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ABSTRACT

ON DISTRIBUTED MOBILE EDGE COMPUTING

by
Xiang Sun

Mobile Cloud Computing (MCC) has been proposed to offload the workloads of

mobile applications from mobile devices to the cloud in order to not only reduce

energy consumption of mobile devices but also accelerate the execution of mobile

applications. Owing to the long End-to-End (E2E) delay between mobile devices and

the cloud, offloading the workloads of many interactive mobile applications to the

cloud may not be suitable. That is, these mobile applications require a huge amount

of computing resources to process their workloads as well as a low E2E delay between

mobile devices and computing resources, which cannot be satisfied by the current

MCC technology.

In order to reduce the E2E delay, a novel cloudlet network architecture is

proposed to bring the computing and storage resources from the remote cloud to the

mobile edge. In the cloudlet network, each mobile user is associated with a specific

Avatar (i.e., a dedicated Virtual Machine (VM) providing computing and storage

resources to its mobile user) in the nearby cloudlet via its associated Base Station

(BS). Thus, mobile users can offload their workloads to their Avatars with low E2E

delay (i.e., one wireless hop). However, mobile users may roam among BSs in the

mobile network, and so the E2E delay between mobile users and their Avatars may

become worse if the Avatars remain in their original cloudlets. Thus, Avatar handoff

is proposed to migrate an Avatar from one cloudlet into another to reduce the E2E

delay between the Avatar and its mobile user. The LatEncy aware Avatar handDoff

(LEAD) algorithm is designed to determine the location of each mobile user’s Avatar

in each time slot in order to minimize the average E2E delay among all the mobile



users and their Avatars. The performance of LEAD is demonstrated via extensive

simulations.

The cloudlet network architecture not only facilitates mobile users in offloading

their computational tasks but also empowers Internet of Things (IoT). Popular IoT

resources are proposed to be cached in nearby brokers, which are considered as

application layer middleware nodes hosted by cloudlets in the cloudlet network, to

reduce the energy consumption of servers. In addition, an Energy Aware and latency

guaranteed dynamic reSourcE caching (EASE) strategy is proposed to enable each

broker to cache suitable popular resources such that the energy consumption from the

servers is minimized and the average delay of delivering the contents of the resources

to the corresponding clients is guaranteed. The performance of EASE is demonstrated

via extensive simulations.

The future work comprises two parts. First, caching popular IoT resources in

nearby brokers may incur unbalanced traffic loads among brokers, thus increasing

the average delay of delivering the contents of the resources. Thus, how to balance

the traffic loads among brokers to speed up IoT content delivery process requires

further investigation. Second, drone assisted mobile access network architecture will

be briefly investigated to accelerate communications between mobile users and their

Avatars.
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CHAPTER 1

INTRODUCTION

The number of smartphone users is increasing tremendously over the years. According

to Ericsson Mobility Report [1], there were more than 7 billion mobile subscriptions

worldwide in 2016, and it is anticipated that the number of mobile subscriptions

will be 9 billions by the end of 2022. Among these smartphone users, they more

likely use their smartphones than desktops. According to Mobile App Report from

comSore [2], people using smartphones on digital media accounts for over 50% of their

total digital media time spent. The reasons of people preferring to use smartphones

than desktops/laptops are 1) availability: smartphones are so tiny that you can take

them everywhere; 2) connectivity: a huge number of Base Stations (BSs) have already

been deployed everywhere, and so you can always use your smartphones to access

the Internet by connecting with the nearby BSs; 3) versatility: a smartphone is

considered as a swiss army knife, i.e., it can provide different kinds of functionalities.

For instance, a smartphone can be a phone to make phone calls, a camera to take

photos, a portable music player to play musics, a GPS device to guide you to the

destination, etc.

Smartphones can provide various functions to ease people’s lives. What is

the most important smartphone feature to attract buyers? Table 1.1 lays out the

motivating factors behind a smartphone purchase, and we can see that the battery

life is always the most critical factor for buying a smartphone because a smartphone

is not smart or useful once its battery is drained. In order to prolong the battery

life of a smartphone, two solutions have been used recently. The first solution is to

increase the battery capacity of a smartphone; however, the growth of a smartphone’s

battery capacity cannot catch up with the growth of the smartphone’s energy demand
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Table 1.1 Motivating Factors Behind a Smartphone Purchase.

Android iOS Windows

Battery Life 56% 49% 53%

Ease of Use 33% 39% 38%

Operating System 37% 32% 40%

Touch Screen 34% 34% 37%

Screen Size 37% 22% 34%

Type of Network 27% 30% 20%

Brand 25% 32% 25%

Weight/Size 25% 21% 24%

Camera resolution 25% 19% 23%

Web Browsing Speed 23% 22% 22%

Source: [3].

because many mobile applications, such as augmented reality, image processing, and

speech recognition, become resource intensive and drain mobile devices’ batteries

very quickly. Therefore, increasing the battery capacity of a smartphone is not

enough to prolong the battery life of a smartphone. The second solution is to apply

the Mobile Cloud Computing (MCC) technology. The concept of MCC [4, 5] is to

offload computational intensive tasks from mobile devices to the remote cloud via the

Internet, and so mobile devices only conduct some simple tasks, such as sensing the

environment and displaying the contents; on the other hand, the remote cloud (which

has been demonstrated to provision resources flexibly and efficiently [6]) would help

the mobile devices execute offloaded tasks and return related results to the mobile

devices. MCC can not only reduce energy consumption of mobile devices but also

accelerate the execution time of the applications.
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Figure 1.1 MCC platform.

Currently, many MCC platforms have already been developed to enable mobile

devices to offload their tasks to the cloud. For instance, the MAUI project [7] is

designed to provide method level code offloading based on the .NET framework.

MAUI provides a method to enable each mobile device in determining whether

to offload the source codes of an application (based on some context information,

i.e., the computing resource demands, execution time, network condition, and state

transfer requirements) such that the energy consumption of the mobile device is

minimized. CloneCloud [8] and ThinkAir [9] are designed for Java applications written

for Android based mobile devices in offloading their tasks to the cloud. ThinkAir

focuses on how to efficiently and flexibly request computing resources in cloud, while

CloneCloud takes the advantage of high compatibility, i.e., source codes of mobile

applications can be executed in a Virtual Machine (VM) without any modification.

