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CHANGES IN NADPH OXIDASE (NOX) PROTEIN ISOFORMS 
AND DOWNSTREAM REACTIONS AS FUNCTION OF TIME 

AND OVERPRESSURE IN BLAST TBI 
 

by 

Smit P. Shah 

 

Blast-induced Traumatic brain injury (bTBI) is a leading cause of morbidity in soldiers 

on the battlefield and training sites with long-term neurological and psychological 

pathologies. Among many pathological sequela of blast TBI, oxidative stress has been 

identified as a major factor contributing to the pathophysiology of bTBI. Recent studies 

have demonstrated activation of oxidative stress pathways following blast injury but their 

distribution among different brain regions as function of post injury time and Blast over 

pressure (BOP) have not been explored. The present study examines the protein 

expression of NADP oxidase (NOX) isoforms 1 & 2, corresponding superoxide 

production, a downstream event of NOX activation as well as the extent of lipid 

peroxidation adducts of 4-Hydroxynonenol (4-HNE). Based on these results, in the 

present study, we asked: 1) whether NOX protein levels change as a function of different 

overpressures in bTBI?  2) Whether such changes follow a temporal pattern? and 3) what 

are the consequences of NOX protein changes on the downstream events including 

superoxide production and lipid peroxidation of proteins. The Brain injury was evaluated 

at 4, 24 hours and 7 days and at 130, 180 and 240 kPa blast overpressures. Results 

showed that NOX isoform expression display a bi-phasic response wherein, its 

expression did not change at 130 kPa, whereas a significant increase was first detected in 

animals exposed to 180 kPa BOP which displayed a further increase at 240 kPa. 



 
 

Examination of temporal changes in NOX protein levels again displayed a biphasic 

response with a significant increase at 4h post- injury which peaked at 24 h and 

completely restored to that of control levels at 7 days post-injury. Blast exposure also 

resulted in increased superoxide levels in different brain regions as well as changes in 

lipidid peroxidation product 4hydroxynonenol (4HNE) protein adduct formation. 

Collectively, our results demonstrate that NOX isoforms are upregulated in different 

brain regions as a function of different overpressures in bTBI and temporally display a 

biphasic response. Oxidative stress therefore appears to be a higher risk factor in the 

pathogenesis of bTBI.  
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CHAPTER 1 

INTRODUCTION 

 

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide. 

There are about 250,000 cases of TBI annually occur in USA which there are about 

50,000 severe cases of TBI resulting in death. TBI has been broadly classified into two 

categories, namely blunt and blast injuries based on the type of impact occurring to the 

skull and the brain [1]. Blunt TBI typically include closed head injuries wherein external 

damage to the skull is usually minimal which frequently results from falls, sports-related 

head injuries [2, 3].  Other form of blunt TBI usually results from penetrating injuries 

which usually causes damage to the to the skull by sharp objects such as knife or fast 

moving bullets causing damage to both skull which penetrates deep into the brain [1]. 

Among overall TBI hospitalizations, about 50% of cases are due to falls, while 

automobile accidents and the impact by striking objects comprise about 30% [5].  

 Another important form of TBI is the blast-induced TBI (bTBI) which is the most 

prevalent form of brain injury in soldiers due to growing  number of use of improvised 

explosive devices (IED’s) by insurgents on both military and civilian population [6-8]. 

As depicted in Figure 1, in terms of the nature of injury, blast injuries are broadly 

categorized into 4 forms: a). Primary injury caused by the direct mechanical forces 

generated by shock waves; b). secondary injuries resulting from the hitting and 

penetration of sharp objects through the skull into the brain; c) tertiary injury including 

impact of the other objects and sudden falling on the ground and d) quaternary injury due 

to heat generated  by the explosion and exposure to toxic gases [9-11]. 
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Several animal models have been developed for TBI, particularly those for blunt 

TBI which include weight drop injury (WD), control cortical impact injury, (CCI), fluid 

percussion injury (FPI) [12]. The WD model mimics closed head injuries frequently 

associated with falls and sports concussions which are very common form of TBI 

worldwide [2, 3].  In WD model, a known quantity of weight (usually metal rod) is 

dropped onto animal head from a predetermined height, which does not cause skull 

damage but will impact brain [14]. Another model namely controlled cortical impact 

(CCI) uses a solid impactor to damage exposed dura which usually involves the use of a 

pneumatic or electrochemical device [15]. CCI injuries typically manifest cortical tissue 

loss, axonal injury, BBB dysfunction, and subdural hematoma [15-18]. Another most 

frequently used model of TBI is the fluid percussion injury (FPI) model, an invasive 

Figure 1.1: Schematic diagram depicting various categories of injuries in 
blast TBI. Source: [4]. 
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procedure in which a craniotomy is performed to expose a portion of the dura. The injury 

is created by passing a fluid pulse (sterile saline) which is produced by dropping a 

pendulum from a certain distance [19]. 

While several animal models of blast TBI have been currently in use, majority of 

these models do not truly represent the properties of blast-induced TBI in battlefield 

conditions. The blast injury model (shock tube) developed by Chandra’s group [20-23] 

represents an ideal model to understand the properties of shockwaves and their impact on 

the pathophysiology of bTBI (see section 2.1, Chapter 2). 

