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ABSTRACT 

APPLICATIONS OF BIG KNOWLEDGE SUMMARIZATION 

by 

Ling Zheng 

Advanced technologies have resulted in the generation of large amounts of data (“Big 

Data”). The Big Knowledge derived from Big Data could be beyond humans’ ability of 

comprehension, which will limit the effective and innovative use of Big Knowledge 

repository. Biomedical ontologies, which play important roles in biomedical information 

systems, constitute one kind of Big Knowledge repository. Biomedical ontologies 

typically consist of domain knowledge assertions expressed by the semantic connections 

between tens of thousands of concepts. Without some high-level visual representation of 

Big Knowledge in biomedical ontologies, humans cannot grasp the “big picture” of those 

ontologies. Such Big Knowledge orientation is required for the proper maintenance of 

ontologies and their effective use. This dissertation is addressing the Big Knowledge 

challenge – How to enable humans to use Big Knowledge correctly and effectively 

(referred to as the “Big Knowledge to Use” (BK2U) problem) – with a focus on 

biomedical ontologies. 

In previous work, Abstraction Networks (AbNs) have been demonstrated 

successful for the summarization, visualization and quality assurance (QA) of biomedical 

ontologies. Based on the previous research, this dissertation introduces new AbNs of 

various granularities for Big Knowledge summarization and extends the applications of 

AbNs. This dissertation consists of three main parts. The first part introduces two 

advanced AbNs. One is the weighted aggregate partial-area taxonomy with a parameter 



 
 

to flexibly control the summarization granularity. The second is the Ingredient 

Abstraction Network (IAbN) for the National Drug File – Reference Terminology (NDF-

RT) Chemical Ingredients hierarchy, for which the previously developed AbNs for 

hierarchies with outgoing relationships, are not applicable. Since NDF-RT’s Chemical 

Ingredients hierarchy has no outgoing relationships. 

The second part describes applications of the two advanced AbNs. A study 

utilizing the weighted aggregate partial-area taxonomy for the identification of major 

topics in SNOMED CT’s Specimen hierarchy is reported. A multi-layer interactive 

visualization system of required granularity for ontology comprehension, based on the 

weighted aggregate partial-area taxonomy, is demonstrated to comprehend the Neoplasm 

subhierarchy of National Cancer Institute thesaurus (NCIt). The IAbN is applied for 

drug-drug interaction (DDI) discovery.  

The third part reports eight family-based QA studies on NCIt’s Neoplasm, Gene, 

and Biological Process hierarchies, SNOMED CT’s Infectious disease hierarchy, the 

Chemical Entities of Biological Interest ontology, and the Chemical Ingredients 

hierarchy in NDF-RT. There is no one-size-fits-all QA method and it is impossible to 

find a QA method for each individual ontology. Hence, family-based QA is an effective 

way, i.e., one QA technique could be applicable to a whole family of structurally similar 

ontologies. The results of these studies demonstrate that “complex concepts” and 

“uncommonly modeled concepts” are more likely to have errors. Furthermore, the three 

studies on overlapping concepts in partial-area taxonomies reported in this dissertation 

combined with previous three studies prove the success of “overlapping concepts” as a 

QA methodology for a whole family of 76 similar ontologies in BioPortal. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation 

 

he purpose of the “Big Data to Knowledge” (BD2K) initiative launched by the US 

National Institutes of Health in 2014 is to develop methodologies and techniques for 

extracting new knowledge hidden in large amounts of biomedical data [1]. However, if 

the resulting knowledge stored in a knowledge repository is too much for humans’ 

comprehension, it is impossible for humans to make effective or innovative use of the 

knowledge. According to Perl et al. [2], knowledge that is so big that humans cannot 

easily comprehend it is defined as “Big Knowledge.”  

There are various kinds of knowledge. This dissertation concentrates on large 

biomedical ontologies, a special kind of knowledge repository typically consisting of 

many thousands of domain knowledge assertions. Concepts and relationships are two 

essential elements to represent knowledge in ontologies. A concept represents a unique 

entity in a domain. Concepts are linked by hierarchical IS-A relationships and lateral 

relationships (“relationships” for short). The hierarchical IS-A relationship between two 

concepts represents a concept that is a specification of the other concept. For example, 

Neoplasm IS-A Disease or Disorder, because the concept Neoplasm is more specific than 

the concept Disease or Disorder. The lateral relationships are used to define the 

semantics in the domain. For example, the concept Breast Neoplasm is connected to the 

concept Breast through the lateral relationship Disease Has Associated Anatomic Site to 

define the anatomic location of breast neoplasm.  As an example of large biomedical 

T 
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ontologies, National Cancer Institute Thesaurus (NCIt) [3], the most famous cancer-

focused biomedical terminology, has more than 100,000 active concepts connected by 

more than 400,000 relationships. Hence, large biomedical ontologies are complex 

networks due to the large number of concepts and relationships respectively represented 

by nodes and links in the networks. Figure 1.1 demonstrates the complexity of a large 

biomedical ontology and the difficulty for humans to comprehend such Big Knowledge. 

Figure 1.1 only shows a small part of NCIt, i.e., 8,445 neoplasm-related concepts (7.8% 

of the complete NCIt). 

 

Figure 1.1 The 8,445 neoplasm concepts from NCIt. Concepts are drawn as white boxes 

organized into levels according to their longest-path distance from the root concept (i.e., 

Neoplasm). Only 14,420 hierarchical relationships are shown (as color-coded lines, based 

on the level of the child concept). At this scale, “white boxes” appear as white dots. 
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 In general, humans typically comprehend complex knowledge by summaries and 

visual representations. Without some smart techniques, e.g., summarization and 

visualization tools to assist humans’ high-level mental comprehension, even the curators 

of large biomedical ontologies cannot see the “big picture” of their ontologies. It would 

be even more difficult for external users who utilize large biomedical ontologies, to 

develop applications using such an ontology. Hence, this dissertation is trying to address 

the new challenge after BD2K: How to enable humans to use Big Knowledge correctly 

and effectively (referred to as the “Big Knowledge to Use” (BK2U) problem [2]).  

 The Structural Analysis of Biomedical Ontologies Center (SABOC) has 

developed various kinds of Abstraction Networks (AbNs) to support the summarization, 

visualization and quality assurance (QA) of biomedical ontologies [4]. An Abstraction 

Network derived from an ontology is itself a compact summary network consisting of 

“nodes,” each representing a set of concepts that are similar in their structure and 

semantics. Thus, the Abstraction Network summarizes the structure and content of the 

ontology. Two basic kinds of AbNs are area taxonomy and partial-area taxonomy, which 

have been developed for various biomedical ontologies [5, 6] (e.g., NCIt [3] and 

SNOMED CT [7]).  

Based on the previous work on AbNs conducted at SABOC, this dissertation 

presents advanced AbNs to summarize and visualize the content of Big Knowledge in 

large biomedical ontologies to support BK2U. The Big Knowledge summarization and 

visualization technique was demonstrated to be useful for the identification of major 

topics in a large ontology, as a multi-layer Big Knowledge visualization scheme for 

ontology comprehension, for the discovery of drug-drug interactions and also for the 
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quality assurance of large biomedical ontologies.  

In a multi-year research program on quality assurance of biomedical ontologies, 

the SABOC team has observed that no one-size-fits-all QA method exists. However, 

Ochs et al. [8] have developed a family-based approach to ontology QA, where the same 

QA method can be applicable to most members of one family, while different families 

need different approaches. In order to demonstrate such scaling of a method to most 

ontologies of a family, the effectiveness of a method has to be demonstrated for “six out 

of six” members of the family to allow drawing a conclusion about the whole family. 

Thus, this dissertation also contains several quality assurance studies on different large 

biomedical ontologies utilizing different QA techniques to achieve the goal of showing 

the effectiveness of family-based QA for biomedical ontologies.  

 

 

1.2 Dissertation Overview 

 

Chapter 2 provides background information on biomedical ontologies used in this 

dissertation, i.e., SNOMED CT, National Drug File-Reference Terminology (NDF-RT), 

NCIt and Chemical Entities of Biological Interest (ChEBI). Chapter 2 also introduces the 

Abstraction Networks for biomedical ontologies developed by the SABOC team, the 

previous quality assurance studies of biomedical ontologies based on the Abstraction 

Networks, and a brief review of other QA studies for biomedical ontologies. 

Chapter 3 describes two advanced Abstraction Networks, weighted aggregate 

partial-area taxonomy that provides a more compact summary of biomedical ontologies 

compared with a partial-area taxonomy, and Ingredient Abstraction Network (IAbN) to 
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summarize NDF-RT’s Chemical Ingredient hierarchy, due to that terminology’s unique 

modeling structure.  

Chapter 4 presents two applications of the weighted aggregate partial-area 

taxonomy. One is the identification of major topics in an ontology, which was 

successfully demonstrated on SNOMED CT’s Specimen hierarchy. The other is a multi-

layer multi-granularity visualization scheme based on the weighted aggregate partial-area 

taxonomy, which was applied to comprehend the NCIt’s Neoplasm subhierarchy. This 

chapter also includes one application of the Ingredient Abstraction Network, namely for 

Drug-Drug Interaction discovery. 

Chapter 5 reports several family-based quality assurance studies in the framework 

of Abstraction Networks for NCIt’s Neoplasm hierarchy, Gene hierarchy, and Biological 

Process hierarchy, for SNOMED CT’s Infectious Disease hierarchy, for the ChEBI 

ontology, and for NDF-RT’s Chemical Ingredients hierarchy. The results confirmed that 

two characterizations of concepts ‒ complex concepts and uncommonly modeled 

concepts ‒ which can be automatically identified by Abstraction Networks ‒ are more 

likely to have errors than other concepts. The QA results of these studies in Chapter 5 

pave the way to the family-based QA approach for biomedical ontologies. Chapter 6 

concludes this dissertation.  

The studies in this dissertation have been published in journals and proceedings of 

conferences on biomedical informatics. The weighted aggregate partial-area taxonomy in 

Section 3.1 and its application to major topic identification in Section 4.1 were published 

in the Proceedings of the 16th World Congress on Medical and Health Informatics 

(MedInfo 2017) [9]. The multi-layer visualization scheme in Section 4.2 was published in 
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the Proceedings of the 2017 IEEE International Conference on Big Knowledge (ICBK) 

[10]. The application of the Ingredient Abstraction Network to drug-drug interaction 

discovery was published in the 2015 AMIA Annual Symposium Proceedings [11] and in 

an extended form in the Annals of the New York Academy of Sciences [2]. Most of the 

QA studies in Chapter 5 have been published in the Journal of Biomedical Informatics 

[12, 13], the Methods of Information in Medicine [14], the Applied Ontology [15], and 

the Proceedings of the 2017 IEEE International Conference on Bioinformatics and 

Biomedicine (BIBM) [16]. 
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CHAPTER 2  

BACKGROUND 

 

2.1 Biomedical Ontologies 

 

In recent years, ontologies have played an important role in the biomedical field to 

support the rapid increase of data processing in healthcare and basic research [17]. 

Biomedical ontologies have been used for data annotation, information integration, 

knowledge discovery and other applications [18-22]. This section will introduce several 

relevant and important biomedical ontologies. 

2.1.1 SNOMED CT  

 

SNOMED CT (SNOMED Clinical Terms) [7] is the most comprehensive clinical 

terminology, used in more than fifty countries in the world, providing multiple language 

versions. It is maintained and distributed by an international non-profit organization 

named SNOMED International which is the trading name of the International Health 

Terminology Standards Development Organisation (IHTSDO) [23]. SNOMED CT 

covers a wide range of clinical specialties, disciplines and requirements so that it enables 

consistent and processable representation of clinical content in electronic health records 

[24] and facilitates the semantic interoperability of health records.  

Concepts are SNOMED CT’s basic components to represent healthcare data [25]. 

SNOMED CT’s concepts are organized into 19 top-level hierarchies (e.g., Clinical 

finding and Specimen) through IS-A relationships. A concept may have multiple parents 

in a hierarchy, i.e., a concept may have multiple IS-A relationships pointing to other 

concepts in the same hierarchy. The lateral relationships provide formal definitions for 
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concepts. There were about 316,840 active concepts connected by more than 574,000 IS-

A hierarchical relationships and about 960,000 lateral relationships in SNOMED CT’s 

July 2015 version. Figure 2.1 shows an excerpt of 15 concepts from the Specimen 

hierarchy with 1,620 concepts. The concept Bile specimen has three parents Specimen 

from digestive system, Body substance sample and Fluid sample. The lateral relationship 

Specimen source topography in the dashed green box defines the body structure where a 

specimen comes from. For example, the concept Specimen from liver has a lateral 

relationship Specimen source topography linking it to Liver structure. 

 

Figure 2.1 Excerpt of 15 concepts from the Specimen hierarchy of SNOMED CT. 

Concepts represented by boxes with rounded corners are connected by IS-A relationships 

shown as upward arrows. Each of the three concepts Specimen from digestive system, Soft 

tissue sample, and Specimen from liver enclosed in the dashed green box has a lateral 

relationship Specimen source topography with the corresponding values Structure of 

digestive system, Soft tissues, and Liver structure, respectively, in the Body structure 

hierarchy. 

 

 

2.1.2 National Drug File – Reference Terminology (NDF-RT) 

 

National Drug File – Reference Terminology (NDF-RT) is a drug terminology developed 

and maintained by the U.S. Department of Veterans Affairs (VA), Veterans Health 

Administration (VHA). NDF-RT is a formal representation of the VHA National Drug 
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File (NDF) [26], which is a drug classification hierarchy used to group orderable drug 

products into one of 579 drug classes. NDF-RT is used to support clinical applications at 

the VHA’s clinical centers. 

NDF-RT uses a description logic-based reference model to define drugs in the 

Pharmaceutical Preparations (PP) hierarchy according to multiple aspects (other 

hierarchies) [27]. These aspects include the Chemical Ingredients (CI) hierarchy, 

describing the chemical ingredients of drugs, the Cellular or Molecular Interactions 

(MoA) hierarchy, describing the drug effects at molecular, subcellular, or cellular levels, 

the Physiological Effects (PE) hierarchy, describing drug effects at tissue, organ, or 

system levels, the Clinical Kinetics (PK – from Pharmacokinetics) hierarchy, describing 

the absorption, distribution, and elimination of drugs, and the Therapeutic Categories 

(TC) hierarchy, which is an experimental hierarchy exclusively used to model FDA 

established pharmacologic class concepts to describe general therapeutic intents of drugs. 

Two more hierarchies are the Diseases, Manifestations or Physiologic States (Disease) 

hierarchy, describing the therapeutic, preventative, or diagnostic indications of drugs, and 

the Dose Forms hierarchy, describing the dose forms of drugs.   

The MoA, PE and CI hierarchies were initially created by matching VHA drug 

ingredient names to terms from the National Library of Medicine’s Medical Subject 

Headings (MeSH) [28]. Specifically, the CI hierarchy was derived from MeSH's 

Chemicals and Drugs Category and the MoA and PE hierarchies were created by 

extending and restructuring selected Pharmacologic Actions associated with ingredients 

in MeSH. Concepts in the Disease hierarchy were included from MeSH’s Diseases 

Category [27, 29]. The purpose of developing the MeSH was to support the classification  
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of biomedical publications in the PubMed system [30] of the National Library of 

Medicine. 

NDF-RT is available for download in Apelon DTS format at the National Cancer 

Institute’s Enterprise Vocabulary Services (EVS) website [31]. NDF-RT is also released 

as part of the Unified Medical Language System (UMLS) [32] and it is available for 

download at the National Center for Biomedical Ontology (NCBO) BioPortal [33]. NDF-

RT organizes concepts around the PP hierarchy (the triangle in Figure 2.2), which is the 

largest hierarchy in NDF-RT with 25,759 concepts (59.4% of the 43,397 NDF-RT 

concepts in the June 2015 version). The root concept of the PP hierarchy is 

Pharmaceutical Preparations. Besides IS-A relationships, concepts in the PP hierarchy 

can have role relationships (represented by the arrows in Figure 2.2) pointing to concepts 

in the other hierarchies (the seven rectangles in Figure 2.2). Role relationships 

(corresponding to lateral relationships) are used to define drugs according to their various 

aspects. Drug-disease relationships were mined from co-occurrence data in the UMLS 

[34] (see Figure 2.2). The TC hierarchy is exclusively used for concepts established by 

the FDA, so there are no NDF-RT asserted roles between the PP hierarchy and the TC 

hierarchy and the arrow in Figure 2.2 is not labeled with any NDF-RT asserted role. 

 

Figure 2.2 Content Model of NDF-RT [27] (The “CI” in role names means 

contraindicated, not Chemical Ingredient). 
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For example, in Figure 2.3, the drug preparation ASPIRIN in the PP hierarchy has 

the role relationship has_Ingredient pointing to the chemical ingredient Aspirin in the CI 

hierarchy, the second largest hierarchy in NDF-RT with 10,145 concepts. The role 

relationships of drug classes and drug preparations are inherited by orderable drug 

products, e.g., ASPIRIN 300MG TAB (a VA Product) inherits the role relationship 

has_Ingredient and its target concept Aspirin from its parent drug preparation ASPIRIN.  

Concepts in each of the above hierarchies are organized as a generalization 

hierarchy; higher level concepts are more general than lower level concepts. Concepts 

may have multiple parents. For example, ASPIRIN in the PP hierarchy and Salicylates in 

the CI hierarchy each have two parents in Figure 2.3.  

Concepts in the PP hierarchy may have different types of role relationships to 

concepts in the CI hierarchy. These role relationships are introduced at a drug class level 

or a drug preparation level. For example, the role relationship has_Chemical_Structure 

 

Figure 2.3 An excerpt from NDF-RT’s Pharmaceutical Preparations and Chemical 

Ingredients hierarchies. Concepts are shown as blue boxes and hierarchical relationships 

are shown as upward directed blue arrows. The has_Ingredient roles linking the concepts 

in the two hierarchies are shown as labeled blue arrows.  
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that describes the chemical structure of an FDA-established pharmacologic class is 

introduced at a drug class level, while the roles has_Ingredient, CI_ChemClass, and 

has_active_metabolites are introduced at a drug preparation level. 

Extensive research has been conducted on NDF-RT, e.g., on its content coverage, 

the adequacy of representation, drug normalization and classification, etc. Rosenbloom et 

al. [35] investigated the adequacy of representation in the Physiologic Effect hierarchy. 

Carter et al. [36] studied drug class names from three sources to understand how drugs 

were classified. They further evaluated NDF-RT’s semantic coverage. Zhu et al. [37] 

normalized drug data in PharmGKB [38] by mapping extracted drugs and drug classes to 

NDF-RT. Pathak et al. [39] investigated drug-disease relationships in NDF-RT and 

PharmGKB to make both more robust and integratable. Pathak et al. [40] also evaluated 

the applicability of RxNorm [41] and NDF-RT to classification of medication data 

extracted from electronic health records.  

2.1.3 National Cancer Institute Thesaurus (NCIt) 

 

The National Cancer Institute Thesaurus (NCIt) [3] is a cancer-focused reference 

terminology developed and published by the National Cancer Institute (NCI) with the 

initial goal to facilitate interoperability and data sharing among various information 

systems at the NCI.  It is released at the beginning of each month for free public access in 

OWL and flat file formats and has been used by an increasing number of information 

systems outside the NCI, both nationally and internationally [42].  

 The NCIt covers vocabulary in different domains important for cancer research,  

including clinical care, basic research, public information dissemination and 

administrative activities. The content of the NCIt is modeled based on description logic 
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[43, 44]. A “concept” is the basic unit in the NCIt, just as in many other 

ontologies/terminologies. The NCIt exists in two versions, the asserted and the inferred 

version. The asserted version contains assertions explicitly defined by the NCIt team, 

while the inferred version is obtained by running a reasoner on the asserted version. The 

studies reported in this dissertation were conducted on the inferred version of the NCIt. 

The 15.02d release of the NCIt had 108,376 active concepts organized into 19 disjoint IS-

A hierarchies, e.g., Disease Disorder or Finding, Gene, Biological Process, Molecular 

Abnormality, and Abnormal Cell. Concepts in each hierarchy are connected by IS-A 

relationships to their parents, forming a directed acyclic graph (DAG), i.e., a concept may 

have multiple parents.  

Roles are binary semantic relationships between pairs of concepts. Each role has a 

domain and a range, e.g., for the role Disease Has Abnormal Cell, relating a disease to 

the type of neoplastic cell present in the disease, the domain is the Disease Disorder or 

Finding hierarchy and the range is the Abnormal Cell hierarchy. Roles are inherited along 

the IS-A hierarchy. For example, as shown in Figure 2.4, the concept Neoplasm has the 

role Disease Has Abnormal Cell pointing to the concept Neoplastic Cell. Since Neoplasm 

by Morphology IS-A Neoplasm, it inherits the role Disease Has Abnormal Cell with the 

target Neoplastic Cell from its parent Neoplasm. In fact, all the concepts under Neoplasm 

in Figure 2.4 inherit the above role from Neoplasm, because those concepts are 

Neoplasm’s descendants.  

Use cases determine, to a large extent, the modeling priorities of the NCIt. Hence, 

not every hierarchy is modeled with roles. Concepts in eight hierarchies, such as the 

Organism hierarchy and the Biochemical Pathway hierarchy, only serve as the ranges of  
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Figure 2.4 An excerpt of 13 neoplasm concepts in the Disease, Disorder or Finding 

hierarchy of NCIt. Concepts represented by boxes with rounded corners are connected by 

IS-A relationships shown as upward thin arrows. 

 

 

roles and do not serve as the domains of roles. Each of the other 11 hierarchies has a list 

of associated defined role types. For example, the Disease, Disorder or Finding hierarchy 

has 29 role types, including Disease Excludes Abnormal Cell with the range Abnormal 

Cell hierarchy, Disease Has Finding with the range Disease, Disorder or Finding 

hierarchy, Disease Mapped To Gene with the range Gene hierarchy, and Disease Has 

Normal Cell Origin with the range Anatomic Structure, System, or Substance hierarchy. 

Due to the mission of NCIt, cancer-related concepts are modeled with a higher 

priority and more detail than other concepts. In the February 2015 release, the Disease, 

Disorder or Finding hierarchy, which is the largest hierarchy in NCIt in all releases, 
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contained 25,360 concepts (23.4% = 25360/108376) with 7.79 roles on average. The 

Neoplasm subhierarchy in the Disease, Disorder or Finding hierarchy had 8,166 concepts 

(32.2% = 8166/25360) with an average of 23.02 roles.  However, the corresponding 

average was 0.55 for non-neoplasm concepts, because only 2,858 non-neoplasm concepts 

(16.6% = 2858/17194) had roles. These 2,858 non-neoplasm concepts had an average 

number of 3.33 roles. The average number of parents for concepts in the Neoplasm 

subhierarchy was 1.73, while it was 1.10 for the remaining concepts in the Disease, 

Disorder or Finding hierarchy. 

The Gene hierarchy which had 9,540 concepts in the September 2016 release is 

another important component of NCIt, because it contains cancer-related knowledge 

about genes, which are organized according to biological functions [45]. It has a list of 16 

defined role types. Some of these role types are Gene Plays Role In Process, specifying a 

biological process in which the gene participates, Gene Associated With Disease, 

indicating a disease associated with molecular abnormalities in a gene, and Gene In 

Chromosomal Location, describing the general location of a gene by chromosomal band 

position. Table 2.1 shows the number of concepts in the Gene hierarchy with each of the 

five most frequent role types. The other roles are less frequent. 

Table 2.1 Distribution of Concepts in the Gene Hierarchy of NCIt 

 

Five Most Frequent Role Types # of Concepts Percentage (%) 

Gene Plays Role In Process 8775 91.98 

Gene In Chromosomal Location  3548 37.19 

Gene Found In Organism 3258 34.15 

Gene Is Element In Pathway 2234 23.42 

Gene Associated With Disease 1377 14.43 
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The Biological Process (BP) hierarchy is also a core hierarchy in NCIt, because 

of its relevance for cancer research and treatment, containing 1,145 concepts in the 

February 2015 release, with seven defined role types (whose full names and abbreviated 

names are given in Table 2.2). The Gene hierarchy and the Biological Process hierarchy 

are closely related to one another. This relation is manifested, for example, by the role 

Gene Plays Role In Process that exists for 92% of the concepts of the Gene hierarchy 

shown in Table 2.1. Among the BP hierarchy’s 1,145 concepts, 513 (44.8%) have no 

roles at all. The levels of these concepts without roles (i.e., the maximum distance from 

the BP hierarchy root to each concept) varied from 0 to 9. 

Table 2.2 Roles in the Biological Process Hierarchy and their Abbreviations 

 

Role Abbreviated Name 

Biological Process Has Associated Location Location 

Biological Process Has Initiator Chemical Or Drug Initiator Chemical or Drug 

Biological Process Has Initiator Process Initiator BP 

Biological Process Has Result Anatomy Resulting Anatomy 

Biological Process Has Result Biological Process Resulting BP 

Biological Process Has Result Chemical Or Drug Resulting Chemical or Drug 

Biological Process Is Part Of Process Part of Process 

 

 

2.1.4 Chemical Entities of Biological Interest (ChEBI) 

 

The Chemical Entities of Biological Interest (ChEBI) ontology [46] is a structure that 

houses terminological knowledge concerning chemicals in biological contexts. It serves 

as an important electronic reference for software systems needing such knowledge. For 

example, ChEBI has been used in many annotation, text-mining, and chemical-analysis 

applications. Also, ChEBI’s hierarchy has been integrated into the Gene Ontology (GO) 

[47-50] to support the integration of data across the biology and chemistry domains. 
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ChEBI’s August 2016 release comprised 103,478 concepts, 161,256 IS-A relationships, 

and 68,395 lateral relationships. 

The ChEBI ontology is maintained by the European Molecular Biology 

Laboratory-European Bioinformatics Institute (EMBL-EBI) and is updated monthly in 

OBO and OWL format. The version used in this dissertation is the February 2016 

inferred version in OWL format. It contained 61,896 concepts, including 47,752 fully 

annotated chemical entities. Each concept in ChEBI has a unique id, written in the 

general form “CHEBI: num.” For example, the concept Neticonazole hydrochloride has 

the id “CHEBI: 31900.” 

 ChEBI divides its classification of molecular entities into three hierarchies. The 

chemical entity hierarchy categorizes molecular entities based on their chemical structure. 

The subatomic particle hierarchy classifies particles that are smaller than atoms. The role 

hierarchy, with its three subhierarchies, defines the roles of compounds in three different 

settings: (1) their intended use by humans (e.g., fuel, anti-inflammatory agent), (2) their 

biological context (e.g., growth regulator, inhibitor), and (3) their chemical role (e.g., acid, 

base). 

 ChEBI employs three primary relationships in the modeling of its concepts. The 

hierarchical IS-A relationship denotes the standard subsumption relationship between 

concepts in the hierarchies. The relationship has part indicates the whole/part association 

between compounds. The relationship has role serves to link concepts in the chemical 

entity hierarchy with those in the role hierarchy. Seven other chemistry-specific, non-

hierarchical (“lateral”) relationships are also used in modeling concepts. These are is 

conjugate base of, is conjugate acid of, is tautomer of, is enantiomer of, has functional 
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parent, has parent hydride, and is substituent group from. Certain pairs of these 

relationships form converses. For example, the two relationships is conjugate base of and 

conjugate acid of are converses of each other, as are is tautomer of and is enantiomer of 

[51]. 

 ChEBI is highly user-driven. Users can make requests (e.g., to add a new concept) 

to the ChEBI curatorial team using the ChEBI submission tool [52]. In the case of a new 

concept, users must provide minimal unique information, including classifications. Issues 

and bugs of ChEBI’s concepts can be reported using ChEBI’s GitHub issue tracking 

system [53]. As of August 2016, there were 2,951 closed and 243 open issues in the 

ChEBI GitHub. After ChEBI’s curators have validated requests, changes are made 

available in subsequent releases. For example, a user reported on July 31, 2016 that the 

has role relationship between protein polypeptide chain (CHEBI: 16541) and mouse 

metabolite (CHEBI: 75771) is questionable. Two days later, a ChEBI curator responded 

that the problem was fixed.  

 

 

2.2  Abstraction Networks for Biomedical Ontologies 

 

As demonstrated by Figure 1.1 in Chapter 1 and the introduction to biomedical ontologies 

in the previous section, Big Knowledge in large biomedical ontologies is beyond humans’ 

comprehension ability. In order to facilitate the comprehension of the complex content in 

biomedical ontologies, in a long range research program, the SABOC team [54] has 

developed an Abstraction Network-based framework to support the summarization and 

visualization of biomedical ontologies. An Abstraction Network (AbN) of an ontology is 

a compact summary network consisting of “nodes,” each representing a set of concepts 
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that are similar in their structure and semantics. Nodes are connected by hierarchical 

child-of links that are derived from the IS-A relationships in the ontology.  

The definition of “similar” depends on an ontology’s structural characteristics and 

is not the same for all ontologies, hence there are various types of Abstraction Networks. 

For example, the SABOC team has developed the area taxonomies and partial-area 

taxonomies [5, 6, 55] for the National Cancer Institute thesaurus (NCIt) [3], SNOMED 

CT [7], and the Gene Ontology [56]. Furthermore, the disjoint partial-area taxonomies 

[57] and the tribal abstraction networks [58] have been designed for SNOMED CT. 

Besides, they have introduced the domain-defined partial-area taxonomy [59, 60] for the 

Ontology of Clinical Research (OCRe) [61] and the Cancer Chemoprevention Ontology 

(CanCo) [62], the restriction-defined partial-area taxonomy [63] for the Sleep Domain 

Ontology (SDO) [64], and the domain-defined and restriction-defined partial-area 

taxonomies [65] for the Drug Discovery Investigations Ontology [66]. An extensive 

review of Abstraction Networks has been presented by Halper et al. [4]. The Ontology 

Abstraction Framework (OAF) created by Ochs et al. [67] is an open source software 

system and tool for deriving Abstraction Networks, which is available at 

http://saboc.njit.edu/. The following sections will describe the Abstraction Networks 

associated with this dissertation using example neoplasm concepts from NCIt. 

2.2.1 Area Taxonomy and Partial-area Taxonomy 

 

The first discussed Abstraction Network is the area taxonomy. It is a network composed 

of area nodes and links denoted child-of. Another basic Abstraction Network is called 

partial-area taxonomy [6], which is derived from an area taxonomy.  

Figure 2.5 shows the derivation of the area taxonomy and partial-area taxonomy 
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for an excerpt of 13 neoplasm concepts. Concepts with the exact same set of roles are 

enclosed in dashed, colored boxes in Figure 2.5(a).  An area represents such a group of 

concepts with the exact same set of roles and is named by the set of roles. For example, in 

Figure 2.5(a) the five concepts in the dashed gray box Neoplasm, Neoplasm by Special 

Category, Neoplasm by Morphology, Papillary Neoplasm, and Epithelial Neoplasm have 

only one role Disease Has Abnormal Cell. Therefore, there is a corresponding area node 

named {Disease Has Abnormal Cell} summarizing these five concepts in Figure 2.5(b). 