Instead of offloading tasks from mobile devices to the cloud, Li and Wang [10]

proposed that a mobile device (i.e., an initiator) can offload its tasks to nearby devices

(i.e., devices within one wireless hop coverage to the initiator). However, owing to the
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mobility of devices and randomness of inter-contact time between the initiator and

other devices, the initiator can only offload delay tolerant tasks to nearby devices.

MCC reduces the mobile devices’ computational cost at the expense of the

communications cost, i.e., mobile devices need to frequently interact with the remote

cloud by offloading its computational intensive tasks via the Internet. Yet, the

Internet is a very complicated network, and there is no control mechanism to manage

the packet routing function in the Internet in order to provision guaranteed Quality

of Service (QoS) [11–13]. Thus, offloading the tasks from the mobile devices to the

remote cloud via the Internet may incur a long End-to-End (E2E). On the other hand,

many interactive mobile applications require low network delay. For example, virtual

reality applications requires 20 ms (or less) of motion-to-photon latency (i.e., the delay

of a user movement to be fully reflected on a display screen) [14]; augmented reality

applications also requires 20 ms (or less) of latency (between the perception of an

action and image display) [15]; first person shooter games consider 80 ms end-to-end

delay as an acceptable level [16].

In order to reduce the E2E delay between mobile devices and the computing

resources, the cloudlet architecture is introduced by bringing computing and storage

resources from the remote cloud close to mobile devices so that mobile devices can

access the computing and storage resources with the low E2E delay [5, 17]. Note

that a cloudlet is considered a micro data center, which comprises a number of

interconnected physical machines and is deployed in a local area. Thus, mobile devices

can actually offload their workloads to the nearby cloudlets without traversing the

Internet.

Currently, many interactive mobile applications have been developed based on

the cloudlet architecture to demonstrate that offloading compute-intensive tasks to

nearby cloudlets can significantly reduce the response time of executing these tasks

[18–22]. For example, the 2D Lego Assembly application [23], a type of cognitive
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assistance application (which is not only latency sensitive but also memory intensive),

has been developed to help users assemble 2D Lego models. Essentially, a user wears

a smart glass, equipped with a portable camera to capture the video streams of

the current state of the Lego task. The captured video streams are uploaded to a

cloudlet via the WiFi access point. The cloudlet would analyze the video streams by

comparing the current state of the Lego task with the expected task state. Based

on the comparison, user guidance for making incremental progress on the task is

generated. This guidance has video and plain text components that are streamed back

to the smart glass. The video guidance is shown on the display of the smart glass,

and accompanying audio guidance is provided via the Android text-to-speech API.

Nokia has also established a Multi-access Computing platform to attach a cloudlet to

a BS. A use case named connected cars has been developed based on this platform,

where each local cloudlet analyzes the data at the point of capture and feeds back

the insights to the vehicles within the cloudlets coverage with extremely low latency

(less than 20 ms) in order to improve road safety [24].

The cloudlet concept facilitates mobile users (MUs) in offloading their compu-

tational intensive tasks. However, many issues are still to be addressed in order to

enable mobile devices efficiently utilize the resources in cloudlets.

1. Where to deploy cloudlets in the network?

Microsoft proposed to build an extensive infrastructure of cloudlets, each of

which has 1–10 interconnected physical servers with several TBs of storage,

and place them everywhere [25]. But it is still not clear where to deploy these

cloudlets such that mobile devices could always offload their workloads to the

cloudlets with low E2E delay.

2. How to allocate/manage computing and storage resources in a cloudlet to

different MUs?

Many MUs may offload their workloads to the same cloudlet, which may not

have enough resources to handle all the incoming workloads. Thus, it is

necessary to design an efficient resource allocation strategy among different
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MUs. Note that designing the efficient resource allocation strategy for MUs is

challenging. This is because MUs are roaming over the network, and thus the

previous resource allocation strategy may not be optimal once MUs roam away.

On the other hand, a cloudlet is considered as a public resources available for

all the MUs, and thus how to preserve privacy for MUs (i.e., the offloaded tasks

from an MU will not be altered, eavesdropped, or replayed by other MUs) is a

big challenge.

3. How does the cloudlet concept facilitate other applications?

A cloudlet is originally used to execute the offloaded tasks from mobile devices.

However, if cloudlets can also facilitate other applications, such as mobile

crowd sensing, mobile data stream analysis, and Internet of Things (IoT), it

is beneficial for the cloudlet providers to intrigue more application providers

and MUs in utilizing the cloudlet infrastructure.

The rest of this thesis is organized as follows. In Chapter 2, we propose the

cloudlet network architecture to provision mobile edge computing. Each MU is

associated with a dedicated Avatar (i.e., a private VM executes tasks offloaded from

its MU). In Chapter 3, we propose to hand off Avatars among cloudlets in order

to maintain the low E2E delay between MUs and their Avatars when MUs roam

away. We formulate the Avatar handoff problem to minimize the average E2E delay

between MUs and their Avatars in each time slot and propose the LatEncy aware

Avatar hanDoff (LEAD) algorithm to efficiently solve the problem. The performance

of LEAD is demonstrated via simulations. In Chapter 4, we propose to empower the

IoT system with the proposed cloudlet network. Popular IoT resources are cached in

nearby brokers, which are considered as application layer middleware nodes hosted

by cloudlets in the cloudlet network, to reduce the energy consumption of servers

(which host these popular IoT resources). Also, we propose a novel Energy Aware and

latency guaranteed dynamic reSourcE caching (EASE) strategy to enable each broker

to cache suitable popular resources such that the energy savings from the servers are

maximized, while guaranteeing the average delay for publishing the contents of the

resources to the corresponding clients. The performance of EASE is demonstrated via
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extensive simulations. In Chapter 5, we briefly present two future research endeavors,

i.e., traffic load balancing among brokers in the cloudlet network and drone aided

mobile access networks. The conclusion is presented in Chapter 6.
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CHAPTER 2

CLOUDLET NETWORK ARCHITECTURE

To reap benefits of the cloudlet, we propose the cloudlet network architecture, as

shown in Figure 2.1, in order to provide ubiquitous computing and storage resources

to MUs and at the same time maintain the low E2E delay between the MUs and

computing and storage resources. Essentially, the cloudlet network architecture

comprises three parts, i.e., distributed cloudlets in the mobile network, hierarchical

structure of a cloudlet, and the Software Defined Networking (SDN) based mobile

core network.

