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ABSTRACT

OPTIMIZING RESOURCE ALLOCATION IN EH-ENABLED
INTERNET OF THINGS

by
Ali Shahini

Internet of Things (IoT) aims to bridge everyday physical objects via the Internet.

Traditional energy-constrained wireless devices are powered by fixed energy sources

like batteries, but they may require frequent battery replacements or recharging.

Wireless Energy Harvesting (EH), as a promising solution, can potentially eliminate

the need of recharging or replacing the batteries. Unlike other types of green energy

sources, wireless EH does not depend on nature and is thus a reliable source of

energy for charging devices. Meanwhile, the rapid growth of IoT devices and wireless

applications is likely to demand for more operating frequency bands. Although the

frequency spectrum is currently scarce, owing to inefficient conventional regulatory

policies, a considerable amount of the radio spectrum is greatly underutilized.

Cognitive radio (CR) can be exploited to mitigate the spectrum scarcity problem

of IoT applications by leveraging the spectrum holes. Therefore, transforming the

IoT network into a cognitive based IoT network is essential to utilizing the available

spectrum opportunistically.

To address the two aforementioned issues, a novel model is proposed to leverage

wireless EH and CR for IoT. In particular, the sum rate of users is maximized for a

CR-based IoT network enabled with wireless EH. Users operate in a time switching

fashion, and each time slot is partitioned into three non-overlapping parts devoted

for EH, spectrum sensing and data transmission. There is a trade-off among the

lengths of these three operations and thus the time slot structure is to be optimized.

The general problem of joint resource allocation and EH optimization is formulated

as a mixed integer nonlinear programming task which is NP-hard and intractable.



Therefore, a sub-channel allocation scheme is first proposed to approximately satisfy

users rate requirements and remove the integer constraints. In the second step, the

general optimization problem is reduced to a convex optimization task. Another

optimization framework is also designed to capture a fundamental tradeoff between

energy efficiency (EE) and spectral efficiency for an EH-enabled IoT network. In

particular, an EE maximization problem is formulated by taking into consideration of

user buffer occupancy, data rate fairness, energy causality constraints and interference

constraints. Then, a low complexity heuristic algorithm is proposed to solve the

resource allocation and EE optimization problem. The proposed algorithm is shown

to be capable of achieving a near optimal solution with polynomial complexity.

To support Machine Type Communications (MTC) in next generation mobile

networks, NarrowBand-IoT (NB-IoT) has emerged as a promising solution to provide

extended coverage and low energy consumption for low cost MTC devices. However,

the existing orthogonal multiple access scheme in NB-IoT cannot provide connectivity

for a massive number of MTC devices. In parallel with the development of NB-IoT,

Non-Orthogonal Multiple Access (NOMA), introduced for the fifth generation wireless

networks, is deemed to significantly improve the network capacity by providing

massive connectivity through sharing the same spectral resources. To leverage NOMA

in the context of NB-IoT, a power domain NOMA scheme is proposed with user

clustering for an NB-IoT system. In particular, the MTC devices are assigned

to different ranks within the NOMA clusters where they transmit over the same

frequency resources. Then, an optimization problem is formulated to maximize the

total throughput of the network by optimizing the resource allocation of MTC devices

and NOMA clustering while satisfying the transmission power and quality of service

requirements. Furthermore, an efficient heuristic algorithm is designed to solve the

proposed optimization problem by jointly optimizing NOMA clustering and resource

allocation of MTC devices.
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CHAPTER 1

INTRODUCTION

The available radio frequency spectrum is getting crowded by the rapid growth

of wireless applications and higher data rate devices [6, 84]. Owing to inefficient

conventional regulatory policies, a considerable amount of the radio spectrum is

greatly underutilized. Cognitive Radio (CR), as a promising paradigm with great

potential of enhancing the spectrum utilization, allows efficient spectrum sharing

between Primary Users (PUs) and Secondary Users (SUs) [29]. In a CR network,

SUs are allowed to sense the radio spectrum and occupy spectrum holes (i.e., spectral

bands not utilized by PUs [29]) in an opportunistic manner [31]. The CR system

has different functionalities in which spectrum sensing is considered to be the most

challenging part of this system [8]. In practice, spectrum sensing cannot be reliably

achieved by SUs due to shadowing and multipath fading. To alleviate the adverse

impact of fading and achieve reliable spectrum sensing, cooperative spectrum sensing

has been proposed and investigated [2, 14, 33, 64, 70]. However, this functionality of

sensing the radio spectrum incurs additional energy consumption.

Recent advances in energy harvesting are empowering the green powered CR

network, in which SUs are equipped with energy harvesting capabilities to capture and

store ambient energy which can significantly reduce carbon footprints [28, 32, 35, 36].

In [79], the energy efficient resource allocation problem in heterogeneous CR systems is

formulated and an iterative-based algorithm is proposed to solve the energy efficient

resource allocation problem. Varshney [72] proposed a capacity-energy function

and the idea of simultaneous data and energy transmission. Yin et al. [83] studied

the duration of harvesting and number of sensed channels in one time slot. Their

general problem is formulated as a mixed integer non-linear programming (MINLP)
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problem to maximize the achievable throughput of one SU with perfect spectrum

sensing and without considering interference. In practical wireless systems, there are

inevitable sensing errors stemmed from estimation errors, quantization errors and

feedback delays. This imperfect spectrum sensing leads to substantial interference to

the PUs caused by SUs. Thus, in order to prevent performance degradation of PUs,

there should be a flexible physical layer for the CR system to control the interference

generated by SUs.

Orthogonal Frequency Division Multiplexing (OFDM) is commonly known as

a promising air interface for CR systems due to its great flexibility of radio resource

allocation [76]. In [73], sub-channel allocation and power allocation schemes have

been incorporated in the OFDM based CR network with imperfect spectrum sensing.

Wang et al. [74] proposed the sum capacity maximization for a CR system with

a low complexity algorithm while satisfying SUs’ rate requirements. In [25], fair

resource allocation has been proposed for CR and femtocell networks. However,

imperfect spectrum sensing has not been considered in [25, 74]. Since it is extremely

difficult to attain perfect spectrum sensing in practical CR systems, sub-channel

allocation with imperfect spectrum sensing should be considered. To the best of

our knowledge, interference-aware resource allocation and structure optimization for

energy harvesting enabled SUs for OFDM based heterogeneous CR networks with

imperfect cooperative spectrum sensing has not been studied.

In this dissertation, we investigate the joint sub-channel allocation and structure

optimization for OFDM based heterogeneous CR networks by using RF energy

harvesting, with consideration of interference limitations, imperfect spectrum sensing,

and various rate requirements of SUs. Since SUs are assumed to operate in a time

switching fashion, each time slot is partitioned into three non-overlapping fractions

devoted for energy harvesting, spectrum sensing and data transmission. The first part

of each time slot is allocated for energy harvesting characterized by a metric called

2



harvesting ratio. Although the higher harvesting ratio implies more time allocated for

energy harvesting (extracting more energy), it leads to less remaining time for data

transmission. Hence, the ultimate goals are to find optimal harvesting ratios (best

tradeoff between operations) of SUs and optimal sub-channel allocation to SUs in

order to maximize the total throughput of the CR network. The main contributions

of this dissertation can be summarized as follows.

• We formulate the joint sub-channel allocation and structure optimization as a

sum rate maximization of SUs in OFDM based heterogeneous CR networks by

using RF energy harvesting, where interference limits are imposed to protect the

PUs, rate requirements for both real-time and non-real-time SUs are considered

to guarantee fairness for SUs in each CR network, and cooperative spectrum

sensing is employed to provide more reliable results of channel sensing while

considering imperfect spectrum sensing.

• We analyze the general optimization problem and show that it is MINLP,

computationally intractable and NP-hard. Thus, we propose to address the

general problem in two steps by mathematically decomposing it into two

subproblems. We thus propose a sub-channel allocation scheme based on

a factor called Energy Figure of Merit to approximately satisfy SUs’ rate

requirements and remove the integer constraints. In the sub-channel allocation

process, the real-time (RT) SUs have higher priority to receive sub-channels as

compared to non-real-time (NRT) SUs.

• We prove that the general optimization problem is reduced to a nonlinear convex

optimization task. Since the reduced optimization problem does not have a

simple closed-form solution for optimal harvesting ratios of SUs, we thus propose

a near optimal closed-form solution by utilizing Lambert-W function to obtain

optimal harvesting ratios. In order to derive the closed-form solution, we prove

3



a lemma (Lemma 3) that can be utilized for other similar problems. We also

exploit the iterative gradient method based on Lagrangian dual decomposition

to achieve near optimal solutions.

• The proposed methods and algorithms are evaluated by extensive simulations.

The simulation results show that the proposed sub-channel allocation scheme

outperforms the existing schemes especially when the number of available sub-

channels is small. The simulation and numerical results verify the effectiveness

of our closed-form solution for harvesting ratios of SUs, where the performance

gap from the optimal solution is less than 3.5% for various cases. Further, we

analyze the performance of our system in terms of interference protection of

PUs, and different SUs’ required rate constraints.

4



CHAPTER 2

THE SYSTEM ARCHITECTURE

Consider an uplink OFDM-based heterogeneous CR network compromising L PUs

denoted by L = {1, 2, ..., L} and K self-powered SUs represented by K = {1, 2, ..., K}

with N OFDM licensed sub-channels operating in the slotted mode. These aggregated

OFDM sub-channels constitute the licensed spectrum such that parts of the spectrum

are registered by PUs. The SUs harvest energy from ambient radio signals and have

no other power supplies. To support diverse services, the CR network has i0 NRT

SUs with rate constraints ζi, and K − i0 RT SUs with minimum required rate Rreq
i .

In other words, the set of NRT SUs is denoted by KN = {1, ..., i0} and the set KR =

{i0 +1, ..., K} represents the RT SUs. The licensed sub-channels are opportunistically

utilized by SUs via an Access Point (AP). We assume that the SUs have perfect

knowledge of Channel State Information (CSI) between their transmitters and the

AP receiver. In our work, the general system model of a heterogeneous CR network

is illustrated in Figure 2.1.

2.1 Cooperative Spectrum Sensing

In our system model, each SU does a local spectrum sensing concerning the presence

or absence of PUs. It is assumed that the sensing results of SUs are independent

and SUs sense all the PUs’ sub-channels appointed by the AP. In order to reduce the

spectrum sensing errors arisen from fading and shadowing, Cooperative Spectrum

Sensing (CSS) has been exploited. In our CSS scenario, multiple SUs sense the

licensed sub-channels independently, and the PUs’ activities can be predicted by the

AP [48] using the collected sensing results of SUs. Figure 2.2 illustrates a CSS scenario

in which K SUs independently sense N sub-channels and identify the absence and

presence of PUs by 0 and 1, respectively. In fact, these one-bit decisions are reported

5



Figure 2.1 System model of the heterogeneous CR network. Both RT SUs and

NRT SUs are shown around one AP.

to a Fusion Center (FC) which is located in the AP. Then, FC applies a fusion strategy

and generates final decisions regarding availability of OFDM licensed sub-channels.

In this work, we assume that each SU applies the Energy Detection (ED) strategy

which has low computational complexities [64], and the FC follows the Majority

rule (generalized as k-out-of-n) [8]. Finally, the available sub-channels of a subset

M = {1, 2, ...,M} among all the licensed sub-channels of a subset N = {1, 2, ..., N}

are identified by the AP and replied to SUs at the beginning of each time slot.

2.2 Time Slot Model

In this work, an OFDM based CR system with SUs operating in a slotted mode is

considered. Each SU in one time slot, is expected to do the following operations: (1)

energy harvesting, (2) contributing in cooperative spectrum sensing, and (3) data

transmission. In each time slot with duration T , due to the duplex-constrained

hardware [34], the energy harvesting process and energy consuming process for SUs

should be scheduled in a time switching fashion [35]. Thus, we assume SUs operate in

6



Figure 2.2 The SUs report their spectrum sensing results to the FC for making the

final decision.

a time switching fashion, and the time slot is partitioned into three non-overlapping

parts devoted for energy harvesting, spectrum sensing and data transmission,

respectively. Hence, the first fraction of each time slot (harvesting ratio: θi, ∀i ∈ K)

is allocated for energy harvesting. Although traditional energy-constrained wireless

networks are powered by fixed energy sources like batteries, it may be expensive,

inconvenient1, and even hazardous2 [26]. Thus, the SUs are considered to have no

power supplies other than harvesting energy from ambient radio signals3. Then,

spectrum sensing, which depends on SUs’ location and performance of sensing, can

be accomplished in the second step of each time slot. During the sensing time

(τsi , ∀i ∈ K), SUs sense the licensed sub-channels and report their local sensing results

to the FC, where the final decision regarding availability of sub-channels would be

finalized. The third part of the time slot is utilized for data transmission. In fact, the

available sub-channels are allocated to SUs by AP at the beginning of each time slot

1One of the dominant barriers to implementing IoT networks is providing adequate energy
for operating the network in a self-sufficient manner [39].
2Battery replacements can be dangerous in a toxic environment [26].
3Energy-harvesting circuits (e.g., P2110B Powercast receiver [18]) can harvest micro-watts
to milliwatts of power within the range of several meters for a transmit power of 1 W and
a carrier frequency of 915MHz [18].
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Figure 2.3 The time slot structure with energy harvesting for multiple SUs.

and SUs transmits data using all the remaining harvested energy after the spectrum

sensing phase.

The time slot structures for K SUs are illustrated in Figure 2.3(a), in which

each SU has different harvesting ratio, sensing time and transmission time. At

the beginning of each time slot, SUs receive reports from AP regarding the SUs’

sub-channel allocations and optimized harvesting ratios. Hence, SUs start extracting

energy from ambient radio signals during interval (0, θiT ] and store it in a storage for

future use within the time slot only. Then, SUs switch from harvesting to spectrum

sensing during (θiT , θiT+τsi ]. Note that, SUs have different performance of sensing,

and thus various sensing time τsi . Meanwhile, AP receives the spectrum sensing

results, makes the final decision, and reports it to SUs at the beginning of the

next time slot. Furthermore, during the third fractions of the time slot, SUs start

transmitting data using the harvested energy.

Figure 2.3(b) describes the cooperative spectrum sensing procedure, where the

SUs operate and report local channel sensing to the AP during the sensing time in
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Table 2.1 Spectrum Sensing Results of SUs

No. Actual Sensing Probabilities

1 H1,` S1,` Pd = P{S1,`|H1,`} = 1−Qm
`

2 H1,` S0,` Pm = P{S0,`|H1,`} = Qm
`

3 H0,` S1,` Pf = P{S1,`|H0,`} = Qf
`

4 H0,` S0,` P{S0,`|H0,`} = 1−Qf
`

each time slot. Hence, cooperative decision strategies are utilized at the AP side to

make reliable sensing results and report them to SUs for the next time slot. However,

perfect spectrum sensing in practical CR systems cannot be accomplished due to

imperfect channel sensing with typical sensing errors. As a matter of fact, spectrum

sensing errors are generally categorized into two groups: miss-detections and false

alarms. Miss-detection happens when the CR network fails to detect the PU signals

and false alarm occurs when the CR system identifies an actually vacant sub-band

as being used by the PU. Clearly, co-channel interferences to the PUs arise from

miss-detection errors and spectrum efficiency utilization is degraded by false alarm

errors. Throughout this work, Qm
` and Qf

` denote the probabilities of miss-detection

and false alarm on the `th sub-channel, respectively.

Table 2.1 illustrates possible outcomes of spectrum sensing by SUs. Presence

and absence of PUs can be represented by H1,` and H0,`, while the sensing results

of the `th sub-channel for availability and unavailability of PUs are denoted by S1,`

and S0,`, respectively. Moreover, Pd, Pm, and Pf are probabilities of detection, miss-

detection, and false alarm, respectively. The final decision regarding availability of

licensed sub-channels is made by the FC at the AP, based on the sensed information

of SUs. Meanwhile, one should consider the analyzing, processing, and optimization

time of the AP as well as replying time of the final decision from the AP to SUs. Hence,

considering this elapsed time by the AP, the final result of cooperative spectrum

9



Table 2.2 List of Symbol Notations and Description

Symbols Descriptions

L (L) The total number of PUs (the set of PUs )

K (K) The total number of SUs (the set of SUs)

KR (KN) The set of real time SUs (the set of non real time SUs)

M The number of available sub-channels determined by FC

M The set of available sub-channel determined by FC

T (fs ) The duration of time slot (the starting frequency)

ω (t) The bandwidth of each sub-channel (the OFDM symbol duration)

hi,j The channel gain between the ith SU and the AP over sub-channel j

ϕ(f) The PSD of OFDM signal

H1,` The presence of the PU’s signal on the `th sub-channel

H0,` The absence of the PU’s signal on the `th sub-channel

S1,` The `th sub-channel is determined available by the FC

S0,` The `th sub-channel is determined unavailable by the FC

θi The harvesting ratio of the ith SU in each time slot

τsi The sensing time of the ith SU

χi The rate of energy harvesting for the ith SU

εsi The energy consumed by the ith SU for sensing

I thm The interference threshold of the mth PU

Rreq
i The required rate of the ith SU for RT users

ζi The rate constraint of the ith SU for NRT users

fi,j The indicator function for assigning the jth sub-channel to the ith SU

ri,j The transmission rate of the ith SU over the jth sub-channel

αiEFM The energy figure of merit factor for the ith SU
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sensing regarding availability of sub-channels is known for SUs at the beginning of

the next time slot. In fact, SUs receive reports from AP at the beginning of the time

slot concerning the SUs’ sub-channel allocations and optimized harvesting ratios.

Note that we assume states of sub-channels do not change within a time slot and

SUs have plenty of data in their buffers. The available sub-channels in the sub-band

of the mth PU are denoted by subset MA,m, while the unavailable sub-channels are

represented by subset MU,m. Some of frequently used notations and terminologies

are summarized in Table 2.2.

2.3 Problem Formulation

In this part, an optimization framework is formulated to maximize the total

throughput of a green powered OFDM based heterogeneous CR network under

some practical considerations. In fact, the problem is a joint sub-channel allocation

and structure optimization problem which aims at maximizing the SUs sum rate

by allocating the optimal number of sub-channels to SUs and finding the optimal

trade-off between fractions of the SUs’ time slot.

