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ABSTRACT 

OVERCOMING CONVENTIONAL MODELING LIMITATIONS USING 

IMAGE- DRIVEN LATTICE-BOLTZMANN METHOD SIMULATIONS FOR 

BIOPHYSICAL APPLICATIONS 

 

by 

Olufemi E. Kadri 

 

The challenges involved in modeling biological systems are significant and push the 

boundaries of conventional modeling. This is because biological systems are distinctly 

complex, and their emergent properties are results of the interplay of numerous 

components/processes. Unfortunately, conventional modeling approaches are often limited 

by their inability to capture all these complexities. By using in vivo data derived from 

biomedical imaging, image-based modeling is able to overcome this limitation. 

 In this work, a combination of imaging data with the Lattice-Boltzmann Method 

for computational fluid dynamics (CFD) is applied to tissue engineering and 

thrombogenesis. Using this approach, some of the unanswered questions in both 

application areas are resolved. 

In the first application, numerical differences between two types of boundary 

conditions:  “wall boundary condition” (WBC) and “periodic boundary condition” (PBC), 

which are commonly utilized for approximating shear stresses in tissue engineering 

scaffold simulations is investigated. Surface stresses in 3D scaffold reconstructions, 

obtained from high resolution microcomputed tomography images are calculated for both 

boundary condition types and compared with the actual whole scaffold values via image-

based CFD simulations. It is found that, both boundary conditions follow the same spatial 

surface stress patterns as the whole scaffold simulations. However, they under-predict the 
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absolute stress values approximately by a factor of two. Moreover, it is found that the error 

grows with higher scaffold porosity. Additionally, it is found that the PBC always resulted 

in a lower error than the WBC.  

In a second tissue engineering study, the dependence of culture time on the 

distribution and magnitude of fluid shear in tissue scaffolds cultured under flow perfusion 

is investigated. In the study, constructs are destructively evaluated with assays for 

cellularity and calcium deposition, imaged using µCT and reconstructed for CFD 

simulations. It is found that both the shear stress distributions within scaffolds consistently 

increase with culture time and correlate with increasing levels of mineralized tissues within 

the scaffold constructs as seen in calcium deposition data and µCT reconstructions.  

In the thrombogenesis application, detailed analysis of time lapse microscopy 

images showing yielding of thrombi in live mouse microvasculature is performed. Using 

these images, image-based CFD modeling is performed to calculate the fluid-induced shear 

stresses imposed on the thrombi’s surfaces by the surrounding blood flow. From the results, 

estimates of the yield stress (A critical parameter for quantifying the extent to which 

thrombi material can resist deformation and breakage) are obtained for different blood 

vessels. Further, it is shown that the yielding observed in thrombi occurs mostly in the outer 

shell region while the inner core remains intact. This suggests that the core material is 

different from the shell. To that end, we propose an alternative mechanism of 

thrombogenesis which could help explain this difference. 

Overall, the findings from this work reveal that image-based modeling is a versatile 

approach which can be applied to different biomedical application areas while overcoming 

the difficulties associated with conventional modeling.
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CHAPTER 1 

1. INTRODUCTION 

2.  

Diseases have significant health and economic costs to societies. According to the CDC, 

86% of the United States USD 2.6 trillion annual expenditure are for treating people with 

chronic and mental health conditions[1]. It is anticipated that this amount will rise to USD 

42 trillion in 2030.[2] This situation is due to the high prevalence of diseases within the 

population and exorbitant costs of treatment. Unfortunately, current health care methods 

for disease treatment and management are inefficient because they are generalized and are 

not customized to the needs of individuals. 

Hence, the life-sciences research community has witnessed a substantial push 

towards personalized medicine – the customization of prediction, prevention and treatment 

of illnesses to the unique needs of an individual’s organism. In a seminal report[3] titled 

“The Case for Personalized Medicine”, the Personalized Medicine Coalition – a group 

representing innovators, scientists, patients, providers and payers argued that: 1) Disease 

itself is personal; 2) Conversely, the currently-available medicine is impersonal and, 

therefore, is ineffective.  3) At the same time, medical technology is maturing to the point 

where it can become personalized. Concurrently, computational resources, powerful 

enough to handle the rising scale and complexity have become increasingly accessible as 

well. And finally, numerical algorithms are becoming mature enough to handle the large 

data with speed and efficiency. Combining the power of medical data and numerical 

techniques to develop in silico models is an attractive way to harness current resources. 



2 
 

Unfortunately, models developed using conventional approaches are not equipped to make 

the most of this opportunity. 

 

1.1  Limitations OF Conventional Modeling 

The challenges involved in modeling biological systems are significant and push the limits 

of conventional modeling approaches. This is because biological systems are distinctly 

complex, and their emergent properties are results of the interplay of numerous 

components/processes. Conventional modeling approaches are limited by: (i) their reliance 

on multiple oversimplifications (e.g., boundary conditions, coarse graining, unknown 

parameter estimation, etc.) which do not depict actual biological reality; (ii) their inability 

to mathematically describe all the simultaneously occurring complex processes such as 

inter-cellular signaling, cell mechanics, cell migration, nutrients/cell waste transport, 

biochemical interactions etc. These limitations are due to incomplete understanding of the 

biology and unknown modeling parameters. For example, a comprehensive model of 

thrombus formation under flow will have to incorporate - all reactions of the coagulation 

cascade, interactions within and between cells (red blood cells, platelets and white blood 

cells),[4] nonnewtonian flow regimes which range from creeping to turbulent flow,[5]  

interactions between cells and plasma, interactions between blood flow and vessel wall, as 

well as other hemodynamic considerations etc. This will be difficult to model, and the 

challenge is not only mathematical but also biological (particularly with respect to 

uncertainty arising from insufficient knowledge of the underlying mechanisms). 
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1.2  A Better Alternative: Image-based Modeling 

In order to overcome the challenges discussed above, while taking advantage of high 

resolution experimental and clinical imaging data, image-based computational models 

have emerged as alternative with several key advantages. These types of models utilize 

digital geometries generated from actual high resolution clinical or experimental images 

for simulation. Computational models developed using this approach are physiologically 

realistic because they are derived from the subject’s own real-time/in vivo anatomy and 

structural features. Thus, they can be used for simulating processes such as blood flow in 

the cardio-vascular system,[6-11] air flow in the respiratory system[11-16], material 

transport in the bone/brain[17-19], etc. under very realistic conditions and at multiple 

scales. A flow diagram for the image-based modeling approach is shown in Figure 1.1.  

It is pertinent to state that image-based models also rely on physical and 

mathematical equations like their conventional counterparts. However, they are able to 

bypass the challenge of modeling the complex biological processes that limit conventional 

models. Yet, they are more realistic because they are derived from the individual subject’s 

actual biological features. The use of imaging ensures accurate mapping between 

biological and computational domains by providing real time visualization of organisms, 

from which temporal and spatial distributions of biological information (e.g., imaging dyes 

that can bind to specific proteins) regulating their activities can be obtained. Many times, 

the choice of imaging method used for experimental/clinical applications is determined by 

factors such as cost, imaging time, adverse effects, type of obtained information (functional 

or structural), penetration depth and resolution. While the first three impose practical 

limitations, the last three are arguably more important from a modeling perspective.  
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Figure 1.1  Image-based modeling methodology diagram. Medical image is first obtained. 

After which it is processed before being assembled into a 3D-reconstruction. Next, the 

reconstruction is fed into computational fluid dynamics (CFD) solver. After CFD 

simulation, the model is then validated against experimental or analytical data. Finally, 

simulation results are analyzed. 

 

1.3  Biomedical Imaging and High Performance Computing Technology 

Advancements Enable Image-Based Modeling for Personalized Medicine 

 

Current experimental and medical imaging techniques have advanced to the point of being 

able to provide high-resolution insights into the human body. Detailed images of major 

organs like the heart, lung, bone, brain in their physiological and diseased states can be 

obtained in real time (see Figure 1.2).  
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Figure 1.2  Low kV gated chest CT angiography (Image courtesy of GE Healthcare). 
 

Similarly, computational power and speed have been consistently increasing over 

the years following Moore’s law. Thus, computational resources, powerful enough to 

handle the rising scale and complexity, are becoming more accessible as well (see Figure 

1.3). Also, numerical algorithms are becoming mature enough to handle the large data with 

greater speed and efficiency. Therefore, it is logical to leverage the merger of these data -

gathering, -processing and numerical tools to develop realistic image-based models. The 

expectation is that image-based models will serve as one of the key platforms for using 

computerized technologies to facilitate and improve personalized medicine.  
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Figure 1.3  Cost of computing over time. Source: [20] 

 

1.4  Research Scope and Outline 

In order to accomplish the goals of image-based modeling, simulation methods that can 

efficiently handle the large image data and take advantage of high performance computing 

hardware and algorithms are required. To that end, Chapter 2 describes the computational 

methodology and algorithm used in this research. Chapters 3 and 4 present results of work 

done in resolving some unanswered questions in the area of bone tissue engineering. 

Chapter 5 presents results of work done in thrombus biomechanics using image-based 

modeling. In Chapter 6, a novel mechanism of thrombogenesis based on observations of 

the microscopy images used in Chapter 5 is presented. 
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Table 1.1  Overview of Imaging Methods and Applications 
 

Ref. Imaging 

method 

Main 

application 

Spatial 

resolution 

Contrast 

agent/Imaging 

probe 

Penetration 

depth 

Limitations 

[21] 

 

 

 

 

 

Magnetic 

Resonance 

Imaging/MRI 

Observing 

anatomical 

structure and 

physiological 

function 

Millimeters Gadolinium-

diethylenetriamine 

pentaacetic acid 

Whole body Lengthy and noisy; Requires being still and 

conformity with breath-holding instructions 

to obtain best quality images 

[22, 

23] 

Micro-MRI Imaging 

anatomical 

structure 

100 microns 

approx. 

Gadolinium-

diethylenetriamine 

pentaacetic acid 

Whole body Relatively expensive; 

Imaging time is long 

[22, 

24] 

Functional 

MRI (fMRI) 

Imaging brain 

blood flow 

1mm approx. Hemoglobin Whole tissue Relatively expensive; lower spatial resolution 

[25, 

26] 

Computed 

Tomography/

CT 

Imaging of 

lung and bone 

tumors 

Millimeters Iodine Whole body Uses high doses of ionizing radiation; Very 

expensive 

[23, 

27, 

28] 

Micro-CT Imaging of 

bones 

100 microns 

approx. 

Iodine Whole body Poor contrast; 

Experimental outcomes can be altered due to 

use of high doses of radiation contrast agent 

[29, 

30] 

Dual-Energy 

X-ray 

Absorptiomet

ry 

(DEXA) 

Quantifying 

bone mineral 

density 

(BMD) 

1-3mm None Whole body Not suitable for pregnant women due to 

possibility of fetus damage by radiation; it is 

a two dimensional measurement 

[30-

33] 

Quantitative 

Computed 

Tomography 

(QCT) 

 

Measuring 

BMD 

41 microns Hexabrix; 

Barium 

Whole body Uses fairly high dose of radiation 
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Overview of Imaging Methods and Applications (Continued) 

[34, 

35] 

High 

Resolution 

Computed 

Tomography 

(HR-CT) 

Imaging lung 

parenchyma 

40 microns 

approx. 

Iodine Whole body Uses high dose of radiation; 

The contrast agents used can cause 

undesirable reactions in people with allergies. 

[21, 

22, 

36] 

Positron 

Emission 

Tomography/

PET 

Metabolic 

imaging 

1-2mm Radiolabeled 

fluorodeoxy- 

glucose 

(FDG) 

Up to a meter 

depth 

Expensive to use due to: high costs of 

cyclotrons, which produce radioactive 

isotopes used in radioactive tracers for PET 

imaging;  

[37] Photo 

acoustic 

Tomography/

PAT 

Imaging 

breast tumors 

and 

melanoma 

700 microns 

approx. 

Optical absorption  50 

millimeters 

approx. 

Limited imaging depth due to attenuation; Not 

capable of imaging gas cavities or lung tissues 

due to strong reflection of sound from gas-

liquid or gas-solid interfaces. 

[38, 

39] 

Optical 

Coherence 

Tomography 

(OCT) 

Imaging of the 

retina 

10 microns 

approx. 

Optical scattering 1-3 

millimeters  

Limited penetration depth due to optical 

scattering; 

[40-

42] 

Ultrasonogra

phy 

Cardio-

vascular 

imaging 

300 microns 

approx. 

Bubbles 60 

millimeters 

Imprecise: Quality of image depends on skill 

level of operator; Cannot be used to image 

through bone or gas. 

[43] Confocal 

microscopy 

 

 

Imaging of 

cells/tissues 

1-2 microns  Fluorescence 

proteins/dyes 

0.2 

millimeters 

approx. 

Limited penetration depth; Photo bleaching of 

probes and photo toxicity of live samples is a 

challenge 

[44] Two-photon 

microscopy 

Live imaging 

of 

cells/tissues 

1-2 microns  Fluorescence 

proteins/dyes 

0.5 

millimeters 

approx. 

Resolution is slightly lower; Two photon 

excitation is not characterized for all 

fluorophores 

 

[45] Photoacoustic 

Microscopy/P

AM 

In vivo micro-

vascular 

imaging 

15 microns 

approx. 

Optical absorption  3 millimeters 

approx. 

 

 

Ultrasonic attenuation limits imaging 

penetration depth 
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[22, 

46] 

Atomic Force 

Microscopy  

 

Measuring 

surface 

morphology 

of cells 

 

20 nanometers Intermolecular forces Not 

Applicable 

Limited imaging area; 

Limited vertical range;  

Scanning speed is low 

[47-

49] 

 

Stimulated 

emission 

depletion 

microscopy 

(STED) 

Imaging of at 

the 

cellular/sub-

cellular scale 

50 nanometers 

approx. 

(lateral) 

Green Fluorescent 

Protein 

(GFP) 

20 microns  

approx. 

Photo bleaching can be a problem; 

Resolution is limited by intrinsic optical 

resolution, labeling density and size of 

fluorescent labels 

[48, 

50, 

51] 

 

Photo 

activated 

localization 

microscopy 

(PALM) 

Imaging intra-

cellular 

proteins 

30nm 

approx.(lateral

) 

Organic fluorophores/ 

fluorescent protein 

100nm 

approx. 

Resolution is limited by intrinsic optical 

resolution, labeling density and size of 

fluorescent labels 

[52, 

53] 

Lattice Light 

Sheet 

Microscopy 

Imaging 

cellular 

proteins 

Dithered 

mode-230 nm 

by 370 nm; 

SIM-150nm 

by 230nm   

Fluorescent 

protein/dyes 

Up to 100 

microns 

Image quality degrades with deeper tissue 

samples.Only good for transparent tissues 

[54] Optoacoustic 

Mesoscopy 

Imaging skin 

tissues 

3-30microns None 3-5mm Optical blurring can lead to loss of resolution 

in imaged tissue 

[48, 

55] 

Stochastic 

optical 

reconstructio

n microscopy 

(STORM) 

 

Imaging 

nanoscopic 

cellular 

structures/intr

a-cellular 

proteins 

30 nanometers 

approx. 

(lateral) 

Organic fluorophores/ 

fluorescent protein 

100 

nanometers 

approx. 

Resolution is limited by intrinsic optical 

resolution, labeling density and size of 

fluorescent labels 

Overview of Imaging Methods and Applications (Continued)
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CHAPTER 2 

2 METHODS: Lattice-Boltzmann Method as a CFD Solver for Image-Based Models1 

3  

Among classical and emerging computational (CFD) simulation techniques, the Lattice-

Boltzmann Method (LBM) stands out for image-based modeling for two main reasons:  

First, LBM is highly parallelizable on supercomputing platforms.[56] This 

advantage is important because image-based models use high resolution imaging 

(experimental or clinical) data which are often large; running simulations with 

computational domains generated using these data are computationally intensive. Hence, 

fast and large memory supercomputing clusters are required to achieve results within a 

“reasonable time”. Secondly, LBM is capable of easily addressing the complicated 

boundaries and irregular domains encountered in modeling complex flows within 

biological systems. This is because LBM uses structured meshes for complex geometries, 

unlike classical CFD approaches which will rather utilize unstructured meshes. Other 

advantages of LBM over classical methods are - it uses a direct method based on first 

principles at the mesoscopic scale rather than modeling terms of the fluid flow governing 

equations at the macroscopic scale.[57, 58] Specifically, it is based on the solution of a 

discretized Boltzmann equation,[59-63] instead of solving the equations for momentum or 

energy transfer used by classical CFD techniques. Also, LBM is a versatile CFD method 

as demonstrated by its application areas (e.g., turbulence,[64] multi-phase flows,[65, 

66]non-Newtonian flows,[67-69]flow through blood vessels,[6] lungs,[70] and porous 

                                                           
1 Some of the material presented in this section have been published in Papavassiliou, D.V., 

Pham, N.H., Kadri, O.E., Voronov, R.S. Chapter 23 - Lattice Boltzmann Methods for 

Bioengineering Applications, in Numerical Methods and Advanced Simulation in 

Biomechanics and Biological Processes. 2018, Academic Press. p. 415-429. 
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tissue scaffolds).[57, 71-78] Finally, LBM can be used to simulate fluid-wall interactions 

and mass transfer problems by coupling with other techniques such as fluid solid 

interaction (FSI) algorithms,[79-81] lattice-spring methods,[82] and particle tracking 

methods.[76, 83] 

 

2.1  LBM Algorithm 

LBM is a mesoscopic fluid simulation technique since it is based on a link between 

microscopic flow phenomena and the macroscopic fluid flow behavior. A typical LBM 

model applies a multi-speed model consisting of either a two- or a three-dimensional multi-

component velocity. For example, a 3D configuration is commonly denoted as (D3Qn) and 

a 2D configuration would be denoted as (D2Qn).[59, 61] The number of velocity lattice 

vectors for 3D simulations can be 15, 19 or 27. 