Figure 2.1 Cloudlet network architecture.

2.1 Distributed Cloudlets

The existing mobile network infrastructure can provide seamless connection between

an MU and a Base Station (BS ); thus, each BS is connected to a cloudlet such that

MUs can always utilize computing and storage resources in the cloudlets with one

wireless hop delay [26,27]. The placement of a cloudlet is flexible, i.e., a cloudlet can
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be directly connected to a BS via the access switch such that the local MUs can access

the computing and storage resources in the cloudlet with low latency; or a cloudlet

can be attached to a switch at the edge of the mobile core network such that MUs in

different BSs’ coverage areas can share the computing and storage resources provided

in the same cloudlet.

Each MU subscribes one Avatar, a high performance Virtual Machine (VM )

in the cloudlet, which provides extra computing and storage resources. Avatars are

software clones of their MUs [28, 29] (i.e., each Avatar and its MUs have the same

operating system, installed apps, and contents) and always available to MUs when

MUs are moving from one BS’s coverage area to another. Assigning a specific Avatar

to each MU in the cloudlet provides hardware isolation by securely running each MU’s

application workloads on a shared physical hardware [30]. Avatars (which contain

much more computing and storage resources than their MUs) execute the offloaded

tasks and return back the related results to their MUs, and so the task execution time

and the energy consumption of MUs can be reduced significantly.

Moreover, every MU and its Avatar in the cloudlet can communicate with public

cloud (e.g., Amazon EC2) via the Internet in order to provision scalability, i.e., if

cloudlets are not available for MUs because of the capacity limitation, MUs’ Avatars

can be migrated to the remote data centers to continue serving their MUs.

2.2 Hierarchical Cloudlet Framework

In each cloudlet, as shown in Figure 2.2, there are two types of VMs. i.e., Avatars

and Application VMs. Avatars in each cloudlet synchronize data with their associated

MUs and execute tasks offloaded from their MUs. Application VMs in each cloudlet

are maintained by different application providers. Applications VMs are used to

retrieve contents from Avatars, analyze the retrieved contents to generate high-level

knowledge, and provide the corresponding services to MUs.
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The placement of application VMs are flexible. For instance, if many MUs in

a BS’s coverage area require a specific service, the related application VM can be

placed in the cloudlet (which is connected to the BS) to serve these MUs in order to

reduce the network delay. We will provide three examples in Section 2.4 to further

illustrate the relationship among MUs, their Avatars, and application VMs.

Figure 2.2 Hierarchical structure within a cloudlet.

2.3 Software Defined Network (SDN) based Cellular Core

The traditional cellular core network in terms of Evolved Packet Core (EPC) [31]

can provide guaranteed services (i.e., ensuring the E2E delay between two end points

in mobile networks to be less than a threshold), but it centralizes the data-plane

and control-plane functionalities in the Packet data network GateWay (P-GW) and

Serving GateWay (S-GW) [32, 33]. In other words, all the traffic flows including

Device-to-Avatar (D2A) and Avatar-to-Application VM (A2A) should go through

S-GW and P-GW, which is not efficient and increases the E2E delay. For instance,

as shown in Figure 2.3, MU-1 is in BS-1’s coverage area and its Avatar is placed in

Cloudlet-2, which is attached to BS-2, and so the communications between MU-1

and its Avatar should go through the P-GS and S-GW. Similarly, if the Application
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VM, which is placed in CLoudlet-1, needs to communicate with MU-1’s Avatar, the

communications path should also go over the P-GS and S-GW.

Figure 2.3 EPC architecture.

Applying the Software Defined Networking (SDN) technology to the cellular

core network is one solution to provide a flexible and efficient networking solution

[34–37]. The SDN based mobile core network is essentially decoupling the control

plane from the switches, which only run data plane functionalities. The control plane

is offloaded to a logical central controller, which transmits the control information

(e.g., flow tables) to the OpenFlow switches by applying the OpenFlow protocol [38],

monitors the traffic statistics of the network, and provides Application Programming

Interfaces (APIs) to network management operators so that different mobile network

functionalities, such as mobility management, user authentication, authorization and

accounting, network virtualization, and QoS control, can be added, removed, and

modified flexibly.
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2.4 Cloudet Network based Mobile Applications

The proposed cloudlet network architecture can not only facilitate MUs to offloaded

their tasks but also benefit other applications, such as mobile crowd sensing and big

mobile data stream analysis, by analyzing mobile data streams at the mobile edges.

This can substantially reduce the traffic load of the mobile core network and the

application response time. Here, we provide three applications to illustrate how the

cloudlet network architecture facilitate these applications.

Terrorist detection [36] helps MUs to identify terrorists to secure their societies.

First, if MUs are interested in the service provided by the terrorist detection

application, they can install the corresponding app in their Avatars. MUs upload

their captured photos/videos to their Avatars over time. If the terrorist detecting

application VM tries to locate a specific terrorist by conducting face matching over

the captured photos/videos, instead of having each Avatar transmit its captured

photos/videos to the application VM, the terrorist detecting application VM would

send a data retrieval request containing the terrorist’s photo to the Avatar (which

have installed the corresponding app) among all the cloudlets. After receiving the

request, the installed app in the Avatar would retrieve the videos/photos in the local

storage, and conduct the face matching algorithm by comparing these videos/photos

with the received terrorist’s photo. If a match is detected, the Avatar would respond

to the application VM with the related metadata, i.e., the location information and

time stamps of the corresponding photos/videos.

