1) = 1 (5.34)

R4(2) = 1 (5.35)

R4(3) = 1 (5.36)

The traffic leaving alls OPs is obtained from (5.32):

R4 =



1

1

1

1


(5.37)
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Equation (5.37) is the output traffic and by using (5.9), it is easy to see that this switch

achieves 100% throughput under nonuniform traffic. These results are consistent with

those presented in [9, 10].

5.3.4 Non-blocking Memory-Memory-Memory with Extended Memory

(MMeM) Clos-Network Switch

Now let us focus on a non-blocking memory-memory-memory with extended memory

Clos-network switch (MMeM) [23,26,27]. This switch is a three-stage buffered Clos-

network architecture consisting of k n × m Input modules (IMs), k m × n Output

modules (OMs), and m p × p Central modules (CMs). There are nN crosspoint

buffers in an IM and OM, and kN crosspoint buffers in a CM. Each switch module

has per-output flow queues to avoid HoL blocking. Round-robin or longest queue first

arbitrations can be used in the IM, while round-robin is used in the CMs and OMs.

The switch uses round-robin to arbitrate which queue forwards a cell to the output

links of the modules of all three stages. Let us denote the traffic coming to the IPs,

CMs, OPs, and the traffic leaving MMeM as R1, R2, R3, and R4 respectively. Here,

R1, R2, and R3 are N ×N matrices and R4 is an N × 1 column vector.

Round-robin arbitration is used in IMs to select IP (i, s) permitted to forward a

cell to the to the virtual central module queue (V CMQ(i, s, r)) at IM(i) that stores

cells from IP (i, s) going through CM(r) to its output port. This arbitration scheme

enables forwarding a cell from IP (i, s) to the queues in IM, and in turn forwarding

cells from IM(i) to output link LI(i, r) that connects the IM(i) to CM(r). This

interconnection occurs once every n time slots for a fully loaded switch. Similar to

the selection of queues in IM, round-robin arbitration is used at a CM to select the

per-output flow queue (POFQ(i, r, j, d)) that stores cells from LI(i, r) and destined

to OP (j, d). Figure 5.1(d) shows the architecture of MMeM.
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The specific configurations of the IM and CM are as follows. At time slot t,

IP (i, s) sends a cell to V CMQ(i, s, r), and this VCMQ is connected to LI(i, r) in the

following time slot, as follows:

r = (s+ t) mod m (5.38)

Each CM input LI(i, r) is connected to POFQ(i, r, j, d) and then this queue is

connected to LC(r, j) as follows:

j = (r + t) mod k (5.39)

Then R2 is the traffic forwarded to the CMs and the product of having R1

switched by the permutations used in the configurations of IMs. The configuration

of the IM stage at time slot t that interconnects IP (i, s) to V CMQ(i, r, j), and in

turn interconnects to LI(i, r), are represented as an N × N permutation matrix,

ΠClos(t) = [πu,v], where r is determined from (5.38) and the matrix element:

πu,υ =


1 for any u, v = rk + i

0 otherwise.

(5.40)

The configuration of the IM stage can be represented as a compound permu-

tation matrix, P1, which is the sum of the IM permutations over m time slots as

follows,

P1 =
m∑

ΠClos(t) (5.41)

Because the configuration repeats every m time slots, the traffic load from the same

input going to each VCMQ is 1
m

of the traffic load of R1. The traffic matrix R2 is

obtained using:

R2 =
1

m
((R1 ∗ 1) ◦P1) (5.42)
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Here, R2 is the aggregate traffic being forwarded to CMs destined to all OPs. This

matrix can be further decomposed into N N×N submatrices, R2(j, d), each of which

is the aggregate traffic at CMs destined to OP (j, d).

R2 =

j=k−1∑
j=0

d=n−1∑
d=0

R2(j, d) (5.43)

The configuration of the CM stage at time slot t that connects Ic(r, p) to LC(r,j) may

be represented as an N×N permutation matrix, Φ(t) = [φu,v], where j is determined

from (5.39) and the matrix element:

φu,v =


1 for any u, v = jk + r

0 otherwise.

(5.44)

Similarly, the switching process at the CM stage is represented by a compound

permutation matrix P2, which is the sum of p permutations of the CM stage over p

time slots. Here,

P2 =

p∑
Φ(t) (5.45)

The traffic forwarded to the OMs and queued at the CB of an OP, R3(j, d) is:

R3(j, d) = (R2(j, d) ◦P2) ∗~1 (5.46)

The aggregate traffic forwarded to the OMs, R3 is:

R3 = [R3(0, 0), · · · ,R3(k − 1, n− 1)] (5.47)

The traffic leaving an OP, R4(j, d), is:

R4(j, d) = (~1)T ∗R3(j, d) (5.48)

The aggregate traffic leaving all OPs, R4, is:

R4 = [R4(0, 0), · · · , R4(p− 1, n− 1)]T (5.49)
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5.3.4.1 Example of a Buffered Clos-network Switch with Extended

Memory (MMeM) under Nonuniform Traffic In this example, we consider

a nonuniform input matrix as the traffic coming into MMeM and calculate the switch

throughput. We only consider nonuniform traffic in this example because from Section

5.3.2.1, it is easy to see that MMeM attains 100% throughput under uniform traffic.