The LBM is based on the discrete Lattice-Boltzmann equation describing the 

evolution of a particle distribution function calculated in space and time[84] as follows: 

  


FORCING

i

COLLISION

i

STREAMING

iii fftxtxftttexf +=++



  


),(),(),(

   (2.1) 

where x


is the position vector, t is time, Δt is the time step, e


 is the unit velocity vector 

along direction i,  is the collision operator, ff is the forcing factor and the subscript ‘i’ is 

the lattice direction index. The terms on the right and left hand sides of Equation (2.1) are 

the three steps of the LBM algorithm. First is the streaming step, when the fluid flows from 

one node location to another along direction i, then is the collision step and finally the 

forcing step, representing body forces acting on the fluid. At time t, during the streaming 

step the rest component f0 remains at the center of the face-centered cubic lattice, while the 
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6 Class I components (fi, i = 1, … ,6) move at time t+Δt to new positions at the nearest 

neighboring nodes, and the Class II components (fi, i = 7, …, n-1) move along the diagonals 

towards corners of the cubic lattice (See Figure 2.1). To restore any fluid that distributes 

in solid matrix nodes as a result of streaming, the bounce-back boundary conditions are 

then applied. In the next algorithmic step, the fluid relaxes to equilibrium by applying 

collision rules. The collision operator has been a subject of intense research, and several 

collision models have been proposed. The most common is the approximation according 

to single- relaxation-time (SRT) Bhatnagar, Gross and Krook, which is known as the BGK 

approximation.[85, 86] The BGK collision operator, Ώ is given as: 

   )(
1

),( eq

iii fftx −−=



      (2.2) 

τ is relaxation time and is the time scale that is characteristic of the relaxation of the local 

particle distribution function towards equilibrium. The relaxation time is the parameter that 

incorporates the kinematic viscosity of the fluid (In lattice units), ν in the computations as: 

                                                 







−=

2

1

3

1
                                                             (2.3) 

From Equation (2.3), it is obvious that numerical stability issues can arise as 1/ 2 →  since 

viscosity must be positive and non-zero. Therefore, it is always desirable that  >> 0.5. 

However, caution must also be taken because a very high value of  will make the 

simulation take longer to converge. Another approach to resolving the problem of possible 

numerical instability is to use a multiple-relaxation-time (MRT) LBM model. 

Unfortunately, MRT LBM models require significantly more computation time than SRT 
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types. The SRT LBM model is used in this work. Details on MRT LBM models are given 

in the works of Du and Shi,[87] and Perumal and Dass.[58] 

 

The equilibrium particle distribution, feq, is given by[60] 

                 ( ) ( )
( )














−


+


+=

2

2

4

2

2 2

3
931

c

U

c

Ue

c

Ue
xwxf ii

i

eq

i




                                 (2.4) 

where c=x/t is the lattice speed, x is the lattice constant, w is a lattice specific weighing 

factor,  is local density and U is the macroscopic fluid velocity. For a D3Q15 

discretization, the weighting factors are w0 = 2/9, w1-6 = 1/9, w7-14 = 1/72.[88] For a D3Q19 

discretization, the weighting factors are w0 = 1/3, w1-6 = 1/18, and w7-18 = 1/36.  

In the last step of the algorithm (the forcing step), body forces acting on the fluid 

such as electromagnetic forces can be applied as well as the pressure drop across the 

domain. Pressure drop is specified by adding the forcing factor, ff, to the components of 

the fluid particle distribution function that move in the positive streamwise direction and 

by subtracting it from those moving in the opposite direction. The fraction of the forcing 

factor applied to each component of the particle probability function can be determined, 

for example as described in Noble et al.[89]  

At the end of the computational steps, the density of the fluid can be calculated 

using: 

    
=

=
n

i

if
0

       (2.5) 
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The macroscopic velocity of the fluid at each computational mesh point is calculated from 

the conservation of momentum equation, which is as follows:    

    
i

n

i

iefU



=

=
0

       (2.6) 

n is the number of possible directions that the fluid particles are permitted to move. 

Simulations can be carried out at steady state, or in a transient manner. 

 The LBM algorithm is summarized as: 

a) Initialize ρ, U, fi and eq

if  

b) Streaming: Move temp

i if f→ in the direction of 
ie  

c) Compute ρ and U from temp

if using Equations (2.5) and (2.6) 

d) Compute eq

if  from Equation (2.4) 

e) In the collision step, update the value of fi using (2.1) 

f) Repeat steps (b) to (e) until convergence. 

  

 

Figure 2.1  A typical D3Q15 computational cell for LBM simulations. The position 0 is 

the fluid particle rest position, while the 14 nodes shown on the figure designate the 

directions to which the particle probability function “streams” in each time step. Source: [57]   

  



15 
 

2.2  LBM Boundary Conditions 

Boundary conditions (BCs) are pivotal to the numerical stability and accuracy of any CFD 

technique. For fluid flow problems solved with classical CFD approaches, the BCs are 

expressed using macroscopic variables, such as pressure or velocity. However, in the LBM 

frame, the governing equations are given in terms of particle distribution functions. 

Therefore, the macroscopic BCs have to be transformed to the mesoscopic frame and 

formulated for particle distribution functions. In the streaming step of the LBM algorithm, 

distribution functions can be determined for all grid nodes, except those located on 

boundary nodes. In Figure 2.2, the distribution functions on boundary nodes for a three-

dimensional channel in the x-y plane is shown. According to this figure, for boundary 

nodes, some of the distribution functions move out of the computational domain (solid 

arrows) while others point into the fluid domain (dashed arrows). Since there are no grid 

nodes outside of the fluid domain, distribution functions coming into the boundary nodes 

cannot be determined and are unknown. In Figure 2.2, solid arrows represent known 

distribution functions while dashed arrows depict unknown distribution functions on 

different sides of the domain. Imposing the right BC can help calculate the unknowns. One 

of the simplest and the most convenient BC in CFD problems is the periodic BC. In 

implementing this condition, the solid walls are eliminated and a small part of an infinite 

system, having a periodically repeating behavior is considered. Therefore, in LBM, 

unknown boundary distribution functions at each side of the computational domain are 

determined by equating them with known distribution functions from the opposite side of 

the domain. For example, in Figure 2.2: 

f3 (top wall) = f3 (bottom wall); f10 (inlet) = f10 (outlet) 
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f7 (top wall) = f7 (bottom wall); f2 (inlet) = f2 (outlet) 

f10 (top wall) = f10 (bottom wall); f18 (inlet) = f18 (outlet) 

f11 (top wall) = f11 (bottom wall); f16 (inlet) = f16 (outlet) 

f13 (top wall) = f13 (bottom wall); f8 (inlet) = f8 (outlet) 

Also, no-slip conditions on solid boundaries are implemented using Bounce-back BCs. 

The idea of the bounce back is that when a fluid particle (depicted by distribution function) 

encounters a solid boundary, it scatters back into the fluid along with its incoming 

direction. Hence, unknown distribution functions outside the fluid domain are replaced 

with their known opposite functions. i.e. ( ) ( ), ,i if x t t f x t− ++  = .  

where -i depicts opposite direction.  

In Figure 2.2 for example, 

f3 (top wall) = f4 (top wall); f10 (inlet) = f9 (inlet) 

f7 (top wall) = f8 (top wall); f2 (inlet) = f1 (inlet) 

f10 (top wall) = f9 (top wall); f18 (inlet) = f15 (inlet) 

f11 (top wall) = f14 (top wall); f16 (inlet) = f17 (inlet) 

f13 (top wall) = f12 (top wall); f8 (inlet) = f7 (inlet) 

Similar expressions can be written for the bottom wall and outlet. 

Additional details regarding LBM BC types and their implementations are given in 

refs.[90-92] 
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Figure 2.2  Description of known (solid arrows) and unknown (dashed arrows) distribution 

functions in x-y plane of a 3D channel. Image is shown for a D3Q19 lattice. Source: [93] 

 

2.3  Algorithm Parallelization 

Computationally, LBM is very attractive due to its effective and inherently parallelizable 

numerical algorithm.[57] The LBM solver used in this work is an in-house Fortran 90 code 

that is parallelized using Message Passing Interface (MPI). The parallelization technique 

is based on the one implemented by Voronov[94] where each MPI process works on a 

portion of the problem (data parallelism), while keeping a “ghost” copy of its nearest 

neighbor’s boundaries for implementation of boundary conditions. Typically, in parallel 

implementations of LBM, the MPI computational domain is decomposed using one of 

either: “slice (1-D), box (2D), and cube (3D)” partitioning scheme or “recursive bisection” 

techniques, although other approaches such as the “cell based” methods have also been 

proposed.[56] In this work, an algorithm that allows for the program to choose between the 

slice (1-D), the box (2D) and the cube (3D) partitioning schemes depending on the problem 
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dimensions, such that the load balance is optimized by this choice is implemented. Figure 

2.3 illustrates the “box” partitioning scheme as an example of MPI domain decomposition.  

 

 

Figure 2.3  Example of MPI parallelization in 2D and four MPI processes. Source: [94] 

 

In Figure 2.3, the problem is initially divided into four subdomains, with each one 

to be solved by one of the four MPI processes. Each block in the figure represents the part 

of the 2D, XY domain assigned to each of the four MPI processes. The white part of the 

blocks indicates nodes of the computational mesh that are local to each MPI process and 

can be updated by the LBM calculation within that MPI process. The solid blue color 

indicates the part of the computational mesh that is on the boundary of each of the four 

subdomains, the values on these nodes cannot be updated without MPI communication 

between the subdomains. These are referred to as “ghost” nodes and they require 

information from their nearest neighbors, either in the horizontal or vertical direction. 

Yellow and shaded colors show MPI communication taking place in the horizontal X 

direction: shaded “ghost” cells are updated from right to left. The data for the 
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computational mesh nodes that reside in the yellow area are passed to the subdomain 

neighbor to the left (as indicated by the black, dashed arrows). All the “ghost” nodes are 

then updated from left to right, such that all the blue “ghost” nodes become shades (i.e., 

updated with the most current values from the neighboring MPI process). After all the 

“ghost” nodes have been updated in the horizontal direction, the procedure is repeated in 

the vertical direction (up-down and down-up). 

Speedup is a concept used in parallel computing to describe how much a parallel 

algorithm is faster than its corresponding non-parallel algorithm. It is defined as:  

   
P

P
TimeExecutionParallel

TimeExecutionParallelNon
Speedup 1=    (2.7) 

where p is the number of processes  

  The speedup graph of the parallelized LBM algorithm for different simulation 

lattice sizes are shown in Figure 2.4. 

 

 

Figure 2.4 Speedup performance of LBM code versus number of MPI Processes for 

different simulation box sizes (NX is number of nodes along one side of the cubic 

simulation domain), as measured on stampede supercomputer. The code was compiled with 

the Intel 17.0.4 compiler with no optimization options. 
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Linear speedup refers to when speedup increases linearly with number of MPI 

processes. When it occurs, it can be concluded that the code is scalable.  Figure 2.4 shows 

that the LBM code displays good scalability for many large problem sizes. This is not 

unexpected because the LBM algorithm is a memory-bound problem.[56, 95] Therefore, 

as the problem is broken up into smaller chunks among processes, its scalability improves. 

But, as the number of processes become very large, the communication between processes 

can dominate over computation. A typical flow chart for a single-phase flow MPI 

parallelized LBM algorithm is shown in Figure 2.5. 

 

2.4  Stress Calculations 

Shear stress is a critical parameter in many biological processes. For example, in arterial 

circulation, it provides information on where most vascular pathological activities 

originate;[96] while in tissue engineering, it is a metric for cell stimulation and tissue 

growth.[97] Hence, knowledge of this fluid dynamic parameter is useful for image-based 

modeling of many biophysical systems .  

The fluid-induced shear stresses acting on solid surfaces can be obtained from the 

velocity fields calculated via LBM. In this work, stresses were estimated following a 

scheme suggested by Porter et al.[98] The total stress tensor σ is represented by a sum of 

the hydrostatic pressure p and viscous (deviatoric) stress tensor τ: 

    ij ij ijp  = − +
     (2.8) 

where ij is the unit tensor, such that ij is 1 if i=j and 0 if i≠j. 
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While the hydrostatic pressure is negligible, the latter stress is often of interest because it 

is responsible for shearing the solid surface. Also, since it describes how momentum is 

transported across the fluid layers due to velocity shear, it must be related to the 

deformation tensor: 

  
( ) ( )

1 1

2 2

T T

ijD U U U U=  +  +  − 
    (2.9) 

Also, this tensor can be decomposed into symmetric (rate of strain) and anti-symmetric 

(vorticity) parts. Furthermore, since fluid used in this work is assumed to be Newtonian, 

the viscous stress tensor depends only on the symmetric component of the deformation 

tensor. Hence, the shear stress at every location on solid is calculated using the following 

equation:  

   
( )

1

2

TU U 
=

 
  +  

       (2.10) 

where  
=

 is the shear stress tensor and U is local velocity vector. 

Derivatives of the velocity field given in Equation (2.10) can be approximated 

numerically using finite difference methods. A centered finite difference method 

(Equations (2.11) – (2.13)) is shown here. The same can be done for partial derivatives of 

Uy and Uz. Following this, the symmetric strain matrices can be found by adding the 3 × 3 

partials matrix for each field location to its own transpose. 

 

  
( ) ( ), , , ,( , , )

2

x xx
U i lu j k U i lu j kU i j k

x lu

+ − −
=

 
   (2.11) 
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( ) ( ), , , ,( , , )

2

x xx
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y lu

+ − −
=

 
   (2.12) 

 

  
( ) ( ), , , ,( , , )

2

x xx
U i j k lu U i j k luU i j k

z lu

+ − −
=

 
   (2.13) 

where lu is the length of one side of an element in the LBM model. 

Finally, eigenvalues of the symmetric matrix are obtained using the Jacobi method, 

and the largest absolute-value eigenvalue (i.e., largest principal component of the tensor) 

for each fluid voxel is used to determine the stresses. 
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Figure 2.5  Flow chart of a typical lattice Boltzmann method algorithm for single-phase 

flow and MPI. Source: [57] 
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CHAPTER 3 

3 APPLICATION I:  NUMERICAL ACCURACY COMPARISON OF TWO 

BOUNDARY CONDITIONS COMMONLY USED TO APPROXIMATE SHEAR 

STRESS DISTRIBUTIONS IN TISSUE ENGINEERING SCAFFOLDS 

CULTURED UNDER FLOW PERFUSION 

 

3.1  Abstract2 

Flow-induced shear stresses have been found to be a stimulatory factor in pre-osteoblastic 

cells seeded in 3D porous scaffolds and cultured under continuous flow perfusion.  

However, due to the complex internal structure of the scaffolds, whole scaffold calculations 

of the local shear forces are computationally-intensive. Instead, representative volume 

elements (RVEs), which are obtained by extracting smaller portions of the scaffold, are 

commonly used in literature without a numerical accuracy standard. Hence, the goal of this 

study is to examine how closely the whole scaffold simulations are approximated by the 

two types of boundary conditions used to enable the RVEs: “wall boundary condition” 

(WBC) and “periodic boundary condition” (PBC).  

To that end, Lattice-Boltzmann Method fluid dynamics simulations were used to 

model the surface shear stresses in 3D scaffold reconstructions, obtained from high 

resolution microcomputed tomography images. It was found that despite the RVEs being 

sufficiently larger than six times the scaffold pore size (which is the only accuracy 

guideline found in literature), the stresses were still significantly under-predicted by both 

                                                           
2Some of the material presented in this section have been published in Kadri, O.E., 

Williams, C., Sikavitsas, V.I. and Voronov, R.S. “Numerical Accuracy Comparison of Two 

Boundary Conditions Commonly used to Approximate Shear Stress Distributions in Tissue 

Engineering Scaffolds Cultured under Flow Perfusion”. International Journal for 

Numerical Methods in Biomedical Engineering. 34(11): p. e3132. 
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types of boundary conditions: between 20 and 80% average error, depending on the 

scaffold’s porosity.  Moreover, it was found that the error grew with higher porosity.  This 

is likely due to the small pores dominating the flow field, and thereby negating the effects 

of the unrealistic boundary conditions, when the scaffold porosity is small.  Finally, it was 

found that the PBC was always more accurate and computationally efficient than the WBC.  

Therefore, it is the recommended type of RVE.   

 

3.2  Introduction 

Incidences of bone disorders constitute a significant economic burden to societies globally. 

In the United States alone, over $213 billion is the total annual cost (direct and indirect) of 

treating the estimated 126.6 million people affected by musculoskeletal disorders.[99] 

Unfortunately, with an increasingly obese and ageing population, this trend is expected to 

continue further. Current approaches for replacing the damaged bone tissues include the 

use of bone grafts (i.e., autografts or allografts). However, these methods have several 

shortcomings, limited availability and risk of disease transmission.[100-102] To address 

those disadvantages, bone tissue engineering has emerged as an alternative regenerative 

strategy.  

In bone tissue engineering, a combination of osteo-inductive biological factors, 

mesenchymal stem cells obtained from patients’ own bone marrow and porous 

biodegradable scaffolds are used.  Typically, the process involves seeding the cells within 

the 3D scaffolds, followed by culturing under flow in perfusion bioreactors.  The flow is a 

necessary part of the culture, because the stimulatory shear that it imposes on the stem cells 

mimics the natural microenvironment in bone canaliculi.[103, 104] Moreover, it has been 



26 
 

shown to promote tissue regeneration.[97, 105-107] Thus, the applied shear stresses should 

be within the physiological range required for stimulation: 0.1 - 25 dynes/cm2,[108-110] 

because excessive shear of 26-54 dynes/cm2 can cause cell lysing and/or detachment from 

the scaffold.[111, 112] 

Therefore, the ability to predict the shear stress distribution in different scaffold 

micro-architectures can provide insight into whether or not a particular scaffold design will 

promote tissue growth.  Moreover, when used in conjunction with the latest advances in 

3D microfabrication technologies, such predictive capabilities can be used to create 

optimized scaffold geometries.  Unfortunately, however, the complex internal structure of 

the porous scaffolds makes estimation of the required shear stresses via experimental or 

analytical techniques impractical. Hence, computational fluid dynamics models, based on 

either idealized pore geometries [104, 106, 113-118] or actual scaffold images,[73, 74, 76, 

98, 109, 119-127] are commonly utilized. 

The latter is the more realistic approach since it is based on the actual microscopic 

pore structures, which are typically obtained via a 3D scanning technique such as micro-

computed tomography (µCT).  Yet, due to the computationally intensive nature of the 

scaffold reconstructions resulting from such high-resolution imaging, researchers are 

forced to resort to implementing approximations.[73, 74, 76, 98, 109, 119-127] For 

example, rectangular “representative volume elements” (RVE) are cut from whole 

scaffolds and implemented in conjunction with various boundary conditions along the 

artificially created periphery.  Two common types of boundary conditions that are typically 

implemented for this purpose are the “wall boundary condition” (WBC)[106, 109, 116, 

119-127] and the “periodic boundary condition” (PBC).[73, 74, 76, 98, 115, 117] In the 
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former case, the RVE is surrounded by solid walls in the non-flow directions, while the 

latter is an application of periodicity in all three dimensions.   

Although these approaches save on computation time, it is not obvious how accurate 

the resulting shear stresses are, or which of the two boundary conditions yields the better 

results.  Consequently, the RVE approach is commonly questioned by journal reviewers, 

as no standards or guidance regarding their use exist. We have found only one publication 

that investigated the accuracy of the RVE-WBC, as compared to the whole scaffold 

simulation.[119]  Here, a guideline was provided stating that for scaffolds with a 

homogenous pore distribution the domain size should be at least 6 times the average pore 

size.  However, this suggestion was made based on average wall stresses only, while in 

reality the spatial distribution of the stresses is also important to tissue growth. For 

example, the cells within the scaffold migrate around in a nonrandom manner,[128] are 

therefore more likely to experience stresses at some preferred locations.  Furthermore, only 

scaffolds prepared using the same fabrication technique were studied, though two different 

materials were used in their manufacturing.  Nonetheless, the scaffold’s structure depends 

more on the fabrication method than it does on the material.[73-75]  Moreover, just a single 

scaffold sample was used for each type of the material. Hence, a more thorough 

investigation of the RVEs’ accuracy is warranted, especially given that no PBC studies 

were found at all. 