ParkNet [39] helps MUs locate available parking spots in the urban area.

Specifically, each Avatar collects the sensed data streams from the smart car

via the MU. Note that each smart car is equipped with a GPS receiver and a

passenger-side-facing ultrasonic rangefinder to generate the location and parking

spot occupancy data streams. Each Avatar analyzes the data sensed, generates the

high level knowledges (which identify the available parking spots), and forwards the
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knowledges to the ParkNet application VM. The ParkNet application VM will inform

and assign the available parking spots to the MUs upon requests.

FaceDate [40] is to find and date nearby people based on their face preference

in real-time. Specifically, each MU uploads a profile photo and provides basic

information (such as date of birth, gender, and a brief write-up) about himself/herself

into its Avatar. In addition, each MU uploads a set of preference photos (i.e., the

photos of a boy/girl whom she/he wants to date. For instance, if a man wants

to date a woman who resembles Marilyn Monroe, he would upload the photos of

Marilyn Monroe into its Avatar) to identify his dream date partner. If a man

tries to find a nearby date partner, his Avatar (i.e., request Avatar) would send

a request, which contains its preference photos, to the FaceDate application VM.

The FaceDate application VM forwards the request to other Avatars, which conduct

the face recognition algorithm by comparing the preference photos in the request

with their MUs’ profile photos. If the photos are highly matched, the Avatars

(i.e., response Avatars) would respond to the FaceDate application VM with the

metadata (similarity of the photos) as well as the preference photos in these response

Avatars. The FaceDate application VM would forward these preference photos (from

the response Avatars) to the request Avatar, which conducts the face recognition

algorithm by comparing the received preference photos with its profile photo and

responds to the FaceDate application VM with the metadata (similarity of the

photos). Finally, the FaceDate application VM would pick the best matched candidate

and enable the chatting accordingly.
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CHAPTER 3

AVATAR HANDOFF IN THE CLOUDLET NETWORK

MUs are roaming among BSs over time and so the E2E delay between MUs and

their Avatars may become worse if the Avatars remain in their original cloudlets. For

instance, as shown in Figure 3.1, if an MU roams from BS 1’s coverage area into BS

2’s coverage area and its Avatar still resides in Cloudlet 1, the communications path

between the MU and its Avatar should traverse the SDN based cellular core, which

may incur a long E2E delay as well as increase the traffic load of the SDN based

cellular core. As we mentioned before, the E2E delay is critical for many interactive

mobile application in conducting task offloading.

Figure 3.1 Long E2E delay between an MU and its Avatar when the MU roams
away.

In order to preserve the low E2E delay between MUs and their Avatar when

their MUs roam away, Avatars can actually be handed off among cloudlets based on

their MUs’ locations. For example, as shown in Figure 3.1, if the MU roams into BS

2’s coverage area, its Avatar can be handed off into Cloudlet 2 in order to reduce the

E2E delay between the MU and its Avatar. Note that the Avatar handoff process

is considered as the live VM migration process [41–44], where the vCPU, virtual

memory, and virtual disk of an Avatar are transmitted from the source cloudlet into
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destination cloudlet over the SDN based cellular core. Note that the Avatar in the

source cloudlet is still serving its MU during the Avatar handoff process, and so the

MU would not be aware of the Avatar handoff process.

The Avatar handoff process is a very expensive operation, i.e., the Avatar

handoff process incurs a huge volume of data transmission (i.e., the contents of the

vCPU, virtual memory, and virtual disk of the Avatar as well as the dirty blocks

of the virtual memory and the virtual disk generated during the Avatar handoff

process should be transmitted from the source cloudlet to the destination cloudlet)

over the SDN based cellular core, and thus significantly increases the traffic load of

the SDN based cellular core as well as the Avatar handoff time1. Note that increasing

the Avatar handoff time may increase the average E2E delay between the MU and

its Avatar because the long average E2E delay between the MU and its Avatar

persists until the Avatar handoff process is finished (i.e., the Avatar is located in

the destination cloudlet and start to serve its MU), and so a shorter Avatar handoff

time will produce a lower average E2E delay [37]. For example, assume that the

average E2E delay between an MU and its Avatar is 100 ms if the Avatar is placed

in the source cloudlet, and the average E2E delay between the MU and its Avatar is

50 ms if the Avatar is placed in the destination cloudlet. As shown in Figure 3.2, if

the Avatar handoff process is finished in t1, and so the average E2E delay between

the MU and its Avatar during time period T is 100t1+50(T−t1)
T

; on the other hand, if

the Avatar handoff process is finished in t2, where t2 < t1, the average E2E delay

between the MU and its Avatar during time period T is 100t2+50(T−t2)
T

. Obviously,

100t2+50(T−t2)
T

< 100t1+50(T−t1)
T

, which indicates that shorter Avatar handoff time incurs

lower average E2E delay between the MU and its Avatar.

1The Avatar handoff time refers to the overall time of transmitting the whole Avatar (i.e.,
the vCPU, virtual memory, and virtual disk of the Avatar as well as the dirty blocks of the
virtual memory and the virtual disk generated during the Avatar handoff process) from the
source cloudlet to the destination cloudlet
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Figure 3.2 Illustration of the relationship between Avatar handoff time and the
average E2E delay between an MU and its Avatar.

Also, the Avatar handoff process consumes extra resources of the Avatar

(especially the bandwidth resource) [45–47], and thus degrades the performance of

tasks (which are offloaded from its MU) currently running in the Avatar. Therefore,

short handoff time can potentially reduce the task executing time, i.e., more resources

of an Avatar can be allocate to executing the offloaded tasks.

However, it is reported that migrating the whole Avatar between two cloudlets

over a network with stable 10 Mbps bandwidth and 50 ms Round Trip Time (RTT)

consumes over two hours [48]; this indicates that handing off a whole Avatar between

cloudlets cannot maintain the low E2E delay between the Avatar and its MU but

exhausts the resource of the network and the Avatar. The main reason for incurring

the unacceptable handoff time is to migrate the large volume of the Avatar’s virtual

disk over the network [48].