Denote ω as the bandwidth of each OFDM sub-channel, and the range of

nominal spectrum for the `th sub-channel is from fs+(` − 1)ω to fs+`ω (fs is the

starting frequency). The amount of interference introduced to the jth sub-channel in

the sub-band of the mth PU caused by the ith SU transmission over the ` sub-channel

with unit transmission power can be expressed as [9]

I`i,j,m =

∫ jω−(`−1/2)ω

(j−1)ω−(`−1/2)ω

ϕ(f)gi,`,mdf, (2.1)

where ϕ(f) = t( sin(πft)
πft

)2 represents the power spectrum density (PSD) of the OFDM

signal (t is the OFDM symbol duration) and gi,`,m denotes the power gain from the

ith SU to the receiver of the mth PU on the ` sub-channel.
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The probability of the CR system to make a correct decision that the `th sub-

channel (` ∈M) is truly used by a PU is denoted by P 1
` :

P 1
` =P{H1,`|S1,`}

=
P{H1,`}P{S1,`|H1,`}

P{H1,`}P{S1,`|H1,`}+ P{H0,`}P{S1,`|H0,`}

=
QL
` (1−Qm

` )

QL
` (1−Qm

` ) + (1−QL
` )Qf

`

.

(2.2)

Likewise, P 2
` denotes the probability of the CR system in making a decision that the

`th sub-channel is available but it is truly occupied:

P 2
` = P{H1,`|S0,`}

=
P{H1,`}P{S0,`|H1,`}

P{H1,`}P{S0,`|H1,`}+ P{H0,`}P{S0,`|H0,`}

=
QL
` Q

m
`

QL
` Q

m
` + (1−QL

` )(1−Qf
` )
,

(2.3)

where QL
` represents the a priori probability that the sub-band of the `th sub-channel

is used by PUs. Hence, the total interference introduced to the mth PU stemmed

from the access of the ith SU on the `th sub-channel with unit transmission power is

given as

Ii,`,m =
∑

j∈MA,m

P 1
j I

`
i,j,m +

∑
j∈MU,m

P 2
j I

`
i,j,m. (2.4)

Meanwhile, the rate of transmission of the ith SU over the sub-channel j in one time

slot can be expressed as

ri,j = (1− θi −
τsi
T

)log2(1 +
|hi,j|2(χiθiT − εsi)

Γ(ωN0 + Ii)(T − θiT − τsi)
), (2.5)

where θi denotes the harvesting ratio of the ith SU, χi is the energy harvesting rate

of the ith SU, hi,j denotes the channel gain of the ith SU over sub-channel j, N0

represents the additive white Gaussian noise, εsi denotes the energy of sensing by
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the ith SU, and Γ is the SNR gap. Γ is associated with the bit-error-rate (BER) of

un-coded MQAM and Γ = −ln(5 × BER)/1.5 [23]. The interference introduced to

the ith SU caused by the PUs’ signals represented by Ii is considered as noise and can

be computed by the proposed method in [88]. Thus, the total transmission rate of

the ith SU can be given as

Ri =
M∑
j=1

fi,j(1− θi −
τsi
T

)log2(1 +Hi,j
χiθiT − εsi
T − θiT − τsi

). (2.6)

The binary variable fi,j ∈ {0, 1} is utilized to represent the sub-channel assignment

between SU i and sub-channel j:

fi,j =

 1, if sub-channel j is assigned to SU i

0, otherwise.
(2.7)

Note that the term of Hi,j =
|hi,j |2

Γ(ωN0+Ii)
is used in (2.6) for simplicity.

Finally, the general problem of the uplink sum rate maximization of SUs can be

formulated by taking into consideration of interference constraints while guaranteeing

the rate requirements of SUs and optimizing the time slot structure. Thus, the general

optimization problem (P1) can be given as

max
θi,fi,j

K∑
i=1

M∑
j=1

fi,j(1− θi −
τsi
T

)log2(1 +Hi,j
χiθiT−εsi
T−θiT−τsi

)

s.t. C1 χiθiT − εsi > 0, ∀i ∈ K,

C2 T − θiT − τsi > 0, ∀i ∈ K,

C3
∑
i∈K

∑
j∈M

fi,j
χiθiT−εsi
T−θiT−τsi

Ii,j,m ≤ I thm , ∀m ∈ L

C4
∑
i∈KR

∑
j∈M

fi,jri,j > Rreq
i ,

C5
∑
i∈KN

∑
j∈M

fi,jri,j > ζi,

C6
∑
i∈K

fi,j = 1, ∀j ∈M,

C7 fi,j ∈ {0, 1}, ∀i ∈ K, ∀j ∈M,

C8 0 < θi < 1, ∀i ∈ K,

(2.8)
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where C1 imposes energy of sensing to be less than the total harvested energy, C2

means that the remaining time for data transmission must be greater than the sum

of harvesting time and sensing time in one time slot, C3 specifies that the total

interference to the mth PU must be less than a given threshold, C4 implies that

the minimum required rate of RT SUs must be satisfied, C5 means the NRT SUs

rate must be greater than a given rate constraint, C6 and C7 specify that each

sub-channel cannot be allocated to more than one SU, and C8 means the harvesting

ratio should be a fraction of a time slot.
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CHAPTER 3

THROUGHPUT OPTIMIZATION

3.1 Solution Methodology

Note that P1 is an MINLP problem, which contains both binary variables fi,j

and continuous variables θi for optimization. In fact, the objective function of

the general optimization problem is not jointly convex for {θi, fi,j}. The MINLP

optimization problems are generally difficult to solve due to the combinatorial

nature of mixed-integer programming (MIP) and the difficulty in solving nonlinear

programming (NLP) problems [37].

Some methods such as outer-approximation, branch-and-bound, extended

cutting plane methods, and the sorting and removing method [21, 37] have been

proposed to solve MINLP problems. However, the aforementioned methods cannot

be exploited to our problem specific structures and properties. The minimax

convex relaxation technique can also be considered as a possible solution for MINLP

problems. Meanwhile, it cannot be applied to solve (2.8) because it is not efficient

for a large number of decision variables.

Remark 1. The joint channel allocation and structure optimization problem (P1) is

an MINLP problem, which exhibits the combinatorial nature of MIP problems and the

difficulty in solving NLP problems. In fact, both MIP and NLP are considered NP-

complete, and thus the joint resource allocation and structure optimization problem is

NP-hard and requires exponential time complexity to solve for the optimal solutions

[22, 27, 37].

Since the general optimization problem is computationally intractable, a two-

stage approach is considered to reduce the complexity of the problem. This technique
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has achieved success in various scenarios [73]. Specifically, we first propose a sub-

channel allocation scheme based on a factor called Energy Figure of Merit (αEFM).

In this sub-channel allocation scheme, the heterogeneous SUs’ rate requirements are

roughly satisfied. Then, after removing the integer constraints of (2.8), the general

nonconvex problem can be reduced to a new convex optimization problem. Thus,

the optimum fraction of the time slot that each SU can harvest energy from the

environment, can be obtained by solving the new convex optimization problem.

3.2 Sub-channel Allocation Scheme

We focus on solving the general optimization problem P1 by first employing the

primal decomposition method where it can be decomposed into two subproblems.

By having fixed the harvesting ratios (θi) of each time slot, P1 is simplified to the

following optimization subproblem

P2 : max
fi,j

∑
i∈K

∑
j∈M

fi,jri,j

s.t. C1
∑
i∈K

∑
j∈M

fi,jpi,jIi,j,m 6 I thm , ∀m ∈ L,

C2
∑
i∈KR

∑
j∈M

fi,jri,j > Rreq
i ,

C3
∑
i∈KN

∑
j∈M

fi,jri,j > ξi,

C4
∑
i∈K

fi,j = 1, ∀j ∈M,

C5 fi,j ∈ {0, 1}, ∀i ∈ K, ∀j ∈M,

(3.1)

where pi,j denotes the transmission power allocated by the ith SU to the jth available

sub-channel.

Denote the total transmission power for each SU ∀i ∈ K as
χiθiT−εsi
T−θiT−τsi

. It can

be observed from the derivative of the transmission power with respect to θi that

the transmission power is strictly increasing in θi ∈ (0, 1), ∀i ∈ K. Hence, the

maximum transmission power occurs at the upper bound of the harvesting ratio
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(θi ' 1). Meanwhile, initial harvesting ratios (initial transmission power) would

not likely yield the maximum transmission power, and thus the interference limit∑
i∈K

∑
j∈M

fi,jpi,jIi,j,m 6 I thm is satisfied and can be ignored in the sub-channel allocation

process. To solve P2, one of the most important considerations in the channel

allocation process is to scrutinize the rate requirements of both RT and NRT cognitive

users. Hence, the rate requirements in C2 and C3 play a key role in the sub-channel

allocation process.

The following sub-channel allocation algorithm (Algorithm 1) requires θi to be

initialized. Since θi >
εsi
χiT

and θi <
T−τsi
T

, ∀i ∈ K, the initial θi, ∀i ∈ K can be

expressed as

θinitiali =
εsi

2χiT
+

1

2

(
1− τsi

T

)
, (3.2)

i.e., the average of the upper and lower bounds.
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Algorithm 1 Energy Figure of Merit (EFM) based sub-channel allocation

Initialization:

Initial rates of SUs: R = {R1, ..., Ri} = 0

EFM factor for each SU: αiEFM = χi
εsi
,∀i ∈ K

Mt =M,Di = ∅,∀i ∈ K

θ
(0)
i , ∀i ∈ K, with the initial values in (3.2)

Sub-channel Allocation for RT SUs:

While Mt 6= ∅ and min(Ri −Rreq
i ) < 0

Find i∗ that satisfies αi
∗
EFM ≥ αiEFM for ∀i ∈ KR;

Finding the best sub-channel for i∗:

Find j∗ : j∗ = arg max
j∈Mt

ri∗,j∗ ;

Mt =Mt/j
∗ and Di∗ = Di∗ ∪ j∗;

Ri∗ = Ri∗ + (1− θ(0)
i∗ −

τsi∗
T

)log2(1 +Hi∗,j∗
χi∗θ

(0)
i∗ T−εsi∗

T−θ(0)
i∗ T−τsi∗

);

End while

Define KAlR = {i ∈ KR,Di 6= ∅}

Sub-channel Allocation for NRT SUs:

While Mt 6= ∅

Find i∗ that satisfies αi
∗
EFM ≥ αiEFM for ∀i ∈ KN ;

Finding the best sub-channel for i∗:

Find j∗ : j∗ = arg max
j∈Mt

ri∗,j∗ ;

Mt =Mt/j
∗ and Di∗ = Di∗ ∪ j∗;

Ri∗ = Ri∗ + ri∗,j∗ ;

End while

Define KAlN = {i ∈ KN ,Di 6= ∅}

In the sub-channel allocation process, RT SUs have higher priority for sub-

channel allocations as compared to NRT SUs. Thus, the sub-channel allocation would
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be done for RT SUs until the minimum rate requirements of RT SUs are satisfied.

During each cycle, RT SU whose EFM factor (αiEFM = χi
εsi

) is greater than the others

has the priority to get a sub-channel among the available ones. In fact, the higher

αEFM stems from a greater amount of energy extracted from the environment and less

amount of energy consumed by the spectrum sensing process. Thus, those SUs having

higher αEFM normally need less numbers of sub-channels to meet the required rate.

Furthermore, the chosen SU preferably receives a sub-channel that has the highest

corresponding achievable rate.

After RT SUs have been assigned sub-channels, the remaining ones are allocated

to NRT SUs to meet their rate constraints. Like the RT sub-channel allocation

process, the sub-channel assignments for NRT SUs follow the EFM-based user

preference. The sub-channel allocation scheme continues until all sub-channels are

assigned to SUs. Note that at the end of each round of sub-channel allocation for

RT and NRT SUs, we define a new set for those SUs which have been assigned

sub-channels. KAlR and KAlN are sets of RT and NRT SUs that have received

sub-channels, respectively, and KAl = KAlR ∪ KAlN is the set of all SUs with allocated

sub-channels. In this work, each SU is assumed to transmit all its harvested power

over all its allocated sub-channels. The power allocation procedure for the assigned

sub-channels to SUs is beyond the scope of this work.

3.3 Structure Optimization

After sub-channel allocation, the integer constraints of Equation (2.8) are removed

because binary variables fi,j take on 0 or 1 indicating whether sub-channels are

allocated or not. Thus, the new optimization problem, which aims at maximizing

the sum-rate of SUs by finding optimum fractions of harvesting for all SUs, can be
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expressed as

P3:max
θi

∑
i∈KAl

∑
j∈Di

(1− θi −
τsi
T

)log2(1 +Hi,j
χiθiT−εsi
T−θiT−τsi

)

s.t. C1 χiθiT − εsi > 0, ∀i ∈ KAl,

C2 T − θiT − τsi > 0, ∀i ∈ KAl,

C3
∑
i∈KAl

∑
j∈Di

XiθiT−εsi
T−θiT−τsi

Ii,j,m ≤ I thm , ∀m ∈ L,

C4
∑
j∈Di

ri,j ≥ Rreq
i , ∀i ∈ KAlR ,

C5
∑
j∈Di

ri,j ≥ γi, ∀i ∈ KAlN ,

C6 0 < θi < 1, ∀i ∈ KAl.

(3.3)

If P3 describes a convex optimization problem, it can be solved by standard convex

optimization methods such as the barrier method or iterative gradient technique with

duality. Hence, the optimum fractions of the time slot for energy harvesting of SUs can

be obtained. Therefore, since it is important to analyze convexity of P3, convexity

of the objective function is established by the following Lemma.

Lemma 1. The objective function in P3 for ∀i ∈ K, 0 < θi < 1, is a concave

function.

Proof. The Lemma is proved in Section A.1.

Having proven the convexity of P3, the optimal harvesting ratios can be

obtained; however, the constraints should be examined. In general, if constraint

functions in an MINLP optimization problem are convex, the optimization problem

is called a convex MINLP [10].

Lemma 2. The joint resource allocation and time slot optimization problem P1 is a

convex MINLP.

Proof. The Lemma is proved in Section A.2.
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Having proven P1 being convex MINLP, one can propose a heuristic algorithm

(like Feasibility Pump1 (FP)) to obtain the optimal solution. The FP algorithm

decomposes a mathematical programming problem into two parts: integer feasibility

and constraint feasibility. For the convex MINLP scenario, the solution can be

achieved by solving an LP or a convex NLP, which can be done in polynomial time [10].

To obtain the optimal solution of P3, the associated Lagrangian can be

expressed as

L(θ1, θ2, ..., θK , λi, µi, νm, ρ
R
i , ρ

N
i ) =

−
∑
i∈KAl

∑
j∈Di

(
1− θi −

τsi
T

)
log2

(
1 +Hi,j

χiθiT − εsi
T − θiT − τsi

)
+λi(εsi − χiθiT ) + µi(θiT + τsi − T )

+νm

(∑
i∈KAl

χiθiT − εsi
T − θiT − τsi

Ii,m − I thm

)

+ρRi

Rreq
i −∑

j∈Di

(
1− θi −

τsi
T

)
log2

(
1 +Hi,j

χiθiT − εsi
T − θiT − τsi

)


+ρNi

 γi−∑
j∈Di

(
1− θi −

τsi
T

)
log2

(
1 +Hi,j

χiθiT − εsi
T − θiT − τsi

)


(3.4)

where λi, µi, νm, ρRi and ρNi are Lagrange multipliers. The dual function of P3 in

(3.3) is

g(λ, µ, ν, ρR, ρN) = sup
θ1,...,θk

L(θ1, ..., θk, λ, µ, ν, ρ
R, ρN). (3.5)

Thus, the dual optimization problem for (3.3) is

P4 : min g(λ, µ, ν, ρR, ρN)

λ > 0, µ > 0, ν > 0, ρR > 0, ρN > 0
(3.6)

1The Feasibility Pump (FP) is one of the most well known primal heuristic for mixed integer
non-linear programming [10].
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In order to solve the dual problem, an iterative scheme using the gradient projection

method can be applied. Thus, the Lagrange multiplier for C1 is given as

λ
(t+1)
i =

[
λ

(t)
i − α(t) dL

dλi

]+

=
[
λ

(t)
i − α(t)(εsi − χiθiT )

]+

. (3.7)

The Lagrange multiplier for C2 can be written as

µ
(t+1)
i =

[
µ

(t)
i − β(t) dL

dµi

]+

=
[
µ

(t)
i − β(t)(θiT + τsi − T )

]+

. (3.8)

Likewise, the Lagrange multiplier of C3 is expressed as

ν(t+1)
m =

[
ν(t)
m − π(t) dL

dνm

]+

=[
ν(t)
m − π(t)

(∑
i∈KAl

∑
j∈Di

χiθiT − εsi
T − θiT − τsi

Ii,j,m − I thm

)]+

.

(3.9)

The Lagrange multipliers of transmission rates for C4 and C5 are

ρ
R,(t+1)
i =

[
ρ
R,(t)
i − ψ(t) dL

dρRi

]+

=[
ρ
R,(t)
i − ψ(t)

(
Rreq
i −

∑
j∈Di

ri,j(θi)

)]+

,

(3.10)

and

ρ
N,(t+1)
i =

[
ρ
N,(t)
i − η(t) dL

dρNi

]+

=[
ρ
N,(t)
i − η(t)

(
γi −

∑
j∈Di

ri,j(θi)

)]+

,

(3.11)

where t is the iteration index, α(t), β(t), π(t), ψ(t) and η(t) are sufficiently small positive

step-sizes, and [a]+ = max(0, a).

Proposition 1. Dual variables λ
(t)
i , µ

(t)
i , ν

(t)
m , ρ

R,(t)
i , and ρ

N,(t)
i can eventually converge

to the dual optimal solution λ, µ, ν, ρ, and ϕ if the step sizes are chosen such that

αt → 0,
∞∑
t=0

αt =∞, βt → 0,
∞∑
t=0

βt =∞, πt → 0,
∞∑
t=0

πt =∞, ψt → 0,
∞∑
t=0

ψt =∞, and

ηt → 0,
∞∑
t=0

ηt =∞.
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Proof. In order to avoid convergence to a non-stationary point, some of step sizes

should be infinite. Meanwhile, with respect to the iteration index, the step sizes

αt, βt, πt, ψt, and ηt tend to zero. Thus, the conditions comply the convergence of

dual variables to their corresponding dual optimal solutions [7, 11].

The primal problem in Equation (3.3) is convex with positive constraints (as

verified in Lemma 1 and 2). Thus, one can conclude from Proposition 1 that the

Slater’s condition for strong duality of the primal problem holds (duality gap is zero).

Thus, the optimal solution to (3.6) is the global maximum of the primal problem. To

obtain the optimal solution of harvesting ratios for SUs, the following sub-gradient

method is used.