Therefore, in this work we set out to quantify how the two relevant boundary 

conditions compare against each other, when applied to scaffolds manufactured using 

different fabrication methods (see Figure 3.1), and for a large number of samples with 

varying porosities.   
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Figure 3.1  3D-reconstructions of the two scaffold architecture types used in this study.  

LEFT - Porous foam scaffold.  RIGHT – Fiber Mesh scaffold. Dimensions are 1.61mm x 

5.1mm x 5.1mm and 1.10mm x 5.1mm x 5.1mm for salt-leached and nonwoven fiber-mesh 

scaffolds, respectively. 

 

To achieve this, an in-house Lattice-Boltzmann Method (LBM) code is used to 

simulate fluid flow through reconstructions of salt-leached foam and nonwoven fiber mesh 

scaffolds, all of which are imaged using µCT. The overall computational approach used in 

this work is summarized in Figure 3.2. Ultimately, the accuracy of the spatial stress 

distributions is reported for both the RVE-WBC and the RVE-PBC. Finally, a descriptive 

statistical analysis is used to demonstrate the accuracy and computational efficiency 

differences between the two RVE approaches. 

 

 

Figure 3.2  The image-based modeling methodology used in this work.  The scaffolds were 

first manufactured, and then they were scanned using high-resolution CT. Afterwards, 

their architecture was reconstructed virtually in 3D, and imported into the LBM fluid flow 

solver. Finally, the LBM simulation results were used to compute the shear stresses on the 

scaffold surfaces. Source: [71] 
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3.3  Materials and Methods 

3.3.1 Scaffold Preparation and Imaging 

Two types of porous scaffolds, salt-leached foam and nonwoven fiber scaffolds, were 

produced from poly-L-lactic acid using methods described in detail elsewhere.[73] The 

scaffolds were then scanned via µCT using a ScanCo VivaCT40 system (ScanCo Medical, 

Bassersdorf, Switzerland) to obtain 10µm resolution, 2D intensity image slices (see Figure 

3.3) at the optimum settings of 88 µA (intensity) and 45 kV (energy). The acquired X-ray 

images were filtered for noise reduction and assembled into 3D-reconstructions of the 

scaffolds using a custom Matlab code (MathWorks Inc., Natick, MA). The scans were 

segmented using global thresholding. Threshold values were chosen such that the porosity 

of scaffolds from 3D-reconstructions were within 1% of experimentally calculated 

porosities. Experimental porosities were obtained by measuring the solid volume (mass of 

the scaffolds divided by the density of scaffold materials) and comparing with total scaffold 

volume (assuming a cylindrical scaffold) as reported in.[73, 74, 76] 

 

 

Figure 3.3  A two-dimensional analogy of how an RVE simulation domain is cut out of a 

whole scaffold µCT image.  LEFT – A slice representative of a cross-section through a 

typical fiber mesh scaffold.  The white box marks the largest rectangular area that could 

possibly be inscribed into the circular scaffold; RIGHT – the resulting RVE cutout from 

the rectangular region inscribed into the whole scaffold.  Grayscale color is the X-ray radio-

density of the scaffold material as imaged via µCT. Source: [71] 
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3.3.2 Simulation Domain and Boundary Conditions 

For the non-RVE calculations, each simulation domain was composed of a whole scaffold 

placed inside of a pipe (see Figure 3.4-A).  This is meant to mimic the cassette holder that 

typically fixes the scaffold in the perfusion bioreactors.  The pipe’s length was taken to be 

approximately ten times greater than the scaffold thickness, in order to avoid periodicity 

artifacts and ensure that a uniform parabolic profile is developed before flow reaches the 

scaffolds. Simulations were performed for a flow rate of 0.15 mL/min. This is considered 

a suitable flow rate for mechanical stimulation in many perfusion bioreactors.[97, 129]  

For the RVE calculations, the simulation domain was obtained by extracting the 

largest rectangle that could possibly be inscribed into the circular whole scaffold (see 

Figure 3.3-Left). 

Generally, the size of the RVE (denoted below as ‘L’) is taken to satisfy the so-

called ‘separation of scales’, d < L, where d is the average size of the porous media 

heterogeneity[130]. Specifically, the RVE domain size should be at least 6 times the 

average pore size.[119] We tried to stay well above this criterion, in order to maximize 

accuracy and examine the best-case scenario produced by the RVEs. Subsequently, the 

resulting domain sizes (see Figure 3.3-Right) were all between 8 - 14 times the scaffolds 

pore sizes, which is significantly greater than the suggested minimum for RVEs.[119] 

For the RVE-PBC calculations, periodicity was applied in all three directions (see 

Figure 3.4-B) to approximate an infinite domain representing the full scaffold.  On the 

other hand, for the RVE-WBC, the scaffold was surrounded by solid walls in the non-flow 

directions (see Figure 3.4-C).  In addition, an entrance length equal to half of the scaffold’s 

thickness in the flow direction was added, in order to stay consistent with the previous 
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analysis of this boundary condition type.[119] In both implementations, the total flow rate 

through the RVE was decreased proportionally to the cutout size, in order to compensate 

for the reduction in the cross-sectional area available to flow relative to the whole scaffold. 

 

 
Figure 3.4  Simulation domain comparison between whole scaffold simulations and the 

RVEs.  A – Cross-sectional view of the whole simulation domain (right half is omitted for 

clarity). The wall and the entrance length are shown in red.  In all panes, the blue arrow is 

the flow direction; and the gray scale color is the X-ray radio-density of the scaffold 

material, as imaged via CT.  B - A representative RVE-PBC simulation domain. White 

arrows show the directions in which periodicity is applied.  Note that periodicity is also 

applied in both x directions as well, but the arrows are omitted for clarity.  C – A cross-

sectional view of RVE-WBC simulation domain (right half is omitted for clarity). The wall 

and the entrance length are shown in red. Source: [71] 

 

3.3.3 Fluid Flow Modeling 

LBM was chosen for the present application, because it is especially appropriate for 

modeling pore-scale flow through porous media (such as scaffolds) due to the simplicity 

with which it handles complicated boundaries.[57, 72-74, 76, 94, 98, 131] This is because 

LBM uses structured meshes for complex geometries, unlike classical CFD approaches 

which will rather utilize unstructured meshes. Another advantage of LBM is that it uses a 
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direct method based on first principles at the mesoscopic scale rather than modeling terms 

of the fluid flow governing equations at the macroscopic scale. In addition, the LBM 

method has gained popularity within the scientific computing community because of the 

ease with which it can be parallelized on supercomputers.[56] 

A previously developed custom-written, in-house code was used in this work.[6, 

57, 73, 74, 76-78, 94, 132] The D3Q15 lattice [88] in conjunction with the single-relaxation 

time Bhatnagar, Gross and Krook[86]  collision term approximation was used to perform 

simulations. The no-slip boundary condition was applied at solid faces using the “bounce-

back” technique.[61] To take advantage of the inherent LBM parallelizability, domains 

were decomposed using message passing interface.[57, 94] Simulation convergence was 

defined as when average and highest velocities computed for the simulation domain vary 

by less than 0.01% for two consecutive time steps. The code has been validated for several 

flow cases for which analytical solutions are available: forced flow in a slit, flow in a pipe 

and flow through an infinite array of spheres.[74, 94] 

 

3.3.4 Surface Stress Calculations and Error Analysis 

Shear stress on the surface of the scaffolds was calculated following a scheme suggested 

in,[98] where the full shear stress tensor is calculated first, and then the maximum eigen 

value is evaluated using a Jacobi iteration technique. The cell culture media was assumed 

a Newtonian fluid, and the shear stresses at every location within the scaffolds were 

estimated using: 

   
( )

1

2

TU U 
=

 
  +  

       (3.1) 
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where 
=  

is the shear stress tensor, and U is local velocity vector. The fluid dynamic 

viscosity was 0.01 g/(cm s), which is close to that of α-MEM supplemented with 10% FBS 

typically used in cell culturing experiments.[133] Velocity vectors used in calculations 

were derived for the specified flow rate. Computed shear stress values are the largest 

eigenvalues of
=

. Stress maps generated using Tecplot 360 EX 2017 (Tecplot Inc., 

Bellevue, WA USA) were used to visualize localized shear stress values on the scaffolds.  

For the accuracy comparisons, the error at every fluid surface node was calculated as 

follows:  

 𝜀𝑡 = 100% ∗ |
𝑇𝑟𝑢𝑒 (𝑊ℎ𝑜𝑙𝑒 𝑆𝑐𝑎𝑓𝑓𝑜𝑙𝑑)𝑆𝑡𝑟𝑒𝑠𝑠−𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 (𝑅𝑉𝐸) 𝑆𝑡𝑟𝑒𝑠𝑠

𝑇𝑟𝑢𝑒 (𝑊ℎ𝑜𝑙𝑒 𝑆𝑐𝑎𝑓𝑓𝑜𝑙𝑑) 𝑆𝑡𝑟𝑒𝑠𝑠
|    (3.2) 

 

where the ‘True Stress’ refers to the shear stress value obtained from the Whole scaffold 

simulations, while the ‘Approximated Stress’ is obtained from the RVE scaffold 

simulations. 

 

3.4 Results 

In order to compare the RVEs’ performance relative to each other, as well as to that of the 

whole scaffold simulations, we performed image-based LBM modeling using a flow rate 

typically encountered during artificial tissue culturing conditions. Figure 3.5 shows 

representative results for whole scaffolds of two different architectures:  salt-leached foam 

(Figure 3.5-LEFT) and nonwoven fiber-mesh (Figure 3.5-RIGHT). These very 

computationally-intensive models exemplify the best stress estimates, because they are the 

most representative of the actual flow perfusion culturing conditions. However, they take 
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approximately 30,000-40,000 LBM steps to converge.  Unfortunately, for high-resolution 

scaffold images (e.g., CT), this can translate to weeks of waiting for results, even on a 

large supercomputer. The RVEs on the other hand, take only a fraction of that to converge, 

and therefore, have a higher computational efficiency.  

 

 
Figure 3.5  3D-reconstructions of the two scaffold types used in this study, with the surface 

stress maps (color) calculated from LBM overlaid on the CT images (gray scale).  LEFT 

- Porous foam scaffold.  RIGHT – Fiber Mesh scaffold. The pipe surrounding the scaffold, 

and stress values below 0.1dynes/cm2 are omitted for clarity. Dimensions are 1.61mm x 

5.1mm x 5.1mm and 1.10mm x 5.1mm x 5.1mm for salt-leached and nonwoven fiber-mesh 

scaffolds, respectively. Source: [71] 

 

This is shown in Figure 3.6, where both axes are normalized by the corresponding 

whole scaffold values. From this figure, it is apparent that the RVEs take roughly 3-6 times 

less LBM steps to converge, which translates into a significant waiting time reduction for 

the user.  Hence, this makes the RVE approaches attractive, as long as some error can be 

tolerated.   
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Figure 3.6  Total number of LBM steps required to reach convergence versus scaffold 

volume for RVE-PBC and RVE-WBC.  The vertical and horizontal axes are normalized 

with respect to the whole scaffold values, respectively. 

 

Next, we visualized the stresses produced by the RVEs, in order to gauge the 

amount of error incurred from their use. The first question we wanted to answer was 

whether the stress approximations provided by the RVEs follow a spatial pattern similar 

to that observed in the whole scaffold simulations.  To that end, Figure 3.7-A & D shows 

stresses in RVE-equivalent domains cut out from the whole scaffold simulations in Figure 

3.5. These are presented in order to provide a one-to-one comparison for the actual RVE-

WBC and RVE-PBC cutouts shown in Figure 3.7-B & E and Figure 3.7-C & F, 

respectively.  From Figure 3.7, it is apparent that the spatial stress patterns produced by 
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the RVEs are indeed very similar to those obtained from the whole scaffold simulations. 

However, the former stresses are significantly lower when compared with the latter.  

 
Figure 3.7  Surface stress maps overlays for the RVE-equivalents cutout from whole 

scaffold simulations and the two types of boundary conditions used for the RVEs.  TOP 

ROW:  Salt-leached Foam Scaffold. BOTTOM ROW:  Nonwoven Fiber Mesh.  LEFT 

COLUMN:  RVE-equivalent volumes cutout from a whole scaffold models: CENTER 

COLUMN:  RVE-PBCs.  RIGHT COLUMN:  RVE-WBCs. Dimensions are 1.61mm x 

3.91mm x 2.81mm and 1.10mm x 3.79mm x 2.99mm for salt-leached and nonwoven fiber-

mesh scaffolds, respectively. Source: [71] 

  

Consequently, we used Equation (3.2) to quantify the spatial accuracy of the results 

produced by the RVE approximations. This was done by calculating the amount by which 

they deviate from the true stress values at every surface voxel of the scaffolds. For the 

purposes of this comparison, the whole scaffold stresses are considered to be the true values 

in the Equation (3.2) calculations, while the stresses produced by the RVE are used as the 

approximated values in the same equation. Figure 3.8 is a 3D overlay of the resulting 

spatial error patterns in the two scaffold types from Figure 3.7. From left to right, the top 
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row shows the salt-leached foam RVE-PBC and WBC, respectively; while the bottom row 

shows the fiber-mesh RVEs, in the same order.  It can be immediately observed from this 

figure that the bulk error is similar for both RVEs, varying roughly between 40 and 60% 

(for these particular samples).  However, there is also a spatial trend in the error:  in the 

case of the RVE-PBC it appears to decrease towards the cutout’s periphery, while for the 

RVE-WBC the opposite is the case. This makes sense, given that the presence of the wall 

in the latter alters the flow field near the boundary. Therefore, there are significant 

differences in accuracies between the two RVEs; with the RVE-PBC yielding the more 

superior results.  

 

 
Figure 3.8  Surface error maps overlays for the two RVE types, relative to the whole 

scaffold simulation RVE equivalents.  TOP ROW:  Salt-leached Foam Scaffold. BOTTOM 

ROW:  Nonwoven Fiber Mesh.  LEFT COLUMN:  RVE-PBC.  RIGHT COLUMN:  RVE-

WBC. The wall is omitted from the WBC reconstructions for clarity.  Top right quarter of 

each scaffold is removed in order to provide a view inside. Dimensions are 1.61mm x 

3.91mm x 2.81mm and 1.10mm x 3.79mm x 2.99mm for salt-leached and nonwoven fiber-

mesh scaffolds, respectively. Source: [71] 
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In addition to the spatial distributions of stresses, we analyzed the probability 

distributions of the wall shear stress magnitude. Figure 3.9-A & C show the histogram 

distributions of stresses in salt-leached foam and nonwoven fiber-mesh scaffolds 

respectively. Stresses are normalized using: 

 (𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑚𝑒𝑎𝑛 𝑠𝑡𝑟𝑒𝑠𝑠)/(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛), as is 

reported in our previous works.[73-75] 

From the figures, it is observed that all the normalized distributions appear similar 

in shape but differ by frequency of occurrence of stresses. Hence, we quantified the 

differences, errors in probabilities for RVE-PBC and RVE-WBC are calculated as 

percentages of the whole scaffold simulation values using: 

4  

𝐸𝑟𝑟𝑜𝑟 = |𝑇𝑟𝑢𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦| ∗ 100%/(𝑇𝑟𝑢𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 )   (3.3) 

5  

where True Probability value is probability of occurrence of each stress histogram bin in 

whole scaffold simulation histogram and Approximated Probability value is probability of 

occurrence of each stress bin in RVE simulation histogram. Figure 3.9-B & D show error 

histograms for salt-leached foam and nonwoven fiber-mesh scaffold. The figures show that 

for both scaffold architectures, the RVE-PBC produced lower errors than RVE-WBC at 

low stresses, while higher errors resulted at high stress values. However, since each of the 

histogram bins corresponds to a different probability of stress occurrence, a weighted 

average is calculated for each of the error distributions to aid better comparison between 

them. The weighted average error is calculated using: 

   
( )

1

*err
N

error i i
i

W p
=

= 
     (3.4) 
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where Werror is weighted average error, i is an index for histogram bin i, N is total number 

of bins in histogram, pi is the probability of occurrence of histogram bin i and erri is the 

error obtained for histogram bin i using Equation (3.3). As shown in Figure 3.9-B & D, 

the weighted average errors are lower for the RVE-PBC for both scaffold architectures; 

thus, confirming its superiority over the RVE-WBC.  

 
Figure 3.9  Comparison of surface stress and error histograms for Salt Leached Foam and 

Nonwoven Fiber Mesh scaffolds. TOP ROW: A – Histogram of normalized stresses for 

Salt Leached Foam Scaffold; B – Percentage error histogram for Salt Leached Foam 

Scaffold. BOTTOM ROW: C – Histogram of normalized stresses for Nonwoven Fiber 

Mesh Scaffold; D – Percentage error histogram for Nonwoven Fiber Mesh Scaffold. Grey 

color – Whole. Orange color – WBC. Blue Color – PBC. Source: [71]  
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Further, we wanted to check whether the type of the scaffold architecture has a 

significant effect on the surface stress accuracy.  To that end, Figure 3.10 plots the mean 

error in the RVE surface stress, relative to those from the whole scaffold simulations.   We 

chose the abscissa to be porosity, since it also describes the scaffold morphology.  From 

this figure, it is evident that the RVE-WBC always results in a greater error relative to that 

obtained from the corresponding RVE-PBC. Another observation is that the foam scaffolds 

always had a smaller error than the fiber scaffolds, though this is likely an effect of their 

lower porosity.  Specifically, the error was found to increase proportionally to the latter, 

indicating that the porosity influences the simulation accuracy.  The absolute stresses for 

the data in Figure 3.10 are given in Table 3.1. 