An area taxonomy is an Abstraction Network composed of area nodes connected by 

child-of links, which are derived from the underlying IS-A relationships in the 

terminology. 

A root of an area is a concept such that its parent concept(s) are not in this same 

area. An area may have multiple root concepts. For example, the dashed blue box has the 

two roots Papillary Epithelial Neoplasm and Glandular Cell Neoplasm. An area A is 

child-of another area B if a root in A has a parent in B. Figure 2.5(b) is the area taxonomy 

for the 13 concepts in Figure 2.5(a). Area nodes in Figure 2.5(b) are color coded by the 

number of roles, i.e., areas with the same number of roles have the same color. Child-of 

links are displayed as bold upward arrows. For example, the single red area node at the 

bottom of Figure 2.5(b) is child-of both the green area node and the blue area node. 

The area taxonomy summarizes groups of concepts with similar structure. A root 

concept and all its descendant concepts in an area share a similar semantics, as they are 

all specializations of the same root concept. Since an area may have multiple roots 

representing various semantics, an area is further divided into partial-area(s) to get groups 

of concepts sharing similar structure and similar semantics. A partial-area is composed  
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Figure 2.5 (a) An excerpt of 13 neoplasm concepts in the Disease, Disorder or Finding 

hierarchy of NCIt. Concepts represented by boxes with rounded corners are connected by 

IS-A relationships shown as upward thin arrows. (b) The area taxonomy for the excerpt 

in (a). (c) The partial-area taxonomy for the excerpt in (a). 

 

 

of a root concept in an area and all its descendant concepts (i.e., children, grand-children, 

etc.) in the same area.  Partial-area nodes represent partial-areas of the terminology in the 

derived partial-area taxonomy. Partial-area nodes are connected by child-of links to form 

the partial-area taxonomy. Figure 2.5(c) is the partial-area taxonomy for Figure 2.5(a), in 

which partial-area nodes are represented as white boxes within area nodes. A partial-area 

node is labeled by its root concept, with the number of concepts that the node summarizes 

in () parentheses. Child-of links connecting partial-area nodes are also represented as bold 
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arrows. For example, Papillary Cystic Neoplasm (2) is child-of both Cystic Neoplasm (1) 

and Papillary Epithelial Neoplasm (1). 

2.2.2 Disjoint Partial-area Taxonomy 

 

Note that the red (bottom) area in Figure 2.5(b) has five concepts, while the sum of the 

numbers of concepts in the three partial-areas in Figure 2.5(c) is 7 (= 2+3+2). That is the 

case, because both Papillary Cystadenoma and Serous Cystadenoma have two parents 

which are roots of the red area. Therefore, both concepts are simultaneously summarized 

by two partial-areas. Concepts that are summarized by more than one partial-area are 

called “overlapping concepts.” Note that overlapping concepts cause some ambiguity in 

the summarization due to their multiple summarizations. 

In order to eliminate the phenomenon of summarization ambiguity of overlaps 

among partial-areas, the disjoint partial-area taxonomy [57] was developed. The basic 

idea is to extract overlapping concepts from their original partial-areas and place them 

into their own partial-areas. As a result all resulting partial-areas become disjoint. Figure 

2.6 illustrates the derivation of the disjoint partial-area taxonomy for an excerpt of 15 

neoplasm concepts in the area {Disease Excludes Abnormal Cell, Disease Excludes 

Finding, Disease Has Abnormal Cell, Disease Has Finding, Disease Has Normal Cell 

Origin, Disease Has Normal Tissue Origin}. Figure 2.6(a) shows that the 15 concepts of 

the excerpt are organized into four partial-areas Serous Neoplasm (5) enclosed by dashed 

orange lines, Cystadenoma (12) enclosed by dashed green lines, Papillary Cystic 

Neoplasm (8) enclosed by dashed red lines and Mucinous Neoplasm (4) enclosed by 

dashed blue lines. The upward thin arrows represent IS-A relationships between concepts.  

These four partial-areas have 10 overlapping concepts. For example, the concept 
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Papillary Serous Cystadenoma appears in three partial-areas (red, yellow, and green). 

In Figure 2.6(b), the four concepts in the first row (=Level 1) in different solid 

colors are the roots of the area (“area roots”). The concept Borderline Cystadenoma 

(without color at Level 2) and the four root concepts are non-overlapping concepts. The 

concept Serous Cystadenoma (Level 2) is a child of two root concepts. Previously, in the 

partial-area taxonomy, this concept would appear twice, namely once in the partial-area 

defined by each of the two roots. In the disjoint partial-area taxonomy, however, this 

concept is promoted to becoming a root of its own partial area. Such a concept is called 

an overlapping root. The same process is repeated for other concepts that have two or  

 

Figure 2.6 (a) An excerpt of 15 neoplasm concepts from the area {Disease Excludes 

Abnormal Cell, Disease Excludes Finding, Disease Has Abnormal Cell, Disease Has 

Finding, Disease Has Normal Cell Origin, Disease Has Normal Tissue Origin} 

distributed in four partial-areas enclosed by four different colored dashed boxes. (b) The 

roots of disjoint partial-areas are colored. Area roots have a single color and overlapping 

roots have multiple colors according to the colors of their multiple ancestor area roots. (c) 

The disjoint partial-area taxonomy for the excerpt in (a). Disjoint partial-areas are color 

coded according to the colors of their roots. Disjoint partial-areas with the same number 

of colors are placed at the same level, e.g., the five disjoint partial-areas with two colors 

are at the second level. There may be child-of relationships between disjoint partial-areas 

at the same level.  
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more parents that are area roots. As a side remark, the concept Clear Cell Papillary 

Cystadenoma (Level 3) is without color, because it is not a root; however, it is an 

overlapping concept, as it inherits from Cystadenoma and from Papillary Cystic 

Neoplasm.  

There is a complication that requires performing the above operation recursively 

at every level of the taxonomy. Papillary Serous Cystadenoma (at Level 3) is a child of 

two concepts that have now become overlapping roots. Thus, it would have to appear in 

the partial-areas defined by both these two overlapping roots in the partial-area taxonomy 

(Figure 2.6(a)). To avoid this, the same method is applied again one level down, and 

Papillary Serous Cystadenoma is itself promoted to overlapping root.  

 Overlapping roots are multicolored according to the colors of their multiple 

ancestor area roots. For example, the overlapping root Serous Cystadenoma has two 

colors, orange and green, because its two parents Serous Neoplasm (orange) and 

Cystadenoma (green) are area roots. Another example is the overlapping root Papillary 

Serous Cystadenoma with three colors, orange, green and red, because it has the 

combined semantics inherited (over two levels) from the three area roots Serous 

Neoplasm, Cystadenoma and Papillary Cystic Neoplasm.  

Figure 2.6(b) still displays “concept space,” like the original terminology. To 

arrive at the final disjoint partial-area taxonomy, three more steps have to be taken. All 

non-root concepts have to be deleted, because they are represented by their disjoint 

partial-area root nodes. Any IS-A link pointing to a deleted concept is redirected to the 

disjoint partial-area root node that will represent the deleted concept. Thus, the two 

uncolored concepts of Figure 2.6(b) are eliminated. Secondly, it is more intuitive to 
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organize overlapping roots (and thus disjoint partial-area nodes) by the number of colors 

in one node. Thus, all nodes with two colors are shown next to each other at Level 2 in 

Figure 2.6(c). Finally, for every root concept, whether overlapping root or area root, the 

number of concepts that this disjoint partial-area node represents is shown in () 

parentheses. (By this step, a root concept is effectively converted into a disjoint partial-

area node.) Thus, Cystadenoma appears in Figure 2.6(c) as Cystadenoma (2), because this 

disjoint partial-area node represents the deleted concept Borderline Cystadenoma. The 

arrows represent child-of links between disjoint partial-area nodes, with a similar 

interpretation as the previously described child-of links in a partial-area taxonomy and an 

area taxonomy.  

 

 

2.3 Quality Assurance of Biomedical Ontologies 

 

Building an ontology is a burdensome task, requiring a thorough understanding of the 

application domain as well as authoring skills following ontological rules. Many 

important biomedical ontologies (e.g., NCIt) have a large, complex network structure that 

poses significant maintenance challenges. It is not reasonable to expect that ontologies 

are completely free of modeling errors and inconsistencies. Errors and inconsistencies in 

biomedical ontologies impede their applications. Hence, Quality Assurance (QA) is a 

fundamental part of the life cycle of an ontology [5]. However, QA is a challenging and 

resource-intensive task. Without the help of automatic or semi-automatic techniques and 

tools, it is impossible to maintain ontologies with a high quality. 

Automated support for terminology and ontology QA has been a focus of much 

research, especially for large complex structures playing important roles in the 



26 

biomedicine field like the UMLS Metathesaurus [68-72], SNOMED CT [73-77], and 

Gene Ontology (GO) [78-81]. For NCIt, both internal and external QA reviews of NCIt 

have been conducted. Different internal QA techniques, including various automated and 

manual methods, have been employed during the whole life-cycle of NCIt [42]. For 

example, during the editing phase, concept definitions are reviewed by editors following 

the NCIt Editor Guide. Externally, a qualitative analysis of NCIt determining its 

adherence to relevant ISO terminology standards and ontological principles was 

performed [82]. In that study, it was concluded that the particular version of the NCIt 

suffered from the same broad range of problems (e.g., missing or inappropriately 

assigned verbal and formal definitions) as other biomedical ontologies.  

Structural characterizations based on Abstraction Networks have been applied to 

the Biological Process hierarchy of NCIt to identify sets of concepts with different kinds 

of errors in the hierarchy [5]. The main observation was that small partial-areas, which 

are units comprising few concepts that are all similar to each other in their structure and 

semantics, tend to exhibit higher error rates than large partial-areas. A comparative QA 

methodology focusing on the biological processes of different genes was carried out on 

NCIt’s Gene hierarchy with the use of the National Center for Biotechnology 

Information’s (NCBI’s) Entrez Gene database [83]. A multiphase QA methodology based 

on Abstraction Networks was also used on the Gene hierarchy to detect different kinds of 

role errors [84]. Another QA methodology based on semantic web technologies and using 

relationships defined in the UMLS Semantic Network identified inconsistencies in the 

hierarchical relationships and roles in the NCIt [85].  
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More and more biomedical ontologies, including large ones such as SNOMED 

CT [7], National Drug File – Reference Terminology (NDF-RT) [27] and NCIt [42] are 

modeled using description logic (DL) to ensure logical consistency of these ontologies. 

DL reasoners can automatically identify logical inconsistencies but cannot detect 

semantic errors (e.g., missing or incorrect relationships) that do not cause logical 

conflicts. Wei et al. [86] demonstrated that other methods (e.g., Abstraction Network-

based methodologies) are needed to complement DL classifiers to identify semantic 

errors.  

Below is a discussion of two general overviews of quality assurance of 

biomedical ontologies. Rogers [87] reviewed literature on the quality assurance of logic-

based medical ontologies from scholar.google.com in 2006 and proposed a framework to 

evaluate ontologies according to four aspects, namely philosophical rigor, ontological 

commitment, content correctness and fitness for purpose. Zhu et al. [88] performed an 

extensive review of auditing methods applied to various biomedical terminologies in 130 

studies, which appeared in the first journal special issue on auditing of terminologies [89]. 

They extended the review target from ontologies to all forms of controlled biomedical 

terminologies and presented a framework to characterize various auditing methods, 

applied to different terminologies, with appropriate examples. 

The SABOC research team has shown that Abstraction Networks are useful in 

support of ontology QA [4]. In particular, the alternative view of an ontology offered by 

an Abstraction Network supports the identification of sets of concepts with high 

likelihood of errors.  
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Two main characterizations of concepts with high likelihood of errors identified 

by the SABOC team are “uncommonly modeled” concepts and “complex” concepts. For 

different ontologies, the definitions of “uncommon” and “complex” may be different. For 

example, Halper et al. [90] identified partial-areas of up to seven concepts in the 

Specimen hierarchy of SNOMED CT as sets of “uncommon” concepts. Min et al. [5] also 

obtained a similar result for the Biological Process hierarchy of NCIt, but only for 

partial-areas of up to three concepts. Several studies have demonstrated that overlapping 

concepts in partial-area taxonomies are “complex” concepts [4, 91-93] such as for the 

Specimen hierarchy and the Clinical finding hierarchy of SNOMED CT, and for the Uber 

Anatomy Ontology (UBERON) [94]. 
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CHAPTER 3  

ADVANCED ABSTRACTION NETWORKS  

 

The Big Data to Knowledge (BD2K) initiative is expected to produce many knowledge 

items that can be expressed as assertions or as rules. However, orientation into large 

knowledge bases is a challenge by itself, the “Big Knowledge” challenge. Without some 

high-level mental representation of the kinds of content in a large knowledge base, 

effective use of the knowledge may be limited [95]. When an ontology surpasses many 

thousands of assertions, even its curators are confronted with the problem of seeing the 

“big picture” of its content, which would impede the ontology’s maintenance and 

applications. Hence, in order to facilitate the users’ “big picture” comprehension, it is 

important to provide automated tools for summarization of the content in a large ontology. 

This is one manifestation of the “Big Knowledge” challenge [4].  

In order to address the “Big Knowledge” challenge, this chapter introduces two 

advanced Abstraction Networks, the weighted aggregate partial-area taxonomy [9, 10] 

that provides a more compact and flexible summary of biomedical ontologies compared 

with the original partial-area taxonomy, and the Ingredient Abstraction Network (IAbN) 

[11, 12], summarizing and visualizing NDF-RT’s Chemical Ingredient hierarchy. The 

latter had to be derived due to the terminology’s unique modeling structure, for which the 

previously developed kinds of Abstraction Networks cannot be derived. 
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3.1 Weighted Aggregate Partial-area Taxonomy 

 

In previous studies by the SABOC team, various types of Abstraction Networks have 

been developed to summarize, visualize, and support the quality assurance of biomedical 

ontologies. However, biomedical ontologies are complex knowledge systems in terms of 

their large numbers of concepts and tens or even hundreds of thousands of relationships. 

Although the previously derived Abstraction Networks, e.g., the partial-area taxonomy, 

are compact compared to the ontologies themselves, they are usually still too 

overwhelming to comprehend, since there are many nodes, some of which are 

summarizing only a few concepts. In order to address the “Big Knowledge” challenge, 

this section introduces a more compact Abstraction Network for ontologies, named 

weighted aggregate partial-area taxonomy. 

A weighted aggregate partial-area taxonomy [9, 10] (“aggregate taxonomy” for 

short) is a variation of a partial-area taxonomy with an adjustable parameter b that is used 

to control the granularity of summarization. First, a complete partial-area taxonomy is 

created for the ontology (the original partial-area taxonomy). Next, based on the given 

parameter b, “small” partial-areas are aggregated into their closest “large” ancestor 

partial-area(s) [96]. In this way, the small partial-areas are not removed but are instead 

hidden to obtain a more compact summary. The parameter b is used to distinguish 

between small and large partial-areas. The size of a partial-area is defined as the number 

of concepts it summarizes. The aggregated weight of a partial-area in the original partial-

area taxonomy is defined as the sum of its size and the sizes of all its descendant partial-

areas.  

The parameter b specifies the minimum aggregated weight of a partial-area in the  
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original partial-area taxonomy that will appear explicitly in the aggregate taxonomy. 

More precisely, all partial-areas with an aggregated weight greater than or equal to b will 

be included in the resulting aggregate taxonomy. Using a topological sort, an aggregate 

taxonomy is generated by aggregating any partial-areas with an aggregated weight less 

than b into their closest parent/ancestor partial-area(s) (which have an aggregated weight 

≥ b). The root partial-area will be included regardless of size, to ensure that there is 

always a root in the aggregate taxonomy. The nodes in the aggregate taxonomy, called 

aggregate partial-areas, summarize their descendant partial-areas from the original 

partial-area taxonomy. A partial-area may appear unchanged after performing the 

aggregation process.  

Figure 3.1 illustrates the derivation of an aggregate taxonomy with b=20 for a 

subhierarchy of eight partial-areas rooted at Colorectal Carcinoma (19). The partial-areas 

in the blue areas in Figure 3.1(a) are child partial-areas of Colorectal Carcinoma (19). 

The aggregated weight of Colorectal Carcinoma (19) is thus 56 (=19 + 24 + 4 + 3 + 1 + 3 

+ 1 + 1) and the aggregated weights of its seven child partial-areas are their sizes, as they 

have no descendant partial-areas. With b=20, the six child partial-areas with an 

aggregated weight less than 20 are aggregated into the partial-area node at the first level. 

The only child partial-area is Colorectal Adenocarcinoma (24) with an aggregated weight 

greater than 20. It stays unchanged and is represented by a white rectangle with “sharp 

corners” in Figure 3.1(b). A rectangle with rounded corners summarizes small descendant 

partial-areas. 

Figure 3.3 shows the weighted aggregate taxonomy with the parameter b as 200 

for the NCIt Neoplasm subhierarchy with 8,445 concepts, consisting of only 25 aggregate 
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partial-areas. Compared to the Neoplasm subhierarchy itself in Figure 1.1 on Page 2 and 

its partial-area taxonomy with 4,177 partial-areas shown in Figure 3.2, Figure 3.3 

captures the “big picture” of the subhierarchy. For example, there are 1199 concepts 

related to Reproductive System Neoplasm and 909 Connective and Soft Tissue Neoplasm 

concepts. 

Note that, given the original partial-area taxonomy and the aggregated weight of  

each of its partial-areas, the parameter b can be automatically adjusted such that the 

aggregate taxonomy will consist of no more than some fixed number of aggregate partial-

areas. In this way, the resulting aggregate taxonomy becomes smaller and more 

comprehensible. 

Has Abnormal Cell, Has Primary 
Anatomic Site (1 Partial-area)

Colorectal Carcinoma (19)

Colorectal 
Adenocarcinoma 

(24)

Colorectal 
Squamous Cell 
Carcinoma (4)

Colorectal 
Adenosquamous 

Carcinoma (3)

Has Abnormal Cell, Has Primary Anatomic 
Site, May Have Finding (4 Partial-areas)

Colorectal Carcinoma 
{19} (32) [6]

Stage IV Colorectal 
Cancer (3)

Has Abnormal Cell, Has 
Primary Anatomic Site,

Is Stage (2 Partial-areas)

(a)

(b)

Aggregation

Rectal 
Sarcomatoid 

Carcinoma (1)

Colorectal 
Neuroendocrine 

Carcinoma (1)

Has Abnormal Cell, Has 
Primary Anatomic Site,
Is Grade (1 Partial-area)

Stage IV Colorectal 
Cancer AJCC v6 (1)

Colorectal 
Adenocarcinoma (24)

Has Abnormal Cell, Has Primary 
Anatomic Site (1 Partial-area)

Has Abnormal Cell, Has 
Primary Anatomic Site, May 
Have Finding (1 Partial-area)

 

Figure 3.1 (a) An excerpt of eight partial-areas in the NCIt Neoplasm partial-area 

taxonomy. (b) Weighted aggregate partial-area taxonomy for (a) with b=20. A “rounded” 

white rectangle represents an aggregate partial-area with its number of concepts in the 

original partial-area taxonomy in {}, its number of concepts in the aggregated taxonomy 

in () including all concepts from aggregated partial-areas, and the number of its 

aggregated partial-areas in []. A white rectangle with “corners” represents an aggregate 

partial-area that does not summarize any descendant partial-areas. 



 

 
 

 

Figure 3.2 The partial-area taxonomy for the NCIt Neoplasm subhierarchy with 8,445 concepts shown in Figure 1.1.
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Figure 3.3 The weighted aggregate partial-area taxonomy with 25 aggregate partial-areas for the Neoplasm subhierarchy (b=200).
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3.2 Ingredient Abstraction Network (IAbN) 

 

The effects of drugs depend mostly on their chemical ingredients and each drug in NDF-

RT is linked to its chemical ingredients via has_Ingredient roles (see Figure 2.2). 

Improving the modeling of NDF-RT’s chemical ingredient concepts would improve the 

modeling of NDF-RT’s drug concepts. The Chemical Ingredients (CI) hierarchy of NDF-

RT is relevant to Drug-Drug Interactions (DDIs), since in many cases drugs that are 

chemically similar tend to have similar interactions [97]. Hence, it is necessary to make 

sure the modeling of the Chemical Ingredients hierarchy is of high quality. 

In a long range research program, the SABOC team [54] has developed a 

framework that combines summarization, visualization and quality assurance (SVQA) 

into a sequence of well-ordered steps. The overall aim of the SVQA paradigm is to 

identify sets of concepts in a terminology that are expected to have a higher error rate 

than other concepts. The identification of theses sets is based on summaries derived from 

the terminology’s structure and semantics. Limited QA resources can be applied to the 

concepts in such a set, improving the rate of error detection and correction. 

However, it is impossible to derive partial-area taxonomies for large portions of 

NDF-RT; the structures of several of its concept hierarchies do not contain enough 

information to perform such a derivation. Seven of the NDF-RT hierarchies have no roles 

emanating from their concepts (i.e., their concepts only have hierarchical relationships). 

All of the roles in NDF-RT emanate from concepts in the Pharmaceutical Preparations 

(PP) hierarchy and point to concepts in the other hierarchies (see Figure 2.2). Hence, the 

only hierarchy of the NDF-RT that lends itself to deriving the partial-area taxonomy (see 

Section 2.2.1) is the PP hierarchy.  
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Thus, to apply the SVQA process to NDF-RT’s Chemical Ingredients (CI) 

hierarchy, a new summarization process is needed. The Ingredient Abstraction Network 

(IAbN) is the new Abstraction Network that summarizes NDF-RT’s chemical ingredients 

and their associated drug concepts.  

An Ingredient Abstraction Network (IAbN) is an Abstraction Network where the 

nodes summarize (1) the ingredients in the Chemical Ingredients hierarchy and (2) those 

drug concepts in the Pharmaceutical Preparations hierarchy that have no dosage 

information but that do have at least one has_Ingredient role to a drug ingredient in the 

Chemical Ingredients hierarchy. 

Drug ingredients are chemical ingredients that are used in prescription drugs. Five 

categories of concepts in the Chemical Ingredients (CI) hierarchy were defined. The right 

side of Figure 3.4(a) illustrates the following categories of drug concepts for an excerpt 

of 14 CI concepts.  

Definition 1: A drug ingredient concept is a concept in the Chemical Ingredients 

(CI) hierarchy that is the target of has_Ingredient role(s) from concepts in the 

Pharmaceutical Preparation hierarchy.  

Definition 2: A classification ingredient concept is a concept in CI that “organizes” 

other drug ingredient concepts below it. In other words, it has drug ingredient concepts as 

children. It may or may not be itself a target of a has_Ingredient role.  

Definition 3: A dual ingredient concept is both a drug ingredient concept and a 

classification ingredient concept in CI.  Such a concept is a target of a has_Ingredient 

role and has children that are drug ingredient concepts. 
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Definition 4: A strict classification ingredient concept is a classification 

ingredient concept that is not also a drug ingredient concept. That is, it is not a target of a 

has_Ingredient role.  

In other words, a classification ingredient concept is either a dual ingredient 

concept or a strict classification ingredient concept. 

Definition 5: An uncategorized ingredient concept is a concept in the CI hierarchy 

that is neither a drug ingredient concept nor a classification ingredient concept. Such 

concepts are not summarized in the IAbN. 

The design of an Abstraction Network for the CI hierarchy poses a challenge for 

several reasons: (1) A lack of roles emanating from CI concepts prevents the derivation 

of a partial-area taxonomy (see Section 2.2.1) that can be derived for many other 

description logic-based terminologies. (2) The need to distinguish between drug 

ingredient concepts and classification ingredient concepts is further complicated by the 

existence of dual ingredient concepts. (3) To obtain a “big picture” of the Chemical 

Ingredients hierarchy there is a need to summarize the drug concepts, which in NDF-RT 

are parts of the PP hierarchy, according to their ingredient concepts in CI, as was 

illustrated by Ochs et al. [11].  

The derivation algorithm for an IAbN begins with identifying all of the drug 

concepts in the PP hierarchy that have a has_Ingredient role but no has_DoseForm role. 

PP concepts with dosage information are ignored, since an ancestor concept, typically a 

parent (a PP generic drug ingredient), introduces the has_Ingredient role, which is 

inherited to such concepts. Hence, there is no need for direct summarization of PP 

concepts with dosage information, since such a summary is offered indirectly through the 
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summarization of the ancestor PP concepts without dosage information. All the PP 

concepts in Figure 3.4(a), except Pharmaceutical Preparations, have one has_Ingredient 

role to a concept in the CI hierarchy. Different drug concepts in the PP hierarchy can 

have a has_Ingredient role to the same CI concept, e.g., both Aspirin and Acetylsalicylate 

Sodium have the ingredient Aspirin. PP concepts may also have multiple has_Ingredient 

roles, e.g., Aspirin/Caffeine has distinct has_Ingredient roles to both Aspirin and Caffeine.  

In the next step, drug ingredient concepts (see Definition 1 above) are identified 

by collecting the target concepts of all the has_Ingredient roles. Classification ingredient 

concepts (see Definition 2 above) are identified by analyzing the parent concept(s) of 

each drug ingredient concept. Next, for each drug ingredient concept, the lowest 

ancestor(s) that are a strict classification ingredient concept(s) (see Definition 4 above) 

are identified, with the intention of finding groups of drug ingredient concepts. (Common 

ancestors will be used in the next step to define groups.)  

For example, for the Aspirin CI concept, the lowest ancestor that is a strict 

classification ingredient concept is Salicylates. Salicylates is the lowest common ancestor 

for Aspirin, Magnesium Salicylate, and Diflunisal. Warfarin Sodium’s parent concept 

Warfarin is a classification ingredient concept, but it is also a drug ingredient concept 

(i.e., it is a dual ingredient concept; see Definition 3 above). Thus, the lowest ancestor of 

Warfarin Sodium that is a strict classification ingredient concept is Warfarin’s parent, 4-

Hydroxycoumarins. Many CI hierarchy concepts have multiple parents, thus, a given 

drug ingredient concept may have more than one lowest ancestor that is a strict 

classification ingredient concept. 

In the next step of deriving the Abstraction Network, the drug ingredient concepts 
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are grouped together according to their common ancestor(s) that are strict classification 

ingredient concepts. For example, Aspirin, Magnesium Salicylate, and Diflunisal share 

Salicylates as a lowest common ancestor. Similarly, Warfarin, Warfarin Sodium, and 

Phenprocoumon share 4-Hydroxycoumarins as a lowest common ancestor. Figure 3.4(b) 

models the right side of Figure 3.4(a) and shows the “drug ingredient groups” induced by 

the lowest common ancestors. Color coding in Figure 3.4(b) helps to keep the groups 

apart: Every group has its own color.  

In the following step, each strict classification ingredient concept is recast as a 

root for its ingredient group. Roots of a group are shown with solid fill in Figure 3.4(b). 

Thus Salicylates becomes the root of the group with Aspirin, Magnesium Salicylate, and 

Diflunisal in it. The CI root concept, Chemical Ingredients, is also a root. Roots represent 

groups of CI concepts in the IAbN (Figure 3.4(c)). The text line “3 Ingredients” under 

Salicylates in Figure 3.4(c) indicates how much information is summarized by this box. 

Ingredient groups are not disjoint; drug ingredient concepts with multiple parents may be 

summarized by multiple ingredient groups. With this step, a summary (Figure 3.4(c)) of 

the “right side” (the Chemical Ingredients hierarchy) of Figure 3.4(a) has been created. In 

the next step, information from the left (PP) side of Figure 3.4(a) will be included into 

Figure 3.4(c). 

For each ingredient group, the PP drug concepts that have a has_Ingredient role 

to a drug ingredient concept in the ingredient group are identified. For example, the 

Aspirin and Acetylsalicylate Sodium drug concepts in PP both have Aspirin in CI as the 

target of their has_Ingredient roles. The Aspirin drug ingredient concept belongs to the 

Salicylates ingredient group, thus, the Aspirin and Acetylsalicylate Sodium drug concepts 
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from PP are also summarized by the Salicylates ingredient group. This is expressed by 

the text line “4 Drugs” under Salicylates in Figure 3.4(c). (The other two drug concepts 

are Magnesium salicylate and Diflunisal). Since ingredients may belong to multiple 

ingredient groups, a given PP drug concept may be represented by multiple ingredient 

groups. 

Within the IAbN, ingredient groups are organized into a hierarchy according to 

child-of links derived from the underlying IS-A hierarchy. An ingredient group A is a 

child-of another ingredient group B if A’s root has B’s root as an ancestor in the CI 

hierarchy and there are no other roots of the IAbN on any path from A’s root to B’s root 

in the CI hierarchy. An ingredient group may be a child-of multiple ingredient groups. In 

summary, Figure 3.4(c) shows the IAbN derived from NDF-RT excerpt in Figure 3.4(a). 

In the visualization of an IAbN, it is necessary to organize the ingredient groups 

in a way that helps the summary reflect the “big picture.” Thus, ingredient groups may be 

organized into color coded levels according to the length of the longest child-of path to 

the root ingredient group (Chemical Ingredients). This will be shown later in Figure 3.5. 

Figure 3.4(c) does not use this color level encoding.  

Note that Ethyl Biscoumacetate is an uncategorized ingredient concept (see 

Definition 5 above), as shown in Figure 3.4(a). This occurs when an ingredient is 

modeled in CI but no PP drug concept has a has_Ingredient role to this ingredient. For 

the current research, such concepts are not summarized by any ingredient group and are 

not considered part of the IAbN.  



 

 
 

 

Figure 3.4 (a) An excerpt of concepts from NDF-RT’s Pharmaceutical Preparations (PP) and Chemical Ingredients (CI) hierarchies. 

On the left, drug concepts in the PP hierarchy with no dosage information have a shaded background. On the right, nine drug 

ingredient concepts have red borders and five classification ingredient concepts have a pink background. Two concepts, 

Aminosalicylic Acid and Warfarin, are both drug ingredient concepts and classification ingredient concepts, i.e., they are dual 

ingredient concepts. Ethyl Biscoumacetate is neither a drug ingredient concept nor a classification ingredient concept, i.e., it is an 

uncategorized ingredient concept. (b) CI grouped. Drug ingredient concepts are not shaded and their lowest common ancestor 

classification ingredient concepts are shaded. Each drug ingredient concept is color-framed according to its lowest common ancestor 

classification ingredient concept. (c) The IAbN for Figure 3.4(a). Ingredient groups are shown as boxes that are labeled with the name 

of the lowest common ancestor from Figure 3.4(b). In each box are the total number of ingredient concepts summarized by the group, 

and the total number of drug concepts (without dosage information!) with has_Ingredient roles pointing to the summarized concepts in 

the CI hierarchy. Child-of links between ingredient groups are shown as upward directed bold arrows. 