Algorithm 2 Structure Optimization By Iterative Gradient Method

Initialization:

Setting θi

Initialize λ
(0)
i , µ

(0)
i , ρ

R,(0)
i , ρ

N,(0)
i , and ν

(0)
m = 0

Repeat for t ≥ 1

Compute optimal harvesting ratios:

θ∗i = arg max
θi

(λ
(t)
i , µ

(t)
i , ρ

R,(t)
i , ρ

N,(t)
i , ν

(t)
m )

Update dual variables:

λ
(t+1)
i = [λ

(t)
i − α(t) dL

dλi
]+, µ

(t+1)
i = [µ

(t)
i − β(t) dL

dµi
]+, ρ

R,(t+1)
i = [ρ

R,(t)
i − ψ(t) dL

dρRi
]+,

ρ
N,(t+1)
i = [ρ

N,(t)
i − η(t) dL

dρNi
]+, and ν

(t+1)
m = [ν

(t)
m − π(t) dL

dνm
]+

Until Convergence

Apart from solving the convex optimization problem using iterative gradient

method, the optimal solution can be obtained by deriving a closed-form solution.

The following theorem proposes a closed-form solution for optimal harvesting ratios

of SUs solved by the AP.
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Theorem 1. The optimal solution of the harvesting ratio in one time slot for each

SU, ∀i ∈ K = {1, 2, ..., K}, can be attained as:

θ∗i =
T − τsi
T

−
W
(
Hχi−1

e

)
H (χiT − χiτsi − εsi)

T (Hχi − 1)
(
1 +W

(
Hχi−1

e

)) , (3.12)

where W(.) refers to the Lambert W function [17].

Proof. We begin with the assumption that the harvesting ratio allocation set of (3.3)

is a nonempty, convex and compact set [44]. Hence, the objective function is strictly

concave with respect to θi. Let λi, µi > 0, ∀i ∈ K = {1, 2, ..., K}, νm > 0, ∀m ∈ L =

{1, 2, ..., L}, ρRi > 0, ∀i ∈ KR = {i0 + 1, ..., K}, and ρNi > 0, ∀i ∈ KN = {1, 2, ..., i0}

denote the Lagrange multipliers of lower-bound energy and time of transmission in

C1 and C2, interference constraint in C3, lower-bound transmission rate for RT and

NRT users in C4 and C5, respectively.

Therefore, using the Lagrangian of the optimization problem P2 in Equation

(3.4), the objective function can be optimized by exploiting the necessary and

sufficient conditions,

∇L(θ∗, λ, µ, ν, ρR, ρN) = 0. (3.13)

The objective function is given as

Obj =

(
T − Tθi − τsi

T ln 2

)
log2

(
1 +Hi,j

χiθiT − εsi
T − θiT − τsi

)
(3.14)

The derivative of the objective function with respect to the vector of harvesting ratios

can be expressed as

d

dθi
(Obj) =

1

ln 2

[
ln

(
1 +H

χθT − εs
T − θT − τs

)
−

Hχ (T − θT − τs) +H (χθT − εs)
(T − θT − τs) +H (χθT − εs)

]
.

(3.15)
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Then, considering d(∇L)
dθi

= 0, we have

1

ln 2

 ln

(
1 +H

χθT − εs
T − θT − τs

)
−Hχ (T − θT − τs) +H (χθT − εs)

(T − θT − τs) +H (χθT − εs)

− λiχiT
+µiT + νmIm

HχT (T − θT − τs) +HT (χθT − εs)
(T − θT − τs)2

+ρRi

(
d

dθi
(Obj)

)
+ ρNi

(
d

dθi
(Obj)

)
= 0,

(3.16)

and the Lagrange multipliers constraints are equal to zero as follows

λi(εsi − χiθiT ) = 0, i ∈ K

µi(θiT + τsi − T ) = 0, i ∈ K

νm

(
χiθiT−εsi
T−θiT−τsi

Ii,m − I thm
)

= 0, i ∈ K, m ∈ L

ρNi
(
γi −RNT

i

)
= 0, i ∈ KN

ρRi
(
Rreq
i −RRT

i

)
= 0, i ∈ KR

(3.17)

In order to obtain the solutions, the values of multipliers in (3.17) should be

considered. The first constraint, εsi = χiθiT , represents the special case where the

total harvested energy is consumed for the spectrum sensing. The second constraint

θiT = T − τsi denotes the special case where there is no remaining time for data

transmission. Thus, we are not interested in special cases and one can conclude λi = 0

and µi = 0. The rate constraints, RRT
i = Rreq

i and RNT
i = γi, represent the special

cases where the transmission rates of RT and NRT users meet the lower bound values

which are not generally desired. For simplicity in the last constraint, we assume that

the total interference introduced by SUs is always less than the maximum interference

threshold. Therefore, one can conclude that νm = 0 because the total interference is

assumed to be less than the threshold (I thm ). Hence, the optimal harvesting time can
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be obtained by solving the following equation.

1

ln 2

[
ln

(
1 +H

χθT − εs
T − θT − τs

)
− Hχ (T − θT − τs) +H (χθT − εs)

(T − θT − τs) +H (χθT − εs)

]
= 0.

(3.18)

Define intermediate variables a and b as a = T − θT − τs and b = χθT − εs. Thus,

we can re-write (3.18) as

ln

(
a+Hb

a

)
=
Hχa+Hb

a+Hb
. (3.19)

One can conclude that b = −χa+c, where c is defined as c = χT−χτs−εs. Therefore,

ln

(
1−Hχ+

Hc

a

)
=

Hc

a (1−Hχ) +Hc
. (3.20)

Define a new variable t as t = 1−Hχ+ Hc
a

. Then,

t ln (t) = t+Hχ− 1. (3.21)

Lemma 3. The solution of x ln (x) = ax+ b (a and b are constants), is

x =
b

W
(
b
ea

) ,
where W(.) is the Lambert W function.

Proof. The Lemma is proved in Section A.3.

Based on Lemma 3, the solution of (3.21) can be expressed as

t =
Hχ− 1

W
(
Hχ−1
e

) . (3.22)

Therefore, using t = 1−Hχ + Hc
a

and a = T − θT − τs, the global optimal solution

of Equation (3.12) is proved.
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CHAPTER 4

SIMULATION RESULTS

Simulations have been conducted to demonstrate the performance of our proposal.

Meanwhile, the impact of various parameters like interference thresholds of PUs,

transmission rate constraints, energy harvesting rate, and sensing time on the network

performance have been analyzed.

4.1 Simulation Setup

In all the simulations, channel gains are modeled as hi,j = Yd−βi,j , where Y is a random

value generated according to the Rayleigh distribution, d−βi,j is the geographical

distance between the transmitter and receiver, and β is the path-loss exponent [56]. d

varies between 50 m to 200 m, and β = 3. The bandwidth of each OFDM sub-channel

is 62.5 kHz, and the noise power is 10−13W (or -100 dbm) in our simulation

analysis. The overall probabilities of PUs’ detection, mis-detection and false alarm

are uniformly distributed over [0,1], [0.01, 0.05], and [0.05, 0.1], respectively. Various

experimental results are provided to deeply analyze the performance of our network

and investigate effects of different system parameters.

4.2 One SU Scenario

In this part, an experiment has been conducted to evaluate the performance of our

system versus different system parameters. Figure 4.1(a) illustrates the optimal

harvesting ratio (θ) versus various amounts of harvesting rate (χ) and spectrum

sensing time for one SU (εs = 1 mJ). It is clearly shown that a larger harvesting

fraction is preferred when the spectrum sensing time decreases. At the same time as

energy harvesting rate of the SU declines, the harvesting ratio grows exponentially.

Figure 4.1(b) demonstrates the achievable throughput versus different sensing times
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Figure 4.1 The performance evolution of the heterogeneous CR system for one

SU scenario: a) optimal harvesting ratio versus energy harvesting rate and time of

sensing; b) achievable rate versus energy harvesting rate and sensing time.

and energy harvesting rates for one SU over a single sub-channel (εs = 1 mJ). It

can be seen that the achievable throughput experiences a sharp increase as the

energy harvesting rate improves. Meanwhile, the higher achievable throughput is

accomplished by decreasing the sensing time because more time is left for data

transmission.

4.3 Sub-channel Allocation Performance

To evaluate the performance of our proposed sub-channel allocation algorithm, a

series of experiments have been conducted. Figure 4.2 evaluates the sum rate of

a CR network (K = 4 SUs) for different numbers of available sub-channels. Note

that the achievable sum rate of the CR system increases as the number of available

sub-channels grows. Consider four scenarios with 2 RT and 2 NRT users for two

cases and 3 RT and 1 NRT users for the others. SU-1 and SU-2 are RT users whose

energy harvesting rates are χ1 = 30 mJ/s and χ2 = 40 mJ/s, respectively. SU-3

and SU-4 have the energy harvesting rates of χ3 = 60 mJ/s and χ4 = 120 mJ/s,
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Figure 4.2 The achievable sum-rate as a function of the number of available sub-

channels.

respectively. However, SU-4 is always an NRT user while SU-3 can be RT or NRT in

different cases. As shown in Figure 4.2, the achievable sum rate not only is related

to the number of sub-channels and number of RT and NRT users, but also depends

on the required rates of RT SUs and rate constraints of NRT users. When Rreq is

higher, RT users which have lower harvesting rates need more sub-channels to meet

their required rates. More specifically, as shown in Figure 4.2, as the required rate

increases from Rreq = 12 bps/Hz to Rreq = 14 bps/Hz and the rate constraint grows

from ζ = 6 bps/Hz to ζ = 8 bps/Hz, the achievable sum rate slightly decreases for

higher number of available sub-channels.

As a second illustrative example, simulation results of a CR network with 8 RT

SUs are illustrated in Table 3. In this part, we assume that the channel gains are

identical for all SUs. It is shown that by increasing the value of αEFM for different SUs,

their single achievable rates improve. Thus, the RT SUs with higher αEFM require

less sub-channels to achieve the required rate. Figure 4.3 illustrates the comparison

between our EFM-based sub-channel allocation in Section 3 and the sub-channel

allocation scheme in [73]. Figure 4.3 explicitly shows that the number of RT users
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Figure 4.3 Number of RT SUs successfully meeting their required rates versus

number of available OFDM sub-channels.

which meet their required rates are significantly higher, especially for a small number

of available sub-channels. In other words, since in the EFM-based method, the RT

SUs with higher αEFM have higher priority for sub-channel allocation, the SUs with

less required sub-channels receive sub-channels first. Whereas, the method in [73]

does not consider this prioritized criterion regarding RT SUs sub-channel allocation.

4.4 Structure Optimization for Fixed Sub-channel Allocations

After having completed sub-channel allocation process, the SUs receive their sub-

channels and the general optimization problem is reduced to a convex NLP. In this

part, the channel gains are modeled as described in the simulation setup. Figure 4.4,

compares the optimal harvesting ratios depicted by orange circles with our numerical

results proposed in Theorem 1. There are 20 SUs which their energy harvesting rates

uniformly set to χ = 5 J/s. Each SU receives a fixed number (f) of sub-channels and

the interference thresholds of PUs are 5 × 10−13W. It is obvious that our proposed

numerical results are capable of obtaining more than 95% of the optimal harvesting
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Table 4.1 Simulation Parameters for an Experiment of 8 SUs.

SU αEFM χ θopt r Rreq Req. Sub-Chan.

1 3060 20 0.554 1.00 10 bps/Hz 10 sub-channels

2 5850 20 0.455 1.25 10 bps/Hz 8 sub-channels

3 7230 30 0.412 1.50 10 bps/Hz 7 sub-channels

4 10130 40 0.363 1.75 10 bps/Hz 6 sub-channels

5 12500 60 0.336 2.00 10 bps/Hz 5 sub-channels

6 15560 85 0.309 2.25 10 bps/Hz 5 sub-channels

7 19050 120 0.285 2.50 10 bps/Hz 4 sub-channels

8 31000 160 0.258 2.75 10 bps/Hz 4 sub-channels

ratios for all SUs, which means the performance gap between our proposal and the

optimal solution is negligible.

Figure 4.5 shows the sum capacity as a function of the number of SUs, which

varies from 4 to 10. The energy harvesting rate is set to χ = 5 J/s. Note that

each SU receives a fixed number of f sub-channels. We can observe from Figure

4.5 that the sum rate of all SUs increases when the number of SUs grows from 4

to 10. Two scenarios, each SU getting f = 2 and f = 6 sub-channels, respectively,

are considered. Since P3 is a convex optimization problem, optimal solutions can be

obtained by interior point methods. Note that the near optimal theoretical results

are within 3.5% away from the optimal solutions for all cases.

4.5 Sum Rate versus Rate Constraints

We depict the sum rate of SUs versus different values of rate constraint of RT SUs

in Figure 4.6, in which KR = 4 RT SUs and the available sub-channels are 16 with

different channel gain for each SU. The channel gains are detailed in Subsection 4.1.

Each sub-channel has a bandwidth of 62.5 KHz and the harvesting rate is assumed
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Figure 4.4 The harvesting ratios for 20 SUs. The energy harvesting rates for SUs

are set to χ = 5 J/s.

to be χ = 5 J/s for all SUs. The required rates of RT users vary from Rreq
i = 1 to

11 bps/Hz. The time slot duration is considered T = 1 ms and the sensing time is

τs = 10 µs for all SUs. As shown in Figure 4.6, the highest sum rate is achieved for

the lowest rate constraint (Rreq
i ≤ 4 bps/Hz) due to the fact that the optimizer has

more freedom to allocate sub-channels to SUs. By increasing the rate constraint from

4 bps/Hz, the sum rate witnesses a slight decrease. Beyond the rate constraint of 7

bps/Hz which is shown by a red line in the figure, the sum rate experiences a sharp

decrease. This stems from the fact that the optimizer has less freedom to allocate

sub-channels to SUs and thus the optimal sum rate is greatly reduced.

4.6 System Performance versus Interference Threshold

The sum rate of all SUs versus interference thresholds of PUs are illustrated in Figure

4.7. Four SUs occupy 16 available OFDM sub-channels. The channel gains provided

in Subsection 4.1 are adopted and each SU has a different channel gain. We assume

that all PUs have identical interference threshold, which varies between -90 dbm to

-110 dbm. We assume that the rate constraints are Rreq
i = 5 bps/Hz for each SU. As

can be seen from Figure 4.7, the sum rate increases with the growth of the interference
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Figure 4.5 The total sum rate versus number of SUs for a fixed number of allocated

sub-channels. Energy harvesting rate is set at χ = 5 J/s.

threshold. For lower interference thresholds, the SUs’ transmission powers are limited

and cannot be increased to its maximum amount, thus resulting in lower sum rate

performance. Nonetheless, the sum rate cannot be increased beyond a certain point

as the transmission power, which depends on the harvesting ratio, has reached its

maximum. Therefore, the sum rate does not increase after the black ellipsoids shown

in the figure for different harvesting ratios.

We also verify the effect of various PUs’ interference thresholds for the achievable

harvesting ratios of SUs. Figure 4.8 illustrates the harvesting ratios versus different

PUs’ interference thresholds for three cases, where the average harvesting rates are

χ = 1, 3 and 9 J/s, respectively. When the interference threshold is relatively small,

SU’s power and the sub-channels are interference limited. Thus, the harvesting ratios

decrease because the lower interference thresholds require SUs to transmit their data

with limited transmission power. Therefore, the harvesting ratios are smaller for

lower interference thresholds. However, when the interference threshold increases

from 10−15 W to 3 × 10−13 W, the harvesting ratio grows exponentially in order

to extract more energy for data transmission. While the harvesting ratio increases
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Figure 4.6 The sum rate versus RT rate constraints (Rreq). KR = 4 SUs and 16

available sub-channels.

sharply from I thm = 10−15 W to I thm = 3 × 10−13 W, it remains almost constant

for higher PUs’ interference thresholds. This phenomenon stems from the trade off

between having more harvesting time for energy harvesting, and less time for data

transmission. In other words, for higher interference thresholds, the harvesting ratio

cannot converge to θ = 1 because the higher value of θ implies less time for data

transmission.
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Figure 4.7 The sum rate versus different PUs’ interference thresholds (in Watt).

KR = 4 SUs and 16 available sub-channels.

Figure 4.8 The harvesting ratios versus interference threshold (in Watt). The

average harvesting rates (χi) are 1, 3, and 9 J/s.
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CHAPTER 5

ENERGY EFFICIENT RESOURCE ALLOCATION IN EH-ENABLED

CR NETWORKS FOR IOT

5.1 Introduction

Owing to myriad fields for IoT applications including smart houses, connected cars,

smart cities, wearables, smart retails, and connected health, the number of connected

devices has increased tremendously and anticipated to be more than 50 billions

by 2020 [38, 50, 87]. Although traditional energy-constrained wireless networks are

powered by fixed energy sources like batteries, it may be expensive and inconvenient

to replace and recharge batteries as the number of IoT devices increases. Therefore,

one of the dominant barriers to implementing IoT is supplying adequate energy to

operate the network in a self-sufficient manner [32]. Wireless Energy Harvesting

(WEH), a promising solutions, can potentially eliminate the need of recharging or

replacing the batteries. Unlike other types of green energy sources (e.g., wind, solar,

and vibrations), WEH does not depend on nature, and is thus a reliable source of

energy for IoT devices [6]. WEH is classified into three categories: energy harvesting

from unknown source, anticipated source and intended wireless energy transmission,

respectively. While the former two are not efficient because the amount of ambient

wireless energy in the environment is generally low and inconsistent, the latter, which

can utilize the power transmitters, is much more efficient.

The rapid growth of higher data rate devices and wireless applications is likely

to demand for more operating frequency bands. The dynamic spectrum access

capabilities of Cognitive Radio (CR) can be leveraged to alleviate spectrum scarcity

by utilizing the spectrum holes, i.e., underutilized spectrum bands [4]. In order

to transmit data without interfering licensed users, spectrum sensing, which is the
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process of detecting the spectrum holes, plays a crucial role. Owing to the effects

of fading and shadowing, the performance of single spectrum sensing is generally

unreliable. In this regard, Cooperative Spectrum Sensing (CSS) is applied to improve

the performance of sensing by combining the observations of spatially located users.

Current communication technologies cannot provision the future growth of numerous

IoT devices. Therefore, transforming the IoT network into a cognitive based IoT

network is essential to utilizing the available spectrum opportunistically [43].

5.1.1 Related Works

The energy efficiency (EE) of IoT networks has emerged as a major research issue

[5, 41, 67, 86]. In particular, an energy efficient architecture was proposed in [41] for

IoT networks where the sensors’ sleep intervals are predicted based on their remaining

energy. Sharma et al. [67] presented an energy efficient approach for device discovery

in 5G-based IoT using multiple Unmanned Aerial Vehicles (UAVs). Zhang et al. [86]

proposed an integrated structure to enhance the EE of IoT networks. They optimized

the EE of the whole system by considering the wireless and wired parts at the same

time. Alnakhli et al. [5] proposed a mechanism to jointly maximize the spectrum and

energy efficiency for device-to-device communications enabled wireless networks.