In order to significantly reduce the Avatar handoff time by avoiding virtual disk

migration during the handoff process, we propose to place a number of replicas of an

Avatar’s virtual disk in the suitable cloudlets [49]. The replicas of an Avatar2 are

synchronized with the Avatar’s virtual disk during a fixed time period (e.g., 5 min).

2The replicas of an Avatar are referred to as the replicas of the Avatar’s virtual disk.
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Thus, if an MU’s Avatar tries to hand off to the cloudlet which contains one of the

Avatar’s replicas, only the memory and the pre-handoff virtual disk dirty blocks of

the Avatar are needed to be transmitted to the destination cloudlet. The pre-handoff

virtual disk dirty blocks of the Avatar means the virtual disk dirty blocks that are

generated after the last replica synchronization process. For instance, as shown in

Figure 3.3, the Avatar’s replicas are synchronized at t1; meanwhile, the Avatar handoff

is triggered at t2, and thus the number of the virtual disk blocks, which are modified

during the interval between t1 and t2, are defined as the pre-handoff virtual disk

dirty blocks, which need to be migrated during the handoff process. Since the dirty

block generation rate of the virtual disk is relatively low, only very small portion of

the virtual disk is needed to be transmitted to the destination cloudlet, which will

significantly reduce the handoff time.

Figure 3.3 Illustration of pre-handoff virtual disk dirty blocks.

Essentially, the Avatar handoff problem can be decomposed into two subproblems,

i.e., the Avatar replica placement problem and the adaptive Avatar handoff problem.

The Avatar replica placement is to determine the location of each Avatar’s replica

based on its MU’s historical movement trace. The Avatar replica placement problem

is solved offline; for example, the placement of each Avatar’s replica can be updated

during the midnight. After the replicas of Avatars have been deployed, the adaptive

Avatar handoff problem is used to determine the locations of all MUs’ Avatars based

on the MUs’ real-time movements as well as the network status (i.e., the average
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E2E delay among cloudlets and BSs). The adaptive Avatar handoff problem is solved

online, i.e., the locations of all MUs’ Avatars can be updated in each time slot (e.g.,

30 minutes).

It is worth noting that the Avatar handoff problem is not to determine the

suitability of offloading tasks from an MU to its Avatar. Many methods have been

investigated to solve the task offloading decision problem [50–52], i.e., MUs would

determine whether a tasks is suitable to be offloaded based on the wireless channel

condition, complexity of the task, and the configuration of the mobile device such that

the energy consumption of the mobile device is minimized and the task execution time

is reduced. The Avatar handoff problem is used to determine the location of each

Avatar in order to further improve the performance of task offloading by reducing the

network delay incurred in the wired networks.

3.1 Avatar Replica Placement

Migrating the whole virtual disk of an Avatar during the Avatar handoff process incurs

unbearable handoff time and increases the traffic load of the SDN-based cellular core

significantly. Thus, in order to avoid the virtual disk migration during the Avatar

handoff process, we propose to deploy a number of the Avatar’s replicas among the

cloudlets. As we mentioned before, an Avatar’s replica refers to a software copy

of the Avatar’s virtual disk. Note that the initial purpose of creating replicas of a

virtual disk is to avoid data losses owing to hard disk failures [53, 54]. For example,

in the Hadoop distributed file system, each block has three replicas by default [55].

Here, we try to place the replicas of an Avatar in suitable cloudlets in order to avoid

virtual disk migration during the Avatar handoff process. For instance, as shown in

Figure 3.4, if an Avatar’s replica has already been deployed in Cloudlet 2, handoff the

Avatar from Cloudlet 1 into Cloudlet 2 only needs to migrate virtual memory, virtual

disk dirty blocks, and vCPU states of the Avatar. This can significantly reduce the
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volume of data need to be migrated, thus tremendously reducing the Avatar handoff

time. Here, we define the cloudlet, which contains one of an Avatar’s replicas, as the

Avatar’s available cloudlet. Thus, we say that an Avatar can only be handed off to its

available cloudlets in order to avoid virtual disk migration during the Avatar handoff

process.

Figure 3.4 Handoff an Avatar into a cloudlet

Note that it is unnecessary and inefficient to place the Avatar’s replicas in all

the cloudlets in the network because increasing the number of replicas for each Avatar

increases the capital expenditure (CAPEX) of the cloudlet provider (by implementing

more storage space in the cloudlets) as well as the synchronization traffic (i.e., the

traffic incurred by synchronizing the contents among the replicas of each Avatar) in

the SDN based cellular core. Meanwhile, placing the Avatar’s replicas in the cloudlets,

which are never visited by the MU, cannot benefit the communications between the

MU and its Avatar. Therefore, it is important to optimally place a limited number

of replicas for each Avatar among the cloudlets so that the average E2E delay during

a period ∆T (e.g., one day) between the MU and its Avatar can be minimized (by

utilizing Avatar handoff) when the MU roams in the network.

Normally, the Avatar’s replicas will be placed where its MU will commonly visit

(it has been demonstrated that about 10% to 30% of all human movement can be

explained by their social relationship, while 50% to 70% is attributed to periodic

behaviors [56]; thus, we believe that the dynamics of future human movement can
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Figure 3.5 Illustration of the optimal Avatar replica placement.

be reliably predicted based on the mathematical models [56–58]), such as home and

workplace. However, this is not the optimal Avatar replica placement strategy. For

instance, suppose the cloudlet network topology is shown in Figure 3.5, which contains

7 BS-Cloudlet (BSC) combinations3, and two replicas of MU i’s Avatar need to be

placed. Meanwhile, suppose the occurrence probability of MU i in BS j’s coverage

area, denoted as pij
4 (where j = 1, 2, · · · , 7), is also shown in Figure 3.5. Thus,

traditionally, two replicas will be placed in BSC-1 and BSC-2 (because pi,1 and pi,2

are the two largest values, implying that MU i will most commonly visit BSC-1 and

BSC-2). Yet, deploying the two replicas in BSC-1 and BSC-7 may be the optimal

solution for MU i. This is because, first, the value of pi,2 and pi,7 are close; second,

BSC-1 and BSC-2 are adjacent to each other, and so the E2E delay between MU i

and its Avatar is low even if MU i is in the BSC-2’s coverage area and its Avatar

is in BSC-1. On the contrary, since BSC-7 is far away from BSC-1, the E2E delay

may be unbearable if MU i is in the BSC-7’s coverage area and its Avatar is in

3A BSC combination indicates that a BS is attached to a dedicated cloudlet.
4pij = the total time that MU i stays in the BS j′s coverage area

the total time period (i.e., one day)
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BSC-1, and thus placing the 2nd replica in BSC-7 may improve the average E2E

delay significantly.

