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ABSTRACT

NOVEL IMAGE DESCRIPTORS AND LEARNING METHODS FOR IMAGE
CLASSIFICATION APPLICATIONS

by
Ajit Puthenputhussery

Image classification is an active and rapidly expanding research area in computer vision

and machine learning due to its broad applications. With the advent of big data, the

need for robust image descriptors and learning methods to process a large number of

images for different kinds of visual applications has greatly increased. Towards that

end, this dissertation focuses on exploring new image descriptors and learning methods

by incorporating important visual aspects and enhancing the feature representation in the

discriminative space for advancing image classification.

First, an innovative sparse representation model using the complete marginal Fisher

analysis (CMFA-SR) framework is proposed for improving the image classification

performance. In particular, the complete marginal Fisher analysis method extracts the

discriminatory features in both the column space of the local samples based within

class scatter matrix and the null space of its transformed matrix. To further improve

the classification capability, a discriminative sparse representation model is proposed by

integrating a representation criterion such as the sparse representation and a discriminative

criterion. Second, the discriminative dictionary distribution based sparse coding (DDSC)

method is presented that utilizes both the discriminative and generative information to

enhance the feature representation. Specifically, the dictionary distribution criterion reveals

the class conditional probability of each dictionary item by using the dictionary distribution

coefficients, and the discriminative criterion applies new within-class and between-class

scatter matrices for discriminant analysis. Third, a fused color Fisher vector (FCFV)

feature is developed by integrating the most expressive features of the DAISY Fisher

vector (D-FV) feature, the WLD-SIFT Fisher vector (WS-FV) feature, and the SIFT-FV



feature in different color spaces to capture the local, color, spatial, relative intensity,

as well as the gradient orientation information. Furthermore, a sparse kernel manifold

learner (SKML) method is applied to the FCFV features for learning a discriminative

sparse representation by considering the local manifold structure and the label information

based on the marginal Fisher criterion. Finally, a novel multiple anthropological Fisher

kernel framework (M-AFK) is presented to extract and enhance the facial genetic features

for kinship verification. The proposed method is derived by applying a novel similarity

enhancement approach based on SIFT flow and learning an inheritable transformation on

the multiple Fisher vector features that uses the criterion of minimizing the distance among

the kinship samples and maximizing the distance among the non-kinship samples.

The effectiveness of the proposed methods is assessed on numerous image classi-

fication tasks, such as face recognition, kinship verification, scene classification, object

classification, and computational fine art painting categorization. The experimental results

on popular image datasets show the feasibility of the proposed methods.
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CHAPTER 1

INTRODUCTION

Content-based image classification applications have expanded greatly due to the advent

of an image era of big data resulting in the availability of large number of color images in

the internet. With the wide spread availability of digital cameras, cheap data storage and

better access of Internet services around the world, millions of color images are created,

shared and stored over the Internet. These large number of digital images necessitate the

development of automated learning systems that can classify these images into different

categories with minimal or no human intervention. Image classification is a challenging

topic in the computer vision and machine learning research areas due to the complexity of

different visual elements in images and the difficulty to correctly understand the semantics

of images. Figure 1.1 shows a general image classification framework which contains three

major steps. The first step is feature extraction from the input images to efficiently represent

interesting parts of images as a compact feature vector. In some cases, the images may be

pre-processed using some image pre-processing techniques to reduce the background noise.

The second step is the feature enhancement process so as to ensure that the feature vectors

extracted are discriminative to improve the classification performance. Note that only the

images in the training set are used to learn the model for feature enhancement. The final

step is classification where the enhanced features are used to learn a classifier and the labels

are predicted for the images of the test set.

Recently, several machine learning methods such as sparse coding, discrimination

analysis have been broadly applied for different image classification applications such as

scene and object recognition [3, 27, 71, 123, 39, 58, 87, 65, 66], face recognition [71,

118, 113, 119, 129, 87, 65, 66], human action recognition [32, 58], kinship verification

[77, 18, 112, 70, 85, 67, 64], and fine art painting classification [78, 104, 44, 81, 108, 87,

1
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Figure 1.1 A general image classification framework with three major steps: feature
extraction, feature enhancement and classification.

65, 66]. Studies in cognitive psychology [80, 107] show that the human visual system

is more accurate and robust to find discriminative visual elements in images and a model

based on the biological visual cortex is likely to achieve better performance.

This proposal, therefore, focuses on developing image descriptors and learning

methods by incorporating cues from the human visual system. Specifically, first, a

novel fused color Fisher vector (FCFV) feature is proposed in order to capture different

visual information such as color, local, spatial, relative intensity and gradient orientation

information. To handle the inconsistencies of different visual classes in images, the FCFV

feature is computed by fusing the DAISY Fisher vector (D-FV) feature, Weber-SIFT

Fisher vector (WS-FV) feature and the color SIFT Fisher vector features in different color

spaces. Second, a sparse representation model using the complete marginal Fisher analysis

(CMFA) framework is proposed to capitalize on both the representation aspect of sparse

coding methods and the discrimination aspect of the enhanced marginal Fisher analysis

method. A potential shortcoming of the MFA method [10] is the principal component



3

analysis (PCA) [25] step which may discard the null space of the local samples based

within class scatter matrix containing important discriminatory information. Our proposed

CMFA method extracts the discriminatory features in both the column space of the local

samples based within class scatter matrix and the null space of its transformed matrix

to enhance the discriminatory power. To further improve the classification capability,

a discriminative sparse representation model is learned using the CMFA-SR features

by integrating a representation criterion and a discriminative criterion. A variant of

the above method is the sparse kernel manifold learner where the discriminative sparse

representation model is learned on the FCFV features. Third, a novel discriminative

dictionary distribution based sparse coding (DDSC) method is presented that provides new

insights and leads to an effective representation and classification framework. Specifically,

the proposed DDSC method integrates two new criteria, namely a discriminative criterion

and a dictionary distribution criterion into the conventional sparse representation criterion.

Finally, a new multiple anthropological Fisher kernel framework (M-AFK) is proposed

for kinship verification applications. The genetic inheritable features in kinship relations

are enhanced by matching densely sampled SIFT features using the SIFT flow algorithm

[60]. An inheritable transformation is further applied to multiple Fisher vector features

with the objective to increase the distance between the non-kinship samples and decrease

the distance between the kinship samples.

The proposed methods are evaluated on several popular and publicly available image

datasets associated with different image classification tasks such as scene and object

classification, fine art painting classification, face recognition, kinship verification and fine

grained image classification. Experimental results and analysis show the feasibility and

effectiveness of the proposed methods.

This proposal is organized in the following manner. Chapter 2 discusses some related

work by other researchers on image descriptors, manifold and deep learning methods,

sparse coding algorithms, metric learning methods, kinship verification and painting
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Figure 1.2 Some example images of different image classification datasets.

classification. Chapter 3 explains the FCFV feature and the SKML method for different

image classification applications. Chapter 4 discusses CMFA-SR model and the derivation

of the largest step size, optimization procedure and the screening rule. Chapter 6 introduces

the SF-GFVF feature to enhance and encode the genetic features of parent and child image

in kinship relations. Chapters 3, 4 and 6 also include detailed experimental results and

analysis performed on various popular and publicly available image datasets. Finally,

chapter 7 outlines some proposed research.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Image Descriptors

Local, color, spatial, intensity information, and gradient orientation information are the

cues based on which human beings can distinguish between images, and hence they

contribute significantly in image classification applications. Van de Weijer et al. [105]

showed the effectiveness of color names learned from images for texture classification

and action recognition. The work of van de Sande [104] showed that SIFT descriptor

incorporated with color information result in a robust local descriptor for classification

purposes. Guo et al. [33] proposed the complete LBP descriptor wherein a region in an

image is represented by its center pixel and a local difference sign-magnitude transform.

Shechtman et al. [95] proposed the self-similarity descriptor which measures similarity of

visual entities based on matching internal layout of the image. Bosch et al. [9] introduced

a PHOG descriptor that represents local image shape and its spatial layout, together with

a spatial pyramid kernel so that the shape correspondence between two images can be

measured by the distance between their descriptors using the kernel. The GIST descriptor

developed by Oliva et al. [79] is based on a very low dimensional representation of the

scene known as spatial envelope that generates a multidimensional space in which scenes

sharing membership in semantic categories are projected as close as possible.

2.2 Manifold Learning and Deep Learning Methods

In image classification applications, different manifold learning methods, such as the

locality sensitive discriminant analysis (LSDA) [10], the locality preserving projections

[35], the marginal Fisher analysis (MFA) [118], have been widely used to preserve data

locality in the embedding space. The MFA method based on the graph embedding

framework was presented by Yan et al. [118] by designing two graphs that characterize the

5
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intraclass compactness and the interclass separability. Cai et al. [10] proposed the LSDA

method that maximizes the margins between data points of different classes by discovering

the local manifold structure. A geometric lp norm feature pooling (GLP) method was

proposed by Feng et al. [23] to improve the discriminative power of pooled features by

preserving their class-specific geometric information.

Popular deep learning methods, such as the convolutional neural networks (CNN),

the deep autoencoders, and the recurrent neural networks, have received increasing

attention in the multimedia community for challenging visual recognition tasks. Krizhevsky

et al. [47] developed the AlexNet, which was the most notable deep CNN that contains 5

convolution layers followed by max-pooling layers, and 3 fully connected layers. The

ZFNet proposed by Zeiler et al. [99] improved upon the AlexNet architecture by using

smaller filter sizes, and developed a method to visualize the filters and weights correctly.

He et al. [34] developed residual networks with a depth of upto 152 layers that contain skip

connections and inter-block activation for better signal propagation between the layers.

2.3 Metric Learning

Metric learning methods have gained a lot of attention for computer vision and machine

learning applications. In metric learning, an optimization objective function is developed

from training images to learn the distance metric. Different metric learning methods

have different objective functions designed for their specific purpose. Some representative

metric learning methods include principal component analysis (PCA) [56], Laplacian eigen

maps (LE) [7], linear discriminant analysis (LDA) [17], large margin nearest neighbor

(LMNN) [112], information theoretic metric learning (ITML) [17] and cosine similarity

metric learning (CSML) [77]. Some data samples in the training data provide more

information towards learning the metric, therefore higher priority should be given to these

data samples. But most existing metric learning methods do not differentiate important

data samples and treat all the samples equally leading to reduction in accuracy. In [70],



7

Lu et al. proposed the Neighborhood Repulsed Metric Learning (NRML) in which the

intraclass samples within a kinship relation are pulled as close as possible and interclass

samples are pushed as far as possible. While NRML has achieved good performance in

kinship verification, there are still some shortcomings. First, the NRML method derives

the features and the metric learning independently, therefore theoretical relation cannot be

established between them. Second, the objective function can face the issue of dominance

of one term in the function over the other terms leading to inaccurate results.

2.4 Sparse Coding

Several sparse representation methods based on supervised learning methods have been

developed for learning efficient sparse representations or incorporating discriminatory

information by combining multiple class specific dictionary for different visual recognition

applications. In particular, the sparse representation methods can be roughly categorized

into three categories. The first category of sparse representation methods aims to learn

a space efficient dictionary by fusing multiple atoms from the initial large dictionary.

Fulkerson et al. [26] proposed an object localization framework that efficiently reduces the

size of a large dictionary by constructiong small dictionaries based on the agglomerative

information bottleneck. The work of Lazebnik et al. [49] present a technique for

learning dictionaries by using the information-theoretic properties of sufficient statistics.

Jiang et al. [41] presented an efficient greedy based optimization approach for modeling

the discriminative dictionary learning by maximizing the monotonically increasing and

submodular properties of a graph topology selection problem. Qiu et al. [89] developed an

approach for dictionary learning of action attributes by integrating the mutual information

for appearance information and class distributions between the learned dictionary and the

rest of the dictionary space in the objective function.

The second category combines multiple class specific sub-dictionaries to improve the

discriminatory power of the sparse representation method. Yang et al. [123] proposed a
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Fisher discrimination discriminatory learning framework to learn a structured dictionary

where each sub-dictionary has specific class labels. Mairal et al. [73] proposed a sparse

representation based framework by jointly optimizing both the sparse reconstruction and

class discrimination components for learning multiple dictionaries. Zhou et al. [132]

presented a joint dictionary learning algorithm that jointly learns multiple class-specific

dictionaries and a common shared dictionary by exploiting the visual correlation within

a group of visually similar objects. A dictionary learning approach for positive definite

matrices was proposed by Sivalingam et al. [101], where the dictionary is learned by

alternating minimization of sparse coding and dictionary update stages.

The final category of sparse representation methods co-trains the sparse represen-

tation and discriminative dictionary by adding a discriminant term to the objective function.

Yang et al. [121] proposed supervised hierarchical sparse coding models where the

dictionary is learned via back-projection where implicit differentiation is used to relate

the sparse codes to the dictionary. Jiang et al. [40] presented a label consistent K-SVD

algorithm where a label consistency constraint and a classification performance criteria are

integrated to the objective function to learn a reconstructive and discriminative dictionary.

Zhang et al. [129] developed a discriminative K-SVD algorithm to learn an over-complete

dictionary by directly incorporating labels in the dictionary learning stage.

To increase the computational efficiency of the sparse representation methods and to

improve the scalability to large datasets, screening rules are receiving increasing attention

by researchers. Wang et al. [111] proposed a sparse logistic regression screening rule to

identify the zero components in the solution vector to effectively discard features for the

l1 regularized logistic regression. Xiang et al. [117, 116] presented a dictionary screening

rule to select a subset of codewords to use in Lasso optimization and derived fast Lasso

screening tests to find which data points and codewords are highly correlated. A new set

of screening rules for the Lasso problem were developed by Wang et al. [109] that uses
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non-expansiveness of the projection operator to effectively identify inactive predictors of

the Lasso problem.

2.5 Kinship Verification

Facial images convey important characteristics such as identity information, kinship

information, facial expressions, gender of a person, ethnicity, emotional information,

mental state of a person and so on. Among these many characteristics, kinship is believed

to be one of the most dominant one since children naturally inherit genetic features from

their parents [115]. Subsequent studies in social sciences have confirmed that children

resemble their parent more than other people and they may resemble a particular parent

more at different ages [4]. Deghan et al. [18] proposed an algorithm that fuses the

features and metrics using a gated autoencoders and a discriminative neural network.

The hybrid framework learns the genetic features in parent-offspring relationships to

improve the kinship verification performance. A neighborhood repulsed metric learning

(NRML) method was proposed by Lu et al. [70] in which the distance of interclass

samples are pushed as far as possible and the distance between intraclass samples within

a kinship relation are pulled as close as possible for better verification accuracy. Lan et

al. [48] proposed a quaternionic Weber local descriptor (QWLD) framework which uses

quaternionic representation to handle all color channels of the image in a holistic way while

preserving their relations, and applies Weber’s law to ensure that the derived descriptors are

robust and discriminative. A hierarchial learning representation was presented by Kohli et

al. [46] that develops a compact feature representation by encoding relational information

present in images using filters and contractive regularization penalty. The mixed bi-subject

kinship verification problem is solved using a multi-view multi-task learning proposed by

Qin et. al [88] where the transformation matrices for all the relations jointly learned as

well as for a single relation is fused to improve the kinship verification performance. Zhou

et al. [133] proposed a multiview scalable similarity learning (SSL) method by fusing



10

the diagonal similarity models from multiple feature representations in a coherent online

process to leverage the interactions and correlations in multiview kin data.

2.6 Computational Fine Art Painting Categorization

Recently, several research efforts have been invested for painting classification using

computer vision techniques. Shamir et al. [93] described a method for automated

recognition of painters and schools of art based on their signature styles. Sablating et

al. [92] examined the structural signature of a painting based on the brush strokes in potrait

miniatures. The work of Zujovic et al. [134] described an approach to automatically

classify digital pictures of paintings by using the salient aspects of a painting such as

color, texture and edges. Shamir and Tarakhovsky [94] showed that automatic computer

analysis can group artists by their artistic movements, and provide a map of similarities and

influential links that is largely in agreement with the analysis of art historians. Siddique

et al. [97] presented an efficient approach for learning a mixture of kernels by greedily

selecting exemplar data instances corresponding to each kernel using AdaBoost for painting

dataset classification. A multiple visual feature based framework was proposed by Shen

[96] for automatic classification of western painting image collection. The work of Culjak

et al. [16] offered an approach to automatically classify paintings into their genres by

extracting features based on color and texture of the painting.



CHAPTER 3

SPARSE KERNEL MANIFOLD LEARNER FOR IMAGE CLASSIFICATION

3.1 Introduction

The human visual system is much more efficient and robust in classifying different visual

elements in an image, therefore any image classification system based on the human

visual system is likely to achieve good performance for classification tasks. Different

visual aspects in an image such as color, edges, shape, intensity and orientation of objects

help humans to identify and discriminate between images. Pioneer works in cognitive

psychology believe that the human visual cortex represent images as sparse structures as

it provides an efficient representation for later stages of visual processing [80, 107]. A

sparse representation of a data-point can be represented as a linear combination of a small

set of basis vectors allowing efficient storage and retrieval of data. Another advantage of

sparse representation is that it adapts to varying level of information in the image since it

provides a distributed representation of an image. Therefore, we introduce a hybrid feature

extraction method to capture different kinds of information from the image and propose

a discriminative sparse coding method based on manifold learning algorithm to learn an

efficient and robust discriminative sparse representation of the image.

