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ABSTRACT

DEEP LEARNING METHODS FOR
MINING GENOMIC SEQUENCE PATTERNS

by
Xin Gao

Nowadays, with the growing availability of large-scale genomic datasets and advanced

computational techniques, more and more data-driven computational methods have

been developed to analyze genomic data and help to solve incompletely understood

biological problems. Among them, deep learning methods, have been proposed to

automatically learn and recognize the functional activity of DNA sequences from

genomics data. Techniques for efficient mining genomic sequence pattern will help

to improve our understanding of gene regulation, and thus accelerate our progress

toward using personal genomes in medicine.

This dissertation focuses on the development of deep learning methods for

mining genomic sequences. First, we compare the performance between deep

learning models and traditional machine learning methods in recognizing various

genomic sequence patterns. Through extensive experiments on both simulated

data and real genomic sequence data, we demonstrate that an appropriate deep

learning model can be generally made for successfully recognizing various genomic

sequence patterns. Next, we develop deep learning methods to help solve two

specific biological problems, (1) inference of polyadenylation code and (2) tRNA gene

detection and functional prediction. Polyadenylation is a pervasive mechanism that

has been used by Eukaryotes for regulating mRNA transcription, localization, and

translation efficiency. Polyadenylation signals in the plant are particularly noisy and

challenging to decipher. A deep convolutional neural network approach DeepPolyA

is proposed to predict poly(A) site from the plant Arabidopsis thaliana genomic

sequences. It employs various deep neural network architectures and demonstrates



its superiority in comparison with competing methods, including classical machine

learning algorithms and several popular deep learning models. Transfer RNAs

(tRNAs) represent a highly complex class of genes and play a central role in protein

translation. There remains a de facto tool, tRNAscan-SE, for identifying tRNA genes

encoded in genomes. Despite its popularity and success, tRNAscan-SE is still not

powerful enough to separate tRNAs from pseudo-tRNAs, and a significant number of

false positives can be output as a result. To address this issue, tRNA-DL, a hybrid

combination of convolutional neural network and recurrent neural network approach

is proposed. It is shown that the proposed method can help to reduce the false

positive rate of the state-of-art tRNA prediction tool tRNAscan-SE substantially.

Coupled with tRNAscan-SE, tRNA-DL can serve as a useful complementary tool for

tRNA annotation. Taken together, the experiments and applications demonstrate

the superiority of deep learning in automatic feature generation for characterizing

genomic sequence patterns.
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CHAPTER 1

INTRODUCTION

Deep Learning has achieved tremendous success in many fields and applications such

as computer vision [1, 2, 3], image analysis [4, 5], and natural language processing

[6, 7, 8]. Deep learning has been also applied as a superb way in the genomics field,

such as predicting noncoding RNAs [9, 10], and microRNAs [11]. This dissertation

investigates the performance of two main deep learning architectures, Convolutional

Neural Network (CNN) and Recurrent Neural Network (RNN), in recognizing various

genomic sequence patterns. We compare with traditional machine learning methods

(Logistic Regression, Support Vector Machine, Decision Tree, and Random Forest),

which use the extracted k-mer features as input. In contrast, the proposed deep

learning methods can be applied directly to the raw sequence data without involving

extensive manual feature engineering. We design several representative sequence

patterns for evaluating these methods. For each pattern, we generate a dataset

consisting of both positive samples and negative samples, where positive samples

are DNA sequences containing the pattern, and negative samples are DNA sequences

do not contain the pattern. We further consider two kinds of negative samples:

the random format and the misleading format. Experimental results demonstrate

that CNN and RNN have comparable performance and the two deep learning

approaches usually outperform traditional machine learning methods in sequence

pattern recognition.

Next, we develop deep learning methods to help solve two specific biological

problems, (1) inference of polyadenylation code and (2) tRNA gene detection

and functional prediction. Polyadenylation plays critical roles in gene regulation,

especially in the processes such as mRNA metabolism, protein diversification, and

protein localization [12]. The polyadenylation site, also called the poly(A) site, is
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defined by surrounding RNA segments and conserved across metazoans with some

minor variations in mammals [12, 13, 14]. Accurate prediction of poly(A) sites

and identification of motifs that controlling them are fundamental for interpreting

the patterns of gene expression, improving the accuracy of genome annotation and

comprehending the mechanisms that governing gene regulation [15, 16]. Transfer

RNA (tRNA) plays a central in protein translation [17]. Thus, accurate prediction

and annotation of tRNA are fundamental for interpreting and improving protein

translation in all living cells. The most popular computational algorithm for tRNA

prediction tRNAscan can be dated back more than 20 years ago [18]. It develops

a seminal covariance model to describe the secondary structural profile and primary

sequence consensus of an RNA sequence. tRNAscan-SE is the leading tool for tRNA

annotation that has been widely used in the field. However, tRNAscan-SE can return

a significant number of false positives when applied to large sequences. Recently,

conventional machine learning methods have been proposed to address this issue, but

their efficiency can be still limited due to their dependency on handcrafted features

and domain knowledge.

With the increasing availability of extensive genomic datasets and leading

computational techniques, deep learning methods have been applied to automatically

identify and understand gene regulation directly from genomic sequences and predict

unknown sequence profiles, for example, poly(A) sites prediction or tRNA prediction.

The above researches show that we could apply deep learning models for mining

genomic sequence patterns without handcrafted features. However, each special

genomic sequence pattern needs a special deep learning model for prediction. Thus, it

is essential to find out the rules between genomic sequence patterns and deep learning

models. Moreover, we could mine more sequence patterns not only from genomic

sequences but also text sequences in natural language processing in our future work.
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The rest of the dissertation is organized as follows. Chapter 3 focuses on

the comparative study of different deep learning approaches for genomic sequence

pattern recognition. It designs several representative DNA sequence patterns, and

describes the algorithm to generate the datasets with these sequence patterns. We

design the convolutional neural network and the recurrent neural network. We

compare their performance with several traditional machine learning models based

on simulated datasets. Furthermore, we evaluate these methods on a dataset of

real gene sequences, from which we find deep learning models perform better than

traditional machine learning methods in recognizing sequence patterns. Chapter 4

proposes a deep convolutional neural network method for predicting polyadenylation

sites from the plant Arabidopsis thaliana gene sequences. We investigate various deep

neural network architectures and evaluate their performance against classical machine

learning algorithms and several popular deep learning models. Chapter 5 focuses on

the tRNA genomic sequences prediction. It introduces a deep learning approach to

efficiently and effectively improve the tRNAscan-SE prediction results. We conclude

this dissertation in chapter 6.
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CHAPTER 2

BACKGROUND

In this chapter, we start with an introductory approach to genomic sequence and

its underlying knowledge. Then, we will briefly review classical machine learning

algorithms and lastly introduce deep learning main concepts and the most commonly

used deep learning and distributed frameworks.

2.1 Genomic Sequence

DNA stands for Deoxyribonucleic Acid, while RNA stands for Ribonucleic Acid.

DNA is known to be the key molecule in every living organism as it carries the

genetic information concerning each individual. DNA molecules are formed by two

strands that form a double-helix. Those strands are composed of nucleotides. Each

nucleotide contains a sugar (deoxyribose), a phosphate group and one nitrogenous

base. There are four bases that can be present on DNA: Cytosine, Adenine, Guanine

and Thymine. RNA is a molecule responsible for the coding, decoding, regulation

and expression of genes [19]. RNA and DNA have a similar structure, however, RNA

only has a single strand that folds onto itself and its sugar is Ribose. It is composed

of four types of ribonucleotide bases: Adenine, Cytosine, Guanine and Uracil.

The genomic sequences we used in our experiments are all in FASTA format.

A FASTA format (https://zhanglab.ccmb.med.umich.edu/FASTA/) file contains

text file information concerning nucleotides or peptide sequences. It consists of

a description line followed by the correspondent sequence representation. The

description line begins with a “>” followed by the name and/or the sequence identifier.
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2.2 Machine Learning Classification Algorithms

In this subsection, we will briefly explain some of the commonly used classification

algorithms. Logistic Regression (LR) is a statistical method used for analyzing a

dataset in which there are one or more independent variables that output a binary

outcome. Its goal is to find the best fitting model as a linear combination of the

predictor variables.

Support Vector Machines (SVM) are used as a classifier algorithm where a

separating hyperplane is defined in order to separate the classes. The hyperplane is

optimal when it has the largest distance to the nearest point in both training classes.

K-nearest neighbors algorithm (KNN) is a non-parametric method used for

classification and regression. In both cases, the input consists of the k closest

training examples in the feature space. The output depends on whether it is used for

classification or regression. In KNN classification, the output is a class membership.

An object is classified by a majority vote of its neighbors, with the object being

assigned to the class most common among its k nearest neighbors. If k equals to 1,

then the object is simply assigned to the class of that single nearest neighbor. In

KNN regression, the output is the property value for the object. This value is the

average of the values of its k nearest neighbors.

Bayesian Network (BN) is a probabilistic directed acyclic graphical model (a

type of statistical model) that represents a set of variables and their conditional

dependencies via a directed acyclic graph (DAG).

Decision Trees (DT) are an algorithm used for classification, the goal of which is

to create a model that can predict the value of a variable given several input variables.

Each non-leaf node in decision trees represents input features and each leaf node on

the tree represents the resulting value for that variable given the path from the root

to the node.
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Random Forests (RF) are an ensemble learning method for classification,

regression and other tasks, that operate by constructing a multitude of decision trees

at training time and outputting the class that is the mode of the classes or mean

prediction of the individual trees.

Adaptive Boosting (AdaBoost) is a machine learning meta-algorithm that can

be used in conjunction with many other types of learning algorithms to improve

performance. The output of the other learning algorithms (“weak learners”) is

combined into a weighted sum that represents the final output of the boosted classifier.

2.3 Deep Neural Networks

Recent studies have demonstrated that deep learning can solve genomic problems in

a more accurate way than traditional machine learning approaches. Deep Learning is

a subfield of machine learning, so, before being able to understand deep learning it is

mandatory to know what is machine learning and how are computers able to learn.

Machine learning is a computer science field that tries to give a machine the ability

to learn. Deep learning is a buzzword that derives from artificial neural networks. An

artificial neural network is an information processing paradigm that was inspired by

the way a biological brain works. Deep architectures include many variants, where the

two prominent domains are Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs).

CNNs are widely used for computer vision, and RNNs are mainly used

for natural language processing [20, 21]. Recent works based on CNNs allowed

training directly with the DNA sequences rather than extracting features beforehand

[22, 23, 24]. The connections between units inside RNNs can form a directed graph

along a sequence, which allowed RNNs to be another effective and efficient way for

feature extraction from DNA sequences [25, 26]. A deep convolutional network is a

category of multilayer neural networks, which can model non-linear relationships and
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are always organized by a sequential layer-by-layer structure executing a sequence of

functional transformations [27]. Recent works based on CNN allowed training directly

on genomic sequences rather than extracting features beforehand [22, 23, 24]. In CNN,

the number of model parameters is significantly decreased compared to fully connected

neural networks via convolution operation and parameter sharing. In addition,

convolutional layers could extract high-level features from the raw sequences, which

has the similar function to the traditional position-weight matrices (PWMs) [28].