Therefore, we conclude that the value of pij is not the only determinant to

affect the performance of the Avatar replica placement. The E2E delay among

different BSCs can also affect the performance of Avatar replica placement. Table 3.1

summarizes the main notations applied in the Avatar replica replacement problem.

Table 3.1 List of Important Notations in Avatar Replica Replacement

Notation Definition

I Set of all the MUs.

J Set of all the BSs.

K Set of all the cloudlets.

xik A binary variable indicating the location of replica for MU i’s Avatar.

tjk Average E2E delay between BS j and cloudlet k.

yijk A variable indicating the location MU i’s Avatar.

∆T A fix time period (e.g., one day).

τi Average E2E delay between MU i and its Avatar during ∆T .

pij Occurrence probability of MU i in BS j’s coverage area during ∆T .

κ Total number of replicas for each MU’s Avatar.

3.1.1 System model

Let I, J and K be the set of MUs, BSs and cloudlets, respectively. Denote xik as a

binary variable indicating one replica of MU i’s Avatar (i ∈ I) is located in cloudlet

k (i.e., xik = 1, where k ∈ K) or not (i.e., xik = 0). Meanwhile, let tjk be the average

E2E delay between BS j and cloudlet k. The value of tjk (j 6= k) can be measured

and recorded by the SDN controller [59,60]. Note that if j == k, we say that cloudlet

k is BS j’s attached cloudlet. Moreover, denote yijk as a binary variable indicating
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MU i’s Avatar is located in cloudlet k (i.e., yijk = 1) or not (i.e., yijk = 0) when MU

i is in BS j’s coverage area. Let τij be the average E2E delay between MU i and its

Avatar when MU i is in the BS j’s coverage area, then we have:

τij =
∑
k∈K

tjkyijk. (3.1)

Denote τi as the average E2E delay between MU i and its Avatar during the

period ∆T (e.g., one day); meanwhile, let pij be the predicted occurrence probability

of MU i in BS j’s coverage area during the period ∆T ; then, we have:

τi =
∑
j∈J

pijτij =
∑
j∈J

∑
k∈K

pijtjkyijk. (3.2)

The optimal Avatar replica placement for each MU i (i ∈ I) is to minimize its

average E2E τi during the period ∆T . Thus, we formulate the problem as follows:

P0 : arg min
xik, yijk

∑
j∈J

∑
k∈K

pijtjkyijk (3.3)

s.t.
∑
k∈K

xik = κ, (3.4)

∀j ∈ J ,
∑
k∈K

yijk = 1, (3.5)

∀j ∈ J ∀k ∈ K, yijk ≤ xik, (3.6)

∀k ∈ K, xik ∈ {0, 1} , (3.7)

∀j ∈ J ∀k ∈ K, yijk ∈ {0, 1} , (3.8)

where κ is the total number of replicas that can be deployed among the cloudlets for

each MU’s Avatar. Constraint (3.4) requires that exactly κ replicas are placed for

MU i. Constraint (3.5) indicates that MU i’ Avatar should be located in exactly one

cloudlet when MU i is in BS j’s coverage area. Constraint (3.6) implies that MU i’
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Avatar can only be located in a cloudlet if and only if the cloudlet contains one of

its replicas (i.e., in order to satisfy Constraint (3.6), yijk could equal to 1 iff xik = 1;

otherwise, yijk should be 0 if xik = 0). Constraints (3.7) and (3.8) implies xik and

yijk (j ∈ J and k ∈ K) are binary variables.

Lemma 1. The Avatar replica placement problem (i.e., P0) is NP-hard when κ > 1.

Proof. The formulation of the Avatar replica placement problem is equivalent to the

p-median problem [61] where κ = p > 1, and the p-median problem has been proved to

be NP-hard on a general network topology (note that it has been demonstrated that

the p-median problem can be solved in polynomial time O(n2p2) only if the network is

a tree [62]). Therefore, we need to demonstrate the topology of the proposed cloudlet

network is not a tree.

Based on the cloudlet network architecture, each BS can communicate with

all the cloudlets over the SDN based cellular core. Thus, the cloudlet network can

be considered as a complete graph in which every vertex represents the BS-cloudlet

pair. Every pair of distinct vertices is connected by a unique edge, which represents

a communications link with a dedicated cost in terms of the E2E delay. Therefore,

the Avatar replica placement problem is NP-hard.

3.1.2 LatEncy Aware Replica placemeNt (LEARN)

Inspired by the Lagrangian relaxation algorithm for solving the p-median problem

[63], we design the LatEncy Aware Replica placemeNt (LEARN) algorithm to

optimally place the replicas among cloudlets for each MU. The basic idea of LEARN

is to iteratively obtain the lower bound (LB) and upper bound (UB) of the Avatar

replica placement problem through Lagrangian procedure until the differece between

the LB and UB is less than a predefined value ψ.
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Specifically, we relax Constraint (3.5) in P0 to obtain the following Lagrangian

problem:

P1 : max
λj

min
xikyijk

L=
∑
j∈J

∑
k∈K

pijtjkyijk+
∑
j∈J

λj

(
1−
∑
k∈K

yijk

)

=
∑
j∈J

∑
k∈K

(pijtjk − λj) yijk +
∑
j∈J

λj, (3.9)

s.t. Constraints (3.4), (3.6), (3.7), (3.8),

where λj (∀j ∈ J , λj ≥ 0) are the Lagrangian multipliers. For fixed values of the

Lagrange multipliers λj, the above relaxed problem (i.e., P1) will yield an optimal

objective value that is an LB on any feasible solution of the original Avatar replica

placement problem (i.e., P0).