 

 
Figure 3.10  Average error in fluid-induced surface stress resulting from the RVE 

calculations plotted versus scaffold porosity and boundary condition type.  Orange color – 

WBC.  Blue Color – PBC. Triangles – Salt Leached Foam. Circles – Nonwoven Fiber 

Mesh. Source: [71] 
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Table 3.1   Summarized Stress Data and LBM Steps to Convergence for all the Scaffolds 

Studied 
 

  Shear stress (dynes/cm2)     

Scaffold type Porosity Average Maximum Mean % Error LBM steps 

Foam 1   

Whole scaffold 

0.8830 

0.078 1.695 N/A 37000 

RVE-PBC 0.057 0.620 27.799 9000 

RVE-WBC 0.045 0.547 42.462 12000 

Foam 2  

Whole scaffold 

0.9033 

0.092 1.462 N/A 39000 

RVE-PBC 0.056 0.608 38.860 9000 

RVE-WBC 0.048 0.551 48.137 15000 

Foam 3 
 

Whole scaffold 

0.8526 

0.076 2.035 N/A 38500 

RVE-PBC 0.054 0.815 29.537 9000 

RVE-WBC 0.038 0.649 49.389 15000 

Foam 4  

Whole scaffold 

0.8600 

0.081 1.818 N/A 39000 

RVE 0.054 0.813 33.780 9000 

RVE-WBC 0.040 0.692 50.292 15000 

Foam 5  

Whole scaffold 

0.8573 

0.074 1.958 N/A 39500 

RVE 0.052 0.957 29.342 12000 

RVE-WBC 0.042 0.813 43.062 15000 

Foam 6  

Whole scaffold 

0.853 

0.068 1.263 N/A 39000 

RVE 0.052 0.790 24.059 9000 

RVE-WBC 0.041 0.565 40.097 15000 

Fiber 1  

Whole scaffold 

0.8790 

0.122 3.420 N/A 36000 

RVE 0.065 0.780 46.762 6000 

RVE-WBC 0.058 0.920 52.340 13000 

Fiber 2          

Whole scaffold 

0.9268 

0.134 2.318 N/A 34000 

RVE 0.059 0.835 56.404 5000 

RVE-WBC 0.042 0.576 68.975 10000 

Fiber 3          

Whole scaffold 

0.9388 

0.146 3.298 N/A 36000 

RVE 0.061 0.766 58.146 6000 

RVE-WBC 0.045 0.641 69.195 12000 

Fiber 4          

Whole scaffold 

0.9770 

0.127 4.345 N/A 42000 

RVE-PBC 0.058 0.721 54.117 9000 

RVE-WBC 0.047 0.382 62.909 14000 
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Lastly, the validity of LBM simulation results presented is demonstrated. We 

compared permeability values calculated by LBM to those obtained from the well-

established Kozeny-Carman (KC) equation for porous materials (given below):  
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−        (3.5) 

k is the permeability of material,   is the porosity, S  is the surface area-to-volume ratio 

and K is the Kozeny constant. Based on experiment,[134] K is often assigned a value of 5 

but recent studies have shown that its value varies with porosity.[135] The comparisons 

are given in Table 3.2 and they show that permeabilities obtained by LBM are of similar 

order of magnitude to those from the analytical KC equation. The percentage errors 

between estimates obtained from the KC equation and LBM are plotted in Figure 3.11. It 

shows that values obtained by RVE-PBCs are mostly more accurate than the RVE-WBC. 

The discrepancy observed for scaffold with porosity of 0.977 is likely because calculations 

were performed using K = 5, despite its dependence on porosity.  

 
Figure 3.11  Percentage error in permeabilities calculated from LBM and analytical 

Kozeny-Carman equation plotted versus scaffold porosity and boundary condition type.  

Orange color – WBC.  Blue Color – PBC. Triangles – Salt Leached Foam. Circles – 

Nonwoven Fiber Mesh. Source: [71] 
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Table 3.2   Permeability and Interstitial Velocity for Scaffolds 

 

    

PERMEABILITY 

(cm2) Error (%)   

AVERAGE 

INTERSTITIAL 

VELOCITY 

(cm/s) 

Error 

(%) 

Foam 1 KC  1.84E-05   Whole 1.44E-02   

  PBC 2.10E-05 13.85 PBC 1.22E-02 15.30 

  WBC 2.12E-05 13.85 WBC 1.13E-02 21.14 

Foam 2 KC 2.50E-05   Whole 1.40E-02   

  PBC 2.72E-05 8.76 PBC 1.20E-02 14.41 

  WBC 2.25E-05 10.04 WBC 1.11E-02 20.77 

Foam 3 KC 1.29E-05   Whole 1.57E-02   

  PBC 1.55E-05 20.22 PBC 1.24E-02 21.39 

  WBC 1.57E-05 21.56 WBC 9.21E-03 41.49 

Foam 4 KC 1.43E-05   Whole 1.52E-02   

  PBC 1.66E-05 15.64 PBC 1.23E-02 19.20 

  WBC 1.78E-05 24.00 WBC 1.03E-02 32.38 

Foam 5 KC 1.38E-05   Whole 1.52E-02   

  PBC 1.67E-05 21.24 PBC 1.23E-02 18.87 

  WBC 1.80E-05 30.43 WBC 1.04E-02 31.79 

Foam 6 KC 1.40E-05   Whole 1.55E-02   

  PBC 1.69E-05 20.95 PBC 1.24E-02 20.06 

  WBC 1.78E-05 27.21 WBC 1.03E-02 33.18 

Fiber 1 KC 1.16E-05   Whole 1.48E-02   

  PBC 1.63E-05 40.39 PBC 9.66E-03 34.57 

  WBC 1.61E-05 38.94 WBC 9.56E-03 35.25 

Fiber 2 KC 1.59E-05   Whole 1.35E-02   

  PBC 1.66E-05 4.16 PBC 9.42E-03 30.17 

  WBC 1.72E-05 8.20 WBC 9.27E-03 31.29 

Fiber 3 KC 2.41E-05   Whole 1.34E-02   

  PBC 1.77E-05 26.54 PBC 8.95E-03 33.05 

  WBC 1.73E-05 28.32 WBC 8.69E-03 35.06 

Fiber 4 KC 1.11E-04   Whole 1.31E-02   

  PBC 4.43E-05 60.08 PBC 8.85E-03 32.59 

  WBC 3.71E-05 66.58 WBC 8.79E-03 33.07 

 

Additionally, we have validated the simulation results against a three-parameter 

gamma distribution, ( ), ,    which was shown to be representative of normalized wall 

stresses in flows through highly porous random porous media.[75]: 
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where 
*  is the normalized stress, ( )  is a complete gamma function,  = 2.91,  = 

0.45 and  = -1.43. The comparison is given in Figure 3.12. It is observed that RVE-PBC, 

RVE-WBC and whole simulation results all show good agreement with ( ), ,   , 

however the PBC is closer to it than the WBC.    

 

 
Figure 3.12  Comparison of probability density function obtained from LBM simulation 

results with the generalized three-parameter gamma distribution function for representative 

scaffold. Ordinate is probability density function and abscissa is normalized surface stress. 

Green color – three parameter gamma distribution. Purple color – Whole. Orange color – 

WBC. Blue Color – PBC. Source: [71]  

 

 

3.5  Discussion 

The ability to predict the shear stresses experienced by osteoblasts during culturing is 

crucial for optimizing in vitro bone tissue engineering experiments and scaffold designs.  
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For example, such models could help reveal scaffold features that are key to inducing bone 

forming responses:  increased nitric oxide, prostaglandin and osteopontin production.[103, 

136, 137] However, there is a danger that the simpleton RVE models, commonly 

implemented by researchers to save on computation time, could potentially yield 

unrealistic results. Yet, the only guideline on accuracy that currently exists in literature 

[119] applies to the RVE-WBC only, while the RVE-PBC remains uncharacterized.  

Moreover, the guideline is based on average stress values, which is not truly representative 

of what the cells experience during an actual experiment, given that they are not uniformly 

distributed in the scaffolds.  Hence, we explored the spatial variations in the fluid-induced 

shear stresses obtained via both the RVE-PBC and the RVE-WBC scaffold 

approximations. These were compared by benchmarking against the computationally-

intensive whole scaffold LBM simulations, which are considered to yield the true stress 

values. Moreover, we made sure that our cutout sizes were well beyond the “6 times the 

average pore size” guideline suggested by,[119] in order to examine the best-case scenario 

produced by the RVEs.     

Consequently, the RVE simulations were found to have a significantly lower 

computational overhead (see Figure 3.6), which ultimately translates to shorter waiting 

times for obtaining results.  Furthermore, between the two boundary condition types 

commonly employed in the RVE simulations, the PBC was found to converge faster than 

the WBC.  This is largely attributed to:  1) the smaller simulation domain size of the former, 

since the latter models typically include an entrance length that is added in order to avoid 

entrance effects; and 2) the flow field being considerably simpler, since there is no wall 

contributing to its complexity. 



46 
 

Moreover, the RVE-PBC was also found to be more accurate when compared to 

the RVE-WBC (see Figure 3.8 and Figure 3.9). Specifically, the RVE-PBC produced less 

error towards the cut-outs’ edges, while the RVE-WBC caused more. This makes sense, 

given that the RVE-PBC is not affected by its boundaries due the periodicity applied, while 

the RVE-WBC is essentially a flow bounded by a duct.  The latter is also less representative 

of an equivalent cut-out from the whole scaffold.  Furthermore, we found that for both 

RVE types, the error goes up with the scaffold porosity (see Figure 3.10). The likely reason 

for this observation is that when the scaffold pores are tight, they have a dominating effect 

on shaping the flow field and the boundary condition effects are negligible.  Conversely, 

when the pores become less restrictive, the effect of the boundary condition becomes more 

evident and contributes to the error.  

However, even for the best-case scenario (i.e., when the cut-out is >> six times 

larger than the average pore size), the deviation from the true stress values was still between 

20 and 80%, for the ten scaffolds that we tested. This is significant and can lead to 

misleading conclusions about the efficacy of the scaffold. Therefore, caution must be taken 

when using the RVE approximations.  Overall, however, the fact that most of the spatial 

stress patterns were preserved, despite the use of the unrealistic boundary conditions, adds 

legitimacy to their use. Additionally, information about the variation of error, such as what 

is provided in this manuscript, could in theory help undo some of the inaccuracies 

associated with the RVEs. Until that becomes possible, however, the RVE-PBC was found 

to be the clear winner over the RVE-WBC, on both the accuracy and computational 

efficiency fronts.  Therefore, it is the recommended boundary condition for large-scale 
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simulations, especially when the porosity of the scaffold is high (which is typical for tissue 

engineering).   

A limitation of this study is that it was performed on empty scaffolds, without any 

cells or tissues in them. As mentioned earlier, the cells are likely to build tissues in preferred 

locations within the scaffolds. Therefore, the effects of the RVEs should be quantified in 

greater detail in the locations favored by the cells. Finally, in addition to calculating the 

stimulatory stresses, the flow field produced by the RVEs is often also used to model the 

influences of metabolite transport on the tissue growth.[75, 76] Therefore, although they 

are beyond the scope of this manuscript, the effects of the RVE cutouts and their boundary 

conditions on the mass transport within the scaffolds will be addressed in our future 

investigations. 

Overall, the results of this study are expected to be useful to CFD applications 

beyond tissue engineering and LBM.  For example, the RVEs are commonly used in porous 

media modeling,[130, 138, 139] and with non-LBM methods.[117, 118, 140] The biggest 

difference for the latter is that the non-LBM CFD methods may implement a non-structured 

mesh instead of a structured one.  In the case of  PBC, “pointers” are used at each boundary 

mesh-node in order to re-address the flow to a location appropriate for achieving 

periodicity.[141] Hence, the conclusions of this work apply to RVE-PBCs implemented 

with CFD approaches other than LBM as well. 

 

3.6  Conclusion 

In this work, we investigated the numerical differences between two types of boundary 

conditions, the PBC and the WBC, which are commonly employed for enabling RVE 
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approximations in bone tissue engineering scaffold simulations.  We found that, in general, 

both of the RVE types followed the same spatial surface stress patterns as the whole 

scaffold simulations.  However, they under-predicted the absolute stress values by a 

considerable amount: 20 - 80%.   Moreover, it was found that the error grew with higher 

porosity of the scaffold but did not depend significantly on its manufacturing method.  

Lastly, we found that the PBC always resulted in a better prediction (i.e., lower error) than 

the WBC.  It was also more computationally efficient, due to a smaller simulation domain 

size requirement.  Therefore, the PBC is recommended as the boundary condition of choice 

for the RVE approximations.  Overall, these findings fill an important knowledge gap in 

literature regarding the accuracy of the widely used RVE approximations. It is our 

expectation that they will be used to help researchers decide whether the use of the RVE 

approximations is justified for their application.  

 

 

 

 

 

 

 

 

 

 

 



49 
 

CHAPTER 4 

4 APPLICATION II: TIME-DEPENDENT SHEAR STRESS DISTRIBUTIONS 

DURING EXTENDED FLOW PERFUSION CULTURE OF BONE TISSUE 

ENGINEERED CONSTRUCTS
3 

 

4.1  Abstract 

Flow perfusion bioreactors have been extensively investigated as a promising culture 

method for bone tissue engineering, due to improved nutrient delivery and shear force-

mediated osteoblastic differentiation. However, a major drawback impeding the transition 

to clinically-relevant tissue regeneration is the inability to non-destructively monitor 

constructs during culture. To alleviate this shortcoming, we investigated the distribution of 

fluid shear forces in scaffolds cultured in flow perfusion bioreactors using computational 

fluid dynamic techniques, analyzed the effects of scaffold architecture on the shear forces 

and monitored tissue mineralization throughout the culture period using micro-computed 

tomography. For this study, we dynamically seeded one million adult rat mesenchymal 

stem cells (MSCs) on 85% porous poly (L-lactic acid) (PLLA) polymeric spunbonded 

scaffolds. After taking intermittent samples over 16 days, the constructs were imaged and 

reconstructed using microcomputed tomography. Fluid dynamic simulations were 

performed using a custom in-house lattice Boltzmann program. By taking samples at 

different time points during culture, we are able to monitor the mineralization and resulting 

                                                           

Some of the material presented in this section have been published in Williams, C., Kadri, 

O.E., Voronov, R.S. and Sikavitsas, V.I. “Time-Dependent Shear Stress Distributions 

during Extended Flow Perfusion Culture of Bone Tissue Engineered Constructs”. Fluids, 

2018. 3(2): p. 25. Listed are individual author contributions: O.E.K. performed image 

processing, 3-D reconstruction, CFD simulation and data analysis; C.W. performed cell 

culture, bioreactor experiments, image analysis and data analysis. 
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changes in flow-induced shear distributions in the porous scaffolds as the constructs mature 

into bone tissue engineered constructs, which has not been investigated previously in the 

literature. From the work conducted in this study, we proved that the average shear stress 

per construct consistently increases as a function of culture time, resulting in an increase 

at Day 16 of 113%. 

 

4.2  Introduction 

Every year in the United States, there are more than 500,000 bone graft surgeries.[142] In 

most cases, bone will regenerate after fracture with minimal complications; however, when 

there is a critically-sized defect or fracture healing is impaired, bone grafts must be used in 

order to regain proper bone function. Furthermore, bone diseases such as osteoporosis, 

infection, skeletal defects and bone cancer may also cause a need for bone grafts. Bone 

tissue engineering is a possible solution to the problems plaguing the current bone graft 

therapies. Because tissue engineered bone would be made using the patient’s own cells, 

immune rejection would be eliminated. For this to work, four components are needed for 

tissue growth: cells that can be differentiated into bone cells, osteoconductive scaffolds 

acting as a matrix while the tissue grows, growth factors and other chemical stimulation 

and mechanical stimulation to encourage osteogenic differentiation. Mechanical 

stimulation, in particular, is implemented through the use of bioreactors. 

 Previous studies have given the indication that the shear stresses bone cells 

experience inside the body are between 8 and 30 dynes/cm2.[74] In vitro culture studies 

combined with computational fluid dynamics (CFD) simulation results have shown that 

shear stresses below 15 dynes/cm2 are conducive to increased matrix production and 
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osteoblastic differentiation. However, if the shear rates are too high, detachment or cell 

death can occur.[143] In addition, whenever inhomogeneous cell seeding distributions 

occur, especially in the case of cell aggregates, even modest shear rates that are otherwise 

beneficial may result in cell detachment.[112, 144-146] Due to this, it is important to 

properly model and evaluate the flow profile inside cell-seeded scaffolds.[120, 121, 147, 

148] Ideally, the localized shear rates should be anticipated in order to give proper fluid 

control. However, the largest barrier to this goal is the continual deposition of mineralized 

tissue during the culture period. After the stem cells differentiate into mature osteoblasts, 

both soft and hard extracellular matrices grow into the pores of the construct. This 

effectively alters the flow field, due to the decreasing porosity of scaffold, and renders 

simulations performed on empty scaffolds invalid after the start of culture. 

To combat this issue, we aimed to evaluate the localized fluid shear distributions 

throughout the culture period, giving an indication of the effects of tissue growth on the 

flow-induced stress fields, which has been extensively investigated in the literature.[104, 

113, 114, 149, 150] Using spunbonded poly (L-lactic acid) scaffolds and a custom flow 

perfusion bioreactor, rat mesenchymal stem cells were cultured for 16 days under shear-

induced differentiation flow ranges. The resulting constructs were imaged utilizing 

microcomputed tomography (µCT), segmented and reconstructed following previously 

published techniques.[74, 75, 98] This allows for subsequent CFD simulations on the 

cultured constructs. 

In this manuscript, it is hypothesized that the levels of fluid shear present at the 

walls of a scaffold, where the cells are located, will increase as a function of culture time. 

Previous studies have assumed that (1) the shear field predicted using a non-cultured 
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scaffold is representative of cultured constructs and (2) that the average wall shear 

experienced by the cells is constant throughout a culture period.[98, 151] The intention of 

this study is to use CFD simulations in conjunction with microcomputed tomography of 

mature constructs and biochemical assays to bring to light the relationship between the 

localized shear field and culture time, which would give researchers the ability to predict 

the time-dependent shear distribution in conjunction with the growing extracellular matrix 

within three dimensional scaffolds exposed to flow perfusion. 

 

4.3  Materials and Methods 

4.3.1 Scaffold Manufacturing 

Poly (L-lactic acid) (PLLA; Grade 6251D; 1.4% D enantiomer; 108,500 MW; 1.87 PDI; 

NatureWorks LLC) non-woven fiber mesh scaffolds were produced via spun-bonding, as 

previously demonstrated.[72, 73] Scaffolds were cut from an 8 mm-thick PLLA mat, 

resulting in a porosity of 88% and a radius of 3.5 mm. A Nikon HFX-II microscope (Nikon 

Corporation, Tokyo, Japan) was used to evaluate fiber diameter, found to be 24.5 µm, and 

was confirmed by scanning electron microscopy, shown in Figure 4.1. 

 

 

Figure 4.1  Scanning electron microscopy (SEM) images of scaffolds manufactured using 

spun-bounding. Source: [72] 
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4.3.2 Cell Expansion, Seeding and Culture 

Adult MSCs were extracted from the tibias and femurs of male Wistar rats (Harlan 

Laboratories, Inc., Indianapolis, IN, USA) using protocols described in previous 

studies.[112, 142, 152] Cells were cultured at 37 ◦C and 5% CO2 in standard minimum 

essential medium eagle alpha modification (α-MEM) (Invitrogen, Thermo Fisher 

Scientific corporation, Waltham, MA, USA) supplemented with 10% fetal bovine serum 

(Atlanta Biologicals, Flowery Branch, GA, USA) and 1% antibiotic-antimycotic 

(Invitrogen). Passage 2 cells were used for this study at a density of two million cells/mL 

for scaffold seeding. Scaffolds were prepped for cell seeding using an established pre-

wetting technique.[144] Vacuum air removal of scaffolds was conducted in 75% ethanol. 