Neurons in a fully connected layer have full connections to all activations in the

previous layer, while neurons in a convolutional layer share parameters in a particular

feature map. Sub-sampling or spatial pooling is used to reduce the dimensionality

of each feature map while retaining the main information. This step can be done

using different types of pooling like Max, Average, Sum and so on. The max-pooling

layer is used to summarize the activations of some specific adjacent neurons by their

maximum value, which can help reduce the overfitting of the training data for the

model. Fully connected layers are utilized at the end of the network after feature

extraction and consolidation, which are performed by the convolutional and pooling

layers to create final nonlinear combinations of features. Batch size is the number

of samples’ each time we fetch from the training set. The most relevant motifs

are automatically inferred by the deeper layers during model training, and can be

visualized and analyzed through heatmaps and sequence logos [29].

Recurrent Neural Networks (RNNs) belong to a class of artificial neural networks

that, unlike traditional neural networks, can contain directed cycles. The idea behind

RNNs is to make use of sequence data. They are used, for instance, on speech

recognition problems, translation, gene expression and so on. These networks are

called recurrent because they perform the same task for every element of a sequence,

the output of a computation depends on the last computations. The two popular

networks based on RNNs for language modeling are Gated recurrent units (GRUs)
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and Long short-term memory units (LSTM) [30, 31]. GRU layer and LSTM layer

are similar to each other. The difference between them is that a GRU has two gates

and an LSTM has three gates. Both architectures yield comparable performance

but utilize the distinct methods to prevent vanishing gradient problem. GRUs have

no memory unit and fewer parameters, and thus it exposes the full hidden content

without any control and may train a bit faster or need fewer data to generalize.

LSTMs are very similar to RNN except that the hidden state is calculated. LSTMs

solve the vanishing gradient by introducing structures called “gates” that give them

the ability to remove or add information to the state. On the other hand, LSTMs may

lead to better results when the dataset is large. Sometimes bidirectional LSTM or

bidirectional GRU is used to preserve information from both past and future, where

the two directional neurons do not have any interactions.

2.4 One-hot Encoding Method

Our proposed models take raw DNA sequences (or RNA sequences) as inputs, which

are encoded into bit matrices using one-hot encoding method with each nucleotide

represented as a four-element binary vector. We encode the entire DNA nucleotides

sequentially, where each nucleotide is encoded to a four-element binary vector with

only one element set to one and others set to zero: A=(1,0,0,0), C=(0,1,0,0),

G=(0,0,1,0), and T=(0,0,0,1). Then a DNA sequence will be represented as an

encoded bit matrix, with columns corresponding to A, C, G, and T. With the one-hot

encoding method, we can preserve the vital position information of each nucleotide

in DNA sequences.

2.5 Deep Learning Platform for Experiments

We have implemented all the deep learning models with Python, Keras (Version

2.0.8) [32], and Theano (Version 0.9.0) [33]. Keras is a powerful python library which
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can run on top of Theano [33] or TensorFlow [34]. It provides highly modularized

APIs for building and training deep learning models. Theano is a linear algebra

compiler which optimizes mathematical computations and provides efficient low-level

implementations. It was developed at the University of Montreal for research and

development into state-of-the-art deep learning algorithms. It handles operations on

multidimensional arrays and has several optimizations including the use of GPU of

computations. We configure the experiment environment and run the python codes

on a Linux server with 4 Intel E5-2650 CPUs, 256 GB memory and 4 Nvidia GeForce

GTX 1080 GPUs (2560 NVIDIA CUDA cores, 8 GB GDDR5X memory and 10Gbps

memory speed).

2.6 Model Training and Testing

We divide the whole procedure of model training and testing into three steps: Firstly,

we configure and apply different hyperparameters to train the models. Secondly,

during the training process, we aim to discover the parameters (also called weights)

that can minimize the objective function, which is challenging due to the high

dimensionality and non-convex. We tune the hyperparameters to find out the weights

with the best performance on the validation set for the model. Finally, the model is

evaluated against other machine learning models and popular deep learning models

on the test set. The training performance, as well as the training speed, significantly

relies on parameter initialization, learning rate, and batch size of stochastic gradient

descent. The optimum batch size has a relationship with learning rate, for instance,

larger batch sizes commonly requiring smaller learning rates. We also employ a low

learning rate decay in model training, which helps explore confined parameter regions

of the objective function and avoids overshooting. In our proposed model, model

weights are initialized and sampled from a truncated normal distribution centered

on zero with the square root of the average number of both the input units and the
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output units of the input layer [35, 36]. Since the model aims to classify the input into

two categories: sequences with poly(A) sites and sequences without poly(A) sites, it is

a two-class logistic regression problem. Thus, we prefer to adopt a sigmoid function

rather than a softmax function that is used for a multiclass problem. Advanced

adaptive learning rate methods, such as RMSprop, Adagrad [37], and Adam [38], are

also applied to reduce the effect of initial and potentially sub-optimal learning rate for

model training. Based on the preliminary experiments, the hyperparameters, such as

a standard stochastic gradient descent optimizer, a learning rate of 0.001, a batch size

of 128 and a momentum rate of 0.9, are appropriate as the start hyperparameters for

training our models. Regularization, ensemble learning and cross-validated evaluation

are always used for reducing overfitting. To reduce overfitting, we adopt the most

common regularization technique – dropout with a dropout rate of 40%. Another

popular method we employed is “early stopping”, which means the training process

will be stopped automatically at the best point. Thus, the latest parameters that

perform best on the validation set are chosen as soon as the training process stopped.

Hyperopt [39] can automatically explore the hyperparameter space using Bayesian

optimization. We applied Hyperopt to tune the hyperparameters for our models.

2.7 Prediction Assessment Metrics

Metrics, including sensitivity or recall (SN), specificity (SP), overall accuracy

(ACC), Matthew’s correlation coefficient (MCC), area under the receiver operating

characteristic curve (AUC) and F-measure (F1), are adopted to evaluate competing

methods. Sensitivity (SN) (true positive rate) measures the fraction of the true

positive samples that are correctly predicted. Specificity (SP) (true negative rate)

measures the fraction of the predicted tRNA samples that are correct amongst

those predicted. Accuracy (ACC) measures an average performance on positive and

negative samples. However, this measure does not consider the possible difference
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between positive and negative samples. MCC considers the relation between correctly

predictive positives and negatives as well as false positives and negatives. MCC is

especially useful when the two classes are of very different sizes and which could

be seen as a correlation coefficient between training and testing datasets. AUC is

commonly used as a baseline to determine if the model is useful. F-score can be

interpreted as the harmonic mean of precision and recall. The higher f-score is, the

higher both precision and recall are. We adopt AUC to assess the evaluation and

performance and usability of different deep neural networks models. Let TP, TN,

FP, and FN denote true positive, true negative, false positive and false negative,

respectively. The definitions of them are shown as follows, where true positive (TP)

and true negative (TN) are equal to the number of correctly predicted tRNA sequences

and pseudo-tRNA sequences respectively, false positive (FP) and false negative (FN)

are the numbers of incorrectly predicted tRNA sequences and pseudo-tRNA sequences

respectively.

SN =
TP

TP + FN
(2.1)

SP =
TN

TN + FP
(2.2)

AUC =
1

2
(SN + SP ) (2.3)

F1 =
2TP

2TP + FP + FN
(2.4)

Accuracy =
TP + TN

TN + FP + TP + FN
(2.5)
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MCC =
TP × TN − FP × FN√

(TP + FP )(TN + FN)(TN + FP )(TP + FN)
(2.6)
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CHAPTER 3

COMPARATIVE STUDY OF DIFFERENT DEEP LEARNING
APPROACHES FOR GENOMIC SEQUENCE PATTERN

RECOGNITION

3.1 Introduction

There have been several attempts at generating particular sequence patterns (such as

regular expression patterns) from text sequences. Early research into this task used

rule-based techniques to create a natural language interface to regular expression

writing [40]. A novel transformation-based algorithm for learning such complex

regular expressions was proposed in [41]. Fernau described algorithms that directly

infer regular expressions from positive data and characterized the regular language

classes that can be learned this way [42]. Later he described algorithms that directly

infer elementary forms of 1-unambiguous regular expressions from positive data [43].

However, current research used predefined features to represent sequences to learn

a semantic parsing translation model, which requires in-depth domain knowledge

and involves extensive manual feature engineering. In addition, the loss of each

character’s essential position information in the sequence would affect the performance

of prediction. With the growing availability of large-scale datasets and advanced

computational techniques, a lot of research works apply deep learning models to

understand genome regulatory instructions directly from gene sequences without

pre-defined features, to predict the unknown sequences profile [22, 24, 25]. In view of

this, we consider utilizing deep learning models for a more general problem: sequence

pattern recognition. We intend to use the sequences themselves as inputs for training.

We generated several datasets of sequences with different patterns and trained the

two constructed deep learning models based on the simulated datasets.

13



We consider two major types of deep learning models - CNN and RNN for our

genomic sequence pattern recognition problem. It is more challenging to train RNN

than CNN because that an incorrect parameter initialization can lead to vanishing or

exploding gradients. The models we applied do not separate the feature extraction

and model training. They learn predictive sequence patterns in a data-driven manner.

In this work we make three contributions: firstly, we apply deep learning to recognize

different kinds of sequence patterns, which is a novel approach for sequence pattern

recognition. Secondly, it is shown that deep learning models could automatically learn

patterns without involving extensive manual feature engineering, which saves a lot of

efforts. Through the experiments on simulated data, we find out that both CNN and

RNN models can get outstanding results. Besides that, CNN is slightly better than

RNN for our sequence pattern classification. Furthermore, we apply a saliency map

to visualize the convolutional kernels of the first convolutional layer, in order to show

the learned sequence patterns. The third contribution is shown that even with real

genomic sequence data, deep learning methods can also get good results. Similarly,

the CNN model performs a little better than the RNN model. The visualization by

saliency map shows that our models can learn the strong signals in genes, such as

start codon and stop codon. Note that the codes of the proposed methods are freely

available on Github 1.

3.2 Model snd Pattern Design

3.2.1 Comparison Models

To offer fair comparisons to competitive models, we conducted a series of experiments

with both traditional machine learning methods and deep learning methods. We tried

our best to choose models that can provide comparable and competitive results, and

the results are reported faithfully without model selection.

1https://github.com/stella-gao/DeepPat
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We refer to traditional methods as those that using a hand-crafted feature ex-

traction method and a linear classification method. The classification used is a binary

classification for all these models. The involved state-of-the-art traditional machine

learning methods include Support Vector Machine (SVM), Logistic Regression (LR),

Decision Tree (DT) and Random Forest (RF). We apply these methods to the Kmer

features extracted from the raw sequence datasets. We extract Kmer (K = 4) features

from raw sequences, where Kmer means K sequence bases together. Thus, we need

to find out all the frequencies of 1mer, 2mer, 3mer and 4mer as features and consider

those as the input to our machine learning models. Here, 1mer features are the

frequencies of A, C, G, and T; 2mer features are the frequencies of AA, AC, AG,

AT, CA ... TT; 3mer features are the frequencies of AAA, AAC, AAG, AAT, CAA

... TTG, TTT; 4mer features are the frequencies of AAAA, AAAC, AAAG, AAAT,

CAAA ... TTTG, TTTT. There are 4+16+64+256=340 features in total. Thus, each

feature can be thought as a frequency of each kmer component.