1.1. Neuropathology of Blast TBI 

Although the pathophysiology of bTBI continues to be expanding, thus far there is only a 

limited understanding of how blast waves interact with the brain and cause injury. 

Therefore, exploration of the primary impact of shockwaves on different regions of brain, 

the nature of impact and the outcome of the pathology is necessary to better understand 

the injury pathways.  

Several pathophysiological outcomes have been identified in mild, moderate and 

severe forms of blast TBI in animal models. These include the epileptogenic seizures in 

mild and moderate bTBI, brain edema, cerebral vasospasm, diffused axonal injuries, glial 

cell activation, and neurodegeneration (for review, see [24]). 

Among many pathological events identified in bTBI, major mechanisms believed 

to be responsible for neuropathological outcomes in bTBI include breakdown of blood 

brain barrier (BBB), neuroinflammation and oxidative stress [13, 25-27]. 

Studies have shown disruption of BBB integrity in animals exposed to blast injury 

[28-31, 32. Recent studies by Kuriakose et al report increased BBB permeability as early 
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as 15 min in animals exposed to moderate (180 kPa) blast injury {Kuriakose, 2018 

#4501].  

Neuroinflammatory responses have also been identified in bTBI. Accordingly, 

activation of microglia, increase production of inflammatory cytokines, activation various 

chemokine pathways, reactive gliosis, phagocytic responses have been reported in mild to 

moderate level of blast TBI [27, 33-37]. 

Among many pathological factors associated with either primary mechanical 

injury or secondary biochemical cascades, oxidative stress has been shown to play a 

major role in various models of TBI [38, 39]. The main inducers of oxidative stress are 

reactive oxygen species (ROS) which include superoxide (O2⋅−), hydroxyl radical (HO⋅), 

and hydrogen peroxide (H2O2) [40, 41]. ROS are normally produced in several metabolic 

reactions, including redox-reactions (oxidation/reduction), oxidative phosphorylation and 

in a normal process of electron transport chain reactions. There are a number of enzymes 

that produce free radicals during their catalytic reactions, which include the NADPH 

oxidase family, cytochrome P450 (CYP450), cyclooxygenase (COX), lipoxygenase 

(LOX), and xanthine oxidase (XO). 

Previous studies have demonstrated that reactive oxygen species (ROS) such as 

the superoxide radicals and nitric oxide can form peroxynitrite, a powerful oxidant that 

impairs cerebral vascular function after bTBI [27].  
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1.2 Reactive Oxygen Species. 

The major inducer of oxidative stress are reactive oxygen species (ROS) which include 

superoxide (O2⋅−), hydroxyl radical and hydrogen peroxide (H2O2) all of which have 

inherent chemical properties that confer to different biological pathways. Reactive 

oxygen species (ROS) are passively released from mitochondria or actively produced 

from enzymatic sources, including NADPH oxidases. Although ROS could mediate 

physiological functions by acting as second messengers, excessive production of ROS 

damages proteins and organelles and leads to detrimental consequences in the heart. 

Reduction and oxidation (redox) is an important mechanism of post-translational 

modification of signaling molecules that regulate a wide variety of functions, including  

Figure 1.2: Schematic diagram depicting various biochemical pathways that produce 
reactive oxygen species (ROS) in biological systems. Source: Ma et al. Molecular Neurodegeneration 
(2017) 12:7 DOI 10.1186/s13024-017-0150-7  

 

growth, death, differentiation, contraction, and metabolism in cardiomyocytes. 

Oxidative stress is a major cause of myocardial damage during ischemia/reperfusion, 
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pressure overload, and aging. In order to reduce excessive amounts of ROS and reverse 

oxidative post-translational modification of proteins, cells utilize antioxidants including 

the thioredoxin system. ROS is often associated with the principle of oxidative stress 

which suggest ROS induced pathology. The main cellular source of reactive oxygen 

species is mitochondrial respiratory chain and active NADPH oxidase family. The 

following figure illustrates various cellular sources of ROS. 

1.3  NADPH Oxidase 

Significant source of superoxide in brain is NADPH oxidase, a multi-subunit enzyme 

that catalyzes the reduction of molecular oxygen and oxidation of NADPH to generate 

superoxide radicals (O2).There are different types of NOX isoforms in brain which 

include NOX1,NOX2 and NOX4 and they are highly depend on cell type. Neurons 

express both NOX1 and NOX2, microglia are enriched with NOX2, while only small 

amounts of NOX isoforms were identified in astrocytes [44]. 

 

 

Figure 1.3: Schematic diagram illustrating various isoforms of NOX and the enzymatic 
reaction of NOX to produce the superoxide radical. Source: Chronic Granulomatous Disease; 
fundamental stages in our understanding of CGD Tracy Assari  published 21 September 2016 
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 NOX comprises subunits that are both plasma membrane-bound (cytochrome b558, 

comprised of p22phox  and gp91phox) and cytoplasmic (p40phox, p47 phox, and p67 phox), 

which spans across the lipid bilayers [42, 43]. 