Lemma 2. Define vector ∆i = {∆ik|k ∈ K}, where ∆ik =
∑
j∈J

min (0, pijtjk − λj);

define the cloudlet set K′

i (K′

i ⊂ K), where
∣∣∣K′

i

∣∣∣ = κ and
{

∆ik|k ∈ K′

i

}
are the κ

number of the smallest values in vector ∆i. Then, for any given set of multipliers

λ = {λj|j ∈ J }, the optimal solution of the Lagrangian problem, denoted as X ∗i =

{x∗ik|k ∈ K} and Y∗i =
{
y∗ijk|j ∈ J , k ∈ K

}
, can be expressed as follows:

∀k ∈ K, x∗ik =


1, k ∈ K′

i.

0, otherwise.

(3.10)

∀j∈J ,∀k∈K, y∗ijk=


1, pijtjk−λj < 0 & x∗ik=1.

0, otherwise.

(3.11)

Proof. Obviously, in order to minimize the objective function of the Lagrangian

problem (i.e., P1), yijk should be chosen its maximum value if pijtjk − λj ≤ 0

(j ∈ J , k ∈ K) for any given set of Lagrangian multipliers λ = {λj|j ∈ J },
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otherwise, yijk = 0. Thus, by considering Constraint (3.6), the optimal solution of

y∗ijk is given by: y∗ijk = xik, if pijtjk − λj ≤ 0; y∗ijk = 0, otherwise.

By substituting the optimal solution of y∗ijk into L (Equation (3.9)), the

Lagrangian problem is transformed into:

min
xik
L =

∑
k∈K

∆ikxik +
∑
j∈J

λj (3.12)

s.t. Constraints (4.6), (4.8),

where ∆ik =
∑
j∈J

min (0, pijtjk − λj). For any given set of Lagrangian multipliers λ,

the above problem is trivial to solve, i.e., x∗ik = 1, if k ∈ K′

i (where K′

i is the set of κ

number of the cloudlets, which have the smallest values of ∆ik in ∆i = {∆ik|k ∈ K});

x∗ik = 0, otherwise. Thus, Equations (3.10) and (3.11) have been proved.

Note that solving the relaxed problem can provide the LB of the original Avatar

replica problem, i.e.,

LB =
∑
k∈K

∆ikx
∗
ik +

∑
j∈J

λj. (3.13)

However, the solution of the Lagrangian relaxation problem may not be the

feasible solution with respect to the original Avatar replica problem (P0), i.e.,

Constraint (3.5) may not be satisfied for the solution Y∗i =
{
y∗ijk|j ∈ J , k ∈ K

}
.

In order to obtain a feasible solution of the original problem, denoted as Y i ={
yijk|j ∈ J , k ∈ K

}
, we can simply allocate the Avatar of MU i to the cloudlet,

which has the lowest E2E delay among the cloudlets containing one replica of the

Avatar, when MU i is in BS j, i.e., for each j ∈ J , we have:

∀k∈K, yijk=

 1, tjk = min
{
tjk|k ∈ K′′

i

}
0, otherwise.

(3.14)

25



where K′′

i is the set of available cloudlets (which contain one replica of MU i’s Avatar)

of MU i’s Avatar, i.e., K′′

i = {k|x∗ik = 1, k ∈ K}.

Substituting the feasible solution (i.e., Y i =
{
yijk|j ∈ J , k ∈ K

}
) into the

objective function of the original problem (i.e., Equation (3.3)), we have the UB

of the original problem:

UB =
∑
j∈J

∑
k∈K

pijtjkyijk. (3.15)

Note that the original problem always chooses its UB as its objective value

because the UB can guarantee the existence of the feasible solution. However,

selecting different values of Lagrange multiplier vector (i.e., λ) may generate different

values of the UB. Thus, by applying the subgradient method [64], we adjust the values

of Lagrange multipliers in each iteration in order to obtain the smaller value of UB.

The iteration terminates until UBopt−LB ≤ ψ, where UBopt indicates the best (i.e.,

smallest) value of UB that has been found in the previous iterations.

In the nth iteration (n > 1), the values of the Lagrangian multipliers λnj (j ∈ J )

are calculated based on the following expression:

∀j ∈ J , λnj =max

{
0, λn−1

j −θn
{∑
k∈K

y∗ijk
n−1−1

}}
, (3.16)

where λn−1
j are the Lagrangian multipliers generated in the previous iteration; y∗ijk

n−1

(j ∈ J , k ∈ K) are the optimal solution of P1 (i.e., the relaxed problem) in the

previous iteration, which can be calculated based on Equations (3.11) and θn is the

step length adopted in the nth iteration, which can be calculate based on the following

expression [65]:

θn =
α (UBopt − LBn−1)∑

j∈J

(∑
k∈K

y∗ijk
n−1 − 1

)2 , (3.17)
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where α (0 < α < 2) is a decreasing adaptation parameter and LBn−1 is the value of

LB in the previous iteration (i.e., LBn−1 =
∑
k∈K

∆ikx
∗
ik
n−1 +

∑
j∈J

λn−1
j ). The detail of

the LEARN algorithm is shown in Algorithm 1.

3.1.3 One example to illustrate the LEARN algorithm

Suppose there are three BSs in the network and each BS is attached to one cloudlet.