4
1
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An IAbN for the June 2015 release of NDF-RT’s Chemical Ingredients (CI) 

hierarchy, consisting of 10,145 concepts, was derived. This IAbN consists of 860 

ingredient groups, which summarize 2,664 drug ingredients and 6,872 Pharmaceutical 

Preparation hierarchy drug concepts. The abstraction ratio of the IAbN was defined to 

be the average number of drug ingredients per ingredient group. The abstraction ratio of 

the June 2015 IAbN is 3.07 (=2,664/860). There are 813 drug ingredient concepts 

summarized by more than one ingredient group (with a total of 535 such ingredient 

groups), and each such drug ingredient is summarized by an average of 1.52 (=813/535) 

ingredient groups. The average number of PP drug concepts summarized by each 

ingredient group is 7.99 (=6,872/860).  

Figure 3.5 shows an excerpt of 128 of the IAbN’s ingredient groups, as the IAbN 

is too large to fit on a single page. By reviewing the ingredient groups of the IAbN, one 

can see the major types of drug ingredients used in NDF-RT’s drugs. For example, the 

Polymers group (Level 2: green) summarizes 26 ingredients and 81 drugs, Piperidines 

(Level 3: blue) summarizes 47 ingredients and 76 drugs, Tetracyclines summarizes 17 

ingredients and 35 drugs, Ethanolamines summarizes 45 ingredients and 231 drugs, and 

Penicillins summarizes 34 ingredients and 64 drugs. 
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Figure 3.5 An excerpt of 128 (15%) ingredient groups from the IAbN for the June 2015 

version of the CI hierarchy. The smaller ingredient groups have been hidden as follows. 

Each level shows as many groups as possible, in decreasing order by the number of 

ingredients in each group, while keeping the group names readable. Child-of links are 

hidden for readability. The numbers of ingredients and drugs summarized by each 

ingredient group are shown in parentheses and prepended with I: and D:, respectively. 

Salicylates and Aminosalicylic Acids, from Figure 3.4(c), are highlighted in yellow. 
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CHAPTER 4  

BIG KNOWLEDGE COMPREHENSION 

 

This chapter presents three applications of the two advanced Abstraction Networks 

introduced in Chapter 3 to demonstrate their effectiveness for the Big Knowledge 

comprehension. The first application is a summarization approach for the automatic 

identification and display of major topics covered by an ontology’s content. This 

approach is based on the weighted aggregate partial-area taxonomy. SNOMED CT’s 

Specimen hierarchy was the test-bed for evaluating the effectiveness of this approach. 

Another application of the  weighted aggregate partial-area taxonomy is a multi-layer, 

multi-granularity Big Knowledge visualization scheme. The visualization scheme is 

demonstrated on the National Cancer Institute thesaurus’s Neoplasm subhierarchy to 

support its comprehension. The innovative application of the Ingredient Abstraction 

Network is Drug-Drug Interaction discovery. 

 

 

4.1 Major Topic Identification 

 

This section presents a study on the summarization of the “big picture” of an ontology by 

automatically deriving concept groups that represent major topics in a specific domain. It 

is a parameterized methodology to identify major topics in an ontology based on the 

weighted aggregate partial-area taxonomy, followed by manual enhancement. Because of 

SNOMED CT’s importance in clinical applications and its large size, an experiment on 

its Specimen hierarchy is presented to test the effectiveness of such summarization 
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measured by “Big Knowledge” coverage of a given list of major topics related to the 

corresponding domain.  

4.1.1 Partial-area Taxonomies for Major Topic Identification 

 

A topic of an ontology, represented by a concept c, is considered a major topic if c has a 

large number of descendants. The above definition of major topic is based on the 

following two assumptions. First, it was assumed that concepts belonging to a given topic 

are all hierarchically related (i.e., they share a common ancestor concept c that represents 

and names the topic). That is, all the descendant concepts of a topic c belong to that topic, 

since they are specializations of c. Second, it was assumed that if there are relatively 

many concepts for a topic then it is “more important.” For example, there are 262 

concepts related to digestive system specimens, but only 12 related to bone marrow 

specimens. Thus the topic “digestive system specimens” was considered as more 

important in SNOMED CT. Note that it is not necessarily clinically more important, 

since this depends on the clinical context.  

The approach for evaluating the quality of the automatically identified major 

topics was based on a gold standard list provided by a domain expert. The domain expert, 

Dr. Gai Elhanan (GE), was asked to select a list of major topics for the specimen domain. 

(GE) is an MD with long experience in ontologies. A gold standard may also be derived 

from a published ontology of an authoritative organization. No other ontology for 

specimens was found, e.g., in the UMLS Metathesaurus. For the sake of normalization 

and to simplify the eventual matching task, each chosen topic was semi-automatically 

mapped to a SNOMED CT concept in the Specimen hierarchy, utilizing UMLS 
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synonyms. For example, the topic “Bone specimen” was mapped to the concept Specimen 

from bone. 

One straightforward heuristic for identifying major topics in an ontology is to 

review the ontology root’s children, which are typically general and cover high-level 

topics. For example, Specimen has 59 children (e.g., Biopsy sample and Blood specimen). 

However, among the 59 children, many would not be considered major topics (based on 

the second assumption above), since they have few descendants. For example, 13 of 

Specimen’s children do not themselves have children (e.g., Muscle specimen). Nine have 

few children and no grandchildren (e.g., Fibroblast specimen has one child). Of the 

remaining 37 children, only 13 were in the major topic list of the domain expert, while 

another eight on that list were not children of Specimen (e.g., Stool specimen is a 

grandchild of Specimen). Hence, a better methodology for identifying major topics is 

required. 

In previous studies, the SABOC team has derived a partial-area taxonomy [6] for 

each of the seven SNOMED CT hierarchies, including Specimen, that have outgoing 

lateral relationships. The partial-area taxonomies were not designed for the purpose of 

major topic identification, but for structure and content summarization. Indeed, the roots 

of partial-areas are not necessarily intuitive topics. A root of a partial-area is 

distinguished by the introduction of a new relationship type into the ontology, but it may 

or may not be a major topic. Moreover, a partial-area may be small, and thus, may not 

define a broad topic. A partial-area taxonomy typically has many small partial-areas [96]. 

As a result, the partial-area taxonomy for a large ontology, although smaller by an order 

of magnitude than the ontology, can still fail to identify major topics. Metaphorically, the  
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Figure 4.1 An excerpt of the partial-area taxonomy for the Specimen hierarchy. Partial-

areas are sorted (left to right and top to bottom) according to their numbers of concepts. 

The yellow partial-areas are the descendant partial-areas of the pink partial-area 

Specimen from trunk. That is, there is a path of child-of relationships from any yellow 

partial-area to Specimen from trunk. 

 

 

“forest” summary of the topics is not seen for the many small “trees” (see Figure 4.1). 

Figure 4.1 shows an excerpt of the partial-area taxonomy (with child-of links omitted) for 

the entire Specimen hierarchy. 

Hence, a better solution for identifying major topics is to pick only the large 

partial-areas (with, e.g., dozens or more concepts). To illustrate these points, consider 

Figure 4.1, which shows an excerpt of Specimen’s partial-area taxonomy. Some concepts 

appear as (labels of) relatively large partial-areas. For example, Specimen from trunk 

(132), Specimen from head and neck structure (53), and Specimen from digestive system 

(50) from the area {Specimen source topography}, are partial-areas with 50 or more 

concepts. However, the seven large partial-areas account for only 536 Specimen concepts 

(33.1%). One may wonder about the topics of the other 66.9% of concepts.  

Moving to medium-sized partial-areas with 20–49 concepts, eight partial-areas 

cover 218 (13.5%) concepts, e.g., Blood specimen (28) and Soft tissue biopsy sample 
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(23). Together, the large and medium partial-areas cover only 754 specimen concepts 

(46.5%). There are other problems with the summarization provided by the large/medium 

partial-areas. For example, all descendant partial-areas (yellow) of Specimen from trunk 

(pink) in Figure 4.1 contain concepts that are refinements of this topic. They are in 

separate partial-areas because they have (an) extra relationship(s) and appear in another 

area. For example, Swab from abdomen (13) has an additional Specimen procedure 

relationship. Overall, there are 201 partial-area descendants of Specimen from trunk, 

covering 551 concepts. 

In summary, by only focusing on large and medium partial-areas, useful 

knowledge that is distributed among the many small partial-areas is ignored. Frequently, 

a large partial-area has many descendant small partial-areas. The concepts in these 

descendant partial-areas cover the same topic as the large parent/ancestor partial-area, but 

in more detail. Hence, they belong to the topic of the parent/ancestor partial-area.  

4.1.2 Weighted Aggregate Partial-area Taxonomies for Major Topic Identification 

 

During the aggregation process to derive the weighted aggregate partial-area taxonomy, 

small partial-areas are allowed to contribute to the identification of major topics. Since 

small partial-areas are folded into their larger ancestor partial-area(s), the lost knowledge 

in small partial-areas is accounted for. As an example, Figure 4.2 shows the aggregation 

process. The aggregated weight of the partial-area Endocrine sample (10) is 26, because 

it has nine descendant partial-areas summarizing 16 descendant concepts. Since the nine 

descendant partial-areas have no child partial-areas, their aggregated weights are the 

same as their original sizes, namely less than 11. Hence, in the weighted aggregate 

partial-area taxonomy with b=11 (Figure 4.2(b)), all the descendants partial-areas are 
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aggregated into and are represented by the partial-area Endocrine sample. 

In the topic identification experiment, the threshold b was iterated over the range 

1…30 and the weighted aggregate taxonomy was derived for each b. Each such weighted 

aggregate taxonomy was inspected to determine its effectiveness in capturing major 

topics. Precision, recall, and F measure [98] were calculated for each weighted aggregate  

taxonomy, with the expert’s topic list serving as a gold standard. Recall is the ratio of the 

number of correctly identified topics and the number of total topics. Precision is the ratio 

of the number of correctly identified topics and the number of partial-areas. 

 

Figure 4.2 (a) An excerpt of 10 partial-areas (b) Weighted aggregate partial-area with 

b=11 for (a), shown as a rounded white rectangle with its number of concepts in ( ) 

including all concepts from aggregated partial-areas and the number of aggregated 

partial-areas in [ ]. 
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As a preliminary experiment, it was determined how many of the gold standard 

topics appeared as partial-areas in the original partial-area taxonomy (not the weighted 

aggregate taxonomies). Out of the 21 topics chosen by the expert, 13 appear as partial-

areas. This yields a recall of 0.62 (13/21) and, with 503 partial-areas in the taxonomy, 

very low precision of 0.03 (13/503). Note that many partial-areas are very small. In 

contrast, the weighted aggregate taxonomy, which eliminates the small partial-areas, is 

more effective. To balance recall and precision, the weighted aggregate taxonomy with 

the b value that maximizes the F measure was considered as optimal. 

If the root concept r of a partial-area appears in the weighted aggregate taxonomy 

of threshold b, then r is considered a major topic identified by that weighted aggregate 

taxonomy; a corresponding checkmark “” is placed in Table 4.1. Otherwise, a dash “–” 

is written. For example, the topic Bone marrow specimen is captured by a partial-area 

Bone marrow specimen (8) with an aggregated weight 13 (Table 4.1). Therefore, it is 

identified by all weighted aggregate taxonomies with b <=13 (b=1, 5, 10). However, for 

b>13, Bone marrow specimen (8) is folded into a larger ancestor partial-area and 

disappears. No weighted aggregate taxonomy with b >13 identifies the topic Bone 

marrow specimen. As another example, Bone specimen was not identified by the 

weighted aggregate taxonomy with any b value as major topic (Row 5 of Table 4.1), 

since its mapped SNOMED CT concept Specimen from bone (Row 5, Column 2 of Table 

4.1) is not a root of a partial-area. 

The bottom of Table 4.1 shows the totals of the identified topics for the respective 

aggregate taxonomies. For example, for b=5, the total is 13. Table 4.2 shows each 

weighted aggregate taxonomy’s number of partial-areas (A), recall, precision, and F. 
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Recall is the ratio of identified topics and total topics (R=C/S, where S=21). Precision is 

the ratio of the identified topics and the number of partial-areas (P=C/A). For example, 

for b=25, the number of partial-areas is 29, the number of identified topics is 12, R=0.57, 

P=0.41 and F=0.48. Table 4.2 shows that b=25 yields the aggregate taxonomy where F is 

maximized. In this case, the weighted aggregate taxonomy captures 12 of the 21 topics. 

Figure 4.3 shows this weighted aggregate taxonomy with the 12 partial-areas identifying 

topics highlighted in yellow. The total number of concepts in these 12 aggregate partial-

areas is 988, accounting for 61.0% (988/1620) of the concepts in the Specimen hierarchy. 



 

 

Table 4.1 Identification Results for 21 Chosen Topics in Weighted Aggregate Taxonomies with Different Thresholds b 

Topic Concept Partial-area Weight b=1 5 10 15 20 25 30 

Blood specimen Blood specimen Blood specimen (28) 43        

Body substance sample Body substance sample Body substance sample (63) 498        

Fluid sample Fluid sample Fluid sample (50) 257        

Bone marrow specimen Bone marrow specimen Bone marrow specimen (8) 13    – – – – 

Bone specimen Specimen from bone Musculoskeletal sample (15) 44 – – – – – – – 

Specimen from nervous 

system 

Specimen from nervous 

system 

Specimen from nervous 

system (12) 
42        

Dermatological specimen Dermatological sample Dermatological sample (8) 30        

Device specimen Device specimen Device specimen (19) 40        

Digestive system specimen 
Specimen from digestive 

system 

Specimen from digestive 

system (50) 
126        

Endocrine system specimen Endocrine sample Endocrine sample (10) 26       – 

Genital system specimen, 

male 
Male genital sample Specimen from trunk (132) 489 – – – – – – – 

Genitourinary specimen Genitourinary sample Specimen from trunk (132) 489 – – – – – – – 

Hair specimen, scalp Hair specimen Dermatological sample (8) 30 – – – – – – – 

Musculoskeletal specimen Musculoskeletal sample Musculoskeletal sample (15) 56        

Skin specimen Specimen from skin Dermatological sample (8) 30 – – – – – – – 

Soft tissue specimen Soft tissue sample Soft tissue sample (21) 92        

Cardiovascular sample Cardiovascular sample Cardiovascular sample (12) 28       – 

Specimen from eye Specimen from eye 
Specimen from head and 

neck structure (53) 
196 – – – – – – – 

Specimen from joint Joint sample Musculoskeletal sample (15) 56 – – – – – – – 

Lesion sample Lesion sample Lesion sample (17) 118        

Stool specimen Stool specimen Body substance sample (63) 498 – – – – – – – 

# Identified topics (C)    13 13 13 12 12 12 10 

5
2
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Table 4.2 Performance of Weighted Aggregate Taxonomies for Various Thresholds 

 

b =  1 5 10 15 20 25 30 

# Identified topics  13 13 13 12 12 12 10 

# Partial-areas (A) 503 89 54 40 35 29 26 

Recall (R = C/S) 0.62 0.62 0.62 0.57 0.57 0.57 0.48 

Precision (P = C/A) 0.03 0.15 0.24 0.30 0.34 0.41 0.38 

F = 2PR/(P+R) 0.05 0.24 0.35 0.39 0.43 0.48 0.43 

 

 

 

Figure 4.3 Weighted aggregate taxonomy for the Specimen hierarchy with b=25. The 12 

partial-areas corresponding to the original given topics are highlighted in yellow. The 13 

topics added during the enhancement step are highlighted in pink. 

 

An ancillary experiment was carried out as a feedback step with the domain 

expert (GE). When inspecting the weighted aggregate taxonomy for threshold b, one can 

assess whether its other partial-areas beyond those in the gold standard list are worthy of 

the designation “major topic,” for example, those aggregate partial-areas in Figure 4.3 

categorizing over 25 concepts that are not in the given list. Some important topics may 

have been overlooked originally, due to various reasons, e.g., Specimen from head and 

neck structure, a compound topic name with two body parts, and Tissue specimen 

obtained by excision, corresponding to two relationships Specimen procedure and 

Specimen source topography. Figure 4.3 was shown to (GE). He manually determined 

that 13 more partial-areas, highlighted in pink, warranted inclusion in the list of major 

specimen topics, while the other three (in white) are deemed as non-major topics. 

Reevaluating the experiment (with 21+13=34 major topics), it was obtained that R=0.74 
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(=25/34), P=0.86 (=25/29) and F=0.79 for b=25. The number of concepts in these 25 

aggregate partial-areas is 1,524 (94.1% of the concepts in the Specimen hierarchy.) 

In summary, summarizing a large ontology is a challenge as there is a lack of an 

objective, universally accepted criterion for what constitutes a “good summarization” of 

an ontology. Various applications require different summaries of various granularities. 

Nevertheless, the management of ontologies requires “big picture” comprehension that 

can be enabled by compact summarization networks such as the weighted aggregate 

partial-area taxonomies introduced in this dissertation.  

This study utilized a knowledge-oriented approach, where the importance of a 

topic is based on the number of concepts related to that topic in an ontology. To measure 

the quality of the summarization, the number of identified major topics was compared 

with a gold standard list of topics selected by a domain expert, who selected topics from a 

clinical perspective. The results showed that the weighted aggregate partial-area 

taxonomy is viable as a method for capturing the major topics of a domain. 

 

 

4.2 Multi-layer Big Knowledge Visualization Scheme for Comprehending 

Neoplasm Ontology Content 

 

Visualizing Big Knowledge is challenging, due to the inherent complexity of knowledge. 

Consider, for example, an ontology as a structured knowledge repository. An ontology 

consists of a network of nodes (called concepts) interconnected by hierarchical 

relationships and semantic lateral relationships. Large ontologies contain several hundred 

thousand concepts and at least as many relationships.  

Figures are an effective way of presenting knowledge in a comprehensible format. 

Indeed, the knowledge in an ontology is often presented as a node-link diagram [99]. In 
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this type of visualization, concepts are displayed as nodes labeled with their names. 

Node-link diagrams for small portions of an ontology can be displayed on a single 

computer screen or on a single printed page. However, visualizing larger portions of an 

ontology requires larger and more complex figures, which pose significant problems 

related to the comprehension capacity of humans (which is limited, independent of the 

screen size).  

Heuristically, node-link diagrams become overwhelming if more than about 20 to 

30 nodes, and their associated links, are displayed [100, 101]. A figure with more nodes 

(and thus, more links between nodes) most likely will pose a challenge to the mental 

comprehension of most humans. Assuming that there is a capacity limit on 

comprehension, how can humans cope with comprehending large ontologies with 

hundreds of thousands of concepts? 

Large ontologies are often divided into disjoint subhierarchies, each dedicated to a 

specific topic. However, even the individual subhierarchies are typically far beyond a 

human’s comprehension ability. For example, the Disease, Disorder or Finding hierarchy 

of the National Cancer Institute (NCI) thesaurus (NCIt) [3] contains 27,045 concepts. The 

Neoplasm subhierarchy, dedicated to neoplastic diseases like Cancer, contains 8,445 

concepts.  

The overwhelming complexity of Figure 1.1 illustrated the challenges when 

trying to comprehend the contents of Big Knowledge repositories such as ontologies, in 

addition to the technical limitations associated with generating such a view on a computer 

screen (e.g., a lack of screen space and limited human visual acuity).  
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Without some level of mental comprehension of the contents of a large body of 

knowledge, humans will experience difficulty using the knowledge for innovative and 

sophisticated applications [95]. Furthermore, the curator(s) in charge of maintaining large 

knowledge repositories require such comprehension to achieve correct and exact 

modeling of the knowledge.  

How can a human achieve comprehension of large hierarchies of concepts? As 

can be seen in Figure 1.1, the amount of knowledge expressed in a node-link diagram can 

be overwhelming to the point of being unusable.  

The approach outlined in this section is a vision for coping with the “Big 

Knowledge challenge” using two techniques. First, Big Knowledge is automatically 

summarized into a compact visualization that captures the “big picture” of the knowledge 

by hiding less important details. This summary view allows a user to concentrate on the 

“major subjects” in a knowledge base. An interactive mechanism for recovering details 

that were lost in the summarization process allows a user to obtain more information on-

demand. Hence, in this approach, details are not lost, they are only hidden until they are 

exposed upon request. The second part of this approach is based on the heuristic that 

humans struggle to comprehend a node-link diagram with more than 30 labeled nodes. 

Thus, when visualizing Big Knowledge summaries, a limit on the number of named 

nodes will be strictly enforced. 

The contribution of this section consists of a multi-layer interactive system, based 

on the theory of Abstraction Networks, where the initial “big picture” summary presented 

to a user is of low granularity. From this view, a user “drills down” into more details as 

desired. Such a dynamic system enables a user to navigate through several layers of 
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summarization, where at each point in time the user views only one network with a fixed 

number of nodes (specifically, an example limit of 25 is enforced in this section).  

4.2.1 Hypothesis for Limited Human Comprehension Capacity 

 

In humans, working memory is a cognitive system with a limited capacity. It is 

responsible for temporarily holding information available for processing [102]. Working 

memory is important for reasoning and decision making. Although there are various 

hypotheses about the quantitative measure of working memory capacity, the general 

consensus is that there is a limit to that capacity.  

One of the most famous papers in cognitive psychology is “The Magical Number 

Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information” by 

Miller [103]. According to Miller, the number of objects an average human can hold in 

working memory is 7 ± 2. A more recent paper by Cowan [104] identifies a smaller 

number (four items). 

The partial-area taxonomy created from the 8,445 neoplasm concepts in the 

September 2016 NCIt release consists of 4,177 partial-areas in 1,301 areas. Although the 

partial-area taxonomy is smaller than the underlying ontology, following the theory of 

limited working memory, it is still far too large for a human to comprehend its contents 

or the contents of the partial-area taxonomy. 

Based on the above heuristic, the hypothesis that an Abstraction Network (such as 

a partial-area taxonomy) with no more than 30 nodes, when displayed as a figure, will be 

comprehensible to a human was formulated. Therefore, a more compact summary than is 

provided by a partial-area taxonomy is required. As noted before, the weighted aggregate 

partial-area taxonomy offers a more compact summary of a size that can be controlled. It 
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will now be used to develop a multi-layer display where each layer is limited in its 

complexity. 

4.2.2 Multi-layer Visualization Scheme for Big Knowledge 

 

The technique defined in this section provides a compact summary of an ontology in the 

form of an aggregate taxonomy, created in a software system by using an automatically 

determined parameter b at each layer. Following the vision outlined above, the system 

should be able to expand a given aggregate partial-area to show its details (i.e., its 

constituent “small” partial-areas). The expansion process is the inverse procedure of 

aggregation. For example, if a user wants to see which partial-areas are summarized by 

the aggregate partial-area Colorectal Carcinoma {19}(32)[6] in Figure 3.1, then he/she 

could obtain the details shown in Figure 3.1(a) by “re-expanding” that aggregate partial-

area in the interactive system. This corresponds to a drill down operation. 

Expanding an aggregated partial-area into its constituent small partial-areas can 

result in a view that is overwhelming when the aggregate partial-area summarizes many 

small partial-areas. Thus, it may be required to apply the aggregate taxonomy process 

recursively, with a different automatically selected bound b, on the subhierarchy of small 

partial-areas that is to be displayed.  

For example, if the aggregate partial-area Malignant Digestive System Neoplasm 

{26} (467) [203] is expanded with 203 “small” partial-areas in the Neoplasm aggregate 

taxonomy shown in Figure 4.4, the resulting partial-area taxonomy will have 204 partial-

areas (far more than the recommended limit of 25).  

Thus, it is necessary to apply the aggregation process to the resulting partial-area 

taxonomy to obtain an aggregate taxonomy with no more than 25 aggregate partial-areas. 
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The automatically identified parameter b=8 makes the resulting aggregate taxonomy for 

Malignant Digestive System Neoplasm have 24 nodes, in the range of human 

comprehension ability. This bound is significantly lower than the parameter b=200, 

which limits the number of aggregate partial-areas in the Neoplasm aggregate taxonomy 

to 25. 

With repeated applications of this process, a multi-layer visualization scheme is 

obtained, where each summarizing view has at most 25 aggregate partial-areas. The first 

summary, of the least granularity, summarizes the entire ontology (or a selected 

subhierarchy of an ontology, e.g., Neoplasm). The second layer of summarization 

summarizes a chosen subject (e.g., Malignant Digestive System Neoplasm). Further 

summaries, as obtained by expanding additional aggregate partial-areas, will display 

more details for more specific subjects (e.g., Colorectal Carcinoma selected from within 

the Malignant Digestive System Neoplasm aggregate taxonomy). The final summary will 

be a partial-area taxonomy, with at most 25 partial-areas. From this summary, a user 

could “drill down” to individual concepts in individual partial-areas. This dynamic multi-

layer visualization system enables a user to view details in a desired part of the “big 

picture” through recursive application of the same aggregate-taxonomy-based 

summarization methodology. 

The multi-layer visualization scheme is demonstrated below using the Neoplasm 

subhierarchy in NCIt as a test bed. There are 27 role types defined for the Disease, 

Disorder or Finding hierarchy. To simplify the following figures, the 27 roles as coded as 

numbers in the figures. Table 4.3 shows the code numbers (index numbers) representing 

the 19 roles that appear in the following figures. 
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Table 4.3 The Index Numbers for the Roles in NCIt Appearing in this section 

 

Role Type Index Number 

Disease Excludes Abnormal Cell 1 

Disease Excludes Finding 3 

Disease Excludes Normal Cell Origin 5 

Disease Excludes Normal Tissue Origin 6 

Disease Excludes Primary Anatomic Site 7 

Disease Has Abnormal Cell 8 

Disease Has Associated Anatomic Site 9 

Disease Has Associated Disease 10 

Disease Has Finding 12 

Disease Has Normal Cell Origin 15 

Disease Has Normal Tissue Origin 16 

Disease Has Primary Anatomic Site 17 

Disease Is Grade 18 

Disease Is Stage 19 

Disease Mapped To Gene 21 

Disease May Have Associated Disease 23 

Disease May Have Cytogenetic Abnormality 24 

Disease May Have Finding 25 

Disease May Have Molecular Abnormality 26 

 

 

Layer 1: Neoplasm Aggregate Taxonomy 

Figure 4.4 shows the aggregate taxonomy for the Neoplasm subhierarchy with 

b=200 (the smallest b resulting in an aggregate taxonomy with [at most] 25 nodes). There 

are 25 aggregate partial-areas, shown in white. This would be the first layer of 

summarization for the Neoplasm subhierarchy. Note that the aggregate partial-areas 

shown in Figure 4.4 have root concepts that are general in nature and each summarizes a 

large number of concepts. This view provides the “big picture” of the contents of the 

Neoplasm subhierarchy. For example, the aggregate partial-area node Malignant 

Digestive System Neoplasm {26} (467) [203] summarizes 467 neoplasm concepts, about 

20% of the Neoplasm subhierarchy. 
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Neoplasm {440} (3582) [1845]

Digestive System Neoplasm 
{21} (661) [352]

{8,9} (7 Partial-areas)

Reproductive System 
Neoplasm {43} (1199) [686]

Connective and Soft Tissue 
Neoplasm {2} (909) [599]

Nervous System Neoplasm 
{12} (832) [414]

Head and Neck Neoplasm 
{90} (425) [189]

Urinary System Neoplasm 
{22} (321) [199]

Hematopoietic and Lymphoid 
System Neoplasm {7} (183) [101]

Hematopoietic and Lymphoid 
Cell Neoplasm {4} (491) [312]

{8, 9, 15, 16, 17} (1 Partial-area)

Epithelial Neoplasm 
{43} (1953) [1006]

{1, 8, 12, 15, 16} (1 Partial-area)

Lymphocytic Neoplasm 
{5} (742) [457]

{5, 8, 9, 15, 16, 17} (1 Partial-area)

B-Cell Neoplasm 
{6} (374) [251]

{1, 5, 8, 9, 15, 16, 17} (2 Partial-areas)

Head and Neck Carcinoma 
{63} (537) [231]

{1, 8, 9, 12, 15, 16, 17} (1 Partial-area)

Non-Hodgkin Lymphoma
{6} (520) [330]

Intracranial Neoplasm  
{21} (311) [128]

{7, 8, 9} (2 Partial-areas)

Thoracic Neoplasm 
{14} (208) [139]

Mesenchymal Cell Neoplasm  
{8} (621) [437]

{8} (1 Partial-area)

Malignant Digestive System 
Neoplasm {26} (467) [203]

{3, 8, 9} (1 Partial-area)

Sarcoma {9} (545) [320]

{3, 5, 6, 8, 9, 16} (1 Partial-area)

Glandular Cell Neoplasm 
{56} (813) [337]

{1, 3, 8, 12, 15, 16} (3 Partial-areas)

Papillary Epithelial 
Neoplasm {18} (221) [101]

Squamous Cell Neoplasm 
{18} (354) [203]

{1, 3, 8, 9, 12, 15, 16, 17} (1 Partial-area)

Digestive System 
Carcinoma {56} (624) [259]

Endocrine Neoplasm 
{7} (489) [221]

{1, 8, 12, 15, 16, 17} (1 Partial-area)

Malignant Thoracic Neoplasm 
{15} (317) [193]

{3, 7, 8, 9} (1 Partial-area)

{5, 8, 9, 15, 16} (1 Partial-area)

 

Figure 4.4 Neoplasm Aggregate Taxonomy with 25 aggregate partial-areas (b=200). 

 

 

Layer 2: Malignant Digestive System Neoplasm Aggregate Taxonomy 

A user may be interested in the concepts summarized by Malignant Digestive 

System Neoplasm (surrounded by a red ellipse in Figure 4.4). In this case, the user can 

expand this aggregate partial-area. Since the partial-area taxonomy obtained from 

expanding Malignant Digestive System Neoplasm has more than 25 partial-areas (namely 

204), the aggregation process is recursively applied to obtain an aggregate taxonomy with 

at most 25 aggregate partial-areas (this time using b=8).  
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Figure 4.5 shows the aggregate taxonomy for the Malignant Digestive System 

Neoplasm subhierarchy with b=8, which is composed of 24 aggregate partial-area nodes. 

Comparing Figure 4.4 with Figure 4.5, the number of concepts summarized by each 

aggregate partial-area is much smaller in Figure 4.5. This is due to the aggregate partial-

areas in Figure 4.5 capturing more specific subjects. This view captures a relatively small 

part of the “big picture” in Figure 4.4. 