Pre-wet scaffolds were placed in cassettes within a flow perfusion bioreactor for one hour 

in α-MEM to remove any remaining ethanol.[153, 154] Following ethanol removal, two 

million MSCs/150 µL of osteogenic α-MEM were pipetted into each scaffold chamber. 

The seeding mixture was dynamically perfused at 0.15 mL/min, forwards and backwards, 

in five-minute intervals for two hours. Osteogenic media comprises standard α-MEM 

supplemented with dexamethasone, beta-glycerophosphate and ascorbic acid, which have 

been shown to induce osteogenic differentiation.[155] After dynamic seeding, the 

bioreactor was allowed to rest for two hours, without flow, to facilitate cell attachment. 

Finally, osteogenic α-MEM was continuously perfused at a rate of 0.5 mL/min for the 

remainder of the culture period. Scaffolds were collected for analysis at Days 1, 4, 8, 11 

and 16. 
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4.3.3 Construct Cellularity 

The number of cells present in each construct was evaluated using the fluorescent 

PicoGreen® dsDNA assay (Invitrogen). At each sacrificial time point, construct was 

removed from cassette and rinsed in PBS to remove any cells not adhered to the scaffold. 

Subsequently, the scaffolds were cut into eight pieces, placed in 1 mL of deionized (DI) 

H2O and stored at -20 ◦C. Each construct underwent three freeze/thaw cycles to lyse the 

cells. Fluorescent analysis was conducted on a Synergy HT Multi-Mode Microplate Reader 

(BioTek Instruments, Inc., Winooski, VT, USA) at an excitation wavelength of 480 nm 

and an emission wavelength of 520 nm. All samples and standards were run in triplicate. 

Resulting values were then divided by the previously-determined dsDNA content per cell. 

 

4.3.4 Construct Calcium Deposition 

Calcium deposition was measured within scaffolds following the freeze/thaw cycles of the 

described above. The solution was measured with a calcium colorimetric assay (Sigma-

Aldrich Corporation, St. Louis, MO, USA, Cat. # MAK022). Samples were read on a 

Synergy HT Multi-Mode Microplate Reader (Bio-Tek) at an absorbance of 575 nm. All 

samples and standards were run in triplicates. 

 

4.3.5 Imaging and Reconstruction 

Micro-computed tomography was used to non-destructively scan the scaffolds at a 

resolution of 20 µm and 45 kV energy (Quantum FX, Perkin Elmer, Waltham, MA, USA; 

L10101, Hamamatsu Photonics, Hamamatsu, Japan; PaxScan 1313, Varian Medical 

Systems, Palo Alto, CA, USA). The resulting 2D µCT image slices were filtered and 
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thresholded using a custom-written MATLAB code (MathWorks Inc., Natick, MA). Using 

a methodology described in Voronov et al.,[152] three different materials (polymer 

scaffold, soft tissue and mineralized tissue) were identified. This was done by using a 

segmentation method which allowed us to distinguish between the aforementioned 

materials, based on their attenuation to X-rays and structural differences. After 

segmentation, the images were assembled into a 3D-reconstruction. Segmentation 

parameters were chosen to ensure that porosity of the 3D-reconstruction matched 

experimentally determined values of porosity. In this study, a total of six time points were 

investigated (three constructs per time point). 

 

4.3.6 CFD Simulations 

Simulations were performed via the LBM implemented using a previously validated 

custom in-house LBM, which has been extensively utilized for computing surface shear 

stresses on µCT reconstructions.[74, 75, 78] 

A custom-written, in-house code was developed for this work, and a detailed 

description may be found in previous publications.[74-76] The three-dimensional, 15 

lattice (D3Q15) for LBM,[88] in conjunction with the single-relaxation time 

approximation of the collision term given by Bhatnagar, Gross and Krook[86], was used 

to perform simulations. LBM results have been validated for several flow cases for which 

analytical solutions are available: forced flow in a slit, flow in a pipe and flow through an 

infinite array of spheres.[74] 

Due to the computationally-intensive nature of fluid flow simulations in scaffolds, 

representative portions cut from whole scaffolds are used. In this work, a single cuboid 
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portion was extracted from the center of the 3D scaffold reconstruction to avoid end effects 

in flow simulations. The resulting simulation domain size was 153 µm × 277 µm × 221 

µm, with the center of the domain located at the center of the scaffold. Periodic boundary 

conditions were applied in all three directions, in order to approximate the whole scaffold. 

In addition, it was assumed that the whole extracellular matrix (ECM) was a rigid, non-

permeable domain. A no-slip boundary condition was applied at wall faces using the 

“bounce-back” technique.[61] To take advantage of the inherent LBM parallelizability, the 

domain was decomposed using MPI.[94] Simulation convergence was defined as when the 

minimum, average and highest velocities computed for the simulation domain vary by at 

least 0.001% for two consecutive time steps. 

In order to estimate the mechanical stimulation of the cells by the flow of the culture 

media, the fluid-induced shear stresses on the surface of the scaffold were calculated 

following a scheme suggested by Porter et al[98] given in equation (3.1). The fluid dynamic 

viscosity was 0.01g/cm s, which is close to that of α-MEM supplemented with 10% FBS 

typically used in cell culturing experiments.[133] Velocity vectors used in calculations 

were derived from a flow rate of 0.5 mL/min. Computed shear stress values are the largest 

eigenvalues of σ. Stress maps generated using Tecplot 360 EX 2016 (Tecplot Inc., 

Bellevue, WA, USA) were used to visualize computed shear stresses. Additionally, we 

modeled the ECM as an impermeable wall without elasticity (static mesh) and did not 

distinguish between hard and soft ECM during the computations. 
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4.4  Results 

4.4.1 Construct Cellularity 

In order to validate the presence of cells in the constructs, a destructive dsDNA 

quantification assay is performed. As shown in Figure 4.2, there was a slight decrease in 

scaffold cellularity between Days 1 and 4, and a statistically steady cellularity through the 

end of culture. The vertical dotted line between Days 1 and 4 indicate the transition in flow 

rate from 0.15 mL/min–0.5 mL/min. Hence, the decrease between these two days 

represents a loss of cells either due to cell detachment or death.[156, 157] This loss is a 

common occurrence, as MSCs display weak adherence to poly (L-lactic acid) (PLLA). The 

horizontal dashed line represents the number of cells initially seeded on the constructs. The 

ratio between this line and Day 1 is known as the seeding efficiency, which in this case is 

40%. 

 

 

Figure 4.2  Construct cellularity for each construct over the culture period. The horizontal 

dashed line indicates the number of cells seeded initially; vertical dotted line indicates the 

switch in flow rates, from 0.15 mL/min during seeding to 0.5 mL/min for culture. Values 

are given as mean ± standard error of values with respect to the mean (n = 4). Source: [72] 
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4.4.2 Calcium Deposition 

Calcium deposition was measured using a calcium assay at each sacrificial time point, with 

results shown in Figure 4.3. As seen in the graph, there is a sharp increase in calcium 

deposition around Day 8.  

 

Figure 4.3  Calcium levels present within each construct over the culture period. The 

horizontal dotted line represents the background signal for an empty construct. Values 

are given as the mean ± the standard error of the mean (n = 4). The # signifies the 

significantly lowest value (p < 0.01). Source: [72] 

 

 

In conjunction with the calcium assay, a 2D representation of the constructs is shown in 

(Figures 4.4 and 4.5). Extensive mineralized tissue can be seen in samples sacrificed after 

Day 8, while prior samples displayed limited amounts of mineralized tissue. It can be noted 

that the largest standard deviation in mineralization was observed in samples sacrificed on 

Day 8, a time point that matches the onset of extensive mineralization (Figure 4.4). A 

similar jump in amounts of mineralized tissue can be observed around Day 11. 
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Figure 4.4 Summary of mineralized tissue (hard extracellular matrix (ECM)) 

deposited in cultured constructs rendered during microcomputed tomography (µCT) 

with Simple Viewer for samples taken on Days 8, 11 and 16, respectively. Source: [72] 
 

 

Figure 4.5  (Left) 2D grayscale view of the scaffold after µCT imaging. The top row is 

a view of the entire scaffold, while the bottom row is a magnified view of the indicated 

area of interest. (Right) 2D view of the scaffold after µCT imaging with ECM indicated 

in red. Source: [72] 
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4.4.3 Shear Stress Distributions over Time 

The localized fluid shear stress distributions for the reconstructions at each intermittent 

time point are shown in Figure 4.6, where light blue is Day 1, green is Day 4, red is Day 

8 and dark blue is Day 11. The data presented show pronounced increases in shear stress 

levels with increasing culture time, this is evidenced by the rightwards shift in histogram 

distributions shown on the graph. 

 

 

Figure 4.6  Wall shear stress histogram distributions based on the day constructs were 

removed from culture and imaged. Source: [72] 

 

4.4.4 Effects of Calcium Deposition on Localized Shear Distributions 

Figure 4.7 shows sections of reconstructed scaffold cut-outs, with wall shear stress maps 

overlaid on them. It is evident that there are higher shear stresses during the later time 



61 
 

points, which is supported by the distributions shown in Figure 4.6. As pore size decreases, 

obstructions to flow occur resulting in increased fluid velocity and, subsequently, increased 

shear stress (yellow and red colors in the figure). Furthermore, these increased levels of 

shear stress are more widely distributed as culture time increases. 

 

 

Figure 4.7 Summary of wall shear stress maps for constructs cultured under osteo-

inductive conditions. Shear stress maps for Day 1 (far left) to Day 11 (far right) obtained 

using LBM. Source: [72] 

 

 

4.4.5 Average Wall Shear Stress 

Figure 4.8 displays the average wall shear stress calculated from LBM simulations 

following construct culture, resection, imaging and reconstruction. Indeed, the results 

reveal a continuous increase in shear as culture time increases, which is consistent with 

results presented in Figures 4.6 and 4.7. The most important revelation from this graph is 

the big jump in average wall shear stresses between Day 4 and Day 8. This is probably due 

to increased clogging of pores by matrix and is consistent with calcium deposition results 

given in Figure 4.3. 
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Figure 4.8  Summary of average shear stress per layer for a 0.5 mL/min flow rate. Values 

are given as the mean ± the standard error of the mean. Source: [72] 

 

4.5  Discussion 

After destructive analysis of the constructs, the average wall shear stress per construct as a 

function of culture time was investigated. As observed in Figure 4.8, the average shear 

stress remains statistically the same throughout the first four days of culture; however, after 

Day 8, there is a continuous increase in its value till the end of the culture period (113% 

by Day 16). This finding is consistent with other estimates of shear forces in scaffolds 

having similar levels of tissue formation reported in literature.[104] Furthermore, it 

confirms our hypothesis about bone tissue engineered cultures; that the shear stress 

experienced by the cells will increase significantly during culture, if the circulation fluid 

flow remains unchanged. This can be attributed to extracellular matrix deposition resulting 

in a clogging of the construct pores. By holding the circulation fluid flow constant and 
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simultaneously decreasing the pore sizes, fluid velocity within the construct interior is 

being increased and, concurrently, the wall shear stress. With respect to the influence of 

shear rate on osteoblastic differentiation, it is evident that a continuously increasing shear 

rate exposure will potentially accelerate the differentiation towards an osteoblastic lineage. 

Obviously, if the initial shear rates are near the range of flow-induced detachment, the 

observed increase could lead to undesirable detachment, necessitating the need for further 

investigations of the shear levels at which detachment occurs.  

After evaluating the construct reconstructions, it was observed that there is a clear 

correlation between the amount of mineralized tissue and an overall increase in magnitude 

of wall shear experienced within pores of the construct. Indeed, this correlation is obvious 

in both Figure 4.6, showing the frequency distributions, and Figure 4.7, which shows the 

wall shear stress maps. Regarding the former, distributions show an increased frequency 

of elevated shear stress as culture time increases, supporting the aforementioned increase 

in average wall shear stress. This finding is consistent when evaluating the stress maps. As 

culture time increases, there is a higher density of elevated shear seen within the constructs. 

This increase is most pronounced after Days 8–11, which, according to 3D reconstructions, 

are when large amounts of mineralized tissue starts depositing. 

Additionally, the scaffold cellularity and the levels of mineralized tissue deposited 

were evaluated. As seen in Figure 4.2, a seeding efficiency of 40% was achieved, higher 

than most perfusion-based seeding methods, and can be directly attributed to the oscillatory 

seeding protocol demonstrated in previous studies. Following complete seeding, the 

seeding efficiency drops further to 28% at Day 4 with the addition of a higher 

unidirectional fluid flow established at the end of Day 1. It is believed that the decrease in 
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cellularity seen between Day 1 and Day 4 is due to the change from basic maintenance 

flow employed immediately after seeding until Day 1 (0.15 mL/min) to culture flow 

beyond Day 1 (0.5 mL/min), and potentially causing a portion of cells to detach from the 

scaffold, especially those that form aggregates that are loosely bound to the surface. 

However, it must be noted that this drop could also be due to cell death or apoptosis, as 

observed in previous studies.[112, 144]  

In Figure 4.3, a steep increase in calcium production is observed between Days 4 

and 8. The point at which this occurs is a critical point in bone tissue engineering research 

and better understanding of the factors influencing it could result in more efficient 

scheduling of culturing bone tissue engineering constructs in vitro. Recent studies 

identifying the initiation of extensive osteoblastic differentiation using nondestructive 

metabolic monitoring can potentially allow future studies to better predict the exact timing 

of mineralization and thus allow for accurate prediction of the end of the culture 

period.[144] 

Figures 4.4 and 4.5 demonstrate qualitatively that mineralized tissue begins 

developing from the outer layer of the top surface of the scaffold directly exposed to culture 

media flow. This result contradicts the common assumption of homogeneous cell 

distribution made for many tissue engineering models and cannot be justified by localized 

fluid shear forces produced. This observation could be an artifact that is due to the scaffold 

radius being slightly larger than the bioreactor cassette; thus, causing both a snug fit and 

decreased porosity at scaffold edges in contact with the wall. Hence, this presents an 

environment where cells can attach in greater numbers due to the larger surface area 

available for attachment. This phenomenon is not expected to occur in rigid three-
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dimensional scaffolds, but will persist whenever deformable meshes are utilized, as is the 

case in the current study. 

Finally, Figure 4.4 shows an increase in mineralized tissue produced by visualizing 

µCT images between Days 8 and 11. It is believed that this lag time is due to cells starting 

to deposit calcium that is not dense enough to be picked up during image segmentation 

around Day 8. Together with this observation, Figure 4.5 presents the 2D images obtained 

from µCT showing growing tissue highlighted in red. These images illustrate the state of 

the construct at the end of culture and provide an insight into the density of mineralization 

that would occur if culturing were to continue. Therefore, it is to be expected that the soft 

tissue visualized in the images will eventually transition into fully-mineralized tissue. 

 

4.6  Conclusion 

In the presented manuscript, it was hypothesized that the distribution of fluid shear present 

at the walls of a construct cultured under osteoconductive conditions will exhibit higher 

magnitudes as culturing time increases. In order to accomplish this, rat mesenchymal stem 

cells were dynamically seeded on 85% porosity spunbonded poly (L-lactic acid) scaffold 

and cultured with osteogenic media for up to 16 days in a flow perfusion bioreactor. 

Following culture, the constructs were either destructively evaluated with assays for 

cellularity and calcium deposition or imaged using µCT and reconstructed to allow for 

CFD simulations to be performed. Average shear stress values and shear stress frequency 

distributions obtained from simulations were compared with the assays and confirmed the 

initial hypothesis. In terms of the calcium quantification assay, a steep increase is observed 

around Day 8. This finding is supported by the reconstructions, where imaging identified 



66 
 

an increase in mineralized tissue between Days 8 and 11. Additionally, the stress maps 

revealed elevated magnitudes of shear stress during the same time period. Finally, it was 

shown that both the shear stress distributions and average shear stress with each construct 

consistently increased as a function of culture time. This is due to mineralization occurring 

within the pores of the scaffold, decreasing pore diameter and effectively increasing 

velocity within the pores. In future studies, a correlation or algorithm can be developed 

that will give researchers the ability to predict, for the culture period, fluid shear 

distributions in bone tissue engineered cultures using µCT images of empty scaffolds, CFD 

simulations on the 3D reconstructions and non-destructive metabolic monitoring that 

allows for the identification of the point of sharp increase of mineralized deposition. 
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CHAPTER 5 

5 APPLICATION III: THROMBUS BIOMECHANICS 

6  

5.1  Abstract 

Ischemia leading to heart attacks and strokes is the major cause of mortality and morbidity 

in the United States. Whether an occlusion occurs or not, depends on the ability of a 

growing thrombus to resist the blood flow forces exerted on its structure.  This manuscript 

provides the first known in-vivo measurement of the stresses that clots can withstand before 

yielding to the surrounding blood flow. A hybrid semi-empirical approach was 

implemented to overcome the limitations of conventional techniques: namely, Lattice-

Boltzmann Method fluid dynamics simulations were performed based on 3D clot 

geometries.  The latter were estimated from intravital microscopy images of laser-induced 

injuries in cremaster microvasculature of live mice.  In addition to reporting the blood clot 

yield stresses, we also show that the thrombus “core” (a region nearest the injury site, 

composed of highly activated platelets) does not experience significant deformation in 

contrast to the thrombus “shell” (an assembly of quiescent platelets covering the core).  