In this chapter, we first present novel DAISY Fisher vector (D-FV) and Weber-SIFT

Fisher vector (WS-FV) features in order to handle the inconsistencies and variations of

different visual classes in images. In particular, the D-FV feature enhances the Fisher vector

feature by fitting dense DAISY descriptors [103] to a parametric generative model. We then

develop the WS-FV by integrating Weber local descriptors [13] with SIFT descriptors and

Fisher vectors are computed on the sampled WLD-SIFT features. An innovative fused

Fisher vector (FFV) is proposed by fusing the principal components of D-FV, WS-FV

and SIFT-FV (S-FV) features. We then assess our FFV feature in eight different color

11
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Figure 3.1 The framework of our proposed SKML method.

spaces and propose several color FFV features. The descriptors that are defined in different

color spaces provide stability against image variations such as rotation, viewpoint, clutter

and occlusions [100] which are essential for classification of images. We further extend

this concept by integrating the FFV features in eight different color spaces to form a

novel fused color Fisher vector (FCFV) feature. Finally, we use a sparse kernel manifold

learner (SKML) method to learn a discriminative sparse representation by integrating the

discriminative marginal Fisher analysis criterion to the sparse representation criterion. In

particular, new intraclass compactness and interclass separability are define based on the

sparse representation criterion under the manifold learning framework. The objective of

the SKML method is to increase the interclass distance between data-points belonging to
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different classes and decrease the intraclass distance between data-points of the same class.

The SKML method can efficiently calculate a global shared dictionary without the need for

computation of sub-dictionaries and hence is suitable for large datasets. The framework

of our proposed SKML method is illustrated in Figure 3.1. Experimental results show that

the proposed approach achieves better results compared to other popular image descriptors

and state-of-the-art deep learning methods on different image classification datasets.

The rest of this chapter is organized in the following manner. Section 3.2 describes

the details of the computation of different Fisher vector features and the SKML method. We

present an extensive experimental evaluation and analysis of the proposed SKML method

for different classification datasets in Sections 3.3 and 3.4 concludes the paper.

3.2 Novel Sparse Kernel Manifold Learner Framework

3.2.1 Fisher Vector

We briefly review the Fisher vector which is widely applied for visual recognition problems

such as face detection and recognition [98], object recognition [38], etc. Fisher vector

describes an image by what makes it different from other images [38] and focuses only on

the image specific features. Particularly, let X = {dt, t = 1, 2, ..., T} be the set of T local

descriptors extracted from the image. Let µλ be the probability density function of X with

parameter λ, then the Fisher kernel [38] is defined as follows:

K(X,Y) = (GX
λ )TF−1

λ GY
λ

(3.1)

where GX
λ = 1

T
5λ logµλ(X), which is the gradient vector of the log-likelihood that

describes the contribution of the parameters to the generation process. And Fλ is the Fisher

information matrix of µλ.

Since F−1
λ is symmetric and positive definite, it has a Cholesky decomposition as

F−1
λ = LT

λLλ. Therefore, the kernel K(X,Y) can be written as a dot product between

normalized vectors Gλ, obtained as GX
λ = LλGX

λ where GX
λ is the Fisher vector of X.
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3.2.2 DAISY Fisher Vector (D-FV)

In this section, we present a new innovative DAISY Fisher vector (D-FV) feature where

Fisher vectors are computed on densely sampled DAISY descriptors. DAISY descriptors

are suitable for dense computation and offers precise localization and rotational robustness

[103], therefore provides improved performance and better accuracy for classification. The

DAISY descriptor [103] D(u0, v0) for location (u0, v0) is defined as follows:

D(u0, v0) = [h̃TΣ1
(u0, v0),

h̃TΣ1
(I1(u0, v0, R1)), ..., h̃TΣ1

(IT (u0, v0, R1)), ...,

h̃TΣQ(I1(u0, v0, RQ)), ..., h̃TΣQ(IT (u0, v0, RQ))]T

(3.2)

where Ij(u, v, R) is the location with distance R from (u, v) in the direction given by j, Q

represents the number of circular layers and h̃Σ(u, v) is the unit norm of vector containing

Σ-convolved orientation maps in different directions. The sampled descriptors are fitted

to a Gaussian Mixture Model (GMM) with 256 parameters. The Fisher vectors are then

encoded as derivatives of log-likelihood of the model.

3.2.3 Weber-SIFT Fisher Vector (WS-FV)

In this section, we propose a new Weber-SIFT Fisher vector (WS-FV) feature that computes

the Fisher vector on Weber local descriptor (WLD) integrated with SIFT features so as

to encode the color, local, relative intensity and gradient orientation information from

an image. The WLD [13] is based on the Weber’s law which states that the ratio of

increment threshold to the background intensity is a constant. The descriptor contains two

components differential excitation [13] and orientation [13] which are defined as follows.

ξ(xc) = arctan[
ν00
s

ν01
s

] and θ(xc) = arctan(
ν11
s

ν10
s

) (3.3)

where ξ(xc) is the differential excitation and θ(xc) is the orientation of the current pixel xc,

xi(i = 0, 1, ...p − 1) denotes the i-th neighbours of xc and p is the number of neighbors,
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Figure 3.2 The color component images of a sample image from the Painting-91 dataset
in different colorspaces.

ν00
s , ν01

s , ν10
s and ν11

s are the output of filters f00, f01, f10 and f11, respectively. The

WLD descriptor extracts the relative intensity and gradient information similar to humans

perceiving the environment, therefore provides stability against noise and illumination

changes. A parametric generative model is trained by fitting to the WLD-SIFT features

and Fisher vectors are extracted by capturing the average first order and second order

differences between the computed features and each of the GMM centers.

3.2.4 Fused Color Fisher Vector (FCFV)

In this section, we first present an innovative fused Fisher vector (FFV) feature that fuses

the most expressive features of the D-FV, WS-FV and SIFT-FV features. The most

expressive features are extracted by means of Principal Component Analysis (PCA) [25].

Particularly, let X ∈ RN be a feature vector with covariance matrix Σ given as follows:Σ =

E[(X − E(X))][(X− E(X))]T where T represents transpose operation and E(.) represents
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expectation. The covariance matrix can be factorized as follows [25]:Σ = φΛφT where

Λ = diag[λ1, λ2, λ3, ....., λN ] is the diagonal eigenvalue matrix and φ = [φ1φ2φ3....φN ]

is the orthogonal eigenvector matrix. The most expressive features of X is given by a new

vector Z ∈ RK : Z = PTX where P = [φ1φ2φ3....φK ] and K < N .

We incorporate color information to our proposed feature as the color cue provides

powerful discriminating information in pattern recognition and can be very effective for

face, object, scene and texture classification [100, 57]. The descriptors defined in different

color spaces provide stability against illumination, clutter, viewpoint and occlusions [100].

To derive the proposed FCFV feature, we first compute the D-FV, WS-FV and SIFT-FV

in the eight different color spaces namely RGB, YCbCr, YIQ, LAB, oRGB, XYZ, YUV

and HSV. Figure 3.2 shows the component images of a sample image from the Painting-91

dataset in different color spaces used in this paper. For each color space, we derive the FFV

by fusing the most expressive features of D-FV, WS-FV and SIFT-FV for that color space.

We then reduce the dimensionality of the eight FFV features using PCA, which derives the

most expressive features with respect to the minimum square error. We finally concatenate

the eight FFV features and normalize to zero mean and unit standard deviation to create the

novel FCFV feature.

3.2.5 Sparse Kernel Manifold Learner (SKML)

In this section, we present a sparse kernel manifold learner (SKML) to learn a compact

discriminative representation by considering the local manifold structure and the label

information. In particular, new within class scatter and between class scatter matrices

are defined constrained by the marginal Fisher criterion [118] and the sparse criterion so

as to increase the interclass separability and reduce the intraclass compactness based on a

manifold learning framework. A discriminative term is then integrated to the representation

criterion of the sparse model so as to improve the pattern recognition performance.
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The features used as input for the SKML method are the FCFV features extracted

from the image. Given the Fisher kernel matrix K = [k1,k2, ...,kn] ∈ Rm×n, which

contains n samples in a m dimensional space, let D = [d1,d2, ...,db] ∈ Rm×b denote

the dictionary that represents b basis vectors and R = [r1, r2, ..., rn] ∈ Rb×n denote the

sparse representation matrix which represents the sparse representation form samples. The

coefficient ri in the sparse representation R correspond to the items in the dictionary D.

In the proposed SKML method, we jointly optimize the sparse representation

criterion and the marginal Fisher analysis criterion to derive the dictionary D and sparse

representation S from the training samples. The objective of the marginal Fisher analysis

criterion is to minimize the intraclass compactness and maximize the interclass separability.

We define new discriminative intraclass compactness M̂w based on the sparse criterion as

follows:

M̂w =
n∑
i=1

∑
(i,j)∈Nw

k (i,j)

(ri − rj)(ri − rj)T (3.4)

where (i, j) ∈ Nw
k (i, j) represents the (i, j) pairs where sample ki is among the nearest

neighbors of sample kj of the same class or vice versa.

And the discriminative interclass separability M̂b is defined as:

M̂b =
m∑
i=1

∑
(i,j)∈Nb

k(i,j)

(ri − rj)(ri − rj)T (3.5)

where (i, j) ∈ N b
k(i, j) represents nearest (i, j) pairs among all the (i, j) pairs between

samples ki and kj of different classes.

Therefore, we define the modified optimization criterion as:

min
D,R

n∑
i=1

{||ki − Dri||2 + λ||ri||1}+ αtr(βM̂w − (1− β)M̂b)

s.t.||dj|| ≤ 1, (j = 1, 2, ..., b)

(3.6)
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Figure 3.3 Some sample images from different visual recognition datasets used for
evaluation of the proposed SKML method.

where tr(.) denotes the trace of a matrix, the parameter λ controls the sparsity term, the

parameter α controls the discriminatory term, the parameter β balances the contributions

of the discriminative intraclass compactness M̂w and interclass separability M̂b.

Let L = l1, l2, ..., lt are the test data matrix and t be the number of test samples, then

as the dictionary D is already learned, the discriminative sparse representation for the test

data can be derived by optimizing the following criterion:

min
S

t∑
i=1

{||li − Dsi||2}+ λ||si||1 (3.7)

The discriminative sparse representation for the test data is defined as S = [s1, ..., st] ∈ Rb×t

and has both the sparseness and discriminative information since we learn the dictionary

from the the training process.
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3.3 Experiments

We assess the performance of our proposed SKML method on three different image

classifiction datasets namely the Painting-91 dataset [44], the CalTech 101 dataset [50] and

the 15 Scenes dataset [53]. Figure 3.3 shows some sample images from different visual

recognition datasets used for evaluation.

3.3.1 Painting-91 Dataset

This section assesses the effectiveness of our proposed features on the challenging Painting-

91 dataset [44]. The dataset contains 4266 fine art painting images by 91 artists. The images

are collected from the Internet and each artist has variable number of images ranging from

31 (Frida Kahlo) to 56 (Sandro Boticelli). The dataset classifies 50 painters to 13 styles with

style labels as follows: abstract expressionism (1), baroque (2), constructivism (3), cubbism

(4), impressionism (5), neoclassical (6), popart (7), post-impressionism (8), realism (9),

renaissance (10), romanticism (11), surrealism (12) and symbolism (13).

Art painting categorization is a challenging task as the variations in subject matter,

appearance, theme and styles are large in the art paintings of the same artists. Another

issue is that the similarity gap between paintings of the same styles is very small due to

common influence or origin. In order to effectively classify art paintings, key aspects such

as texture form, brush stroke movement, color, sharpness of edges, color balance, contrast,

proportion, pattern, etc. have to be captured [91]. Painting art images are different from

photographic images due to the following reasons: (i) Texture, shape and color patterns of

different visual classes in art images (say, a multicolored face or a disproportionate figure)

are inconsistent with regular photographic images. (ii) Some artists have a very distinctive

style of using specific colors (for ex: dark shades, light shades etc.) and brush strokes

resulting in art images with diverse background and visual elements. The proposed SKML

framework uses FCFV features which captures different kinds of information from the
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painting image and the SKML method aims to improve the discrimination between classes

essential for computational fine art painting categorization.

Table 3.1 Comparison of the Proposed SKML Feature with Popular Image Descriptors
for Artist and Style Classification Task of the Painting-91 Dataset

No. Feature Artist CLs Style CLs

1 LBP [78, 44] 28.5 42.2

2 Color-LBP [44] 35.0 47.0

3 PHOG [9, 44] 18.6 29.5

4 Color-PHOG [44] 22.8 33.2

5 GIST [44] 23.9 31.3

6 Color-GIST [44] 27.8 36.5

7 SIFT [68, 44] 42.6 53.2

8 CLBP [33, 44] 34.7 46.4

9 CN [105, 44] 18.1 33.3

10 SSIM [44] 23.7 37.5

11 OPPSIFT [104, 44] 39.5 52.2

12 RGBSIFT [104, 44] 40.3 47.4

13 CSIFT [104, 44] 36.4 48.6

14 CN-SIFT [44] 44.1 56.7

15 Combine(1 - 14) [44] 53.1 62.2

16 SKML 63.09 71.67

Performance in Different Color Spaces This section demonstrates the performance of

our proposed SKML feature in eight different color spaces namely RGB, YCbCr, YIQ,

LAB, oRGB, XYZ, YUV and HSV as shown in Table 3.3. Among the single color

descriptors, the YIQ-FFV feature performs the best with classification accuracy of 59.22%
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Table 3.2 Comparison of the Proposed SKML Feature with State-of-the-art Deep
Learning Methods for Artist and Style Classification Task of the Painting-91 Dataset

No. Feature Artist CLs Style CLs

1 MSCNN-0 [81] 55.15 67.37

2 MSCNN-1 [81] 58.11 69.69

3 MSCNN-2 [81] 57.91 70.96

4 MSCNN-3 [81] - 67.74

5 CNN F1 [108] 55.40 68.20

6 CNN F2 [108] 56.25 68.29

7 CNN F3 [108] 56.40 68.57

8 CNN F4 [108] 56.35 69.21

9 CNN F5 [108] 56.35 69.21

10 SKML 63.09 71.67

for the artist classification task whereas the RGB-FFV feature gives the best performance of

66.43% for the style classification task. The SKML feature is computed by using a sparse

representation model on the fusion of the FFV features in eight different color spaces and

it achieves the best performance in both artist and style classification re-emphasizing the

fact that adding color information is particularly suitable for classification of art images.

Artist and Style Classification This section evaluates the performance of our proposed

method on the task of artist and style classification. The artist classification is a task

wherein a painting image has to be classified to its respective artist whereas the style

classification task is to assign a style label to the painting image. The artist classification

task contains 91 artists with 2275 train and 1991 test images. Similarly, the style

classification task contains 13 style categories with 1250 train and 1088 test images. Table

3.1 shows the comparison of the proposed SKML feature with other state-of-the-art image
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Table 3.3 Classification Performance of the FFV Feature in Different Color Spaces on the
Painting-91 Dataset

Feature Artist CLs Style CLs

RGB-FFV 59.04 66.43

YCbCr-FFV 58.41 65.82

YIQ-FFV 59.22 66.26

LAB-FFV 49.30 59.98

oRGB-FFV 57.50 65.46

XYZ-FFV 56.41 64.32

YUV-FFV 57.70 64.25

HSV-FFV 51.43 60.58

SKML 63.09 71.67

descriptors. The color LBP descriptor [44] is calculated by fusing the LBP descriptors

computed on the R,G and B channels of the image. Similar strategy is used to compute the

color versions of PHOG and GIST descriptor. The opponent SIFT [104] for the painting

image is computed by first converting the image to the opponent color space and then

fusing the SIFT descriptors calculated for every color channel. The SSIM (self similarity)

descriptor [44] is computed using a correlation map to estimate the image layout. The

combination of all image descriptors listed in Table 3.1 gives a classification accuracy of

53.1% and 62.2% for the artist and style classification tasks, respectively. Experimental

results show that our proposed SKML feature significantly outperforms popular image

descriptors and their fusion, and achieves the classification performance of 63.09% and

71.67% for artist and style classification, respectively.

Table 3.2 shows the performance of the proposed SKML features compared with

state-of-the-art deep learning methods. MSCNN [81] stands for multi-scale convolutional
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Figure 3.4 The confusion matrix for 13 style categories of the Painting-91 dataset using
the SKML feature.

neural network which extracts features in different scales using multiple CNNs. The cross

layer convolutional neural network (CNN F) [108] computes features from multiple layers

of CNN to improve discriminative ability instead of only extracting from the top-most layer.

The best performing CNN for the artist classification and style classification is MSCNN-1

[81] and MSCNN-2 [81], respectively. Our proposed SKML method achieves better result

compared to state-of-the-art deep learning methods such as multi scale CNN and cross

layer CNN.