Malignant Digestive System 
Neoplasm {26} (129) [85]

{1, 3, 8, 9, 12, 15, 16, 17} (1 Partial-area)

Esophageal Squamous Cell 
Carcinoma {7} (23) [9]

{1, 3, 8, 9, 12, 15, 16, 17, 21, 24, 26} 
(1 Partial-area)

Intrahepatic Cholangiocarcinoma 
{8} (16) [8]

{1, 3, 5, 7, 8, 9, 12, 15, 16, 17, 25, 26} 
(1 Partial-area)

Digestive System Carcinoma 
In Situ {11} (23) [8]

{1, 3, 8, 9, 12, 15, 16, 17, 18, 19} 
(1 Partial-area)

{1, 3, 8, 9, 12, 15, 16, 17, 21, 25, 26} 
(2 Partial-areas)

{3, 8, 9} (1 Partial-area)

Digestive System Neuroendocrine 
Carcinoma {9} (39) [26]

{1, 3, 8, 9, 12, 15, 16, 17, 18} 
(1 Partial-area)

{1, 3, 8, 9, 12, 15, 16, 17, 19, 21, 25, 26} 
(2 Partial-areas)

{3, 5, 8, 9, 12, 15, 16, 17} (1 Partial-area)

Digestive System Carcinoma 
{56} (237) [131]

Digestive System Lymphoma 
{19} (25) [6]

Digestive System Non-Hodgkin 
Lymphoma {11} (44) [27]

{1, 3, 5, 8, 9, 12, 15, 16, 17} 
(1 Partial-area)

Cholangiocarcinoma {6} (14) [8]

{1, 3, 8, 9, 12, 15, 16, 17, 25} 
(1 Partial-area)

Liver and Intrahepatic Bile Duct Malignant 
Non-Epithelial Neoplasm {2} (18) [16]

{1, 3, 5, 6, 7, 8, 9, 16, 17} 
(1 Partial-area)

Small Intestinal Carcinoma 
{3} (32) [18]

{1, 3, 8, 9, 12, 15, 16, 17, 23} 
(1 Partial-area)

Pancreatic Adenocarcinoma 
{6} (9) [2]

{1, 3, 8, 9, 12, 15, 16, 17, 23, 25} 
(1 Partial-area)

Sporadic Gastric 
Adenocarcinoma {11} (16) [5]

{1, 3, 8, 9, 12, 15, 16, 17, 25, 26 } 
(1 Partial-area)

Stage II Colorectal 
Cancer (13)

Stage III Colorectal 
Cancer (13)

Ampulla of Vater 
Adenocarcinoma {6} (8) [2]

{1, 3, 8, 9, 12, 15, 16, 17, 21, 25} 
(1 Partial-area)

Liver and Intrahepatic Bile 
Duct Carcinoma {13} (46) [15]

{1, 3, 5, 7, 8, 9, 12, 15, 16, 17} 
(1 Partial-area)

Extrahepatic Bile Duct 
Adenocarcinoma {9} (10) [1]

{1, 3, 7, 8, 9, 12, 15, 16, 17, 25 } 
(1 Partial-area)

Colorectal Carcinoma 
{19} (70) [22]

{1, 3, 8, 9, 12, 15, 16, 17, 21, 26} 
(1 Partial-area)

Colorectal Adenocarcinoma 
{24} (39) [7]

Gallbladder Adenocarcinoma  
{10} (11) [1]

{3, 7, 8, 9, 12, 15, 16, 17, 21, 23, 24, 25 } 
(1 Partial-area)

Hepatoblastoma {9} (18) [9]

{1, 3, 8, 9, 12, 15, 16, 17, 21, 23, 24, 25, 26} 
(1 Partial-area)

Hepatocellular Carcinoma 
{23} (57) [16]

{1, 3, 5, 7, 8, 9, 12 15, 16, 17, 24, 25, 26 } 
(1 Partial-area)

Pancreatic Ductal 
Adenocarcinoma {10} (11) [1]

 

Figure 4.5 Malignant Digestive System Neoplasm (from Figure 4.4) Aggregate 

Taxonomy with 24 aggregate partial-areas (b=8). 

 

 

Layer 3: Small Intestinal Carcinoma Partial-area Taxonomy  

Note that all nodes in Figure 4.5 are aggregate partial-areas (shown as rounded 

corner white rectangles) that summarize at least one descendant partial-area, except for 

Stage II Colorectal Cancer (13) and Stage III Colorectal Cancer (13) (shown as white 

rectangles with sharp corners). In this view, the expansion and aggregation process can 

be applied again to get a more detailed picture with at most 25 partial-areas for any 
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aggregate partial-area in the figure. For example, if Small Intestinal Carcinoma in Figure 

4.5 (again, marked by a red ellipse) is expanded, the resulting partial-area taxonomy has 

only 19 partial-areas. Thus, there is no need to apply aggregation after the expansion. 

Figure 4.6 shows the partial-area taxonomy for the Small Intestinal Carcinoma 

subhierarchy. 

{1, 3, 8, 9, 10, 12, 15, 16, 17, 23} (1 Partial-area)

{1, 3, 8, 9, 12, 15, 16, 17, 23} (1 Partial-area)

{1, 3, 8, 9, 12, 15, 16, 17, 18, 19, 23} (1 Partial-area)

{1, 3, 8, 9, 12, 15, 16, 17, 23, 25} (8 Partial-areas)

{1, 3, 8, 9, 12, 15, 16, 17, 19, 23, 25} (4 Partial-areas) {1, 3, 8, 9, 12, 15, 16, 17, 18, 23, 25} (1 Partial-area)

{1, 3, 8, 9, 12, 15, 16, 17, 18, 23, 25, 26} (1 Partial-area)

Small Intestinal Carcinoma (3)

Childhood Small Intestinal 
Carcinoma (1)

Duodenal Carcinoma (3)
Recurrent Small 

Intestinal Carcinoma (2)
Resectable Small 

Intestinal Carcinoma (2)

Small Intestinal 
Adenosquamous Carcinoma (1)

Small Intestinal 
Medullary Carcinoma (1)

Small Intestinal Squamous 
Cell Carcinoma (1)

Small Intestinal 
Undifferentiated Carcinoma (1)

Unresectable Small 
Intestinal Carcinoma (1)

{1, 3, 8, 9, 12, 15, 16, 17, 18, 23} (1 Partial-area)

Small Intestinal 
Neuroendocrine Carcinoma (1)

Stage 0 Small Intestinal 
Cancer (1)

Stage II Small 
Intestinal Cancer (3)

Stage III Small 
Intestinal Cancer (3)

Stage I Small Intestinal 
Cancer (1)

Stage IV Small 
Intestinal Cancer (1)

Small Intestinal Large Cell 
Neuroendocrine Carcinoma (1)

Small Intestinal Small Cell 
Neuroendocrine Carcinoma (1)

{1, 3, 8, 9, 12, 15, 16, 17, 23, 24, 25, 26} (1 Partial-area)

Small Intestinal Adenocarcinoma (6)

 

Figure 4.6 Small Intestinal Carcinoma (from Figure 4.5) Partial-area Taxonomy with 19 

partial-areas. 

 

 

The multi-layer visualization scheme for ontologies has been integrated into the 

Ontology Abstraction Framework (OAF) software tool, described in detail by Ochs et al. 

[67]. The OAF provided all of the necessary modules for this visualization scheme, 

namely, the aggregate partial-area taxonomy module for the aggregation process, and the 

expanded sub-taxonomy module for the expansion process.  

In this study, the Neoplasm subhierarchy of NCIt was utilized to demonstrate the 

methodology. However, the OAF tool supports ontologies in various formats. Since the 

multi-layer visualization scheme is fully integrated into the OAF, the technique described 
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in this section will be applicable to many ontologies, thus enabling users to obtain a better 

understanding of the Big Knowledge in the displayed ontologies. 

The multi-layer visualization scheme is based on the heuristic that a human has a 

limited comprehension capacity that was assumed to be about 25 nodes in a node-link 

diagram. In future work, evaluation studies will be conducted to test this heuristic. This 

section proposed a general process for supporting the comprehension of Big Knowledge 

through summarization. In the future, usability studies will be  performed to evaluate the 

effectiveness of this technique. 

To conclude, comprehension of Big Knowledge is a significant challenge. In this 

study, a multi-layer visualization scheme was described for Big Knowledge repositories, 

which are ontologies in this research. The approach was based on Abstraction Networks, 

which, using a process of aggregation, can be tuned to automatically limit the amount of 

information presented to a user. This technique was illustrated using the Neoplasm 

subhierarchy of the NCIt ontology. 

 

 

4.3 Application of the IAbN to Drug-Drug Interaction Discovery 

 

A Drug-Drug Interaction (DDI) is a particularly important type of Adverse Drug 

Reaction (ADR) [105-108] that can cause excessive responses or altered toxicity [109]. 

The risk of adverse DDIs increases exponentially for each additional medication [110-

114]. One application of the IAbN is the discovery of candidate drug-drug interactions 

missing from existing DDI knowledge bases.  

The rationale is that drugs with similar chemical ingredients tend to have similar 

DDIs [97]. Given DDIs of the form (DrugConcept1, DrugConcept2, 
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ClinicalConsequence), each DrugConcept1 and DrugConcept2 element is coded as a 

concept in the NDF-RT’s Chemical Ingredients hierarchy [115].  In this study, the DDI 

knowledge base from First Databank (FDB) [116] was used as the test-bed to 

demonstrate the approach. By reviewing the known DDIs in FDB associated with the 

chemical ingredients in an IAbN ingredient group, one may discover candidate DDIs 

missing from First Databank’s DDI knowledge base [11]. 

Figure 4.7 illustrates the approach. There are 18 drug ingredients summarized by 

the IAbN’s Salicylates ingredient group, including its child ingredient group 

Aminosalicylic Acid (the two yellow highlights in Figure 3.5). Out of the 18 NDF-RT 

Salicylates ingredients, 13 ingredients appear in FDB’s DDI knowledge base. The DDI 

interactions between ten of these salicylates and seven anticoagulant drugs are “Avoid 

concurrent use when possible” (AVD) and “Increases the effect of latter drug” (INL), for 

a total of 70 DDIs between these two groups. However, three extra Salicylates 

(balsalazide, mesalamine, and salsalate) have no DDIs with any anticoagulant in the FDB  

 

Figure 4.7 (a) Illustration of 70 DDIs. There are 10x7=70 DDIs between the ten 

salicylates on the left and the seven anticoagulants on the right in FDB’s DDI knowledge 

base. AVD = “Avoid concurrent use when possible” and INL = “Increases the effect of 

latter drug.”  (b) Three new candidate DDIs not appearing in FDB’s DDI knowledge base, 

between the Salicylate Salsalate on the left and the three anticoagulants on the right.  

 



 

66 

DDI knowledge base. This raised doubts regarding the existence of DDIs between the 

seven anticoagulants and these three salicylates. Indeed, upon investigating the DDIs 

between the three extra salicylates and these seven anticoagulants in another public 

source, Drugs.com (https://www.drugs.com/), DDIs between one salicylate Salsalate and 

three of the anticoagulants shown in Figures 4.7(b) were discovered. The reason FDB did 

not include these candidate DDIs in their knowledge base is that in these cases the drug 

formulation has a low potential for interactions. Nevertheless, FDB staff (Joan Kapusnik-

Uner) confirmed that this example demonstrates the fact that summaries of NDF-RT have 

the potential for supporting the discovery of new candidate DDIs. Of course, 

pharmacological investigation is required for each potential DDI. 

One has to realize that, as a leading Pharmacological knowledge company, FDB’s 

DDI knowledge is widely used by pharmacies, doctors and hospitals for decisions about 

preventing patients from taking drugs prescribed due to their conditions. These are 

critical clinical decisions that sometimes involve issues of life or death. Other DDI 

sources, like drugs.com, which are not used in this way in the healthcare industry, are 

thus more lenient in including questionable pairs of drugs as DDIs. 

Similar to the above study on one drug pair, another study was performed to 

examine several pairs of families of drugs, known to have DDIs, in search of drug pairs 

with potential DDIs that are not listed in the FDB knowledge base. For each such pair, 

one family is a chemical classification while the other is a pharmaceutical classification. 

Typically, the NDF-RT contains more drugs under the chemical classification than the 

FDB DDI knowledge base. Drugs.com was explored for DDIs for those additional drugs 

from the NDF-RT, looking for interactions with the drugs that are classified by the 
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corresponding pharmaceutical classification. 

Table 4.4 reports the details of this study for seven pairs of families. Column 2 

lists the DDI family pairs (A, B) as given in the FDB DDI knowledge base. For all seven 

pairs, A is a Chemical Ingredient family and B is a Pharmaceutical family. Column 3 

represents the number of ingredients in Family A (e.g., Sulfonamides) in FDB. Column 4 

shows the number of ingredients in Family B (e.g., Antidiabetics, Oral) in FDB. Column 

5 gives the number of drug DDI (A, B) pairs in FDB, which is the product of the number 

in Column 3 and the number in Column 4. Column 6 represents the number of 

ingredients in Family A in the NDF-RT. Column 7 shows the number of ingredients in 

Family A in both NDF-RT and FDB. Column 8 shows the total number of potential DDIs 

found in other sources than FDB’s knowledge base for the specific (A, B) drug pairs.  

For example, the first pair is (Sulfonamides; Antidiabetics, Oral). In FDB the 

DDIs between six sulfonamides (Family A) and eight antidiabetics (Family B) have the 

clinical effect “INL” (Increased effect of the latter drug). However, in the NDF-RT there 

are 52 drugs classified under Sulfonamides. When pairing the additional (i.e., not in 

FDB’s knowledge base) 48 A drugs with those eight B drugs, 93 pairs of drugs were 

found in the other sources as DDI pairs between Family A and Family B. An analysis of 

these 93 pairs revealed that for (A, B) pairs the interaction between the two drugs consists 

of a “protein binding displacement mechanism” that applies only for sulfonamide 

antibiotics, which describes the six sulfonamides listed in the FDB DDI knowledge base. 

This mechanism does not apply to the remaining sulfonamides found in the NDF-RT. 

One outcome from this study is that FDB will change, in its DDI knowledge base, the 

name of this Family A from “Sulfonamides” to “Sulfonamide Antibiotics,” which 
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describes it more accurately.  

Out of the 73 potential DDIs (Table 4.4, line 3) for the family pair (NSAID, ACE 

Inhibitor or ARBS) found in other sources, 16 potential DDIs for the Nonsteroidal Anti-

inflammatory Compound (NSAID) Diflunisal with 16 different ACE Inhibitors should be 

added to the FDB knowledge base. According to line 5 in the table, eight potential DDIs 

for the NSAID Diclofenac with various Beta Blockers were found. These should be 

considered for addition to FDB’s knowledge base. Similarly, for its salt form Diclofenac 

Potassium, nine DDIs were found to be missing from FDB’s knowledge base. However, 

the clinical studies reported in drugs.com for these pairs did not prove the DDIs to be at 

the stricter level required for inclusion by FDB. For the two NSAIDs Meclofenamate and 

Mefenamic Acid, which are currently not on the US market, eight and 11 DDIs, 

respectively, were found with various Beta Blockers. They should be added to FDB’s 

knowledge base for the case that these drugs will be made available for sale in the US. 

The DDI family pair in line 6 of Table 4.4 is known to cause many DDI alerts 

with a low severity level, i.e., it is a prime example of a combination that causes alert 

fatigue. Thus, line 6 interactions will be recommended for removal from FDB’s DDI 

knowledge base. A detailed pharmacological analysis of these various families of drugs 

will appear in a future publication. 

To summarize the results of this study, out of 394 potential DDI drug pairs found 

in other sources, 80 (20.3%) were approved for inclusion in FDB’s DDI knowledge base. 

Another 19 (4.8%) drug pairs will be added if their drugs are made available in the US. 

The following additional outcomes of this study do not relate to the potential DDI pairs 

of Column 8, but to the actual FDB DDI pairs of Column 5 in Table 4.4. One such 
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important outcome was that 66 DDI drug pairs for the family pair (Phenotiazines, 

Narcotics) were removed from the FDB DDI knowledge base, since they almost always 

cause false alerts.  

Even more interestingly, a deeper analysis of the FDB DDI drug pairs from three 

family pairs (rows 3, 4, and 5 of Table 4.4) showed that the issue was not the interaction 

of one drug with another drug, but the interaction between one drug and the disease that 

is present when the other drug is used. These interactions will be removed from the FDB 

DDI knowledge base, since the adverse drug reaction (ADR) is between a drug and a 

disease, rather than an interaction between two drugs. The relevant ADR knowledge will 

be placed in the proper FDB ADR knowledge base. The total number of DDI pairs 

removed is 1632+490+324=2446.  Hence, beyond the additional DDI pairs, the study led 

to important changes in the storage of DDI and ADR knowledge in the FDB knowledge 

base.  



 

 
 

Table 4.4 Potential DDI Findings for Seven Pairs of Drug Families 

 2 3 4 5 6 7 8 

 
DDI Family Pair 

(A, B) 

# of Ingredients 

in Family A in 

FDB 

# of Ingredients 

in Family B in 

FDB 

# of Actual 

FDB DDIs 

# of Ingredients 

in Family A in 

NDF-RT 

# of Ingredients 

in Family A  in 

Both FDB and 

NDF-RT 

# of Potential 

DDIs Found in 

Other Sources 

1 
(Sulfonamides, 

Antidiabetics, Oral) 
6 8 48 52 4 93 

2 
(Sulfonamides, 

Anticoagulants) 
22 6 132 52 15 21 

3 
(NSAIDs, 

ACE Inhibitors or ARBs) 
68 24 1632 43 21 73 

4 
(NSAIDs, 

Loop Diuretics) 
70 7 490 43 21 16 

5 
(NSAIDs, 

Beta Blockers) 
12 27 324 43 7 81 

6 
(Phenothiazines, 

Narcotics) 
6 11 66 32 5 73 

7 
(Benzodiazepines,  

Macrolide Antibiotics) 
4 5 20 22 3 37 

Total:  n/a n/a 2712 n/a n/a 394 

7
0
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CHAPTER 5  

FAMILY-BASED QUALITY ASSURANCE 

OF BIOMEDICAL ONTOLOGIES 

 

 

As described in Chapter 2 and Chapter 3, the SABOC team has developed different 

Abstraction Network-based quality assurance (QA) techniques for individual biomedical 

ontologies. To improve the efficiency of the Abstraction Network-based QA 

methodology, Ochs et al. [8] have classified BioPortal [117] ontologies into families 

according to ontologies’ structural features and have introduced a family-based QA 

approach such that one QA methodology could be applicable to a whole family of 

structurally similar ontologies. Statistically, in order to correctly draw the conclusion that 

a QA technique is likely to work for at least half of the ontologies in a family, the QA 

methodology has to be demonstrated successfully for six out of six sample ontologies in 

the family.  

It has been demonstrated that two main characterizations of concepts ‒ complex 

concepts and uncommonly modeled concepts ‒ are more likely to have errors for 

individual ontologies (Section 2.3). To demonstrate the effectiveness of these two 

characterizations for six ontologies in the same family, this chapter presents several 

Abstraction Network-based quality assurance studies on some ontologies in the same 

family. These ontologies are the NCIt’s Neoplasm subhierarchy of the Disease, Disorder 

or Finding hierarchy, the Gene hierarchy and the Biological Process hierarchy, 

SNOMED CT’s Infectious Disease subhierarchy of the Clinical finding hierarchy, the 

ChEBI ontology and NDF-RT’s Chemical Ingredients hierarchy. 
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5.1 Quality Assurance of Complex Concepts 

 

In the long-range research of the SABOC team [54], a repeated theme in QA of 

ontologies has been that “complex” concepts tend to have a significantly higher error rate 

than “simple” concepts. There are various interpretations of “complex concept” for 

different methodologies and different ontologies. A likely explanation is that the human 

activity of modeling complex concepts is more challenging and thus there is more room 

for errors in the modeling of a complex concept. This section mainly involves two types 

of complex concepts, overlapping concepts and concepts with more lateral relationship 

types. The latter concepts, laterally complex concepts, intuitively can be deemed to be 

more complex than a concept with fewer lateral relationship types. Two studies on this 

type of concepts in the NCIt’s Biological Process hierarchy and the ChEBI ontology are 

presented in the following sections. 

Overlapping concepts are hierarchically complex, because they derive semantics 

from two or more source concepts that are roots of partial-areas in the partial-area 

taxonomy.  For example, the concept Papillary Serous Cystadenoma in Figure 2.6(a) 

inherits semantics from three partial-area roots Serous Neoplasm, Cystadenoma, and 

Papillary Cystic Neoplasm. Its two parents Serous Cystadenoma and Papillary 

Cystadenoma are themselves overlapping concepts. Hence, from the view point of 

hierarchy complexity, Papillary Serous Cystadenoma is more complex than its two 

parents, which in turn are more complex than the area roots.  

The SABOC team has demonstrated that overlapping concepts are more likely to 

have errors than non-overlapping concepts for three ontologies [16, 91-93]: the Specimen 

hierarchy of SNOMED CT, the Bleeding subhierarchy in the Clinical finding hierarchy of 
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SNOMED CT [7], and the Uber Anatomy Ontology (Uberon) [94]. In order to 

confidently make a statement that concentrating on overlapping concepts constitutes a 

successful methodology for a whole family of ontologies, the effectiveness of the 

methodology needs to be shown for six out of six sample ontologies. To achieve six out 

of six, studies on overlapping concepts in three more ontologies that belong to the same 

family as the above mentioned three ontologies will be presented in the following 

sections. These six ontologies belong to the family of ontologies in BioPortal with (a) 

object properties used only in restrictions and (b) with multiple parents allowed. 

5.1.1 Quality Assurance of Complex Neoplasm Concepts in NCIt 

 

The QA study on overlapping neoplasm concepts in NCIt presented in this section was 

conducted with the goal to add a fourth ontology to the set of three ontologies (the 

Specimen hierarchy and the Bleeding subhierarchy of SNOMED CT and Uberon) for 

which the QA methodology of overlapping concepts was previously shown as effective.  

5.1.1.1 Methods. As mentioned in Section 2.1.3, the concepts in the Neoplasm 

subhierarchy of the NCIt’s Disease, Disorder or Finding hierarchy are modeled with 

more details, compared to the other concepts in the Disease, Disorder or Finding 

hierarchy. Furthermore, according to Ochs et al. [8], the Neoplasm subhierarchy has the 

same structural features as the above three ontologies for which the “overlapping concept” 

QA methodology was demonstrated as effective. Hence, this QA study concentrated on 

the Neoplasm subhierarchy. Although the number of concepts (8,166) in the Neoplasm 

subhierarchy is much smaller than that of the complete Disease, Disorder or Finding 

hierarchy (25,360), it was still impossible to review all concepts in the Neoplasm 

subhierarchy, considering the reality of limited QA resources. 
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The disjoint partial-area taxonomy for the Neoplasm subhierarchy clearly 

distinguishes between overlapping concepts and non-overlapping concepts. In this study 

overlapping concepts were considered as complex concepts and non-overlapping 

concepts were considered as simpler concepts which serve as control concepts. The 

following hypothesis was investigated. 

Hypothesis 5.1: Overlapping concepts are more likely to have errors than non-

overlapping concepts in the disjoint partial-area taxonomy for the Neoplasm subhierarchy 

of the Disease, Disorder or Finding hierarchy of NCIt. 

Hypothesis 5.1 is of practical importance. If Hypothesis 5.1 is confirmed with 

statistical significance, then the disjoint partial-area taxonomy can be viewed as a fully 

automatic screening test that identifies sets of concepts with a likely higher error yield 

than other neoplasm concepts, defined by the ratio of the number of discovered errors to 

the number of reviewed concepts. Thus, it is justified to invest QA resources, such as the 

time of domain experts, into a careful review of overlapping concepts. 

A randomized controlled trial was conducted on a sample of neoplasm concepts to 

evaluate Hypothesis 5.1. The Neoplasm disjoint partial-area taxonomy contains exactly 

225 overlapping concepts, which were used as the study concepts. A sample of 350 non-

overlapping concepts from the same areas that the study concepts came from was 

randomly picked as a control group. Since concepts in small partial-areas are prone to 

have more errors, as mentioned in Section 2.3, the control population excluded such 

concepts. The study concepts and control group concepts were combined into a list. The 

order of the concepts in the list was randomized and the resulting list was presented to 

two domain experts for review.  
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The two domain experts, Dr. Gai Elhanan and Dr. Yan Chen, were trained in 

medicine and have extensive terminology QA experience. The QA study consisted of 

three steps. First, the two experts reviewed all 575 concepts independently. Each of the 

reviewers generated a report of errors with reasons, error severities (moderate or severe) 

and suggested corrections. Non-critical errors were not reported. In the second step, a 

combined list of errors reported by the two experts in the first step was created and 

presented to the same two reviewers. They had to express agreement or disagreement 

with each error in the list. The information of who had marked a concept as erroneous in 

the combined list was not included to avoid biased results.  

In the third step, all concepts that were considered erroneous by only one reviewer 

in the second step were eliminated. Concepts on the list were then divided according to 

whether they came from the study group (overlapping concepts) or from the control 

group (non-overlapping concepts) and the numbers of errors were counted. The two 

tailed p-value of Fisher’s exact test [118] was calculated to evaluate the statistical 

significance of the different error rates for overlapping concepts and for non-overlapping 

concepts. 

5.1.1.2 Results. The partial-area taxonomy for the Neoplasm subhierarchy of the 

February 2015 release of the NCIt was first derived. The 8,166 neoplasm concepts are 

summarized by 920 areas and 4,824 partial-areas in this partial-area taxonomy. The 

partial-area taxonomy for the complete Disease, Disorder or Finding hierarchy of 25,360 

concepts contains 986 areas and 5,080 partial-areas. 

Comparing the numbers of areas and partial-areas for the Neoplasm subhierarchy 

versus the whole Disease, Disorder or Finding hierarchy, 95% (4,824/5,080) of the 
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Disease, Disorder or Finding partial-area taxonomy summarize all the neoplasm 

concepts, which account for only 32% (8,166/25,360) of the complete Disease, Disorder 

or Finding hierarchy. The remaining 68% of the hierarchy are covered by only 5% of the 

partial-areas. In order to perform a direct quantitative comparison, the abstraction ratio 

of a partial-area taxonomy is defined as the average number of concepts summarized per 

partial-area. The abstraction ratio for the Neoplasm subhierarchy is 1.69 (=8,166/4,824) 

and the standard derivation is 6.49, while the abstraction ratio is 4.99 (=25,360/5,080) 

and the standard derivation is 201.55 for the whole Disease, Disorder or Finding 

hierarchy. A lower number is indicative of more structural and semantic diversity, which 

is the result of detailed modeling efforts. The structural diversity is due to the large 

average number (23) of roles per neoplasm concept, since every combination of roles 

defines a different area. Thus, the structural diversity is reflected in the large number of 

areas. The semantic diversity is borne out by the many partial-areas. 

The partial-area taxonomy for the complete Disease, Disorder or Finding 

hierarchy has 396 overlapping concepts. Among those, 225 overlapping concepts are in 

the Neoplasm partial-area taxonomy, and they appear in 45 areas. Most overlapping 

concepts are summarized by two partial-areas each. Only six overlapping concepts appear 

in three partial-areas simultaneously.  

There are six areas with more than 10 overlapping neoplasm concepts in the 

partial-area taxonomy of the Neoplasm subhierarchy. The largest area contains 137 

partial-areas, 463 concepts, and 27 overlapping concepts. These overlapping concepts are 

distributed over 18 partial-areas. The second-largest area contains 100 partial-areas, 321 

concepts and 25 overlapping concepts. These overlapping concepts are distributed over 
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24 partial-areas. These two areas contain the two largest sets of overlapping concepts 

among all areas in the Neoplasm subhierarchy.  

Figure 5.1 shows the disjoint partial-area taxonomy for the area with the six role 

types Disease Excludes Abnormal Cell, Disease Excludes Finding, Disease Has 

Abnormal Cell, Disease Has Finding, Disease Has Normal Cell Origin, and Disease Has 

Normal Tissue Origin that summarizes 98 concepts in 26 partial-areas. Of these 98, 20 

concepts are overlapping concepts. The overlapping concepts appear in nine partial-areas. 

An excerpt of this disjoint partial-area taxonomy was also shown in Figure 2.6(c). In 

Figure 5.1, Level 2 had to be distributed over two rows, as there are 15 disjoint partial-

areas at this level that do not fit into one row.  

After the three-step QA study, the two domain expert reviewers agreed that 71 

concepts (12.3% = 71/575) had errors with a moderate or severe error type. Among the 

71 erroneous concepts, 36 concepts (16% = 36/225) were overlapping concepts in 16 

areas, with 48 errors (1.33 errors per erroneous overlapping concept) and 35 (10% = 

35/350) were non-overlapping concepts with 39 errors (1.11 errors per erroneous non- 

overlapping concept). 

 

Figure 5.1 The disjoint partial-area taxonomy of the area with the six role types Disease 

Excludes Abnormal Cell, Disease Excludes Finding, Disease Has Abnormal Cell, 

Disease Has Finding, Disease Has Normal Cell Origin, and Disease Has Normal Tissue 

Origin. To reduce the density of the figure, the child-of links for the disjoint partial-areas 

at the second row of Level 2 are not shown. 
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Table 5.1 shows the area distribution of overlapping concepts and erroneous 

overlapping concepts. Table 5.2 is the contingency table for the p-value calculation 

between erroneous overlapping concepts and erroneous non-overlapping concepts. The 

two-tailed p-value of Fisher’s exact test [118] was calculated to evaluate the statistical 

significance of the study. The p-value is 0.0377 (p<0.05), which means the study result 

has statistical significance. In other words, the overlapping concepts are likely to exhibit 

significantly more errors than non-overlapping concepts. Thus, Hypothesis 5.1 was 

supported by the results. 

Table 5.1 The Distribution of Overlapping Concepts and Erroneous Overlapping 

Concepts 

 

# of Overlapping 

Concepts in an Area 
# of Areas 

# of Areas with 

Errors 

# of Erroneous 

Concepts 

1 15 5 5 

2 5 1 2 

3 6 1 2 

4 3 1 1 

5 4 1 5 

6 3 1 5 

7 2 1 2 

10 1 1 1 

12 3 3 12 

20 1 0 0 

25 1 0 0 

27 1 1 1 

Total: 45 16 36 

 

 

Table 5.2 The 2x2 Contingency Table for Erroneous Overlapping Neoplasm Concepts 

and Non-overlapping Neoplasm Concepts in NCIt 

 

 # Erroneous Concepts # Concepts w/o Errors 

Overlapping concepts 36 189 

Non-overlapping concepts 35 315 
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Of the 225 overlapping concepts, 195 came from disjoint partial-areas containing 

only one concept. The remaining 30 overlapping concepts came from disjoint partial-

areas with at most four concepts. Altogether, only 18 overlapping concepts were not 

overlapping roots. Out of the 36 erroneous overlapping concepts, two concepts (11.1% = 

2/18) were not overlapping roots and the other 34 concepts (16.4% = 34/207) were 

overlapping roots. In addition, only three concepts (10% =3/30) were from a disjoint 

partial-area with three concepts. The remaining 33 concepts (16.9% = 33/195) were from 

singleton disjoint partial-areas (disjoint partial-areas with only one concept).  