Extensive experimental evidence suggests NOX plays a significant role in the 

pathophysiology of various forms of TBI. NOX has been shown to be upregulated in a 

brain in controlled cortical impact model of trauma [45] and closed head injury models 

[46, 47].  

While studies establish a primary role of NOX1 in the pathophysiology of various 

forms of TBI, no studies have been performed to determine the spatial and temporal 

resolution of NOX family of enzymes in the brain and their role in the pathophysiology 

of bTBI. A recent report from our laboratory has shown increased levels of NOX isoform 

expression in acutely (4h) after single blast injury at moderate overpressure (180 kPa). 

Such increase in NOX protein was found to be more localized in hippocampal neurons 

compared to astrocytes and microglia [13]. 

1.4 Hypothesis and Rationale 

Based on the existing literature on the NADPH oxidase-mediated oxidative stress in 

bTBI, we identified several gaps in the knowledge in this area of research. We therefore 

raised the following questions: 1). How does NOX expression vary as a function of blast 

over pressure (BOP)? ; 2) How does NOX expression varies as a function of time post-

injury at a given BOP?;3). Is NOX expressed differentially across different cerebral 

regions at a given time point and BOP?; 4). Do changes in NOX expression correlate 
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with superoxide production?; 5). Does superoxide production lead to downstream 

alterations such as lipid peroxidation of proteins in blast injury?. Based on these ideas, we 

hypothesized that that there will be a temporal and spatial variation in the expression of 

NOX as a function of different overpressures in blast TBI. 

 

CHAPTER 2 

MATERIALS and METHODS 

2.1 Animals 

Adult 10-week-old male Sprague-Dawley (Charles River Laboratories) rats weighing 

320–360 g were used in all the studies. The animals were housed with free access to 

food and water in a 12-h dark-light cycle at 22°C. All procedures followed the 

guidelines established in the Guide for the Care and Use of Laboratory Animals and were 

approved by Rutgers University Institutional Animal Care and Use Committee (IACUC) 

before experiments. A total number of 64 rats were used for different types of 

experiments including immunostaining, Western blotting and in vivo measurement of 

superoxide. Rats were divided into two groups: Control and Blast-injury group, the latter 

group is subdivided into 3 categories based on the animals exposed to varying blast 

overpressures (130 kPa; 180 kpa and 240 kPa). 

2.2 The Shock Tube 

The shock tube located in Prof. Chandra’s laboratory is a well validated tube that is 

capable of producing field validated shock waves. It contains a 9” square cross section 

with adjustable volume breech, variable length section, 6 meter long test section. Shock 

waves are produced using a compressed air or helium that passes through the volume 
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breech section which is separated by Mylar membranes. Placing membranes with 

different thicknesses will allow to achieve different overpressures. The pressures inside 

the breech section is continuously monitored by WIKA A-10 sensor (0-340 atm range) 

and the burst pressure was recorded for all the tests (Figure 2.1). Pressure waves are 

monitored by pressure sensors place at different area along the shock tube and the data is 

recorded at 1 1.0 MHz frequency with an acquisition time of 200 msec (Figure 2.1). 

 

Figure 2.1: Schematic depiction of the shock tube. (A) Schematic of 9 in X 9 in square 
30 feet long shock tube with section I-Breech with high pressure helium gas separated 
from section II by different thickness of mylar sheets that generate pure shock wave in 
section III where the specimens are located. Section IV is past the section and is a design 
requirement; the pressure-time cycle is identical to live fire tests with actual C-4 (or TNT 
equivalent) explosives at specified stand-off distance. (B) Composite of actual 
experimental profiles that generate 180 kPa with only about 5 kPa variation in peak 
pressure and less than a millisecond in duration. The front of the pressure rise indicates 
shock wave conditions. (C) Schematic of rodent model in prone facing the shock front. 
The shock travels in the rostral-caudal direction traversing pre-frontal cortex, striatum, 
hippocampus, thalamus, visual cortex and cerebellum within a period of a millisecond 
with minimal attenuation of pressure loading.  Source: Rama Rao K.V…….Chandra N: [13] 
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2.3  Blast Injury 

Rats used in the present study were exposed to a single blast wave in the shock tube. 

Before exposing the rats to shockwave, all rats were anesthetized with a mixture of 

ketamine (100mg/kg) and xylazine (10 mg/kg) at 10:1 ratio administered via 

intraperitoneal injection. Rats were subjected to a single exposure to 3 different peak 

overpressures): 130 kPa (18.8 psi), 180 kPa (26 psi) and 240 kpa (35 psi) peak 

overpressure. All rats were mounted in the middle of the shock tube (2.8 meters from 

the breech, and 3 meters from the exit) in a prone position, i.e. were strapped securely to 

the aluminum plate using a cotton cloth wrapped around the body [48]. The cloth 

provides no protection against the shock wave, but prevents any excessive head motion 

[49] (Figure 2.2). Sham control rats received anesthesia and noise exposure but without 

blast exposure, i.e. anesthetized animals were placed next to the shock tube, and then a 

single blast was fired.  The entire blast procedure was recorded with a high-speed video 

recording to capture any substantial head and body motion during the blast so as to 

exclude the impact of tertiary bTBI. Following blast injury, animals were monitored 

closely for any signs of trauma-related distress (e.g., apnea). 