Figure 3.4 shows the confusion matrix for the 13 style categories using the SKML

feature where the rows denote the actual classes while the columns denote the assigned

classes. It can be observed that the best classified categories are 1 (abstract expressionism)

and 13 (symbolism) with classification rates of 92% and 89%, respectively. The most

difficult category to classify is category 6 (neoclassical) as there are large confusions

between the styles baroque and neoclassical. Similarly, the other categories that create

confusion are the styles baroque and renaissance.
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Table 3.4 Art Movement Associated with Different Art Styles

Art Movement Art Style

Renaissance renaissance

Post Renaissance baroque, neoclassical, romanticism, realism

Modern Art popart, impressionism, post impressionism,

surrealism, cubbism, symbolism, construc-

tivism, abstract expressionism

Comprehensive Analysis of Results Table 3.4 shows the art movements associated with

different art styles. Interesting patterns can be observed from the confusion diagram in

Figure 4.2. The art styles within an art movement show higher confusions compared to the

art styles between the art movement periods. An art movement is a specific period of time

wherein an artist or group of artists follow a specific common philosophy or goal. It can

be seen that there are large confusions for the styles baroque and neoclassical. Similarly,

the style categories romanticism and realism have confusions with style baroque. The

style categories baroque, neoclassical, romanticism and realism belong to the same art

movement period - post renaissance. Similarly, popart paintings have confusions with style

category surrealism within the same art movement but none of the popart paintings are

misclassified as baroque or neoclassical. The only exception to the above observation is

the style categories renaissance and baroque as even though they belong to different art

movement period, there are large confusions between them. The renaissance and baroque

art paintings have high similarity as the baroque style evolved from the renaissance style

resulting in few discriminating aspects between them [91].

Artist Influence In this section, we analyze the influence an artist can have over

other artists. We find the influence among artists by looking at similar characteristics
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Figure 3.5 The artist influence cluster graph for the Painting-91 dataset.

between the artist paintings. Artist influence may help us to find new connections among

artists during different art movement period and also understand the influence among

different art movement periods. In order to calculate the artist influence, we calculate

the correlation score between the paintings of different artists. Let aik denote the feature

vector representing the painting by artist k where i = 1, .., nk and let nk be the total number

of paintings by artist k. We calculate Ak which is the average of the feature vector of

all paintings by artist k. We then compute a correlation matrix by comparing the average

feature vector of each artist with all other artists. Finally, clusters are defined for artists with

high correlation score. Figure 3.5 show the artist influence cluster graph with correlation

threshold of 0.70.

Interesting observations can be deduced from Figure 3.5. Every cluster can be

associated with a particular style and time period. Cluster 1 shows artists with major

contributions to the styles realism and romanticism and they belong to the post renaissance

art movement period. Cluster 2 has the largest number of artists associated with the styles

renaissance and baroque. Cluster 3 represents artists for the style Italian renaissance that
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Figure 3.6 The artist influence cluster graph using k means clustering for the Painting-91
dataset.

took place in the 16th century. And cluster 4 shows artists associated with style abstract

expressionism in the modern art movement period (late 18th - 19th century).

We further show the k-means clustering graph with cosine distance to form clusters

of similar artists. Figure 3.6 shows the artist influence graph clusters for paintings of all

artists with k set as 8. First, the average of the feature vector of all paintings of an artist is

calculated as described above. We then apply k-means clustering algorithm with k set as 8.

The artist influence graph is plotted using the first two principal components of the average

feature vector. The results of Figure 3.5 have high correlation with the results of the artist

influence cluster graph in Figure 3.6.
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Figure 3.7 The style influence cluster graph for the Painting-91 dataset.

Style Influence In this section, we study the style influence so as to find similarities

between different art styles and understand the evolution of art styles in different art

movement periods. The style influence is calculated in a similar manner as the artist

influence. First, we calculate the average of the feature vector of all paintings for a style.

We then apply k-means clustering method with cosine distance to form clusters of similar

styles. We set the number of clusters as 3 based on the different art movement periods.

The style influence graph is plotted using the first two principal components of the average

feature vector.

Figure 3.7 shows the style influence graph clusters with k set as 3. Cluster 1 contains

the styles of the post renaissance art movement period with the only exception of style

renaissance. The reason for this may be due the high similarity between styles baroque

and renaissance as the style baroque evolved from the style renaissance [91]. The styles

impressionism, post impressionism and symbolism in cluster 2 show that there are high

similarities between these styles in the modern art movement period as the three styles
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have a common french and belgian origin. Similarly, styles constructivism and popart in

cluster 3 show high similarity in the style influence cluster graph.

We further show the results based on the correlation matrix computed by comparing

the average feature vector of all paintings of each style with all other styles. We set the

correlation threshold as 0.7.

Renaissance => Baroque,Neoclassical

Romanticism => Realism

Impressionism => Post impressionism

Constructivism => Popart

The results are in good agreement with the style influence cluster graph and support

the observation that the art styles within an art movement show higher similarity compared

to the art styles between the art movement periods. The styles baroque and neoclassical

belong to the same art movement period and the style baroque has evolved from the style

renaissance. Similarly, other styles belong to the modern art movement period. It can be

observed from the style influence cluster graph that the style pairs romanticism:realism,

impressionism:post impressionism and constructivism:popart are plotted close to each

other in the graph indicating high similarity between these styles.

3.3.2 Fifteen Scene Categories Dataset

The fifteen scene categories dataset [50] contains 4485 images from fifteen scene categories

namely, office, kitchen, living room, bedroom, store, industrial, tall building, inside cite,

street, highway, coast, open country, mountain, forest, and suburb with 210 to 410 images

per category. We follow the experimental protocol as described in [50] wherein 1500

images are used for training whereas the remaining 2985 images are used for testing. The

train/test split is determined randomly with the criterion that 100 images are selected for

every scene category as train images and the remaining images are used as test images.
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Table 3.5 Comparison Between the Proposed Method and Other Popular Methods on the
Fifteen Scene Categories Dataset

Method Accuracy (%)

KSPM [50] 81.40

DHFVC [28] 86.40

LLC [110] 80.57

KSPM [50] 81.40

LaplacianSC [27] 89.70

DHFVC [28] 86.40

D-KSVD [129] 89.10

LC-KSVD [40] 90.40

Hybrid-CNN [131] 91.59

SKML 96.25

Table 3.5 shows the comparison of the proposed SKML features with popular

learning methods. The LLC method [110] extracts a feature descriptor by using a locality

constraint for projection to a local co-ordinate system. The DHFVC method [28] uses

a hierarchical visual feature coding architecture based on restricted Boltzmann machines

(RBM) for encoding of SIFT descriptors. A over-complete dictionary is learned by the

D-KSVD algorithm [129] by integrating the classification error to the objective criterion

whereas the LC-KSVD approach [40] adds a label consistency constraint combined with

the classification and reconstruction error to form a single objective function. Another

popular sparse coding method is LaplacianSC [27] which preserves the locality of features

by using a similarity preserving criterion based on Laplacian framework. The sparse coding

methods D-KSVD, LC-KSVD and LaplacianSC achieves an accuracy of 89.10%, 90.40%

and 89.70%, respectively. The state-of-the-art deep learning method such as hybrid CNN
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Figure 3.8 The confusion matrix diagram of the 15 scene categories dataset using the
proposed SKML feature.

[131] which is trained on a combination of training set of ImageNet-CNN and Places-CNN

achieves a performance of 91.59%. The experimental results in Table 3.5 show that our

proposed SKML method achieves higher performance of 96.25% compared to popular

sparse coding and deep learning methods.

The confusion diagram for the fifteen scene categories dataset is shown in Figure

3.8. The suburb category out of the fifteen scene categories achieves the best classification

rate of 100%. The scene category with the lowest accuracy is the bedroom category with

a classification rate of 91% as it has large confusions with the living room category. The

living room scene category contains similar visual elements as the bedroom scene category

resulting in high confusions between the two categories. The other scene categories that

create confusion are tall building and industrial since both categories have some common

visual semantics.

Figure 3.9 shows the t-SNE visualization for the fifteen scene categories dataset. The

t-SNE method is a visualization technique used to fit high dimensional data to a plot using

a non-linear dimensionality reduction technique to better understand the clusters of data of
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Figure 3.9 The t-SNE visualization of the 15 scene categories dataset using the proposed
SKML feature.

different categories in a dataset. It can be seen from Figure 3.9 that our proposed SKML

method improves the separability between clusters of different class. Another advantage

of our proposed method is that it encourages better localization of data-points belonging to

the same class resulting in better performance.

3.3.3 CalTech 101 Dataset

The Caltech 101 dataset [53] contains 9144 images of objects belonging to 101 categories.

Every category has about 40 to 800 images and size of each image is roughly 300 X 200

pixels. The experimental protocol used for the CalTech 101 dataset is described in [110].

In particular, the training procedure involves five sets where each set contains 30, 25, 20,

15 and 10 train images per category, respectively and for every set, the test split contains

the remaining images. In order to have a fair comparison with other methods, we report the

performance as the average accuracy over all the categories.
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Table 3.6 Comparison Between the Proposed SKML Method and Other Popular Methods
on the Caltech 101 Dataset

Method 10 15 20 25 30

LLC [110] 59.77 65.43 67.74 70.16 73.44

SPM [50] – 56.40 – – 64.60

SVM-KNN [127] 55.80 59.10 62.00 – 66.20

SRC [113] 60.10 64.90 67.70 69.20 70.70

D-KSVD [129] 59.50 65.10 68.60 71.10 73.00

LC-KSVD [40] 63.10 67.70 70.50 72.30 73.60

CNN-M + Aug [12] – – – – 87.15

SKML 82.47 84.46 85.35 86.61 87.95

The experimental results in Table 3.6 shows the detailed classification performance

of the proposed SKML mathod and other popular learning methods for the CalTech 101

dataset. The SPM (spatial pyramid matching) method [50] divides an image to sub-regions

and computes histogram over these sub-regions to form a spatial pyramid. The SVM-KNN

method [127] finds the nearest neighbors of the query image and trains a local SVM based

on the distance matrix computed on the nearest neighbors. The sparse coding method

SRC [113] uses a sparse representation method computed by l1 minimization and achieves

classification accuracy of 70.70% for the set with training size 30 images per category. The

deep learning method CNN-M + Aug [12] is similar to the architecture of ZFNet [126]

but also incorporates additional augmentation techniques such as flipping and cropping to

increase the training size. It can be seen from Table 3.6 that our proposed method achieves

better performance compared to other learning methods. Another advantage of the SKML

method is that no additional data augmentation techniques are required to improve the

performance.
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Figure 3.10 The t-SNE visualization for the CalTech 101 dataset using the proposed
SKML feature.

The t-SNE visualization for the CalTech 101 dataset is shown in Figure 3.10. It can be

seen that our proposed SKML method helps to increase the interclass separability between

clusters having data-points belonging to different class categories as our method integrates

a discriminative criterion to the objective function encouraging better clustering of data-

points. Another advantage is that our method reduces the intraclass distance between data-

points belonging to the same class in a cluster resulting in improved pattern recognition

performance.

3.4 Conclusion

This chapter presents a sparse kernel manifold learner framework for different image classi-

fication applications. First, a new hybrid feature extraction step is performed by introducing

D-FV and WS-FV features to capture different aspects of image and encode important

discriminatory information. We then derive an innovative FFV feature by integrating the
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D-FV, WS-FV and SIFT-FV features. The FFV features are computed in eight different

color spaces and fused to produce the novel FCFV feature. Finally, we propose a sparse

kernel manifold learner (SKML) method by integrating a discriminative marginal Fisher

criterion to the representation criterion to improve the classification performance. The

SKML method aims is to minimize the intraclass compactness and maximize the interclass

separability constrained on the discriminative sparse objective function. Experimental

results on different image classification datasets show the effectiveness of the proposed

method.



CHAPTER 4

SPARSE REPRESENTATION BASED COMPLETE MFA FRAMEWORK

4.1 Introduction

Image Classification, which aims to categorize different visual objects into several

predefined classes, is a challenging topic in both computer vision and multimedia research

areas. Recently, sparse coding algorithms have been broadly applied in multimedia

research, for example, in face recognition [71, 39, 113, 119, 129], in disease recognition

[24], in scene and object recognition [3, 40, 123, 27, 71, 39, 23], in hand written digit

recognition [121], and in human action recognition [32]. Pioneer research in cognitive

psychology [80, 107] reveals that the biological visual cortex adopts a sparse representation

for visual perception in the early stages as it provides an efficient representation for later

phases of processing. Besides, manifold learning methods, such as discriminant analysis

[74, 45], marginal Fisher analysis [118], have been successfully applied to preserve data

locality in the embeded space and learn discriminative feature representations [118, 58, 25].

The marginal Fisher analysis (MFA) method improves upon the traditional linear

discriminant analysis or LDA by means of the graph embedding framework that defines an

intrinsic graph and a penalty graph [118]. The intrinsic graph connects each data sample

with its neighboring samples of the same class to define the intraclass compactness, while

the penalty graph connects the marginal points of different classes to define the interclass

separability. The MFA method, however, does not account for the null space of the

local samples based within class scatter matrix, which contains important discriminatory

imformation. We present a complete marginal Fisher analysis (CMFA) method that extracts

the discriminatory features in both the column space of the local samples based within

class scatter matrix and the null space of its transformed matrix. The rationale of extracting

35
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features in both spaces is to enhance the discriminatory power by further utilizing the null

space, which is not accounted for in the marginal Fisher analysis method.

To further improve the classification capability and to ensure an efficient repre-

sentation, we propose a discriminative sparse representation model using the CMFA

framework by integrating a representation criterion such as the sparse coding and a

discriminant criterion. Sparse coding facilitates efficient retrieval of data in multimedia as it

generates a sparse representation such that every data sample can be represented as a linear

combination of a small set of basis vectors due to the fact that most of the coefficients are

zero. Another advantage is that the sparse representation may be overcomplete, allowing

more flexibility in matching data and yielding a better approximation of the statistical

distribution of the data. Sparse coding, however, is not directly related to classification as it

does not address discriminant analysis of the multimedia data. We present a discriminative

sparse representation model by integrating a representation criterion, such as the sparse

representation, and a discriminative criterion, which applies the new within-class and

between-class scatter matrices based on the marginal information, for improving the

classification capability. Furthermore, we propose the largest step size for learning the

sparse representation to address the convergence issues of our proposed optimization

procedure. Finally, we present a dictionary screening rule that discards the dictionary items

with null coefficients to improve the computational efficiency of the optimization process

without affecting the accuracy.

Our proposed CMFA-SR method is assessed on different image classification tasks

using representative datasets, such as the Painting-91 dataset [44], the fifteen scene

categories dataset [50], the MIT-67 indoor scenes dataset [90], the Caltech 101 dataset [53],

the Caltech 256 object categories dataset [31], the AR face dataset [74], and the extended

Yale B dataset [52]. The experimental results show the feasibility of our proposed method.
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4.2 Sparse Representation Using the Complete Marginal Fisher Analysis

The motivation of this work is to derive a novel learning method by integrating the

state-of-the-art feature extraction methods, such as the sparse representation [113] and

the marginal Fisher analysis [118], as well as leveraging our research on enhancing

discrimination analysis [62, 15]. Specificaly, the pioneer work on the marginal Fisher

analysis [118] improves upon the traditional discriminant analysis by introducing K Nearest

Neighbors, or KNN samples in the graph embedding framework. Our new complete MFA

method further enhances the disriminatory power by introducing two processes that analyze

both the column space and the null space of the local (KNN) samples based within-class

scatter matrix. In addition, our novel discriminative sparse representation approach fuses

both the sparse represetation criterion and the discrimination criterion to improve upon the

conventional sparse representation that does not consider classification.

4.2.1 Complete Marginal Fisher Analysis

The marginal Fisher analysis or MFA method improves upon the traditional discriminant

analysis method by introducing the K Nearest Neighbors or KNN for defining both the

intraclass compactness and the interclass separability, respectively [118]. The motivation

behind the MFA approach rests on the graph embedding framework that utilizes both

the intrinsic graph and the penalty graph [118]. Our recent research also reveals the

importance of local smaples, such as the KNN samples, for designing effective learning

systems [63, 106]. The application of local samples has its theoretical roots in the statistical

learning theory and the stuctrual risk minimization principle in general, and in the design

of support vector machines in particular, such as the support vectors, which are local

samples. We, therefore, leverage the ideas of the MFA method and local samples, coupled

with the analysis of the column space and the null space of the local (KNN) samples

based within-class scatter matrix, and propose our novel complete marginal Fisher analysis

method.
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Specifically, let the sample data matrix be X = [x1, x2, ..., xm] ∈ Rh×m, where m

is the number of samples of dimension h. Let W ∈ Rh×h be a projection matrix, which

will be derived through the following optimization process. The k1 nearest neighbors based

within-class scatter matrix is defined as follows:

Sw = WTX(D− A)XTW (4.1)

where A is a binary matrix with nonzero elements Aij corresponding to the k1 nearest

neighbors of the sample xi or the sample xj from the same class [86]. D is a diagonal

matrix, whose diagonal elements are defined by the summation of the off-diagonal elements

of A row-wise.

The k2 nearest neighbors based between-class scatter matrix is defined as follows:

Sb = WTX(D′ − A′)XTW (4.2)

where A′ is a binary matrix with nonzero elements A′ij corresponding to the k2 nearest

neighbors of the sample xi or the sample xj from two different classes [86]. D′ is a diagonal

matrix, whose diagonal elements are defined by the summation of the off-diagonal elements

of A′ row-wise.

Applying the k1 nearest neighbors based within-class scatter matrix Sw and the k2

nearest neighbors based between-class scatter matrix Sb, we are able to derive the optimal

projection matrix W by maximizing the following critirion J1 [25]:

J1 = tr(S−1
w Sb)

= tr((WTX(D− A)XTW)−1(WTX(D′ − A′)XTW))

(4.3)

The MFA method first applies pricipal component analysis or PCA for dimen-

sionality reduction [118]. A potential problem with this PCA step is that it may discard

the null space of the k1 nearest neighbors based within-class scatter matrix, which

contains important discriminative information. Previous research on linear discriminant
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analysis shows that the null space of the within-class scatter matrix contains important

discriminative information whereas the null space of the between-class scatter matrix

contains no useful discriminatory information [14, 125].