There were two main error types of the overlapping concepts, 14 concepts with 

missing roles and 23 concepts with incorrect roles. The concept Pancreatic Vipoma has a 

missing role error and an incorrect role error at the same time. Table 5.3 illustrates five 

examples of errors found in overlapping concepts with suggested corrections and reasons. 

Besides 21 non-overlapping concepts with missing role errors and 12 non-overlapping 

concepts with incorrect role errors, the two domain experts also found incorrect parent, 

missing parent and incorrect neoplastic status for three non-overlapping concepts, which 

is illustrated in Table 5.4. “Neoplastic status” is a data property for neoplasm concepts in 

NCIt [119], with possible values “Benign,” “Malignant,” “Precancerous,” “Uncertain 

Malignant Potential,” and “Undetermined.” It defines a neoplastic growth as non-

cancerous, cancerous, or of uncertain cancerous potential. The concept Basophilic 

Adenocarcinoma has both a missing parent error and a missing role error.  

Figure 5.2 shows an interesting error case, in which the corrections of three 

erroneous overlapping concepts transform them into non-overlapping concepts in another 

area, by adding a new role Disease Has Primary Anatomic Site suggested by the two 
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domain experts. Figure 5.2(a) shows an excerpt of the disjoint partial-area taxonomy 

consisting of three disjoint partial-areas for the area with the three role types Disease 

Excludes Primary Anatomic Site, Disease Has Abnormal Cell, Disease Has Associated 

Anatomic Site and the area with an additional role type Disease Has Primary Anatomic 

Site (italic and underline). Notably, there is a child-of link between the two partial-areas 

Recurrent Anterior Pituitary Gland Neoplasm (1) and Pituitary Gland Neoplasm (3), 

because the concept Recurrent Anterior Pituitary Gland Neoplasm is a child concept of 

Anterior Pituitary Gland Neoplasm in the partial-area Pituitary Gland Neoplasm (3).  

Table 5.3 Five Examples of Errors in Overlapping Concepts Identified in the QA Study 

 

Concept 
Error 

Type 
Correction Reason 

Childhood 

Central Nervous 

System Mature 

Teratoma 

Incorrect 

role 

Remove the role Disease Has 

Abnormal Cell with the target 

Malignant Cell  

Mature Teratoma is a 

benign neoplasm 

Occult 

Adenosquamous 

Lung Carcinoma 

Incorrect 

role 

Remove the role Disease 

Excludes Finding with the 

target No Evidence of 

Radiologic Finding or change 

the role to Disease Has 

Finding with the same target 

According to the 

definition “The 

primary tumor is 

undetectable 

radiographically or 

during 

bronchoscopy” 

Testicular 

Granulosa Cell 

Tumor 

Missing 

role 

Add the role Disease Has 

Normal Cell Origin with a 

more refined target Granulosa 

Cell 

According to the 

definition “It is 

characterized by the 

presence of 

granulosa-like cells” 

Pancreatic 

Vipoma 

Missing 

role 

Add the role Disease May 

Have Associated Disease with 

the target Multiple Endocrine 

Neoplasia Type 1 

This concept has the 

role Disease Mapped 

To Gene with the 

target MEN1 Gene 

Stage IVA Oral 

Cavity Cancer 

Missing 

role 

Add the role Disease Is Stage 

with the target AJCC v7 Stage  

According to the 

definition, it is an 

AJCC 7
th

 stage 

concept 
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Table 5.4 Three Other Error Types Identified in Non-overlapping Concepts of the QA 

Study 

 

Concept Error Type Correction Reason 

Basophilic 

Adenocarcinoma 

Missing 

parent 

Add an IS-A link 

directed to Anterior 

Pituitary Gland 

Neoplasm 

According to the definition 

“A malignant epithelial 

neoplasm of the anterior 

pituitary gland” 

Papillary 

Hidradenoma 

Incorrect 

parent 

Replace the parent 

Benign Sweat Gland 

Neoplasm with 

Hidradenoma 

Hidradenoma is more 

relevant 

Gallbladder 

Goblet Cell 

Carcinoid 

Incorrect 

neoplastic 

status 

Change the value 

“Undetermined” to 

“Malignant” 

According to the definition 

“An invasive mixed 

adenoneuroendocrine 

carcinoma of the 

gallbladder” 

 

 

 

Figure 5.2 Simplification of the complexity of the disjoint partial-area taxonomy due to 

correction of overlapping concepts: (a) Excerpt from disjoint partial-area taxonomy 

before correction of three erroneous overlapping concepts in the partial-area Pituitary 

Gland Neoplasm (3) with the error “missing the role Disease Has Primary Anatomic 

Site”; (b) after correction by adding the missing role (italic and underline) to the three 

erroneous overlapping concepts. The two partial-areas in Figure 5.2(a) Pituitary Gland 

Neoplasm (3) and Recurrent Anterior Pituitary Gland Neoplasm (1) are merged together 

to become a new partial-area Pituitary Gland Neoplasm (4), because Recurrent Anterior 

Pituitary Gland Neoplasm (1) is child-of Pituitary Gland Neoplasm (3). All three partial-

areas are not colored, since they do not contain overlapping concepts. 
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The two concepts Pituitary Gland Neoplasm and its child Posterior Pituitary 

Gland Neoplasm were two overlapping concepts in the audited sample (Figure 5.2(a)). 

The domain experts reported that both concepts missed the role Disease Has Primary 

Anatomic Site with the target Pituitary Gland. Hence, after correction by adding the 

missing role in NCIt, these two concepts (in fact three concepts, including the other child 

Anterior Pituitary Gland Neoplasm due to inheritance) in the newly derived 

corresponding disjoint partial-area taxonomy appear in the bottom area with four role 

types in Figure 5.2(b). The name of the added role in NCIt is again italicized. 

Furthermore, the two partial-areas in Figure 5.2(a) Pituitary Gland Neoplasm (3) and 

Recurrent Anterior Pituitary Gland Neoplasm (1) are merged into a new partial-area 

Pituitary Gland Neoplasm (4) in Figure 5.2(b).  The three concepts of the partial-area 

Pituitary Gland Neoplasm (3) in Figure 5.2(a) are not overlapping concepts anymore in 

the new area in Figure 5.2(b). Specifically, Pituitary Gland Neoplasm became an area 

root in the new area. That is, after the correction these three concepts are not “complex” 

anymore, because they are not overlapping concepts, since they are in a separate area 

with one root.  

Figure 5.2 demonstrates that the corrections of erroneous overlapping concepts 

may transform overlapping concepts into non-overlapping concepts. Thus, the 

complexity of the disjoint partial-area taxonomy is reduced. For example, in Figure 5.2(b) 

this is expressed by the elimination of one disjoint partial-area (Pituitary Gland 

Neoplasm) in the disjoint partial-area taxonomy, leading to a simpler summary. Hence, 

correcting erroneous overlapping concepts may reduce the complexity of the ontology. 

The simplification in Figure 5.2 is expressed by eliminating the “striped” node of Figure 
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5.2(a) when generating Figure 5.2(b). This reduces the total number of boxes and makes 

it unnecessary to color any of the partial-area nodes. This phenomenon shown in Figure 

5.2 is a novel, important, and useful one during quality assurance of “overlapping 

concepts.” 

To conclude, in this study, the partial-area taxonomy and the disjoint partial-area 

taxonomy for the Neoplasm subhierarchy of the Disease, Disorder or Finding 

subhierarchy of NCIt were derived. A three-step manual QA study was performed on a 

sample of 575 neoplasm concepts consisting of overlapping concepts and non-

overlapping concepts selected from the Neoplasm disjoint partial-area taxonomy. The 

results of the QA study show that overlapping concepts have a statistically significantly 

higher error rate than non-overlapping concepts (16% vs. 10%), making the Neoplasm 

subhierarchy in NCIt became the fourth ontology in its BioPortal family, for which the 

methodology of reviewing overlapping concepts was successfully demonstrated.  

5.1.2 Quality Assurance of NCIt Gene Hierarchy by Role-subset Partial-area Sub-

taxonomy 

 

Overlapping concepts existing in partial-area taxonomies of ontologies are more likely to 

have errors than control concepts. This effective QA technique has been successfully 

demonstrated on the four ontologies of the same BioPortal ontology family, i.e., the 

Specimen hierarchy and the Bleeding subhierarchy of SNOMED CT, Uberon, and the 

Neoplasm subhierarchy of NCIt. The reason is as follows. All the concepts of a partial-

area share the same semantics. A concept that simultaneously belongs to multiple partial-

areas has a compound semantics combining the “simple” semantics of each of those 

partial-areas. Such a concept is thus more complex than a concept that belongs only to 

one partial-area. 
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However, the number of such complex concepts of compound semantics in the 

NCIt Gene hierarchy introduced in Section 2.1.3 is small (96). Hence, in spite of the fact 

that such concepts have been shown to have a statistically significantly higher error rate 

than control concepts, reviewing all such gene concepts will have a very limited impact 

on the quality of the Gene hierarchy. A new innovative QA methodology is needed to 

discover additional complex concepts that display similar properties as the concepts with 

compound semantics, even though these additional concepts have simple semantics in the 

Gene hierarchy as seen through the prism of a partial-area taxonomy. This section 

demonstrated that the role-subset partial-area sub-taxonomy for the Gene hierarchy 

contains more complex concepts than the original partial-area taxonomy and such 

additional complex concepts were statistically significantly more likely to have errors 

than “simple” concepts in the role-subset partial-area sub-taxonomy. 

5.1.2.1 Methods. In the NCIt Gene hierarchy, overlapping concepts are manifested 

as genes that are simultaneously related to multiple processes. Therefore, these concepts 

have the compound semantics of relating to different processes. For example, the PARP2 

Gene is only involved in the process of DNA Repair, while the RAD9A Gene plays roles 

in three processes, Cell Cycle, Hydrolysis, and DNA Repair. The compound semantics 

makes overlapping concepts more difficult to model. Hence, in this study, the disjoint  

partial-area taxonomy for the Gene hierarchy was derived and the following hypothesis 

was investigated.   

Hypothesis 5.2: Overlapping concepts are more likely to have errors than non-

overlapping concepts in the disjoint partial-area taxonomy derived from the Gene 

hierarchy of NCIt. 
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Validity of Hypothesis 5.2 implies the following QA methodology: the disjoint 

partial-area taxonomy can be utilized to identify overlapping concepts. These concepts 

are likely to have a high error yield, measured by the ratio of the number of discovered 

errors to the number of reviewed concepts, compared to non-overlapping concepts. This 

auditing methodology is a complement to the methodology described by Cohen et al. [83]. 

To test Hypothesis 5.2, a QA study was conducted on a random sample consisting 

of 50 overlapping concepts in the disjoint partial-area taxonomy of the Gene hierarchy as 

the study sample and 50 non-overlapping concepts from the same partial-areas as the 

study sample, as the control sample. The study sample and control sample were 

combined into one list in randomized order. The randomized list was presented to the 

domain expert Dr. Hua Min for review. The domain expert reviewed each concept using 

the NCI term browser and focused on commission errors (of wrong features) and 

omission errors of hierarchical relationships and roles (missing features). She generated a 

report in which she marked which concepts have what kinds of errors and she suggested 

corrections for these errors. Her report was reviewed by the NCIt team. Based on the 

errors confirmed by the NCIt team, the two-tailed p-value of Fisher’s exact test [118] was 

calculated to evaluate the statistical significance of the difference between the error rate 

of overlapping concepts and that of non-overlapping concepts. 

However, as mentioned before, the number of overlapping concepts is low (1%). 

The practical impact of auditing all 96 overlapping concepts would be small, even if the 

error rate turns out to be high. The reason that the number of overlapping concepts turned 

out to be low is that there are relatively many role types (16). The impact of each 

additional role type R is that it has the potential of dividing an area into two smaller areas, 
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separating those concepts with R from those concepts without R. The probability of 

having several roots and overlapping concepts in a small area is reduced, compared to a 

large area. 

It should be noted that all 96 overlapping concepts are in the same area, 

containing only the role “Gene Plays Role In Process.” That is, all the overlapping 

concepts in the Gene hierarchy are deriving their extra complexity from belonging to two 

or three partial-areas referring to two or three different kinds of processes. Thus, a “role-

reduced Gene hierarchy” was derived by eliminating all roles except for “Gene Plays 

Role In Process.” Then a new disjoint partial-area taxonomy for the reduced Gene 

hierarchy was constructed. The Ontology Abstraction Framework (OAF) software system 

[67] could easily derive such a role-subset partial-area sub-taxonomy. This new disjoint 

partial-area taxonomy with only two areas, denoted T1 (“Taxonomy 1”), was found to 

contain 376 overlapping concepts in the area {Gene Plays Role In Process}. No 

overlapping concepts exist in the other area. Figure 5.3 shows the flowchart of obtaining 

overlapping concepts for the original Gene hierarchy (Figure 5.3(a)) and for the role-

reduced Gene hierarchy (Figure 5.3(b)). 

This increase of overlapping concepts (from 96 to 376) is expected and desired. 

As a simplified example of the observed effect, consider the case of another role-reduced 

 

Figure 5.3 Flowchart for finding overlapping concepts (a) for the original Gene 

hierarchy (b) for the role-reduced Gene hierarchy. 
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Gene hierarchy with exactly two roles Gene Plays Role In Process (“Process” for short) 

and Gene Associated With Disease (“Disease” for short). Using the OAF software with 

this assumption, the resulting disjoint partial-area taxonomy, denoted T2 (“Taxonomy 2”), 

has four areas, and all the overlapping concepts are again concentrated in the area 

{Process}. However, the number of overlapping concepts in this area is now only 298. 

Why did the addition of the second role decrease the number of overlapping concepts in 

the area of concepts with only the “Process” role (Figure 5.4)?   

The total number of concepts in the {Process} area in T1 is 8,775, but the number 

of concepts in this area in T2 is only 7,571. The reason is that 8775–7571=1204 of the 

concepts in the {Process} area in T1 have both roles in T2. Hence, adding an extra role is 

increasing the number of areas and some concepts of the previous {Process} area appear 

now in a new area {Process, Disease} with both roles. Areas are always, by definition, 

disjoint. Hence, some of the roots and thus the corresponding partial-areas, (e.g., NAT2 

Gene (6) of the {Process} area in T1) are now in the area {Process, Disease} in T2. As a 

result, some overlapping concepts in T1 belong to the {Process} area in T1, but appear in 

the {Process, Disease} area in T2 where they are not overlapping concepts, since the two 

partial-areas that contained them in T1 are in the {Process} area in T2. This somewhat 

complex reasoning chain is elucidated by Figure 5.4. 

The following example, shown in Figure 5.4, demonstrates that adding a role to a 

hierarchy decreases the number of overlapping concepts belonging to both partial-areas 

Ligand Binding Protein Gene and Phosphotransferase Gene in the {Process} area as a 

result of splitting the area into two smaller areas. The number of overlapping concepts 

belonging to both partial-areas in T1 decreased by 40 (from 126 to 86) in T2. Ligand  
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Figure 5.4 (a) Two overlapping partial-areas in T1. (b) An excerpt of T2 shows the 

effect of the addition of one role. 

 

 

Binding Protein Gene (1940) and Phosphotransferase Gene (610) are two partial-areas in 

T1 and they have 126 common concepts (overlapping concepts), e.g., AR Gene and its 

corresponding wild-type allele AR wt Allele represented by “AR Gene (2)” in Figure 

5.4(a). The addition of the role Disease transforms 40 (=126–86) overlapping concepts in 

T1 into non-overlapping concepts in T2, since these 40 concepts now have both roles 

Process and Disease, and thus they are in the new area {Process, Disease} in T2 in 

Figure 5.4(b). For example, the two former overlapping concepts AR Gene and AR wt 

Allele in T1 are now in their own partial-area AR Gene (2) in the area {Process, Disease} 

in T2, thus they are not overlapping in T2. 

The concepts that become overlapping in a partial-area taxonomy – by reducing 

the number of roles that are considered – are called extra overlapping concepts. The 

interesting questions with regard to the 376–96=280 extra overlapping concepts are, (1) 

are they as complex as the 96 original overlapping concepts? (2) do they have a 
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comparable higher error rate? It is important to note that when auditing those concepts all 

their roles in the original Gene hierarchy are taken into account. The “role-reduced 

hierarchies” above were only used to derive T1 and T2, not to permanently change the 

Gene hierarchy. 

The complexity of concepts in the Gene hierarchy is caused by their belonging to 

multiple partial-areas reflecting their participation in multiple different biological 

processes and not by their roles. This kind of complexity was already evident in T1. The 

addition of extra roles definitely does not decrease the complexity of concepts. To the 

contrary, in a recent paper investigating the Neoplasm subhierarchy of NCIt [14], 

concepts with more roles have been shown to have higher error rates due to their higher 

complexity measured in that case by the number of role types. Hence, the extra 

overlapping concepts are expected to have at least similar error rates as the original 

overlapping concepts. 

In order to find the answer to the above two questions, the role-subset partial-area 

sub-taxonomy T3 [120] was derived using the subset of roles {Gene Has Abnormality, 

Gene Involved In Pathogenesis Of Disease, Gene Is Biomarker Type, Gene Plays Role In 

Process} in the Gene hierarchy.  The taxonomy T3 with its four roles has 12 areas and 

874 partial-areas. A QA study on a second random sample was conducted to test 

Hypothesis 5.3. 

Hypothesis 5.3: Extra overlapping concepts in a role-subset partial-area sub-

taxonomy derived from the Gene hierarchy of NCIt are more likely to have errors than 

non-overlapping concepts, when reviewed in the Gene hierarchy itself. 
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The reason why this subset of roles was chosen is that in T3, for this subset of 

roles, there are 340 extra overlapping concepts that are all in the area {Process}. This 

number of extra overlapping concepts is the closest to the 376 overlapping concepts in T1 

for all role-subsets with four role types, which is an option with a balance between the 

number of overlapping concepts and the number of role types. The study sample for this 

second study was composed of 50 concepts randomly selected from the 340–96=244 

extra overlapping concepts in T3, excluding the 96 overlapping concepts from the 

original Gene partial-area taxonomy.  

The control sample consists of 50 non-overlapping concepts randomly selected 

from the same partial-areas in T3 as the study concepts. After the study sample and the 

control sample were randomly mixed, this random list was reviewed by the same domain 

expert Dr. Hua Min. The domain expert’s error report was reviewed by the NCIt team 

who confirmed some of the errors. Based on the errors upheld by the NCIt team for the 

second study, the two-tailed p-value of Fisher’s exact test [118] was calculated to 

evaluate the statistical significance for the difference between the error rate of extra 

overlapping concepts and the error rate of non-overlapping concepts in the partial-area 

taxonomy for the Gene hierarchy. 

5.1.2.2 Results. The partial-area taxonomy of the NCIt Gene hierarchy, derived for 

the September 2016 release, is composed of 5,318 partial-areas in 140 areas, with 96 

overlapping concepts. All these overlapping concepts are in the area {Process}, which 

summarizes 3,232 concepts (33.88% = 3,232/9,540) by 417 partial-areas (7.84% 

=417/5,318). Two overlapping concepts are simultaneously in three partial-areas and the 
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other 94 overlapping concepts are simultaneously in two partial-areas. Figure 5.5 shows 

an excerpt of the disjoint partial-area taxonomy for the area {Gene Plays Role In 

Process}, which includes 75 overlapping concepts (78% = 75/96).  

After auditing the 100 concepts of the first sample using the NCIt term browser, 

the domain expert found 76 concepts having errors, distributed over 32 (64%) non-

overlapping concepts and 44 (88%) overlapping concepts. There were two kinds of errors, 

redundant Process roles (i.e., redundant role targets) and missing roles. One concept may 

have both kinds of errors. 

After reviewing the errors reported by the domain expert, the NCIt team 

confirmed 65 erroneous concepts, including 23 non-overlapping concepts (46%) and 42 

overlapping concepts (84%). The two-tailed p-value for the errors confirmed by the NCIt 

team, using Fisher’s exact test [118], is p=0.0001, meaning the error rate of overlapping 

concepts is statistically significantly higher than that of non-overlapping concepts. Thus, 

Hypothesis 5.2 was supported by the confirmed errors. Table 5.5 shows four examples of 

errors that were confirmed by the NCIt team. 

 

Figure 5.5 An excerpt of the disjoint partial-area taxonomy for the {Gene Plays Role In 

Process} area, which only shows the nine largest partial-areas and all disjoint partial-

areas derived from these nine partial-areas. Child-of links are omitted for readability, 

since they are implied by the color coding. 
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The NCIt team confirmed all 53 concepts with redundant Process role errors, 

including 37 overlapping concepts and 16 non-overlapping concepts, as well as 14 

concepts with missing roles. Table 5.6 summarizes the distribution of confirmed 

erroneous concepts with missing role errors by role type. All missing Gene Has Physical 

Location role errors were not accepted, because these errors were reported for wild-type 

allele concepts and the NCIt team does not require the addition of such a role for this case. 

Table 5.5 Four Examples of Confirmed Errors by the NCIt Team 

 

Concept 
Overlapping 

Concept 

(Y/N) 

Error 
Suggested 

Correction 

Cyclin-

Dependent 

Kinase Gene 

Y 

Redundant target: The target of 

Process role Phosphorylation 

Process is the ancestor of another 

target Serine/Threonine 

Phosphorylation 

Remove the 

Process role with 

the target 

Phosphorylation 

Process 

RYK Gene Y 

Missing the Process role with the 

target Signal Transduction 

according to its definition 

Add the role 

RPS6KA1 wt 

Allele 
Y 

Missing the role Gene In 

Chromosomal Location with the 

target 1p36.11 

Add the role 

CCNA1 wt 

Allele 
N 

Missing the role Gene Found In 

Organism with the target Human 
Add the role 

 

 

Table 5.6 The Distribution of Confirmed Erroneous Concepts with Missing Role Errors 

by Role Type 

 

Role Type 

# of Confirmed 

Erroneous 

Concepts   

# of Confirmed 

Overlapping 

Concepts  

# of  Confirmed 

Non-overlapping 

Concepts 

Gene Plays Role In 

Process 
8 6 2 

Gene In Chromosomal 

Location 
3 1 2 

Gene Found In 

Organism 
3 0 3 
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For the concepts with missing Gene Found In Organism errors, the NCIt team 

accepted only three error reports, because the NCIt editor thought that such a role should 

be instantiated at a more general concept not at a specific gene, since this role is suitable 

for all non-human genes. That is, these errors reported by the domain expert are indeed 

errors, but should be corrected at other concepts. 

For the missing Gene In Chromosomal Location errors, the NCIt team only 

accepted errors with chromosomal band positions that already exist in NCIt (for example, 

2q35), since they do not wish to create new specific chromosomal band positions, unless 

a user requests them. There are two reasons for this. First, the NCIt team is not notified 

when these values change, as it happens when experimental evidence refines the 

locations. Secondly, they are considering modeling such information differently in the 

future. Therefore, even though the suggested value is correct, if it does not currently exist 

as a concept in NCIt, they will not add this role. 

For the missing Gene Plays Role In Process errors, as a rule, they only model 

gene concepts with this role but do not model wild-type allele concepts with it. More 

specifically, they add the role only to such gene concepts for which the associated Gene 

Ontology annotation evidence codes are either experimental or based on authors’ 

statements.  

Based on the analysis of errors not accepted by the NCIt team, it is observed that 

the problems reported by the domain expert are indeed errors, but due to various internal 

NCIt rules that were not known to the external auditor they were not corrected in NCIt. 

For the second sample of 100 concepts, 78 concepts (78%) were found to have 

errors consisting of 45 extra overlapping concepts (90% of 50) and 33 non-overlapping 
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concepts (66% of 50) by the domain expert. The kinds of errors for this sample are 

similar to those of the first sample, namely, redundant targets of Process roles and 

missing roles. The NCIt team confirmed 26 erroneous concepts, including 22 extra 

overlapping concepts (44%) and four non-overlapping concepts (8%). The p-value for the 

second QA study, based on the NCIt team’s confirmed errors, is less than 0.0001, 

meaning the error rate of extra overlapping concepts is significantly higher than that of 

non-overlapping concepts. These results confirmed Hypothesis 5.3. 

In conclusion, a QA study of complex concepts discovered with the help of the 

partial-area taxonomy of the Gene hierarchy in NCIt was conducted. The results show 

that complex concepts are more likely to have errors than simple concepts (84% vs. 46%). 

To extend the practical impact of “complex” concepts on the QA process of the Gene 

hierarchy, a new QA methodology was introduced by deriving the partial-area sub-

taxonomy using a subset of roles defined for the Gene hierarchy. In other words, the 

partial-area taxonomy for the role-reduced Gene hierarchy was derived. This new 

methodology identified an additional set of complex concepts that also exhibited a 

statistically significantly higher error rate. The error rate for the additional complex gene 

concepts (44%) was about five times as large as the error rate for control concepts (8%). 

Thus, this study is the fifth study that confirmed the usefulness of QA based on partial-

area taxonomies, with a focus on complex concepts, and constitutes an important building 

block towards the goal of showing the effectiveness of family-based QA for biomedical 

ontologies.  
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5.1.3 Quality Assurance of Complex Infectious Disease Concepts in SNOMED CT 

 

This section presents an overlapping concept-based QA study on the sixth ontology, the 

Infectious Disease subhierarchy of SNOMED CT, which is in the same BioPortal 

ontology family as the five ontologies, the Specimen hierarchy and the Bleeding 

subhierarchy of SNOMED CT, the Uberon ontology, and the two ontologies in the 

previous two sections, to which the overlapping complex concepts-based QA 

methodology has been successfully applied.  

During the year 2015, editors of SNOMED International conducted a project of 

remodeling the Infectious Disease subhierarchy of SNOMED CT. Details of this work 

were published by Ochs et al. [121]. Due to scheduling difficulties, the project was not 

completed. In the process they remodeled the stated concepts, and by using a classifier 

[122]  the inferred view of the subhierarchy was generated.  

The QA study on the Infectious Disease subhierarchy took advantage of the 

remodeling project initiated by SNOMED International. The study concentrated on all the 

inferred changes made to the Infectious Disease subhierarchy between the January 2015 

release and the July 2015 release. During this period, 4,308 concepts were changed. Any 

time a concept was changed during such a remodeling process it is apparent that this 

concept was previously erroneous. A similar idea was extensively used by Ceusters et al. 

[123]  and by Zhang et al. [124].  This approach is substantially different from the studies 

in the previous sections, in which several domain experts reviewed a sample of 

overlapping concepts and a sample of non-overlapping concepts for errors. The following 

hypothesis was investigated in this study. 
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Hypothesis 5.4: Overlapping concepts are more likely to have errors than non-

overlapping concepts for the SNOMED CT Infectious Disease subhierarchy. 

In evaluating Hypothesis 5.4, only “severe” and “moderate” errors were 

considered, just as was done for the NCIt Neoplasm subhierarchy. Since there was no 

domain expert involved in determining what is considered a severe or moderate error, the 

judgment of what makes an error “severe” or “moderate” had to be arrived at indirectly. 

Previous feedback of ontology curators has indicated that commission errors are 

considered more severe than omission errors, because commission errors indicate that 

some part of the modeling of a concept is outright wrong. Omissions are sometimes done 

on purpose by ontology curators, because there is no use case for the omitted information. 

Such errors are generally considered non-critical.  

 For this study, a sample was generated containing all the overlapping Infectious 

Disease concepts and a random control sample consisting of an equal number of non-

overlapping concepts from the Infectious Disease subhierarchy. To assure a fair 

comparison, the control concepts were randomly taken from the same areas as the 

overlapping concepts. Since concepts in small partial-areas are prone to have more errors, 

the control population excluded such concepts as a confounding factor. The two-tailed p-

value of Fisher’s exact test [118] was calculated to evaluate the statistical significance of 

the different error rates for overlapping Infectious Disease concepts and for non-

overlapping Infectious Disease concepts. 

The SNOMED CT Infectious Disease subhierarchy contained 6099 concepts in 

the January 2015 release. Its partial-area taxonomy contains 80 areas and 1305 partial-

areas with 196 overlapping concepts distributed over eight areas. The area with the most 
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overlapping concepts has three role types Associated morphology, Finding site, and 

Pathological process with 665 concepts among which there are 83 overlapping concepts.  

The overlapping concepts were found by the Ontology Abstraction Framework 

(OAF) software tool [67]. The concepts that underwent a change between two releases 

were found by the SNOMED CT Visual Semantic Delta tool [125]. The concepts with 

commission errors were obtained from the sample of 196 overlapping concepts and from 

the control group of 196 randomly chosen non-overlapping concepts.  

Table 5.7 is the contingency table for the p-value calculation distinguishing 

between erroneous overlapping and erroneous non-overlapping concepts. Erroneous 

concepts that have commission errors, such as wrong parent, wrong role type, or wrong 

role target were counted. A sample of commission errors of different kinds appears in 

Table 5.8. The two-tailed p-value of Fisher’s exact test [118] was calculated to evaluate 

the statistical significance of the study. The p-value is 0.0067 (p<0.05), which means the 

study result has statistical significance. Thus, Hypothesis 5.4 was supported by the results.  

To summarize, the hypothesis that overlapping concepts are more likely to have 

errors than non-overlapping concepts was supported for this sixth ontology, the Infectious 

Disease subhierarchy of SNOMED CT, in addition to the other five ontologies in the 

same family, the Specimen hierarchy and the Bleeding subhierarchy of SNOMED CT, 

Uberon, the Neoplasm subhierarchy and the Gene hierarchy of NCIt. Thus, the “six out of  

Table 5.7 The 2x2 Contingency Table for Erroneous Overlapping versus Non-

overlapping Infectious Disease Concepts in SNOMED CT 

 

 
# Erroneous 

Concepts 

# Concepts w/o 

Errors 
% Errors 

Overlapping concepts 76 120 38.8 

Non-overlapping concepts 50 146 25.5 
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Table 5.8 Different Kinds of Commission Errors for Overlapping versus Non-

overlapping Concepts 

 

 Overlapping concepts Non-overlapping concepts 

Wrong Parent Tuberculous enteritis Tuberculous ascites 

Wrong Parent Oculoglandular tularemia Mumps nephritis 

Wrong role type Tuberculous peritonitis Anal candidiasis 

Wrong role type Bullous staphylococcal impetigo Bacterial peritonitis 

Wrong target 
Beta lactam resistant bacterial 

infection 
Infection by Diplodinium 

Wrong target 

Superficial foreign body of anus 

without major open wound but with 

infection 

Infection by Theileria parva 

 

 

six” requirement for this family is fulfilled.  