 

 

 

 

 

 

 

Figure 2.2: Anesthetized rat strapped and secured on the surfboard before mounting onto 
the test chamber. Strapping the animal prevents the head or body motion during the 
propagation of the shock wave.  
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2.4  Western Blots 

Western blotting is an important technique used in cell and molecular biology. By using a 

western blot, researchers are able to identify specific proteins from a complex mixture of 

proteins extracted from cells. The technique uses three elements to accomplish this task: 

(1) separation by size, (2) transfer to a solid support, and (3) marking target protein using 

a proper primary and secondary antibody to visualize. In our study Western Blots are 

used to identify changes in the protein adduct formation of lipid peroxidation product 4-

hydroxynionenol (4HNE) expression in rat whole brain at various Blast over pressure and 

time points. In this technique a mixture of proteins is separated based on molecular 

weight, and thus by type, through gel electrophoresis. These results are then transferred to 

a membrane producing a band for each protein. The membrane is then incubated with 

labels antibodies specific to the protein of interest. The unbound antibody is washed off 

leaving only the bound antibody to the protein of interest. The bound antibodies are then 

detected by developing the film. The thickness of the band corresponds to the amount of 

protein present; thus doing a standard can indicate the amount of protein present.  

In the present study for Western blot analysis, whole brain homogenates from 

control and animals exposed to blast injury of different over pressures were used. 

Animals were anesthetized with ketamine/xylazine mixture (100mg/kg and 10mg/kg 

respectively), transcardially perfused with PBS. Following perfusion with PBS, brains 

were excised from the cranial vaults, the whole cerebral hemispheres were homogenized 

in ice-cold conditions using CellLytic-M (Sigma) using sonicator with probe amplitude 

set to 45%. Samples were then centrifuged at 14,000× g at 40C. The protein concentration 

in the samples was estimated by bicinchoninic acid (BCA) method (Thermo Scientific, 
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Rockford, IL). Prior to loading the samples in the gel, the protein concentration in each 

sample  was normalized to equal volumes containing either 10 µg or 20 µg depending on 

the protein to be probed with primary antibody. Every caution was taken to ensure that 

equal volume containing equal amount of protein in each sample was being loaded into 

the gel. Electrophoresis was performed using 4-15% SDS-PAGE gradient gels (Bio Rad). 

Proteins  separated according to their molecular size were then transferred onto PVDF 

membranes using Turbo Protein Transfer instrument (Bio Rad Laboratories) using 

manufacturer’s instructions. Membranes were blocked with 5% milk dissolved in Tris-

Buffered saline containing 0.1% Tween-20 (TBS-T) and incubated overnight at 40C with 

4HNE (Abcam, Cambridge, MA) at a dilution of 1:500. Bands were visualized using 

Western Pico Chemiluminescence Substrate (Thermo Scientific) on Chemi Doc Imaging 

System (Bio Rad Laboratories). Once probed with antibody for protein of interest, in this 

instance, 4HNE, PVDF membranes were incubated in stripping buffer (RestoreTM 

ThermoFisher Scientific) using the instructions provided by the manufacturer. 
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Membranes were reblocked with 5% milk solution and probed with β-actin, a 

housekeeping protein to observe any variations in during loading of protein samples into 

the gel.  For densitometry quantitation of western blots, images were digitized using a 

BioRad GS800 calibrated densitometer, and analyzed with BioRad Quantity One 

software. The arbitrary densitometry values obtained for each protein band in each lane 

was normalized to corresponding actin protein band and final values were expressed as % 

change over control. A diagram showing various steps involved in the Western blot 

analysis is presented in Figure 2.3.  

 

 

 

 

 

 

 

 

 

Figure 2.3: Gel electrophoresis units, gel transfer system (Transblot Turbo mini) and gel 
analysis system used in the present study.  

 

2.5  Immunofluorescence Staining 

Immunohistochemistry (IHC) staining is performed to detect a protein of interest in a 

tissue section obtained by fixation methods. The detection of a specific protein  (antigen) 

in tissues  is accomplished using antibodies that recognize a target protein and antibody-
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antigen complexes that are visualized via chromogenic, radioactive or fluorescent 

substrates. For immunofluorescence staining, secondary antibodies tagged with 

fluorescent compounds  as flurescence isothiocynate (FITC) or texas red or rhodamine 

that are visualized by fluorescent microscopes equipped with filter cubes that can regulate 

the excitation and emission wavelength. 

There are a variety of techniques for sample preparation and visualization, and the 

method used should be tailored to the type of specimen under investigation and the 

degree of sensitivity required.  