IoT and CR networks are evolving technologies and the CR utilization in

IoT is becoming an important issue. However, few works have discussed the CR

capabilities (like cooperative spectrum sensing) for IoT networks. State of the arts

on cognitive machine-to-machine communications from a protocol stack perspective

has been reviewed in [1]. Majumdar et al. [53] also proposed a packet size optimization

mechanism for cognitive radio based IoT networks where they considered the tradeoff

in terms of EE and overhead delay for a given data packet length. Throughput

maximization was proposed in [62] for energy harvesting enabled CR networks.

Moreover, Hu et al. [30] proposed a cognitive code division multiple access scenario
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by combining the concept of CR with dynamic spectrum bands and CDMA for IoT

networks.

Wireless energy harvesting and transfer technologies can be leveraged for IoT

networks. Li et al. [47] proposed a framework where network coding is applied to an

IoT network to reduce IoT energy consumption. Kawabata et al. [42] considered a

relay selection problem for energy harvesting and proposed a new scheme for energy

harvesting relay selection which is based on the residual energy at each relay’s battery.

Song et al. [69] studied a tradeoff between Quality of Service provisioning and the

energy efficiency for IoT networks. Moreover, Liu et al. [51] proposed a wireless

energy harvesting protocol for an underlay cognitive relay in which the secondary

users are assumed to harvest energy from the primary network. Ha et al. [24]

proposed a harvest-then-transmit based enhanced MAC protocol to solve the problem

of the tradeoff between the RF energy transfer and data communication for wireless

powered sensor networks by maximizing the energy harvesting rate. Kang et al. [40]

investigated a wireless communication network with a full-duplex hybrid energy and

information access point by maximizing the sum-throughput and minimizing the total

time. Che et al. [15] considered dual-function access points, which are able to support

the energy/information transmission to/from wireless nodes.

5.1.2 Contributions

None of the existing works considered a trade-off between the EE and spectral

efficiency (SE) by taking into consideration of the limits of spectrum resources, as

well as finding the optimal fractions of time slots for energy harvesting and data

transmissions in an EH-enabled CR-based network. Therefore, this study aims to

address the aforementioned issue by proposing a system model that not only leverages

WEH and CSS, but is also designed to optimize the EE and SE tradeoff of the network

by optimizing the length of energy harvesting in each time slot while ensuring data
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rate requirements of the devices and the fairness in sub-channel allocation among the

users. The main contributions of this Chapter are summarized as follows.

• We propose a CR based system model for IoT using wireless energy harvesting

and cooperative spectrum sensing to tackle two vital challenges of IoT networks,

i.e., supplying adequate energy to operate the network in a self-sufficient

manner, and providing enough radio spectrum to accommodate the massive

growth of devices. To this end, we consider a time switching model in which

the devices participate in the CSS process, report their results to an Access Point

(AP), harvest energy that is intentionally transmitted by the AP, and finally

transmit their data using the harvested energy. Since users operate in a time

switching fashion, there is a tradeoff between the length of the energy harvesting

process and data transmission part. Therefore, we focus on optimizing the EE

and SE tradeoff of the network by optimizing the length of energy harvesting

process in each time slot.

• We formulate a mixed integer nonlinear programming (MINLP) problem to

maximize the tradeoff between the EE and SE while taking into consideration

of practical limitations such as data rate fairness, energy causality constraints,

interference constraints, and imperfect spectrum sensing. The problem is proven

to be NP-hard.

• We thus propose a low complexity heuristic algorithm, referred to as joINt Sub-

channel allocaTion And eNergy harvesting opTimization (INSTANT), to solve

the sub-channel allocation and energy harvesting optimization problem. The

proposed algorithm is shown to be capable of achieving near optimal solution

with high accuracy while having polynomial complexity.
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Figure 5.1 The system model.

5.2 System Model

Consider two cellular systems, one with M primary users (PUs) denoted by

M = {1, 2, ...,M} and the other with K self-powered devices represented by

K = {1, 2, ..., K} forming a time-slotted CR-based IoT network (Figure (5.1)). The

devices opportunistically utilize the licensed radio spectrum of the PUs via an AP.

The AP is equipped with one Fusion Center (FC) to centrally process the users’

sensing results and one energy transmitter to broadcast energy signals to its associated

devices. Each device does local spectrum sensing by a low complexity Energy Detector

(ED) concerning the presence of PUs. Users’ spectrum sensing results are assumed

independent [49] and each user is permitted to sense any number of sub-channels.

The local spectrum sensing results are sent to the FC. Then, the FC applies CSS (to

reduce the sensing errors) to achieve final decisions regarding availability of licensed

sub-channels. Denote N = {1, 2, ..., N} as the subset of available sub-channels

identified by the CR based IoT network for data transmission.

In this work, energy and information APs are integrated into a co-located

energy-information AP, which provides both energy and data access to the users

within the range of the AP [40]. The devices are also considered to be self-powered,
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equipped with wireless energy harvester devices to exclusively harvest energy from

wireless energy signals intentionally transmitted by the AP. In fact, the AP broadcasts

a deterministic energy signal to power nearby users over the downlink channel and

then receives data from these users transmitted via the uplink channel. Users store

their energy in their temporary energy storage devices (e.g., capacitors). The energy

harvesting process and energy consuming process cannot be done simultaneously in

such devices. Owing to the energy half-duplex constraint, while the user transmits

data via the uplink channel, its energy harvester pauses [82]. Basically, each time

slot with duration T is partitioned into a control slot Tc and a data slot Td (Figure

(5.2)). The length of the control slot is called the sensing overhead and is constant

for all devices [49]. The fixed control slot period is devoted for CSS and reporting the

optimization results from the AP in each slot. We assume that at the beginning of

the tth time slot, device k ∈ K has residual energy Eres
k,t that is enough for spectrum

sensing during the control slot. Meanwhile, the data time slot is divided into two

non-overlapping parts, namely, Downlink Energy Harvesting (DLEH) and Uplink

Data Transmission (ULDT). In fact, all users have the same data time slot duration

from the AP’s point of view. However, during each time slot, users have different

DLEH and ULDT time periods because users have various data rate requirements as

well as different hardware characteristics to harvest the transmitted energy from the

AP. We define the harvesting ratio for the kth device as µk, ∀k ∈ K, which determines

the fraction of data slot devoted to energy harvesting. Nevertheless, in the slotted

operating mode, with more time spent on DLEH, less time remains for ULDT, thus

degrading the achievable throughput. Hence, there exists a tradeoff between DLEH

and ULDT durations. Meanwhile, the users are assumed to have perfect knowledge

of Channel State Information (CSI) between their transmitters and the AP receiver.

For the ease of reading, frequently used notations and terminologies are summarized

in Table 5.1.
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Table 5.1 List of Symbol Notations and Description

Symbols Descriptions

M (K) The set of primary users (the set of self powered users)

N The set of available sub-channels identified by CR based IoT system

Tc (Td) The duration of control time slot (the duration of data time slot)

E[.] The expectation of the number of bits in users’ buffers

τsk The sensing time of the kth user

µk The harvesting ratio of the kth user in each time slot

ρk The harvesting rate of the kth user

ζk The energy conversion efficiency of the kth user

dk The geographical distance between the AP and the kth user

Esen
k The energy consumed by the kth user for spectrum sensing

Eres
k The residual energy of the kth user

Ehar
k The energy harvested by the kth user

Eidle
k The consumed energy of being idle for the kth user

Etr
k The transmission energy of the kth user

Econ
k The total energy consumption of the kth user

ηk The weight of spectral efficiency in (5.11)

∆(.) The base data rate function

Xk The number of bits in the kth user’s buffer

hk,n The channel gain between the kth user and the AP over the nth channel

Ik,m The total interference introduced to the mth PU by the kth user

gk,n The indicator function for allocating the nth channel to the kth user

rk,n The transmission rate of the kth user over the nth channel

Rk The total transmission rate of the kth user
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Figure 5.2 The time slot model.

5.3 Problem Formulation

5.3.1 Energy Consumption

The amount of harvested wireless energy received by the kth user is

Ehar
k = ζkd

−β
k

∣∣h̄k∣∣2PAPµkTd, ∀k ∈ K, (5.1)

where 0 < ζ 6 1 is the energy conversion efficiency, which depends on the physical

circuit of the energy harvesting device, dk is the geographical distance between the AP

and the kth user, β is the path-loss exponent, h̄k is the channel condition between users

and the energy transmitter, PAP is the transmission power of the energy transmitter,

and µkTd is the amount of time in the time slot devoted for energy harvesting. For

the sake of convenience, we define the energy harvesting rate of the kth user as ρk ,

ζkd
−β
k |hk|

2PAP , ∀k ∈ K. In other words, users based on their locations, channel

conditions, and their harvesting capabilities have different energy harvesting rates

from the transmitted energy of the AP.

Since the users are assumed to have enough residual energy at the beginning of

each time slot to operate spectrum sensing, the following inequality must hold

Eres
k,t − Esen

k,t + Ehar
k,t − Etr

k,t > Esen
k,t+1, (5.2)
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where Esen
k,t denotes energy expenditure of the kth user to sense the spectrum in time

slot t. Etr
k,t is the amount of energy consumed by the kth user to transmit data in

the tth time slot. However, the energy of sensing does not change from time slot to

time slot for each user, Esen
k,t = Esen

k,t+1. Thus, the energy causality constraint for the

network of K users is given by

Eres
k,t + Ehar

k,t > Etr
k,t + 2Esen

k ,∀k ∈ K. (5.3)

Accounting for the harvested and the consumed energies, the residual energy of the

kth user ∀k ∈ K at the beginning of the next time slot is updated as follows

Eres
k,t+1 = Eres

k,t + Ehar
k,t − Etr

k,t − Esen
k . (5.4)

To calculate the total energy consumption of one user in one time slot, one should

consider the energy of transmission, sensing energy and the consumed energy for being

idle. Based on the energy causality constraint in (5.3), the maximum transmission

energy of the kth user in time slot t is given by

Etr
k,t = Eres

k,t + Ehar
k,t − 2Esen

k,t . (5.5)

Denote Eidle
k,t as the energy of the idle mode for the kth user in time slot t. Therefore,

the energy consumption of the kth user in the tth time slot depends on the energy of

transmission, harvested energy, spectrum sensing energy consumption and energy for

remaining idle, i.e.,

Econ
k,t = Eres

k,t + ρkµkTd − 2Esen
k,t︸ ︷︷ ︸

Etrk,t

+Esen
k,t + P idle

k,t (Tc − τsk)︸ ︷︷ ︸
Eidlek,t

, (5.6)

where τsk is the sensing time of the kth user. Thus, the total energy consumption of

K users in each time slot as a function of the harvesting ratio can be written as

Econ
total(µk) =

∑
k∈K

(
ρavk µkTd + Eres

k − Esen
k + Eidle

k

)
. (5.7)
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5.3.2 Achievable Throughput

To measure the Shannon capacity for each user in the system, we define ttrk (µk) ,

(1 − µk)Td and Etr
k (µk) , Eres

k + ρkµkTd − 2Esen
k as the transmission time and the

transmission energy of the kth user as a function of the harvesting ratio µk. Thus,

the transmission rate of the kth user over the nth sub-channel can be written as

rk,n(µk) =
ttr(µk)

T
log2

(
1 +

|hk,n|2Etr
k (µk)

Γ(BN0 + Ik)ttrk (µk)

)
, (5.8)

where hk,n denotes the channel gain of the kth user over the nth sub-channel, B is the

bandwidth of each OFDM sub-channel, N0 represents the additive white Gaussian

noise, Ik is the measured interference introduced to the kth user caused by the PUs’

signals, and Γ denotes the SNR gap associated with the bit-error-rate (BER) of

un-coded MQAM.

Let gk,n be the binary indicator whether to allocate the nth sub-channel to the

kth user. For simplicity, we define Hk,n ,
|hk,n|2

Γ(BN0+Ik)
. Therefore, the total transmission

rate of the kth user over all available sub-channels, N , is given by

Rk(µk, gk,n) =
N∑
n=1

gk,n
ttrk (µk)

T
log2

(
1 +Hk,n

Etr
k (µk)

ttrk (µk)

)
. (5.9)

5.4 Energy Efficiency Maximization

In this section, we formulate the problem to maximize the energy efficiency of the

users while taking into consideration of their buffer occupancy. The energy efficiency

is defined as the ratio of the total transmission rate to the total energy consumption,

and is measured in unit of bits/sec/Joule. Recalling the total throughput in (5.9)

and the total energy consumption in (5.7), the energy efficiency of the kth user is

Eeffk(µk, gk,n) =
Rk(µk, gk,n)

ρkµkTd + Eres
k − Esen

k + Eidle
k

. (5.10)

Meanwhile, it is possible to allocate spectral resources to the users which do not

have enough data in their buffers to transfer, thus resulting in a waste of spectrum
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resources. Let random variable Xk represent the number of bits in the buffer of

the kth user, and Xk, ∀k ∈ K, are assumed independent and have a common

general distribution with the average of E[Xk] , Xk. In order to efficiently utilize

the spectrum, users should not receive spectral resources more than their data in

the corresponding buffers. To this end, we incorporate the probability P (Xk >

Rk(µk, gk,n)ttrk (µk)), ∀k ∈ K, into the objective function to ensure efficient utilization

of the spectrum (spectral efficiency). Let Seffk , ηkP (Xk ≥ Rk(µk, gk,n)ttrk (µk)),

where ηk is the weight of the spectral efficiency in the objective function. However,

maximum EE and SE cannot be obtained simultaneously; in fact, there is a trade-off

between EE and SE. Therefore, we propose an optimization framework that optimizes

the tradeoff between EE and SE in the CR-based IoT network with downlink energy

harvesting, formulated as

P1: max
µk,gk,n

∑
k∈K

(Eeffk(µk, gk,n) + Seffk(µk, gk,n))

C1 Rk(µk, gk,n) ≥ ∆(E[Xk]), ∀k ∈ K

C2 Eres
k + Ehar

k ≥ Etr
k + 2Esen

k , ∀k ∈ K

C3
∑

k∈K ρkµk ≤ PAP , ∀k ∈ K

C4
∑

k∈K
∑

n∈N gk,np̄k,nIk,n 6 I thm , ∀m ∈M

C5
∑

k∈K gk,n = 1, ∀n ∈ N

C6 gk,n ∈ {0, 1}, ∀k ∈ K, ∀n ∈ N

C7 Etr
k ≥ 0, ∀k ∈ K

C8 0 < µk < 1, ∀k ∈ K

(5.11)

C1 ensures minimum transmission rates, i.e., ∆(E[Xk]), for all the users where ∆(.)

is an increasing function in E[Xk]. In fact, the minimum data rate requirement

of each user is defined as an increasing function of the average number of bits

in its buffer. C2 means that the energy causality constraint should be held. C3

imposes the total harvested energy of users to be less than the maximum transmitted
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energy of the AP. C5 and C6 imply that each sub-channel is allocated to no more

than one device. C7 specifies that the transmission energy of each user should

not have a negative value. C8 imposes the harvesting ratio to be a fraction of

one time slot. Meanwhile, C4 specifies that the total interference to the mth PU

must be less than a given threshold where P tr
k (µk), the transmission power of the

kth user, can be written as
Eresk +ρkµkTd−2Esenk

(1−µk)Td
, and p̄k,n =

P trk (µk)

|N | ,∀n ∈ N ,∀k ∈ K.

Moreover, spectrum sensing errors (e.g., mis-detection of the spectrum) can also

occur and lead to co-channel interference. The total interference introduced to the

mth PU by the kth user’s transmission over the allocated sub-channels is given by

Ik,m =
∑
n∈Nu

P1,nI
k
n,m+

∑
n∈Na

P2,nI
k
n,m [63], where Nu is the set of unavailable sensed

sub-channels, Na represents the set of available sensed sub-channels, P1,n denotes the

probability that the CR based IoT network correctly identifies the nth unavailable

sub-channel, and P2,n is the probability that the network makes a wrong decision

regarding availability of the nth occupied sub-channel.

Lemma 4. The EE maximization of the CR-based IoT network in (5.11) is an NP-

hard problem.

Proof. The Lemma is proved in Section B.1.

5.5 Algorithm Design

5.5.1 Solution Methodology

In fact, multiple approaches can be used to find the optimal solutions for the

proposed optimization problem, which is a non-convex MINLP problem, and thus low

complexity heuristic approaches are required to solve this problem. One approach is

to employ a tightened lower bound for the maximization problem and then solve it

by the outer approximation algorithm. To achieve a tight lower concave bound of the

original maximization problem [58], the inequality in α log z0 +β 6 log(1+z0) can be

used, where the approximation constants are α = z0
1+z0

and β = log(1 + z0)− αlogz0.
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Thus, α log z0 + β can be used as a rate function to make a lower bound for the

objective function. However, it is well-known that solving MINLP problems by this

approach requires a high computational complexity which may not satisfy user delay

requirements in practical scenarios. Another technique that has achieved success in

various scenarios of MINLP problems [63] is to exploit the primal decomposition,

which decomposes the original optimization problem into two subproblems, thereby

reducing the complexity of the problem. Thus, P1 can be reduced to P2 by fixing

the values of the harvesting ratios µk, ∀k ∈ K.

P2: max
gk,n

∑
n∈N

∑
k∈K

gk,n.p̂k,n + ηkP (Xk > Rk(gk,n)ttrk )

s.t. C1 :
∑

n∈N gk,nrk,n > ∆(E[Xk]), ∀k ∈ K,

C2 :
∑

k∈K
∑

n∈N gk,np̄k,nIk,n 6 I thm ,

C3 :
∑

k∈K gk,n = 1, ∀n ∈ N ,

C4 : gk,n ∈ {0, 1},∀k ∈ K, ∀n ∈ N .

(5.12)

Hence, a two-stage heuristic approach can be used, where the sub-channel

allocation process is performed to find the optimal solution of P2. Note that after

the sub-channel allocation phase, the integer constraints of P1 are removed because

binary variables are set to 0 or 1 to indicate whether sub-channels are allocated or

not.

5.5.2 INSTANT

As discussed, finding the optimal solution to P1 is intractable. Therefore, to

solve this problem, we propose a heuristic algorithm as summarized in Algorithm 3

which consists of two separated phases to optimizing the channel allocation and the

harvesting ratio, respectively.