Among the six ontologies, there are two from NCIt and three from SNOMED CT. 

However, there are differences between them. The NCIt Gene subhierarchy is different 

from the Neoplasm subhierarchy, since all the genes are modeled as leaves or as parents 

of leaves in cases where they have alleles. In contrast, diseases can appear anywhere in 

the Neoplasm subhierarchy. Regarding SNOMED CT, Specimen is a small subhierarchy, 

while Clinical finding is the largest subhierarchy of SNOMED CT. It is two magnitudes 

larger than Specimen. Because it is so large, two subhierarchies of it were reviewed, the 

small Bleeding subhierarchy and the medium-sized Infectious Disease subhierarchy, to 

assess the validity of the overlapping concepts-based QA technique for ontologies of 

different sizes.  

The implication of confirming the efficacy of the above uniform QA methodology 

for six ontologies is that for at least half of the other ontologies in the substantial 

BioPortal family studied in this paper the error rate for overlapping concepts will be 

significantly higher than the error rate for non-overlapping concepts [8]. Hence, by 
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concentrating QA efforts on overlapping concepts in the ontologies of that family, a 

higher QA yield is expected in terms of the number of concepts identified as erroneous 

for a given number of reviewed concepts, exercising the best possible use of scarce 

human resources. Thus, when embarking on quality assurance for members of this family 

under resource constraints, overlapping concepts should be audited first. At the very least, 

all overlapping concepts should be audited for every member of this family of ontologies.  

Besides higher yield, another advantage of the family-based QA approach [8] is 

that it is supported by the OAF software tool [67] that finds the overlapping concepts for 

each ontology of the family, rather than having to  develop algorithms separately for each 

member of the family. Hence, this methodology is semi-automatic, because the 

overlapping concepts are found automatically by the OAF software and the manual 

review is only performed for those concepts. Finding a method that prioritizes among the 

overlapping concepts would be beneficial for ontologies with many such concepts.  

Hence, the results in this study suggest that the methodology of reviewing 

overlapping concepts is an effective QA methodology for ontologies of one family in 

BioPortal, as this methodology has been demonstrated successfully for six out of six 

ontologies in the chosen BioPortal family. This means that the overlapping concept 

methodology can be applied to the whole BioPortal family of 76 similar ontologies and is 

likely to be successful for at least half of the members of this family.  

5.1.4 Quality Assurance of Complex Concepts in NCIt Biological Process 

Hierarchy 

 

This section reports a QA study [14] on another kind of complex concepts in the NCIt 

Biological Process (BP) hierarchy from the perspective of a relatively straightforward 
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characterization of lateral complexity of concepts, namely, their overall numbers of role 

types.  

5.1.4.1 Methods. This section intends to explore whether more laterally complex 

concepts, where “complexity” is defined in terms of the number of exhibited role types, 

are more prone to errors than less complex concepts. Roles play a central part in logically 

modeling concepts, and thus it is natural to focus on them as a measure of complexity. As 

an example, consider the concept G1 to S Transition Process in NCIt’s Biological 

Process hierarchy, with the five role types Location, Initiator Chemical or Drug, Initiator 

BP, Resulting BP, and Part of Process (the full names were given in Table 2.2). It is one 

of the four concepts in the bottom area of the area taxonomy in Figure 5.6. This concept 

elaborates five different aspects of a biological process and can be considered more 

complex than Neuronal Transmission with only three of those aspects. Neuronal 

Transmission, in turn, is more complex than its parent Intercellular Communication 

Process, which has only the one role type Initiator Chemical or Drug.   

In this study, the area taxonomy of the NCIt Biological Process hierarchy was 

divided into two halves, based on a level that forms the boundary between more laterally 

complex and less complex concepts. Specifically, let r be the maximum number of 

different role types exhibited by any actual concept in a given hierarchy. (The value r is 

obviously less than or equal to the number of predefined kinds of role types for the 

hierarchy.) For this study, r serves as a lateral complexity measure of the concepts. 

Following the principle of Divide-and-Conquer [126], the straightforward application of 

this principle, according to this complexity measure, is to divide the range into two equal-

sized parts. That is, let h = ⌊
𝑟

2
⌋, i.e., h is half of r, rounded down to the nearest integer. 



 

 
 

 

Figure 5.6 Complete area taxonomy of the Biological Process hierarchy. Most child-ofs have been omitted to avoid overload. Note 

how the importance of the role Location is reflected in the area taxonomy. The area {Location} has 207 concepts, and Location 

appears in 20 of 37 area names. 

1
0
1
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The difference between this study and the study in Section 5.2.2 is that this study targeted 

only concepts with roles and excluded the concepts in the top area (Level 0), while the 

study in Section 5.2.2 was about the concepts in the top area.  

Concepts residing on Levels 1, 2, …, h (the lower-half levels) of the taxonomy 

were taken to be simpler concepts. The concepts on Levels h + 1, h + 2, …, r (the upper-

half levels) were taken to be more complex. In the case of the Biological Process 

hierarchy, r = 5 (though there are seven predefined role types), and the partition of the 

area taxonomy of Figure 5.6 was between Levels 1 and 2 versus Levels 3, 4, and 5. For 

the Disease, Disorder or Finding hierarchy with 20 levels in its area taxonomy, the levels 

would be divided into Levels 1–9 and Levels 10–19. It was postulated that concepts in 

the upper-half levels would have on average a higher number of modeling errors than 

concepts in the lower-half levels. 

In this study, various concepts in the BP hierarchy were subjected to a thorough 

QA analysis by the subject-domain expert Dr. Hua Min. Since the number of concepts in 

the upper-half levels of an area taxonomy is typically much smaller than that in the 

lower-half levels (e.g., in the taxonomy of Figure 5.6, only four concepts are on Level 5), 

all concepts in the upper-half levels were analyzed. As a second group, a random sample 

comprising the same number of concepts from the lower-half levels underwent a QA 

analysis. The random sample was chosen in such a way that there was proportional 

representation according to the number of concepts on each of the lower-half levels. 

The domain expert was looking for all types of errors, including errors of 

omission (e.g., an omitted role from the predefined set for the hierarchy) and commission 

(e.g., an incorrect target concept for a defined role). After the initial phase of QA, a 
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review phase was carried out by a curator of NCIt, who was asked to re-analyze and 

verify the discovered errors. 

The following hypothesis is central to this study: 

Hypothesis 5.5: For a given hierarchy, concepts on the lower-half levels (1, 2, …,⌊
𝑟

2
⌋) of 

its area taxonomy of r levels have a lower average number of errors than concepts on the 

upper-half levels (⌊
𝑟

2
⌋ + 1, …, r). 

The statistical significance for the error rates between the lower-half levels and 

the upper-half levels was evaluated using a two-tailed Fisher’s exact test [118]. The 

implication of verifying Hypothesis 5.5 is that the set of concepts with more than ⌊
𝑟

2
⌋ 

kinds of roles denote a characterization of concepts where more errors are expected. 

Concentrating a QA analysis on such a set of concepts is expected to yield more 

corrections than a QA analysis of a random set of the same number of concepts with at 

most ⌊
𝑟

2
⌋  kinds of roles. The Ontology Abstraction Framework (OAF) tool [67] can 

automatically extract concepts at the levels where higher error rates are expected and its 

Neighborhood Auditing Tool (NAT) [127] can support the review of the auditor. 

5.1.4.2 Results. The QA analysis was carried out on the NCIt’s Biological Process 

hierarchy, consisting of 1,145 concepts (15.02d release). For this hierarchy, r = 5, i.e., no 

concept exhibits more than five role types, though there are seven possible predefined 

role types. Level 0 (concepts with no roles) contains 513 concepts, so the pool of 

concepts for the study (i.e., those with roles) is 632 concepts (55.2% of the overall 

hierarchy). Out of these 632 concepts, 393 concepts (62.2%) are defined in terms of the 

role Location. The analysis was done on the OWL version of NCIt by the domain expert 
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using the NCI Term Browser [128]. The domain expert reviewed for each concept all 

hierarchical relationships as well as all roles. Verification of the results was done by a 

curator of the NCIt. 

On the upper-half Levels 3, 4, and 5 of Biological Process, there are 57, 59, and 4 

concepts, respectively, totaling 120 concepts (10.5% of the hierarchy). Correspondingly, 

120 concepts were randomly selected from the lower-half Levels 1 and 2. These 120 

concepts were divided between the Levels 1 and 2, approximately in the same ratio as 

their numbers of concepts. 

Table 5.9 shows the primary results of the initial phase of the QA analysis, with 

the numbers of erroneous concepts given for each of the levels of the area taxonomy. For 

example, on Level 1, seven erroneous concepts were discovered among the 80 concepts 

that were analyzed, for an error rate of 8.75%. On Level 3, nine of the 57 concepts were 

deemed erroneous, for a 15.79% error rate. It should be noted that the error rates are in 

the single digits for the lower-half levels and in the double digits for the upper-half levels. 

In total, there were 43 errors for the 40 erroneous concepts, among which 22 errors (for 

20 concepts) were missing-role errors. Another prominent error type involved conflicting 

semantics between IS-A hierarchical relationships and Part of Process roles. In particular, 

the reviewer deemed that these two relationships should not target the same concept, 

directly or transitively, from a single source. For example, it was found that the concept 

Anaphase has the role Part of Process with the target Cell Cycle Process, while at the 

same time Cell Cycle Process is the grandparent of Anaphase (i.e., Anaphase is 

transitively connected to Cell Cycle Process via IS-A relationships). This was considered 

a conflict, and Anaphase was marked as erroneous. Twenty occurrences of such modeling 
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were found with respect to 20 different concepts. 

Additionally, the concept Negative Regulation of G0 to G1 Transition was 

reported as having a missing Resulting BP role error and an incorrect Part of Process role 

error. The remaining error discovered in the first phase of QA analysis was for the 

concept Tumor Immunity with an incorrect target of the role Resulting BP, which required 

a change of its target from Cancer Progression to Tumor Progression.  

Table 5.9 Distribution of Erroneous Concepts in the Biological Process Hierarchy 

 

Level  

(# Role Types) 

# 

Concepts 

# Concepts 

Analyzed 

# Erroneous 

Concepts 

Error 

Rate 

1 352 80 7 8.75% 

2 160 40 3 7.50% 

3 57 57 9 15.79% 

4 59 59 19 32.20% 

5 4 4 2 50.00% 

Total: 632 240 40 16.67% 

 

 

The 2x2 contingency table (Table 5.10) was calculated for comparing the 

probability of erroneous concepts in the lower-half levels and upper-half levels. The 

results are statistically significant, since the p-value for the two-tailed Fisher’s exact test 

equals 0.0008 (p < 0.05). Therefore, the results confirm Hypothesis 5.5 that concepts in 

the upper-half levels are more likely to have errors than concepts in the lower-half levels. 

Table 5.10 The 2x2 Contingency Table for the Lower-half Levels and the Upper-half 

Levels 

 

 # Erroneous Concepts # Concepts w/o Errors Error Rate 

Lower-half 

 ( 2 role types) 
10 110 8.33% 

Upper-half 

 ( 3 role types) 
30 90 25.00% 
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There were errors among four out of the seven kinds of roles in the Biological 

Process hierarchy. Table 5.11 shows the distribution of erroneous concepts for each of 

these four role types. The major issues were concepts with missing Location and Part of 

Process roles. For example, the concept Erythrocyte Differentiation is missing Location 

with a target value of Bone Marrow. In total, 16 concepts (40%) with errors were found 

for the Location role, and 20 concepts (50%) for the Part of Process role. 

Table 5.11 The Number of Concepts Reported with Errors for Each Role Kind 

 

Role 
# Erroneous 

Concepts 
Example Concept Suggested Correction 

Location 16 
Erythrocyte 

Differentiation 

Add the role with the target 

Bone Marrow 

Resulting 

Anatomy 
4 Megakaryopoiesis 

Add the role with the target 

Megakaryocyte 

Resulting BP 3 T-Cell Activation 
Add the role with the target  

T Cell Proliferation 

Part of 

Process 
20 Mitosis 

Remove the role with the 

target Cell Cycle Process 

 

 

The secondary review phase of this study led to the confirmation of 33 errors for 

32 concepts (80% = 32/40). These included nine errors for nine concepts concerning 

missing Location roles, four errors for four concepts concerning missing Resulting 

Anatomy roles, and 20 errors for 20 concepts with incorrect Part of Process roles that 

should be removed. One of the confirmed erroneous concepts Megakaryopoiesis is 

missing both Location and Resulting Anatomy.  

Table 5.12 shows the distribution of confirmed erroneous concepts according to 

the lower-half levels and upper-half levels. For example, the secondary review phase by 

the NCIt curator confirmed 27 concepts out of 30 concepts (90% = 27/30) in the upper-

half levels reported in the initial phase of QA as erroneous. The two-tailed p-value by 
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Fisher’s exact test is less than 0.0001, meaning there was also statistical significance in 

the difference between the numbers of confirmed erroneous concepts in the lower-half 

levels and the upper-half levels. 

Table 5.12 Erroneous Concepts in the Lower-half and Upper-half Levels Confirmed by 

the NCIt Curator 

 

 # Erroneous Concepts # Concepts w/o Errors Error Rate 

Lower-half  

( 2 role types) 
5 115 4.17% 

Upper-half  

( 3 role types) 
27 93 22.50% 

 

 

Some of the results of the secondary review phase are summarized in Tables 5.13 

and 5.14. Table 5.13 lists examples of errors that were confirmed on review by the 

curator of NCIt. For example, Megakaryopoiesis is indeed missing the role Location with 

the target Bone Marrow as well as the role Resulting Anatomy with the target 

Megakaryocyte. An internal modeling rule used by the NCIt team expressly forbids the 

target of a Part of Process role from simultaneously being an ancestor of the source 

concept. As noted, this conflicting semantics was observed during the first phase of the 

QA analysis. Thus, all such errors were confirmed during the secondary review phase. 

Three examples of this error are given in Table 5.13. Table 5.14 shows examples of 

errors for each kind of role that were rejected by the curator along with the reasons for 

the rejection. For example, the suggestion that the concept Expiration be given the role 

Location with the target Lung was rejected, because of the fact that expiration can involve 

other locations besides the lung. Table 5.15 shows the breakdown of the errors according 

to the various types of errors. 
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Table 5.13 Example Concepts with Confirmed Errors in the Biological Process 

Hierarchy 

 

Role 
Concept with 

Confirmed Error 
Target of Role 

Corrective 

Action 

Location Megakaryopoiesis Bone Marrow Add the role  

Location Mismatch Repair Chromosome Add the role  

Resulting Anatomy 
Epithelial Cell 

Proliferation 
Epithelial Cell Add the role  

Resulting Anatomy Megakaryopoiesis Megakaryocyte Add the role  

Part of Process Antigen Presentation 
Immune Response 

Process 
Remove the role  

Part of Process Anaphase Cell Cycle Process Remove the role 

Part of Process 
Positive Regulation 

of Mitosis 
Cell Cycle Process Remove the role 

 

 

Table 5.14 Example Concepts with Rejected Errors in the Biological Process Hierarchy 

 

Role 
Reported Example of 

Concept Missing Role 

Proposed Target of 

Missing Role 

Reason for 

Rejection 

Location Expiration Lung 
Other locations can 

involve Expiration 

Resulting BP T-Cell Activation T-Cell Proliferation Incorrect 

 

 

Table 5.15 Erroneous Concept Distribution by Error Types for Concepts in Each Level 

and for the Lower-half Levels (Levels 1-2) and the Upper-half Levels (Levels 3-5) of the 

Area Taxonomy 

 

Level 

(# Role Types) 

# Concepts 

Missing Role 

# Concepts with 

Incorrect Role 

# Concepts with 

Incorrect Role Target 
Total 

1 6 0 1 7 

2 3 0 0 3 

3 9 0 0 9 

4 1 18 0 19 

5 0 2 0 2 

1-2 9 0 1 10 

3-5 10 20 0 30 
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The disagreements between the domain expert and the curator in the two phases 

of the study can partially be explained by their different perspectives. In the initial phase 

of QA analysis, the work was carried out by (HM), who is outside the ontology’s 

curatorial organizational structure. As such, her analysis was not influenced by any 

prescribed modeling approaches that may have been utilized in the ontology’s original 

design and ongoing maintenance. Her job was to use her own judgment to point out any 

potential errors or inconsistencies and, from that analysis, to suggest changes (e.g., 

additions, corrections) to improve the ontology.  

The secondary phase reviewer (the curator of NCIt) was obliged to work with an 

eye toward established protocols of the organization. For example, as noted, an internal 

NCIt rule says that a concept A cannot simultaneously be IS-A and Part of Process with 

respect to another concept B. Moreover, user-driven decisions are important to the 

curatorial staff. For example, in NCIt, the completeness of neoplasm concepts in the 

Disease, Disorder or Finding hierarchy is more important than that of non-neoplasm 

concepts due to the overall focus of the ontology. The lack of sufficient resources is also 

a factor. For example, additional, correct ontological elements are not necessarily 

included in NCIt unless there are compelling use-cases, to avoid the maintenance 

overhead involved as a result of such additions. 

In summary, this study was performed to determine whether a measure of lateral 

complexity could be used as a guiding factor in QA. In particular, it was investigated 

whether more complex concepts are more prone to errors than simpler concepts. The 

foundational ontological unit of “role type” was used as the basis for the distinction 

between a complex and a simple concept. The outcomes of the two-phase QA study on 
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the NCIt’s Biological Process hierarchy indeed showed a statistically significant 

difference between the error rate of the more laterally complex concepts vis-à-vis the 

error rate of simpler concepts. As such, this distinction can be used to guide ongoing 

efforts in ontology QA. 

5.1.5 Quality Assurance of Complex Concepts in ChEBI 

 

ChEBI was introduced in Section 2.1.4. Because it comprises a large collection of 

concepts and their interconnections and it undergoes frequent changes, it is not 

reasonable to expect that ChEBI would be completely free of modeling errors and 

inconsistencies. In fact, its curatorial team maintains a GitHub issue tracking system [53] 

to allow the user community to report problems as well as request various modifications 

to the ontology. Any modeling problems persisting in ChEBI could have an adverse 

impact on the applications dependent on it. As such, quality assurance (QA) of ChEBI’s 

content is a critical maintenance task. Due to ChEBI’s magnitude, repeated 

comprehensive QA reviews are not practical. 

This section describes a semi-automated approach that concentrates QA efforts on 

complex concepts in ChEBI expected to harbor modeling problems with a higher 

likelihood. Similar as in the study in Section 5.1.4 on the NCIt Biological Process 

hierarchy, the number of lateral relationship types that a concept exhibits was considered 

as a measure of concept complexity. The more aspects to a concept’s definition—from an 

interconnectedness perspective—the more involved and complex such a concept is and 

the more modeling errors can be expected. A structural artifact that is very helpful in 

classifying concepts along these complexity lines is the area taxonomy. 
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5.1.5.1 Methods. The complete area taxonomy for ChEBI’s inferred version has a 

total of 135 areas, spanning nine levels. (The asserted version of ChEBI is released by the 

EMBL-EBI and includes all explicitly defined knowledge, while the inferred version was 

obtained by running a reasoner on the asserted version.) Figure 5.7 shows an excerpt of 

the area taxonomy consisting of 62 areas, each of which contains at least 10 ChEBI 

concepts. To save space, relationship names have been letter-coded, with the legend 

appearing in the figure. For example, the area {B, C} is {has parent hydride, has part}. 

At the left side of the figure, the total number of areas and the total number of concepts at 

each level are for the complete area taxonomy, not the excerpt shown. Child-of links have 

all been omitted from the figure. Note that the inclusion of the most prominent root (with 

most descendants) serves as an illustration of the semantics elaborated in an area. For 

example, for the area {has parent hydride, has part} with 918 concepts at the left-most 

position on Level 2 in blue, the root organic amino compound (385) gives an idea about 

the nature of the chemical concepts in the collection, which happens to include 92 

cyanides. The areas in Figure 5.7 represent a total of 60,786 ChEBI concepts (98.2%). 

The goal of this study was to determine whether or not ChEBI concepts with more 

relationship types have a higher expectation of being in error vis-à-vis concepts with 

fewer relationship types. With relationships representing the most critical components of 

concepts’ logical definitions, it is reasonable to rely on them to measure a form of 

complexity. As an example, consider the ChEBI concept L-alanine defined with the 

following eight relationship types: has functional parent, has parent hydride, has part, 

has role, is conjugate acid of, is conjugate base of, is enantiomer of, and is tautomer of. It  



 

 

 

Figure 5.7 A 62-area excerpt of ChEBI’s area taxonomy (which has a total of 135 areas).

1
1
2
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is one of the 11 concepts in the highest numbered level (Level 8) area of the area 

taxonomy of Figure 5.7. This concept elaborates eight different aspects of a chemical 

entity and can be considered more complex than, say, polypeptide-derived cofactor 

exhibiting three aspects. Polypeptide-derived cofactor, in turn, is more complex than its 

parent organic group, which has only the two relationship types, has part and is 

substituent group from. 

To make the determination about concept-error likelihood, a QA-analysis study of 

a random sample of the concepts in ChEBI was performed. In the study, 300 ChEBI 

concepts (about 0.5% of the entire ontology) were sampled based on the level 

arrangement of the area taxonomy in Figure 5.7. In particular, concept selection from the 

various levels was based on the number of concepts in each level. From Figure 5.7, it can 

be seen that the number of concepts in each of the Levels 1, 2, 3, and 4 (more than 10,000 

concepts) is significantly greater (by orders of magnitude) than that of the other levels. 

For Levels 1, 2, 3 and 4, the numbers of concepts were randomly selected approximately 

proportional to the respective numbers of concepts on each level. Due to the small 

number of concepts at Level 8 (highest numbered level, most complex concepts) and its 

importance for this study, all its 11 concepts were included for QA analysis. Similarly, 

for Levels 6 and 7 with relatively small sizes, 11 concepts each were randomly selected 

to match Level 8’s contribution. For Level 5 (2,853 concepts), the number of concepts 

selected was 20, reflecting a percentage that is between the higher percentage of Level 6 

and the lower percentages for the Levels 1–4. The concepts completely lacking 

relationships (i.e., those on Level 0 in area  of Figure 5.7) were ignored in the study 
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since they tend to be more general and abstract concepts, such as chemical entity, 

molecular entity, and mineral. 

The actual QA analysis of the 300 ChEBI concepts was performed by two 

chemistry subject-domain experts using a multi-step process. In the first step, every 

sample concept was analyzed by the two experts independently, with no communication 

permitted between them. Their respective results were tabulated in two error reports. 

Each error finding was accompanied by the rationale for the judgment plus a suggested 

means of remediation.  

In the second step, a combined error report, listing both experts’ respective error 

findings for all sample concepts, was shared with the two experts. Each was separately 

asked to mark their agreement or disagreement with the findings of the other person. 

Furthermore, they were asked to review their own findings in light of the other expert’s 

decisions. In this phase, each expert was permitted to change their mind regarding their 

own original judgment of a discovered error. A concept previously deemed to be 

exhibiting a modeling error could instead be deemed correct, and vice versa. In the final 

step of the analysis, a concept was marked erroneous if the two subject-domain experts 

agreed on that conclusion. Such findings collectively formed the consensus QA report, 

upon which the results are based. 

The subject-domain experts were requested to look for errors of commission and 

errors of omission. Errors of commission included problems such as incorrect 

hierarchical relationships, incorrect lateral relationships, and incorrect relationship targets. 

Errors of omission included missing hierarchical relationships and missing lateral 

relationships. At the conclusion of the QA study, the errors of commission, the more 
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severe kind, were first submitted to ChEBI’s curators for review, and later the errors of 

omission were submitted. 

In regard to the QA analysis, the validity of the following hypothesis expressed in 

terms of area taxonomy levels was investigated: 

Hypothesis 5.6: For a given ontology, concepts on the lower numbered levels of 

its area taxonomy have a lower average number of errors than concepts on the higher 

numbered levels. 

Note that Hypothesis 5.6 does not specify the boundary between the lower 

numbered levels and the higher numbered levels. For confirmation of Hypothesis 5.6, it is 

sufficient that there exists a level m such that the average error rate for Levels 1, 2, …, m 

is lower than the average rate for Levels m + 1, m + 2, …, n, where n is the highest 

numbered level in the area taxonomy. The selection of the level m will be done in a way 

to maximize the difference between the two averages. The implication of verifying 

Hypothesis 5.6 is that the set of concepts with more relationship types offers a 

characterization of concepts for which more errors are expected to be found. A 

methodology focusing QA efforts on such a set is expected to yield more corrections than 

auditing a random set of the same number of concepts with fewer relationship types. The 

two-tailed Fisher’s exact test [118] was used to analyze the results and judge the 

statistical significance of the difference between the error rates for the lower numbered 

levels and the higher numbered levels of the area taxonomy. 

5.1.5.2 Results. The sample of 300 ChEBI concepts was taken from the February 

2016 release based on the levels of its area taxonomy. The first-step QA analysis of the 

sample concepts was done by two chemistry domain experts Dr. Ling Chen (LC) and Dr.  
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Hasan Yumak (HY). Out of the 300 concepts analyzed, 155 of them (51.7%) made it into 

the consensus report, i.e., were deemed by both experts in the second-phase analysis to be 

erroneous. In the following, a ChEBI concept will often be referred to by its name 

together with its unique ChEBI ID, written in a format such as “CHEBI: 63667” (which 

happens to be the concept with the name dipyridodiazepine). 

Table 5.16 shows the distribution of all ChEBI concepts with respect to the levels 

in the area taxonomy, the number of those that underwent QA analysis, and the number 

of erroneous concepts. For example, in the area taxonomy, there are 10,105 concepts at 

Level 4 (Figure 5.7), of which 44 (0.44%) were randomly selected for QA analysis. The 

domain experts found 22 concepts (50.0%) of the analyzed concepts on Level 4 to be 

erroneous. Note that as the level number increases, the percentage of erroneous concepts 

at each level (last column) does not decrease, i.e., the error rate shows a monotonic trend. 

There are two cases in Table 5.16 where the error rate increases significantly, 

between Level 2 and Level 3 and between Level 4 and Level 5. Hence, in this case there 

are two options of how to divide the concepts by their levels into simple and complex 

concepts. Table 5.17, the 2x2 contingency table, presents the comparison of the 

cumulative error rates of Levels 1–4 and Levels 5–8. For example, 44.5% of the sample 

concepts on Levels 1–4 have errors in the consensus report. These results are statistically 

significant, because the p-value (two-tailed Fisher’s exact test) is less than 0.0001 (p < 

0.05). Table 5.18 gives the comparison between the cumulative error rates of Levels 1–2 

and Levels 3–8. The corresponding p-value is 0.0003. The result for this division is also 

statistically significant even though the p-value is slightly higher. Hence, the results of 

the study confirm the hypothesis that concepts with more relationship types are more 
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Table 5.16 Distribution of Erroneous Concepts According to Levels in the Area 

Taxonomy 

 

Level # Concepts 
# Analyzed 

Concepts 

# Erroneous 

Concepts 

% of Erroneous 

Concepts 

1 11,055 49 19 38.8% 

2 16,763 74 29 39.2% 

3 18,158 80 40 50.0% 

4 10,105 44 22 50.0% 

5 2,853 20 14 70.0% 

6 1,287 11 9 81.8% 

7 117 11 11 100.0% 

8 11 11 11 100.0% 

Total: 60,349 300 155 51.7% 

 

 

Table 5.17 The 2x2 Contingency Table for the Lower Numbered Levels (Levels 1–4) 

and the Higher Numbered Levels (Levels 5–8) with m= 4 

 

 # Erroneous Concepts # Concepts w/o Errors Error Rate 

Level 1 – Level 4 110 137 44.5% 

Level 5 – Level 8 45 8 84.9% 

 

 

Table 5.18 The 2x2 Contingency Table for the Lower Numbered Levels (Levels 1–2) 

and the Higher Numbered Levels (Levels 3–8) with m= 2 

 

 # Erroneous Concepts # Concepts w/o Errors Error Rate 

Level 1 – Level 2 48 75 39.0% 

Level 3 – Level 8 107 70 60.5% 

 
 

likely to exhibit errors than concepts with fewer relationship types, for both of the above 

optional dividing points. 

Table 5.19 shows the different kinds of errors encountered from the ontological 

perspective. For example, there were 48 concepts (16.0%) having incorrect relationship 
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targets, an error of commission, and 105 concepts (35.0%) with missing hierarchical 

relationships, an error of omission. 

Table 5.19 Error Distribution from the Ontological Perspective 

 

Error Type # Erroneous Concepts % (/300) 

Incorrect relationship target 48 16.0% 

Incorrect hierarchical relationship 42 14.0% 

Missing hierarchical relationship 105 35.0% 

Missing lateral relationship 7 2.3% 

 

 

An interesting question was whether the more complex concepts are also 

exhibiting a higher rate of errors of commission than the simpler concepts. Among the 88 

erroneous concepts with errors of commission, 60 (24.3% = 60/247) were from Levels 1–

4 and 28 concepts (52.8% = 28/53) were from Levels 5–8. Furthermore, the difference in 

the rates of errors of commission between Levels 1–4 and Levels 5–8 has statistical 

significance, because the p-value (for the two-tailed Fisher’s exact test) is less than 

0.0001. Another observation is that out of the 48 concepts with the error of Incorrect 

charge difference between conjugate acids and bases (Row 2 in Table 5.20), 26 concepts 

are from Levels 1–4 and 22 concepts are from Levels 5–8. So for this special kind of 

error, the error rate in Levels 1–4 is 10.5% (= 26/247) and the error rate in Levels 5–8 is 

41.5% (= 22/53). This difference also has statistical significance with p < 0.0001. Hence, 

analyzing the more complex concepts for errors is a more efficient way. 

 Table 5.20 presents the typical kinds of chemistry-based modeling errors in the 

consensus report along with their numbers and sample percentages. For example, 11 

concepts (3.7% of the sample) were found to exhibit incorrect amide classifications. Note 

that the kinds of errors in the table are not necessarily disjoint, meaning some concepts 
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may have several kinds of errors. As an example, piperidine (CHEBI: 18049) has both an 

incorrect conjugates charge error and an incorrect chemical classification error.  

Table 5.20 Typical Chemistry-based Errors 

 

Error Type # Erroneous Concepts % ( / 300) 

Missing chemical classification 105 35.0% 

Incorrect charge difference between 

conjugate acids and bases 
48 16.0% 

Incorrect chemical classification 21 7.0% 

Incorrect amide classification 11 3.7% 

Incorrect number of cyclic units 10 3.3% 

Unmatched chemical name and structure 2 0.7% 

 

 

Errors of commission are considered more severe than errors of omission, since 

they reflect incorrect modeling with respect to at least one aspect of a defined concept. 