 

 

 

 

 

 

 

 

Figure 2.4: Schematic diagram depicting the immunostaining procedure. Using Alexa 
Flour secondary antibodies is extremely useful when performing a double 
immunofluorescence staining for which two Alexa Flour conjugated secondary 
antibodies can display two different fluorescent colors.  Source: MBL Inc. Woburn, MA 

 

In order to evaluate the spatial changes of NOX1 and NOX2 proteins as a 

function of varying BOP and time post injury, we performed immunofluorescence 

studies of two isoforms of NOX in frontal cortex, hippocampus and thalamus. Briefly, 

sham and TBI animals were transcardially perfused with PBS followed by 4% 
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paraformaldehyde (PFA). After perfusion, the brains removed from cranial vaults and 

incubated in 4% PFA for additional 48 h and cryoprotected by immersing in 30% 

sucrose. A thin 20 µm sections were prepared using Leica VT 1000S semi-automatic 

vibratome. In brief, brains were removed from sucrose solution and mounted onto 

specimen disc with glue and then the plate introduced into buffer and sections were cut 

at 20 µm thickness using blade with the speed and frequency of vibrations set 

optimum. The cut sections were mounted onto microscope slides (Fisher Scientific, 

Nazareth, PA), air dried and stored at -20oC until immunostaining.  

Glass slides prepared from 4 individual animals in each group were washed with 10 

mM phosphate buffered saline (PBS), fixed in ice-cold methanol (100%) solution 

for 10 minutes at -20 °C. The tissue sections were blocked with 10% donkey serum at 

room temperature for 1 hour in PBS containing 0.03% Triton X-100. Fixed tissues 

were incubated overnight at 4 °C with respective primary antibodies to NOX1 (1:250), 

and NOX2 (1:250). Immunofluorescence staining was performed using donkey-

antirabbit Alexafluor 594(1:1000) for NOX1 or NOX2. The specificity of each antibody 

staining was validated by excluding each primary antibody (negative controls)  and 

visualized for any non-specific fluorescence.  

 

2.6 Image Acquisition and Analysis 

Slides with mounted coronal sections from the brain were imaged at 20x magnification 

using Leica Aperio Versa 200 digital pathology scanner. Control sections were used as 

reference for adjusting the exposure times and grey scale balance for optimal image 

quality, once set, these parameters were fixed and used for image acquisition of the 
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reminder of both control and experimental groups. Three channels were collected for 

each coronal section. Blue: 405 nm (DAPI), red: 594 nm (NOX1), and green: We then 

manually outlined the regions of interest in different brain structures and the fluorescence 

intensities in each brain region were quantitated using FLAreaQuantV1 algorithm (Leica 

Biosystems) and expressed as average fluorescence intensity/unit stained area. For each 

channel, we set a minimum intensity threshold value using control sections as reference 

that will exclude any background fluorescence caused by nonspecific binding of 

fluorescent secondary antibody, and the same threshold values were used to quantify both 

control and experimental groups. A maximum intensity threshold was also set to remove 

any oversaturation due to excess fluorescent dye. The algorithm outputs the area of 

positive staining for each brain region, the average intensity of  channel, total area stained 

and total area analyzed.  The final value [(total area stained/ total area analyzed) x the 

intensity] obtained in control groups was set as 100% and the values similarly obtained in 

experimental groups was expressed as percent change over control”. 

 

 

 

 

 

 

 

 

Figure 2.5: Leica Aperio Versa 200 fully automatic digital slide scanner with fluorescent 
microscope  used in the present study to digitize the images of various brain regions  and 
analyze the fluorescence intensities of NOX 1 and NOX2 proteins.  
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2.7 Superoxide Production 

Superoxide (O2.
-) levels in frontal cortex, hippocampus and thalamus were measured 

using dihydroethidium (DHE) following the method of Kim et al., [50]. Briefly, control 

and blast-induced animals immediately following blast were injected with 5mg/kg DHE 

(Molecular Probes, MA, dissolved in DMSO) i.p. and 24 hours after blast, animals were 

transcardially perfused first with PBS followed by 4% PFA, brains excised and 50 µm 

thin sections of different brain regions  were prepared using Leica VT 1000S vibratome 

and mounted. DHE immunofluorescence in each region was visualized by digitizing the 

images using Leica Aperio Versa 200 slide scanner. Fluorescent intensities in each region 

were quantitated using AreaQuant software (Leica Biosystems) and average fluorescence 

intensity/unit area of control group was set as 100% and the changes in the intensities 

experimental groups was expressed as % over control. 

2.8 Statistical Analysis 

In this study we compared three Blast over pressure to find if there is any statistical 

significance between each group and we used T-test to find statistical increase in NOX 

level within the groups.  

 

2.8.1 ANOVA 

The one-way analysis of variance (ANOVA) is used to determine whether there are any 

statistically significant differences between the means of three or more independent 

(unrelated) groups, in this instance differences between 3 different BOPs (130 kPa, 180 

kpa and 240 kpa). To determine which specific groups differed from each other, we used 

Tukey post hoc Test. This study helped us identify if there was any statistical significance 

between different Blast over pressure. Example We have three blast over pressure 
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130Kpa 180Kpa and 240Kpa this test would compare each group with each other i.e. 130 

with 180, 130 with 240 and 240 with 180 and tell us which one of them is statistically 

significant from each other with given confidence interval of 95%.  