Recent deep learning methods have started to be applied to text classification.

We choose two simple and representative models for comparison, in which one is the

convolutional neural network (CNN), and the other is the long-short term memory

(LSTM) recurrent neural network (RNN) model. We also illustrate two deep learning

models for our sequence pattern recognition problem: a CNN model, which consists of

two convolutional layers and one max-pooling layer to identify predictive characters

from the context of sequences and one fully connected hidden layer with 128 neurons

to model their interactions; an RNN model, which consists of one LSTM layer which

contains 128 neurons. We apply a task-specific activation function “sigmoid” to

produce the probability predictions of sequence patterns existence, which is to be

compared via a loss function Stochastic gradient descent (SGD) to the true value

vector. For the RNN model, after hyperparameters tuning, we decide to apply

“rmsprop” loss function to produce the probabilities, which is proven to be the best
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Figure 3.1 A graphical illustration of the CNN model on single-dimensional
sequence data.
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Figure 3.2 A graphical illustration of the RNN model on single-dimensional
sequence data.

activation function for RNN models rather than SGD. Figure 3.1 and Figure 3.2 shows

the graphical illustration of these models.

We illustrate the architecture of our CNN models for both the simulation

experiment and real data experiment in both Tables 3.1 and 3.2. Both models consist

of two convolutional layers and one max-pooling layer to identify sequence pattern or

predictive motifs from raw sequence data and one fully connected hidden layers with

a ReLU activation function to model motif interactions [27]. Techniques, like dropout

[44], batch normalization [45] and early stopping, are employed to prevent overfitting.

Table 3.1 shows the specification and hyperparameters of each layer in the simulation

experiment, while Table 3.2 shows the specification and hyperparameters of each

layer in the real data experiment. The hyperparameters (e.g., convolution kernel size,

number of layers, dropout rate, etc.) are selected based on the performance on the

validation dataset of each experiment. The raw genomic-format text sequence and
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Table 3.1 CNN Model Architecture and Hyperparameters for the Simulated
Sequence Dataset

Layer No. Layer Type Size Output

0 INPUT - 4*50

1 CONV 64*4*20 32*31

2 RELU - 32*31

3 DROPOUT - 32*31

4 CONV 128*4*10 64*22

5 RELU - 64*22

6 POOL 4*2 64*11

7 DROPOUT - 64*11

8 FC 128 128

9 DROPOUT - 128

10 FC 1 1

11 SIGMOID 1 1
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Table 3.2 CNN Model Architecture and Hyperparameters for the Genomic
Sequence Dataset

Layer No. Layer Type Size Output

0 INPUT - 4*1000

1 CONV 32*4*64 32*937

2 RELU - 32*937

3 DROPOUT - 32*937

4 CONV 128*4*16 128*922

5 RELU - 128*922

6 POOL 4*2 128*461

7 DROPOUT - 128*461

8 FC 128 128

9 DROPOUT - 64

10 FC 1 1

11 SIGMOID 1 1

19



gene sequence are both encoded into a bit matrices using one-hot encoding method. A

50-character genomics-format sequence can then be represented as an encoded 4× 50

bit matrix, with columns corresponding to A, C, G and T. A 1000-nt DNA sequence

can then be represented as an encoded 4 × 1000 bit matrix. The encoded bit matrix

is passed to a one-dimensional convolutional layer, which acts as a motif scanner

across the input matrix and computes the activation of multiple convolutional filters

at every position within the sequence window. With the one-hot encoding method,

we can preserve the vital position information of each nucleotide in DNA sequences.

3.2.2 Sequence Pattern Design

In this paper, we design six kinds of sequence patterns for mining sequence patterns.

The designed patterns are shown in Table 3.3 and Figures 3.3. All the sequences

are designed to have the same length, for example, 50 characters in our simulation

experiment. We design a special pattern and randomly generate a number of

sequences based on the special pattern. For each pattern, we generate positive samples

with the specific sequence patterns and generate two kinds of negative samples:

one kind is random sequences exclude the positive sequence pattern samples, the

other kind is misleading sequences that are generated based on a similar pattern to

the positive samples’ pattern but has some different parts. The starting position

can be randomly generated or fixed at a specific position in the sequence. If the

starting position of the samples is randomly generated, that means the pattern in

each sequence may locate at different positions. If the starting position is fixed, then

all the patterns in the sequences start from a same position. For some patterns,

the length of the patterns are also not fixed, which is based on the special pattern

in the sequence. We design the patterns like that to make the pattern challenging

enough for those models to learn. The sequence step length for this experiment is

50. For example, in pattern No. 1, the designed motif pattern [A, A, A, A, A],
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allows up to 4 steps for each motif. And randomly insert these patterns into an

individual sequence with no overlapping. If each motif pattern occurred only once

in a sequence labeled as positive, otherwise labeled as negative. We generated five

thousand positive samples and five thousand negative samples. The deep neural

network must first recognize what is the motif and then learn to identify if the motif

occurred once or not. This pattern is as identical as finding low-level feature then

combined as a high-level feature.

We design the sequence pattern No. 5 as ACGTAAGGTC with each base

randomly inserted into the sequence of length 50. We can easily design positive

data. But the negative data of random sequences cannot just be random. Since the

positions of each base of the sequence pattern are unknown, the randomly generated

characteristic could be the same as our sequence pattern. It is most likely that a

totally randomly generated sequence contains our sequence pattern. Thus, we design

an algorithm to make sure the generated negative data cannot contain the sequence

patterns. In the removing sequence pattern (RMP) algorithm, we need to generate N

sequences of length L. Each time we generate a random sequence, we need to detect

whether the sequence contains our pattern. We should search from the beginning of

the sequence. When the sequence contains all the pattern base in order, we need to

ignore this sequence and generate a new one until we obtain N sequences in total.

3.3 Experiments and Results

In this section, we describe the experimental settings, the platform, and packages

used for building models as well as the evaluation performance comparing with the

acknowledged state-of-the-art approaches. My experiments intended to illustrate

different characteristics of the two different kinds of neural networks (convolutional

neural network, recurrent neural network), and which network achieves a better

performance than another under different scenarios.
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Table 3.3 Description of the Designed Sequence Patterns

No. Pos/Neg Data Length Starting

Position

Pattern

Length

1
pos 50 random 5 - 10

misleading 50 random 1 - 4, 11 - 14

2
pos 50 fixed 10*2

neg: mutate 50% 50 fixed 10*2

3
pos: ACAGT with fixed interval 9

bases

50 fixed 5

neg: mutate one of the 5 pattern bases 50 fixed 5

4
pos: any combinations of A, C, G or T 50 fixed 4

neg: mutate one of the 4 pattern bases 50 fixed 4

5
pos: ACGTAAGGTC with each base

randomly inserted in to the sequence

50 random 10

neg: mutate one of the 10 pattern bases 50 random 10

6
pos: randomly generate 10 bases and

swap AT, swap GC for the remainder

half

50 fixed 50

neg: randomly select 50% bases from

the second half to mutate

50 fixed 50
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(a) Pattern No.1 positive sequence sample (b) Pattern No.1 misleading negative sequence sample

(c) Pattern No.2 positive sequence sample (d) Pattern No.2 misleading negative sequence sample

(e) Pattern No.3 positive sequence sample (f) Pattern No.3 misleading negative sequence sample

(g) Pattern No.4 positive sequence sample (h) Pattern No.4 misleading negative sequence sample

(i) Pattern No.5 positive sequence sample (j) Pattern No.5 misleading negative sequence sample

(k) Pattern No.6 positive sequence sample (l) Pattern No.6 misleading negative sequence sample

Figure 3.3 The positive and misleading negative sequence samples of the designed
patterns.
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3.3.1 Data Source and Data Preprocessing

All simulation experimental samples are sequences with a length of 50 base pairs

and belong to “Positive” or “Negative” class. Samples in “Positive” class contain

regions wrapping around sequence patterns. In contrast, samples in “Negative” class

do not contain them. For simulated data, we design positive sequence pattern to

randomly generate the positive samples and the misleading negative sequence patterns

to randomly generate the negative samples. We randomly generate random negative

sequence sample, while excluding the positive samples that might be inside those

sequences. We apply a 10k size dataset to each experiment. Both the size of positive

samples and the size of negative samples are the same. The model which performs

best will then evaluated on the test set to quantify the performance. For each pattern,

we randomly generate a different dataset based on a different seed that consists of

both positive sequences and negative sequences. The seeds are 1009, 1013, 1019, 1021,

and 1031. Thus, we repeat five times based on five different seeds for each sequence

pattern.

For the real data experiment, we download the real caenorhabditis elegans gene

gff3 file from ENSEMBL database 2. Then we extract the fasta format sequence files

using BEDTool [46] based on gff3 files. Since the dataset is large, we extract the gene

sequences that are less than 1000 for our experiment. We conduct two experiments:

one with the sequences whose lengths are less than 500nt and the other with the

sequences whose lengths are less than 1000nt. As we observed, the sequences belong

to seven chromosomes: chrI, chrII, chrIII, chrIV, chrV, chrX, chrMtDNA. As the

number of gene sequences in chrMtDNA is too small (less than 20), which will not

affect the experiment results. Thus, we just ignore these sequences. To make the

training dataset, validation dataset and test dataset ratio similar to 7:1:2, we pick

2ftp://ftp.ensembl.org/pub/release-92/gff3/caenorhabditis elegans/
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the sequences of chrII, chrIV, chrV and chrX as training dataset; chrIII as validation

dataset and chrI as test dataset for the experiments.

For this experiment, we split the entire dataset as training data, validation data

and test data to avoid overfitting and assure that the model will generalize to new

data. We holdout validation dataset and partition our entire dataset into a training

set, a validation set, and a test set. Weights and parameters of the models are both

learned from the training set and evaluated on the validation set.

3.3.2 CNN and RNN Model Training and Testing

After data preparing, we applied the designed deep learning models with different

architectures in Section 2 on our prepared data. The goal of model training is to

find the parameters that can minimize the objective function. In general, model

parameters should be initialized randomly to avoid local optima determined by a

fixed initialization [35, 36]. To train the models, we need to tune the hyperparameters

(such as the number of hidden neurons, the number of kernels, the kernel size, the

dropout rate, the learning rate, etc.) based on the performance of validation dataset.

The idea of dropout is to randomly set output of the last layer to zero to prevent

units from co-adapting too much during the training process and will disable during

validation and testing process. The models will evaluate the average multi-task cross

entropy loss on the validation set at the end of each epoch to monitor the progress

of training. We set the parameters to schedule the training times of the models

for 1000 epochs but may early stop if the validation loss did not decrease over 100

consecutive epochs. Dropout is the most common regularization technique and often

one of the key ingredients to training deep models. The dropout rate corresponds to

the probability that a neuron is dropped out, where 0.5 is a sensible default value.