We first perform a sub-channel allocation process to solve P2. However, one

should notice that the analytical expression of Seffk in the objective function should
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Algorithm 3 JoINt Sub-channel AllocaTion And ENergy Harvesting

OpTimization: INSTANT

1: µk =
µmink +1

2
= ∀k ∈ K

2: gk,n = 0 ∀k ∈ K and n ∈ N

3: Channel Allocation Phase

4: N0 ← ∅

5: K′ ← K

6: for all n ∈ N do

7: k̂ = argmax
k∈K′

Rk

8: gk̂,n = 1 and N0 ← N0 ∪ n

9: if Rk̂ ≥ ∆(E[Xk]) then

10: K′ ← K′ \ k̂

11: end if

12: end for

13: N ← N \N0

14: ô = 0

15: for all n ∈ N do

16: for all k ∈ K do

17: if onk ≥ ô then

18: k̂ ← k

19: ô← onk

20: end if

21: end for

22: gk̂,n = 1

23: end for

24: Harvesting Ratio Optimization

Phase

25: sort users in K′′ such that ρ1 ≤ ρ2 ≤

... ≤ ρK

26: for all k ∈ K′′ do

27: µ̂k ← argmax
µmink ≤µk≤1

(Eeffk + Seffk)

28: if R̂k ≥ ∆(E[Xk]) and Êk ≤

PAP .Td and Îk ≤ I thm then

29: µk = µ̂k

30: end if

31: end for
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be derived. Therefore, for any probability distribution functions of Xk, ∀k ∈ K,

fXk(r), Seffk can be derived as Seffk = ηk
∫∞
Rkt

tr
k (µk)

fXk(r)dr. Hence, to solve P2,

the distribution function of Xk has to be known. For example, if Xk is uniformly

distributed between a and b, Seffk =
∫∞
Rkt

tr
k (µk)

fXk(r)dr =
b−Rk(µk,gk,n)ttrk (µk)

b−a . As

another example, Xn follows an exponential distribution with parameter λ, and

Seffk is given by
∫∞
Rkt

tr
k (µk)

fXk(r)dr = e−λRk(µk,gk,n)ttrk (µk). In the proposed heuristic

algorithm, we assume that the distribution function of Xk is given. Moreover,

without loss of generality, we focus on the case in which function ∆(.) is given and

linear. As shown in Algorithm 3, we initially set µk =
µmink +1

2
for all k ∈ K, where

µmink =
2Esenk −Eresk

ρkTd
is computed from constraint Etr

k ≥ 0. Accordingly, having variables

µk fixed to
µmink +1

2
, we follow our heuristic channel allocation phase. Denote Rk as

the data rate of user k and N0 as the set of the channels to be allocated to satisfy the

minimum data rate requirement, i.e., Rk ≥ ∆(E[Xk]). Let K′ be the set of users who

cannot attain their minimum data rates yet. We first allocate channels based on the

channel conditions to satisfy constraint Rk ≥ ∆(E[Xk]) for all the users (lines 6-12).

In fact, among the users with unsatisfied minimum data rate, a channel is allocated

to the user that has the maximum rate on that channel. Then, for the remaining

channels, we search over all the users to find a favorite user to allocate each channel

(lines 15-23). The favorite user k̂ for channel n is the one that achieves the maximum

increase in the objective function of (5.11). In fact, the favorite user is identified

by comparing onk which is defined as the objective function of (5.11) computed for

the current channel allocation as well as the allocation of sub-channel n to user k.

After the channel allocation phase, we follow the harvesting ratio optimization phase

to optimize the harvesting ratios of users based on their allocated channels (lines

25-31). Denote R̂k as the data rate of user k if we change µk to µ̂k. We also have

Êk = Td(
∑

l∈K,l 6=k ρlµl + ρkµ̂k) and Îk =
∑

l∈K,l 6=k P
tr
l (µl)Il,m +P tr

k (µ̂k)Ik,m. As shown

in the algorithm, we fist sort the users in an increasing order according to their energy
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Figure 5.3 The transmission rates of users, P (Xk ≥ Rk) term of SE, and EE versus

deign parameter (η). Data in buffer has a uniform distribution.

harvesting rates. Then, for each user, we locally optimize the harvesting ratio while

taking into consideration of the current R̂k, Êk, and Îk.

Complexity Analysis: The optimal solution for the joint sub-channel

allocation and energy harvesting optimization in the network necessitates an exhaustive

search in order to find the optimal sub-channel allocation for the K devices. The

complexity of this exhaustive search grows exponentially as O(KN). Note that the

complexity of INSTANT corresponds to O(K ∗N), which is much lower than that of

the exhaustive search method.

5.6 Simulation Results

In this section, we evaluate the performance of the proposed optimization framework

for the CR-based IoT network. The OPTI toolbox [19] is adopted to solve (5.11)

by using the NOMAD [46] solver, which is a global MINLP solver and uses the

mesh adaptive direct search algorithm. The channel gains are modeled as hk,n =

Zd−βk,n, where Z is randomly generated according to the Rayleigh distribution, d,

the geographical distance between the transmitter and receiver, is selected uniformly

between 0 m to 50 m, and β, the path-loss exponent, is set to 3. Moreover, the
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Figure 5.4 The optimal objective function, EE and SE versus η for both exponential

and uniform distributions of data in buffers.

bandwidth of each sub-channel is 62.5 kHz, the interference threshold of the licensed

user is 5× 10−13W , and the noise power is 10−13W (or −100 dbm) in our simulation

analysis.

Figure 5.3 illustrates a tradeoff between EE and SE of the network. We consider

two users along with four available sub-channels. The energy of sensing, residual

energy and energy of idle for both users are Esen = 2mJ , Eres = 3mJ and Eidle =

1µJ , respectively. Data in their buffers follow a uniform distribution. The first

subplot clearly shows that the transmission rates for both users decrease to their

minimum rate constraints as η reaches 6 × 108. In fact, the higher η results in the

higher weight of SE, and thus lowers the EE and transmission rates. The second

subplot of Figure 5.3 explicitly shows the tradeoff between EE and SE. The x-axis

is the parameter η which is selected to be identical for both users. The left y-axis

represents the energy efficiency, i.e., the first term of the objective function in (5.11).

The purple curves reflect the EE of users, where increasing η reduces the EE to their

minimum levels. The energy efficiency reduction arises from the fact that the higher

η puts the more weight on the SE term. The higher P (Xk ≥ Rk) implies the higher

SE, where users do not receive rates more than their available bits in their buffers.
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Figure 5.5 The energy efficiency versus the number of users and sub-channels.

Figure 5.4 shows the efficiency of the network, where the number of randomly

generated bits in users’ buffers follow exponential and uniform distributions. The

solid lines correspond to the total objective function in (5.11), which experiences a

sharp increase by incrementing η (identical for both users). When the weight of SE

grows, the SE increases exponentially until the transmission rates of users reach their

minimum thresholds. Beyond this point which is shown by red circle, the objective

function increases with η.

Figure 5.5 shows the effect of the number of users and available sub-channels on

the energy efficiency with the total number of available sub-channels being N = 16

and N = 24, respectively. For a fixed number of users, the energy efficiency of the

network grows by increasing the number of available sub-channels allocated to users.

Meanwhile, the x vector represents the number of users that varies from K = 2 to

K = 12. In fact, the higher number of users results in the higher amount of data

for transmission and also more freedom for the optimizer to choose users with better

channel gains. Thus, increasing the number of users leads to improving the energy

efficiency for both N = 16 and N = 24 scenarios.

Figure 5.6 illustrates the energy efficiency versus the minimum rate constraint

and η. EE improves by increasing the minimum data rate because the transmission
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Figure 5.6 The energy efficiency versus minimum data rate constraint of users

(identical for both users) and tradeoff parameter (η).

rate of the users must increase to satisfy C1 in (5.11). In the low minimum data rate

region, as η grows, the SE term of the objective obtains a higher weight as compared

to the EE term, and thus the energy efficiency experiences a decline. However, EE

remains nearly constant for higher minimum rate constraints and does not react to

the increment in values of η because the probability P (Xk ≥ ∆(E[Xk]).t
tr
k (µk)) tends

to zero in the high minimum data rate region. Thus, the SE term has no impact on

the optimization problem regardless of the value of η, and EE remains steady.

Figure 5.7, Figure 5.8, and Table 5.1 are presented to evaluate the effectiveness

and accuracy of the proposed INSTANT algorithm. In particular, we compare the

performance of INSTANT and the optimal approach in Figure 5.7 for a small network

with K = 4 users and N = 8 available sub-channels. The objective function of (5.11)

increases as η grows for both INSTANT and optimal approaches. The error percentage

shown on the right y-axis also presents the performance gap between INSTANT and

the optimal solution for different cases. For the lower values of η, INSTANT achieves

the optimal result with only less than 5% error.

The comparison of the computational time between the optimal approach and

INSTANT for different scenarios is shown in Table 5.1. While INSTANT provides the
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Figure 5.7 The objective function and error percentage versus η. The comparison

between INSTANT and the optimal solution. K = 4 and N = 8.

sub-optimal solution within less than 1 sec, the computational time of the optimal

method grows very fast because its complexity is exponential while that of INSTANT

is polynomial. Moreover, Figure 5.8 compares the energy efficiency achieved by

INSTANT and the optimal method for different scenarios; they are rather close.

In particular, EEs achieved by INSTANT are 97.95%, 97.72%, 97.61%, 97.21%,

96.51%, and 96.16% of the corresponding optimal EEs, for {K = 2, N = 8},

{K = 2, N = 24}, {K = 4, N = 8}, {K = 4, N = 16}, {K = 6, N = 16},

and {K = 8, N = 16}, respectively. Additionally, Figure 5.8 compares the energy

efficiency of our proposal with the fixed data rate requirements (FDR) algorithm.

FDR assumes that users have the fixed data rate requirements, while the data rate

requirement in our approach is a function of the number of bits in users’ buffers; our

approach does not waste any spectral resources. FDR has been widely used in recent

works [52]. As shown in this figure, our proposal performs better as compared to FDR

because some of the available sub-channels are wasted by FDR. In fact, FDR allocates

sub-channels based on users’ required data rates, and for high data rate requirements,

the optimizer has less freedom to maximize the objective function, thereby resulting

in the performance degradation.
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Table 5.2 The Computational Time Complexity Comparisons.

INSTANT Algorithm Optimal

K=2, N=8 0.096 sec 0.954 sec

K=2, N=24 0.127 sec 7.804 sec

K=4, N=8 0.191 sec 336.847 sec

K=4, N=16 0.304 sec 990.135 sec

K=6, N=16 0.445 sec 7030.431 sec

K=8, N=16 0.612 sec 52728.882 sec

K=2, N=8 K=2, N=24 K=4, N=8 K=4, N=16 K=6, N=8 K=8, N=16
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Figure 5.8 Energy efficiency comparisons between INSTANT and the optimal

approach for different scenarios.
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CHAPTER 6

NOMA AIDED NB-IOT FOR MACHINE TYPE COMMUNICATION

WITH USER CLUSTERING

6.1 Introduction

Internet of Things (IoT) is a world wide network of interconnected entities and is

anticipated to grow in coming years with the projection of connecting as many as

billions of devices with an average of 6-7 devices per person by 2020 [16, 50]. There

are three typical usage scenarios for fifth generation (5G) mobile network services,

including enhanced mobile broadband (eMBB), massive machine type communi-

cations (mMTC) and ultra-reliable and low-latency communications (URLLC) [61].

Different from eMBB, mMTC and URLLC mainly target services of IoT and are

considered as two types of Machine Type Communications (MTC) characterized by

the International Telecommunications Union (ITU). mMTC and URLLC devices

as two important enablers of IoT have different characteristics. mMTC requires

connectivity of a massive number of active low-power devices in co-existence in one

cell, and these devices transmit small packets with relaxed latency requirements in

the order of seconds or hours [13]. Unlike mMTC, ultra reliable data transmissions

is essential for URLLC devices along with low latency requirements as they are used

for critical applications [61].

To support MTC for next generation mobile networks, a new technology called

Narrow-band Internet of Things (NB-IoT) has recently been standardized by the

Third Generation Partnership Project (3GPP) in its Release 13 [71]. In particular,

NB-IoT provides energy efficient communications for low power MTC devices on

a narrow bandwidth of 180 kHz for both downlink and uplink [75]. In order to

provide better granularity and higher utilization, the unit of resource scheduling in
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the NB-IoT uplink is sub-carrier instead of Physical Resource Block (PRB). In fact,

the NB-IoT uplink has sub-carrier spacing of 3.75 kHz, i.e., the minimum transmission

bandwidth for a device, whereas the downlink retains the Long Term Evolution (LTE)

downlink transmission structure with 15 kHz sub-carrier spacing [12]. NB-IoT can

provide data rates of nearly 250 kbps in downlink and 20 kbps in uplink transmissions

with the possibility to aggregate multiple sub-carriers to reach the downlink speed

[68, 78]. The target of NB-IoT is to prolong the battery lifetime to reach 10 years

and provide massive connectivity of devices [75]. However, the main challenge of

providing connectivity to a massive number of MTC devices in 5G networks cannot

be addressed by existing NB-IoT technologies.

Currently, NB-IoT exploits an orthogonal multiple access (OMA) scheme over

a bandwidth of 180 kHz where each sub-carrier cannot be occupied by more than one

user. Thus, the OMA scheme in NB-IoT fails to cope with the massive increase

in the number of connected MTC devices. Hence, to support connectivity to a

massive number of MTC devices with the limited number of sub-carriers in one

PRB, a promising solution is to adopt power-domain Non-Orthogonal Multiple Access

(NOMA) scheme [20, 60]. In contrast with OMA methods, NOMA supports massive

connectivity by allocating multiple MTC devices to share each sub-carrier. In

other words, multiple MTC devices can transmit over the same frequency resources,

thus resulting in a significant increase in the network connectivity. In the power

domain NOMA scenario, a different power level strategy is considered to decode the

differentiated messages sequentially at the receiver side [89]. In fact, the Successive

Interference Cancellation (SIC) [60] scheme is exploited at the receiver side to extract

the transmitted messages. Thus, NOMA can help NB-IoT systems to meet their

demands of massive connectivities, and high spectral-energy efficiency.
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6.1.1 Contributions

While there are several research activities that investigate NOMA techniques for 5G

networks, none, to our best knowledge, has leveraged the advantages of NOMA in

the context of NB-IoT with user clustering of different users with various quality of

service (QoS) requirements. To this end, we aim to address the aforementioned issue

by proposing a general system model focusing on two emerging technologies of NOMA

and NB-IoT. In fact, we propose a novel NOMA based NB-IoT model to maximize the

total throughput of an NB-IoT network by increasing the number of connected devices

through optimal clustering of MTC devices and optimizing the resource allocation.

In particular, MTC devices are grouped into different NOMA clusters and share

the same frequency resources among the cluster members. Considering the intra-cell

interferences, transmission power and QoS requirements, the MTC devices are ranked

in each NOMA cluster. The goal is to maximize the total uplink transmission rate

of MTC devices by optimizing NOMA clustering and resource allocation of MTC

devices. The main contributions of this chapter include:

• We propose a NOMA clustering method for MTC devices in an NB-IoT system.

In particular, MTC devices are classified into different NOMA clusters and the

same frequency resources are shared among the cluster members. Considering

the intra-cell interferences, transmission power and QoS requirements, the MTC

devices are ranked in each NOMA cluster. Therefore, spectral resources are

allocated to the NOMA clusters based on the requirements of NOMA cluster

members.

• We formulate a NOMA based optimization problem to maximize the total

sum rate of uplink transmission in an NB-IoT system by optimizing the

resource allocation of MTC devices and NOMA clustering while satisfying the

transmission power and quality of service requirements. We further prove the

NP-hardness of the proposed optimization problem.
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• We propose an efficient heuristic algorithm to solve the optimization problem

by jointly optimizing NOMA clustering and resource allocation of MTC devices.

Furthermore, we prove that the reduced optimization problem of power control

is a convex optimization task by introducing variable transformations.

• We evaluate the performance of our proposal and the heuristic algorithm

via simulations to demonstrate the benefits of NOMA in increasing the total

throughput of MTC devices in an NB-IoT system.

6.1.2 Related Works

In this section, related works including NB-IoT, NOMA, and resource allocation are

discussed. In the past few years, several works investigated the major challenges of

NB-IoT and researchers came up with different algorithms and models. Recently,

Yang et al. [81] investigated the small-cell assisted traffic offloading for NB-IoT

systems and formulated a joint traffic scheduling and power allocation problem to

minimize the total power consumption. Oh and Shin [57] proposed an efficient small

data transmission scheme for NB-IoT in which devices that are in an idle state can

transmit a small data packet without the radio resource control connection. Malik et

al. [54] investigated radio resource management in NB-IoT systems by proposing an

interference aware resource allocation for the rate maximization problem.

Al-Imari et al. [3] proposed a NOMA scheme for uplink data transmission that

allows multiple users to share the same sub-carrier without any coding/spreading

redundancy. Mostafa et al. [55] studied the connectivity maximization for the

application of NOMA in NB-IoT, where only two users can share the same sub-carrier.

Kiani and Ansari [45] proposed an edge computing aware NOMA technique in which

MEC users’ uplink energy consumption is minimized via an optimization framework.

Wu et al. [77] investigated the spectral efficiency maximization problem for wireless

powered NOMA IoT networks. Shahini et al. [65] proposed the energy efficiency
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maximization problem for cognitive radio (CR) based IoT networks by taking into

consideration of user buffer occupancy and data rate fairness. Qian et al. [59] proposed

an optimal SIC ordering to minimize the maximum task execution latency across

devices for MEC-aware NOMA NB-IoT network. Zhai et al. [85] proposed a joint

user scheduling and power allocation for NOMA based wireless networks with massive

IoT devices. Xu and Darwazeh [80] proposed a compressed signal waveform solution,

termed fast-orthogonal frequency division multiplexing (Fast-OFDM), to potentially

double the number of connected devices.

Several works have investigated NOMA for 5G networks, but none has looked

into employing NOMA clustering for NB-IoT users with various QoS requirements.

Therefore, we propose a novel NOMA based NB-IoT model to maximize the total

throughput of the network by optimizing both NOMA clustering and the resource

allocation of MTC devices in an NB-IoT system.

6.2 System Model

We consider a single-cell scenario with one eNB where it supports MTC based on NB-

IoT standard [71]. We assume there is no inter-cell interference from other neighboring

cells. Denote U = {1, ..., U} and M = {1, ...,M} as the sets of mMTC and URLLC

devices, respectively. Active URLLC and mMTC devices share a bandwidth of one

physical resource block (PRB) for uplink data transmission in one transmission time

interval (TTI). The available bandwidth of one PRB is assumed to be divided into a

set of sub-channel frequencies S = {1, ..., S} and the bandwidth of each sub-channel

is W . In fact, the system bandwidth can be equally divided into either 48 or 12

sub-carriers in NB-IoT systems. In particular, the sub-carrier spacing of 3.75 kHz

can only be supported for uplink transmissions [78]. Therefore, we consider one PRB

with 48 sub-carriers of 3.75 kHz for the uplink data transmissions.