We, therefore, propose a new method, a complete marginal Fisher analysis method,

which extracts features from two subspaces, namely, the column space of the k1 nearest

neighbors based within-class scatter matrix Sw and the null space of the transformed Sw by

removing the null space of the mixture scatter matrix, i.e., Sm = Sw + Sb. We then extract

two types of discriminatory features in these two subspaces: the discriminatory features in

the column space of Sw, and the discriminatory features in the null space of the transformed

Sw.

4.2.2 Extraction of the Discriminatory Features in Two Subspaces

Let β1,β2, ....,βh be the eigenvectors of Sw, whose rank is p. The space Rh is thus divided

into the column space, span{β1,β2, ....,βp}, and its orthogonal complement, i.e., the null

space of Sw, span{βp+1,βp+2, ....,βh}. Let the transformation matrix Tp be defined as

follows: Tp = [β1, ....,βp]. The k1 nearest neighbors based within-class scatter matrix Sw

and the k2 nearest neighbors based between-class scatter matrix Sb may be transformed into

the column space as follows: S
′

w = TT
p SwTp, S

′

b = TT
p SbTp.

The optimal projection matrix ξ = [ξ1, ξ2, ..., ξp] is derived by means of maximizing

the following critirion J ′1 [25]:

J
′

1 = tr((S
′

w)−1S
′

b)

= tr((TT
p SwTp)

−1TT
p SbTp)

(4.4)

The discriminatory features in the column space of Sw are derived as follows:

Uc = ξTTT
p X (4.5)
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The computation of the discriminatory features in the null space of the transformed

Sw consists of the following steps. First, we will discard the null space of the mixture

scatter matrix, Sm = Sw + Sb, by transforming both Sw and Sb into the column space of

Sm, respectively: S
′′

w and S
′′

b . The rationale for discarding the null space of the mixture

scatter matrix is due to the fact that both the within class scatter matrix and the between

class scatter matrix are nullified in this null space. As a result, the null space of the mixture

scatter matrix does not carry discriminatory information. Second, we compute the null

space of S
′′

w, and then transform S
′′

b into this null space in order to derive the discriminatory

features Un.

Specifically, let α = [α1,α2, ....,αk] be the transformation matrix that is defined

by the eigenvectors of Sm corresponding to the nonzero eigenvalues, where k ≤ h. The

scatter matrices Sw and Sb may be transformed into the column space of Sm as follows:

S
′′

w = αTSwα, S
′′

b = αTSbα. Next, we compute the eigenvectors of S
′′

w, whose null space

is spanned by the eigenvectors corresponding to the zero eigenvalues of S
′′

w. Let N be the

transformation matrix defined by the eigenvectors that span the null space of S
′′

w. Then, we

transform S
′′

b into the null space of S
′′

w as follows: S
′′′

b = NTS
′′

bN. Finally, we diagonalize

the real symmetric matrix S
′′′

b and derive its eigenvectors. Let ζ be the transformation

matrix defined by the eigenvectors of S
′′′

b corresponding to the non-zero eigenvalues. The

discriminatory features in the null space of the transformed Sw are derived as follows:

Un = ζTNTαTX (4.6)

In order to obtain the final set of features, the discriminatory features extracted in the

column space and the null space are fused and normalized to zero mean and unit standard

deviation.

U =

Uc

Un

 (4.7)
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4.2.3 Discriminative Sparse Representation Model

In this section, we present a sparse representation model CMFA-SR that uses a discrim-

inative sparse representation criterion with the rationale to integrate a representation

criterion such as sparse coding and a discriminative criterion so as to improve the

classification performance.

Given m training samples, our complete marginal Fisher analysis method derives

the feature matrix: U = [u1,u2, ...,um] ∈ Rl×m. Let D = [d1,d2, ...,dr] ∈ Rl×r be the

dictionary defined by the r basis vectors and S = [s1, s2, ..., sm] ∈ Rr×m be the sparse

representation matrix denoting the sparse representation of the m samples. Note that the

coefficients ai correspond to the items in the dictionary D.

In our proposed CMFA-SR model, we optimize a sparse representation criterion and

a discriminative analysis criterion to derive the dictionary D and the sparse representation S

from the training samples. We use the representation criterion of the sparse representation

to define new discriminative within-class matrix Ĥw and discriminative between-class

matrix Ĥb by considering only the k nearest neighbors. Specifically, using the sparse

representation criterion the descriminative within class matrix is defined as Ĥw =∑m
i=1

∑
(i,j)∈Nw

k (i,j)(si − sj)(si − sj)T , where (i, j) ∈ Nw
k (i, j) represents the (i, j) pairs

where sample ui is among the k nearest neighbors of sample uj of the same class or vice

versa. The discriminative between class matrix is defined as Ĥb =
∑m

i=1

∑
(i,j)∈Nb

k(i,j)(si−

sj)(si − sj)T , where (i, j) ∈ N b
k(i, j) represents k nearest (i, j) pairs among all the (i, j)

pairs between samples ui and uj of different classes. As a result, the new optimization

criterion is as follows:

min
D,S

m∑
i=1

{||ui − Dsi||2 + λ||si||1}+ αtr(βĤw − (1− β)Ĥb)

s.t.||dj|| ≤ 1, (j = 1, 2, ..., r)

(4.8)

where the parameter λ controls the sparseness term, the parameter α controls the

discriminatory term, the parameter β balances the contributions of the discriminative
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within class matrix Ĥw and between class matrix Ĥb, and tr(.) denotes the trace of a

matrix. In order to derive the discriminative sparse representation for the test data, as

the dictionary D is already learned, we only need to optimize the following criterion:

minB
∑t

i=1{||yi − Dbi||2} + λ||bi||1 where y1, y2, ..., yt are the test samples and t is the

number of test samples. The discriminative sparse representation for the test data is defined

as B = [b1, ...,bt] ∈ Rr×t. Since the dictionary D is learned from the training optimization

process, it contains both the sparseness and the discriminative information, therefore the

derived representation B is the discriminative sparse representation for the test set.

4.3 The Optimization Procedure

In this section, we provide a detailed analysis of the largest step size for learning the sparse

representation to address the convergence issues of the algorithm. We also introduce a

screening rule to safely remove the dictionary items with null coefficients without affecting

the performance to improve the computational efficiency of the proposed model.

4.3.1 Largest Step Size for Learning the Sparse Representation

In this section, we present and prove the largest step size for learning the sparse

representation using the FISTA algorithm [6]. In particular, after applying some linear

algebra transformations, the scatter matrices Ĥw and Ĥb in Equation 4.8 can be defined as :

Ĥw = 2S(DĤw −WĤw)ST

Ĥb = 2S(DĤb −WĤb)ST
(4.9)

where WĤw and WĤb are matrices whose values WĤw(i, j) = 1 if the pair (i, j) is among

the k nearest pairs in the same class otherwise 0, WĤb(i, j) = 1 if the pair (i, j) is among

the set {(i, j), i ∈ πc, j /∈ πc} otherwise 0, DĤw and DĤb are diagonal matrices whose

values are DĤw(i, i) =
∑

j WĤw(i, j) and DĤb(i, i) =
∑

j WĤb(i, j).
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Therefore, the objective function of the sparse representation in equation 4.8 can be

converted to the following form:

min
D,S

m∑
i=1

{||ui − Dsi||2 + λ||si||1}+ αtr(SMST )

s.t.||dj|| ≤ 1, (j = 1, 2, ..., r)

(4.10)

where M = 2(β(DĤw−WĤw)−(1−β)(DĤb−WĤb)) for the proposed CMFA-SR method.

We further optimize the objective function in Equation 4.10 by alternatively updating the

sparse representation and the discriminative dictionary by decomposing into two separate

objective functions for each training sample ui given as follows:

min
si
||ui − Dsi||2 + αMiistisi + αstigi + λ||si||1 (4.11)

where gi =
∑

j 6=iMijsj = [gi1, gi2, ..., gik]
t and Mij(i, j = 1, 2, ..,m) is the value of

the element in the i-th row and j-th column of the matrix M. We optimize the above

objective function by alternatively applying the FISTA algorithm [6] to learn the sparse

representation and the Lagrange dual method [51] for updating the dictionary. In order to

derive the largest step size for learning the sparse representation, we rewrite the objective

function in Equation 4.11 in the form of a(si) + b(si), where a(si) = ||ui − Dsi||2 +

αMiistisi + αstigi and b(si) = λ||si||1.

To guarantee the convergence of the FISTA algorithm, an important quantity to be

determined is the step size. Given the objective function F (x) = f(x) + g(x), where f(x)

is a smooth convex function and g(x) is a non-smooth convex function, the theoretical

analysis [5] shows that

F (xk)− F (x∗) ≤ 2||x0 − x∗||2

s ∗ (k + 1)2
(4.12)

where xk is the solution generated by the FISTA algorithm at the k-th iteration, x∗ is

the optimal solution, and s is the largest step size for convergence. This theoretical

result means that the number of iterations of the FISTA algorithm required to obtain an
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ε-optimal solution (xt), such that F (xt) − F (x∗) ≤ ε, is at most dC/
√
ε − 1e, where

C =
√

2||x0 − x∗||2/s Therefore, the step size plays an important role for the convergence

of the algorithm and the largest step size can lead to less required iterations for the

convergence of the FISTA algorithm.

We now, theoretically, derive the largest step size required for learning the sparse

representation for each training sample.

Proposition 1. The largest step size that guarantees convergence of the FISTA algorithm

is 1
Lip(a)

, where Lip(a) is the smallest Lipschitz constant of the gradient ∇a and Lip(a) =

2Emax(DtD + αMiiI) which is twice the largest eigenvalue of the matrix (DtD + αMiiI).

Proof. Function a(si) can be generalized as follows:

a(x) = ||Dx + b||2 + αMiixtx + αxtc (4.13)

Taking the first derivative and finding the difference, we get

∇a(x)−∇a(y) = 2(DtD + αMiiI)(x− y) (4.14)

The Lipschitz constant of the gradient∇a satisfies the following inequality

||∇a(x)−∇a(y)|| ≤ Lip(a)||x− y|| (4.15)

Therefore, the smallest Lipschitz constant of the gradient∇a is

Lip(a) = 2Emax(DtD + αMiiI) (4.16)

which is twice the largest eigenvalue of the matrix (DtD + αMiiI).

Hence, as shown in the FISTA algorithm [6], the largest step size that assures the

convergence of the FISTA algorithm is the reciprocal of the smallest Lipschitz constant of

the gradient ∇a.
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4.3.2 Updating the Dictionary

After the sparse representation S is learned using the FISTA algorithm, we have to learn the

optimal dictionary D. The objective function in Equation 4.10 is a constrained optimization

problem with inequality constraints, which may be solved using the Lagrange optimization

method and the Kuhn-Tucker condition [51]. In order to solve the primal optimization, we

take the first derivative with respect to D and set it to zero. The dual optimization problem

can be formulated as follows:

Λ∗ = min
Λ

tr(USt(SSt + Λ)−1SUt + Λ− UtU) (4.17)

where Λ is a diagonal matrix whose diagonal values are the dual parameters of the primal

optimization problem. We solve the dual problem defined in Equation 4.17 using the

gradient descent method and the dictionary D is updated using the following equation:

D = USt(SSt + Λ∗)−1 (4.18)

4.3.3 The Dictionary Screening Rule

In this section, we present a dictionary screening rule to improve the computational

efficiency during the optimization of the objective function defined in Equation 4.11.

During the optimization procedure, the computational complexity is generally introduced

due to an oversized dictionary. In our proposed dictionary screening rule, we first identify

dictionary items with corresponding coefficient score set as zero by checking the sparse

coefficient vectors. We then derive a trimmed dictionary by deleting the zero coefficient

dictionary items to improve the computational efficiency. The trimmed dictionary is

utilized by the FISTA algorithm [6] to obtain a compact sparse representation. We finally

reintroduce the deleted zero coefficients back to compute the final sparse representation.

Therefore, the dictionary screening rule improves the computational efficiency of the

proposed sparse representation framework by computing a trimmed dictionary utilized by

the FISTA algorithm.
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The following proposition rule identifies the zero coefficients, so that the corre-

sponding dictionary items may be deleted in order to compute the trimmed dictionary.

Proposition 2. Given a training sample ui(i = 1, 2, ..,m) and a dictionary item

dj(j = 1, 2, .., k), the sparse coefficient sij is zero if |uidj − α
2

gtiIj| < (λmax −√
(||dj||2 + αMii)(||ui||2 + α

4Mii
||gi||2)(λmax

λ
−1) where sij is the j-th element of the sparse

representation si, λmax = max1≤j≤k |utidj − α
2

gtiIj| and Ij ∈ Rk×1 is a vector with zero

values for all elements except the j-th element which has a value 1.

Proof. We first establish a relation between our proposed method and the traditional sparse

representation lasso method. The objective function in Equation 4.11 is identical to the

following equation:

min
si
||ui − Dsi||2 + ||

√
αMiisi +

√
α

4Mii

gi||2 + λ||si||1 (4.19)

Therefore, the objective function in equation 4.11 can be rewritten as follows:

min
si
||u∗i − D∗si||2 + λ||si||1 (4.20)

where u∗i = (uti −
√

α
4Mii

gti)t ∈ R(n+k)×1 and D∗ = (Dt,
√
αMiiI)t ∈ R(n+k)×k. Note that

||d∗j ||2 = ||dj||2 + αMii ≤ 1 + αMii and ||u∗i ||2 = ||ui||2 + α
4Mii
||gi||2.

According to the projection theorem in [111], we observe that ||θi(λ)−θi(λmax)||2 ≤

||u
∗
i

λ
− u∗i

λmax
||2, where θi(λ) and θi(λmax) are the solutions of the dual problem associated

with the values of λ. The condition given in proposition 3 for identifying dictionary items

with zero coefficients is |uidj−α
2

gtiIj| < (λmax−
√

(||dj||2 + αMii)(||ui||2 + α
4Mii
||gi||2)(λmax

λ
−

1), which is equal to |(d∗j)tθi(λmax)| < 1− ||u∗i ||2||d∗j ||2| 1λ −
1

λmax
|.
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Thus, we have the following relations.

|θti(λ)d∗j | = |(d∗j)
tθi(λ)|

≤ |(d∗j)
tθi(λ)− (d∗j)

tθi(λmax)|+ |(d∗j)
tθi(λmax)|

≤ ||(d∗j)||2||θi(λ)− θi(λmax)||2

+ 1− ||(d∗j)||2||
u∗i
λ
− u∗i
λmax

||2

≤ ||(d∗j)||2||
u∗i
λ
− u∗i
λmax

||2

+ 1− ||(d∗j)||2||
u∗i
λ
− u∗i
λmax

||2

= 1

(4.21)

It is shown in [117] that the dual variable θi in the Lagrange dual function of the lasso

problem defined in Equation 4.20 satisfies

|θtid∗j | ≤ 1 =⇒ sij = 0 (4.22)

Hence, the proposition 3 is proved.

4.4 Experiments

Our proposed CMFA-SR method has been evaluated on some challenging visual recog-

nition tasks: (i) fine art painting categorization using the Painting-91 dataset [44], (ii) scene

recognition using the fifteen scene categories [50] and the MIT-67 indoor scenes dataset

[90], (iii) object recognition using the Caltech 101 dataset [53] and the Caltec 256 object

categories [], and (iv) face recognition using the AR face database [74] and the extended

Yale B dataset [52]. Specifically, the datasets used in our experiments are detailed in Table

4.1 and some sample images are shown in Figure 4.1.
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Figure 4.1 Some example images of the different datasets used for evaluation.

4.4.1 Painting-91 Dataset

The Painting-91 dataset [44] is a challenging dataset of fine art painting images collected

from the Internet and contains two tasks: artist classification and style classification. We

follow the experimental protocol in [44] which uses a fixed train and test split for both

the tasks. The initial features used are fused Fisher vector (FFV) features [83] which

are extracted using a hybrid feature extraction step as described in [84]. We further

compute the FFV features in different color spaces namely RGB, XYZ, YUV, YCbCr,
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Table 4.1 Different Tasks and their Associated Datasets Used for Evaluation of the
Proposed CMFA-SR Method

Dataset Task # Classes Total # Images Reference

Painting-91 [44] artist classification 91 4266 [44]

Painting-91 [44] style classification 13 2338 [44]

15 Scenes [50] scene recognition 15 4485 [50]

MIT-67 Scenes [90] scene recognition 67 15620 [90]

Caltech 101 [53] object recognition 101 9144 [110]

Caltech 256 [31] object recognition 256 30607 [110]

AR Face [74] face recognition 126 4000 [40]

Extended Yale B [52] face recognition 38 2414 [129]

YIQ, LAB, HSV and oRGB to incorporate color information as the color cue provides

powerful discriminatory information.

Artist Classification. The artist classification task classifies a painting image to its

respective artist and is a challenging task as there are large variations in the appearance,

styles and subject matter of the paintings of the same artist. The dictionary size is set as

512, and the parameters λ = 0.05, α = 0.2 and β = 0.4 are selected for the CMFA-SR

method. The experimental results are summarized in column 3 of Table 4.2. MSCNN

is the abbreviation for multi-scale convolutional neural networks. The classification is

performed using RBF-SVM with parameters C = 20 and γ = 0.00007. Our proposed

method consistently outperforms other popular image descriptors and state-of-the-art deep

learning methods for the artist classification task.