This finding indicates that the shell is the more dangerous part of the blood clot, as it is 

prone to embolization. Hence, drugs should be designed to target it selectively, while 

leaving the core intact to minimize excessive bleeding.  Finally, we laid down a foundation 

for a nondimensionalization procedure which could ultimately lead to a unified theory of 

thrombo-genesis, capable of explaining all clotting events.  It is expected that the findings 

herein will be beneficial to public health, including to the understanding and treatment of 

heart attacks, strokes and hemophilia. 
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5.2  Introduction 

Achieving hemostasis following penetrating injuries is essential for the survival of 

organisms that possess a closed high-pressure circulatory system. However, pathological 

manifestation of thrombosis and embolism can potentially lead to life-threatening 

complications when occurring in the heart (i.e., a heart attack), brain (i.e., a stroke), or 

lungs (i.e., Deep Vein Thrombosis (DVT)/ Pulmonary Embolism (PE)). Among these, 

thrombo-embolic infarction is the leading cause of mortality and morbidity in the United 

States, while stroke is the 5th.[158]  Conversely, deficiencies in the clotting mechanisms 

(hemophilia or due to drug interactions) can result in bleeding risks that confront surgeons 

on a regular basis.  Yet, despite tremendous efforts by the medical research community 

(e.g., ~$3 billion of annual expenditure on heart attack and brain stroke research 

alone[159]), the problem that essentially amounts to a clogged “pipe” remains largely 

unsolved to this day. Moreover, what makes one thrombus benign, while another one 

dangerous, is also not well understood. Therefore, gaining insight into the thrombi’s 

tendency to occlude blood vessels would be beneficial for public health, since it could pave 

the way towards a better understanding of the risk factors involved; and subsequently to 

better disease treatments and thromboectomy devices.[160]  

Whether an occlusion occurs or not, depends on the ability of the growing thrombus 

to resist the blood flow forces exerted on its structure. With development of advanced 

intravital microscopy experiments, the thrombi structure has been shown to be 

heterogeneous, consisting of a densely packed “core” nearest the injury site, and a loose 

“shell” overlaying the core (see Figure 5.1).[161, 162]It is also reported that the core is 

composed of highly “activated” platelets (as is measured by P-selectin expression), while 
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the shell consists of loosely-packed P-selectin -negative cells.  The biological purpose, as 

well as the cause of this heterogeneity, are unknown.  One thing that is apparent, however, 

is that the core and the shell contribute differently to key parts of the thrombus formation 

and hemostasis: The shell is observed to shed the most mass (leading to the conclusion that 

embolism is mostly caused by this part of the clot); while the core can be seen to anchor 

the thrombus to the injury, and stop the escape of blood to the extravascular space by 

“sealing” the damage. This leads to an important conclusion that there are significant 

material and functional differences between these two regions of blood clots. 

 

 

Figure 5.1  LEFT -  “Core-and-Shell” model schematic showing that the clot is comprised 

of two regions differing in degree of platelet activation and packing density; Image 

reprinted with permission, from Ref. Source: [163]  RIGHT – Confocal microscopy image 

of a clot (Blue = P-selectin exposure marking the activated core; Red = anti-CD41 marking 

the quiescent shell). Scale bar is 10µm.  
 

At the same time, the viscoelastic behavior exhibited by the thrombi resembles that 

of a Bingham plastic - a material, like toothpaste, that behaves as a rigid body at low 

stresses, but flows as a viscous fluid when its critical yield stress c is exceeded (see 

Equations 5.1 and 5.2).  Thus, like a Bingham plastic, the clot consists of discrete particles 

(in this case platelets) trapped in a liquid gel.  The platelets interact with each other creating 

a weak solid structure known as a “false body”.  A certain amount of stress corresponding 
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to c is required to break this structure and allow the platelets to rearrange within the gel 

under viscous forces.  After the stress is reduced however, the platelets associate again, 

solidifying the structure. Figure 5.2 illustrates the Bingham plastic-like behavior of a blood 

clot as observed from intravital microscopy. 

 𝛾̇ = 0                      < 𝑐,                    no flow    (5.1) 

 = 𝑐 + µ𝛾̇,         ≥ 𝑐,                   flow with a constant viscosity  (5.2)  

 

Figure 5.2  Red – Platelets (Anti-CD41 platelet marker); Blue – Core (anti-P-selectin 

thrombus “core” marker); Green – Injury (Uncaged Fluorescent Albumin). White Arrow – 

indicates the direction of flow; Yellow Arrow – Upstream portion of the clot; Cyan Arrow 

– Downstream portion of the clot.  A – Initial attachment at injury; B – Uniform growth 

prior to transition; C – Final stable steady-state core-and-shell thrombus structure, after the 

thrombus’ yielding to the blood flow.  

 
This figure shows three major progression stages of a typical thrombus formation:  

1) initial platelet attachment to the injury site (see Figure 5.2-A); 2) clot growth radially 

outward from the injury site (see Figure 5.2-B); and 3) steady state stability (see Figure 

5.2-C).  The transition from the second to the third stage (Figure 5.2, panels B→C) is the 

Bingham-like yielding of the thrombus.  During this critical event, platelet mass from the 

upstream portion of the thrombus is forced to its downstream side.  As a result, the 

thrombus changes shape from a “ball”-like structure, to the characteristic “comet-tail” 

shape typically seen in blood clots. This transition occurs because the obstructing thrombus 
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experiences stronger forces from the surrounding fluid, which is trying to squeeze through 

the little remaining openings left in the lumen.  If there is no full occlusion of the blood 

vessel, the thrombus’ structure eventually yields to the flow forces, and rearranges its shape 

to minimize the fluid drag imposed on its surface. 

Interestingly, despite the underlying complexity of the thrombo-genesis 

mechanism, the discrete regimes shown in Figure 5.2 appear to be common to all thrombi.  

Therefore, it is hypothesized here that the critical yield stress c is a parameter that is key 

to understanding the extent to which the clot’s structure can resist deformation and 

breakage.  In other words, it is an important measure of stiffness that can provide 

information on when the thrombus is likely to become pathogenic. Yet, c remains 

unmeasured to this day.  This is because insight into thrombosis is made difficult by the 

fact that it is a fast, small scale process that involves a combination of coupled biochemical 

reaction cascades, intra- and inter- cell signaling, cell and tissue biomechanics, and non-

Newtonian fluid flow.[164, 165]   

Among the experimental techniques, compression testing,[166, 167] tensile 

testing,[168-170] shear rheometry,[171, 172] nano-indentation[173] and ultrasound 

elastography[174-176] are commonly used to estimate mechanical properties of the 

thrombi (e.g., elastic modulus, shear modulus and stiffness).[166-169, 171, 173-175] 

However, most of these works use in vitro flow loops to generate thrombi, which may not 

be representative of the real physiological conditions in vivo. For example, there are some 

discrepancies between the ex vivo and the in vivo measurements.  One such discrepancy is 

the platelet attachment, which happens so fast in vivo, that even the high speed cameras 

have trouble resolving it.[6] In contrast, the time scales of platelet activation observed ex-
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vivo are on the order of minutes, which is several orders of magnitude longer than that of 

in-vivo.[177-180]   

Alternatively, a preformed thrombus could be explanted from the body for an ex 

vivo measurement.  However, this type of experiment corresponds to just a single time 

point, and only at a late stage of the thrombus formation.  Hence, it would not capture the 

full thrombosis dynamics; knowledge of which is necessary to measure the critical yield 

stress of the clot.  Unfortunately, only a few studies among the above works measure 

thrombi biomechanical properties directly in vivo. A typical example is Mfoumou et 

al.,[176] who used shear wave ultrasound imaging to measure thrombus stiffness in rabbits’ 

veins. However, a) the temporal resolution of the measurements in such studies is on the 

order of t = 10 mins, which is again too slow to capture thrombus growth dynamics (lasts 

on the order of seconds), and b) the measurement occurs through tissue, which could reduce 

its accuracy.  Therefore, better approaches are needed to deduce the ability of blood clots 

to resist deformation in vivo. 

Computational models offer an attractive alternative, because they can resolve the 

time scale limitation by recreating thrombosis in silico.[181-188] However, the clot 

structures generated by the simulations are not guaranteed to have realistic geometries, or 

to follow a realistic deformation trajectory over time.  The reasons behind these limitations 

are the numerous unknowns in biology: for example, simulated clot structures are typically 

represented using either continuum models,[181, 183, 186, 188-191] discrete particle-

based[182, 192, 193] or hybrid continuum/discrete particle-based[184, 185, 187, 194-196] 

dynamics. All these approaches rely on defining the clot biomechanics via parameters such 

as platelet-platelet, platelet-vessel wall/injury, platelet-proteins and fibrin-fibrin bond 
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strengths (typically modeled using a simple spring constant).  However, since most of these 

parameters are obtained from in vitro experimental measurements, it is difficult to verify 

whether they are truly representative of the in vivo values.  Moreover, some of the 

biological processes are simply too complex, and consequently require numerous 

simplifications / assumptions for achieving bottom-up modeling.   For example, platelet 

activation – a process central to clotting, is typically modeled using top-down neural 

networks pre-trained on an individual’s unique platelet phenotypes;[196] while bottom-up 

approaches to modeling the same phenomenon require unknown-parameter 

estimation.[197] Therefore, the purely computational methods, ultimately do not guarantee 

a realistic trajectory of thrombus evolution over time.   

Thus, this seemingly “simple” phenomenon that is responsible for a wide range of 

life-threatening pathologies is not easily accessible to either experimental or computational 

inquiries alone.  Consequently, semi-empirical approaches offer a reasonable compromise 

for overcoming these limitations:  they bypass the need for generating the clot structure 

mathematically, by obtaining it from experimental imaging instead.  This ensures that a 

realistic geometry is used for solving the physics involved in the process. For example, in 

refs. [180, 186, 198, 199] such models were used to calculate the time-dependent effects 

of surface shear stresses on thrombi developed in vitro. However, as mentioned previously, 

in vitro experiments may not depict realistic physiological conditions observed in vivo. 

Hence, in ref.[200] intravital imaging was used as the basis for calculating shear stresses 

in the near-thrombus region in vivo. Unfortunately, these simulations were 2D, which may 

not provide quantitatively accurate descriptions of the 3D thrombus behavior.  
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The reason why the latter study was done in 2D is because the thrombus  structure 

changes faster than a 3D confocal microscopy scan can be completed.[186]  Moreover, 

considerable fluorophore bleaching is experienced during 3D image acquisition, even if 

the scanned thrombus is static.  To overcome this problem, here we instead estimate the 

3D geometry of the clots from the high-speed imaging of their cross-sections.  In this 

manner, our image-driven simulation approach avoids the pitfalls of using either just 

experiments or just computation alone.  To the best of our knowledge, this combination of 

advanced time lapse imaging and high-fidelity computation provides the first estimate of 

the thrombi’s yield stress in vivo. 

 

5.3   Methods 

The overall semi-empirical approach used in this work is summarized in Figure 5.3.  

Namely, the evolution of the clot structures over time is obtained from 2D intravital 

microscopy of laser-induced injuries in microvasculature of live mice.  Then, the 3D shape 

of the thrombi is estimated by casting assumptions about the relationship between the 2D 

and the 3D structures (based on our previous observations).[6, 186]  Finally, Lattice-

Boltzmann Method (LBM) is used to calculate the fluid forces causing the thrombi to 

deform (i.e., the critical yield stress σc). 
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Figure 5.3  Process flow diagram for the image-based modeling methodology used in this 

work.  Injury was first induced in the artery of mice to initiate thrombus formation (Blue 

color indicates activated thrombus core; red indicates thrombus shell; green represents 

lumen and interstitial space within the thrombus). Then high-resolution confocal 

microscopy was used for 2D visualization of the process. Afterwards, a reconstructed 3D 

thrombus geometry (red) was estimated from the 2D images (blue is pipe representing 

blood vessel) and imported into the LBM fluid flow solver. Finally, LBM simulation results 

were used to compute the shear stresses on thrombus surface. 

 

5.3.1 In vivo Laser Injury and Intravital Microscopy 

All of the experiments in this manuscript were performed by the Skip Brass laboratory at 

the University of Pennsylvania as described in refs.[6, 201] Briefly, thrombus formation 

was visualized in the microcirculation of live mice, following procedures previously 

developed in Ref.[162]  In order to image the thrombus structure, intravital microscopy 

experiments were performed in male C57Bl/6J mice 8-12 weeks of age (Jackson 

Laboratories, Bar Harbor, ME).  Thrombus formation in the mice was induced via laser 

injury of their cremaster muscle, according to procedures originally developed by Falati et 

al.[162]  Alexa-Fluor® monoclonal antibody labeling kits from Invitrogen (Carlsbad, CA) 

were used to label antibodies. Anti-CD41 F(ab)2 fragments (clone MWReg30, BD 

Biosciences, San Diego, CA) were used to visualize platelet surfaces, anti-P-selectin (clone 

RB40.34, BD Bioscience) was used to visualize degranulated platelets, and caged 

fluorescein conjugated to albumin[201] was used for lumen and laser injury site 
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visualization. The 2D structure of the thrombus formed due to the laser injury was imaged 

using confocal microscopy.   

The center line maximum velocity through the mouse blood vessels was measured 

using optical Doppler velocimetry and divided by a factor of 1.6. The latter was done to 

account for a known artifact of the measuring technique:  velocity profiles to appear 

slightly blunted and non-parabolic due to out-of-focus cells modulating the light intensity 

signals.[202-204]  This procedure yielded an average blood vessel velocity of 4.78 mm/s.  

The velocimetry measurement was taken in a region away from the thrombus, to ensure 

that the velocity field was unaffected by the thrombi’ presence. More details of the 

experimental procedures can be found in prior publications.[161, 201] All procedures and 

protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of 

the University of Pennsylvania. 

 

5.3.2 Image Acquisition, Post-processing and Estimation of Three-Dimensional 

Thrombus Shape 

 
Since 3D imaging is too slow to capture clot shape changes, 2D images from the confocal 

microscope were acquired using SlideBook 5 software (Intelligent Imaging Innovations) 

with a time interval of 0.619 seconds and a spatial resolution of 0.22 µm/pixel. A total of 

300 time images were collected for every experiment.  The obtained images were deblurred 

using a technique reported in Ref.[6] Next, Fiji[205] plug-ins were used to compensate for 

vibrations due to muscle contractions in the mouse, and air currents surrounding the 

sample. Specifically, to achieve video stabilization, all intensity channels were 

superimposed together, and stabilized collectively using either StackReg[206] or Image 

Stabilizer ImageJ plug-ins;[207] where the choice of plug-in is based on which gave better 
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results for that capture. Finally, a custom Matlab code (MathWorks Inc., Natick, MA) was 

used to further enhance the signal-to-noise ratio of the 2D images and subsequently 

segment 2D thrombus shapes using standard image processing techniques.   

Once the 2D images were post-processed, an in-house Matlab code (MathWorks 

Inc., Natick, MA) was used to generate estimated 3D clot geometries based on the 2D 

confocal images, at each time point. Specifically, the code assumed that each time-point 

image represented longitudinal (i.e., parallel to the blood flow axis) 2D cross-sections 

through the center of the actual 3D thrombi, at that same instant. This is a good assumption, 

since the microscope’s operator particularly chose an imaging plane such that the thrombi’ 

cross-sections were maximized.  A representative grayscale thrombus cross-section from 

microscopy is shown in Figure 5.4-Left.   

 

 

Figure 5.4  LEFT – a 2D grayscale image of a thrombus crossection obtained via confocal 

fluorescent microscopy (yellow line boundary outlines the segmented clot shape);  

MIDDLE - illustration of how parabola are fit on the edges to generate 3D geometry (red 

is the 2D cross-section, blue are the parabolas fitted to its “spine”); RIGHT - resulting 3D 

reconstruction (blue is a pipe fitted around thrombus depicting the blood vessel. Red is the 

actual reconstructed 3D thrombus). Pipe diameter and lengths are 0.03685mm and 

0.2275mm for this experiment, respectively. White arrow indicates the direction of blood 

flow. 
 

Subsequently, cross-wise (i.e., perpendicular to the blood flow axis) parabolic 

cross-sections were stacked along the “spine” of each clot artificially, to estimate the 

thrombus’ 3D shapes (see Figure 5.4-Middle). The distance between the consecutive 

parabolic slices corresponded to the microscopy image resolution of 0.22 µm (or one lattice 
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spacing in LBM units). The resulting parabolic shape, chosen to represent the outer 

thrombus perimeter, was selected based on experimentally-observed 3D reconstructions of 

a static clot.[6] Specifically, the height of each parabola was dictated by the height of 

thrombus’ “spine” at every position along the longitudinal direction; while the widths of 

the parabolas were assumed to be in a constant 2:3 ratio with the parabola heights 

throughout the thrombus.  This ratio was again consistent with experimental observations 

from static 3D in vivo imaging shown in Ref.[6]. 

Finally, the blood vessel walls were manually segmented from the 2D images to 

measure the lumen diameter.  Subsequently, a 3D pipe of the same size was created around 

the estimated 3D blood clot (see Figure 5.3-Right).   The length of the pipe was chosen to 

be three times the maximum clot length, to avoid entrance effects in fluid flow simulations. 

 

5.3.3 Fluid Flow Modeling:  Lattice-Boltzmann Method 

Convection within the blood vessels and around the 3D thrombi was modeled via LBM. It 

was chosen for this work because of the ease with which it handles complex boundary 

conditions, and due to its efficient parallelizability on supercomputers. A previously 

developed custom-written, parallelized, in-house code was used in this work.[6, 71, 74, 75, 

94].  

The LBM simulations were performed for a total of ten different laser-injury 

experiments (see Table 5.1). For each one, a pseudo-steady state approach was taken, to 

update the clot shape based on the successive microscopy images.  Namely, flows through 

geometries representing each individual time step were solved separately from each other, 

as steady state simulations. Ultimately, the individual time step results were then 
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concatenated to form a continuous time-series. The pseudo-steady state approach is a good 

assumption, given than the fluid velocity field changes much faster than do the clot 

geometries.   

While the viscosity of blood is known to be shear-dependent,[208, 209] here it is 

assumed to exhibit Newtonian behavior with a viscosity of µ ≈ 0.03 gr/cm-s.[210, 211]  

This is considered to be a good assumption due to the low hematocrit typically observed in 

microvasculature.[212]  Given that the reality is likely to be something in-between, two 

different boundary conditions commonly encountered in literature were modeled:  constant 

pressure drop[181, 199, 213] and constant flow rate.[199, 214]  In both cases, the initial 

average lumen blood velocity in LBM was matched to the in vivo value of 4.78mm/s, 

obtained by optical Doppler velocimetry for a comparable diameter blood vessel (as 

discussed in section 5.2).  The simulations were considered converged when smallest, 

average, and highest flow velocities in the whole simulation domain varied by less than 

0.01% per LBM 1000 steps.  Approximately 60,000 steps were needed for full conversion 

of each experimental time step.  The image-based LBM simulation results were validated 

against an idealized homogeneous porous media model of a thrombus using a commercial 

CFD package COMSOL® (Discussed further in Sections 5.4 and 5.5). 

 

5.3.4 Stress Calculations 

Since the thrombi deformation was obtained from imaging, their geometry in the model 

was assumed to be solid. The fluid-induced shear stresses acting on thrombi surfaces were 

estimated following a scheme suggested by Porter et al.[98] given in Equation (2.10). 
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5.4   Results 

The material properties of thrombi provide a measure of when the clots can potentially 

become pathological. The goal of this paper is to estimate the mechanical strength of the 

thrombi formed in the microcirculation of live mice. This is done by calculating the stresses 

induced on the clot by the surrounding blood flow, from LBM simulations based on 

intravital microscopy images.  The hybrid semi-empirical approach helps to overcome 

limitations of conventional experimental and simulation tools:  such as, the inability to do 

fast 3D fluorescent imaging in case of the former, and the uncertainty in generating the 

thrombi structures mathematically, in case of the latter.  