61



URLLC 

mMTC 

eNB

Different Uplink 

Radio Sub-channels

Figure 6.1 The NOMA clusters include mMTC and URLLC devices, where the

allocated sub-channels to each NOMA cluster are shared by the MTC devices.

6.2.1 NOMA Clustering

We propose a power-domain NOMA scheme by clustering mMTC and URLLC devices

in a NB-IoT network as shown in Figure 6.1. According to the NOMA scheme, the

mMTC and URLLC devices share each sub-carrier (sub-channel), and transmit data

in a non-orthogonal manner, i.e., more than one user can share the same sub-channel.

Therefore, the devices are divided into different groups, called the NOMA clusters.

Denote C = {1, ..., C} as the set of NOMA clusters, and γs,c as the binary variable to

assign sub-channel s ∈ S to NOMA cluster c ∈ C. Hence, γs,c = 1 if sub-channel s is

allocated to the cth NOMA cluster, and γs,c = 0 otherwise. The URLLC and mMTC

devices transmit their messages on the same sub-channel with transmission powers of

pu and pm, respectively. A combined message from URLLC and mMTC devices with

additive noise N0 is received at the eNB. In order to successfully decode messages from

the combined received message, the eNB employs successive interference cancellation

(SIC). Thus, the users need to be ordered in each cluster for the SIC method.

Define the set of the order (ranks) in each cluster as K = {1, ..., kmax}, where

kmax specifies the maximum number of users that are allowed to be in one cluster

and consequently share the allocated sub-channels. Note that we assume C × kmax

should be greater than the total number of the devices. According to the principles
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of SIC [20], the kth user’s message in each cluster is decoded before the other users

with higher orders. Therefore, the users with higher ranks ({k + 1, k + 2, ...}) in each

cluster introduce interference to the kth user. In other words, the user with the

highest rank in each cluster does not experience interference from other users and the

first user receives interference from other users with higher ranks (k = 2, ..., kmax).

Note that URLLC devices have higher data rate requirements as compared to mMTC

devices. Thus, the transmission power of URLLC devices are higher than the mMTCs’

transmission power. Therefore, in each cluster, the URLLC devices are required to

have higher ranks as compared to mMTC devices. In fact, the SIC decoder at the

eNB starts decoding with URLLCs, and consequently the mMTC devices are not

affected by high interference caused by URLLCs.

6.2.2 Quality of Service Constraints

Denote psm as the transmission power of the mth mMTC over the sth sub-channel and

αc,km as the binary variable to assign the mth mMTC to the kth order of the cluster

c. In fact, αc,km = 1 if there is an assignment, and αc,km = 0 otherwise. Thus, the

achievable data rate of the mth mMTC device, Rm, in terms of the aggregate rate

over the allocated sub-carriers can be expressed as

Rm =
∑
c∈C

∑
k∈K

αc,km
∑
s∈S

γs,cW

log2

1 +
|hsm|

2psm

N0W +
∑

d∈M\m

kmax∑
h=k+1

αc,hd |hsd|
2psd

 ,

(6.1)

where N0 is the noise power spectral density and hsm denotes the channel gain between

the mth mMTC device and the eNB on sub-channel s. Since the NOMA clustering

procedure requires mMTC devices to have higher ranks as compared to URLLCs, the
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Table 6.1 List of Symbol Notations and Description

Symbols Descriptions

U (M) The set of URLLC users (the set of mMTC users)

S The set of sub-channels in an NB-IoT system

C (K) The set of NOMA clusters (the set of orders in each NOMA cluster)

kmax The maximum number of users in one NOMA cluster

γs,c The binary indicator whether to allocate the sth sub-channel to the

cth cluster

psu The transmission power of the uth URLLC device over the sth channel

psm The transmission power of the mth mMTC device over the sth channel

N0 The Additive White Gaussian Noise

αc,km The binary indicator whether to assign the mth mMTC to the kth

order of cluster c

βc,ku The binary indicator whether to assign the uth URLLC to the kth

order of cluster c

Rm The total transmission rate of the mth mMTC device

Ru The total transmission rate of the uth URLLC device

WRB The total bandwidth of one resource block in the NB-IoT

W The bandwidth of one tone in one RB

hsm The channel gain of the mth mMTC device over the sth sub-channel

hsu The channel gain of the uth URLLC device over the sth sub-channel

Rth
m The minimum transmission rate of the mth mMTC device

Rth
u The minimum transmission rate of the uth URLLC device

Pmax
m The maximum power budget of the mth mMTC device

Pmax
u The maximum power budget of the uth URLLC device
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URLLC devices do not interfere mMTCs. Thus, the mth mMTC only experiences

interference from the other mMTCs of the same cluster with higher ranks.

Note that each mMTC device requires a threshold for its data rate that is greater

than the minimal data rate of Rth
m , i.e.,

Rm > Rth
m , ∀m ∈M. (6.2)

The total transmission power of the mth mMTC device is limited to its maximum

power budget Pmax
m , i.e.,

∑
s∈S

psm 6 Pmax
m , ∀m ∈M. (6.3)

Similarly, the achievable data rate of the uth URLLC device can be given by the

Shannon-Hartley theorem. Note that the ranks of URLLCs are always greater than

those of mMTCs in each NOMA cluster. Thus, they receive interference from all the

mMTC cluster members as well as those URLLC cluster members with higher ranks.

Denote βc,ku as the binary variable whether to assign the uth URLLC to the kth order

of the cluster c. In other words, βc,ku = 1 if such assignment is made, and βc,ku = 0

otherwise. Hence, the achievable data rate of the uth URLLC device over the allocated

sub-carriers can be given in Equation (6.4), where hsu is the channel gain between the

uth URLLC device and the eNB on sub-channel s, and psu represents the transmission

power of the uth URLLC over the sth sub-channel. Owing to performing critical

tasks by URLLC devices, their power consumption is not of significant importance.

Therefore, the transmission powers of URLLC devices are set to their maximum limit,
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i.e.,

Ru =
∑
c∈C

∑
k∈K

βc,ku
∑
s∈S

γs,cW

log2

1 +
|hsu|

2psu

N0W +
∑

d∈U\u

kmax∑
h=k+1

βc,hd |hsd|
2psd +

∑
m∈M

kmax∑
h=k+1

αc,hm |hsm|
2psm

 ,

(6.4)

∑
s∈S

psu = Pmax
u , ∀u ∈ U . (6.5)

Meanwhile, the data rate of the uth URLLC device should be greater than a given

minimal rate Rth
u ,

Ru > Rth
u , ∀u ∈ U . (6.6)

6.3 The Optimization Framework

In this section, the optimization problem of NOMA clustering for NB-IoT is

formulated as a sum rate maximization of URLLC and mMTC devices. Apart from

the QoS constraints in (6.2), (6.3), (6.5), and (6.6), we should enforce extra constraints

for the NOMA clustering process. In particular, each URLLC and mMTC device

should be assigned to only one cluster with one specific rank, i.e.,

∑
c∈C

∑
k∈K

αc,km = 1, ∀m ∈M, (6.7)

∑
c∈C

∑
k∈K

βc,ku = 1, ∀u ∈ U . (6.8)

Moreover, each rank of one cluster should be assigned either to one URLLC or one

mMTC, i.e.,
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∑
m∈M

αc,km +
∑
u∈U

βc,ku = 1, ∀c ∈ C, ∀k ∈ K. (6.9)

Since the concept of NOMA is to share spectral resources between multiple users, the

NOMA clustering is subject to a constraint that enforces existence of more than one

user in each cluster, i.e.,

∑
m∈M

∑
k∈K

αc,km +
∑
u∈U

∑
k∈K

βc,ku > 2, ∀c ∈ C. (6.10)

The URLLC devices have priority to have first ranks of clusters due to their higher

data rate and transmission power requirements. In other words, the high power of

URLLCs do not affect the low power mMTC devices during the SIC process, if they

are assigned to the first ranks of clusters. Therefore, for the kth rank of each cluster

that is 2 6 k 6 kmax, the mMTC devices should always have higher ranks as compared

to the URLLC devices, i.e.,

βc,ku > αc,k−1
m , ∀m ∈M, ∀u ∈ U , ∀c ∈ C, (6.11)

and we ensure the rank priority in each cluster, by starting rank assignments from

the first rank of each cluster, i.e.,

αc,km 6 αc,k−1
m , ∀m ∈M, ∀c ∈ C, 2 6 k 6 kmax, (6.12)

βc,ku 6 βc,k−1
u , ∀u ∈ U , ∀c ∈ C, 2 6 k 6 kmax. (6.13)

Finally, the NOMA clustering optimization problem for NB-IoT as a sum rate

maximization of URLLC and mMTC devices can be expressed as
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P1: max
psm,p

s
u,α

c,k
m ,βc,ku ,γs,c

∑
m∈M

Rm+
∑
u∈U

Ru

s.t.

C1 : Rm > Rth
m , ∀m ∈M,

C2 :
∑
s∈S

psm 6 Pmax
m , ∀m ∈M,

C3 : Ru > Rth
u , ∀u ∈ U ,

C4 :
∑
s∈S

psu = Pmax
u , ∀u ∈ U ,

C5 : βc,ku > αc,k−1
m , ∀m ∈M, ∀u ∈ U , ∀c ∈ C, 2 6 k 6 kmax,

C6 : αc,km 6 αc,k−1
m , ∀m ∈M, ∀c ∈ C, 2 6 k 6 kmax

C7 : βc,ku 6 βc,k−1
u , ∀u ∈ U , ∀c ∈ C, 2 6 k 6 kmax

C8 :
∑
c∈C

∑
k∈K

αc,km = 1, ∀m ∈M,

C9 :
∑
c∈C

∑
k∈K

βc,ku = 1, ∀u ∈ U ,

C10 :
∑
m∈M

αc,km +
∑
u∈U

βc,ku = 1, ∀c ∈ C, ∀k ∈ K,

C11 :
∑
m∈M

∑
k∈K

αc,km +
∑
u∈U

∑
k∈K

βc,ku > 2, ∀c ∈ C,

C12 :
∑
c∈C

γs,c = 1, ∀s ∈ S,

C13 :
∑
s∈S

∑
c∈C

γs,cWs,c 6 WRB, ∀c ∈ C, ∀s ∈ S

C14 : psm > 0, ∀m ∈M, ∀s ∈ S,

C15 : psu > 0, ∀u ∈ U , ∀s ∈ S,

C16 : γs,c ∈ {0, 1} , ∀c ∈ C, ∀s ∈ S,

C17 : αc,km ∈ {0, 1} , ∀m ∈M, ∀c ∈ C, ∀k ∈ K,

C18 : βc,ku ∈ {0, 1} , ∀u ∈ U , ∀c ∈ C, ∀k ∈ K,

(6.14)

68



where C1 imposes the data rates of mMTC devices to be greater than the minimum

data rate requirement; C2 limits the total transmission power of the mth mMTC to the

maximum power budget, Pmax
m ; C3 implies that the minimum data rate constraint

for each URLLC device must be satisfied; C4 is the power budget constraint for

each URLLC device; C5 is to ensure that the ranks of mMTC devices are higher

than URLLCs for each NOMA cluster; C6 and C7 imply that mMTC and URLLC

devices can be assigned to the kth rank of the cth cluster if all the previous ranks are

already allocated to other users; C8 and C9 are designed to guarantee that each device

(mMTC and URLLC) is allocated to only one cluster and one specific order within

the cluster; C10 specifies that each rank of a cluster cannot be allocated to both

mMTC and URLLC devices; C11 is to guarantee each NOMA cluster to have more

than one member; C12 implies that each sub-carrier cannot be allocated to more than

one cluster; C13 ensures that the total bandwidth allocated to all NOMA clusters

is not more than the bandwidth of one RB (bandwidth of one RB in NB-IoT is 180

kHz); C14 and C15 are to limit the transmission powers of mMTCs and URLLCs to

positive values; and C16, C17 and C18 ensure that the variables γs,c, αc,km , and βc,ku

are restricted to binary values, respectively.

Lemma 5. The general optimization problem of NOMA clustering problem for NB-

IoT in (6.14) is an NP-hard problem.

Proof. The Lemma is proved in Section B.2.

The formulated optimization problem is a non convex mixed integer nonlinear

programming (MINLP) problem which is combinatorial, and exploiting exhaustive

search presents exponential time complexity. Therefore, we solve the optimization

problem by proposing a heuristic algorithm.
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6.4 Proposed Algorithm

In this section, we propose an efficient heuristic algorithm to find sub-optimal

solutions of the non convex MINLP problem in (6.14). The proposed algorithm

optimizes the NOMA clustering of mMTC and URLLC devices and allocates spectral

resources to the NOMA clusters. The pseudo code for solving the optimization

problem is summarized in Algorithm 1. The first phase of the algorithm is the URLLC

clustering, where the URLLC devices are sorted based on their average channel gains,

h̃u =
∑
s∈S

hsu/S. As discussed in Subsection 6.2.1, the URLLC devices have higher

data rate and transmission power requirements. Therefore, to mitigate the adverse

impacts of interference caused by the URLLCs’ high transmission powers, the ranks

of URLLC devices in each cluster should be less than the mMTC ones. In the URLLC

clustering process, URLLC devices with higher h̃u are assigned to the lowest ranks

of NOMA clusters, i.e., k = 1. If the number of URLLC devices, U , is greater than

the number of NOMA clusters, C, the remaining devices are assigned to the next

ranks of clusters. Similar to the URLLC clustering approach, the mMTC clustering

procedure is based on the average channel gain of mMTC devices, h̃m =
∑
s∈S

hsm/S. The

mMTC devices with higher h̃m are allocated to the next available rank of clusters.

Then, the remaining mMTC devices are allocated to the higher ranks of NOMA

clusters. By this NOMA clustering approach, Constraints 5-11 in (6.14) are taken

into consideration. After the NOMA clustering process, the resource allocation for

URLLC and mMTC devices are detailed in Algorithm 1. The initial values for the

transmission rates and powers of URLLC and mMTC devices are Ru = 0, psu = Pmax
u ,

and Rm = 0, psm = Pmax
m , respectively. The resource allocation phase continues until

all the sub-channels are allocated to NOMA clusters and the data rate requirements

of mMTC and URLLC devices are satisfied.
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Algorithm 4 NOMA Clustering and Resource Allocation for MTC

Initializing: C, Rth
m , Rth

u , Pmax
m , Pmax

u .

URLLC Clustering

Sorting URLLCs: h̃1 > h̃2 > ... > h̃U

for all u ∈ U do

if U ≤ C do

Assign URLLC devices {1, 2, ..., U} to the

first rank (k = 1) of {1, 2, ..., C} clusters

else : Assign URLLC {1, 2, ..., C} to the

first rank of all C clusters, and {C+1, C+

2, ..., U} to the higher ranks

end if

end for

mMTC Clustering

Sorting mMTCs: h̃1 > h̃2 > ... > h̃M

for all k ∈ K do

if U < C do

Assign mMTC {1, ..., (C−U)} to the first

rank (k = 1) of {(U + 1), ..., C} clusters.

else : Assign mMTC {1, ..., (C − U)} to

the next available rank of {(U+1), ..., C}.

end if

end for

Resource Allocation for Clusters

Set Ru = 0, Rm = 0, psm = Pmax
m ,

psu = Pmax
u , Ŝ ← ∅, Sca ← ∅, Cns ← C

While S 6= ∅ & Ru < Rth
u & Rm < Rth

m

Find c∗, ∀c ∈ C, for each s ∈ S:

c∗ = arg max
c∈Cns

(∑
u∈U Ru +

∑
m∈MRm

)
;

Allocate the sub-carrier s to cluster c∗:

Set γs,c
∗

= 1, and update Sc
∗
a ← Sc

∗
a ∪{s},

Ŝ ← Ŝ ∪ {s}

Update Ru = Ru +Ru,s, Rm = Rm +Rm,s

Update the powers: URLLC and mMTC

of c∗ individually perform SUWF over all

allocated sub-carriers:

psm = psm

|Sc∗a |+1
, psu = psu

|Sc∗a |+1
, ∀s ∈ S

if Ru > Rth
u and Rm > Rth

m ; ∀m,u from

cluster c∗ do

Cns ← Cns\{c∗}

end if

S ← S\Ŝ

if Ru > Rth
u and Rm > Rth

m , ∀m ∈ M,

∀u ∈ U do

for all s ∈ S do

c∗ = arg max
c∈C

(∑
u∈U Ru +

∑
m∈MRm

)
Set γs,c

∗
= 1, Sc

∗
a ← Sc

∗
a ∪ {s}

end for

Update psm = psm

|Sc∗a |+1
, psu = psu

|Sc∗a |+1

end if

End while
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Denote Sca ← ∅ as the set of allocated sub-channels to the cth cluster, and

Cns ← C as the set of clusters of devices with unsatisfied rates. For each sub-

carrier, the best cluster (c∗) is the one that maximizes the total throughput, i.e.,

c∗ = arg max
c∈Cns

(∑
u∈U Ru +

∑
m∈MRm

)
. Then, the data rates of the mMTC and

URLLC devices and their transmission powers are updated accordingly. Note that

each MTC device performs Single User Water Filling (SUWF) [3] technique over all

allocated sub-channels. During the resource allocation process, clusters with satisfied

data rates are excluded from the set of Cns. The algorithm iteratively allocates the

sub-channels one by one until all the mMTC and URLLC devices’ rate requirements

are met.

6.4.1 Power Allocation

Given the URLLC and mMTC user allocation to NOMA clusters and spectrum

allocation to the clusters, the binary variables of αc,km , βc,ku and γs,c in P1 take on 0 or

1. Therefore, all integer constraints are removed and the new optimization problem,

which tries to find optimal values of URLLC and mMTC transmission powers, can

be expressed as

P3: max
psm,p

s
u

∑
m∈M

Rm+
∑
u∈U

Ru

s.t.

C1, C2, C3, C4, C14, and C15 in P1

(6.15)

The reduced optimization problem, given its original formulation in P3, is

apparently non-convex due to the interference users introduced to each other. To

address this, we first define a new set of both URLLC and mMTC users, J =

{1, 2, ..., U, U + 1, ..., U +M} for one cluster (the result is also valid for more clusters).