Style Classification. The style classification task deals with the problem of categorizing

a painting to the 13 style classes defined in the dataset. For the CMFA-SR method, the
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Table 4.2 Comparison Between the Proposed Method and Other Popular Methods for
Artist and Style Classification Task of the Painting-91 Dataset

No. Method Artist Cls. Style Cls.

1 LBP [78, 44] 28.50 42.20

2 Color-LBP [44] 35.00 47.00

3 PHOG [9, 44] 18.60 29.50

4 Color-PHOG [44] 22.80 33.20

5 GIST [79, 44] 23.90 31.30

6 Color-GIST [44] 27.80 36.50

7 SIFT [68, 44] 42.60 53.20

8 CLBP [33, 44] 34.70 46.40

9 CN [105, 44] 18.10 33.30

10 SSIM [95, 44] 23.70 37.50

11 OPPSIFT [104, 44] 39.50 52.20

12 RGBSIFT [104, 44] 40.30 47.40

13 CSIFT [104, 44] 36.40 48.60

14 CN-SIFT [44] 44.10 56.70

15 Combine(1 - 14) [44] 53.10 62.20

16 MSCNN-1 [81] 58.11 69.67

17 MSCNN-2 [81] 57.91 70.96

18 CNN F3 [108] 56.40 68.57

19 CNN F4 [108] 56.35 69.21

20 CMFA-SR 65.78 73.16
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Figure 4.2 The confusion matrix for (a)13 style categories of the Painting-91 dataset (b)
15 scene categories dataset.

dictionary size is set as 256 and the same parameters are used as the artist classification

task. The fourth column in Table 4.2 shows the recognition results. Experimental results

demonstrate that our proposed CMFA-SR method achieves better performance compared

to other popular image descriptors and deep learning methods for style classification.

Figure 4.2 (a) shows the confusion matrix for the 13 style categories of the

Painting-91 dataset. It can be seen that the style categories with the best performance are

1 (abstract expressionism) and 13(symbolism) with classification rates of 93% and 89%,

respectively. The most difficult style category to classify is category 6 (neoclassical) as

there are large confusions between the style categories baroque and neoclassical. The other

style category pairs that create confusion are the styles neoclassical: renaissance and the

styles renaissance: baroque.

4.4.2 Fifteen Scene Categories Dataset

For the fifteen scene categories dataset [50], we follow the experimental protocol as in

[50] where for 10 iterations, 100 images per class are randomly selected for each iteration

from the dataset for training and the remaining images are used for testing. The initial

input features used are the spatial pyramid features provided by [40] obtained by using a

four-level spatial pyramid with a codebook of size 200. For the CMFA-SR method, the
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Table 4.3 Comparison Between the Proposed Method and Other Popular Methods on the
Fifteen Scene Categories Dataset

Method Accuracy (%)

LLC [110] 80.57

KSPM [50] 81.40

DHFVC [28] 86.40

D-KSVD [129] 89.10

LaplacianSC [27] 89.70

LC-KSVD [40] 90.40

Places-CNN [131] 90.19

Hybrid-CNN [131] 91.59

DAG-CNN [124] 92.90

CMFA-SR 98.45

Table 4.4 Comparison Between the Proposed Method and Other Popular Methods on the
MIT-67 Indoor Scenes Dataset

Method Accuracy (%)

ROI + GIST [90] 26.10

Object Bank [55] 37.60

Discriminative parts [102] 51.40

VC + VQ [54] 52.30

DP + IFV [42] 60.80

Places-CNN [131] 68.24

Hybrid-CNN [131] 70.80

DAG-CNN [124] 77.50

CMFA-SR 81.12



53

dictionary size is set as 1024 and the parameters λ = 0.05, α = 0.2, and β = 0.4 are selected.

The RBF-SVM is used for classification with parameters set as C = 7 and γ = 0.0001.

The experimental results in Table 4.3 show that the proposed method improves upon other

popular sparse representation and deep learning methods by more than 5%. Figure 4.2 (b)

shows the confusion matrix for the fifteen scene categories dataset.

4.4.3 MIT-67 Indoor Scenes Dataset

The MIT-67 indoor scenes dataset [90] is a challenging indoor scenes recognition dataset

with a variable number of images per category where each category has atleast 100 images.

We use experimental settings as in [90] where 80*67 images are used for training and 20*67

images are used for testing. The performance measure provided is the average classification

accuracy over all the categories. We extract features for images of the MIT-67 indoor scenes

dataset using a pre-trained convolution neural network Places-CNN [131]. For the proposed

CMFA-SR method, the dictionary size is set as 512 and the parameters λ = 0.05, α = 0.1,

and β = 0.5 are selected, whereas for the RBF-SVM, parameters are set as C = 2 and γ

= 0.0001. It can be seen from Table 4.4 that our method improves over the performance

of Places-CNN by 13%. Our proposed CMFA-SR method helps to significantly improve

the initial CNN features by encouraging better separation between the samples of different

class and assist in the formation of compact clusters for the samples of same class (see

Subsection 4.4.10). Experimental results in Table 4.4 show that the proposed method is able

to achieve significantly better results and outperform other popular sparse representation

and deep learning methods.

4.4.4 Caltech 101 Dataset

For the Caltech 101 dataset [53], we use the experimental settings as in [110], where we

randomly split the dataset into 10, 15, 20, 25 and 30 training images per category and at the

most 50 test images per category in order to have a fair comparison with other methods. The
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Table 4.5 Comparison Between the Proposed Method and Other Popular Methods on the
Caltech 101 Dataset

Method 10 15 20 25 30

SVM-KNN [127] 55.80 59.10 62.00 – 66.20

SPM [50] – 56.40 – – 64.60

LLC [110] 59.77 65.43 67.74 70.16 73.44

D-KSVD [129] 59.50 65.10 68.60 71.10 73.00

SRC [113] 60.10 64.90 67.70 69.20 70.70

LC-KSVD [40] 63.10 67.70 70.50 72.30 73.60

CNN-M + Aug [12] – – – – 87.15

CMFA-SR 83.11 85.88 86.95 87.61 88.28

performance measure provided is the average accuracy over all the classes. We evaluate our

methods with features that are extracted using a pre-trained convolutional neural network

CNN-M [12]. The dictionary size is selected as 512 and the parameters are set as λ = 0.05,

α = 0.1, and β = 0.5 for the CMFA-SR method. The parameters of the RBF-SVM are C

= 4 and γ = 0.00001. The experimental results shown in Table 4.5 show that even without

using different fine tuning techniques as in [12], our proposed method is able to achieve

comparable results to other state-of-the-art deep learning methods.

4.4.5 Caltech 256 Dataset

The Caltech 256 dataset [31] is an extended version of the Caltech 101 dataset and a more

challenging object recognition dataset. We follow the experimental settings as specified

in [110], where the dataset is randomly divided to 15, 30, 45 and 60 training images per

category and at the most 25 test images for 3 iterations. The methods are evaluated using

features extracted from a pre-trained ZFNet [99]. For the CMFA-SR method, we set the

dictionary size to 1024, and the parameters as λ = 0.05, α = 0.1, and β = 0.5. The RBF-
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Table 4.6 Comparison Between the Proposed Method and Other Popular Methods on the
Caltech 256 Dataset

Method 15 30 45 60

ScSPM [120] 27.73 34.02 37.46 40.14

IFK [82] 34.70 40.80 45.00 47.90

LLC [110] 34.36 41.19 45.31 47.68

M-HMP [8] 40.50 48.00 51.90 55.20

ZFNet CNN [99] 65.70 70.60 72.70 74.20

CMFA-SR 67.85 71.44 74.27 76.31

SVM is used for classification with C = 2 and γ = 0.0001. The experimental results in

Table 4.6 show that our proposed method is able to achieve better results compared to other

learning methods.

4.4.6 AR Face Dataset

For the AR face dataset, a subset of the data [74] is selected containing 50 male and 50

female subjects and the images are cropped to 165*120 in order to follow the standard

evaluation procedure. We evaluate our proposed method using two common experimental

settings to have a fair comparison with other methods. We follow the first experimental

setting as in [40] and [129] where we randomly select 20 training images and the remaining

are selected for testing, for each person for 10 iterations. The model parameters are set as

λ = 0.1, α = 0.2, and β = 0.6 and the dictionary size is selected as 512 for the CMFA-SR

method. RBF-SVM is used for classification with parameters set as C= 4, γ = 0.0001.

The second experimental setting is defined in [20] where we randomly consider 26

images per person of which 13 images are used for training and the remaining 13 for

testing for total of 10 iterations. The dictionary size is set to 512, and the parameters

are set as λ = 0.1, α = 0.2, β = 0.5, and C= 1, γ = 0.0007 for the RBF-SVM classifier.
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Table 4.7 Comparison Between the Proposed Method and Other Popular Methods on the
AR Face Dataset

Method (Setting 1) Accuracy (%)

D-KSVD [129] 95.00

LC-KSVD [40] 97.80

CMFA-SR 98.95

Method (Setting 2) Accuracy (%)

SRC [113] 93.75 ± 1.01

ESRC [19] 97.36 ± 0.59

SSRC [20] 98.58 ± 0.40

CMFA-SR 98.65 ± 0.42

The experimental results in Table 4.7 using our proposed CMFA-SR method for both the

experimental settings show that our method is able to improve upon other popular methods.

4.4.7 Extended Yale B Dataset

As for the extended Yale B dataset, a common evaluation procedure is to use a cropped

version of the dataset [52] where the images are manually aligned, cropped and resized to

192 x 168 pixels. The experimental setting as in [122] is followed wherein 20 images per

subject are randomly selected for training and the remaining images are used for testing,

for a total of 10 iterations. Note that this experimental setting is more difficult than that

in [129]. We first scale the image to 42 X 48 and and we obtain the pattern vector using

random faces [113]. The dictionary size is selected as 512. We set the parameters λ = 0.06,

α = 0.2, and β = 0.5 for the CMFA-SR method. The classification is done using RBF-SVM

with parameters C = 4 and γ = 0.001. Experimental results in Table 4.8 show that the

proposed method achieves better results compared to other popular methods.
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Table 4.8 Comparison Between the Proposed Method and Other Popular Methods on the
Extended Yale B Dataset

Method Accuracy (%)

D-KSVD [129] 75.30

SRC [113] 90.00

FDDL [122] 91.90

CMFA-SR 94.94

4.4.8 Evaluation of the Size of the Dictionary

In this section, we analyze the impact of different dictionary sizes on the performance of

the CMFA-SR method. In particular, dictionary sizes of 1024, 512, and 256 are used for

a comparative assessment of the performance. The results are presented in Figure 4.3 and

we can deduce that the performance of the CMFA-SR method increases upto a certain

dictionary size and then reaches a stable performance. We can also observe that for small

datasets, a fairly good performance is achieved with a small dictionary size, whereas in case

of large datasets such as the Caltech 101, a larger dictionary size is required. This indicates

that a large dataset requires a larger dictionary as the dictionary captures the variability of

the dataset.

4.4.9 Evaluation of the Size of the Training Data

We now evaluate the performance of our proposed CMFA-SR method when different

sizes of training images per category are used. Figure 4.4 shows the performance of

the CMFA-SR method for different training data sizes per category on the Caltech 101

dataset and 15 scenes dataset. The model parameters for both the datasets are set to values

used in the corresponding experimental section. It can be observed from Figure 4.4 that

the performance of the CMFA-SR method improves with the increase in the size of the
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Figure 4.3 The performance of the proposed CMFA-SR method for different dictionary
sizes on the Caltech 101 dataset and the 15 scenes dataset.

Table 4.9 Comparison of the Proposed CMFA-SR Features and the Deep Learning
Features using the MIT-67 Indoor Scenes Dataset

Method Accuracy (%)

Places-CNN [131] 68.24

CMFA-SR features 81.12

training data upto a certain value. After a certain training size, the performance only has

minor variations indicating the robustness of the proposed method.

4.4.10 Evaluation of the Effect of the Proposed CMFA-SR Method

In order to understand the effectiveness of the proposed method, we first examine the

effect of the CMFA-SR method using the deep learning features on the MIT-67 dataset.

We extract the input CNN features extracted using the Places-CNN [131] on the MIT-67

dataset. The proposed method then processes these input CNN features to obtain the

CMFA-SR features. Finally, the SVM classifier is used for classification. Table 4.9 shows
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Figure 4.4 The performance of the proposed CMFA-SR method when the size of the
training data varies on (a) Caltech 101 dataset (b) 15 scenes dataset.

Table 4.10 Comparative Evaluation of the Proposed CMFA-SR Features and the Hand
Crafted Features Using the Painting-91 Dataset (artist classification task)

Method Accuracy (%)

Fisher Vector features [84] 59.04

CMFA-SR features 65.78

the comparative evaluation of the proposed method and the deep learning method [131].

Specifically, our proposed method improves upon the performance of the deep learning

method by a large margin.

To demonstrate the general importance of our proposed method, we conduct

additional experiments on the Painting 91 dataset (artist classification task). The input

features used are Fisher vector features computed as described in [84]. We then apply the

proposed method to extract the CMFA-SR features and the final classification is performed

by using the SVM classifier with the RBF kernel. Table 4.10 shows that our proposed
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Figure 4.5 The t-SNE visualization of the initial input features and the features extracted
after applying the proposed CMFA-SR method for different datasets.

method achieves the classification accuracy of 65.78%, compared to only 59.04% by the

Fisher vector features method.

We further discuss the effects of our proposed method on the initial features and

how it encourages better clustering and discrimination among different classes of a dataset.

To visualize the effect of our proposed method, we use the popular t-SNE visualization

technique [72] that produces visualization of high dimensional data in scatter plots. Figure

4.5 shows the t-SNE visualizations of the initial features used as input and the features

extracted after applying the CMFA-SR method for different datasets. It can be seen from

Figure 4.5 that the proposed CMFA-SR method helps to reduce the distance among the data

points of the same class, which leads to the formation of higher density clusters for these

data points. Meanwhile the CMFA-SR method also helps increase the distance among the

clusters of different classes resulting in better discrimination among them. Applying two

types of discriminatory information, coupled with a discriminative sparse representation



61

Table 4.11 Evaluation of the Contribution of Individual Steps in the Proposed CMFA-SR
Method Using the MIT-67 Indoor Scenes Dataset

Method Accuracy (%)

Places-CNN (input features) [131] 68.24

CMFA features only (only subspace learning) 73.96

Dictionary learning features only 76.19

CMFA-SR features 81.12

Table 4.12 Evaluation of the Dictionary Screening Rule on the Caltech 101 Dataset with
the Dictionary Size of 256, 512, and 1024

Method 256 512 1024

CMFA-SR without screening rule 0.45 2.62 5.78

CMFA-SR with screening rule 0.40 2.05 3.84

model, our proposed CMFA-SR method, which leads to better separation among the data

samples from different classes, thus improves recognition performance.

To evaluate the contribution of the individual steps to the overall recognition rate, we

conduct experiments on the MIT-67 dataset using the input CNN features extracted from

the Places-CNN [131] as specified in [131]. Table 4.11 shows the performance evaluation

of the individual steps in the proposed CMFA-SR method. Specifically, the CMFA-SR

features (both CMFA and dictionary learning) achieves the best classification accuracy of

81.12% since it incorporates both the discriminatory features extracted using the CMFA

method and the discriminative dictionary learning.
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Table 4.13 Comparative Evaluation of the Proposed CMFA-SR Method with and without
the Dictionary Screening Rule for the Dictionary Size 1024 Using the Caltech 101 Dataset

Method Accuracy (%)

CMFA-SR without screening rule 88.49

CMFA-SR with screening rule 88.20

4.4.11 Evaluation of the Dictionary Screening Rule

We evaluate the performance of the proposed CMFA-SR method with and without the

dictionary screening rule to understand the effectiveness of the screening rule. In particular,

the performance is evaluated by calculating the average training time (s/per image),

which is determined by dividing the total train time with the training sample size. The

assessment is performed on the Caltech 101 dataset with the same settings as provided in

the experiments section. Table 4.12 provides the average training time per image of the

CMFA-SR method with and without dictionary screening rule for different dictionary sizes

of 256, 512 and 1024 on the Caltech 101 dataset. It can be observed that the training time

significantly reduces as the dictionary size of the CMFA-SR method increases. The training

time efficiency is marginal for small dictionary sizes but for the dictionary size 1024, the

screening rule improves the average training time per image by almost 33%. Table 4.13

shows the performance comparison of the proposed CMFA-SR method, with and without

the screening rule for the dictionary size 1024 using the Caltech 101 dataset. It can be seen

that there is a marginal loss of performance of less than 0.5% for the proposed method with

the screening rule but it provides a significant improvement in the average training time by

almost 33%.

4.4.12 Comparison with the L2 Norm Regularizer

We compare the proposed method with the L1 (sparsity regularizer) and L2 norm on

the Painting-91 dataset and the 15 scenes dataset, respectively. The same input features
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Table 4.14 Comparison of the Proposed Method with L1 and L2 Norm using the Painting-
91 and 15 Scenes Dataset

dataset Method Accuracy (%)

Painting-91

Artist Cls. Task

Proposed method with L2 norm 59.82

Proposed method with L1 norm 65.78

Painting-91

Style Cls. Task

Proposed method with L2 norm 64.32

Proposed method with L1 norm 73.16

15 Scenes
Proposed method with L2 norm 92.26

Proposed method with L1 norm 98.45

are used for the two datasets as described in Sections 4.4.1 and 4.4.2. The L2 norm

based method is optimized using stochastic gradient decent algorithm and the RBF-SVM

classifier is used for the final classification. Experimental results in Table 4.14 show that

the L1 norm performs better than the L2 norm by a margin of between 5% and 8%.