Between these two convolutional layers, we used dropout to randomly exclude 40%

of neurons in the layer in order to reduce overfitting. Various learning rates are
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usually explored on a logarithmic scale such as 0.1, 0.01, or 0.001, with 0.01 as initial

training value [47]. Here, training is stopped as soon as the validation performance

starts to saturate or deteriorate, and the parameters with the best performance on

the validation set are chosen. We save the best model based on loss value of validation

dataset with the patience of 100 epochs.

In our simulation experiment, the loss function of CNN was optimized by mini-

batch stochastic gradient descent with a batch size of 128 and a global learning rate

within [0.01, 0.1]. The learning rate was adopted by SGD and decayed by a default

factor of 0.9 after each epoch. The loss function of RNN was optimized by RMSprop

optimizer. As the number of configurations grows exponentially with the number

of hyperparameters, trying all of them is impossible in practice. It is, therefore,

recommended to optimize the most important hyperparameters such as the learning

rate, batch size, or length of convolutional filters independently via line search (trying

different values while keeping all other hyperparameters constant). Hyperopt [39] can

automatically explore the hyperparameter space using Bayesian optimization, which

we applied to tune the parameters for our models.

3.3.3 Experimental Environment and Assessment

We implement the proposed deep learning models with python, Keras (Version 2.0.8)

[32], and Theano (Version 0.9.0) [33]. Keras [32] is a powerful python library which

can run on top of Theano [33] or TensorFlow [34]. It provides highly modularized

APIs for building and training deep learning models. We implement the traditional

machine learning model with WEKA (Version 3.8). The Kmer features are extracted

with python. We tuned the hyperparameters for our models using a tool named

Hyperopt [39], which can automatically explore the hyperparameter space using

Bayesian optimization. We configure the experiment environment and run the python

codes on a Linux server with 4 Intel E5-2650 CPUs, 256 GB memory and 4 Nvidia
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GeForce GTX 1080 GPUs (2560 NVIDIA CUDA cores, 8 GB GDDR5X memory and

10Gbps memory speed).

Six major performance metrics are used to evaluate the prediction method.

They are the area under the receiver operating characteristic curve (AUC), recall or

sensitivity (SN), Specificity (SP), Accuracy (ACC), Matthew’s correlation coefficient

(MCC) and F-measure. By applying the recognition function, we identify correctly

TP (true positive) samples and TN (true positive) samples. At the same time,

FP (false positive) positive samples were incorrectly classified as negative samples

and FN (false negative) negative samples were incorrectly classified as positive

samples. SN measures the fraction of the true positive samples which are correctly

predicted. SP measures the fraction of the predicted positive samples which are

correct amongst those predicted. Accuracy (ACC) measures the average of positive

and negative samples, without considering the possible difference inside them. A

better measurement MCC considers the relation between correctly predictive positives

and negatives as well as false positives and negatives. MCC measures a correlation

coefficient between trained and tested datasets. In addition, we adopt AUC to assess

the performance as well. AUC is the expectation that a uniformly drawn random

positive is ranked before a uniformly drawn random negative, which is commonly

used as a baseline to determine if the model is useful. F-measure is applied as the

weighted harmonic mean of precision and recall. The higher f-score is, the higher both

precision and recall are. For each performance metric, we considered the sequences

containing sequence patterns as the positive class and the sequences with no sequence

patterns as the negative class. As a binary classification, positive sequences specificity

corresponds to the negative sequences sensitivity (and conversely).

27



3.3.4 Experiment on Simulated Data and Results

First, we applied the CNN and RNN models to the raw datasets and then applied

Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT)

and Random Forest (RF) to the Kmer features extracted from the raw datasets.

Note that during the training, we do calculate these performance measures for

each individual sequence pattern, but only use the train data. Ten-fold cross

validation was performed during hyperparameters tuning step using validation data.

To achieve a fair comparison, we used the same datasets for training and compared the

performance among the proposed CNN and RNN models. We then tuned the model

hyperparameters and picked the best ones for calculating four metrics: Accuracy,

AUC, recall and MCC on testing data. Lastly, to better understand the learning

behavior of CNN and RNN models, we created learning curves for these two models.

To create the learning curves, we used 128 instances as the initial sample size and

increased the sample sizes by a batch size of k=128 until we reached the total number

of annotated instances. At each sample size we performed cross validation 128 times

and calculated the average accuracies. The summary of experimental results evaluated

based on the prediction assessments is shown in Figure 3.4. As shown in Figure 3.4(a),

CNN and RNN models can always get better performance than traditional machine

learning models. It seems that RNN is slightly better than CNN in recognizing

pattern No. 1. Although for the dataset with random negative sequences, SVM and

LR models can get goood results, they cannot recognize the dataset with misleading

negative sequences. DT and RF seem to be robust, but their performance are not

good as CNN and RNN models, especially for MCC and SP metrics. For pattern

No. 2, as shown in Figure 3.4(b), CNN and RNN models can always obtain high

AUC values, no matter for the dataset with random negative sequences or misleading

negative sequences. It seems that CNN is slightly better than RNN in recognizing

this pattern, esperically for recognizing misleading sequences. RF can achieve a better
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performance than other traditional machine learning methods, but the performance

is still far worse than CNN and RNN models. For pattern No. 3, as shown in

Figure 3.4(c), CNN and RNN models can always obtain high performances among

all metrics for both datasets. Their performances are similar. SVM and LR can

recognize the pattern, but the performance are worse than deep learning models,

especially for the dataset with misleading sequences. Moreover, DT and RF cannot

recognize this pattern. For pattern No. 4, as shown in Figure 3.4(d), CNN and

RNN models have similar results. They can always obtain high performances among

all metrics, no matter for the dataset with random negative sequences or misleading

negative sequences. All traditional machine learning methods (SVM, LR, DT and RF)

have similar results as well, but their performance are much worse than deep learning

methods. For pattern No. 5, as shown in Figure 3.4(e), both CNN and RNN can

always obtain high performances among all metrics for both datasets. RNN performs

better than CNN in recognizing this pattern. SVM and LR have similar results with

the performance better than DT and RF, and worse than CNN and RNN. DT has

the worst results among all models. For pattern No. 6, as shown in Figure 3.4(f),

both RNN and RF models can always obtain high performances among all metrics

for both datasets. CNN can always obtain high performances among all metrics for

the dataset with random negative sequences. But for the misleading dataset, CNN

cannot recognize the pattern. RNN performs better than CNN in recognizing this

pattern. SVM and LR cannot recognize the pattern for both datasets. RF performs

better than DT in recognizing this pattern.

From the evaluation results, we can find that deep learning models perform

better than traditional machine learning models for recognizing sequence patterns.

Convolutional neural network exhibits high efficiency and high accuracy in identifying

motif patterns. RNN models can be more appropriate for the sequence pattern

where the character positions of the pattern are not fixed, since it may help find the
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connection between the previous and next characters. Sometimes, RF can achieve a

good performance, such as patterns No. 1, No. 2 and No. 6. Sometimes, SVM and LR

can achieve a good performance, such as patterns No. 3 and No. 5. The traditional

machine learning methods can be applied to some specific patterns, but it cannot

achieve good performance for all sequence patterns. Thus, deep learning models

are better than the traditional machine learning methods recognizing the sequence

patterns. To make it more understandable, Figure 3.5illustrates the saliency map of

the entire sequence with extracted sequence pattern based on CNN model, where a

saliency map can only be visualized based on convolutional neural networks. It is

observed that the signal is strong around the sequence pattern.

3.3.5 Experiment on Real Data and Results

The performance comparison between CNN model and RNN model is shown in

Figure 3.6. The visualization based on saliency map method is shown in Figure 3.7.

From the figures, we can discover that CNN model performs a little better than RNN

model. Both models achieve a high AUC value and a high accuracy. The visualization

illustrates how CNN learns the motifs from the raw gene sequences. Both the start

codon (ATG) and the stop codon (TAG, TGA, TAA) has strong signals which can

easily be learned from CNN model. In Figure 3.7, we can find the start codon at the

positions 85, 88 and 91, and the stop codon at the positions 119, 128 and 131.

3.4 Conclusion

Genomic sequence pattern recognition problem is a kind of natural language

processing problem. Since deep learning approaches do not need handcrafted features

as input, it is always an efficient and effective way of solving this kind of problem with

only raw sequences provided. To our knowledge, we are the first to compare different

kinds of deep learning models for the genomic sequence pattern recognition problem.
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(a) Prediction performance for learning pattern No.1 (b) Prediction performance for learning pattern No.2

(c) Prediction performance for learning pattern No.3 (d) Prediction performance for learning pattern No.4

(e) Prediction performance for learning pattern No.5 (f) Prediction performance for learning pattern No.6

Figure 3.4 Prediction performance for learning sequence patterns. Deep learning
methods and state-of-the-art traditional machine learning methods are involved.
Performance is measured using barplot by six evaluation metrics, including the area
under the receiver-operating characteristic curve (AUC), accuracy (ACC), recall (SN),
specificity (SP), Matthew’s correlation coefficient (MCC), and F-score (F1).
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(a) Visualization of the sequence sample with pattern No.1 (b) Visualization of the sequence sample with pattern No.2 

(c) Visualization of the sequence sample with pattern No.3 (d) Visualization of the sequence sample with pattern No.4 

(e) Visualization of the sequence sample with pattern No.5 (f) Visualization of the sequence sample with pattern No.6 

Figure 3.5 Visualization of the sequence samples with the patterns based on
Saliency Map.

32



Figure 3.6 Prediction performance for learning gene sequence patterns. Deep
learning models and state-of-the-art traditional machine learning methods are
involved. Performance is measured using barplot by six evaluation metrics, including
the area under the receiver-operating characteristic curve (AUC), accuracy (ACC),
recall (SN), specificity (SP), Matthew’s correlation coefficient (MCC), and F-score
(F1).

ATG

ATG

TAA

TAG

Start codon
Stop codon

Figure 3.7 Visualization of real gene sequence by saliency map.
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To make the problem simple, we generate all the sequence data in genomics format.

The sequences are then transformed into bit matrices as the input to deep learning

models using one-hot encoding method. We apply two dominant deep learning

models and then compare them with different traditional machine learning methods

on Kmer features for characterizing different forms of sequence patterns. Through

the simulation results, we can find out that convolutional neural network can always

get a good result on genomic format sequence pattern classification, except for some

special sequence patterns that are difficult to discover. In view of this, we also apply

deep learning models to real caenorhabditis elegans gene sequences and discovered

that convolutional neural network achieved a better performance than the recurrent

neural network. Through the visualization by saliency map, the convolutional neural

network can learn the start codon and stop codon pattern of gene sequences.
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CHAPTER 4

DEEPPOLYA: A CONVOLUTIONAL NEURAL NETWORK
APPROACH FOR POLYADENYLATION SITE PREDICTION

4.1 Introduction

Polyadenylation is a vital process that occurs after gene transcription and produces

mature messenger RNA (mRNA) for translation by synthesizing the polyadenylation

tail at the RNA’s 3’-end [14]. Recent discoveries have revealed that the 3’-end of

most protein-coding and long-noncoding RNAs (lncRNAs; noncoding transcripts of

200 nucleotides or longer) is cleaved and polyadenylated [13]. In addition, alternative

polyadenylation (APA) is prevalent in all eukaryotic species and plays critical roles

in gene regulation, especially in the processes such as mRNA metabolism, protein

diversification and protein localization [12]. Specifically, in addition to conducing

to the intricacy of transcriptome by producing isoforms of distinct properties, it

can regulate the translation efficiency, function, stability and localization of target

RNAs [48, 13]. The polyadenylation site, also called the poly(A) site, is defined

by surrounding RNA segments and conserved across metazoans with some minor

variations in mammals [12, 13, 14].