On the other hand, there are more degrees of freedom regarding decisions about errors of 

omission, as it may have been a conscious editorial decision not to include some 

conceptual modeling details. An ontology’s editorial policy may in fact dictate that some 

modeling elements be omitted, or it may simply be a matter of personal taste of an editor. 

To further validate the findings, 62 concepts exhibiting errors of commission were 

first submitted to the curators for consideration. These were from among all the kinds of 

errors reported in Table 5.20 except for the first kind, “missing chemical classification,” 

which is an error of omission. To date, ChEBI’s curators have reviewed 49 concepts and 

confirmed 21 of them as being in error (42.9%). Some of the review details by ChEBI’s 

curators are summarized in Tables 5.21 and 5.22. Table 5.21 lists examples of errors that 

were confirmed upon review and have subsequently been corrected in a new release of 

ChEBI. Table 5.22 shows examples of errors rejected by ChEBI’s curators, along with 
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their reasons for this judgment. The errors of omission were submitted later via ChEBI’s 

GitHub and are still awaiting review. 

In summary, this study was carried out by two chemistry experts using the area 

taxonomy Abstraction Network to determine whether ChEBI concepts having more 

relationships—and in this sense higher complexity—warrant special attention in QA 

efforts. From the QA analysis of a random sample of ChEBI concepts consisting of both 

complex and simple concepts, it was confirmed with statistical significance that more 

complex concepts are more likely to harbor modeling errors than simpler concepts.  



 

 

Table 5.21 Example Concepts with Confirmed Errors by ChEBI Curators 

Concept with 

Confirmed Error 
Confirmed Error Error Explanation Corrective Action 

uric acid 

(ChEBI: 27226) 

Incorrect target of the relationship is 

conjugate acid of: urate anion 

Charge difference between 

conjugates should be 1 

Add a new relationship is conjugate 

acid of with the target urate(1−) 

trans-vaccenic acid 

(ChEBI: 28727) 

Incorrect target of the relationship is 

conjugate acid of: trans-vaccenate 

Charge difference between 

conjugates should be 1 

Replace the target trans-vaccenate 

with trans-vaccenate(1−) 

Malaoxon 

(CHEBI:6649) 

Incorrect classifications: dicarboxylic 

acid, carboxylic acid, hydroxides 

Chemical does not contain 

carbocyclic acid structure 

and hydroxyl group 

Replace with the correct 

classification organic thiophosphate 

Glucolepidiin 

(CHEBI: 5408) 

Incorrect classifications: glycosinolate, 

anion, polyatomic anion, ion 

No ion structure is shown in 

the structure 

Replace with the correct 

classification alkylglucosinolic acid 

 

Table 5.22 Example Concepts with Rejected Errors by ChEBI Curators 

Concept with 

Reported Error 
Reported Error 

Reported Error 

Explanation 
Reason for Rejection 

pyrazolopyridazine 

(CHEBI:48383) 

Incorrect classifications: 

organic heterobicyclic 

compound, heterobicyclic 

compound 

Concept has 4 rings 

Bicyclic, tricyclic, tetracyclic, etc., do not refer to the 

number of rings in a structure, but to the number of 

fused rings (i.e., rings that share one atom (spirocycles) 

or, more commonly, two atoms) 

thermospermine 

(CHEBI:59564) 

Incorrect target of the 

relationship is conjugate base 

of: thermosperminium(4+) 

Charge of its 

conjugate base 

should be 1+ not 4+ 

Although the IUPAC definition of conjugate acid/base 

refers to a difference in charge of 1 unit only, for 

ChEBI, this is relaxed to include multiple charge 

differences 

nystatins 

(CHEBI:59676) 

Incorrect classification: 

polyketide 

Concept does not 

contain ketone 

groups 

Polyketide is structurally a very diverse group of 

compounds. For this reason, ChEBI denotes 

‘polyketide’ as “is a” organooxygen compound, rather 

than “is a” carbonyl compound. The ChEBI definition 

of polyketide was taken from the IUPAC Gold Book 

1
2
1
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5.1.6 Auditing the Chemical Ingredient Hierarchy Based on the IAbN 

The Abstraction-Network-based QA framework can be summarized as follows. First, an 

Abstraction Network is developed to summarize the specific terminology [4]. An 

algorithm is developed and implemented to computationally derive this Abstraction 

Network from the terminology. Based on the Abstraction Network, characterizations of 

sets of concepts of the terminology that are expected to display a higher percentage of 

errors are identified, compared to a control sample [8, 60]. Those sets of concepts can be 

computationally retrieved [67, 129], because the characterizations of such sets of 

concepts are based on structural features. 

One of the recurring themes in such characterizations has been that there are 

concepts that are more complex than “arbitrary” concepts of the terminology. Examples 

of characterizations of complex concepts include overlapping concepts [91, 92, 130] and 

multiple inheritance regions [6, 57]. Complex concepts are typically more error-prone. 

While those characterizations were based on deriving a partial-area taxonomy [5, 6, 59] 

their complexity stems from concepts having multiple generalizations through multiple 

parents, reflecting an entity that is simultaneously “this and that.” Not surprisingly, the 

modeling of such concepts is more challenging and a higher ratio of errors can be 

expected for them. 

The characterization of concepts that were tested in this study on the NDF-RT CI 

hierarchy is “drug ingredients belonging to only one ingredient group with multiple 

parent ingredient groups” in the IAbN. Such concepts fit the above theme of complex 

concepts being “this and that” and are expected to have higher error rates.  
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Hypothesis 5.7: Among drug ingredients belonging to only one ingredient group, 

those in an ingredient group with multiple parent ingredient groups are more likely to 

have errors than those in an ingredient group with only one parent ingredient group. 

The drug ingredients from those ingredient groups that have multiple parent 

ingredient groups inherit multiple classifications. The more classifications the drug 

ingredients belong to, the more complex those ingredients are, which increases the 

possibility that the classifications may have errors.  

Hypothesis 5.8:  Among drug ingredients belonging to only one ingredient group, 

those in an ingredient group with more than two parent ingredient groups are more likely 

to have errors than those with exactly two parent ingredient groups. 

To test the above hypotheses, a sample of drug ingredient concepts within only 

one ingredient group was reviewed by two chemistry domain experts Dr. Ling Chen (LC) 

and Dr. Hasan Yumak (HY). Table 5.23 shows the distribution of NDF-RT’s drug 

ingredients appearing in exactly one ingredient group according to their group’s number 

of parent ingredient groups. There were a total of 263 drug ingredients as study concepts 

picked from the ingredient groups that have multiple parent ingredient groups. The study 

concepts included 118 randomly selected drug ingredients with two parent ingredient 

groups plus all drug ingredients with three (118), four (25) or five (2) parent ingredient 

groups. Thus, in total there were 263 study concepts. The control concepts consisted of 

170 drug ingredients randomly chosen from the ingredient groups that have only one 

parent ingredient group. Hence, the total number of reviewed drug ingredients in the 

study was 433.  
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Table 5.23 The Distribution of the Drug Ingredients in Exactly One Ingredient Group 

Based on their Number of Parent Ingredient Groups 

 

# of Parent Ingredient 

Groups 
# of Drug Ingredients 

Percentage  

(Column 2/1851) 

0 1 0.05% 

1 1136 61.37% 

2 569 30.74% 

3 118 6.37% 

4 25 1.35% 

5 2 0.11% 

Total: 1851 100.00% 

 

 

The two domain experts were blind to the hypotheses and the sampling 

methodology. The concepts were presented in alphabetical order. There were three steps 

of the review process. First, each of the reviewers studied the sample individually and 

submitted an error report that consisted of identified errors with corresponding 

corrections.  

The domain experts were instructed to review the hierarchical relationships of 

each concept for correctness and to mark those they considered incorrect. The individual 

error reports from the domain experts were combined into a single anonymized list of 

unique errors. In the second step, the list of combined errors was sent back to the domain 

experts who had to obtain a consensus. Each reviewer marked ‘agree’ or ‘disagree’ for 

each error in the list.  

In the third step, an additional evaluation of the consensus result was performed 

by Joan Kapusnik-Uner (JKU), a pharmacologist who is leading First DataBank’s drug 

vocabulary standards initiatives. Only the errors agreed upon by both LC and HY were 

sent to JKU for the third round review. JKU recorded those concepts for which she 

agreed that there was an error in a hierarchical relationship. Thus, in this study a concept 
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was considered erroneous only if all three domain experts (LC, HY, and JKU) agreed on 

the error.  

In the two initial auditing reports generated at the first step, the two reviewers 

agreed on 100 erroneous drug ingredients; 19 drug ingredients were judged as erroneous 

by one or the other reviewer. A new data set including all the errors reported by any of 

the two auditors, without the name of the originator of the error, was compiled and sent 

back to the two auditors for generating a consensus report. The two auditors gave their 

responses (agree or do not agree) to all the errors listed in the new dataset (in fact, they 

agreed on all errors at the second step), which were compiled into a consensus report 

including all 119 erroneous drug ingredients that both reviewers agreed to. Then the 

consensus report was reviewed by JKU. Only when an error of a concept listed in the 

consensus report of LC and HY was confirmed by JKU, then this concept was labeled 

“erroneous,” i.e., a consensus of three reviewers was achieved for these concepts in this 

three step study. In fact, JKU confirmed all consensus errors reported by LC and HY.  

Table 5.24 shows the error distribution of the 433 audited drug ingredients. The 

percentage of erroneous concepts increases with the number of parent ingredient groups 

(except for the small number with five parents). 

Table 5.25 shows the contingency table for the control and study concepts to 

calculate the p-value for Hypothesis 5.7. The two-tailed p-value is less than 0.0001 by 

Fisher's exact test [118], which means that the drug ingredients from the ingredient 

groups that have multiple parent ingredient groups are statistically significantly more 

likely to have errors than those from the ingredient groups that have one parent ingredient 

group. 
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Table 5.24 The Statistical Analysis of the Auditing Results of the 433 Drug Ingredients 

 

# of Parent 

Ingredient Groups 

# of Audited 

Concepts 

# of Erroneous 

Concepts 

Error 

Percentage 

1 170 22 12.9% 

2 118 29 24.6% 

3 118 55 46.6% 

4 25 13 52.0% 

5 2 0 0.0% 

Total: 433 119 27.5% 

 

 

Table 5.25 The 2x2 Contingency Table for the Control and Study Concepts 

 

# of Parent Ingredient 

Groups 

# of Erroneous 

Concepts 

# of Concepts w/o 

Errors 

1 22 148 

>1 97 166 

 

 

In order to test Hypothesis 5.8, the error counts of drug ingredients from the 

ingredient groups that have more than two parent ingredient groups were compared with 

those that have exactly two parent ingredient groups. Table 5.26 shows the contingency 

table for the concepts with two and more than two parent ingredient groups to calculate 

the p-value. The two-tailed p-value equals 0.0002 by Fisher's exact test, which means that 

Hypothesis 5.8 was confirmed. 

Table 5.26 The 2x2 Contingency Table for the Concepts with Two and More Than Two 

Parent Ingredient Groups 

 

# of Parent Ingredient 

Groups 

# of Erroneous 

Concepts 

# of Concepts w/o 

Errors 

2 29 89 

>2 68 77 
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Overall, there were 119 concepts (119/433 =27.5%) with errors. Some errors 

appeared at the parent level, while other errors were introduced at higher levels (up to 

several levels above the erroneous concept). The types of errors are summarized in Table 

5.27. The sets of erroneous concepts for the different error types in Table 5.27 are not 

disjoint, since one concept may have multiple errors. Row 1 in Table 5.27 shows that 

eight concepts in this study are assigned wrong parents, e.g., Loracarbef was erroneously 

defined as child of Cephalosporins, while the direct parent of Loracarbef should be 

Carbacephem. 

Row 2 and Row 3 show two most common errors in the study that cover most of 

the erroneous concepts. In Row 2 an organic (or inorganic) concept is assigned to both 

Organic Chemicals and Inorganic Chemicals, due to the inheritance from its ancestor 

classification, which can be either organic or inorganic. For example, Sulfur Compounds 

appear as inorganic or organic compounds that contain sulfur as an integral part of the 

molecule according to the definition. For example, Rabeprazole actually is an organic 

chemical while it is classified under both Organic Chemicals and Inorganic Chemicals, 

because the parent of its grandparent is Sulfur Compounds. Row 3 indicates that the 

specified chemical ring structures of a concept which is a Heterocyclic Compound[s] are 

contradicting each other. For example, a concept is assigned several classifications out of 

the set R = {“Heterocyclic Compounds, 1-Ring,” “Heterocyclic Compounds, 2-Ring,” 

“Heterocyclic Compounds, 3-Ring” and “Heterocyclic Compounds with 4 or More 

Rings”}. That is due to inheritance from its ancestor classifications, i.e., a concept may 

have several ancestor classifications (at a very general level) and each of its ancestor 

classifications may be under one of the four choices in R. For example, Alosetron is a 4-
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ring structure with three fused rings. Its parent is Carbolines with a 3-ring structure, the 

parents of which are, Pyridines with a 1-ring structure and Indoles with a 2-ring structure. 

Hence due to transitivity, Alosetron is a Heterocyclic Compound(s), 1-Ring, and also a 

Heterocyclic Compound(s), 2-Ring, and even a Heterocyclic Compound(s), 3-Ring. 

Row 4 represents the other types of erroneous classifications, happening above 

the parent level, which cover 26 concepts (21.8%). For example, Hydrogen Peroxide 

does not belong to Electrolytes, because it is a molecule without ions, and it is not an 

electrolyte. 

Table 5.27 Examples of Error Types with Counts 

 
Error Type 

# of Erroneous 

Concepts 

Percentage 

(Column 2/119) 
Examples 

1 Incorrect direct 

classification  

(= wrong parent) 

8 6.7% 

Bisacodyl, 

Ertapenem, 

Loracarbef 

2 
Organic/Inorganic 

Chemicals classification 
81 68.1% 

Cyclomethicone, 

Oxyphenonium,  

Rabeprazole 

3 Heterocyclic Compounds, 

X-Ring(s)  

(X is one of {1, 2, 3, 4 or 

more}) 

34 
 

28.6% 

Alosetron, 

Bilirubin,  

Ramipril 

4 

Other types of erroneous 

classifications 
26 21.8% 

Hydrogen 

Peroxide, 

Loracarbef, 

Levodopa 

 

 

5.2 Quality Assurance of Concepts with Uncommon Modeling 

 

The following sections report two quality assurance studies focusing on concepts with 

uncommon modeling. Both studies utilized the “prism” constituted by Abstraction 

Networks for the detection of concepts with uncommon modeling, which were found to 
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contain relatively higher ratios of errors. An Abstraction Network offers an alternative 

compact visualization of an ontology’s structure and content, which helps in detecting 

various anomalies not visible in the structure of the ontology itself. The first study is on 

concepts in small partial-areas within a partial-area taxonomy. The other study is on 

concepts in the area without any relationship within an area taxonomy.  

5.2.1 Auditing NCIt Neoplasm Concepts in Groups of High Error Concentration 

 

There are two major activities that lead to corrections of ontologies. (1) Curators of 

ontologies receive occasional requests of users to correct modeling errors they find, but 

such requests are ad hoc and do not constitute a rigorous QA process. (2) Ontology 

maintenance teams execute internal QA processes to test and verify the correctness of 

every new release of an ontology. See, for example, the internal QA process of NCIt in 

place at the National Cancer Institute (NCI) as described by De Coronado et al. [42].  

Automated QA processes can only expose errors detectable by algorithms, such as 

redundant role assignments. Such QA algorithms can detect structural errors but not 

semantic errors, which are more difficult to uncover.  

Hence, there is a need for a rigorous QA process as an integral part of the life 

cycle of an ontology that detects semantic errors as well [5]. As in finance, software 

verification, etc., such QA processes should not be the responsibility of the editorial team 

of an ontology, but be outsourced to an external department or even an external 

organization that has no emotional attachment to the modeling decisions of the ontology 

and thus can be objective in an ontology review.  

Considering the fact that ontology errors are created as a result of unintentional 

human mistakes, rather than occurring as natural phenomena, one might think that they 
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will be distributed uniformly over the concepts of an ontology. However, this study 

refutes the assumption that errors are uniformly distributed in the investigated medical 

ontology. While this phenomenon is not so obvious when viewing an ontology with 

existing visualization tools that do not perform summarization, it becomes clear when 

viewing the same ontology through the prism of an Abstraction Network, which provides 

guidance for where to look for errors. Therefore, an economical approach to the QA of 

ontologies is to identify structural characterizations of sets of concepts for which a 

relatively high rate of errors is expected, compared to a random control sample. 

Reviewing such sets of concepts by domain experts is expected to provide a high QA 

yield, measured by the ratio of concepts confirmed as erroneous for a given number of 

reviewed concepts. This study explored the QA methodology concentrating on concepts 

in small partial-areas of the partial-area taxonomy for the Neoplasm hierarchy in NCIt. 

5.2.1.1 Materials and Approach. A partial-area in a partial-area taxonomy represents 

a particular set of concepts in the ontology. These concepts are similar in their structure 

and semantics. That is, they all share the same roles and the same root. When 

encountering the partial-area Neoplasm with 403 concepts, the modeling of its concepts is 

considered “common” – there are many concepts with the same neoplasm semantics and 

structural modeling – with the role Disease Has Abnormal Cell. However, when 

encountering a small partial-area of, say, of two concepts only, their combination of 

structure and semantics is unique to them among the thousands of concepts in the 

hierarchy; then this would be a case of “uncommon modeling,” since no other concepts 

have the same combination of structure and semantics. 

It is, of course, possible that an ontology correctly contains only two concepts that 
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are represented with a specific structure and semantics. However, another option is that 

the reason for this uncommon modeling is that there is an error in how these two concepts 

are represented in the ontology. If so, once this error is corrected, say by adding a role or 

changing a parent link, then these concepts are likely to reappear in another partial-area 

to reflect the changes in their structures or semantics. It may well be the case that the new 

“home partial-area” is not small. This was an example scenario where the modeling was 

“uncommon” due to an error, and correcting the error(s) eliminated a small partial-area. 

In previous studies [5, 90, 120], small partial-areas were indeed found to be characterized 

by higher error rates.  

As mentioned in Section 2.1.3, the Neoplasm subhierarchy of NCIt with 8,166 

concepts is of special importance because of the priority given to modeling cancer-related 

concepts due to the mission of NCIt to support cancer research and care. Thus, the NCIt 

team is paying increased attention to the modeling of neoplasm concepts compared to 

many other concepts in NCIt. 

Therefore, it is of interest to explore the problem whether a location where there 

is a higher concentration of erroneous concepts in the relatively large Neoplasm 

subhierarchy can be identified. Can the following hypothesis be confirmed with statistical 

significance?   

Hypothesis 5.9: Small partial-areas in the Neoplasm sub-taxonomy of the 

Disease, Disorder or Finding hierarchy of NCIt harbor sets of concepts with higher rates 

of errors than large partial-areas. 

Having the partial-area taxonomy available, 150 concepts from small partial-areas, 

defined here as having sizes between 1 and 10, were randomly selected as the study 
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sample. For the control sample, 40 concepts were randomly selected from large partial-

areas of at least 20 concepts. The range 11-19 is considered to define medium-sized 

partial-areas. The study sample and the control sample were combined and the order of 

concepts was randomized. 

The QA analysis on the 190 neoplasm concepts was carried out by three domain 

experts Dr. Yan Chen, Dr. Hua Min and Dr. Julia Xu who are domain experts in medicine 

with extensive experience in ontology QA. The review of the selected concepts involved 

two steps following the modified Delphi procedure [131]. Namely, first, each of three 

domain experts, being blind to the sampling technique that was used, independently 

reviewed all the concepts in the sample and reported all erroneous concepts. The three 

error reports were combined into a questionnaire, where each error identified by any of 

the experts was listed, without attributing it to the expert reviewer(s) who discovered it. 

For every reported error a suggested correction was included.  

In the second step of the process, each of the reviewers marked whether she 

agreed with each error in the combined report or not. A concept is considered a 

“consensus erroneous concept” only if all three reviewers agreed that this concept has an 

error. Finally, the numbers and percentages of “consensus erroneous concepts” in small 

partial-areas and in large partial-areas were compared with each other. 

5.2.1.2 Example of Group-based Auditing. The partial-area taxonomy of an 

ontology divides concepts into groups. The basic idea of the “group-based” auditing 

method is that if “many” concepts in a group are found to exhibit errors, then a 

conscientious auditor should review all the concepts of that group [91]. This is suported 

by work of He et al. [132], which showed that it is advisable to review the other concepts 
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of a group if some errors were found in the group. This is the abstract idea of group-based 

auditing.  

Now follows a concrete example for illustrating group-based auditing, utilizing 

the partial-area taxonomy where the partial-areas function as groups. Figure 5.8 

demonstrates a group-based auditing scenario. White boxes within colored boxes are 

partial-area nodes within area nodes. The indented format in each partial-area in Figure 

5.8(a) represents the IS-A hierarchical structure inside of a partial-area node (e.g., Benign 

Posterior Tongue Neoplasm IS-A Benign Tongue Neoplasm, which IS-A Benign Oral 

Cavity Neoplasm). This detailed information is normally not shown in a partial-area 

taxonomy diagram, but is necessary for the demonstration of group-based auditing. The 

concept in bold (e.g., Benign Oral Cavity Neoplasm) in each partial-area node is the root, 

and the arrows denote the hierarchical child-of links between partial-area nodes. For 

example, the root concept Oral Cavity Benign Granular Cell Tumor IS-A Benign Oral 

Cavity Neoplasm, so there is a child-of link from the partial-area node Oral Cavity 

Benign Granular Cell Tumor (2) to the partial-area node Benign Oral Cavity Neoplasm 

 

Figure 5.8 Example of the structure of the Neoplasm partial-area taxonomy (a) before 

and (b) after auditing. 
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 (8). The number in parentheses () is the number of concepts summarized by a node. 

Out of the eight concepts in the partial-area node Benign Oral Cavity Neoplasm (8) 

in the top area node (Figure 5.8(a)), only the four underlined concepts were in the random 

sample sent to the auditors (rows 1, 2, 4 and 7 under Benign Oral Cavity Neoplasm (8)). 

The auditors recommended adding the following three roles to these four concepts to 

improve the correctness of the modeling: Disease Has Finding with the target Benign 

Cellular Infiltrate, Disease Has Normal Cell Origin with the target Connective and Soft 

Tissue Cell and Disease Has Normal Tissue Origin with the target Connective and Soft 

Tissue. As noted above, this was a consensus decision.  

Due to the suggested corrections, these four concepts should not remain in their 

current location. Rather they should appear in the lower area node {Disease Excludes 

Abnormal Cell, Disease Has Abnormal Cell, Disease Has Associated Anatomic Site, 

Disease Has Finding, Disease Has Normal Cell Origin, Disease Has Normal Tissue 

Origin, Disease Has Primary Anatomic Site}. When the partial-area taxonomy is re-

derived, as shown in Figure 5.8(b), it is indeed the case that each of the four concepts 

now appears in the lower area node. Furthermore, each of the four concepts is a root in 

the area node, thus it gets its own partial-area. 

After observing the above errors of concepts in the reviewed sample, the question 

whether the other four concepts in the same partial-area node might have the same errors 

as the four concepts in Figure 5.8(a) was raised. In other words, group-based auditing of 

the remaining four concepts in the area node at the top of Figure 5.9(a) was applied. 

These concepts were not in the random sample that was originally given to the auditors.   
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The consensus auditing result of the three domain experts confirmed that the four 

concepts Benign Oral Cavity Neoplasm, Benign Gingival Neoplasm, Benign Tongue 

Neoplasm and Benign Anterior Tongue Neoplasm were also missing the same three roles 

as the four concepts that were in the original sample. Thus, group-based auditing in this 

case doubles the number of errors found, with little extra effort.  

 

Figure 5.9 Example of error correction propagation and the resultant partial-area 

taxonomy simplification; (a) shows the partial-area taxonomy before and (b) after the 

auditing/correction steps. 

 

 

5.2.1.3 Error Correction Propagation and Partial-area Taxonomy Simplification.  

Once correction of errors is achieved for a whole group, potentially through group-based 

auditing, one should consider the propagation of the correction of errors to descendant 



 

136 

groups. Errors of a parent group are typically inherited by descendant groups. Thus, one 

can easily examine the inheritance of the corrections suggested for such errors. 

The method of error correction propagation will now be demonstrated, where the 

corrections of the above errors, discovered for concepts within a partial-area A, will be 

propagated to three descendant partial-areas of the partial-area A. This happens as 

follows. 

During group-based auditing, the root concept Benign Oral Cavity Neoplasm, 

describing the semantics of the whole partial-area, was determined to miss the above 

three roles. Because of that, the 22 concepts in Figure 5.9(a) should all have the same 

roles, due to inheritance of the corrected set of relationships.  

The concepts in the partial-area nodes of the area nodes in the second and third 

level from the top in Figure 5.9(a) originally had some, but not all, of the three missing 

roles discovered in Figure 5.8. However, those missing roles are now added due to 

inheritance from the corrected Benign Oral Cavity Neoplasm root concept. After adding 

these three roles, the 22 concepts in the eight partial-area nodes in Figure 5.9(a) will be 

summarized by only one partial-area node Benign Oral Cavity Neoplasm (22) in Figure 

5.9(b), which is not small anymore. 

Figure 5.9 demonstrates an interesting visual impact of the error correction 

propagation process described above, namely partial-area taxonomy simplification. The 

eight partial-area nodes in four different area nodes appearing in Figure 5.9(a) are unified 

into one single partial-area node of 22 concepts in Figure 5.9(b). That is, modeling errors 

are manifested when more small partial-areas “than needed” appear. The process 

described by Figure 5.9 shows the flip side of this observation, namely that the correction 
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of modeling errors may lead to a beneficial simplification of the partial-area taxonomy 

(the summary) of the ontology, by unifying several small partial-area nodes into one 

larger partial-area node. Furthermore, due to inheritance, the simplification occurred 

across several area nodes.  

5.2.1.4 Results. The Neoplasm subhierarchy, containing 8,166 concepts (32.25% of 

the whole Disease, Disorder or Finding hierarchy) in the February 2015 release of NCIt, 

is summarized by 4,824 partial-area nodes in the Neoplasm partial-area taxonomy. The 

three experts found 76 concepts out of 190 (40.0% = 76/190) having errors. Table 5.28 

shows the number of audited concepts (that appeared in the random sample), the number 

of erroneous concepts and the error rate for each partial-area node size. For example, the 

random sample contained 10 concepts from partial-area nodes with size=1, and among 

these the experts found five concepts (50.0%) exhibiting errors.  

Table 5.28 Distribution of Erroneous Concepts According to Partial-area Node Size in 

the Partial-area Taxonomy 

 

Partial-area node 

size 

# of Concepts 

Audited 

# of Erroneous 

Concepts 

Error Rate 

(%) 

1 10 5 50.0% 

2 17 3 17.6% 

3 10 5 50.0% 

4 15 7 46.7% 

5 13 3 23.1% 

6 12 6 50.0% 

7 21 8 38.1% 

8 17 9 52.9% 

9 19 10 52.6% 

10 16 11 68.8% 

11-19 - - - 

 20 40 9 22.5% 

Total: 190 76 40.0% 
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According to the results in Table 5.28, the average error rate for the concepts from 

small partial-area nodes with up to 10 concepts is 44.7% (= 67/150), while the error rate 

for the concepts from large partial-area nodes, summarizing at least 20 concepts, is 22.5%. 

Table 5.29 summarizes the comparison of these two error rates. The error rate difference 

is statistically significant (p < 0.05 according to Fisher’s exact test). Therefore, the results 

confirm Hypothesis 5.9, namely that concepts represented by small partial-area nodes are 

more likely to have errors than concepts in large partial-area nodes.  

Table 5.29 The 2x2 Contingency Table for Small Partial-areas and Large Partial-areas 

 
# Erroneous 

Concepts 

# Concepts w/o 

Errors 

Error 

Rate 

small partial-area nodes 

(size < 11) 
67 83 44.7% 

large partial-area nodes  

(size  20) 
9 31 22.5% 

 

 

With one exception, all errors reported by the three domain experts are errors of 

omission. Table 5.30 summarizes the distribution of erroneous concepts according to 

different error types. The most common type of error is the omission of roles, which 

occurs for 60 concepts from small partial-area nodes (40.0% = 60/150) and five concepts 

from large partial-area nodes (12.5% = 5/40). The second most common type of error is 

“missing parent” with 13 (8.67% = 13/150) concepts having this error among small 

partial-area nodes and three (7.5% = 3/40) among large partial-area nodes.  

Table 5.31 lists some examples of concepts having modeling errors in their IS-A 

relationships. For example, the concept Benign Epithelial Neoplasm from a partial-area 

node summarizing only one concept is missing an IS-A relationship to Benign Neoplasm. 

Another concept Benign Iris Neoplasm from a small partial-area node was found missing  
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a child Iris Nevus. The experts also found one concept, Combined Carcinoid and 

Adenocarcinoma, from a large partial-area node having an incorrect IS-A relationship. 

As mentioned in Section 2.1.3, the Disease, Disorder or Finding hierarchy has 29 

role types. For the 150 concepts from small partial-area nodes, the three domain experts 

found 60 concepts missing 12 role types. Table 5.32 shows the distribution of these 60 

erroneous concepts by role types and gives an example of one erroneous concept for each 

role type. For example, there are 10 concepts from small partial-area nodes missing the 

role Disease Excludes Abnormal Cell. Acantholytic Squamous Cell Skin Carcinoma is 

one of the 10 erroneous concepts, and it is missing this role with the target Malignant  

Table 5.30 Comparison of Error Distribution by Types between Concepts from Small 

and Large Partial-area Nodes 

 

Error Type 
# Erroneous Concepts from 

Small Partial-area nodes 

# Erroneous Concepts from 

Large Partial-area nodes 
Total 

Missing role 60 5 65 

Missing parent 13 3 16 

Missing child 1 1 2 

Incorrect parent 0 1 1 

 
 

Table 5.31 Examples of Erroneous Hierarchical Relationships 

 

Partial-area 

node size 
Error Type 

Example Concept 

with Error 
Reported Error 

small Missing parent 
Benign Epithelial 

Neoplasm 

Missing parent Benign 

Neoplasm 

small Missing child Benign Iris Neoplasm Missing child Iris Nevus 

large Missing parent 
Reproductive 

Endocrine Neoplasm 

Missing parent Endocrine 

Neoplasm 

large Missing child 
Intraventricular Brain 

Neoplasm 

Missing child Glioblastoma 

and Pilocytic Astrocytoma 

large Incorrect parent 
Combined Carcinoid 

and Adenocarcinoma 

Change the parent from 

Carcinoma to 

Adenocarcinoma 
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Basaloid Cell. Another issue discovered was that 32 concepts are missing the Disease 

Has Finding role.  