 
5.4.1 Nondimensionalization via Data Normalization 

Firstly, it was found that although each clot has unique properties (size, formation kinetics, 

etc.), the thrombosis dynamics look similar for different clots when compared on a non-

dimensional scale.  Therefore, to normalize all clots to the same scale, we 

nondimensionalized the experiment time by dividing it by a “characteristic” one, as shown 

in Equation (5.3) 

𝑡∗ = 𝑡/𝑡𝑐ℎ𝑎𝑟       (5.3) 

where t* is the dimensionless time, ‘t’ is the experiment time, tchar is some characteristic 

time. 

To define the latter, we used the time at which the blood clot’s size is maximal, 

because obtaining this value does not require any complicated analysis or performing 

simulations. The thrombus size was quantified via the area of the anti-CD41 platelet 
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marker fluorescence in the microscopy images (obtained as shown in Figure A.1). The 

ordinate values are also normalized by their respective maxima, as follows: 

A* = A / Amax       (5.4) 

where, A* is the dimensionless clot area, A is the clot area as measured from the anti-CD41 

marker’s fluorescence, and Amax is the peak value of A (obtained as shown in Figure A.1). 

 

5.4.2 Distinct Regimes of Thrombogenesis 

In order to identify different stages of thrombogenesis, we plotted the mean dimensionless 

thrombus area as a function of the normalized time (see red curve in Figure 5.5).  

Additionally, we plotted the mean aspect ratio (AR) for the same clots (see blue curve in 

Figure 5.5), in order to characterize changes in their morphology.  The AR is defined as 

the clot height divided by the clot length and is measured based on the shape of the anti-

CD41 fluorescence. However, since it is already dimensionless, the AR is plotted against 

the dimensionless time without normalization. 
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Figure 5.5  Data nondimensionalization strategy:  Red graph shows the clot’s cross-

sectional size, quantified based on the anti-CD41 marker area in the microscopy images. 

Blue graph shows the clot’s aspect ratio = height / length.   Abscissa is the dimensionless 

time, whose unity corresponds to the peak CD41 area in the red curve.  Both curves are 

moving averages with a window of 0.5, and the error bars represent the moving variance 

for the 10 experiments in Table 5.1. 

 

Several observations regarding the mechanism of thrombogenesis can be made 

from Figure 5.5. Here, we separate them into three distinct stages, each of which describes 

unique characteristics of clot’s evolution: 

Stage I – Uniform Growth Regime:  0 < t* <= 0.5 

During this period, both the height and the length of the clot increase 

simultaneously (see the red curve in Figure 5.5).  However, it is evident from the upward 

trend in AR (see the blue curve in Figure 5.5) that the clot’s growth in the vertical direction 

outpaces that of its horizontal elongation.  The reason for the mismatch is due to differences 

in the mechanisms by which the clot dimensions change.  Specifically, the length grows 
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due to the platelets attaching to the injured portion of the blood vessel wall. However, the 

availability of unoccupied sites in this region is limited, since the cells cannot attach to the 

undamaged parts of the blood vessel. This restricts the horizontal growth to the span of the 

injury. At the same time, the vertical growth remains unhindered, because the activated 

platelets can attach on top of each other as the clot builds.  Consequently, platelets pile up 

faster vertically than they do horizontally during this stage of thrombogenesis. The 

described behavior continues up until approximately t* = 0.5, which is considered to be the 

upper bound of the Stage I regime. 

Stage II – Hindered Growth / Structure Yielding Regime:  0.5 < t* <= 1. 

The boundary between this regime and the previous one is marked by the peak in 

the AR at t = 0.5 (see the blue curve in Figure 5.5).  We define this point as the beginning 

of Stage II, because this is the time at which the growth in the vertical direction begins to 

slow down. The lag happens because the thrombus begins to occlude the lumen; and as a 

result, the platelets have to overcome increasingly stronger fluid flow forces in order to 

attach to the top portion of the clot. In contrast, the growth in the horizontal direction 

remains unaffected, and continues at the same rate as it did during Stage I. This happens 

because the platelet mass is gradually transferred from the upstream side of the clot to its 

downstream side, resulting in the formation of a “tail” that extends beyond the injury site.   

In other words, the thrombus experiences the yielding of its “false body”.  This is signified 

by a decrease in the AR – a measure of the clot’s deformation.  In fact, 82.65% of the AR’s 

decrease occurs during Stage II, as is evident from the negative values of d(AR)/dt* 

between t* = 0.5 and 1 (see Figure A.2).  Ultimately, the end of this regime is marked by 

the thrombus reaching the peak size (see the red curve in Figure 5.5), which it can sustain 
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while opposing the blood flow forces. Consequently, the clot structure finishes the yielding, 

as t* approaches the value of unity. For this reason, we choose the time t* = 1 as the critical 

point used to mark the upper bound of Stage II. 

Stage III – Structural Stabilization / Mass Shedding Regime:  t* > 1 

The beginning of Stage III is marked by two distinct events, both of which occur 

for the first time since the initiation of the thrombogenesis process: 1) the clot size begins 

to decrease (see the decline of the red curve in Figure 5.5 after t* = 1); and 2) the clot 

length and height start to change in the opposite directions (see Figure A.3). Specifically, 

the clot height starts to decrease, while the length continues to grow. These phenomena are 

primarily caused by the fact that the thrombus structure has yielded and rearranged into the 

elongated “comet-tail” shape, which is characteristic of stable clots. Furthermore, given 

the streamlined shape, there is more surface area available for the drag forces to pull on 

and extend the clot even further.  Finally, the mass shedding continues to facilitate the 

decrease in the clot height, as the platelet cells are removed by the blood flow from the top 

of the thrombus.   

This interplay between the flow forces and the clot structure continues in the 

pseudo-equilibrium fashion, as the clot slowly thins out and stretches out.  Ultimately, it 

retracts towards the injury site, in order to seal the damage and prevent the escape of blood 

into the extra-vascular.  Overall, the time points t* = 0.5 and t* = 1 appear to be 

physiologically characteristic of the transitions between the distinct stages of the 

thrombogenesis process. 
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5.4.3 Clots Experience Heterogeneous Deformation During Thrombogenesis 

Interestingly, the thrombus’ inner region (i.e., the “core”) does not show a similar trend of 

deformation.  Figure 5.6 shows an analysis of the cores’ morphology analogous to Figure  

5.5.  Namely, this figure plots the core’s P-selectin area and aspect ratio on the same 

dimensionless time scale, t* The core area is also normalized according to Equation 8, 

where the peak value Amax is obtained as shown in Appendix Figure A.4. 

 

 

Figure 5.6  Changes in nondimensionalized thrombus’ core size and morphology, plotted 

as function of normalized time. Red graph shows the core’s cross-sectional size, quantified 

based on the anti-P-selectin marker area in the microscopy images. Blue graph shows the 

core’s aspect ratio = height / length. Abscissa is the dimensionless time, whose unity 

corresponds to the peak CD41 area in the red curve in Figure A.1. Both curves are moving 

averages with a window of 0.5 and the error bars represent the moving variance for the 10 

experiments.  

 

Similar to the overall thrombus growth shown in Figure 5.5, the core increases in 

size up until t* = 1, after which it stays about the same size.  Physiologically, the core’s 
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growth corresponds to the activation of the platelet mass nearest the injury, similarly to 

what was shown in Figure 5.2. However, unlike the overall thrombus shape, the core’s 

aspect ratio remains unchanged throughout the whole formation of the clot.  From this, it 

can be concluded that for most, the clots’ deformation occurs in the only thrombus’ outer 

region (i.e., the “shell”), where loosely bound platelets are re-arranged in response to fluid 

flow stresses.   

 

5.4.4 Image-based Modeling of Fluid Induced Stresses Imposed on Clots 

Since the thrombus partially obstructs blood flow within the vasculature, the thrombus 

structure experiences forces exerted onto it by the passing fluid.  These forces can drive 

thrombus break-up and embolism. Additionally, platelet adhesion and aggregation [215] 

and activation [216, 217] are influenced by local shear rate.  Hence, we wanted to correlate 

how the fluid-induced stresses that the thrombi experience due to the flow in the blood 

vessels correlate to their deformation.  To do this, we reconstructed the 3D thrombus 

shapes, estimated from the intravital microscopy images, in a virtual blood vessel 

(procedure in Section 5.2).  Once the clot geometry was obtained, an in-house LBM code 

was used to calculate the blood velocity field established around the thrombi versus 

dimensionless time (see Figure 5.7). 
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Figure 5.7  “Heatmap” of the LBM velocity field established in the lumen, calculated using 

the constant pressure boundary condition. The results are shown at different key time 

points: t* = 0.023 is an earlier time in the thrombus formation process; t* = 0.5 is the time 

marking the beginning of deformation/yielding; t* = 1 is the time marking the end of 

deformation/yielding; t* = 2.67 is a later time, after the thrombus yielding, during which it 

has assumed its final shape. Black arrow indicates direction of flow. 
 

This figure shows how the velocity changes for a typical thrombus, under the 

constant pressure drop boundary conditions.  In this case, the blood flow around the clot 

decreases, as the growing thrombus creates a larger and larger resistance to the flow.  

Conversely, in the case of the constant flow rate boundary condition (not shown), the 

velocity would increase to push the same amount of fluid through a narrower opening in 

the lumen.  As discussed previously in Section 5.2.3, we performed both types of the 

simulations, to obtain the upper and lower bounds of the stress experienced by the thrombi.  

This is because the physiological reality is likely to be something in between the two 

boundary conditions:  namely, a) an injured blood vessel tends to relax in order to avoid 

occlusion (similar to the constant pressure drop case), b) blood may get re-routed through 

other pathways in the vasculature (similar to the constant pressure drop case), and c) the 

heart may compensate in order to clear the obstruction by pushing the blood harder (similar 

to the constant flowrate case).  Ultimately, the LBM velocity fields for both boundary 
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condition types were used to calculate the fluid-induced stresses experienced in the lumen, 

using the procedure described in Section 5.2.4.   

A representative result for the constant pressure drop boundary condition is shown 

in Figure  5.8.  

 

 

Figure 5.8  “Heatmap” of the LBM fluid-induced surface shear stress, caculated using the 

constant pressure drop boundary condition.  The results are shown at different time points. 

t* = 0.023 is an earlier time in the thrombus formation process; t* = 0.5 is the time marking 

the beginning of deformation/yielding; t* = 1 is the time marking the end of 

deformation/yielding; t* = 2.67 is a later time after thrombus yielding during which 

thrombus has assumed its final shape. Black arrow indicates direction of flow. 

 

Spatial surface shear stress distributions obtained from the velocity fields are shown 

in Figure  5.8. As expected, the stress distributions change with time, due to the effects 

that the evolving thrombus structure has on the surrounding blood flow in the lumen.   As 

validation, the thrombus base (nearest the blood vessel wall) experienced stresses 

comparable to the value of ~31 dynes/cm2 expected for an empty blood vessel of a similar 

diameter (calculated using Hagen–Poiseuille equation[218]).  Moreover, these values are 

also comparable to the experimentally measured values of ~47 dynes/cm2 for similar size 

arterioles of cat mesentery.[219]  Finally, the top part of the thrombus protrudes into the 
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center of the blood vessel and experiences stresses that are several folds higher than the 

base.  Hence, the highest flow forces are acting on the shell of the thrombus, rather than on 

the core.  This is consistent with the shell being the part of the thrombus that experiences 

the most deformation. 

Next, the stresses were plotted as a function of the dimensionless time t* and 

normalized as follows:  

* =  / max      (5.5) 

where, σ* is the dimensionless fluid-induced shear stress, σ is dimensional fluid-induced 

shear stress, and σmax is the peak value of σ (obtained as shown in Figure A.5).   

Furthermore, since the simulations are computationally expensive, only every 10th 

time step out of the total 300 was modeled for each experiment.  However, we did solve 

one of the experiments fully, confirm that the obtained trends would be similar.  This 

confirmation is shown in Figure 5.9. 

 

Figure 5.9  Comparison of LBM stress results for a representative laser-injury induced 

thrombus, solved for every time step (N=300), versus only every 10th one (N = 30). The 

results agree with each other. 
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From Figure 5.9, it is apparent that solving every 10th time step is sufficient to 

capture the stress trends displayed by the thrombi.  Hence, the time-coarsed stress results 

are shown in Figure 5.10. 

Figure 5.10  Normalized stress data plotted as a function of normalized time. Blue curve 

represents constant flow rate simulation results. Red curve represents constant pressure 

drop simulation. Abscissa is the dimensionless time; whose unity corresponds to the peak 

CD41 area in the red color curve in Figure 5.5.  Both curves are moving averages with a 

window of 0.5 and the error bars represent the moving variance for the 10 experiments in 

Table 5.1. 

 

In Figure 5.10, the normalized stresses are averaged over the thrombi surfaces, and 

plotted the versus normalized time, for both the constant pressure drop and constant flow 

rate scenarios. In both cases, as the thrombi grow in the blood vessel, the shear stresses 

imposed on their surfaces initially increase with time.   However, the locations of the peaks 

do not coincide. Instead, they are located at the beginning (t* = 0.5) and the end (t* = 1) of 

the clot’s “deformation region”, for the constant pressure drop and constant flow rate 
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cases, respectively. This again, supports the notion that the two boundary conditions 

represent the extreme cases, while the reality is something in-between. 

Finally, Table 5.1 tabulates the max values for the 10 thrombi modeled in this 

study, in order to enable the recovery of the actual stresses from the dimensionless curves 

in Figure 5.10. Additionally, the max results can be extrapolated to other blood vessel sizes.  

For example, we have observed a strong dependence of the yield stresses on the blood 

vessel diameter (see Figure 5.11).   

 

 

Figure 5.11  Yield Stress as a function of Blood Vessel Diameter:  solid markers indicate 

LBM calculations, while dashed lines are linear least squares fits through the data. 

 

Although, this may seem surprising at first, it appears that geometric attributes of 

the blood vessel dictate the peak size of the thrombi.  Specifically, the maximum clot 

volume was found to vary with the blood vessel diameter and injury length (see Figure 
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5.12). Consequently, it makes sense that the clots found in different blood vessels can 

withstand varying amounts of stresses, depending on how big or small their structures are. 

 

Figure 5.12  Dependence of clot size on blood vessel diameter and injury length.  Red 

“stems” represent the 10 experimental measurements from this study, while the colored 

mesh is a fit through these points (meant to serve as a guide for the eye). 
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Table 5.1 Summary of Data for the Ten Modeled Thrombi 
 

 
 

 

5.5   Discussion 

The yield stress is a critical property representing mechanical strength of the thrombi’ 

material; and as such, it provides a measure of when a blood clot can potentially become 

pathological. Therefore, quantitative characterization of this parameter is important to 

public health. However, it is difficult to measure τ by using either purely experimental or 

purely computational tools alone.  Hence, we applied a semi-empirical framework that 

combined intravital imaging and flow dynamics simulations, to overcome the 

technological challenges of the conventional approaches.  To the best of our knowledge, 

this is the first measurement of the thrombi’ critical yield stress made in vivo. 

Moreover, we have reported that the thrombo-genesis mechanism appears to 

consist of several discrete regimes common to all clots, despite the underlying uniqueness 

and complexity of their formation.  Consequently, we identified the time of the clot 
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yielding as a characteristic nondimensionalization parameter, which can be used to collapse 

data from multiple injuries onto a single master curve.  This consistency across the multiple 

blood vessel injuries gives hope that a uniform theory of thrombo-genesis can be 

developed, which would be able to describe all clotting events using a single analytical 

expression. 

Finally, we showed that the thrombus core does not change shape appreciably.  In 

contrast, the shell experiences significantly higher fluid-induced stresses, which result in 

its deformation.  This raises the likelihood that the shell is an inherently compromised part 

of the clot; and that as such, it is responsible for most of the embolism.  Hence, it can be 

concluded that the core is structurally stronger, and that it tethers the overall body of the 

thrombus to the injury. Consequently, the biological differences between these thrombi 

regions could mean that it is possible to dissolve just the dangerous part of the blood clot 

(i.e., the embolizing shell), while leaving the useful one (i.e., the core which seals the 

injury) intact.  In this manner, a new generation of drugs could be developed that would 

selectively target just the shell; thereby avoiding the dangerous bleeding complications of 

the medications currently available on the market.   

Although our study provides important information regarding the thrombus 

biomechanics, it is necessary to keep in mind that it is only an estimate; and that several 

assumptions and simplifications had to be made to obtain it.  Specifically, the limitations 

of this study are as follows: 1) The clots’ 3D shapes were extrapolated from their 2D 

longitudinal cross-sections, by assuming that thrombi crosswise profiles are parabolic in 

shape and have a constant width-to-height ratio (see Figure 5.4-Middle). Although this 

was measured experimentally,[6] a late-stage static thrombus was used.  Therefore, this 
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assumption may not work well for the very early stages (i.e., t < 0.5) of the thrombus 

formation (when the clot has a less elongated shape). However, this only concerns the 3D 

LBM simulations, while the 2D experimental results would not be affected; 2) The pseudo-

steady state approach to the simulation necessitated the assumption that the velocity field 

of the blood flow establishes faster than the clots change their shape; 3) The thrombi are 

assumed to be impermeable to the fluid flow, since the true nature of their porous structure 

could not be approximated using our minimalistic approach. However, COMSOL® 

validations showed that making the clot permeable has a negligible effect on the stress 

results (see Figure A.6); Furthermore, we confirmed that the idealized model gives stress 

trends similar to those obtained via image-based LBM (compare Figure A.7 to Figure 

5.10); 4) We did not model blood escape from the injury site, which could cause the 

simulated flow field to deviate from the real one; 5) The shape of the blood vessel was 

assumed to be a straight solid pipe, while in reality it may bend and deform, (especially 

near the injury site); 6) Finally, the blood was assumed to be a Newtonian fluid for 

simplicity.  However, this is commonly done in similar thrombo-genesis modeling 

studies.[6, 180, 198, 220]   

The future directions for this work include performing similar measurements of the 

blood flow forces experienced by occlusive and embolizing thrombi (both of which are 

harder to induce and capture experimentally).  Furthermore, we plan to continue working 

towards developing a universal model of the thrombo-genesis.  This will be done by 

correlating other physiological phenomena, such as the dynamics of the blood’s escape to 

the extravascular space, to the dimensionless time scale, t. Finally, superior imaging 
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methods will be used to capture the real-time 3D thrombi shape changes, instead of relying 

on extrapolations based on the 2D cross-sections from conventional confocal microscopy. 