Accurate prediction of poly(A) sites and identification of motifs that controlling

them are fundamental for interpreting the patterns of gene expression, improving the

accuracy of genome annotation and comprehending the mechanisms that governing

gene regulation [15, 16]. Despite considerable advances in using machine learning

techniques for this problem, its efficiency is still limited by the lack of experiences

and domain knowledge to carefully design and generate useful features, especially for

plants. With the increasing availability of extensive genomic datasets and leading

computational techniques, deep learning methods, especially convolutional neural
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networks, have been applied to automatically identify and understand gene regulation

directly from gene sequences and predict unknown sequence profiles.

This chapter presents DeepPolyA, a new deep convolutional neural network-

based approach, to predict polyadenylation sites from the plant Arabidopsis thaliana

gene sequences. We investigate various deep neural network architectures and

evaluate their performance against classical machine learning algorithms and several

popular deep learning models. Experimental results demonstrate that DeepPolyA is

substantially better than competing methods regarding various performance metrics.

We further visualize the learned motifs of DeepPolyA to provide insights of our model

and learned polyadenylation signals.

4.2 Motivation and Related Work

However, this remains a challenging problem, especially for plants, to precisely

identify the poly(A) signals and predict poly(A) sites. Unlike animals, plants possess

much less conserved signal sequences in such regions [49]. For example, the upstream

element signal “AAUAAA” (or “AATAAA” in DNA sequence), which has been

identified as the best signal in plants, can only be found in approximately 10%

of Arabidopsis genes [50, 51]. In contrast, the same signal is utilized by 50% of

human genes [52]. The variable structures composed of functional motifs [53, 54] also

increase the difficulty in identifying poly(A) sites. In addition, because of the epidemic

presence of alternative polyadenylation in intron and coding sequence (CDS), the

poly(A) sites may locate in the genomic regions other than 3’ untranslated region

(3’-UTR). Thus, an ideal predictive model should be powerful and robust enough to

overcome all barriers as mentioned above to achieve decent performance.

Quite a few methods have been proposed to predict poly(A) sites across diverse

species. Among these studies, most of them focus on human sequences. Akhtar

et al. proposed POLYAR, which applied the linear discriminant function (LDF) to
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classify poly(A) sites into three groups with distinct poly(A) signals [55]. A stand-

alone program named polya svm was developed for poly(A) sites prediction using the

15 cis-regulatory elements based on a Support Vector Machine (SVM) model [56].

Chang et al. proposed a predictive model of two SVMs for features extraction and

poly(A) sites prediction [57]. All these three studies are conducted based on human

genomic sequences dataset polya DB1 [58]. More recently, Xie et al. proposed a novel

machine-learning method by marrying generative learning (hidden Markov models)

and discriminative learning (support vector machines) [59]. Methods for analyzing

other species, such as yeast and plants, were also proposed. Graber et al. proposed a

contextual model to predict yeast poly(A) sites via a hidden Markov model (HMM)

[60]. In view of the features of plant poly(A) signals, Ji et al. proposed a generalized

hidden Markov model (GHMM) to effectively predict the poly(A) sites in Arabidopsis

genes [49]. It yielded both high specificity and sensitivity in the testing datasets [50].

Later, the model was updated and re-trained for rice [61]. Recently, Ji et al. proposed

a user-friendly framework called poly(A) site classifier (PAC) for predicting poly(A)

sites in Arabidopsis genes [62]. PAC demonstrates the best performance with high

specificity and sensitivity in the real data experiments. In addition, sub-models, like

feature generation, feature selection and classification in PAC, could be replaced and

updated, making it adaptable to different datasets [62].

Although methods mentioned above could achieve decent performance in solving

the specific problem, researchers are required to carefully design and generate useful

features based on their experiences and domain knowledge. Feature generation and

extraction methods, including K-gram pattern, Z-curve, and position-specific scoring

matrix, are critical components for previous SVM-based or HMM-based methods

[49, 62], and the power of the method could be significantly reduced due to an

1http://polya.umdnj.edu/PolyA DB1/
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inappropriate feature generation procedure. Thus, special efforts are needed to apply

one method to another species.

With the increasing availability of extensive genomic datasets and leading

computational techniques, deep-learning-based methods have been proposed to

automatically identify and understand regulatory regions of the genome directly

from DNA sequences, and predict the profile of unknown sequences based on

learned knowledge [27]. Deep learning, in general, refers to methods that learn a

hierarchical representation and detect complex patterns from feature-rich datasets

through multiple layers of abstraction.

Amongst a set of deep neural networks, convolutional neural networks (CNN)

are extensively employed in both academia and industry. It can achieve superb results

in computer vision, video analysis and speech recognition for its efficient feature

extraction capability [20, 63]. CNN has also been applied as the premier model in piles

of genomic problems, for example, motif discovery [22], HLA class I-peptide binding

prediction [64], and identifying functional effects of noncoding variants [24, 25]. Zeng

et al. proposed a series of CNN architectures to identify DNA sequence binding

with a large compendium of transcription factor datasets [65]. Basset, a powerful

computational tool, was proposed to apply CNN to discover the functional activity of

genomic sequences [23]. Zhou et al. applied CNN model to capture the motif signals

from the sequences around the target residues [66]. DeepSEA is a recently developed

algorithm that utilizes CNN for predicting chromatin effects of sequence alterations

with single-nucleotide sensitivity [24]. DanQ, a hybrid framework that combines

convolutional and recurrent neural networks, further improves the performance of

DeepSEA [25]. CNN models have demonstrated their advantages in automatically

learning hierarchical feature representations of raw input data in previous studies.

Their successes motivate us to develop novel CNN-based methods to automatically

learn poly(A)-related features, signals, and patterns for predicting poly(A) sites.
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Thus, we propose a computational method, DeepPolyA, based on deep CNN for

predicting poly(A) sites in Arabidopsis species. DeepPolyA automatically combines

the feature extraction and model training stages, and learns predictive DNA patterns

and motifs in a data-driven manner. In this work, we have made four contributions:

1. We propose a CNN-based model named DeepPolyA 2 to predict poly(A) sites

in Arabidopsis. To the best of our knowledge, this is the first deep learning

based approach to this research issue.

2. We show in this chapter that DeepPolyA could automatically learn poly(A)-

related motifs without involving any manual feature engineering. The model

first learns low-layer features from DNA sequences via lower convolutional

layers, and then forms high-level, sophisticated features through upper nonlinear

transformation layers.

3. DeepPolyA outperforms not only the conventional machine learning methods

including Support Vector Machine (SVM), Bayesian Networks and Random

Forest, but also the existing deep learning models including DanQ [25],

DeepSEA [24], and VGG [67] models.

4. We also investigate the performance of alternative deep learning architectures

in predicting poly(A) signals, including the recurrent neural network (RNN)

model and the combination of CNN and RNN models (CNN-RNN).

4.3 Architecture of DeepPolyA Model

For the poly(A) site prediction problem, we illustrate the architecture of our

DeepPolyA model in Figure 4.1. It consists of two convolutional layers and one

max-pooling layer to identify predictive motifs from the context of DNA sequences

2DeepPolyA is freely available on Github: https://github.com/stella-gao/DeepPolyA
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Figure 4.1 Overview of the neural network architecture of DeepPolyA.

and one fully connected hidden layers with a ReLU activation function to model

motif interactions [27]. Techniques, like dropout [44], batch normalization [45] and

early stopping, are employed to prevent overfitting. Table 4.1 shows the specification

of each layer. The hyperparameters (e.g., convolution kernel size, number of layers,

dropout rate, etc.) are selected based on the performance on a validation dataset.

As shown in Figure 4.1 and Table 4.1, DeepPolyA takes a 162-nucleotide (nt) length

DNA sequence as input with the position 131 as the target poly(A) site. The raw

DNA sequence is encoded into a bit matrix using one-hot encoding method. A 162-nt
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DNA sequence can then be represented as an encoded 4×162 bit matrix, with columns

corresponding to A, C, G and T.

Table 4.1 DeepPolyA Architecture and Hyperparameters

Layer No. Layer Type Size Output

0 INPUT - 4*162

1 CONV 16*4*8 16*157

2 RELU - 16*157

3 DROPOUT - 16*157

4 CONV 64*4*6 64*152

5 RELU - 64*152

6 POOL 4*2 64*76

7 DROPOUT - 64*76

8 FC 64 64

9 DROPOUT - 64

10 FC 1 1

11 SIGMOID 1 1

As shown in Table 4.1, the size column describes the kernel size of the

convolutional layer, the window size of the max-pooling layer and the size of the

fully connected layer. Note that the architecture parameters (e.g., the kernel size,

the number of layers and the dropout rate) are carefully selected based on the

optimization performance on the validation set. By applying several convolutional

and pooling operations, CNN could automatically extract high-level features from

high-dimensional input data while making the number of model weights manageable.

Model parameters are randomly initialized as suggested by Glorot et al. [36]. Model

hyperparameters (e.g., learning rate and the number of epochs) are optimized based
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on the performance of the validation data. Note that validation loss is measured

after each training epoch to monitor convergence. Dropout (dropout rate 40%; i.e.,

randomly drop 40% neurons in each iteration) and batch normalization [45] are used

for additional regularization. Note that dropout is not suitable to be put in the last

fully-connected layer, because some significant features may be lost. Thus, we only

apply dropout between the hidden layers.

The first convolutional layer operates directly on the encoded bit matrix, where

the kernels scan for features across the matrix, compute the activation of multiple

kernels at every position within the DNA sequence window and generate output

matrices. To reduce dimensionality and accelerate convergence, max-pooling layer

and batch normalization layer are applied subsequently, where the pooling size and

stride size are both set to 2 to prevent any overlap. A second convolutional layer

is added to model the interactions between motifs generated by previous layers and

obtain high-level features and abstractions. The output of the convolutional layers is

then flattened into vectors and fed to the fully connected layer. Finally, the outputs

are converted into probabilities via “sigmoid” function.

The value of the proposed deep learning based method is two-fold. Firstly,

classical machine learning methods require researchers’ prior knowledge and experi-

ence to predefine and cultivate features by counting or summarizing known genomic

patterns (e.g., regulatory variants, k-mer and structural elements). In contrast, our

method can automatically learn the problem-related knowledge and extract high-level

features from the raw sequence data. Therefore, our approach could be readily

applied to solve the same poly(A) prediction problem in different species. Secondly,

the proposed method can capture nonlinear dependencies and interactions among

the detected patterns and features at multiple genomic scales. It is challenging for

even experienced researchers to design a schema of features including all potential
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interactions of different sub-signals and low-level features. Thus, it can yield better

performance as demonstrated in the real data experiments.