2.8.2 T-Test 

The independent t-test, also called the two sample t-test, independent-samples t-test or 

student's t-test, is an inferential statistical test that determines whether there is a 

statistically significant difference between the means in two unrelated groups. In relation 

to our study we use this test to find if there is statistical significance between any of 

Control and Blast at specific blast over pressure and time point i.e. If we have data for 

Blast at 130kpa at 24 hour we compare it to the control and using this test we prove that 

statistically the Blast and Control group are different and that increase we found is 

statistically significant. 

CHAPTER 3 

RESULTS 

 As noted in Chapter 1, the rationale of this study was based on our recent 

publication [13] which reported cell-specific responses of NOX isoform expression 4h 

post injury in animals exposed to mild/moderate blast over pressure (180 kPa). We 

extended this study to identify  NOX expression as function of blast over pressure and 

function of post injury time and also identify if NOX varies in different cerebral region. 

Lastly we also measured the downstream effect of increase in NOX. 
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3.1  Protein Levels of NOX1 and NOX2 Isoforms Increase As a Function of 
Overpressures in Blast TBI 

Previous studies in this laboratory identified increased oxidative and nitrosative stress 

factors in the cerebral cortex in rats exposed to mild-bTBI [48, 49] and that NOX1 and 

NOX2 isoforms display a cell-specific increase at moderate blast pressure (180 kPa) 

4hours post injury [13]. This study further evaluated the effect of different blast 

overpressures on the protein levels of NOX1 and NOX2 isoforms at 3 different blast 

overpressures namely 130 kPa, 180 kPa and 240 kPa 24hours following blast injury. 

 

Figure 3.1: Protein level of NOX1 isoform (red)  showing a biphasic response in 
hippocampus as a function of overpressures in animals exposed to blast TBI. Note there 
was no significant change at 130 kPa, whereas at 180 kPa and 240 kPa there was a 
progressive increase in NOX1 protein. Note: The scale bar of each image at this 
magnification was 300 µm. The size of the image and the anatomical location of the 
region slightly vary in each image selected. However, these are images were presented 
for the illustration purpose. During the process of quantification of fluorescent image 
intensities, we used images with identical magnification for marking annotations to 
identify each region. 
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Immunofluorescence staining and subsequent analysis (for analysis refer chapter 2.6) of 

the fluorescence intensities of NOX1 and NOX2 in different brain regions showed a 

biphasic response. In animal groups exposed to 130 kPa did not show any significant 

change in NOX1 protein levels whereas in animal groups exposed to 180 kPa showed a 

significant increase (Frontal cortex, hippocampus and thalamus 84%, 81% and 68% ± 5% 

respectively, p<0.05) in frontal cortex, hippocampus and thalamus. Interestingly, in 

animal groups exposed to higher blast over pressure of 240 kPa showed a further increase 

in frontal cortex (Frontal cortex, hippocampus and Thalamus showed 159%, 115% and 

110%, ± 15% respectively, p<0.05), (Figures 3.1 and 3.2). The pattern of changes in the 

protein levels of NOX2 also displayed a changes as that of NOX1 (Figure 3.3)  

 

Figure 3.2: Quantification of protein levels of NOX1 (left panel) and NOX2 (right panel) 
display a similar pattern of change as a function of overpressures in animals exposed to 
blast injury. Frontal Cortex (FC) , Hippocampus (HC)  and Thalamus (TH) showed 159, 
115 and 110 % change over control at 240Kpa, at 180 Kpa they showed 84, 81 and 68 % 
change over control and at 130Kpa it showed 8, 6 and 7 % change over control for NOX-
1 study. For NOX2 study Frontal Cortex (FC), Hippocampus (HC) and Thalamus (TH) 
showed 159, 115 and 110 % change over control at 240Kpa, at 180 Kpa they showed 74, 
92 and 95 % change over control and at 180Kpa it showed 45, 67 and 73 % change over 
control 
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3.2  Protein Levels of NOX1 and NOX2 Isoforms Display a Biphasic Response as 
a Function of Time Post Exposure in Blast TBI 

We next examined whether there are any time-dependent changes in the protein levels of 

NOX isoforms in different brain regions. For this we elected animal groups exposed to 

240 kPa BOP and compared the changes with control groups at 3 time points namely 4h, 

24h and 7 days post-injury. As noted in Figure 3.3, both NOX1 and NOX2 protein levels 

displayed a similar pattern of changes in which there was a progressive increase in their 

levels at 4 and 24 h post injury, whereas the levels of both NOX1 and NOX2 returned 

back to control levels by 7 days. 

 

Figure 3.3: Quantification of protein levels of NOX1 (left panel) and NOX2 (right panel) 
display a biphasic response of change as a function of time in animals exposed to blast 
injury. % change over control at 4hr 24hr and 7 days for Frontal cortex (FC )are 77% 
,159% ,9% and for Hippocampus (HC) is 66,115 and 18% and for Thalamus (TH) its 65, 
68 and 4% for NOX-1. NOX-2 showed % change over control at 4hr 24hr and 7 days for 
FC are 51% ,74% ,11% and for HC is 48,92 and 0% and for TH its 24, 95 and 5%   
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3.3  NOX1 Expression Display Differential Changes in Different Brain Regions 

As noted in previous sections, in a recent study, we displayed a differential response of 

NOX1 expression changes in animals exposed to moderate blast (180 kpa) in the acute 

phase of the injury (4h) [13]. In the present study, we therefore examined whether higher 

BOP (240 kPa) at longer time (24h) post injury also show a regional variation in NOX1 

expression. Results show that NOX1 levels were significantly higher in frontal cortex 

compared to hippocampus (Figure 3.4). Interestingly, thalamus displayed a least degree 

of change in NOX1 expression.  