The L2 norm based method, even though possesses good analytical properties due to its

differentiability, does not encourage model compression and removal of irrelevant features,

which can be crucial for high-dimensional data. The L1 norm based method implicitly

filters out a lot of noise from the model as well as stabilizes the estimates if there is high

collinearity between the features resulting in a better generalized model. Another advantage

of the L1 norm based method is that it is less sensitive to outliers, and therefore improves

the pattern recognition performance.

4.5 Conclusion

We have presented in this chapter a complete marginal Fisher analysis (CMFA) method

that extracts the discriminatory features in both the column space of the local samples

based within class scatter matrix and the null space of its transformed matrix. We have

also presented a discriminative sparse representation model by integrating a representation
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criterion, such as the sparse representation, and a discriminative criterion, which applies the

new within-class and between-class scatter matrices based on the marginal information, for

improving the classification capability. We have finally proposed the largest step size for

learning the sparse representation to address the convergence issues in optimization, and a

dictionary screening rule to purge the dictionary items with null coefficients for improving

the computational efficiency. Our experiments on different visual recognition tasks using

representative datasets show the feasibility of our proposed method.



CHAPTER 5

DISCRIMINATIVE DICTIONARY DISTRIBUTION BASED SPARSE CODING

5.1 Introduction

Several machine learning and computer vision techniques have been broadly applied for

different visual recognition tasks such as face recognition [110, 129, 40, 122, 113, 57, 119,

58], scene classification [106, 87, 27], and object classification [82, 110, 99]. However, in

order to accurately classify images, a discriminative and robust representation is needed to

capture the important aspects of the image. A major issue in computer vision applications is

the high dimensionality of the image feature vector which can make the learning tasks more

difficult and can have a dramatic impact on the performance. To solve this issue, sparse

coding algorithms [61, 117, 113] have been widely used for data modeling by learning a

dictionary that is adapted to the data to improve the feature representation. Sparse coding

allows efficient retrieval of data as it generates sparse representations such that every data

point can be represented as a linear combination of a small set of basis vectors. Another

advantage is that the sparse representation can be overcomplete, allowing more flexibility

in matching data and yielding a better approximation of the statistical distribution of the

data.

Although the sparse representation method achieves impressive results in various

challenging tasks, a potential limitation is the lack of dictionary distribution information

since the dictionary is only derived from the representation criterion. The generative

perspective remains ignored due to the intrinsic difficulty of estimating the class conditional

probability accurately. The generative criterion models the data distribution and infers

joint representations which may significantly affect the performance of the learning

system. Another limitation in the conventional sparse representation criterion is the lack

of discriminative criterion which helps to enhance the discrimination among data samples

65
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of different categories. Previous works of research by [76, 37] show the complementary

nature of discriminative and generative approaches and demonstrate the effectiveness of

combining both the approaches.

To address these limitations, we present a discriminative dictionary distribution based

sparse coding (DDSC) method in this chapter. Specifically, the dictionary distribution

criterion plays the role of generative modeling by representing each dictionary item as a

linear combination of the training samples and emphasizing the coefficients of the nearest

training samples. To further improve the classification capability, we add a discriminative

criterion that utilizes the underlying topology of the sparse representation by considering

only the k nearest neighbors for defining a discriminant analysis criterion. In addition, we

propose a new classification procedure that utilizes both the derived sparse representation

and the dictionary distribution coefficients.

The proposed DDSC method iteratively updates the sparse representation, the

dictionary and the dictionary distribution coefficients. In particular, the sparse represen-

tation is derived by using the FISTA algorithm [6], and the dictionary is constructed using

a fast approximation and the Lagrange dual method. The effectiveness of the proposed

DDSC method is evaluated on various visual recognition tasks, such as object recognition

on the Caltech 256 dataset[31], computational fine art analysis on the Painting-91 dataset

[44], scene recognition on the 15 scenes dataset [50] and the MIT-67 indoor scenes dataset

[90], as well as face recognition on the AR face database [74] and the extended Yale face

database B [52]. The experimental results show the feasibility of the proposed method.

5.2 Discriminative Dictionary Distribution based Sparse Coding (DDSC)

In this section, we derive a novel sparse representation model by exploiting both the

discriminative and the dictionary distribution information to improve the classification

performance. Dictionary learning plays a crucial role in the conventional sparse repre-

sentation method.
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Our proposed DDSC method explicitly models the class conditional probability

of each dictionary item p(dj|c), where dj is j-th the dictionary item and c is the class

label, and introduces a new discriminative criterion for enhancing the discriminative power

of the dictionary. Given the training sample data matrix X ∈ Rn×m that contains

m samples [x1, x2, ..., xm], and each sample resides in the n dimensional space. The

dictionary D ∈ Rn×k can be represented as [d1,d2, ...,dk], where each dictionary item

dj(j = 1, 2, ..., k) also resides in the n dimensional space. Then our DDSC method derives

the sparse representation wi ∈ Rk(i = 1, 2, ...,m) for each training sample xi (W =

[w1,w2, · · · ,wm]), and the dictionary distribution coefficients vj ∈ Rm(j = 1, 2, ..., k) for

each dictionary item dj .

Specifically, the DDSC method is defined as follows:

min
D,W,V

{
m∑
i=1

||xi − Dwi||2 + λ||wi||1}+ γL(V,D) + αH(W)

s.t. ||dj|| ≤ 1, (j = 1, 2, ..., k)

(5.1)

The first term in Equation 5.1 is the conventional sparse representation criterion,

where the parameter λ controls the L1 normalization.

The second term L(V,D) is the dictionary distribution criterion, which is defined as

follows:

L(V,D) =
k∑
j=1

||dj − Xvj||2 + σ||vj − ηpj||2 (5.2)

where V = [v1, v2, ..., vk] is the matrix that consists of the dictionary distribution

coefficients vector vj = [vj1, vj2, ..., vjm]t. The vector pj = [pj1, pj2, ..., pjm]t ∈ Rm

represents the distance measure between the dictionary item dj and the training sample xi,

which is computed as follows:

pji = exp{− 1

2h2
||dj − xi||2} (5.3)
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where the parameter h controls the decay speed. Note that pji ≤ 1 and ||pj|| can be

normalized.

The traditional view of the dictionary learning is to represent the training sample

as a linear combination of the dictionary items. The dictionary items and the training

samples consist of a bipartite graph and they influence each other mutually. In addition, the

generative criterion also adds a constraint on the dictionary distribution coefficients vector

vj such that the coefficients are proportional to the distance between the dictionary item and

the training sample, in order to estimate the class conditional probability of each dictionary

item p(dj|c).

The third term is the discriminative criterion, which is defined as follows:

H(W) = tr(βS
′

w − (1− β)S
′

b) (5.4)

where the new within-class scatter matrix is defined as S
′

w =
∑m

i=1

∑
(wi,wj)∈Twk

(wi −

wj)(wi−wj)
t, and Twk represents the set of (wi,wj) pairs where the sample xi and sample xj

are among their k nearest neighbors, respectively in the same class. The new between-class

scatter matrix is defined as S
′

b =
∑m

i=1

∑
(wi,wj)∈T bk

(wi−wj)(wi−wj)
t, where T bk represents

the set of the k nearest (wi,wj) pairs among all the (wi,wj) pairs between sample xi and

sample xj from different classes.

This discriminative criterion utilizes the underlying topology of the sparse represen-

tation of training samples for defining new within-class and between-class scatter matrices

by considering only the k nearest neighbors. The new discriminative criterion can be further

transformed to H(W) = tr(WLWt), where L = 2β(Dw −Ww) − 2(1 − β)(Db −Wb).

In particular, let Ww be a matrix, whose elements Ww(i, j) = 1 if xi and xj are among

the k nearest neighbors of each other in the same class, and Ww(i, j) = 0 otherwise.

Let Wb be a matrix, whose elements Wb(i, j) = 1 if the pair (wi,wj) is among the k

nearest pairs from all the pairs among the samples of different classes, and Wb(i, j) = 0
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otherwise. And, let Dw and Db be diagonal matrices, whose main diagonal elements are

Dw(i, i) =
∑

j 6=iWw(i, j), and Db(i, i) =
∑

j 6=iWb(i, j), respectively.

5.3 Optimization Procedure

In this section, we discuss the optimization procedure of the proposed DDSC method. The

objective function in Equation 5.1 is optimized using a coordinate descent method, which

alternatively updates the sparse representation, the dictionary distribution coefficients,

as well as the discriminative dictionary. In order to obtain a better convergence rate,

the sparse representation and the dictionary are initialized using the conventional sparse

representation method [51], while the dictionary distribution coefficients vj are initialized

using the value of ηpj .

First, given the dictionary D and the dictionary distribution coefficients V, the sparse

representation W for each training sample xi can be obtained by rewriting the objective

function defined in Equation 5.1 as follows.

min
wi
||xi − Dwi||2 + αLiiwt

iwi + αwt
ihi + λ||wi||1; (5.5)

where hi =
∑

j 6=i Lijwj = [hi1, hi2, ..., hik]
t and Lij(i, j = 1, 2, ...,m) is the value in the

i-th row, j-th column of the matrix L. We then apply the FISTA algorithm [6] to learn the

sparse representation wi for each training sample xi.

Second, when the dictionary D and the sparse representation W are given, the

dictionary distribution coefficients V can be derived using the following analytical solution.

vj = (XtX + σI)−1(Xtdj + σηpj) (5.6)

where Xtdj is the sample correlation between the dictionary item dj and all the training

samples, and pj is the reciprocal of the exponential form of Euclidean distance between dj

and all the training samples. Therefore, the dictionary distribution coefficient vj represents

a measurement between the dictionary item and the training samples using a combination of
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both the correlation information and the distance information. From another perspective,

vj is a similarity measure using both the angular distance (correlation information) and

the Euclidean distance (reciprocal of the exponential form of Euclidean distance). This

important property of vj significantly helps to derive the dictionary as shown in the

following sub-section.

Third, after learning the sparse representation W and the dictionary distribution

coefficients V, the dictionary D can be derived by optimizing the following objective

function.

min
D
||X− DW||2 + γ(||D− XV||2 + σ||V− ηP||2)

s.t. ||dj|| ≤ 1, (j = 1, 2, ..., k)

(5.7)

where P = [p1,p2, ...,pk]. The optimization of Equation 5.7 is not a trivial problem due

to the exponential form of the vector pj with respect to dj . We seek a more efficient

approximation to derive the dictionary instead of using some generic solvers. It is based

on the observation from Equation 5.6 that the coefficients of the nearest neighbors of

the dictionary items are sufficient for an efficient approximation since the dictionary

distribution coefficient vector vj represents a similarity measure between the training

samples and the dictionary items. Specifically, the approximation method consists of the

following steps. (i) The influence of distant training samples are diminished by setting the

elements whose absolute value is less than a threshold in vj to zero. The resulting new

vector is denoted as v̄j . (ii) The dictionary is then derived by solving the following new

optimization problem.

min
D
||X− DW||2 + γ||D− XV̄||2

s.t. ||dj|| ≤ 1, (j = 1, 2, ..., k)

(5.8)
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Table 5.1 Description of the Datasets Used for Evaluation of the Proposed Method

Task Dataset #Samples

Object recognition CalTech 256 [31] 30,607

Scene recognition MIT-67 indoor scenes [90] 15,620

Scene recognition 15 scenes [50] 4,485

Fine art analysis Painting-91 dataset [44] 4266

Face recognition AR face [74] 4,000

Face recognition Extended Yale face B [52] 2,414

where V̄ is a matrix containing v̄j . This problem is a constrained optimization problem with

inequality constraints, which is solved using the Lagrange optimization and the Karush-

Kuhn-Tucker conditions [51].

5.4 Classification Procedure

After the dictionary D and the dictionary distribution coefficients V are derived, we present

a new discriminative dictionary distribution based sparse coding classification (DDSCc)

method. In particular, for the test data y, we derive sparse representation by optimizing the

following criterion:

minw
{
||y− Dw||2 + λ||w||1

}
(5.9)

where the representation w = [w1, w2, ..., wk]
t contains both the generative and the

discriminative information, as the dictionary D is learned during the training optimization

process.

The DDSCc method is then applied based on the derived discriminative dictionary

distribution based sparse coding w and the dictionary distribution coefficients v. Specifically,
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the DDSCc method is defined as follows.

c∗ = arg max
c

k∑
j=1

wj
∑

xi∈Xc

vji (5.10)

Note that we only select the top T largest values of vji for the DDSCc method.

5.5 Experiments

To evaluate the effectiveness of the proposed DDSC method, we conduct experiments

on different visual recognition tasks, namely object recognition, scene recognition, face

recognition, and computational fine art analysis. In particular, the datasets used for

evaluating the proposed DDSC method are listed in Table 5.1. The parameters for the

dictionary distribution criterion are selected as γ = 0.05, σ = 0.05 and η = 0.1 for all

the datasets. We also present additional comprehensive analysis to further investigate the

properties of the proposed method.

5.5.1 Scene Recognition

The 15 Scenes Dataset The 15 scenes dataset [50] contains 4485 images from 15 scene

categories, each with the number of images ranging from 200 to 400. Following the

experimental protocol defined in [50], 100 images per class are randomly selected for

training and the remaining for testing for 10 iterations. First, the spatial pyramid features

provided by [40], which are obtained by using a four-level spatial pyramid and a codebook

with a size of 200, are applied to represent the image as a vector with the dimension of 3000

for fair comparison. The dimension is then reduced to 1000 and the size of the dictionary is

1024. The model parameters are selected as follows: λ = 0.05, h = 0.1, α = 0.1, β = 0.5,

and k = 100 for the DDSCc method. The results shown in Table 5.2 demonstrate that the

proposed method is able to achieve better results compared to other learning methods.
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Table 5.2 Comparison with Other State-of-the-art Methods on the 15 Scenes Dataset

Methods Accuracy %

LLC [110] 89.20

D-KSVD [129] 89.10

LC-KSVD1 [40] 90.40

LC-KSVD2 [40] 92.90

LaplacianSC [27] 89.70

DHVFC [29] 86.40

VGG16-Place365 [130] 92.15

DDSC 98.75 ± 0.15

The MIT-67 Indoor Scenes Dataset The MIT-67 indoor scenes dataset [90] is a very

challenging indoor scene recognition dataset containing 15620 images with 67 classes. We

use the experimental settings defined in [90], wherein 80 images per class are used for

training and 20 images per class are used for testing. The initial input features are selected

from a pretrained VGG16 CNN model [130] and the feature dimension is reduced from

4096 to 3500. The dictionary size is selected as 2048. The model parameters are selected

as λ = 0.05, h = 0.01, α = 0.1, β = 0.5 and k = 75 for DDSCc method. The results

shown in Table 5.3 demonstrate that the proposed method achieves better results compared

to other popular learning methods.

5.5.2 Computational Fine Art Analysis

The Painting-91 dataset [44] contains 4266 fine art painting images by 91 artists. There are

variable number of images per artist ranging from 31 (Frida Kahlo) to 56 (Sandro Boticelli).

The dataset classifies 50 painters to 13 style categories with style labels namely: (1)

abstract expressionism, (2) baroque, (3) constructivism, (4) cubbism, (5) impressionism,
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Table 5.3 Comparison with Other State-of-the-art Methods on the MIT-67 Indoor Scenes
Dataset

Methods Mean Accuracy %

ROI + Gist [90] 26.10

Object Bank [55] 37.60

miSVM [54] 46.40

D-Parts [102] 51.40

DP + IFV [42] 60.80

D3 [114] 78.13

VGG16-Place365 [130] 76.53

DDSC 82.97

(6) neoclassical, (7) popart, (8) post-impressionism, (9) realism, (10) renaissance, (11)

romanticism, (12) surrealism, and (13) symbolism.

The initial input features used are Fisher vector features extracted as described

in [86]. We follow the experimental protocol in [44] having two tasks, namely artist

classification and style classification. Artist classification involves classifying a painting

to its respective artist among all the 91 artists. The dimension is reduced to 2000 and the

size of the dictionary is 1024. The model parameters are selected as follows: λ = 0.05,

h = 0.1, α = 0.1, and β = 0.5. k is set as 25 for the DDSCc method.

The style classification task deals with the problem of categorizing a painting to the

13 style classes defined in the dataset. Then the dimension is reduced to 1200 and the size

of the dictionary is 1024. The model parameters are selected as follows: λ = 0.05, h = 0.1,

α = 0.1, β = 0.5, and k = 40 for DDSCc method. Experimental results in Table 5.4 show

that our proposed DDSC method outperforms other popular methods in both the artist and

style classification tasks.
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Table 5.4 Comparison with Other Popular Methods on the Painting-91 Dataset

Feature Artist Cls. Style Cls.