4.4 Experiments and Results

In this section, we describe the experimental environment, platform settings used for

building models as well as the evaluation performance of the proposed model com-

pared with the state-of-the-art approaches. The experiments show that DeepPolyA

yields significantly more accurate predictions than existing baseline machine learning

methods and other popular deep learning methods.

4.4.1 Data Source and Data Preprocessing

A large number of training samples are usually required to train deep neural networks

in order to learn informative features and high-level representations from scratch. As a

general guideline, the number of training samples should be at least as many as that of

model parameters, although overfitting can be reduced through special architectures

and model regularization techniques [47]. The same Arabidopsis datasets chosen

from the baseline PAC’s literature [50] were utilized for our experiments. Positive

samples are randomly sampled from 16K dataset, which has over 16,000 Arabidopsis

3’-UTRs plus downstream sequences3. Following Ji et al [62], we selected the

sequences, whose lengths are longer than 162 nt, for further analysis. As a result,

13427 positive sequences, which are equally distributed among five chromosomes (chr

1-5), are obtained. Negative samples are generated by randomly sampling sequences

from the Arabidopsis Information Resources (TAIR) database4, which consists of

unequal-length introns, coding sequences and 5’-UTR sequences. The extracted

negative samples contain 3222 introns, 9704 coding sequences and 501 5’-UTRs

3http://www.users.miamioh.edu/liq/links.html
4http://www.arabidopsis.org/
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of Arabidopsis DNA sequences. Note that it maintains the same distribution of

sequences as in the TAIR dataset and contributes 13427 negative sequences in total.

As presented in [62], each sequence is then trimmed into a sequence of size 162

nt, containing 131 nt upstream and 31 nt downstream of a poly(A) site. After

preprocessing, all experimental samples are 162nt-long genomic sequences. As shown

in Equations 2.1- 2.6, we consider the sequences containing poly(A) sites as the

positive samples and the sequences without poly(A) sites as the negative samples,

and compute all the metrics accordingly.

4.4.2 Experiments on Model Comparison

We compare the proposed method with state-of-the-art methods including Support

Vector Machine (PAC.SVM), Bayesian Networks (PAC.BN), Random Forest

(PAC.RF) as well as other deep neural network models such as recurrent neural

network (RNN), hybrid convolutional and recurrent neural network (CNN-RNN).

Note that the architecture and parameters for RNN and CNN-RNN are tuned via

validation set, which is exactly the same as for our proposed method. Figure 4.2 shows

a graphical illustration of the RNN model, including two Long Short-Term Memory

(LSTM) layers and one fully connected layer. Both LSTM layers contain 16 neurons

and the fully connected layer contains 64 neurons. The dropout rate of each LSTM is

set to 0.2. Figure 4.3 shows a graphical illustration of the CNN-RNN model, which is

built with two convolutional layers, one max-pooling layer, one LSTM layer followed

by one fully connected layer. To build a CNN-RNN model, we add one LSTM layer to

DeepPolyA model between its second convolutional layer and the final fully connected

layer. We also consider some other popular deep learning models (e.g., DeepSEA [24],

DanQ [25], VGG [67]), fit them into our poly(A) problem, and compare them with

our newly proposed CNN architecture (DeepPolyA).
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Figure 4.2 RNN model architecture.
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Figure 4.3 CNN-RNN model architecture.
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For the traditional machine learning approaches (PAC.SVM, PSC.NB and

PAC.RF), we follow Ji et al. [62] and extract features from DNA sequences, including

1) the frequency of some nearby nucleotides; 2) the hexamer weight of NUE region;

3) the PSSM-based CIS score of NUE region or CS region; 4) the components

of Z-curve [62]. After feature extraction, we train the model based on different

algorithms with the default parameter settings in Weka [68]. It should be noted

that, as shown by the preliminary experiments, reasonable choices of the parameters

(e.g. different type of kernels for Support Vector Machine, different number of decision

trees for Random Forest) yield similar prediction results.

We divide the entire dataset into training, validation and testing sets. The

training set is utilized to learn weights and parameters of the models, which are

then evaluated on the validation set. The best model is selected and tested on the

testing set to evaluate the model performance. Note that the data are partitioned on

chromosome level and there is no overlap between training and testing data (i.e., three

chromosomes for training, one for validation and one for testing). In each run, we

randomly pick one chromosome as validation set and one chromosome as testing set,

and leave the rest three chromosomes as the training set. We repeat the experiments

several times to demonstrate that our model could achieve better performance, and

it is not obtained by chance. All the hyperparameters of above-mentioned competing

methods were selected based on the performance on the validation data. The model

performance is then evaluated on the testing set.

As shown in Figure 4.4, we repeat the experiment five times and show the

prediction performance based on testing data. DeepPolyA achieves remarkable and

stable performance in classification on the testing set with an accuracy of 91.28%, a

recall of 93.01%, a specificity of 89.51%, a Matthews correlation coefficient of 82.60%,

an area under a receiver operating characteristic (ROC) curve of 97.06% and an
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Figure 4.4 Prediction performance of DeepPolyA comparing with other methods.
Performance is measured using boxplot by six evaluation metrics, including the area
under the receiver-operating characteristic curve (AUC), accuracy (ACC), recall (Sn),
specificity (Sp), Matthew’s correlation coefficient (MCC), and F-score (F1). Three
constructed deep neural network methods (including DeepPolyA), three referred
popular deep learning methods and three baseline methods are considered. The lower
and upper hinges are the 25 and 75 quartiles, respectively.
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F-measure of 91.51%, which outperforms all other methods among all metrics. The

two methods next to DeepPolyA are DanQ and DeepSEA.

The RNN method can get a high performance sometimes, but the result

fluctuates according to different training and testing set. We can also discover that the

performance of three baseline machine learning methods is always worse than deep

learning methods. Overall, the results indicate that DeepPolyA can automatically

learn high-level features from the DNA sequences and yields more accurate predictions

than classical approaches and other popular deep learning models. A major advantage

of our model compared to previous methods is its convolutional architecture, which

allows for discovering predictive motifs in larger DNA sequence contexts, as well as

for capturing complex patterns around poly(A) sites.

Figure 4.5 shows the area under receiver operating characteristics (ROC curve)

and Figure 4.6 also shows the area under precision-recall curve (PR curve) for

deep neural network based methods. We can find from the curves that DeepPolyA

demonstrates the best performance. The following methods are DanQ, DeepSEA,

CNN-RNN, VGG and RNN.

We further investigate the impacts of the length of input sequences by varying

the input DNA sequence length from 54 nt to 216 nt. As shown in Figure 4.7, the

performance of the proposed model increases when sequence length increases from 54

nt to 162 nt, and it keeps the same from 162 nt to 216 nt. Note that the performance

will not increase if we further improve the input sequence length. These observations

suggest that the sequences around poly(A) sites do contain the poly(A) signals and

thus an appropriate input sequence length is critical for predicting the poly(A) sites

(i.e., shorter sequence will miss some signals and longer sequences will include lots of

noise).

We also evaluate the performance of our model in different genomic contexts.

As shown in Figure 4.8, the model yields the best performance in CDS, and the worst
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Figure 4.5 ROC curves of the prediction performance among all the deep learning
methods.
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Figure 4.6 Precision-Recall curves of the prediction performance among all the
deep learning methods.
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performance in intron, suggesting that poly(A) sites located in introns may have less

conserved signals and therefore are harder to detect.
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Figure 4.7 Prediction performance of DeepPolyA for DNA sequence windows of
length 54 nt to 216 nt.

4.4.3 Visualization of Learned Motifs

Model visualization is critical in computational biology. Several approaches have

been proposed to interpret the parameters of neural networks and to obtain insights

into learned features. Similar to conventional position weight matrices (PWMs),

gene sequence motifs can be recognized by the filters of the first convolutional

layer in DeepPolyA and visualized as sequence logos. Traditional approaches for

visualizing convolutional filters could be generally classified into alignment-based

and optimization-based methods. Alignment-based approaches [22, 23, 25] align

DNA sequence fragments that maximize the activation of a certain convolutional

filter and visualize the outcome alignments as sequence logos using WebLogo [69].

Optimization-based approaches [70] optimize the input gene sequence to maximize

the activation of a certain convolutional filter by gradient descent. Following
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Figure 4.8 Prediction performance of DeepPolyA for alternative genomic contexts
of negative DNA sequence samples.

the alignment-based method, we accumulate the motifs for the total 16 filters in

DeepPolyA and assess them through comparing against JASPAR database [71],

which has abundant known motifs and is widely applied as standard representation

of transcription factor DNA-binding preferences. We utilize a tool named TOMTOM

with predefined statistical measure of motif-motif similarity [72, 73] to compare the

motifs detected by DeepPolyA with those in JASPAR database and present an

alignment for each pair of considerable matches. Our visualization results of extracted

motifs and comparison with JASPAR are shown in Figure 4.9. The second motif

among them has the similar format with “AATAAA”, which is a significant upstream

element signal for poly(A) sites. Moreover, Figure 4.10 illustrates the saliency map

[74] visualization of the entire testing DNA sequence. We can discover that the signal

is strong around the poly(A) site. As shown in Figure 4.10, the strongest signal is at

position 131 nt, which is exactly the position of the target poly(A) sites in positive

samples.
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Figure 4.9 Three convolution kernels visualized from JASPAR using TOMTOM.

Figure 4.10 Saliency map visualization of an entire sequence with a zoom-in view
of the sites around poly(A) sites.
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4.5 Conclusion

In this chapter, we proposed DeepPolyA, a deep convolutional neural network

approach, to automatically and accurately modeling the poly(A) signals. Using the

plant Arabidopsis thaliana gene sequences datasets with one-hot encoding method,

we trained several competing deep learning models with various architectures and

compared the classification performance with baseline machine learning methods

through several significant metrics. The evaluation results show that DeepPolyA

outperforms all the competing methods without involving extensive manual feature

engineering. We visualized the learned motifs of the first convolutional layer using

TOMTOM against the JASPAR motif datasets to demonstrate that DeepPolyA can

automatically extract poly(A) signals and features from the raw sequence data.
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CHAPTER 5

TRNA-DL: A DEEP LEARNING APPROACH TO IMPROVE
TRNASCAN-SE PREDICTION RESULTS

5.1 Introduction

tRNAscan-SE is the leading tool for tRNA annotation that has been widely used in

the field. However, tRNAscan-SE can return a significant number of false positives

when applied to large sequences. Recently, conventional machine learning methods

have been proposed to address this issue, but their efficiency can be still limited due to

their dependency on handcrafted features. With the growing availability of large-scale

genomic datasets, deep learning methods, especially convolutional neural networks,

have demonstrated excellent power in characterizing sequence pattern in genomic

sequences. Thus, we hypothesize that deep learning may bring further improvement

for tRNA prediction.

This chapter proposes a new computational approach based on deep neural

networks, to predict tRNA gene sequences. We design and investigate various deep

neural network architectures. We use tRNA sequences as positive samples and the

false positive tRNA sequences predicted by tRNAscan-SE in coding sequences as

negative samples, to train and evaluate the proposed models by comparison with the

conventional machine learning methods and popular tRNA prediction tools. Using

one-hot encoding method, our proposed models can extract features without involving

extensive manual feature engineering and can outperform the existing methods under

different performance metrics. The proposed deep learning methods can reduce the

false positives output by the state-of-art tool tRNAscan-SE substantially. Coupled

with tRNAscan-SE, it can serve as a useful complementary tool for tRNA annotation.