Let λj , |hj |2

N0W
, where hj is the channel coefficient from the jth user to the eNB.
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Without loss of generality, we order users by their normalized channel gains as

λ1 6 λ2 6 ... 6 λU+M . Note that users exploit SIC at their receivers such that

P1 > P2 > ... > PU > PU+1 > ... > PU+M , where Pj ,
∑
s∈S

psj . Therefore, P3 can be

rewritten as

P4: max
Pj

∑
j∈J

Rj

s.t.

C1 : Rj > Rth
j , ∀j ∈ J ,

C2 :
∑
j∈J

Pj 6 Pmax, ∀j ∈ J ,

C3 : P1 > P2 > ... > PU > PU+1 > ... > PU+M ,

(6.16)

where Rj , WRBlog2(1 +
λjPj

1+λj
∑U+M
l=j+1 Pl

). To make P4 convex, we use the

variable transformations of Zj =
∑U+M

l=j Pl, ∀j ∈ J , or Pj = Zj − Zj+1, ∀j ∈

{1, 2, ..., U +M − 1} and PU+M = ZU+M . Therefore, we can rewrite Rj, ∀j ∈

{1, 2, ..., U +M − 1} as

Rj = log2

(
1 +

λjPj

1+λj
∑U+M
l=j+1 Pl

)
= log2

(
1+λj

∑U+M
l=j Pl

1+λj
∑U+M
l=j+1 Pl

)
= log2

(
1+λjZj

1+λjZj+1

)
= log2 (1 + λjZj)− log2 (1 + λjZj+1) ,

(6.17)

while for j = U + M , RU+M = log2 (1 + λU+MZU+M). Thus, the objective function

in P3 (
∑U+M

j=1 Rj) can be written as

∑U+M−1

j=1
WRB [log2 (1 + λjZj)− log2 (1 + λjZj+1)]

+WRBlog2 (1 + λU+MZU+M) =
∑U+M

j=1
Φj(Zj),

(6.18)

where Φ1(Z1) , WRBlog2 (1 + λ1Z1), and for all j ∈ {2, 3, ..., U +M},
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Φj(Zj) , WRB [log2 (1 + λjZj)− log2 (1 + λj−1Zj)] . (6.19)

The rate constraint, C1 in P4, can be linearized by using Zj+1 6 δjZj − ρj for

all j ∈ {1, 2, ..., U +M − 1}, and ZU+M > θU+M , where δj , 2−R
th
j , ρj , (1−δj)

λj
,

and θj ,
(2
Rthj −1)
λj

. The transmission power in C2 of P4 can be equivalent to Z1 =∑U+M
j=1 Pj = Pmax. The power order constraint, C3 in P4, P1 > P2 > ... > PU+M > 0

is equivalent to Z1−Z2 > Z2−Z3 > ... > ZU+M > 0. Therefore, the power allocation

problem in P4 can be transformed to the following optimization problem

P5: max
Z

∑
j∈J

Φj(Zj)

s.t.

C1 : Zj+1 6 δjZj − ρj,

C2 : Z1 = Pmax,

C3 : Z1 − Z2 > Z2 − Z3 > ... > ZU+M > θj,

(6.20)

where Z , (Zj)
U+M
j=1 . Note that the transformation between P and Z is linear, and

therefore the convexity of P3 is equivalent to the convexity of P5.

Theorem 2. Given λ1 6 λ2 6 ... 6 λU+M , the power allocation problem in P3 (or

equivalently P5) is a convex optimization problem, for all j ∈ {2, 3, ..., U +M}.

Proof. The Theorem is proved in Section C.1.

6.5 Simulation Results

In this section, we evaluate the system performance of the proposed NOMA based

NB-IoT scheme with sub-carrier and power allocation, and the NOMA clustering

via Monte Carlo simulation. We consider one cell with 0.5 km radius where the

locations of the mMTC and URLLC devices are randomly generated and uniformly
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Figure 6.2 The total throughput of a NOMA based NB-IoT system with respect

to the number of users (mMTC and URLLC devices).

distributed within the cell. We consider one PRB with 48 sub-carrier spacing of

3.75 kHz for the MTC uplink transmissions in one time slot. We model the channel

gains of the mMTC devices as hsm = Yd−βm,s (similarly hsu for URLLCs), where Y is

a random value generated based on the Rayleigh distribution, d−βm,s represents the

distance between the transmitter and receiver, and β is the path-loss exponent. We

set β = 3 and d is varied between 0.1 m to 500 m. We also consider Additive

White Gaussian Noise (AWGN) with power spectral density of -173 dBm/Hz. The

maximum transmission power budgets of all URLLC and mMTC devices, Pmax
u and

Pmax
m (∀u ∈ U ,∀m ∈ M), are set to 23 dbm. The data rate thresholds of the

mMTC devices follow uniform distribution, i.e., Rth
m =Uniform (0.1, 2) kbps. The

bandwidth of each sub-carrier in one PRB with 48 sub-carriers is set to w = 3.75kHz.

The Orthogonal Frequency Division Multiple Access (OFDMA) scheme as an OMA

scenario and the fast OFDM [80] approach are used for benchmark comparison.

Figure 6.2 compares the sum rate of the NOMA and the OMA schemes for

an NB-IoT system with respect to the total number of mMTC and URLLC devices.

As we can see in this figure, the performance gain in the total throughput for the
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Figure 6.3 The fairness comparison between OMA and NOMA schemes.

proposed NOMA based NB-IoT scheme over the OMA scenario is approximately 28%

for a sufficiently large number of users. Owing to the multi-user diversity gain, the

sum rate increases according to the number of users. Note that the ratio of the mMTC

devices to the URLLC ones is set to 3, and the data rate thresholds of the URLLC

devices are uniformly distributed between 0.1 kbps and 20 kbps.

To compare the fairness of the proposed NOMA scheme and the OMA scenario,

the Jain’s fairness index [3] is adopted for data rates of mMTC and URLLC devices,

i.e., Fairness Index=
(
∑U
u=1Ru+

∑M
m=1Rm)

2

(U+M)(
∑U
u=1R

2
u+
∑M
m=1R

2
m)

. In fact, Jain’s fairness index is

bounded between 0 and 1, and the maximum value is obtained if all the devices

achieve exactly the same throughput. Figure 6.3 shows the Jain’s fairness index for

both NOMA and OMA schemes. As shown in the figure, the NOMA scheme for both

kmax = 2 and kmax = 4 scenarios are fairer as compared to the OMA scheme. This

is due to the fact that the OMA scheme does not allocate one sub-channel to more

than one user, thus depriving some users from spectral resources.

Figure 6.4 compares the performance of the proposed NOMA based NB-IoT

with the OMA and the fast OFDM approaches with respect to the number of the

MTC devices with satisfied rate requirements. As shown in the figure, the OMA
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Figure 6.4 The comparison between NOMA, OMA and fast OFDM in terms of the

number of users with satisfied rate requirements.

scheme cannot support more than 48 users as it allocates each sub-carrier of an

NB-IoT system to only one user. The NOMA scheme outperforms both the fast

OFDM and the OFDMA (as an OMA technique), and facilitates a higher number of

successfully connected MTC devices.
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CHAPTER 7

CONCLUSION

In this dissertation, first, we have studied the joint resource allocation and structure

optimization in multiuser OFDM-based HCRN. We have formulated the general

problem of maximizing the sum rate of SUs in green powered OFDM based HCRN

under consideration of some practical limitations such as various traffic demands of

SUs, interference constraints and imperfect spectrum sensing. We have considered

some practical limitations such as various traffic demands of SUs, interference

constraint and imperfect spectrum sensing. Then, the general problem of joint

resource allocation and structure optimization is formulated as an MINLP task.

Since the general problem is NP-hard and intractable, we have tackled the problem

in two steps. First, we have proposed a sub-channel allocation scheme based on a

factor called Energy Figure of Merit to approximately satisfy SUs’ rate requirements

and remove the integer constraints. Second, we have proved that the general

optimization problem is reduced to a nonlinear convex optimization task. Since the

reduced optimization problem cannot achieve exact closed-form solutions, we have

thus proposed near optimal closed-form solutions by applying Lambert-W function.

We have also exploited the iterative gradient method based on Lagrangian dual

decomposition to achieve near optimal solutions. The optimum fractions of the time

slot that each SU can harvest energy from the environment are finally obtained.

Second, we have proposed a novel system model for CR based IoT by wireless

energy harvesting and cooperative spectrum sensing to tackle two vital challenges

of an IoT network, i.e., supplying adequate energy to operate the network in a

self-sufficient manner, and providing enough radio spectrum for massive increase of

devices. More importantly, we have formulated an MINLP problem to maximize the
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tradeoff between EE and SE while taking into consideration of practical limitations.

Moreover, we have proposed a low complexity heuristic algorithm, called INSTANT,

to solve the sub-channel allocation and energy harvesting optimization problem. We

have shown that INSTANT is able to obtain near optimal solution with high accuracy

while having polynomial complexity.

Third, we have proposed a power domain NOMA scheme with user clustering

in an NB-IoT system. In particular, the MTC devices are assigned to different

ranks within the NOMA clusters where they transmit over the same frequency

resources. Then, we have formulated an optimization problem to maximize the total

throughput of the network by optimizing the resource allocation of MTC devices and

NOMA clustering while satisfying the transmission power and quality of service (QoS)

requirements. We have further designed an efficient heuristic algorithm to solve the

proposed optimization problem by jointly optimizing NOMA clustering and resource

allocation of MTC devices. Finally, we have presented simulation results to validate

the efficiency of our proposal.
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APPENDIX A

PROOF OF LEMMAS

A.1 Proof of Lemma 1

Consider the rate formula in our problem:(
1− θi −

τsi
T

)
log2

(
1 +Hi,j

χiθiT − εsi
T − θiT − τsi

)
. (A.1)

Since the objective function is a sum of rates, if we prove that the rate formula is

convex, then the whole objective function becomes a convex problem. Thus,(
1− θi −

τsi
T

)
log2

(
1 +Hi,j

χiθiT − εsi
T − θiT − τsi

)
=(

1− θi −
τsi
T

)
log2(T − θiT − τsi +Hi,jχiθiT −Hi,jεsi)︸ ︷︷ ︸

A

−
(

1− θi −
τsi
T

)
log2(T − θiT − τsi)︸ ︷︷ ︸
B

.

(A.2)

Consider the second part (B):

B = −
(

1− θi −
τsi
T

)
log2(T − θiT − τsi)

= − 1

T
(T − θiT − τsi)log2(T − θiT − τsi)

= − 1

T
Zlog2(Z),

(A.3)

where Z is equal to C2 in P1 and it is always greater than zero (Z > 0). Thus, the

second part is similar to the famous form of concave functions (−Xlog(X)). Thus,

this part is proved to be concave.

Now, consider the first part (A):

A =
(

1− θi −
τsi
T

)
log2(T − θiT − τsi +Hi,jχiθiT −Hi,jεsi) (A.4)
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Then, we take the second derivative (Hessian) with respect to θi:

[
(τsi − T + 2Hi,jεsi + θiT )× T (Hi,jχi − 1)

(τsi − T +Hi,jεsi + θiT −Hi,jχiθiT )2 +

(−Hi,jχiT +Hi,jχiτsi −Hi,jχiθiT )× T (Hi,jχi − 1)

(τsi − T +Hi,jεsi + θiT −Hi,jχiθiT )2

]
.

(A.5)

We need to prove that the second derivative is less than zero. The denominator is

always positive:

(τsi − T +Hi,jεsi + θiT −Hi,jχiθiT )2 > 0 (A.6)

Thus, we consider the nominator

τsi − T + 2Hi,jεsi + θiT −Hi,jχiT +Hi,jχiτsi−

Hi,jχiθiT.

(A.7)

By adding and subtracting Hi,jχiθiT , we have

(τsi − T + θiT ) +Hi,j(−χiθiT + εsi) +Hi,jεsi

−Hi,jχi(θi + 1− θi)T +Hi,jχiτsi −Hi,jχiθiT.

(A.8)

Further rearranging the terms proves that the nominator is negative.

(τsi − T + θiT )︸ ︷︷ ︸
<0

+Hi,j (−χiθiT + εsi)︸ ︷︷ ︸
<0

+

Hi,j (−χiθiT + εsi)︸ ︷︷ ︸
<0

+Hi,jχi (τsi − T + θiT )︸ ︷︷ ︸
<0

< 0.

(A.9)

Thus, T (Hi,jχi − 1) > 0 (i.e., Hi,jχi > 1) must be held such that the whole objective

function becomes convex for minimization (concave for maximization). Then, the

convex problem can be solved by standard convex optimization techniques.
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A.2 Proof of Lemma 2

To prove P1 to be convex MINLP, one should consider convexity of constraints

functions ∀i ∈ K, 0 < θi < 1 [10]. Thus, we consider the constraints C3, C4, and

C5. The constraint function of C3 has the function of
χiθiT−εsi
T−θiT−τsi

and its derivative is

χiT (T − θiT − τsi) + T (χiθiT − εsi)
(T − θiT − τsi)

2 , (A.10)

where the numerator can be simplified, and the derivative function is always positive

T(χi(T−τsi)−εsi)
(T−θiT−τsi)

2 > 0 over the θi ∈ (0, 1). Then, the second derivative with respect to

θi is

2T 2
(
θi

2T − (T − τsi)
)

(χi (T − τsi)− si)

(T − θiT − τsi)
4 , (A.11)

where the denominator is always positive; however, the term of
(
θi

2T − (T − τsi)
)

in

the numerator is always negative since T − τsi is greater than θi
2T . Thus, the second

derivative is negative and the constraint C3 is a concave function for the maximization

problem (convex for standard minimization). Meanwhile, the convexity of constraints

C4 and C5 can be proved similarly to the proof of Lemma 1.

A.3 Proof of Lemma 3

To prove this Lemma, we need to write the equation (x = b

W( b
ea )

) in the form of the

Lambert function. Thus, the solution can be derived as follows:

ln (x) = a+
b

x
. (A.12)

Taking the exponential power from both sides results in

x = e(a+ b
x). (A.13)

Let y = b
x
. Then, (A.13) can be expressed as

yey =
b

ea
. (A.14)
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The Lambert W function can now be applied, resulting in

y =W
(
b

ea

)
. (A.15)

Finally, substituting x = b
y

into (A.15) results in Lemma 3.
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APPENDIX B

PROOFS OF NP-HARDNESS

B.1 Proof of Lemma 4

To prove the NP-hardness of the optimization problem, one can show that the

problem is reducible to one of the proven NP-hard problems. Given spectral

resources are allocated to users regardless of the amount of data in their buffers, the

second term of the objective function, Seffk is eliminated. Therefore, the objective

function is reduced to
∑
k∈K

Rk(µk,gk,n)

ρavk µkTd+Eresk −E
sen
k +Eidlek

. Thus, the objective function is∑
n∈N

∑
k∈K

gk,n.p̂k,n, where the first term, gk,n, is a binary variable and the second term

can be considered as a profit in the generalized assignment problem (GAP) problem,

i.e., p̂k,n =

ttrk (µk)

T
log2

(
1+Hk,n

Etrk (µk)

ttr
k

(µk)

)
ρavk µkTd+Eresk −E

sen
k +Eidlek

. Given the decision variables µk, ∀k ∈ K, are

fixed, the constraints C2, C3, C7, and C8 are relaxed. Moreover, C1 can also be

relaxed by appointing very small data rate requirements. Thus, the problem becomes

the problem of packing |N | items (sub-channels) into |K| knapsacks (users). Each

item (sub-channel) n has a weight p̄k,nIk,n if assigned to the kth knapsack (user).

Therefore, one can conclude that the reduced problem can be categorized as a GAP

which is a known NP-hard problem, and thus P1 is also NP-hard. More details of

the proof are provided in [66].

B.2 Proof of Lemma 5

Without loss of generality, we assume that URLLC and mMTC users are assigned

to different clusters with various ranks in the clusters. Therefore, the values of

αc,km , and βc,ku are determined and the corresponding constraints in P1 are relaxed.

Given URLLC and mMTC users transmit their data with predetermined transmission

powers of psu and psm, the constraints related to these two variables are relaxed and
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the NOMA clustering optimization problem for NB-IoT as a sum rate maximization

of URLLC and mMTC devices is reduced to the following:

P2: max
γs,c

∑
s∈S

∑
c∈C

γs,c

(∑
m∈M

Rs,c
m +

∑
u∈U

Rs,c
u

)

s.t.

C1 :
∑
s∈S

∑
c∈C

γs,cWs,c 6 WRB, ∀c ∈ C, ∀s ∈ S

C2 :
∑
c∈C

γs,c = 1, ∀c ∈ C, ∀s ∈ S

C3 : γs,c ∈ {0, 1} , ∀c ∈ C, ∀s ∈ S

(B.1)

Hence, the reduced optimization problem, P2, is similar to a Multiple Choice

Knapsack Problem (MCKP). In fact, the problem would be the problem of packing

|S| items (sub-channels) into |K| knapsacks (clusters). Each item (sub-channel), s,

has a weight if allocated to the cth knapsack (cluster). Moreover, each sub-channel

has a profit which is (
∑
m∈M

Rs,c
m +

∑
u∈U

Rs,c
u ) and the problem is to choose one item such

that the profit sum is maximized without exceeding the capacity, WRB. Therefore,

P2 is NP-hard because it is categorized as a MCKP which is a generalization of

the ordinary knapsack problem. Thus, as P2 is a special case of P1, the general

optimization problem in (6.14) is an NP-hard problem.
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APPENDIX C

CONVEXITY OF THE POWER ALLOCATION PROBLEM

C.1 Proof of Theorem 2

We start to prove the theorem by investigating the objective function of P5 (Φj(Zj))

due to the fact that all constraints are linear. The derivative of the objective function

for all j ∈ {2, 3, ..., U +M} is given by

Φj(Zj)

dZj
=

λj
1 + λjZj

− λj−1

1 + λj−1Zj
. (C.1)

The second derivative of Φj(Zj) is given by

Φ
′′

j (Zj) =
−(λj)

2

(1 + λjZj)
2 −

−(λj−1)2

(1 + λj−1Zj)
2

=
λ2
j−1 − λ2

j + 2λjZjλ
2
j−1 − 2λj−1Zjλ

2
j

(1 + λjZj)
2(1 + λj−1Zj)

2

(C.2)

Given λ1 6 λ2 6 ... 6 λU+M , the numerator of the second derivative is negative and

the denominator is always positive. Therefore, the second derivative is negative and

the objective function is concave.

86



BIBLIOGRAPHY

[1] A. Aijaz and A. H. Aghvami. Cognitive machine-to-machine communications for
internet-of-things: A protocol stack perspective. IEEE Internet of Things
Journal, 2(2):103–112, April 2015.