 

 

Figure 3.4: Quantification of protein levels of NOX1 display a regional variation in 
animals exposed to 240 kPa blast injury. Frontal cortex, Hippocampus and Thalamus 
show 84%, 81 % and 6% change over control at 180 Kpa and at 240 Kpa they show 
159%, 115% and 8% change over control.  
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3.4 Primary Blast Increases Superoxide Levels in Different Brain Regions 

Several studies reported that one of the downstream effects of NOX activation is the 

production of superoxide anion (O2
-) [44, 51]. We therefore examined the in vivo levels 

of superoxide 24h post-injury in frontal cortex, hippocampus and thalamus in animals 

exposed to 180 kPa using DHE.  Results showed that superoxide levels were significantly 

increased in frontal cortex, hippocampus and thalamus in animals exposed to blast injury 

(p<0.05)(Figure3.5).  

Figure 3.5: Quantification of superoxide levels in frontal cortex, hippocampus and 
thalamus 24 hours post-injury in animals exposed to 180 kPa. P<0.05 
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3.5  Primary Blast Shows a High Tendency to Cause Oxidative Damage and Lipid 
Peroxidation Products in Brain Proteins 

 
Several studies reported that different forms of TBI at different times post injury cause 

structural changes in several brain proteins by incorporating adducts of lipid peroxidation 

[39, 52-54]. One such peroxidation adduct of lipids include the formation of 4-

hydroxynonenal (4-HNE) [55-58]. 4-HNE formation process when oxidants such as free 

radicals attack various lipids containing carbon double bonds of unsaturated fatty acids 

and form aldehyde products such as 4-HNE  and these products chemically react with 

proteins to form adducts [59]. Studies have also shown that superoxide is one of the free 

radicals that is able to oxidize lipids to aldehyde products such as 4-HNE[51, 60, 61]. We 

therefore examined whether moderate blast injury (180 kPa) results in increased 

superoxide levels 24h post injury time. As presented in Figure 3.6, immunoblot analysis 

was performed for of 4HNE adducts in proteins and the quantity of density in each band 

(noted in Section 2.4) was normalized to actin (housekeeping gene) protein bands. We 

identified HNE products in a major band corresponding to molecular weights of 70 kDa 

which showed a strong tendency towards an increase in cerebral hemisphere, however 

such changes were not significant (Figure 3.6).  
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Figure 3.5: Primary blast displays a strong tendency to increase 4-HNE protein adducts. 
Immunoblot analysis of 4-HNE in lysates from cerebral hemispheres 24h after blast at 
180 kPa blast over pressure is shown. A prominent protein of 70 kDa show a strong 
tendency to increase.  

 

CHAPTER 4 

DISCUSSION 

 

This study demonstrates that protein levels of superoxide producing enzymes NOX1 and 

NOX2 were significantly increased varying overpressures in blast TBI. Such increased 

NOX protein levels correlated with increased levels of superoxide and strong tendency 

towards increased HNE adduct formation in 70 kDa protein.  Taken together, my study 

indicate that NOX-mediated oxidative stress shows a BOP-dependent changes in blast TBI. 
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Several reports from our laboratory indicated that blast injury displays a unique 

pathology compared to other forms of TBI (such as blunt TBI) wherein the injury appears 

uniform throughout the brain structures because of the uniform propagation of the 

shockwave through skull and the brain [13, 23, 25, 48, 54, 62-66]. 

Oxidative stress has been implicated as a major pathological factor in many forms 

of TBI which operates at several levels including the increased activation of free radical 

producing enzymes or downregulation of antioxidant defense mechanisms  [39, 53, 54, 67]. 

NADPH oxidase (NOX) is a superoxide producing enzyme and different isoforms of NOX, 

including NOX1, NOX2 and NOX4 have been identified in brain [44]. Studies reported 

increased activation of different isoforms of NOX in various forms of TBI. Accordingly, 

controlled cortical impact (CCI) in both rat and mice models showed a robust increase in 

NOX isoforms [68, 69]. Likewise, increased NOX expression was also found in different 

animal models of fluid percussion injury [27, 46, 70]. Together these studies highlight the 

critical role of NADPH oxidase in the pathology of TBI. 

Studies on the role of NOX in the pathophysiology of blast TBI are limited. Studies by [32, 

71, 72] reported increased NOX expression in animals exposed to blast TBI. Studies from 

our laboratory also reported increased NOX protein as a pathological factor in the oxidative 

stress-mediated injury pattern in bTBI [48, 49, 54]. Additionally, recent report by Rama 

Rao et al, [13] showed cell-specific changes in NOX isoform expression in vulnerable 

brain regions in 4h after moderate (180 kPa) blast injury. Accordingly, all the regions of the 

brain from rostral to caudal areas including frontal cortex, striatum, somatosensory cortex, 

hippocampus, thalamus as well as cerebellum displayed increased NOX expression. 