The application to tRNA prediction demonstrates the superiority of deep learning in

automatic feature generation for characterizing sequence patterns.
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5.2 Motivation and Related Work

Transfer RNA (tRNA) plays a central in protein translation [17]. Thus, accurate

prediction and annotation of tRNA are fundamental for interpreting and improving

protein translation in all living cells. The most popular computational algorithm

for tRNA prediction tRNAscan can be dated back more than 20 years ago [18]. It

develops a seminal covariance model to describe the secondary structural profile and

primary sequence consensus of an RNA sequence. The covariance models essen-

tially are probabilistic secondary structure profiles based on stochastic context-free

grammars. Since then, quite a few improved software tools have been developed for

tRNA annotation and prediction, such as tRNAscan-SE [75, 76], ARAGORN [77]

and ARWEN [78]. Based on homology with recognized tRNA consensus sequences,

ARAGORN develops heuristic algorithms to search in silico for tRNA genes and

predict tRNA secondary structure as a cloverleaf diagram [77]. ARWEN focuses

on detecting tRNAs from metazoan mitochondrial nucleotide sequences, which are

usually degenerate in sequence and structure compared with tRNAs in their bacterial

ancestors. It employs a heuristic algorithm that searches for specific hairpin structures

[78]. The tRNAscan-SE represents a practical application of RNA covariance models,

which can detect a remarkable number of tRNAs in DNA sequences with good

accuracies. After extracting tRNAs candidate segments from the input using a

modified version of tRNAscan and a Pavesi algorithm [79], tRNAscan-SE passes

them to the covariance models [18] for predicting secondary structural profile of

tRNAs. Due to its superior performance, tRNAscan-SE remains the de facto tool for

identifying tRNA genes encoded in genomes [75]. More recently, tRNAscan-SE 2.0

[76] is released, which employs improved covariance model search technology enabled

by the Infernal 1.1 software [80].

Although the sensitivity of the covariance model is high in detecting tRNAs, it is

not powerful enough to separate tRNAs from pseudo-tRNAs. As a result, a significant
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number of false positives can be still output from tRNAscan-SE. To address this

problem, Zou et al. propose a machine learning-based method and build an ensemble

classifier LibMutil to improve the tRNAscan-SE annotations and predictions [81].

They use all the true tRNAs as the positive samples and pseudo tRNAs predicted

from coding region sequences by tRNAscan-SE as the negative samples for training

their model. Then they employed a three feature-extraction method to construct a

compressed feature set consisting of local sequence, structure-sequence, and multilevel

features. Using these features, they constructed an ensemble method for classification

consisting of eight common classifiers, namely AdaBoost.M, Bagging, Naive Bayes,

Logistic, Random Forest, Random Tree, J48, and KNN. They showed that their

method could improve the tRNAscan-SE prediction results substantially. However, we

note that their method required in-depth domain knowledge as it involved extensive

manual feature engineering in the feature extraction and construction step. In

addition, the loss of each nucleotide’s essential position information in the sequence

would affect the performance of prediction. Thus, in this work, we propose to use

the sequences themselves as direct inputs for building a discriminative model to

distinguish functional tRNAs from pseudo-tRNAs using a training set comprising all

the acknowledged true and pseudo-tRNAs. Deep learning models are the candidates

for our consideration.

With the growing availability of large-scale genomic datasets and advanced

computational techniques, deep learning-based methods have been proposed to

automatically identify and understand regulatory regions of the genome directly

from DNA sequences, and predict the profile of unknown sequences based on learned

knowledge [27]. Amongst a set of deep neural networks, convolutional neural networks

(CNNs), have been seen in many applications in analysis of genomic sequences, for

example, motif discovery [22], DNA binding site prediction [65], HLA class I-peptide
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binding prediction [64], functional effect prediction of noncoding variants [24, 25],

among others [23, 66].

In this chapter, we propose a computational method based on deep neural net-

works for predicting tRNA gene sequences. Our main contributions are summarized

as follows:

1. We propose a deep learning approach tRNA-DL 1 to separate tRNA from

pseudo-tRNAs. To the best of our knowledge, this is the first application of

deep learning to this problem.

2. We show in this chapter that the proposed model could automatically learn

predictive tRNA-related features and patterns in a data-driven manner without

involving extensive manual feature engineering. The model first obtains low-

layer features from DNA sequences via lower convolutional layers, and then

forms high-level, complex features through the upper nonlinear transformation

layers.

3. We investigate various deep learning architectures extensively to evaluate their

performance in predicting tRNA.

4. We show that the proposed model, without manual feature engineering, can

outperform conventional machine learning models including LibMutil, Support

Vector Machine, Adaboost, KNN and Random Forest. It improves the

prediction results by the tRNAscan-SE substantially.

Classical machine learning methods require researchers’ prior knowledge and

experience to predefine and cultivate features by counting or summarizing known

genomic patterns (e.g., regulatory variants, k-mer, and structural elements). In

contrast, our method can automatically learn the problem-related knowledge and

1Codes are freely available on Github: https://github.com/stella-gao/trna-dl
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extract high-level features from the raw sequence data. They can capture nonlinear

dependencies and interactions among the detected patterns and features at multiple

genomic scales. It is challenging and laborious for even experienced researchers to

design a schema of features including all potential interactions of different sub-signals

and low-level features. Thus, the deep learning methods can yield better performance

as demonstrated in the real tRNA applications.

5.3 Architecture of TRNA-DL Model

To find which neural network model works the best for the tRNA prediction task,

we examine several different types of models. Based on popular deep learning archi-

tectures, we build the models of three kinds: convolutional neural network (CNN),

recurrent neural network (RNN) and a hybrid combination of convolutional neural

network and recurrent neural network (CNN-RNN). Table 5.1 show the abbreviations

of different types of deep neural network layers. Conv1D, Conv2D, MaxPooling1D,

Maxpooling2D, AvgPooling1D and AvgPooling2D layers are deployed for building

CNNs. LSTM, GRU, BDLSTM, and DBGRU layers are deployed for building RNNs.

FC layer can be used in both CNNs and RNNs.

To find out which deep neural network architecture can achieve satisfying

performance results, we construct thirteen different deep neural network architectures.

The deployment and connections between layers are shown in Table 5.2, with

abbreviations listed. Among all these models, the CNNs are CF, CCMF, CMCMF,

CCMCAF, CMCMCMF, CCCMF, CMCMCF2 and CCCMF2. CMCMCF2 and

CCCMF2 applied two-dimensional convolutional neural networks while the others

applied one-dimensional neural networks. A two-dimensional convolution can be

considered as sliding one function on top of another, multiplying and adding.

Although mostly they are used for image processing, they can also be used in feature

extraction from genomic sequences, such as DeepSEA [24]. Since RNNs are seldom
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Table 5.1 Abbreviations of Different Types of Deep Neural Network Layers

Abbreviation Type of Layers

Conv1D One-dimensional convolutional layer

Conv2D Two-dimensional convolutional layer

MaxPool1D Max pooling layer for temporal data

MaxPool2D Max pooling layer for spatial data

AvgPool1D Average pooling for temporal data

AvgPool2D Average pooling for spatial data

FC Fully connected layer

LSTM Long-short term memory layer

GRU Gated recurrent unit layer

BDLSTM Bidirectional wrapper for LSTM layer

BDGRU Bidirectional wrapper for GRU layer
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used alone for training gene sequences. To address it, we build one RNN model LLLF

for evaluation comparison with other models. The leftover four architectures CMBLF,

CCMBLF, CMBGF, and CCMBGF belong to CNN-RNN architecture, which we get

the idea from DanQ [25].

For the tRNA prediction problem, we would select the model that demon-

strates the best prediction potential among the above architectures. The following

experiments section shows that CCMBLF performs best among the thirteen different

architectures of models. Thus, we select CCMBLF as our proposed model, named as

tRNA-DL. The proposed model tRNA-DL is shown in Figure 5.1, which consists of

two convolutional layers and one max-pooling layer to identify predictive motifs from

the context of DNA sequences and one bidirectional LSTM layer, one fully connected

hidden layer with a ReLU activation function to model motif interactions [27].

With one-hot encoding method, we can preserve the vital position information

of each nucleotide in DNA sequences. Because we read each entire sequence as input

to the model, we can preserve all the position of each nucleotide without missing the

relationship information between any two nucleotides. Table 5.3 shows the proposed

architecture with the hyperparameters setting based on the performance evaluation

on a validation dataset. The size column describes the kernel size of the convolutional

layer, the window size of the max-pooling layer and the size of the fully connected

layer. We set the number of kernels as 16 and 64 in the first and second convolutional

layers, respectively. We first utilize a convolutional layer that directly operating

on the encoded bit matrix to scan the motif. Next, we apply a max-pooling layer

subsequently to reduce dimensionality and a second convolutional layer to model the

interactions between motifs generated by previous layers, where the outputs of the

convolutional layers are then flattened into vectors, fed to the bidirectional LSTM and

the fully connected layer for further extraction. The final results are then converted

into probabilities via a “sigmoid” function.
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Table 5.2 Abbreviations of the Deep Neural Network Models

No. Abbreviation: Prediction Deep Learning Model Architectures

1 CF: Conv1D + FC + SGD

2 CCMF: Conv1D + Conv1D + MaxPool1D + FC + SGD

3 CMCMF: Conv1D + MaxPool1D + Conv1D + MaxPool1D

+ FC + SGD

4 CCMCAF: Conv1D + Conv1D + MaxPool1D + Conv1D

+ AvgPool1D + FC + SGD

5 CMCMCMF: Conv1D + MaxPool1D + Conv1D + MaxPool1D

+ Conv1D + MaxPool1D + FC + SGD

6 CCCMF: Conv1D + Conv1D + Conv1D + MaxPool1D

+ FC + SGD

7 CMCMCF2: Conv2D + MaxPool2D + Conv2D + MaxPool2D

+ Conv2D + FC + SGD

8 CCCMF2: Conv2D + Conv2D + Conv2D + MaxPool2D

+ FC + SGD

9 LLLF: LSTM + LSTM + LSTM + FC + SGD

10 CMBLF: Conv1D + MaxPool1D + BDLSTM + FC + RMSprop

11 CCMBLF: Conv1D + Conv1D + MaxPool1D + BDLSTM

+ FC + RMSprop

12 CMBGF: Conv1D + MaxPool1D + BDGRU + FC + RMSprop

13 CCMBGF: Conv1D + Conv1D + MaxPool1D + BDGRU

+ FC + RMSprop
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Figure 5.1 Deep learning model chosen with the best performance on the validation
set.
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Table 5.3 tRNA-DL Model Architecture and Hyperparameters

Layer No. Layer Type Size Output

0 INPUT - 4×134

1 CONV 16×4×4 16×131

2 RELU - 16×131

3 DROPOUT - 16×131

4 CONV 64×4×4 64×128

5 RELU - 64×128

6 POOL 4×2 64×64

7 BDLSTM 64×4×6 128×64

8 RELU - 128×64

9 FC 128 128

10 DROPOUT - 128

11 FC 1 1

12 SIGMOID 1 1
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5.4 Experiments and Results

Here, we will illustrate data processing, the libraries and packages used for training

models, the experimental environment as well as the numerical evaluation perfor-

mance of the proposed model compared with both the deep learning models and

baseline classical machine learning models.