RGBSIFT [104, 44] 40.30 47.40

CSIFT [104, 44] 36.40 48.60

CN-SIFT [44] 44.10 56.70

Combine(1 - 14) [44] 53.10 62.20

CNN F3 [108] 56.40 68.57

CNN F4 [108] 56.35 69.21

MSCNN-1 [81] 58.11 69.67

MSCNN-2 [81] 57.91 70.96

DDSC 66.59 75.09

5.5.3 Object Recognition

The Caltech 256 dataset [31] is an extended version of the Caltech 101 dataset and a more

challenging object classification dataset containing 30607 images from 256 categories. We

follow the experimental protocol defined in [110] where the entire dataset is partitioned

randomly into 30, 45 and 60 training data samples per category and at the most 25 test data

samples per category for 3 iterations. The initial input features used are extracted from a

pre-trained ZFNet [99] resulting in feature vector with dimension 4096. We further reduce

the dimension to 2000 using PCA. The performance is evaluated by calculating the average

classification accuracy over all the categories. For the DDSC method, we set the dictionary

size to 1024, and the parameters as λ = 0.05, h = 0.1, α = 0.1, and β = 0.5. k is set as 60

for the DDSCc method. Experimental results in Table 5.5 show that our proposed method

achieves better results compared to other methods.
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Table 5.5 Comparison Between the Proposed Method and Other Popular Methods on the
Caltech 256 Dataset

Methods 30 45 60

IFK [82] 40.80 45.00 47.90

LLC [110] 41.19 45.31 47.68

M-HMP [8] 48.00 51.90 55.20

ZFNet CNN [99] 70.60 72.70 74.20

DDSC 72.39 75.13 76.90

5.5.4 Face Recognition

Extended Yale face database B The extended Yale face database B consists of 2414 face

images from 38 individuals each with around 64 images taken under various lightening

conditions. A cropped version of the database [52] is often applied, where all the images

are manually aligned, cropped, and then re-sized to 168 × 192 .

Two experimental settings are applied for fair comparison. First, we follow the

experimental setting [122] that 20 images are randomly selected for training for each

subject, and the remaining images (around 44 per subject) are used for testing for 10

iterations. To show the robustness of our proposed method, we present results of our

DDSC method under an extremely noisy condition, where the random faces [113] are used

as the input. Specifically, the random faces [113] consists of the row vectors of a randomly

generated transformation matrix from a zero-mean normal distribution, which is applied

to project the face pattern vector with a dimension of 504. Each row of the transformation

matrix is normalized to unit length. Then the dimension is reduced to 350 and the dictionary

size is set as 512. The model parameters are selected as follows: λ = 0.1 for the sparse

representation criterion, h = 0.1 for the dictionary distribution criterion, α = 0.5, and

β = 0.5 for the discriminative criterion. k is set as 20 for the DDSCc method.
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Table 5.6 Comparison with Other Popular Learning Methods on the Extended Yale Face
Database B

Experimental setting 1 Accuracy %

D-KSVD [129] 75.30

SRC [113] 90.00

FDDL [122] 91.90

DDSC 95.19

Experimental setting 2 Accuracy %

LLC [110] 90.70

D-KSVD [129] 94.79 ± 0.49

LC-KSVD1 [40] 93.59 ± 0.54

LC-KSVD2 [40] 95.22 ± 0.61

FDDL [122] 96.07 ± 0.64

SRC [113] 96.32 ± 0.85

DDSC 97.45 ± 0.40

Second, we follow the experimental setting described in [2], [40] where half images

are randomly selected for training for each subject, and the remaining images are used for

testing for 10 iterations. The input features used are random faces and the dimension of the

representation vector is reduced from 504 to 350. The dictionary size is set as 512. The

model parameters are selected as follows: λ = 0.05, h = 0.1, α = 0.1, and β = 0.5. k

is set to 20 for the DDSCc method. The final results shown in Table 5.6 demonstrate the

effectiveness of the proposed method under such a noisy condition.

AR face database The AR face database contains 4000 frontal view images for 126

individuals with 26 images per person. We follow the experimental protocol as described
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Table 5.7 Comparison with Other Popular Methods on the AR Face Database

Experimental setting 1 Accuracy %

D-KSVD [129] 95.00

SRC [113] 97.50

LC-KSVD2 [40] 97.80

FDDL [122] 96.22

DDSC 98.50

Experimental setting 2 Accuracy %

D-KSVD [129] 85.40

LC-KSVD [40] 89.70

JDL [132] 91.70

FDDL [122] 92.00

SRC [113] 94.99

DDSC 96.29

in [74] where 50 male subjects and 50 female subjects are chosen. The images are cropped

to size 165*120.

The first experimental setting is defined in [40], [129], where the methods are

evaluated by randomly selecting 20 images for training and the others for testing for each

person for 10 iterations. In this experimental setting, the random faces [113], [40] with

540 dimensions are applied for fair comparison. Then the dimension is reduced from 540

to 400 and the size of the dictionary is set as 512. The model parameters are selected as

follows: λ = 0.1, h = 0.1, α = 0.5, and β = 0.5. k is set as 15 for the DDSCc method.

The second experimental setting is defined in [113], [122] where 14 images with only

illumination change and expressions are selected for each person: the seven images from

session 1 for training and the other seven from session 2 for testing. The pattern vector
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Figure 5.1 The t-SNE visualization of the initial input features and the features extracted
after applying the proposed DDSC method.

is formed as the concatenation of the column pixels. Then the dimension is reduced to

300 and the size of the dictionary is 512. The model parameters are selected as follows:

λ = 0.05, h = 0.1, α = 0.5, β = 0.5, and k = 7 for the DDSCc method. The experimental

results presented in Table 5.7 show that the our DDSC method is able to improve upon the

other popular methods under all the three experimental settings.

5.5.5 Evaluation of the Effect of the Proposed DDSC Method

To evaluate the contribution of the individual criterion to the overall classification accuracy,

we conduct experiments on the MIT-67 dataset using the initial input features as described

in the Experiments Section 5.5.1. In order to have a fair comparison, we use the RBF-

SVM classifier for classification instead of the DDSCc method since it depends on both the

dictionary distribution and discriminative criteria. It can be seen from Table 5.8 that the

DDSC method (both discriminative and dictionary distribution criteria) achieves the best

performance of 80.67% since it incorporates both the discriminative and the dictionary

distribution information.
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Table 5.8 Evaluation of the Contribution of Generative and Discriminative Criterion in
DDSC Method Using the MIT-67 Scenes Dataset

Method Accuracy (%)

DDSC with discriminative criterion 77.24

DDSC with dictionary distribution criterion 78.51

Proposed DDSC (both criteria) 80.67

We further discuss the effects of our proposed method on the initial features and

how it encourages better clustering and discrimination among different classes of a dataset.

To visualize the effect of our proposed method, we use the popular t-SNE visualization

technique [72] that produces visualization of high dimensional data in scatter plots. Figure

5.1 shows the t-SNE visualizations of the initial features used as input and the features

extracted after applying the DDSC method for different datasets. It can be seen from

Figure 5.1 that the proposed DDSC method helps to reduce the distance between images

of the same class leading to formation of higher density clusters for images of the same

class. Another advantage is that the DDSC method assists to increase the distance between

clusters of different classes resulting in better discrimination among them. The DDSC

method uses both the dictionary distribution and discriminative information, therefore,

encourages better separation between data samples of different classes.



CHAPTER 6

MULTIPLE ANTHROPOLOGICAL FISHER KERNEL LEARNING

6.1 Introduction

Kinship verification is a challenging task as the correlated visual resemblance between

parents and their offspring have to be captured. In order to effectively classify kinship

relations, the genetic features between parent and child have to be enhanced and encoded

in the feature representation. Many feature representation methods such as LBP [1], Gabor

features [59], Fisher vector [98], learning-based (LE) descriptor [11], etc. have been

proposed for representing face images. But these methods are not explicitly designed in

order to capture and enhance the similarities and genetic relations between parent and child

images. Another issue is that unlike traditional face recognition problem, the similarity

gap between kinship images is much larger specifying the need for more powerful visual

features.

To address these issues, this paper proposes a novel SIFT flow based genetic Fisher

vector feature with applications to kinship verification. We enhance the genetic inheritable

features of parent and child image in kinship relations by matching densely sampled SIFT

features and visual correspondence between them using the SIFT flow algorithm [60].

We analyze and correlate the enhanced genetic features to the anthropological results

and find interesting patterns in different kinship relations. We then apply an inheritable

transformation with the objective of pushing the non-kinship samples as far as possible

and pulling the kinship samples as close as possible. The experimental results on the two

challenging kinship databases, the KinFace W-I and the Kinship W-II dataset [70] show the

effectiveness of the proposed method. The framework of our proposed method is illustrated

in Figure 6.1.

81
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Figure 6.1 The framework of our proposed SF-GFVF feature.

6.2 SIFT Flow based GFVF Framework

6.2.1 SIFT Flow based Similarity Enhancement Method

We present a novel similarity enhancement method by extending the SIFT flow algorithm

[60] for kinship images so as to find inheritable feature relations between the kinship

images and enhance the similarities between them. The SIFT flow algorithm matches the

densely sampled SIFT features and finds the correspondence estimated by SIFT flow. It can

be formulated similarly as the optical flow wherein SIFT descriptors are matched instead

of the pixel to pixel correspondences between two images. The SIFT flow is based on the

criteria that the SIFT descriptors are matched along the flow vectors and the flow field is
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Figure 6.2 Visualization of SIFT images of different kinship relations using the top three
principal components of SIFT descriptors.

smooth [60]. The energy function for SIFT flow [60] is defined as follows:

E(w) =
∑

p

min(‖s1(p) + s2(p + w(p))‖1, t)+

∑
p

η(|u(p) + v(p)|) +
∑
p,qεε

min(α|u(p) + u(q)|, d)+

min(α|v(p) + v(q)|, d)

(6.1)

where p = (x, y) are the grid coordinate of images, w(p) = (u(p), v(p)) is the flow

vector at p, s1, s2 are the two SIFT images to be matched and ε contains all the spatial

neighborhoods.

To visualize the SIFT images, the top three principal components of the SIFT image

are mapped to the principal components of the RGB space, as shown in Figure 6.2. The

purple and the orange regions in the visualization highlight the inheritable genetic feature

regions in the kinship images. Our objective is to enhance these genetic regions in the

kinship images. For a query parent-child image pair, the SIFT flow is applied to match

dense correspondences between the parent and the child SIFT descriptors. If the image

pair is in kinship relation, the genetic facial regions are enhanced by adding weights to

those specific facial regions.

Our proposed similarity enhancement method results in interesting phenomena that

correlate the enhanced genetic features to the anthropological features. Naini et al. [75]

analyzed the contributions of heredity and environment on external facial features. The
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relative strength of genetic influence on different facial parameters is assessed using optical

surface scanning and twin method. The anthropological results [75] show that eyes,

chin and parts of the forehead show higher visual resemblance between parent and their

offspring and provide large feedback. The results shown in Figure 6.2 show high correlation

to the anthropological results with high feedback in parts of forehead and eye regions.

Interesting patterns can be deduced for different relations from Figure 6.2. It can be

observed that the father-son and mother-daughter relation show large visual correspondence

in different parts of facial regions leading to the deduction that individuals of the same

gender in kinship relations share higher visual resemblance. It can also be seen that

mother-daughter relation has higher genetic responses compared to father-daughter relation

confirming the observation that mothers resemble their daughters more as in [4].

6.2.2 Inheritable Genetic Transformation

We first briefly review the Fisher vector method. Fisher vector is widely used for visual

recognition problems such as face recognition [98], object recognition [38]. Particularly,

let X = {dt, t = 1, 2, ..., T} be the set of T local descriptors extracted from the image.

Let µλ be the probability density function of X with a set of parameters λ, then the Fisher

kernel [38] is defined as follows: K(X,Y) = (GX
λ )TF−1

λ GY
λ where GX

λ = 1
T
5λ log[µλ(X)],

which is the gradient vector of the log-likelihood that describes the contribution of the

parameters to the generation process. And Fλ is the Fisher information matrix of µλ.

Essentially, the Fisher vector is derived from the explicit decomposition of the Fisher

kernel as the symmetric and positive definite Fisher information matrix Fλ has a Cholesky

decomposition as F−1
λ = LT

λLλ. Therefore, the Fisher kernel K(X,Y) can be written as a

dot product between two vectors LλGX
λ and LλGY

λ which are defined as the Fisher vectors

of X and Y, respectively. Fisher vector focuses on the image specific features and discards

the image independent features but this does not guarantee enhancement of genetic features

in parent and child images.
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We therefore learn an inheritable genetic transformation W on the SIFT flow based

genetic Fisher vector pi(i = 1, 2, ...,m) and ci(i = 1, 2, ...,m) for each training pairs

(pi, ci) where pi denotes the parent image and ci denotes the child image. The learned

SF-GFVF for the parent and child image are as follows: ui = WTpi and vi = WT ci. The

objective of learning the inheritable transformation is to minimize the distance between ui

and vi if ui and vi have kinship relations and maximize the distance otherwise.

Let D = {(ui, vi)|ui, vi ∈ Rn×1(i = 1, 2, ...,m)} be the training data that consists of

m pairs of SIFT flow based genetic Fisher vector features derived from the kinship images.

Therefore, multiple objectives for the SF-GFVF method can be formulated as:

max
W

(d2(ui, v∗i )− d2(ui, vi))

max
W

(d2(u∗i , vi)− d2(ui, vi))
(6.2)

where d2(ui, vi) = (pi − ci)TWWT (pi − ci), u∗i is the nearest neighbor of ui and v∗i is the

nearest neighbor of vi. Note that there are 2*m objective functions in Equation 6.2 since

i = 1, 2, ...,m.

In practice, it is difficult to solve a multiple objective problem for high dimensions

since it is computationally expensive and a single solution may not exist. Therefore, linear

scalarization [36] is applied in order to convert the multi-objective problem into a single

objective function with a weighted sum of the individual objective functions. Assuming

the same weight λ2
i for the objective functions of each training pair (ui, vi), we want to

maximize the following objective function:

max
W

m∑
i=1

λ2
i (d

2(ui, v∗i ) + d2(u∗i , vi)− 2 ∗ d2(ui, vi))

s.t.
m∑
i=1

λi = 1,WTW = I
(6.3)

Then objective function in Equation 6.3 can be further simplified as Tr (WT (Q1 + Q2 − 2Q3)W)

where Q1 =
∑m

i=1 λ
2
i (pi − c∗i )(pi − c∗i )

T . Q2 and Q3 can be computed in a similar way.



86

Then the algorithm of optimizing the objective function in Equation 6.3 is summarized

as follows.

Algorithm 1 SF-GFVF Learning Algorithm
Input: Training Images: D = {(ui, vi)|ui, vi ∈ Rn×1(i = 1, 2, ...,m)}

Output:Inheritable tranformation W

1: Step 1 (Initialization)

Initialize λi = 1/m and W = I

2: Step 2 W is fixed, optimize on λi

λi =
f−1(ui, vi)∑m
i=1 f

−1(ui, vi)
(6.4)

where f(ui, vi) = d2(ui, v∗i ) + d2(u∗i , vi)− 2 ∗ d2(ui, vi)

3: Step 3 λi is fixed, update W

max
W

Tr(WT (Q1 + Q2 − 2Q3)W)

s.t.WTW = I
(6.5)

4: Step 4 Continue to Step 2 if not converged

After the SF-GFVF is derived, principal component analysis with whitening trans-

formation is applied in order to extract the most expressive features. A fractional power

cosine similarity measure (FPCSM) is then applied as follows to compute the similarity

between two images.

FPCSM(ui, vi) = CS(sign(ui)|ui|α, sign(vi)|vi|α) (6.6)

where CS(a,b) = aT b
‖a‖‖b‖ is the traditional cosine similarity measure and α (0 < α < 1) is

the power parameter.
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Table 6.1 Comparison Between the SF-GFVF and Other Popular Methods on the
KinFaceW-I Dataset

Methods F-S F-D M-S M-D Mean

CSML [77] 61.10 58.10 60.90 70.00 62.50

NCA [30] 62.10 57.10 61.90 69.00 62.30

LMNN [112] 63.10 58.10 62.90 70.00 63.30

NRML [70] 64.10 59.10 63.90 71.00 64.30

MNRML [70] 72.50 66.50 66.20 72.00 69.90

ITML [17] 75.30 64.30 69.30 76.00 71.20

GGA [18] 70.50 70.00 67.20 74.30 70.50

ANTH [18] 72.50 71.50 70.80 75.60 72.60

DGA [18] 76.40 72.50 71.90 77.30 74.50

SF-GFVF 76.27 74.64 75.48 79.98 76.09

The linear scalarization optimization procedure may be similar to metric learning

methods such as NRML [70] in terms of mathematical formulas but the differences are

as follows. (i) Our method uses multiple objective function instead of a common global

objective function which helps to prevent dominance of one term in the function over other

terms. (ii) Our method enhances the genetic features in kinship images and is proposed

from the feature learning point of view and not the metric learning point of view.

6.3 Anthropology Inspired Feature Extraction

Naini et al. [75] analyzed the contributions of heredity and environment on external

facial features. Their anthropological results [75] show that eyes, chin and parts of the

forehead show higher visual resemblance between parents and their offspring and provide

large feedback. From the computer vision point of view, these high resemblance in facial

regions between kinship image pairs exhibit three important properties as follows given
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the notations that p = (x, y) are the grid coordinate of images, d(p) = (u(p), v(p)) is the

displacement vector at p, u(p) and v(p) are two integers that represent the displacements of

x and y axes from the coordinates p, respectively, s1, s2 are the two dense SIFT descriptors

to be measured and ε represents the set of all the spatial neighborhoods.

• First, these facial regions between kinship image pairs have high visual resemblance

(e.g., their eyes resemble each other), which means their local descriptors are similar,

namely ‖s1(p)− s2(p + d(p))‖ is small.

• Second, these facial regions should be at similar relative locations on two faces (e.g.,

their eyes appear at similar locations on two faces), which means there may be a

small displacement between the centers of two local descriptors, namely ‖d(p)‖ is

small.