 

5.6   Conclusions 

In this study, we have performed an in-depth analysis of intravital microscopy images, 

showing thrombi development in response to laser-induced injuries in live mouse 

microvasculature. Based on these results, we were able to conclude that the thrombus core 

does not change shape appreciably during thrombo-genesis, but its shell does.  This implies 

that there are inherent differences in the material properties of these two regions of the 

clots.  Furthermore, we performed image-based LBM modeling, which allowed us to 

calculate the fluid-induced shear stresses imposed on the thrombi’s surfaces by the blood 

flow.  From these results, we observed that it is the thrombus shell that experiences the 

highest fluid-induced shear stresses on its surface.  A combination of the two results, 

namely that the shell is both weaker and experiences more deformation, leads to the 

conclusion that it is the most prone to embolism. The implications of this finding are that 

a new class of anti-embolic drugs could be developed, which would target the dissolution 

of the shell selectively, while preventing the risk of severe bleeding (typically associated 

with the existing antithrombotic medications) by leaving the core of the clots intact.  

Finally, we have laid down a foundation for a nondimensionalization approach to 

interpreting thrombo-genesis data, with the hopes that a uniform theory could be developed 

through an extension of this procedure.  Overall, the findings herein are expected to be 

beneficial to understanding the process of thrombo-genesis, which is central to heart attacks 

and strokes that are plaguing the public health today. 
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CHAPTER 6 

 

ENDOTHELIAL CELLS COULD BE RESPONSIBLE FOR THE OBSERVED 

CORE-AND-SHELL THROMBUS ARCHITECTURE 

 

6.1  Abstract 

Ischemia leading to heart attacks and strokes is a major cause of deaths in the world. This 

study explores the possibility that intracellular material from ruptured endothelial cells is 

partially responsible for the heterogeneous core-and-shell blood clot architecture, typically 

observed using intravital microscopy. As evidence, we present a fluid dynamic argument 

that platelet agonists emanating from the injury cannot activate platelets in the thrombus 

core, given that they would have to travel against flow of blood escaping into the 

extravascular. Furthermore, we demonstrate visual evidence that the core material appears 

to be continuous and originates from the damaged endothelium. Finally, we present a 

mechanism, illustrating the steps of platelet recruitment into the thrombus and sealing of 

the injury. If correct, the model presented herein will be beneficial to the understanding 

and treating of heart attacks, strokes and hemophilia. 
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6.2  Introduction 

Thrombo-embolic infarction is the leading cause of mortality and morbidity in the United 

States, while stroke is the 5th.[158]  Yet, despite tremendous efforts by the medical research 

community,[159] the problem remains largely unsolved to this day. Recent 

developments[162, 221] in intravital microscopy have shown[161] that the clots consist of:  

1) a densely packed “core” that is responsible for the cessation of blood loss; and 2) a 

loosely-packed “shell” whose embolism is potentially life-threatening. Hence, these 

differences could be utilized for circumventing excessive bleeding that is associated with 

the existing antithrombotic treatments. Also, insight into the thrombogenesis mechanism 

would be beneficial for public health.  

Currently it is thought that the core is composed of highly “activated” platelets, 

while the shell consists of less activated ones.  Explanations have been put forward that 

primary platelet agonists (e.g., thrombin) from the injury do not reach the shell,[6, 222, 

223] resulting in a degree of secondary platelet activation that is insufficient to elicit 

granule release in that region (see Fig.7 in Ref [161]) .   

Additionally, it has been shown that in Sema4D-/- mice[224] the dense packing of 

the core region not only precedes full platelet activation, but is at least partially independent 

of it.[201]  This could be indicative of presence of a non-platelet material in the thrombus 

core. In fact, the validity of the core-and-shell model rests upon the interpretation that the 

P-selectin expression is a signature of platelet activation only.[161, 225-227] 

However, endothelial cells (ECs) also contain P-selectin in their Weibel-Palade 

bodies.[228-230] So, it is possible that the early P-selectin signal originates from the “guts” 

of the damaged ECs, leaving room for an alternative mechanism of the core-and-shell 
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formation. This study explores the fidelity of this alternative mechanism. To achieve this, 

we analyze the same time lapse intravital microscopy images used for the image-based 

modeling work performed in chapter 5. 

 

6.3  Methods and Materials 

All experiments were performed by the Skip Brass laboratory at the University of 

Pennsylvania. Briefly, in order to image the thrombus structure, intravital microscopy 

experiments were performed in male C57Bl/6J mice 8-12 weeks of age (Jackson 

Laboratories, Bar Harbor, ME). Thrombus formation was induced via laser injury of their 

cremaster muscles.[162]  Alexa-Fluor® monoclonal antibody labeling kits from Invitrogen 

(Carlsbad, CA) were used to label antibodies: Anti-CD41 F(ab)2 fragments (clone 

MWReg30, BD Biosciences, San Diego, CA) were used to visualize platelet surfaces, anti-

P-selectin (clone RB40.34, BD Bioscience) was used to visualize degranulated platelets, 

and caged fluorescein conjugated to albumin (cAlb) was used to measure clot porosity and 

visualize blood escape into the extra vascular.[201] Additional details on the methods can 

be found in [161, 201]. All procedures and protocols were approved by the Institutional 

Animal Care and Use Committee (IACUC) of the University of Pennsylvania. 

 

6.4  Results and Discussion 

6.4.1 Different Blood Flow Patterns Do Not Affect the Core-and-Shell Formation 

There are typically two extremes of the laser injury types commonly achieved under in vivo 

conditions: Figure 6.1-A shows an injury that is non-penetrating (i.e., no blood escapes to 
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the extravascular) while Figure 6.1-B shows a fully penetrating injury (i.e., blood does 

escape to the extravascular).  

  Also, videos (https://vimeo.com/user92157740/review/302888553/b6ad320fa9) 

and (https://vimeo.com/user92157740/review/302888560/d2834a5c98) show movies for 

non-penetrating and penetrating injuries respectively.   

 

 

Figure 6.1  Injury types visualized via fluorescently labeled cAlb: (A) Non-penetrating – 

cAlb is trapped in a punctured muscle cell, encircling the blood vessel; and (B) Fully 

Penetrating – cAlb escapes into extravascular. The images correspond to the initial time of 

the injury, before the thrombus has formed. The cyan outline shows the steady state outline 

of the thrombi’s cores. 

 

  Despite the drastic differences between both injury types, no differences in either 

timing or spatial patterns of the core’s activation are observed between the two blood flow 

regimes. This is in contradiction to the conventional model of the core-and-shell formation, 

which depends on the platelet agonists fluxing from the injury upward.   
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  In fact, Figure 6.2 shows that the P-selectin expression increases steadily 

throughout the time course of thrombus growth (which takes place between t* = 0 to 1, 

where a value of unity represents peak clot size). Yet, the decrease in the blood’s escape 

due to sealing of the injury does not appear to affect the expression of the P-selectin in the 

core. Hence, it is unlikely that primary platelet agonists would be able to emanate from the 

injury and diffuse against the convective flows of blood (especially considering that they 

are large molecules, with small diffusivities).   

7  

Figure 6.2  Time course of blood escape to the extravascular space (blue) versus P-selectin 

expression in the core (red). The former is based on the area of the fluorescently labeled 

cAlb in the extravascular space while the latter is quantified by measuring the area of 

CD62P in the intravital microscopy videos. Dimensionless time scale is achieved via 

normalization by the characteristic time at which the clot size is maximum. Both curves 

are moving averages with a window of 0.5; and the error bars represent the moving variance 

for 10 different laser injury experiments on wild type mice. 
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6.4.2 The Role of Hypothesized Endothelium Participation in Thrombogenesis 

Figure 6.3 illustrates the hypothesized mechanism of thrombogenesis. As with 

conventional models, the injury is initiated at t* = 0 by rupturing an EC. However, in our 

model the EC’s interior is immediately exposed to the blood flow contents in the lumen 

(see Figure 6.3-Left). Next, a gelatinous substance emanating from the damaged EC 

captures the platelets from the blood flow and recruits them into the thrombus. It is this 

substance that displays the majority of the early P-selectin signal and is perceived as the 

thrombus’ core in the intravital microscopy videos.  

  As the thrombus grows further, it begins to occlude the passage of other blood 

contents.  Ultimately, at some critical stage, the thrombus achieves its peak size (see Figure 

6.3-Center) and is consequently deformed by the fluid shear. At this point, the platelets 

from its front are transferred to the downstream side. When this happens, the upstream 

portion of the thrombus wraps around, creating the classical “comet” tail pattern (see 

Figure 6.3-Right). Finally, the gel retracts back into the damaged vessel wall, ultimately 

resulting in consolidation of the platelets at the site of the injury (see Fig. 6.1-A & B and 

supplemental Vid. 1 in Ref. [231]) and sealing the wound. 

 

 

Figure 6.3  Hypothesized thrombogenesis mechanism, as a function of dimensionless time, 

t*.  Green = intact ECs; Red = Platelets; Black = Red & White Blood Cells; Yellow = 

damaged EC’s “guts”. LEFT – EC guts are exposed to the blood contents as a result of 

thrombogenesis initialization via injury. CENTER – platelets are captured by the exposed 
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EC guts in the lumen. RIGHT – transfer of upstream mass to the downstream side, resulting 

in thrombus’ comet shape. 

 

  Furthermore, individual platelet tracking results (see Figure 6.4) indicate that the 

thrombus cells are being drawn inward towards the injury (often against the direction of 

blood flow). Hence, the process is likely driven by the aforementioned gel retracting back 

into the damaged EC.  

 

 

Figure 6.4  Single platelet tracking within the thrombus. Gray = platelets imaged via anti-

CD41 fluorescence; Color = platelet tracks; Yellow arrows highlight the direction of the 

platelet tracks.   
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  In addition, Figure 6.5 show that the P-selectin core (green) stretches out from the 

injury like protrusions (outlined in yellow), and strongly resembles a continuous substance, 

rather than discrete platelets visible in the shell.    

 

 

Figure 6.5  A fluorescent image of the core and shell.  Core perimeter, outlined in yellow, 

resembles continuous protrusions rather than discrete cells (red=platelets imaged via anti-

CD41, green=P-selectin imaged via anti-CD62P) 

 

Again, video (https://vimeo.com/user92157740/review/302888572/43e0264dfc) shows a 

movie for the observation described in Figure 6.5. 

  Moreover, Figure 6.6 shows heatmaps of cAlb retention half-lives[201] in a late 

stage clot structure. Such calculations consistently show patterns of what looks like a 

different material in the core and around the top of the thrombus (similar to Figure 6.3 - 
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Right). This is consistent with our hypothesis about a gel emanating from the injury site 

and wrapping about the thrombus, as a result of the structural deformation after t*=1.  It 

would also explain how the shell is held together without platelet activation (i.e., the 

absence of P-selectin signal in the shell). The P-selectin expression in the shell may be 

diminished by the thinning of the gel strands and/or due to washing out by the blood flow. 

 

 

Figure 6.6  Color is a heatmap cAlb retention half-life (see Ref. [201] for more detail).  

Cyan outlines the core’s perimeter (anti-CD62P fluorescence); Purple – marks the blood 

vessel wall, obtained visually; Yellow arrows point to regions of low porosity along the 

periphery of the shell. 

 

  Thus, our hypothesis is that there is an additional contribution of the EC material 

participating in the body of the clot. We suspect that it is this material that is responsible 

for the majority of the early P-selectin signal visible in the core.   
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6.5  Conclusions 

In summary, we have hypothesized a thrombogenesis model that involves the participation 

of intra-EC material in the clot’s core. This modification to the conventional model helps 

to explain why thrombi formation is not affected by extravascular flows of blood, which 

should entrain the platelet agonists responsible for activating the core. It also helps explain 

how the thrombus shell is held together, despite no apparent platelet activation being 

detected in this region of the clot. If correct, the presence of the EC material in the core 

could open up the possibilities for new drug targets, capable of selectively dissolving the 

dangerous shell, while leaving intact the useful core.  This would serve a great benefit to 

the public health, given that pathogenic thrombosis is the leading cause of death worldwide. 

In the future, the hypothesized mechanism  will be tested by labeling endothelial cells 

within the thrombus core with endothelial surface markers. This will help shed more light 

on previously reported observations. Also, the hypothesis will be further explored by 

developing a multiphase computational model which will incorporate platelet and 

gelatinous EC material, as well as the surrounding blood flow. Viscoelastic properties of 

clot used in the multiphase model will be calculated using yield stress estimates obtained 

in Chapter 5 and other constitutive equations. The ability of the model to reproduce 

observations from microscopy will serve to further validate the proposed mechanism. 
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CHAPTER 7 

7 FUTURE WORK/CONCLUSIONS 

 

7.1  Conclusions 

In this work, the underlying goal was to resolve some of the unknown questions in two 

different biophysical application areas – Tissue Engineering and Thrombogenesis using 

image-based modeling. In the first application, numerical differences between two types 

of boundary conditions, the PBC and the WBC, which are commonly employed for 

performing RVE approximations in tissue engineering scaffold simulations was 

investigated. LBM fluid dynamics simulations were used to model the surface shear 

stresses in 3D scaffold reconstructions, obtained from high resolution microcomputed 

tomography images. It was found that, both of the RVE types followed the same spatial 

surface stress patterns as the whole scaffold simulations. However, they under-predicted 

the absolute stress values by an approximate factor of two. Moreover, it was found that the 

error grew with higher porosity of the scaffold. Thus showing dependence of RVE error 

on  scaffold architecture. Additionally, it was found that the PBC always resulted in a better 

prediction (i.e., lower error) than the WBC. Therefore, the PBC is recommended as the 

boundary condition of choice for the RVE approximations.  

In another tissue engineering study, the dependence of culture time on the 

distribution and magnitude of fluid shear in tissue scaffolds cultured under flow perfusion 

was investigated. In this study, following culture, constructs were either destructively 

evaluated with assays for cellularity and calcium deposition, imaged using µCT and 

reconstructed to allow for CFD simulations to be performed. It was found that both the 
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shear stress distributions and average shear stress within consistently increased with culture 

time. The observed increase in shear levels correlated with increasing levels of mineralized 

tissues within the scaffold constructs as seen in calcium deposition data and µCT 

reconstructions.  

In the thrombogenesis application, detailed analysis of intravital microscopy 

images, showing thrombi development in response to laser-induced injuries in live mouse 

microvasculature was performed. Based on the results, it was found that the thrombus core 

does not change shape appreciably during thrombogenesis, but its shell does. Also, image-

based LBM modeling was performed to calculate the fluid-induced shear stresses imposed 

on the thrombi’s surfaces by the blood flow.  From these results, it was shown that the 

thrombus shell experiences the highest fluid-induced shear stresses on its surface.  Using 

results of the image-based modeling, estimates of the yield stress of thrombi formed in 

different blood vessels was obtained. It was found that thrombus yield strength and 

maximum size is correlated to blood vessel size.  

Overall, the findings from this work reveal that image-based modeling is a versatile 

approach which can be applied to different biomedical application areas while overcoming 

the difficulties associated with conventional modeling. 

 

7.2  Future Work 

A limitation of the tissue engineering study presented in Chapter 3 is that it was performed 

on empty scaffolds, without any cells or tissues in them. In reality, the cells are likely to 

build tissues in preferred locations within the scaffolds. Thus, the observed flow fields will 

be different and effects of the RVEs should be quantified in greater detail in the locations 



109 
 

favored by the cells. Hence, studies should be performed on scaffolds with mineralized 

tissue/cell growth to see how much error is produced with RVE approximations. Also, in 

addition to stimulatory stresses, the flow field produced by the RVEs is often also used to 

model the influences of metabolite transport on the tissue growth. Therefore, the effects of 

the RVE cutouts and their boundary conditions on the mass transport within the scaffolds 

should be considered in future investigations. 

In the second tissue engineering application presented in Chapter 4, an algorithm 

which can correlate tissue growth with stress distribution can be developed. This will 

potentially give researchers the ability to predict, for the culture period, fluid shear 

distributions in tissue engineered cultures using µCT images of empty scaffolds and CFD 

simulations on the 3D scaffold reconstructions. 

Future directions for the study presented in Chapter 5 will include accounting for: 

(a) porous structure of thrombus, (b) blood escape from injury site, (c) deformations of 

blood vessel and (d) non-Newtonian nature of blood behavior in subsequent image-based 

thrombogenesis models. In addition, measurements of the blood flow forces experienced 

by occlusive and embolizing thrombi (both of which are harder to induce and capture 

experimentally) should be addressed in future investigations.  

Overall, since image-based models utilize data from biomedical images. Their 

predictive capabilities can be improved by using higher resolution images. The imaging 

techniques used in studies reported in this work are limited by either or both imaging depth 

and resolution. Hence, the use of improved resolution light-based clinical imaging methods 

such as optical coherence tomography/OCT and enhancement of existing ones with newly 

developed contrast agents will enhance their capabilities. Also, super-resolution 
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microscopy methods which surpass diffraction limits imposed by conventional light 

microscopy techniques and are capable of even higher resolution should be used to obtain 

better images. Thus, amplifying the ability to create better image-based models. In addition 

to the aforementioned, with non-invasive imaging methods becoming more popular, 

image-based modeling is poised to become a mainstream tool for studying biological 

processes in vivo. 
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APPENDIX 

SUPPLEMENTARY FIGURES FOR THROMBUS BIOMECHANICS 

 

 

Figure A.1  Procedure for obtaining the maximum thrombus area and the characteristic 

time tchar at which it occurs. Inset in the upper right corner outlines the intravital microscopy 

image area used for the measurement for a typical experiment. 
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Figure A.2  Derivative of AR with respect to dimensionless time, showing that most of the 

negative AR slope (i.e., clot elongation) occurs between 0.5 < t* <= 1.  The derivative is 

obtained by fitting a polynomial to the moving average AR data. 
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Figure A.3  Changes in the normalized thrombus height and length, as a function of the 

dimensionless time. Both curves are moving averages with a window of 0.5, and the error 

bars represent the moving variance for the 10 experiments in Table 5.1. 
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Figure A.4  Procedure for obtaining the maximum core area and the characteristic time 

tchar at which it occurs. Inset in the upper right corner outlines the intravital microscopy 

image area used for the measurement for a typical experiment. 
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Figure A.5  Procedure for obtaining the maximum fluid induced stress experienced by clot. 

Data is shown for a typical LBM simulation.   
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Figure A.6  COMSOL validation, demonstrating that varying the shell porosity does not 

significantly affect the fluid-induced stress imposed the clot’s surface. Inset shows the 

COMSOL model setup, where the shell is filled with blue color. 
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Figure A.7  Validation of Figure 5.10 using an idealized thrombus model in COMSOL®:  

Normalized stress data, averaged over the thrombus surface, and plotted as a function of 

normalized time. Blue curve represents constant flow rate simulation results. Red curve 

represents constant pressure drop simulation. Abscissa is the dimensionless time; whose 

unity corresponds to the peak CD41 area in the red curve in Figure 5.5.  Both curves are 

moving averages, with a window of 0.5; and the error bars represent the moving variance 

for the 10 experiments in Table 5.1. Thrombi core and shell are built using a combination 

of ellipsoids, whose dimensions are given by the clot’s morphological properties measured 

from the intravital microscopy images. 
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