5.4.1 Data Source and Data Preprocessing

Our goal is to further improve the tRNAscan-SE software [75] tRNA prediction results

with our proposed tRNA-DL deep learning model. Deep Learning models mostly rely

on the training dataset. Choosing a high-quality negative dataset for our model is

significant. Following Zou et al. [81], we adopt the same positive and negative samples

as those used in [81]. We choose the false positive tRNA sequences as negative

samples. The same tRNA sequences datasets consisting of both positive and negative

samples chosen from the baseline machine learning method-based literature [81] were

utilized for our experiments. The lengths of selected tRNA sequences are in the

range of [54, 134]. Positive samples have 623 tRNA sequences of 104 species, which

are the sequences obtained by randomly sampling from tRNAdb 2009 database [82].

The database has over 12,000 tRNA gene sequences of 577 species in total. Negative

samples are obtained by randomly sampling from the predicted false positive tRNA

sequences through tRNAscan-SE in the EMBL CDS database [83], which consists of

known and predicted coding sequences. The extracted negative samples contain 1183

false positive tRNA sequences, where the redundant sequences have been discarded

through CD-HIT software with a parameter c=0.9 [84].

We divide the entire dataset into training, validation and test sets and make sure

there is no overlap between them. The ratio to split them is 7:2:1. We use the training

and validation datasets to select the best performance deep neural networks model.

The test dataset is used later for prediction performance comparison against baseline
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machine learning methods and existing programs and tools. Note that the validation

dataset is then partitioned to a sub-validation dataset and a sub-test dataset for

evaluating the performance of different deep learning models. During the training

process, the sub-validation dataset helps tune the weights and parameters, which

the training dataset learns. Later, the sub-test dataset can show the performance

results based on this 90% of entire datasets, and then the best model among them

is selected. The test dataset is adopted to evaluate the performance of our selected

model tRNA-DL against baseline machine learning methods and other prediction

tools.

5.4.2 Experiments on Deep Learning Model Selection

We applied Hyperopt [39] package to tune the hyperparameters for our models. We

first randomly picked five to six values in a large range with same interval between each

other and then narrowed down the range as much as possible. We repeated this way

to finally find the hyperparameters that were suitable for our models. Figures 5.2 and

5.3 illustrate the loss values and accuracy values respectively during model training.

The model weights are updated and saved as soon as there is a better performance.

The training process stops at about 265 epochs since the best weights are obtained

at 65 epochs. There are no updates on the weights after 200 epochs. Then to avoid

overfitting and save time, we stop the training and evaluate our models.

Figure 5.4 shows the prediction performance of all the thirteen deep neural

network models mentioned above. Among all the performance assessment of the

thirteen constructed deep neural network methods, we can discover that the CCMBLF

model performs best, which is selected as our proposed model, named as tRNA-DL.

Figure 5.5 shows the area under receiver operating characteristics (ROC curve)

and Figure 5.6 also shows the area under precision-recall curve (PR curve) for deep

learning based methods. From the curves, we can find that our a hybrid combination
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Figure 5.2 Loss value during training process.

Figure 5.3 Accuracy value during training process.
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Figure 5.4 Prediction performance of various deep learning models. Performance
is measured using boxplot by six evaluation metrics, including the area under the
receiver-operating characteristic curve (AUC), accuracy (ACC), recall (Sn), specificity
(Sp), Matthew’s correlation coefficient (MCC), and F-score (F1).
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Figure 5.5 ROC curves of the prediction performance among all the deep learning
methods.
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Figure 5.6 Precision-Recall curves of the prediction performance among all the
deep learning methods.
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of CNN and RNN model demonstrates the best performance. The CNN layers are

used to extract sequence patterns which are related to the vital position information.

The RNN layers, especially bidirectional LSTM layers are applied on top of the CNN

layers so as to extract the inner relation between adjacent nucleotides or even between

the beginning part and ending part of the entire sequence. Figure 5.7 illustrates

the auc values of all the thirteen deep neural network models and also the classical

machine learning models. It is clear that our model tRNA-DL obtains a higher auc

value than other models. From that, we can find that the hybrid combination of

CNN and RNN models demonstrate the best performance and can always get better

performance than CNN models. The models that are using bidirectional LSTM layers

perform better than the models using one-directional LSTM layers, one-directional

GRU layers or bidirectional GRU layers.

5.4.3 Comparison with Existing Machine Learning Methods

We compare our proposed method tRNA-DL with the state-of-the-art machine

learning methods, including Support Vector Machine (SVM) algorithm with a linear

kernel, Random Forest (RF) algorithm with 50 trees, K-nearest neighbors (KNN)

algorithm with K=4, AdaBoost algorithm with a J48 base classifier and a LibMutil

ensemble classifier [81]. All the machine learning methods are implemented in Weka

[68] software. As shown in Table 5.4, our selected deep learning model tRNA-DL

achieves remarkable and stable prediction performance on the test dataset, which

outperforms all the classical machine learning methods (including the baseline method

LibMutil) among all metrics.

5.4.4 Comparison with Existing Softwares and Tools

To validate our proposed model tRNA-DL and evaluate its effectiveness, we compare

the performance results with three other tools, which are tRNAscan-SE, ARWEN

and ARAGORN. The results based on six evaluation metrics are shown in Table 5.5.
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Figure 5.7 AUC values for all models.
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Table 5.4 Prediction Performance of tRNA-DL Comparing with Existing Machine
Learning Methods

Metrics SVM KNN RF AdaBoost Lib- tRNA-

(linear) (K=4) (N=50) (J48) Mutil DL

AUC 82.3% 82.5% 97.6% 95.4% 97.5% 99.8%

MCC 63.7% 44.2% 75.7% 77.9% 81.1% 96.4%

ACC 84.3% 74.7% 89.8% 90.7% 92.0% 98.4%

SN 84.3% 74.7% 89.8% 90.7% 92.0% 96.8%

SP 80.2% 71.5% 80.0% 84.8% 88.7% 99.2%

F1 84.4% 75.3% 89.4% 90.6% 92.0% 97.6%

We can discover that tRNA-DL dramatically outperforms the other three tools when

it comes across the false positive tRNA sequences. Overall, the results indicate that

our model tRNA-DL can detect the false positive tRNA sequence and help improve

the tRNAscan-SE tool prediction results a lot.

5.5 Conclusion

In this chapter, because of the unacceptable false positive rate of tRNAscan-SE for

a significant amount of sequences, we introduce a deep learning approach to predict

tRNA so as to further improve tRNAscan-SE annotation results. The benefit of

introducing the deep learning approach is to automatically and accurately extract

satisfactory features without involving extensive manual feature engineering for better

prediction performance. We obtain positive samples from tRNAdb 2009 and obtain

negative samples that are false positive tRNA sequences predicted by tRNAscan-SE

in coding sequences. The positive and negative samples we used are the same as

those used in [81]. After removing the redundant data, we transfer the tRNA
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Table 5.5 Prediction Performance of tRNA-DL Comparing with Existing tRNA
Prediction Tools

Metrics tRNAscan-SE ARWEN ARAGORN tRNA-DL

AUC 53.1% 52.1% 57.7% 99.8%

MCC 10.4% 10.0% 20.6% 96.4%

ACC 40.1% 37.9% 46.2% 98.4%

SN 95.2% 98.4% 95.2% 96.8%

SP 10.9% 5.9% 20.2% 99.2%

F1 52.4% 52.3% 52.4% 97.6%

genomic sequences into encoded bit matrices using one-hot encoding method. We

design thirteen competing deep learning models of various architectures, train these

models and choose the one with the best evaluation performance as our model.

We evaluate our model based on the test dataset and compare the classification

performance with baseline machine learning methods through several meaningful

metrics. The evaluation results demonstrate that the chosen model outperforms the

competing machine learning methods as measured by its higher accuracy and AUC

score. In summary, the proposed deep learning method is a promising tool for tRNA

classification and prediction. It shows a high potential for pursuing this approach to

solve other related problems in computational biology, which will be considered in

our follow-up studies.
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CHAPTER 6

CONCLUSION

This dissertation focuses on the development of deep learning methods for identifying

genomic sequences and mining sequence patterns. To our knowledge, we are the

first to compare different deep learning models for the sequence pattern recognition

problem. The main contributions of this dissertation are as listed below.

First, motivated by the investigated deep learning methods for genomic

sequences identification, we will focus on pattern recognition based on self-generated

simulated sequence datasets with designed patterns. There are two major kinds of

deep learning models, including convolutional neural network and recurrent neural

network. Convolutional Neural Network and Recurrent Neural Network models are

appropriate for different types of sequence patterns. In view of the simulation results,

we believe that we can always find an appropriate deep learning model for a specific

sequence pattern. In addition, a saliency-map-based method is applied to visualize the

learned sequence patterns. We also study different deep learning approached using

real genomic sequence data, and demonstrate that a convolutional neural network

model is slightly better than a recurrent neural network model for mining gene

sequence patterns. Through the visualization based on the saliency map, we can

find the convolutional neural network can find out the primary gene pattern: start

codon and stop codon.

Second, a CNN-based model named DeepPolyA is proposed to predict poly(A)

site from the plant Arabidopsis thaliana gene sequences, which is the first deep

learning based approach to this research issue. DeepPolyA could automatically learn

poly(A)-related motifs without involving any manual feature engineering. DeepPolyA

outperforms not only the conventional machine learning methods including Support
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Vector Machine (SVM), Bayesian Networks and Random Forest, but also the existing

popular deep learning models.

Third, a deep learning approach tRNA-DL is proposed to separate tRNA from

pseudo-tRNAs. It shows that without manual feature engineering, tRNA-DL can

outperform conventional machine learning models including Support Vector Machine,

Adaboost, KNN, Random Forest and an ensemble model of all these models. It

improves the prediction results by the tRNAscan-SE substantially. Coupled with

tRNAscan-SE, it can serve as a useful complementary tool for tRNA annotation.

The above applications demonstrate the superiority of deep learning in automatic

feature generation for characterizing sequence patterns.

In summary, comparing to traditional machine learning methods, deep learning

model can be generally applied for successfully recognizing various genomic sequence

pattern and can always achieve better performance. Convolutional neural network

and recurrent neural network are good at detecting different kinds of sequence

patterns. They are comparable to each other, the integration of both is even better.

For mining genomic patterns, CNN is usually a right way to start. Sometimes,

RNN can be attached CNN to help CNN get better results. There are still some

limitations in current research. For example, other recent variants of RNNs have

not been explored. For some patterns, especially with non-fixed positions, saliency

map didn’t highlight pattern positions well. In our future work, we would explore

recent and modern RNN architectures to improve the performance further. We would

also investigate how to locate the pattern positions and summarize the patterns after

the sequences with the pattern have been identified so that we can improve over the

saliency map.
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