Additionally, neurons appeared to show highest increase in NOX compared to astrocytes 
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and microglia [13]. These studies together established that NOX-mediated oxidative stress 

is one of the major pathological factors in bTBI. 

While the above studies strongly establish the role of NOX activation in the 

pathophysiology of bTBI, studies thus far have not examined the NOX changes as a 

function of different blast over pressures and as a function time post injury. These are the 

two important parameters that have high pathophysiological significance in blast TBI, 

since, 1). The increase in the NOX expression with the increasing overpressures would 

predict different degree of oxidative damage that can possibly occur in bTBI of varying 

severity, i.e., mild to-moderate-severe intensities; 2). Identifying the time course of NOX-

mediated oxidative stress would predict any possible recovery of the injury pathology 

during the course of bTBI.  

Therefore, in the present study, a progressive increase in NOX protein levels with 

increasing blast overpressures strongly suggests that higher the intensity of BOP, higher 

will be the oxidative damage occurring in bTBI. This is reasonable that the degree of 

structural damage encountered by brain at higher intensities of shockwave will be expected 

to be higher. In fact, a recent study in our laboratory carried out by Kuriakose et al., 

[25]indeed displayed a progressive increase in blood brain barrier (BBB) permeability with 

increasing overpressures in various brain regions, as shown by increased extravasation of 

Evans blue and sodium fluorescein. Our current study is in correlation with studies by 

Kuriakose et al., and together indicates that vascular permeability changes and oxidative 

stress follow a pattern of change consistent with increasing blast overpressures. However, 

noteworthy that NOX prorein levels did not change by single blast at 130 kPa suggesting 

that this degree of overpressure is insufficient to exert oxidative damage in bTBI. This 



 
 

28 
 

however does not preclude that no other pathological changes manifest at this BOP, since 

Kuriakose et al., did find a significant increase BBB permeability in frontal cortex at this 

BOP which again suggest that different varieties of injury factors activate differentially at 

different intervals and/or at different blast overpressures. 

The time course of changes in NOX1 protein levels display a biphasic response in 

which 4hours and 24 hours show a progressive increase in its expression whereas 7 days 

post injury the protein levels were completely restored normal as that of controls. It is 

interesting to note again that we found similarities between temporal profile of changes in 

BBB permeability and NOX protein expression (in the current study) wherein studies by 

Kuriakose et al., [25] found a complete restoration of BBB integrity within 24 hours 

following blast injury in animals exposed to 180 kPa BOP. The reason for complete 

restoration of the NOX protein levels 7 days post-injury is not known. However, it is highly 

likely that some compensatory mechanisms may be operative to neutralize the NOX 

protein expression and subsequent oxidative mechanisms. One such compensatory 

mechanisms may be activation of antioxidant enzymes which are involved in scavenging 

superoxide free radicals that are known to damage macromolecules including membrane 

lipids, proteins, RNA and DNA or enhancing the glutathione levels by activating enzymes 

of glutathione metabolism. Indeed, studies have shown such increase in glutathione 

synthesizing enzymes glutathione peroxidase, as well as antioxidant scavenging enzyme 

catalase 7 days post-injury in a rat model of controlled cortical contusion model [73]. 

However, whether or not antioxidant capacity increased in blast TBI models needs to be 

determined. 
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In the present study, levels of increase in superoxide well correlated with the 

increased protein levels of NOX, strongly suggesting that NOX increase following blast 

injury produces excessive levels of superoxide. Superoxide is a major free radical produced 

in the  brain by a variety of reactions, including disturbances in mitochondrial oxidative 

phosphorylation, increased production of arachidonic acid as a consequence of activation 

of phosphilipase A2 (PLA2), activation of xanthine oxidase as well as by the activation of 

NOX [74-77]. Increased superoxide production has been shown in different models of TBI 

[77-81].  

While we find increased NOX protein levels and subsequent increased superoxide 

free radicals in the present study, the levels of 4HNE adducts showed only a strong trend 

towards the increase in protein of molecular weight approximately 70 kDa but did not show 

statistically significant changes. Precisely why there was no statistical significance between 

control and animals exposed to blast injury is not known. It is possible that the 

methodological sensitivity of the assays, in this instance determination of 4-HNE by 

Western blots may not be sensitive enough as to show a significant change. Alternatively, it 

is possible that lipid peroxidation reaction and subsequent 4-HNE formation may not have 

achieved a threshold as to show significant changes at 24 hours following blast. 

 

In summary, our studies demonstrate that NOX isoforms show a progressive increase in 

their protein expression as a function of increasing overpressures in blast TBI. 

Additionally, there was a biphasic response observed in the temporal profiles of increase in 

NOX protein levels. Further, increased superoxide production observed in the present study 

correlated well with the increase NOX protein levels as a function of time. Together these 
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studies indicate that NOX protein changes and associated downstream effects of NOX 

increase follow a pattern of progressive increase as a function of varying overpressures and 

time course of blast injury. Targeting NOX-mediated oxidative damage may have a 

therapeutic benefit to ameliorate pathology associated with blast TBI. 
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