The error correction propagation method (Section 5.2.1.3) was applicable to a 

number of concepts in the sample, leading to the unification of several partial-area nodes 

from several area nodes into one larger partial-area node. This can be observed, for  

Table 5.32 The Number of Concepts from Small Partial-area Nodes Missing Roles for 

Each Role Type 

 

Role Type 
# Erroneous 

Concepts 

Example Concept 

Missing Role Type 

Target of 

Missing Role 

Disease Has Finding 32 
Benign Cerebellar 

Neoplasm 

Benign Cellular 

Infiltrate 

Disease Excludes 

Abnormal Cell 
10 

Acantholytic Squamous 

Cell Skin Carcinoma 

Malignant 

Basaloid Cell 

Disease Excludes 

Finding 
8 Amelanotic Melanoma 

Favorable 

Clinical Outcome 

Disease Has Primary 

Anatomic Site 
7 

High Grade Vaginal 

Intraepithelial 

Neoplasia 

Vagina 

Disease Has Normal 

Tissue Origin 
6 

Anal Canal 

Neuroendocrine Tumor 

Neuroendocrine 

Tissue 

Disease Has Normal 

Cell Origin 
5 Granulosa Cell Tumor Granulosa Cell 

Disease Excludes 

Primary Anatomic Site 
4 

Acute Erythroid 

Leukemia 
Lymphatic System 

Disease Has Associated 

Anatomic Site 
3 Hemolymphangioma Lymphatic Vessel 

Disease Excludes 

Normal Tissue Origin 
2 

Acute Erythroid 

Leukemia 
Lymphoid Tissue 

Disease Has Associated 

Disease 
2 

Adenocarcinoma in 

Multiple Adenomatous 

Polyps 

Polyposis 

Disease Has Abnormal 

Cell 
1 Clear Cell Adenoma 

Neoplastic Clear 

Cell 

Disease Mapped To 

Gene 
1 

Borderline Ovarian 

Clear Cell 

Adenofibroma 

ARID1A Gene 
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example, by looking at the roots Benign Muscle Neoplasm (11), Benign Brain Neoplasm 

(15) and Benign Female Reproductive System Neoplasm (11). 

The consensus erroneous concepts (76) were submitted to the NCIt editorial team. 

The NCIt team confirmed 17 erroneous concepts (22.4%), of which only one concept is 

from a large partial-area (with size 53) and the other 16 concepts are from small partial-

areas. The NCIt team did not review any other concepts from the 190 concept sample and 

thus their review cannot be considered an alternative QA study. Table 5.33 lists five 

example concepts with errors that were confirmed and corrected by the NCIt team. Table 

5.34 shows another four concepts that were reported as having errors by the domain 

experts that were not corrected by the NCIt team. The third column in Table 5.34 reports 

the NCIt team’s reasons for not correcting the concepts, while the fourth column presents 

the external domain experts’ consensus counter arguments, explaining why nevertheless 

these errors should be considered legitimate. Table 5.35 shows the distribution of 

concepts into small, medium and large partial-areas.  

To summarize this study, errors in the NCIt Neoplasm subhierarchy are not 

uniformly distributed. Uncommon modeling of concepts, which is reflected in small 

partial-areas in the partial-area taxonomy, resulted in a significantly larger percentage of 

erroneous concepts than in a control group of concepts from large partial-areas. The error 

rate for small partial-areas (44.7%) was twice as large as the error rate for large partial-

areas (22.5%). Furthermore, group-based auditing, using groups constituted in the partial-

area taxonomy, was demonstrated to support easy discovery of additional erroneous 

concepts in the same partial-areas of the partial-area taxonomy. By error correction 

propagation, additional errors at lower levels in the partial-area taxonomy were also  



 

 

Table 5.33 Example Concepts with Errors Confirmed by NCIt Curators 

 

Concept Confirmed Error Correction 

Benign Buccal Mucosa Neoplasm 
Missing roles: Disease Has Finding with targets Benign 

Cellular Infiltrate and Indolent Clinical Course 
Add these two roles 

Granulosa Cell Tumor 
Missing role: Disease Has Normal Cell Origin with the 

target Granulosa Cell 
Add the role 

High Grade Vaginal Intraepithelial 

Neoplasia 

Missing role: Disease Has Primary Anatomic Site with 

the target Vagina 
Add the role 

Human Papillomavirus-Related Malignant 

Neoplasm in AIDS Patient 

Missing role: Disease Has Associated Disease with the 

target Acquired Immunodeficiency Syndrome 
Add the role 

Reproductive Endocrine Neoplasm Missing parent: Endocrine Neoplasm 
Add an IS-A link to 

Endocrine Neoplasm 

 

 

 

 

 

 

 

 

1
4
2
 



 

 

Table 5.34 Example Concepts with Errors Not Corrected by NCIt Curators 

 

Concept Reported Error Curator’s Reaction Counter Argument 

High Grade 

Prostatic 

Intraepithelial 

Neoplasia 

Missing role: 

Disease Has Finding with 

the target High Grade 

Lesion 

This concept already has the role 

Disease Is Grade with the target 

High Grade. 

The role Disease Is Grade pointing to High 

Grade only hints at the existence of the role 

Disease Has Finding pointing to High Grade 

Lesion. In an ontology, information should be 

explicit so it is usable for computers. Besides, 

some concepts in NCIt have both these roles. 

Benign Skeletal 

Muscle Neoplasm 

Missing role: 

Disease Has Associated 

Anatomic Site with the 

target Skeletal Muscle 

Tissue 

This concept already has the role 

Disease Has Normal Tissue 

Origin with the target Skeletal 

Muscle Tissue. 

Similarly as above, the suggested role is not 

implied by the existing one.  

Lymphoplasmacyte-

Rich Meningioma 

Missing role: 

Disease Has Primary 

Anatomic Site with the 

target Meninges 

This concept already has the role 

Disease Has Normal Tissue 

Origin with the target Meninges. 

Same as previous. However, some concepts in 

NCIt, (e.g., Benign Meningioma), have both 

roles Disease Has Primary Anatomic Site and 

Disease Has Normal Tissue Origin pointing to 

Meninges. 

Clear Cell 

Squamous Cell Skin 

Carcinoma 

Missing parent: Primary 

Malignant Neoplasm 

Primary Malignant Neoplasm is 

under "Neoplasm by Special 

Category." The NCIt team had 

decided not to populate such 

terms with specific 

histopathologies and not to 

model/define such terms. 

The NCIt curator agrees with the correction and 

does not implement it due to NCIt editorial 

policy. 

1
4
3
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Table 5.35 The Neoplasm Concept Distribution According to Partial-area Size 

 

Partial-area size # of Partial-areas Total # of Concepts % of Concepts 

1-10 4762 6581 80.59% 

11-19 44 642 7.86% 

≥20 18 1014 12.42% 

Total: 4824 8166  

 

 

found and corrected with minimal additional effort. On a more general level, this study 

concluded that Abstraction Networks were again successful in aiding the process of 

discovering “suspicious” concepts.  

5.2.2 Quality Assurance of Concept Roles in NCIt Biological Process Hierarchy 

 

Roles, an important component of NCIt modeling, are used to define concepts and are 

inherited down the hierarchies. The complete and accurate representation of biomedical 

knowledge for a concept through roles is important for the NCIt applications such as 

reasoning. Hence, it is necessary to conduct a QA study concentrated on missing role 

errors. One of the inherent concept groupings in an area taxonomy, called the top area, 

comprises all concepts without any roles at all. This is a natural place to search for 

concept with missing role errors. Besides, factors such as disproportional size or 

disproportional growth over time of the top area could be indicators in determining 

whether QA efforts are warranted. Moreover, the hierarchical depth of the top area can be 

another factor to be considered. 

As mentioned in Section 2.1.3, 513 concepts (44.8% of the complete Biological 

Process hierarchy) are in the top area (see Figure 5.6 on Page 101). For comparison, in 

the year 2004 [5], only 47 concepts out of 589 concepts (8%) were in the top area. That is, 

while the Biological Process hierarchy grew about two-fold, the top area grew about 
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eleven-fold. When there is such disproportional growth of the top area, it can be 

interpreted as an anomaly alerting QA experts to the possibility of widespread missing-

role errors.  

For each NCIt hierarchy, there is a list of role types that can be used to define its 

concepts. The Biological Process (BP) hierarchy has seven possible associated roles 

whose full names and abbreviated names were given in Table 2.2.  Figure 5.6 shows the 

complete area taxonomy of the BP hierarchy. This section presents a QA study on the 

concepts in the top area of the area taxonomy for the BP hierarchy. 

5.2.2.1 Methods. Quality assurance (QA) efforts on large and complex biomedical 

ontologies need to be highly focused and aided by techniques that automatically identify 

sets of concepts that are suspicious or anomalous and warrant special attention. Such 

concepts are expected to be in error, with a high likelihood. One characterization of 

concepts shown to have a higher error rate identified by Abstraction Networks is 

uncommonly modeled concepts, which were described in Section 2.3.  

In this study, a concept residing in the top area Ø was considered to be an 

uncommonly modeled concept, one of the major themes for concept sets expected to 

harbor errors at a high rate [4]. More specifically, when the top area Ø for a given 

hierarchy is disproportionately large, this can be taken to be anomalous. This means that 

a high percentage of concepts in the hierarchy suffer from a lack of roles and inherent 

under-definition. The BP hierarchy is an example where this phenomenon exists. To be 

sure, there are concepts that rightfully do not have any roles. But those are typically 

concepts capturing general subjects or categories, for which no roles are relevant due to 

their general nature, e.g., Pathologic Process and Reproductive Process. Typically, such 
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concepts reside close to the hierarchy’s root as its children or grandchildren. However, in 

general, the number of such concepts is expected to be relatively small.  

This study proposed that an anomalous top area warrants special attention in QA 

efforts in regard to the error of omission “missing role.”  The following Hypothesis 5.10 

was formulated. 

Hypothesis 5.10: If a large percentage of a hierarchy’s concepts are in the top 

area of its area taxonomy, then the percentage of concepts in the top area that are lacking 

roles is statistically significantly higher than the percentage of such concepts in other 

areas. 

A QA study was conducted to assess Hypothesis 5.10. In the study, the QA 

analysis of the BP hierarchy’s top-area concepts and control concepts was carried out 

manually by the domain expert Dr. Yan Chen, who has medical training and extensive 

experience in ontology QA. A manual review by a domain expert is required since human 

understanding is needed for such judgements. However, the detection of sets of concepts 

with high likelihood of errors was performed algorithmically. The missing-role errors 

found in the analysis were submitted for secondary review and confirmation by a curator 

of the NCIt. 

In some hierarchies of large ontologies, even the top area is very large, and a QA 

review of all its concepts is not practical. For example, in the February 2015 release of 

NCIt, the Disease, Disorder, or Finding hierarchy contains 25,360 concepts, and its top 

area has 14,347 concepts. Similarly, the top area in the Clinical finding hierarchy of 

SNOMED CT contains 7,000 concepts. In such a case, the challenge is to narrow down 

the QA effort to a more promising subset of the top area. This is where another version of 
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“complex modeling of concepts” was employed.  

One way to measure the complexity of a concept is by the number of roles 

defined for it as in the two Sections 5.1.4 and 5.1.5. A concept with six roles is likely to 

be more complex than a concept with, say, one or two roles. Intuitively, it is more 

difficult to correctly model a complex concept than it is for a simpler concept, and thus 

there is a higher likelihood of introducing a modeling error for the former. However, this 

measure of complexity is not relevant to the top area, where concepts have no roles at all. 

Another way of characterizing the notion of “complex concept” in that context was 

needed. 

The hierarchical distance of concepts from the root of the top area is one rational 

way to measure the complexity of concepts in the top area. For example, DNA Major 

Groove Binding has a path of seven IS-A links to the root concept, Biological Process, of 

the whole hierarchy (see Figure 5.10). The concepts along the path accumulate more 

complexity in their nature and definitions as they are getting farther away from the root. 

 

Figure 5.10 Path of seven IS-A links to the root. 



 

148 

In this light, the assumption is that the likelihood of a missing-role error increases with 

the additional refinement and complexity associated with the increasing distance from the 

root. In other words, one can expect a higher percentage of concepts with missing roles at 

the top area’s levels with higher level numbers, where “level” is defined as the number of 

IS-A links in the path from the root to a given concept.  

For example, in Figure 5.10, the level of DNA Major Groove Binding is seven. By 

definition, the root, Biological Process, resides on Level 0. (When a concept has multiple 

parents—and hence there are multiple paths to the root—its longest path defines its level. 

Topological sort [133] can be used to calculate the longest-path distance for all concepts 

in the top area in linear time.) Assuming a continuum of increased complexity along a 

path of concepts from the root, the levels of the hierarchy are divided into two halves, the 

upper and lower halves, with the expectation of more missing roles in the upper-half (by 

path length) of the hierarchy where concepts are more complex.  

The above assumption has practical implications for QA in the case where the top 

area is too large to be reviewed in its entirety. In such a case, it is recommended that QA 

processing be concentrated on the levels with higher level numbers, since their concepts 

are generally more complex and are expected to have more missing roles. These levels 

appear lower in the diagram. In this regard, the following Hypothesis 5.11 was tested in 

the study. In this hypothesis, the phrase “upper-half levels” refers to levels with the 

numbers
n

2

 
 
 

, 
n

2

 
 
 

+ 1, …, n, assuming there are n levels in total in the top area. These are 

the levels farthest from the root. The “lower-half levels” are 0, 1, …, 
n

2

 
 
 

 – 1. These 

levels appear closer to the root in the diagram. For example, in Figure 5.10, where there 
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are eight levels, the lower-half levels are 0, 1, 2, and 3, and the upper-half levels are 4, 5, 

6, and 7. 

Hypothesis 5.11: Concepts in the upper-half levels of the top area have a higher 

likelihood of missing-role errors than concepts in the lower-half levels. 

Since the BP hierarchy has an unusually large top area of 513 concepts (44.8% of 

the overall hierarchy), in the study, all concepts of its top area were reviewed for the 

specific error of “missing role.” The number of erroneous concepts found in each level 

and their percentages were analyzed. As a control group, a random sample of 100 

concepts was selected from all areas excluding the top area. However, since previous 

research with the NCIt BP hierarchy, mentioned in Section 2.3, by Min et al. [5] reported 

a higher likelihood of errors in small partial-areas, concepts from such groups were 

excluded so as not to bias this study. 

Note that the QA analysis of concepts in the top area has potential implications 

beyond that area. Specifically, if a concept C from the top area is found to be missing a 

role R pointing to a target concept D, then all of C’s descendant concepts that do not have 

the role R, both inside and outside the top area, should also have the role R. Such a role R, 

if added, will point either to the same target D or to a descendant of D. If some such 

descendants do not have R, then they must be missing it. Hence, there is a potential 

propagation of the QA efforts for the top area into other areas of the hierarchy. Such 

propagation will save the QA analyst effort, since the additional concepts to be reviewed 

can be identified automatically by looking for missing roles.  

5.2.2.2 Results. The overall results are summarized in Table 5.36, which shows the 

level distribution of concepts in the top area and the number of concepts found to be  
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Table 5.36 Missing-role Error Distribution by Level in the Top Area 

 

Level # Concepts # Concepts Missing Roles % of Concepts Missing Roles 

0 1 0 0% 

1 7 0 0% 

2 69 15 21.7% 

3 138 53 38.4% 

4 125 58 46.4% 

5 88 61 69.3% 

6 44 32 72.7% 

7 14 8 57.1% 

8 23 5 21.7% 

9 4 0 0% 

Total: 513 232 45.2% 

 

 

missing roles at the different levels. For example, at Level 5, consisting of 88 concepts, 

61 concepts (69.3%) were missing roles. Out of the 513 concepts in the top area, 45.2% 

were missing roles. Furthermore, as the level number increases, the percentage of 

concepts missing roles at each level also increases. The exceptions to this are Levels 7, 8, 

and 9, probably due to the fact the numbers of concepts at these three levels are relatively 

small. It is not surprising that there are no concepts missing roles at Level 0 and Level 1, 

because these concepts are very general and roles are often introduced at more specific 

levels. For example, two general concepts at Level 1 are Regulatory Process and 

Pathologic Process. 

Table 5.37 lists the number of concepts reported as having missing roles, for each 

different kind of role, and how many of them were confirmed. For example, 103 concepts 

were deemed to be missing the role Location, but only 84 of these were confirmed in the 

secondary review. As can be seen in the table, the largest numbers of missing roles in the  
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Table 5.37 Number of Concepts in the Top Area Reported Missing Roles for Each Role 

Kind 

 

Role # Concepts w/Missing Role 
# Concepts Confirmed 

by Curator 

Location 103 84 

Initiator Chemical or Drug 1 0 

Initiator BP 2 0 

Resulting Anatomy 1 1 

Resulting BP 3 1 

Resulting Chemical or Drug 20 10 

Part of Process 113 4 

Total: 232 99 

 

 

initial QA analysis appeared with respect to Location and Part of Process. But the 

curator’s highest levels of agreements were for Location (82%) and Resulting Chemical 

or Drug (50%).  

Table 5.38 shows five examples of concepts missing various kinds of roles 

confirmed by the curator of NCIt. For example, Adrenal Hormone Activity Induction is 

indeed missing the role Location that should be directed to the concept Adrenal Gland. 

On the other hand, Table 5.39 shows some examples of findings that were rejected by the 

curator, along with accompanying reasons. For example, initial QA analysis deemed the 

concept Glucocorticoid Secretion Process to be missing the Resulting Chemical or Drug 

role directed to Glucocorticoid. However, while it is true that in order for a product (e.g., 

a hormone) to be secreted, it first has to be produced, the set of processes (and enzymes) 

involved in production may not overlap with those involved in secretion. (Thyroid 

hormone is a good example of a product where production and secretion are two 

completely separate processes.) 
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Table 5.38 Examples of Concepts Confirmed to Have Missing Roles in the Top Area for 

Different Roles 

 

Role Example Confirmed Concept 

Missing Role 

Target of Missing 

Role 

Location Adrenal Hormone Activity 

Induction 

Adrenal Gland 

Resulting Anatomy Coagulation Process Fibrin 

Resulting BP Evolution Genetic Drift 

Resulting Chemical or Drug Histamine Production Histamine 

Part of Process Postpartum Recovery Postpartum Process 

 

 

Table 5.39 Rejected Examples of Concepts Missing Roles in the Top Area for Different 

Roles 

 

Role Reported Example of 

Concept Missing Role 

Proposed Target 

of Missing Role 

Reason for 

Rejection 

Location RNA Processing Nucleus Not always true 

Resulting BP Antigen Binding 
Immune Response 

Process 
Not always true 

Resulting 

Chemical or 

Drug 

Glucocorticoid 

Secretion Process 
Glucocorticoid 

Secretion processes 

do not produce 

chemicals 

Part of Process Defecation 
Gastrointestinal 

Process 

Gastrointestinal 

Process is the parent 

of Defecation 

  

 

The examples of Table 5.39 demonstrate the subtleties of the modeling issues 

involved and that it is possible that different experts differ in their opinions. The last 

example in Table 5.39 demonstrates two legitimate modeling options. Defecation IS-A 

Gastrointestinal Process and can also be viewed as Part of Process linked to 

Gastrointestinal Process. The curator, however, followed rules established in the overall 

modeling of the BP hierarchy. 

Out of the 100 control concepts gleaned from non-top areas, 13 concepts were 

found by the domain expert to be missing roles. Table 5.40 shows the contingency table 
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Table 5.40 The 2x2 Contingency Table for the Concepts with Errors in the Top Area and 

Non-top Areas 

 

 # Erroneous Concepts # Concepts w/o Errors 

Non-top areas 13 87 

Top area 232 281 

 

 

for the control (concepts in non-top areas) and study concepts (those in the top area). The 

Fisher’s exact test two-tailed [118] p-value is less than 0.0001, which means the result 

has statistical significance. In other words, the concepts in the top area are significantly 

more likely to have missing roles than concepts in non-top areas. Thus, Hypothesis 5.10 

is confirmed. Out of the 13 erroneous control concepts, the secondary review of the NCIt 

curator confirmed 10 concepts (76.9% = 10/13). Table 5.41 is the corresponding 

contingency table for erroneous concepts in the top and non-top areas confirmed by the 

NCIt curator. The two-tailed p-value by Fisher’s exact test is 0.0311, which also 

confirmed Hypothesis 5.10 only considering the confirmed erroneous concepts. 

Table 5.41 The 2x2 Contingency Table for Erroneous Concepts in the Top Area and 

Non-top Areas Confirmed by the NCIt Curator 

 

 # Erroneous Concepts # Concepts w/o Errors 

Non-top areas 10 90 

Top area 99 414 

 

 

Table 5.42 summarizes the comparison between concepts missing roles at the 

lower-half levels (Levels 0–4) and those missing roles at the upper-half levels (Levels 5–

9). There are 340 concepts in the lower-half levels, which is nearly twice of the 173 

concepts in the upper-half levels. However, the percentage of concepts missing roles in 

the upper-half levels (61.3%) is higher than that in the lower-half levels (37.1%). The 
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two-tailed p-value is less than 0.0001 by Fisher’s exact test. Thus, the results confirm 

Hypothesis 5.11 that concepts in the upper-half levels (Levels 5–9) of the top area have a 

significantly higher likelihood of missing roles than those in the lower-half levels. 

Table 5.42 The 2x2 Contingency Table for Concept Errors between the Lower-half 

Levels and Upper-half Levels 

 

Level Range # Erroneous Concepts # Concepts w/o Errors 

0–4 (lower-half) 126 214 

5–9 (upper-half) 106 67 

 

 

Out of the 513 concepts in the top area, 354 concepts (69%) are leaves, i.e., do not 

have any descendants. Among the 159 non-leaf concepts, 68 concepts were found to be 

missing roles. Due to role inheritance, after correction, the descendants of those 68 

concepts should now also have the same kinds of roles, with targets that are the same or 

more specific. Therefore, for those descendants outside the top area, it is necessary to 

check whether they have the roles that were missing in their ancestors in the top area. The 

results for the descendants of these 68 concepts are shown in Table 5.43. For five of them 

(Row 1), all their descendants are in non-top areas. For another 40 (Row 3), all their 

descendants reside with them in the top area. For the remaining 23 concepts (Row 2), 

some of their descendants are in the top area with them and others reside in areas below. 

The number of affected descendants reported (last column of Table 5.43) is the number 

of descendant concepts missing the same roles as their ancestors plus the number of 

descendants having the roles, but with targets different from their ancestors’ (and not 

more specific than those). Figure 5.11 shows the new area taxonomy of the Biological 

Process hierarchy to illustrate the changes that occurred as a result of the QA analysis, 

including corrections in the non-top areas due to the propagation of the additional roles. 
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Table 5.43 Affected Descendants of the 68 Non-leaf Concepts Missing Roles in the Top 

Area 

 

 # Concepts 
Total # Descendants 

Outside Top Area 

# Affected 

Descendants 

All Descendants are in 

Non-Top Areas 
5 15 5 

Some Descendants are 

in the Top Area 
23 102 50 

All Descendants are in 

the Top Area 
40 N/A N/A 

Total: 68 117 55 

 

 

 

Figure 5.11 Revised area taxonomy for the Biological Process hierarchy incorporating 

the confirmed corrections. Pink highlights the areas that are different from the original in 

Figure 5.6. 

 

 

In conclusion, this study introduced a QA methodology targeted at missing-role 

errors. The foundation of the approach was an Abstraction Network called “area 

taxonomy.” An anomalous feature of the area taxonomy, when present, was used as an 
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indicator in guiding the QA analysts in their search for missing-role errors. The 

methodology was demonstrated with an application to the NCIt’s Biological Process 

hierarchy. A statistically significant number of missing-role errors was discovered by an 

external reviewer and confirmed by a curator of the NCIt. Overall, the methodology can 

be seen as a useful addition to the arsenal of tools available to QA personnel. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 

In conclusion, this dissertation conducted several studies based on Abstraction Networks 

with the goal of trying to solve the Big Knowledge to Use (BK2U) problem, which is the 

implied problem of the Big Data to Knowledge (BD2K) challenge. The studies in this 

dissertation can be summarized under the following two main subjects: 

1. Advanced Abstraction Networks for Big Knowledge summarization and 

visualization: the weighted aggregate partial-area taxonomy and the Ingredient 

Abstraction Network (IAbN). 

2. Applications of the Big Knowledge summarization and visualization techniques: 

the identification of major topics in ontologies, the multi-layer multi-granularity 

visualization scheme for ontology comprehension, the discovery of Drug-Drug 

Interactions and the family-based quality assurance of large biomedical ontologies. 

The weighted aggregate partial-area taxonomy was developed based on the 

partial-area taxonomy, which provides a more compact summary of ontologies to get a 

better big picture of the content in ontologies compared with the partial-area taxonomy. 

The weighted aggregate partial-area taxonomy was applied to identify and visualize 

major topics in SNOMED CT’s Specimen hierarchy with the guidance of a list of gold 

standard topics provided by a domain expert. A new multi-layer multi-granularity 

visualization approach based on the weighted aggregate partial-area taxonomy was 

developed for the comprehension of Big Knowledge in ontologies. 
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The weighted aggregate partial-area taxonomy will be applied to enhance an 

existing ontology, for example, the Ophthalmology-related components in SNOMED CT. 

According to Ophthalmologists, the current components in SNOMED CT are not suitable 

for coding in an EHR, thus, they are not used in clinical practice as desired. In order to 

improve this situation, first, a weighted aggregate partial-area taxonomy will be created 

for each of the subhierarchies related to Ophthalmology, which will provide major 

subjects in the subhierarchy, serving as a “big picture.” The weighted aggregate partial-

area taxonomy will be expanded to derive a second level weighted aggregate partial-area 

taxonomy, showing more details than the first level. These first two levels will be 

modified to make each of the subhierarchies more suitable to express clinical terms used 

in practice. After that, each node in the second level partial-area taxonomy will be further 

expanded into a subhierarchy. This process will result in a more practical subhierarchy 

that will be used to code ophthalmological concepts in an EHR. 

Due to NDF-RT’s structure, the previously developed Abstraction Networks are 

not suitable to summarize most of NDF-RT’s hierarchies. Hence, in this dissertation, the 

Ingredient Abstraction Network (IAbN) was designed to summarize the NDF-RT’s 

Chemical Ingredients hierarchy. In fact, the idea of the IAbN could be applied to the 

other six hierarchies in NDF-RT, except for the Pharmaceutical Preparations hierarchy. 

In this dissertation, the IAbN was applied to discover missing Drug-Drug interactions 

(DDIs) from First Databank’s DDI knowledge base.  

In March 2018, NDF-RT was replaced by the Medication Reference Terminology 

(MED-RT), which refers to clinical drug concepts, chemical ingredient concepts, and 

assorted other concepts in external terminologies such as RxNorm, MeSH, and 
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SNOMED CT, and maintains the relationships between concepts. In future, a virtual 

Chemical Ingredients hierarchy will be built according to the relationships between 

clinical drug concepts and chemical ingredient concepts. A new Abstraction Network 

called Virtual Ingredient Abstraction Network (VIAbN) will be derived to summarize and 

visualize the virtual Chemical Ingredients hierarchy. The VIAbN could be applied to 

discover missing Adverse Drug Reactions in First Databank’s knowledge base. 

Chapter 5 presented eight Abstraction Network-based quality assurance (QA) 

studies on different hierarchies in an ontology or on different ontologies. The two 

characterizations of concepts with higher error rates, complex concepts and uncommonly 

modeled concepts, were successfully utilized to guide the QA studies. Such studies are 

needed in order to demonstrate the validity of the family-based quality assurance 

approach. A quality assurance technique is required to be successfully demonstrated for 

six out of six BioPortal ontologies in the same family to claim that it is applicable to the 

whole family.  

The three studies in Chapter 5 on overlapping concepts within partial-area 

taxonomies for the NCIt’s Neoplasm subhierarchy and Gene hierarchy and the SNOMED 

CT’s Infectious disease hierarchy, combined with the previous three studies by the 

SABOC team on another three ontologies in the same family, made the overlapping 

concept QA technique applicable to the whole family with 76 ontologies in BioPortal. 

Furthermore, new QA techniques were introduced in this dissertation, i.e., utilizing the 

partial-area sub-taxonomy to look for additional overlapping concepts to increase the 

impact of the overlapping concept QA technology, utilizing group auditing and error 

propagation methods to save QA efforts. In future, the additional overlapping concept 
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technique will be investigated in other large hierarchies/ontologies with a limited number 

of overlapping concepts in their partial-area taxonomies. 

The two studies on the NCIt’s Biological Process hierarchy and the ChEBI 

ontology focused on concepts with many lateral relationship types in area taxonomies, 

which is another type of complex concepts, that is, laterally complex concepts. This QA 

technique was demonstrated successfully on the above two ontologies. In order to show 

that this technique is applicable to a whole family, in future, four additional studies on 

another four ontologies in this family will be conducted.  

Furthermore, in this dissertation, the new Abstraction Network IAbN was applied 

to support the quality assurance of the Chemical Ingredients hierarchy in NDF-RT. The 

two new hypotheses for this topic focused on a new characterization of complex concepts, 

namely chemical ingredients in ingredient groups with multiple parent ingredient groups. 

In addition, the chemical ingredients with more parent ingredient groups were 

demonstrated as more complex, thus, more likely to have errors. 

For uncommonly model concepts, the study on the NCIt’s Neoplasm subhierarchy 

investigated concepts in small partial-areas within its partial-area taxonomy. This is the 

third study showing that the small partial-area QA technique is successful. The previous 

two studies by the SABOC team demonstrated this technique successfully on the NCIt’s 

Biological Process hierarchy and the SNOMED CT’s Procedure hierarchy. In future, 

three more QA studies on the ChEBI ontology, the SNOMED CT’s Specimen hierarchy, 

and the NCIt’s Gene hierarchy belonging to the same family, will be performed to meet 

the requirement of “six out of six” under the family-based QA framework.  
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There were 44.8% of concepts in the NCIt’s Biological Process hierarchy having 

no lateral relationships, which was indicating that these concepts may miss lateral 

relationships. In the study on all these concepts, 45.2% were found missing lateral 

relationships. This study also confirmed the hypothesis that concepts in the area without 

any relationship are more likely to miss relationships than concepts in other areas within 

the area taxonomy. The complexity measure for the former type of concepts was explored 

as well, which will guide ontology curators to focus on auditing more complex concepts 

without relationships to achieve a better error yield, when it is impossible to perform 

quality assurance on all concepts without any relationship in the hierarchy/ontology. In 

future, this phenomenon will be investigated on other ontologies with a large number of 

concepts without lateral relationships, such as the NCIt’s Neoplasm subhierarchy and the 

SNOMED CT’s Clinical finding hierarchy. 
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