[2] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan. Cooperative spectrum sensing in
cognitive radio networks: A survey. Physical communication, 4(1):40–62, 2011.

[3] M. Al-Imari, P. Xiao, M. A. Imran, and R. Tafazolli. Uplink non-orthogonal multiple
access for 5G wireless networks. In 2014 11th International Symposium on
Wireless Communications Systems (ISWCS), pages 781–785, 2014.

[4] A. Ali and W. Hamouda. Advances on spectrum sensing for cognitive radio
networks: Theory and applications. IEEE Communications Surveys Tutorials,
19(2):1277–1304, 2017.

[5] M. Alnakhli, S. Anand, and R. Chandramouli. Joint spectrum and energy efficiency in
device to device communication enabled wireless networks. IEEE Transactions
on Cognitive Communications and Networking, 3(2):217–225, June 2017.

[6] N. Ansari and T. Han. Green Mobile Networks: A Networking Perspective. Wiley-
IEEE Press, ISBN: 978-1-119-12510-5, 2017.

[7] SM. Azimi, MH. Manshaei, and F. Hendessi. Cooperative primary–secondary
dynamic spectrum leasing game via decentralized bargaining. Wireless
Networks, 22(3):755–764, 2016.

[8] A. Bagheri, A. Shahini, and A. Shahzadi. Analytical and learning-based spectrum
sensing over channels with both fading and shadowing. In International
Conference on Connected Vehicles and Expo (ICCVE), pages 699–706, Dec
2013.

[9] G. Bansal, J. Hossain, and V. K. Bhargava. Adaptive power loading for
OFDM-based cognitive radio systems. In IEEE International Conference on
Communications, pages 5137–5142, June 2007.

[10] T. Berthold. Heuristic algorithms in global MINLP solvers. Verlag Dr. Hut, 2014.

[11] D. Bertsekas. Nonlinear programming. Nashua, NH: Athena Scientific, 1999.

[12] Y. D. Beyene, R. Jantti, O. Tirkkonen, K. Ruttik, S. Iraji, A. Larmo, T. Tirronen, and
A. J. Torsner. NB-IoT technology overview and experience from Cloud-RAN
implementation. IEEE Wireless Communications, 24(3):26–32, June 2017.

87



[13] C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic,
P. Popovski, and A. Dekorsy. Massive machine-type communications in
5G: physical and MAC-layer solutions. IEEE Communications Magazine,
54(9):59–65, September 2016.

[14] A. Cacciapuoti, M. Caleffi, L. Paura, and R. Savoia. Decision maker approaches for
cooperative spectrum sensing: participate or not participate in sensing? IEEE
Transactions on Wireless Communications, 12(5):2445–2457, 2013.

[15] Y. L. Che, L. Duan, and R. Zhang. Spatial throughput maximization of wireless
powered communication networks. IEEE Journal on Selected Areas in
Communications, 33(8):1534–1548, Aug 2015.

[16] Cisco Systems Incorporation. White Paper The Internet of Things: How the Next
Evolution of the Internet Is Changing Everything. 2011.

[17] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
LambertW function. Advances in Computational Mathematics, 1996.

[18] Powercast Corporation. Product datasheet, P2110 915 MHz RF powerharvester
receiver [online], 2010.

[19] J. Currie and D. I. Wilson. OPTI: Lowering the barrier between open source
optimizers and the industrial MATLAB use. in Proc. Foundat. Computer-
Aided Process Operations, pages 8–11, 2012.

[20] L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang. Non-orthogonal multiple
access for 5G: solutions, challenges, opportunities, and future research trends.
IEEE Communications Magazine, 53(9):74–81, September 2015.

[21] Q. Du and X. Zhang. Qos-aware base-station selections for distributed mimo
links in broadband wireless networks. IEEE Journal on Selected Areas in
Communications, 29(6):1123–1138, 2011.

[22] C. Gao, S. Chu, and X. Wang. Distributed scheduling in mimo empowered cognitive
radio ad hoc networks. IEEE Transactions on Mobile Computing, 13(7):1456–
1468, 2014.

[23] A. J. Goldsmith and Soon-Ghee Chua. Variable-rate variable-power MQAM for fading
channels. IEEE Transactions on Communications, 45(10):1218–1230, 1997.

[24] T. Ha, J. Kim, and J. Chung. He-mac: Harvest-then-transmit based modified edcf
mac protocol for wireless powered sensor networks. IEEE Transactions on
Wireless Communication, 17(1):3–16, Jan 2018.

[25] VN. Ha and LB. Le. Fair resource allocation for OFDMA femtocell networks
with macrocell protection. IEEE Transactions on Vehicular Technology,
63(3):1388–1401, 2014.

88



[26] Z. Hadzi-Velkov, I. Nikoloska, G. K. Karagiannidis, and T. Q. Duong. Wireless
networks with energy harvesting and power transfer: Joint power and time
allocation. IEEE Signal Processing Letters, 23(1):50–54, 2016.

[27] Q. Han, B. Yang, G. Miao, C. Chen, X. Wang, and X. Guan. Backhaul-aware
user association and resource allocation for energy-constrained hetnets. IEEE
Transactions on Vehicular Technology, 66(1):580–593, 2017.

[28] T. Han and N. Ansari. Powering mobile networks with green energy. IEEE Wireless
Communications, 21(1):90–96, 2014.

[29] S. Haykin. Cognitive radio: brain-empowered wireless communications. IEEE Journal
on Selected Areas in Communications, 23(2):201–220, 2005.

[30] S. Hu, H. Guo, C. Jin, Y. Huang, B. Yu, and S. Li. Frequency-domain oversampling
for cognitive CDMA systems: Enabling robust and massive multiple access for
internet of things. IEEE Access, 4:4583–4589, 2016.

[31] S. Huang, X. Liu, and Z. Ding. Opportunistic spectrum access in cognitive
radio networks. In INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, page 14271435, April 2008.

[32] X. Huang and N. Ansari. Energy sharing within EH-enabled wireless communication
networks. IEEE Wireless Communications, 22(3):144–149, 2015.

[33] X. Huang and N. Ansari. Joint spectrum and power allocation for multi-node
cooperative wireless systems. IEEE Transactions on Mobile Computing,
14(10):2034–2044, 2015.

[34] X. Huang and N. Ansari. Optimal cooperative power allocation for energy-harvesting-
enabled relay networks. IEEE Transactions on Vehicular Technology,
65(4):2424–2434, 2016.

[35] X. Huang, T. Han, and N. Ansari. On green-energy-powered cognitive radio networks.
IEEE Communications Surveys Tutorials, 17(2):827–842, 2015.

[36] H. Jabbar, Y. S. Song, and T. T. Jeong. RF energy harvesting system and circuits
for charging of mobile devices. IEEE Transactions on Consumer Electronics,
56(1):247–253, 2010.

[37] C. Jiang, Y. Shi, Y. T. Hou, W. Lou, and H. D. Sherali. Throughput maximization
for multi-hop wireless networks with network-wide energy constraint. IEEE
Transactions on Wireless Communications, 12(3):1255–1267, 2013.

[38] P. Kamalinejad et al. Wireless energy harvesting for the internet of things. IEEE
Communication Magazine, 53(6):102–108, 2015.

[39] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. M. Leung, and
Y. L. Guan. Wireless energy harvesting for the internet of things. IEEE
Communications Magazine, 53(6):102–108, 2015.

89



[40] X. Kang, C. K. Ho, and S. Sun. Full-duplex wireless-powered communication network
with energy causality. IEEE Transactions on Wireless Communications,
14(10):5539–5551, Oct 2015.

[41] N. Kaur and S. K. Sood. An energy-efficient architecture for the internet of things
(IoT ). IEEE Systems Journal, 11(2):796–805, June 2017.

[42] H. Kawabata, K. Ishibashi, S. Vuppala, and G. T. F. de Abreu. Robust relay
selection for large-scale energy-harvesting IoT networks. IEEE Internet of
Things Journal, 4(2):384–392, April 2017.

[43] A.A. Khan, M.H. Rehmani, and A. Rachedi. When cognitive radio meets the internet
of things? In 2016 Intl. Wireless Comm. & Mobile Comput. Conf. (IWCMC),
pages 469–474, Sep. 2016.

[44] A. Kiani and N. Ansari. Toward hierarchical mobile edge computing: An auction-
based profit maximization approach. IEEE Internet of Things Journal,
4(6):2082–2091, Dec 2017.

[45] A. Kiani and N. Ansari. Edge computing aware NOMA for 5G networks. IEEE
Internet of Things Journal, 5(2):1299–1306, April 2018.

[46] S. LeDigabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS
algorithm. ACM Trans. Math. Software, 37(4), Feb. 2011.

[47] J. Li, Y. Liu, Z. Zhang, J. Ren, and N. Zhao. Towards green IoT networking:
Performance optimization of network coding based communication and reliable
storage. IEEE Access, 5:8780–8791, 2017.

[48] S. Li, Z. Zheng, E. Ekici, and N. Shroff. Maximizing system throughput by cooperative
sensing in cognitive radio networks. IEEE/ACM Transactions on Networking,
22(4):1245–1256, 2014.

[49] S. Li, Z. Zheng, E. Ekici, and N. Shroff. Maximizing system throughput by cooperative
sensing in cognitive radio networks. IEEE/ACM Transactions on Networking,
22(4):1245–1256, Aug. 2014.

[50] X. Liu and N. Ansari. Green relay assisted D2D communications with dual batteries
in heterogeneous cellular networks for IoT. IEEE Internet Things Journal,
4:1707–1715, 2017.

[51] Y. Liu, S. A. Mousavifar, Y. Deng, C. Leung, and M. Elkashlan. Wireless energy
harvesting in a cognitive relay network. IEEE Transactions on Wireless
Communications, 15(4):2498–2508, April 2016.

[52] Y. Luo et al. Resource allocation for energy harvesting-powered d2d communication
underlaying cellular networks. IEEE Transactions on Vehicular Technology,
66(11):10486–10498, Nov 2017.

90



[53] C. Majumdar, D. Lee, A. A. Patel, S. N. Merchant, and U. B. Desai. Packet size
optimization for cognitive radio sensor networks aided internet of things. IEEE
Access, 5:6325–6344, 2017.

[54] H. Malik, H. Pervaiz, M. Mahtab Alam, Y. Le Moullec, A. Kuusik, and M. Ali
Imran. Radio resource management scheme in NB-IoT systems. IEEE Access,
6:15051–15064, 2018.

[55] A. E. Mostafa, Y. Zhou, and V. W. S. Wong. Connectivity maximization for
narrowband iot systems with noma. In 2017 IEEE International Conference
on Communications (ICC), pages 1–6, May 2017.

[56] D. T. Ngo, S. Khakurel, and T. Le-Ngoc. Joint Subchannel Assignment and Power
Allocation for OFDMA Femtocell Networks. IEEE Transactions on Wireless
Communications, 13(1):342–355, 2014.

[57] S. Oh and J. Shin. An efficient small data transmission scheme in the 3GPP NB-IoT
system. IEEE Communications Letters, 21(3):660–663, March 2017.

[58] J. Papandriopoulos and J. S. Evans. Scale: A low-complexity distributed protocol
for spectrum balancing in multiuser dsl networks. IEEE Transactions on
Information Theory, 55(8):3711–3724, Aug 2009.

[59] L. P. Qian, A. Feng, Y. Huang, Y. Wu, B. Ji, and Z. Shi. Optimal SIC ordering
and computation resource allocation in MEC-aware NOMA NB-IoT networks.
IEEE Internet of Things Journal, pages 1–1, 2018.

[60] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi. Non-
orthogonal multiple access (NOMA) for cellular future radio access. In 2013
IEEE 77th Vehicular Technology Conference (VTC Spring), pages 1–5, June
2013.

[61] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson,
A. Benjebbour, and G. Wunder. 5G: A tutorial overview of standards, trials,
challenges, deployment, and practice. IEEE Journal on Selected Areas in
Communications, 35(6):1201–1221, June 2017.

[62] A. Shahini and N. Ansari. Sub-channel allocation in green powered heterogeneous
cognitive radio networks. In 2016 IEEE 37th Sarnoff Symposium, pages 13–18,
Sep 2016.

[63] A. Shahini and N. Ansari. Joint spectrum allocation and energy harvesting
optimization in green powered heterogeneous cognitive radio networks.
Computer Communication, 127:36 – 49, 2018.

[64] A. Shahini, A. Bagheri, and A. Shahzadi. A unified approach to performance analysis
of energy detection with diversity receivers over nakagami-m fading channels.
In International Conference on Connected Vehicles and Expo (ICCVE), pages
707–712, Dec 2013.

91



[65] A. Shahini, A. Kiani, and N. Ansari. Energy efficient resource allocation in EH-
enabled CR networks for IoT. IEEE Internet of Things Journal, pages 1–1,
2018.

[66] A. Shahini, A. Kiani, and N. Ansari. Energy efficient resource allocation in EH-
enabled CR networks for IoT. arXiv preprint arXiv:1807.02558, Jul. 2018.

[67] V. Sharma, F. Song, I. You, and M. Atiquzzaman. Energy efficient device discovery
for reliable communication in 5G-based IoT and BSNs using unmanned aerial
vehicles. Journal of Network and Computer Applications, 97(Supplement C):79
– 95, 2017.

[68] M. Shirvanimoghaddam, M. Condoluci, M. Dohler, and S. J. Johnson. On the funda-
mental limits of random non-orthogonal multiple access in cellular massive
IoT. IEEE Journal on Selected Areas in Communications, 35(10):2238–2252,
Oct 2017.

[69] L. Song, K. K. Chai, Y. Chen, J. Schormans, J. Loo, and A. Vinel. Qos-aware energy-
efficient cooperative scheme for cluster-based IoT systems. IEEE Systems
Journal, PP(99):1–9, 2017.

[70] S. Tabatabaee, A. Bagheri, A. Shahini, and A. Shahzadi. An analytical model for
primary user emulation attacks in ieee 802.22 networks. In 2013 International
Conference on Connected Vehicles and Expo (ICCVE), pages 693–698, Dec
2013.

[71] 3GPP TS 36.213 V14.0.0. Evolved universal terrestrial radio access (E-UTRA):
Physical layer procedures (release 13). September 2016.

[72] L. R. Varshney. Transporting information and energy simultaneously. In IEEE
International Symposium on Information Theory (ISIT), pages 1612–1616,
July 2008.

[73] S. Wang, Z. H. Zhou, M. Ge, and C. Wang. Resource allocation for heterogeneous
cognitive radio networks with imperfect spectrum sensing. IEEE Journal on
Selected Areas in Communications, 31(3):464–475, 2013.

[74] SH. Wang, F. Huang, M. Yuan, and S. Du. Resource allocation for multiuser cognitive
OFDM networks with proportional rate constraints. International Journal of
Communication Systems, 25(2):254–269, 2012.

[75] Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman,
and H. S. Razaghi. A primer on 3GPP Narrowband Internet of Things. IEEE
Communications Magazine, 55(3):117–123, March 2017.

[76] T. A. Weiss and F. K. Jondral. Spectrum pooling: an innovative strategy for
the enhancement of spectrum efficiency. IEEE Communications Magazine,
42(3):8–14, 2004.

92



[77] Q. Wu, W. Chen, D. W. K. Ng, and R. Schober. Spectral and energy-efficient wireless
powered iot networks: NOMA or TDMA? IEEE Transactions on Vehicular
Technology, 67(7):6663–6667, July 2018.

[78] N. Xia, H. H. Chen, and C. S. Yang. Radio resource management in machine-to-
machine communications; a survey. IEEE Communications Surveys Tutorials,
20(1):791–828, Firstquarter 2018.

[79] R. Xie, F. R. Yu, and H. Ji. Energy-efficient spectrum sharing and power allocation
in cognitive radio femtocell networks. In INFOCOM, Proceedings IEEE, pages
1665–1673, March 2012.

[80] T. Xu and I. Darwazeh. Non-orthogonal narrowband internet of things: A design
for saving bandwidth and doubling the number of connected devices. IEEE
Internet of Things Journal, 5:2120–2129, June 2018.

[81] X. Yang, X. Wang, Y. Wu, L. P. Qian, W. Lu, and H. Zhou. Small-cell assisted secure
traffic offloading for narrowband internet of thing (NB-IoT) systems. IEEE
Internet of Things Journal, 5(3):1516–1526, June 2018.

[82] S. Yin, Z. Qu, and S. Li. Achievable throughput optimization in energy harvesting
cognitive radio systems. IEEE Journal on Selected Areas in Communications,
33(3):407–422, March 2015.

[83] S. Yin, E. Zhang, L. Yin, and S. Li. Optimal saving-sensing-transmitting structure in
self-powered cognitive radio systems with wireless energy harvesting. In IEEE
International Conference on Communications (ICC), pages 2807–2811, June
2013.

[84] T. Yucek and H. Arslan. A survey of spectrum sensing algorithms for cognitive radio
applications. IEEE Communications Surveys Tutorials, 11(1):116–130, 2009.

[85] D. Zhai, R. Zhang, L. Cai, B. Li, and Y. Jiang. Energy-efficient user scheduling and
power allocation for NOMA-based wireless networks with massive IoT devices.
IEEE Internet of Things Journal, 5(3):1857–1868, June 2018.

[86] D. Zhang, Z. Zhou, S. Mumtaz, J. Rodriguez, and T. Sato. One integrated energy
efficiency proposal for 5G IoT communications. IEEE Internet of Things
Journal, 3(6):1346–1354, Dec 2016.

[87] H. Zhang et al. Computing resource allocation in three-tier IoT fog networks: a
joint optimization approach combining stackelberg game and matching. IEEE
Internet Things Journal, 4:1204–1215, 2017.

[88] Y. Zhang and C. Leung. Resource allocation in an OFDM-based cognitive radio
system. IEEE Transactions on Communications, 57(7):1928–1931, 2009.

93



[89] Z. Zhang, H. Sun, and R. Q. Hu. Downlink and uplink non-orthogonal multiple
access in a dense wireless network. IEEE Journal on Selected Areas in
Communications, 35(12):2771–2784, Dec 2017.

94


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: The System Architecture
	Chapter 3: Throughput Optimization
	Chapter 4: Simulation Results
	Chapter 5: Energy Efficient Resource Allocation in Eh-Enabled Cr Networks for IoT
	Chapter 6: Noma Aided Nb-Iot for Machine Type Communication with User Clustering
	Chapter 7: Conclusion
	Appendix A: Proof of Lemmas
	Appendix B: Proofs of Np-Hardness
	Appendix C: Convexity of the Power Allocation Problem
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)