Let R1 be the that used in (5.21).

From (5.41), the compound permutation matrix of the IM is:

P1 =



1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1


This permutation enables connecting each IP to the output of the IM. Using (5.42),

we get:

R2 = 1/2



1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1


From (5.43), the traffic matrix at the CMs destined for the different OPs are:

R2(0, 0) =



0.2 0 0.2 0

0.1 0 0.1 0

0 0.1 0 0.1

0 0.1 0 0.1
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R2(0, 1) =



0.1 0 0.1 0

0.2 0 0.2 0

0 0.2 0 0.2

0 0 0 0



R2(1, 0) =



0.1 0 0.1 0

0.1 0 0.1 0

0 0.05 0 0.05

0 0.25 0 0.25



R2(1, 1) =



0.1 0 0.1 0

0.1 0 0.1 0

0 0.15 0 0.15

0 0.15 0 0.15


From (5.45), the compound permutation matrix for the CM stage for this switch is:

P2 =



1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1


From (5.46), the traffic matrix forwarded to OMs and queued at the CBs of

each OP, R3(0, 0) to R3(1, 1) are derived:

R3(0, 0) =



0.4

0.2

0.2

0.2
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R3(0, 1) =



0.2

0.4

0.4

0



R3(1, 0) =



0.2

0.2

0.1

0.5



R3(1, 1) =



0.2

0.2

0.3

0.3


From (5.47), the traffic matrix forwarded to OMs and queued at the CBs of all OPs,

R3 is:

R3 =



0.4 0.2 0.2 0.2

0.2 0.4 0.2 0.2

0.2 0.4 0.1 0.3

0.2 0 0.5 0.3


Using (5.48), we obtain the traffic leaving each OP, or:

R4(0) = 1 (5.50)

R4(1) = 1 (5.51)

R4(2) = 1 (5.52)
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R4(3) = 1 (5.53)

Using (5.49), we obtain the traffic leaving all OPs, or:

R4 =



1

1

1

1


(5.54)

Equation (5.54) is the output traffic and using (5.9) shows that this switch achieves

100% throughput under non-uniform traffic. These results are consistent with those

presented in the original paper [23, 26,27].

5.4 Conclusions

We have shown in this chapter that the operation of a switch affects the average

traffic coming into the switch and the overall performance of the switch. These

operations can be represented as matrix operations, which may be used to estimate

the throughput of a switch. We have shown the application of the proposed approach

on examples of switch architectures with single or multiple stages, and with different

queueing strategies and their corresponding configuration schemes. The results

obtained in the presented examples are consistent with the known performance of

such switches. By the examples provided, the tool is shown to be practical and can

be used to analyze the performance of a wide set of packet switches.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Conclusion

This work addressed low performance, scalability, and high configuration complexity

in large scale Clos-network packet switches. We introduced three high performance

switches: A split-central-buffered Load-Balancing Clos-network (LBC), ThRee-

stage Clos swItch with queues at the middle stage and DEtermiNisTic scheduling

(TRIDENT), and Load-Balancing Clos-Network Switch with Virtual Input-Module

Output Queues at Central Stage (VINE), their configuration schemes and in-sequence

mechanisms.

The results obtained from analysis and computer simulations show that for

any admissible independent and identically distributed traffic, these switches achieve

100% throughput. Unlike other existing switching architectures, LBC, TRIDENT,

and VINE achieve high performance, configuration simplicity, and in-sequence service

without memory speedup and central module expansion. Also VINE emulates the

performance of an ideal OQ switch.

Future work

This work analyzed the performance of LBC, TRIDENT, and VINE under unicast

traffic. Future analysis under multicast traffic can be performed to ascertain the

suitability of these switches for networks with multicast traffic.

The switching architectures and their configuration schemes, in-sequence

mechanisms, and flow control mechanism introduced in this work can be adopted

for packet networks, such as datacenter networks.

In this work, we introduced the use of matrix analysis as a tool for throughput

calculation of packet switches and an extension of this tool was introduced in VINE for
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stability analysis. Future works can be performed on applying this tool to calculate

throughput in packet networks, such as datacenter networks. Matrix analysis can

also be adopted for analyzing other performance metrics.
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