• Third, the neighborhood regions of high resemblance facial regions tend to be similar

(e.g., the neighborhood small regions around the center of eyes tend to be smoothly

changed), which means ‖d(p)− d(q)‖ is small where (p,q) ∈ ε.

Inspired by these anthropological observations, we propose three novel anthropology

inspired features to capture these high resemblance facial regions between parents and

their children. First, we present a new anthropology inspired similarity enhancement

(AISE) method by extending the SIFT flow [60] method from the scene alignment to

kinship image pairs. The SIFT flow algorithm matches densely sampled SIFT features

and finds correspondence estimated by SIFT flow. The objective function for SIFT flow

[60] is defined as follows:

E(d) =
∑

p

(‖s1(p)− s2(p + d(p))‖1)+

∑
p

η(‖d(p)‖1) +
∑
p,q∈ε

θ(‖d(p)− d(q)‖1)

(6.7)

As we have seen, the SIFT flow method, which satisfies three properties of high visual

resemblance facial regions between kinship pairs, is very suitable to be extended to kinship
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image pairs for capturing the inheritable information between parents and children. Then

the estimated SIFT flow can be applied to reinforce the high visual resemblance facial

regions and generate similarity enhanced images.

To visualize the effectiveness of our method, the top three principal components of

the SIFT descriptors of the image are mapped to the principal components of the RGB

space, as shown in Figure 6.2. The purple and the orange regions in the visualization

highlight the high visual resemblance regions in the kinship images. It can be discovered

that these regions focus on eyes, mouth, chin and parts of the forehead. Therefore

our proposed AISE method derives interesting phenomena that are consistent to the

anthropology results in [75]. Other interesting patterns can also be deduced for different

relations from Figure 6.2. It can be observed that the father-son and mother-daughter

relation show large visual correspondence in different parts of facial regions leading to

the deduction that individuals of the same gender in kinship relations share higher visual

resemblance. It can also be seen that mother-daughter relation has higher genetic responses

compared to father-daughter relation confirming the observation that mothers resemble

their daughters more as in [4].

Then the AIF-SIFT, AIF-WLD and AIF-DAISY descriptors are extracted from the

similarity enhanced images derived by our anthropology inspired similarity enhancement

method. Therefore we name these three anthropology inspired features as AIF-SIFT, AIF-

WLD and AIF-DAISY. In particular, the AIF-SIFT feature is computed in the opponent

color space [43] of the enhanced image. We then derive densely sampled SIFT features

from the image encoded by the Weber local descriptors (WLD) and the process is repeated

separately for the three components of the image resulting in color AIF-WLD feature. To

improve the robustness against photometric and geometric transformations of the enhanced

image, dense AIF-DAISY descriptors are computed with parameters radius of descriptor

set as 15, number of rings as 3, number of histograms per ring as 8 and number of histogram

bins as 8 resulting in a 200 dimension AIF-DAISY descriptor.
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6.4 Multiple Anthropological Fisher Kernel Framework

The complementary nature of discriminative and generative approach leads to the generative

score space. One example is the Fisher score [37], which has been widely applied for

visual classification problems such as face recognition [98], object recognition [38]. In

this section, we extend the Fisher score from classification problem to metric learning

problem. Particularly, let Xi = {dt, t = 1, 2, ..., T} be the set of T local descriptors (e.g.,

AIF-SIFT, AIF-WLD or AIF-DAISY) extracted from an image of the i−th pair. And Yi is

defined similarly for the other image of the i−th pair. Let p(X|λ) be the probability density

function of generating Xi or Yi with a set of parameters λ, then the Fisher score is defined

as follows:

F(Xi) =
1

T
5λ log[p(Xi|λ)] (6.8)

As a matter of fact, the Fisher score is the gradient vector of the log-likelihood that

describes the contribution of the parameters to the generation process. It describes the

generative perspective of features. Based on the Fisher score, a score space based similarity

measure, namely Fisher kernel [37], is derived as KF (Xi,Yi) = (F(Xi))
T I−1F(Yi)

using the Fisher information matrix I. The conventional Fisher kernel provides a natural

similarity measure between images by considering the underlying probability distribution.

However, three major issues inherent of the conventional Fisher kernel are still waiting

for solutions. First, the conventional Fisher kernel fails to take into account of the

label information. Second, the Fisher information matrix I is difficult to obtain and

approximation techniques are not sufficient to guarantee performance. Third, it only

measures the similarity for a single aspect between images, which depends on the type

of the local image descriptors.

Therefore, this paper presents a novel multiple anthropological Fisher kernel framework

to address these three issues by learning a new distance metric that captures the pairwise

information, and the weights of multiple distance metrics that exploits information from
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different features. Specifically, the score space based multiple distance metric is defined

as follows with the weights wc(c = 1, 2, ..., k): D(Xi,Yi) =
∑k

c=1wcDc(Xc
i ,Y

c
i) =∑k

c=1wc(pci)TM(cci) =
∑k

c=1 wc(pci)TWWT (cci) =
∑k

c=1 wc(xci)T (yci), where pci = F(Xi),

cci = F(Yi), xci = WTpci and yci = WT cci (i = 1, 2, ...,m). It is easy to see that matrix

M = WWT is symmetric and positive definite. To keep the notation simple, we use

D(xi, yi) instead of D(Xi,Yi) in the remaining parts of the paper. The introduction of

W alleviates the assumptions on the Fisher information matrix since W can be learned

from the training data and contains sufficient information for recognizing kinship relations.

The derivation of W and wc consists of two iterative procedures. Let D =

{(xci , yci)|xci , yci ∈ Rn×1(i = 1, 2, ...,m, c = 1, 2, ..., k)}. The main purpose of the

transformation W and weights wc is to push away the nearby non-kinship samples as far as

possible while pulling the kinship relation samples as close as possible, and approximate

the ideal similarity matrix. In other words, the distance between xci and yci should be as

small as possible if xci and yci have kinship relations and otherwise the distance should

be large. Therefore, the objective function for the M-AFK method can be formulated as

follows.

min
W,wc
‖DI −

k∑
c=1

wcDc‖2
F + α

k∑
c=1

w2
c + λ

k∑
c=1

dc|wc|

s.t.WTW = I,
k∑
c=1

wc = 1, wc > 0

(6.9)

In this objective function, the third term of Equation 6.9 represents the criterion of pushing

away the nearby non-kinship samples as far as possible while pulling the kinship samples

as close as possible. While the first and second term show the reconstruction criterion and

the regularization for the weights of different metrics The dc is defined as dc =
∑m

i=1 2 ∗

Dc(xci , yci)−Dc(xci , (yci)∗)−Dc((xci)∗, yci) = Tr (WT (2Mc
1 −Mc

2 −Mc
3)W), where Mc

1 =∑m
i=1 pci(cci)T , (xci)∗ is the nearest neighbor of xci , (yci)∗ is the nearest neighbor of yci , Dc ∈

Rm×m is the similarity matrix for the c-th feature (c = 1, 2, ..., k) and DI ∈ Rm×m is

the ideal similarity matrix which is derived by multiplying the scaled label vector (0.5 for



92

scaling in our experiment) with its transpose. Note that Mc
1 is not symmetric, then we make

it symmetric by using Mc
1 = (Mc

1 + (Mc
1)T )/2 without influencing the value of dc. Mc

2 and

Mc
3 can be computed in a similar way.

Now the problem becomes a constrained, non-negative, and weighted variant of the

sparse representation problem and the term
∑k

c=1 dc|wc|, which corresponds to the criterion

of pushing away the nearby non-kinship samples and pulling close the kinship samples,

behaves as a regularization for the multiple metric learning problem.

The the objective function 6.9 then can be optimized using an iterative procedure.

Specifically, given the fixed wc, we can approximately update W by discarding the

reconstruction criterion and optimizing the following objective function:

max
W

Tr(WT

k∑
c=1

wc(Mc
2 + Mc

3 − 2Mc
1)W)

s.t.WTW = I

(6.10)

This can be done by deriving the eigenvectors of matrix
∑k

c=1 wc(Mc
2 + Mc

3 − 2Mc
1).

Then given the W, we can optimize the following problem to derive wc:

min
wc
‖DI −

k∑
c=1

wcDc‖2
F + α

k∑
c=1

w2
c + λ

k∑
c=1

dc|wc|

s.t.

k∑
c=1

wc = 1, wc > 0

(6.11)

We can apply the FISTA algorithm [6] to optimize the objective function defined

in Equation 6.11. The structure of the FISTA algorithm remains the same but the

proximal operator is different as our method is a constrained, non-negative, and weighted

variation. We thus replace the original soft thresholding operator with an efficient

projection operator [22] considering the non-negative constraint. We can also transform

the objective function defined in Equation 6.11 into a quadratic programming problem by
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using the fact λ
∑k

c=1 dc|wc| = λ
∑k

c=1 dcwc since wc > 0. Then the objective function can

be optimized efficiently.

After the M-AFK is derived, a novel normalized multiple similarity measure

(NMSM) is further proposed, where the M-AFK is normalized as follows with the power

transformation p(x) defined as p(x) = sign(x)|x|β , where β (0 < β < 1) is the power

parameter, and both the power and the sign operations are element-wise.

NMSM(xi, yi) =
k∑
c=1

wc
Dc(p(xci), p(yci))

‖WTp(xci)‖‖WTp(yci)‖
(6.12)

The proposed NMSM takes advantage of normalization through fractional power

transformation and the L2 normalization. The fractional power transformation is able to

transform from the data into a near Gaussian shape with a stable variance [38]. With the

help of the L2 normalization, it can be proved that the NMSM is proportional to a weighted

linear combination of the whitened cosine similarity measure for each feature. This shows

its theoretical roots to the Bayes decision rule for minimum error under some conditions

such as the multivariate Gaussian distribution assumption, therefore, provides theoretical

guarantee to achieve better performance.

6.5 Experiments

This section demonstrates the performance of our proposed method on two challenging

kinship databases: the KinFaceW-I dataset and the KinFaceW-II dataset [70]. There are

four kinship relations in both the datasets: father-son (F-S), father-daughter (F-D), mother-

son (M-S), and mother-daughter (M-D). In KinFaceW-I dataset, each image pair in the

kinship relation was acquired from different photos whereas in KinfaceW-II, they were

obtained from the same photo. In the KinFaceW-I dataset, there are 156, 134, 116, and

127 image pairs for each of the relations defined above. In the KinFaceW-II dataset, there

are 250 pairs of the images for each relation. In our experiments, we conduct 5-fold cross
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Table 6.2 Comparison Between the SF-GFVF and Other Popular Methods on the
KinFaceW-II Dataset

Methods F-S F-D M-S M-D Mean

CSML [77] 71.80 68.10 73.80 74.00 71.90

NCA [30] 73.80 70.10 74.80 75.00 73.50

LMNN [112] 74.80 71.10 75.80 76.00 74.50

NRML [70] 76.80 73.10 76.80 77.00 75.70

MNRML [70] 76.90 74.30 77.40 77.60 76.50

ITML [17] 69.10 67.00 65.60 68.30 67.50

GGA [18] 81.80 74.30 80.50 80.80 79.40

DGA [18] 83.90 76.70 83.40 84.80 82.20

SF-GFVF 87.20 79.60 88.00 87.80 85.65

validation where both datasets are divided into five folds having the same number of image

pairs [70].

6.5.1 Comparison Between the SF-GFVF and Other Popular Methods

This section presents the comparison between our proposed SF-GFVF method and other

state-of-the-art deep learning and metric learning methods. In Tables 6.1 and 6.2, ANTH

denotes anthropological results, GGA denotes gated autoencoders and DGA denotes

discriminative autoencoders. It can be observed that the result on the KinFace W-II

dataset is better than the KinFace W-I dataset due to the availability of more training

samples. Another reason is that the KinFace W-II dataset contains kinship images from

the same photo therefore helps to reduce the illumination and background noise compared

to the KinFace W-I dataset which contains kinship images from the different photos.

Experimental results in Tables 6.1 and 6.2 show that our method outperforms deep learning

methods [18] and other metric learning based methods.
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6.5.2 Comparison Between the SF-GFVF and FV

This section presents the comparison between our proposed SF-GFVF method and the

original Fisher vector (FV) [38] method. Experimental results in Table 6.3 show that our

proposed SF-GFVF method improves upon the original FV method by approximately 4

percent and 9 percent in the KinFace W-I and KinFace W-II datasets, respectively. The

reason is that the original Fisher vector method focuses on image specific features but it

does not enhance the genetic features in kinship images. Our method uses the SIFT flow

algorithm and inheritable transformation to encode and enhance the facial genetic features

in kinship relations.

Table 6.3 Comparison Between the SF-GFVF and Fisher Vector on the KinFaceW-I and
KinFaceW-II Dataset

KinFaceW-I F-S F-D M-S M-D Mean

FV 75.02 70.56 65.49 78.39 72.37

SF-GFVF 76.27 74.64 75.48 79.98 76.09

KinFaceW-II F-S F-D M-S M-D Mean

FV 80.00 68.60 79.40 78.20 76.55

SF-GFVF 87.20 79.60 88.00 87.80 85.65

6.5.3 Comparison Between the M-AFK and Other Popular Methods

The experimental results in Tables 6.4 and 6.5 show that our method is able to achieve

better performance compared to other multiple feature learning methods. The second

observation is that our method often achieves better results on F-S and M-D kinship

relations than F-D and M-S kinship relations, which is consistent to the anthropological

results [4]. The reason is that the similarity variation between images of different gender

is larger than that of the same gender and our proposed M-AFK method captures such a

variation by learning the new transformation and the weights of multiple features.
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Table 6.4 Comparison Between the M-AFK and Other Methods on the KinFaceW-I
Dataset

Methods F-S F-D M-S M-D Mean

LMNN [112] 63.10 58.10 62.90 70.00 63.30

NRML [70] 64.10 59.10 63.90 71.00 64.30

MNRML [70] 72.50 66.50 66.20 72.00 69.90

DGA [18] 76.40 72.50 71.90 77.30 74.50

Polito [69] 85.30 85.80 87.50 86.70 86.30

LIRIS [69] 83.04 80.63 82.30 84.98 82.74

NUAA [69] 86.25 80.64 81.03 83.93 82.96

CNN-Basic [128] 70.80 75.70 79.40 73.40 74.80

CNN-Points [128] 71.80 76.10 84.10 78.00 77.50

M-AFK 88.15 82.49 80.62 90.95 85.55

Table 6.5 Comparison Between the M-AFK and Other Methods on the KinFaceW-II
Dataset

Methods F-S F-D M-S M-D Mean

NRML [70] 76.80 73.10 76.80 77.00 75.70

MNRML [70] 76.90 74.30 77.40 77.60 76.50

DGA [18] 83.90 76.70 83.40 84.80 82.20

Polito [69] 84.00 82.20 84.80 81.20 83.10

LIRIS [69] 89.40 83.60 86.20 85.00 86.05

NUAA [69] 84.40 81.60 82.80 81.60 82.50

CNN-Basic [128] 79.60 84.90 88.50 88.30 85.30

CNN-Points [128] 81.90 89.40 92.40 89.90 88.40

M-AFK 91.40 87.20 90.80 89.80 89.80
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6.6 Conclusion

This paper presents a SIFT flow based inheritable Fisher vector feature (SF-GFVF) and

a multiple anthropological Fisher kernel framework (M-AFK) for kinship verification.

The proposed SF-GFVF feature uses SIFT flow algorithm to enhance the genetic features

in kinship images. An inheritable transformation is then applied to the enhanced

Fisher vector by optimizing multiple objective functions. For the MAFK method, three

new anthropology inspired features are extracted followed by the M-AFK framework.

A normalized multiple similarity measure is then applied for effective normalization.

Experimental results show that the proposed methods are able to outperform other popular

methods for kinship verification.



CHAPTER 7

PLANNED WORK

This dissertation has presented four learning methods for image classification namely,

a sparse representation model based on complete marginal Fisher analysis framework

(CMFA-SR), a sparse kernel manifold learner (SKML), a discriminative dictionary distri-

bution based sparse coding (DDSC) method and a multiple anthropological Fisher kernel

framework (M-AFK). Sparse coding methods allow efficient retrieval of data by learning

a dictionary that is adapted to data. The proposed CMFA-SR and DDSC methods uses a

discriminative L1-norm regularizer which performs model compression by retaining useful

discriminative features and setting null coefficients to irrelevant features which can be

crucial in a high dimensional dataspace. Another advantage is that the L1 norm regularizer

is less sensitive to outliers leading to a better generalized model. One of the issues of

hand-crafted features as well as deep learning features in the high dimensional space is

the existence of highly correlated features which may affect the classification performance.

The deep learning methods such as convolutional neural networks (CNNs) have a huge

network structure which can result in large redundancies in the network [21]. This may lead

to the formation of highly similar and redundant features resulting in overfitting that may

affect the classification performance. One future direction of work would be to integrate

sparse coding method to CNNs to improve the recognition performance.

Our proposed CMFA-SR method currently uses an enhanced MFA method followed

by discriminative sparse representation model and RBF-SVM classifier for classification.

A single classifier training may be sensitive to the shape of the training data. In order to

reduce such sensitivity due to a single model, the author would like to explore ensemble

learning methods. Ensemble learning combine predictions from multiple classifiers which

may help to reduce overfitting. Another advantage is that it improves the expressibility of
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different classifiers in the ensemble resulting in a better approximation of the test label. A

set of classifiers can be learned on the derived discriminative sparse coding features using

feature selection and data sub-sampling techniques. A majority voting scheme among the

different classifiers in the ensemble can then be used in order to predict the label for the

test data.
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