Assume the average E2E delay vector is T =


0 20 15

20 0 10

15 10 0

. There is an MU in the

network and the occurrence probability of the MU in the respective BSs during the

day is P= [0.5, 0.3, 0.2]. If we need to place two replicas (i.e., κ = 2) for its Avatar’s

virtual disk, then LEARN shall apply the following procedure to obtain the optimal

replica placement for the MU:

• Steps 1-2 in Algorithm 1: randomly select the initial values of Lagrangian multi-

pliers, e.g., λ= [5, 5, 5]; initialize LB = 0 and UBopt = +∞;

• Steps 4-5 in Algorithm 1: given the value of λ, calculate the values of X ∗ and

Y∗ for the MU based on Lemma 2; in this example, X ∗= [1, 1, 0] and Y∗ = 1 0 0

0 1 0

1 1 0

. Then, update the value of LB based on Equation (3.13); in this

example, LB = 0;

• Steps 6-7 in Algorithm 1: calculate the value of Y based on Equation (3.14). In

this example, Y =

 1 0 0

0 1 0

0 1 0

. Then, update the value of UB based on Equation

(3.15); in this example, UB = 3.5;

• Steps 8-11 in Algorithm 1: compare UB with UBopt; in this example, UB < UBopt,

and thus X opt = X ∗ = [1, 1, 0] and UBopt = UB = 3.5;

• Steps 12-13 in Algorithm 1: update the value of Lagrangian multipliers, i.e., λ,

based on Equation (3.16), and goes back to Steps 4-5 until UBopt − LB ≤ ψ.

The LEARN algorithm is executed offline, i.e., for a fixed period ∆T , LEARN

will update the replica placement for different MUs during the off peak hours. Also,
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the replica placement updating period ∆T can also vary among different MUs. For

instance, if MUs have similar behaviors during the workdays, LEARN only needs

to update the replica placement of the MUs during the weekends; otherwise, it

is preferred to update the replica placement daily. It is worth to note that a

centralized controller (or a control function running in the SDN controller) is used to

predict the occurrence probability for each MU, obtain the average E2E delay vector

among different cloudlets and BSs from the SDN controller, and generate the replica

placement vector for each MU by executing the proposed LEARN algorithm.

3.2 Adaptive Avatar Handoff

After the replicas of each MU’s Avatar being deployed among cloudlets, the Avatar

can be handed off among its available cloudlets based on its MU’s location. Optimally,

the Avatar will be handed off to the available cloudlet, which incurs the lowest E2E

among its available cloudlets, when the MU roams into a new location. However, each

cloudlet has its CPU and memory capacity, and so the Avatar may not be handed off

to the optimal cloudlet because the optimal cloudlet may not have enough residual

capacity to host the Avatar. Therefore, it is necessary to design an adaptive Avatar

handoff strategy to determine the location of each MU’s Avatar in each time slot

in order to minimize the average E2E delay between all the MUs and their Avatars

during the time slot by jointly considering the capacity limitation of each cloudlet.

Note that different from the Avatar replica placement problem (which tries to

generate the replica placement solution for each MU’s Avatar based on the statistics

for a long time period (e.g., one day)), the adaptive Avatar handoff problem tries to

obtain the location of each MU’s Avatar (rather the Avatar’s replicas) based on real

time information (e.g., the current locations of all the MUs) and the problem should

be solved in real time.
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Algorithm 1 LEARN algorithm

Input: 1. The occurrence probability vector for MU i among BSs, i.e., P i =

{pij|j ∈ J }. 2. The average E2E delay vector T = {tjk|j ∈ J , k ∈ K}.

Output: The replica placement vector for MU i, i.e., X opt
i =

{
xoptik |k ∈ K

}
.

1: Initialize the set of Lagrangian multipliers λ = {λj|j ∈ J }.

2: Initialize LB = 0 and UBopt = +∞.

3: while UBopt − LB > ψ do

4: Calculate X ∗i and Y∗i based on Lemma 2;

5: Update the value of LB based on Equation (3.13);

6: Calculate Y i based on Equation (3.14);

7: Calculate the value of UB based on Equation (3.15);

8: if UB < UBopt then

9: X opt
i = X ∗i ;

10: UBopt = UB;

11: end if

12: Update step length θn based on Equation (3.17);

13: Update Lagrangian multipliers λ based on Equation (3.16);

14: end while

15: return X opt
i .
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3.2.1 Problem formulation

Let lij be a binary indicator to identify MU i in BS j’s coverage area (i.e., li,j = 1)

or not (li,j = 0) in the current time slot. Meanwhile, let zik be a binary variable

to indicate whether MU i’s Avatar is in cloudlet k (zik = 1) or not (zik = 0) in the

current time slot. X opt
i =

{
xoptik |k ∈ K

}
, which is generated by the LEARN algorithm,

is the optimal replica placement vector for MU i. In order to avoid the virtual disk

migration, MU i’s Avatar can only be allocated to its available cloudlet k (i.e., zik

could equal to 1 iff k ∈ K′′

i , where K′′

i =
{
k|xoptik = 1, k ∈ K

}
). Thus, the average E2E

delay between MU i and its Avatar in the current time slot, i.e., τi, can be expressed

as follows:

τi =
∑
j∈J

∑
k∈K′′

i

lijtjkzik. (3.18)

Suppose all the MUs’ Avatars are homogeneous, i.e., all the Avatars have the

same CPU, memory and bandwidth configurations. Denote qk as the capacity of

cloudlet k, i.e., the total number of Avatars can be hosted by cloudlet k. Thus, we

formulate the Avatar handoff problem as follows:

P2 : arg min
zik

∑
i∈I

∑
j∈J

∑
k∈K′′

i

lijtjkzik (3.19)

s.t. ∀i ∈ I,
∑
k∈K′′

i

zik = 1, (3.20)

∀k ∈ K,
∑
i∈I

zik ≤ qk, (3.21)

∀i ∈ I ∀k ∈ K, zik ∈ {0, 1} , (3.22)

where the objective is to minimize the average E2E delay between all the MUs

and their Avatars in the current time slot. Constraint (3.20) indicates each Avatar

should be hosted by one cloudlet, which contains one replica of the MU’s Avatar;
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Constraint (3.21) implies that each cloudlet has its capacity limitation; Constraint

(3.22) indicates zik is a binary variable.

Note that it is not easy to solve P2 since the available cloudlet set K′′

i varies

among different MUs’ Avatars that makes the summation index k in the object

function of P2 to vary among different MUs’ Avatars. The following lemma facilitates

a dual problem of P2, which can be readily solved because the summation index k

in the objective function of the new problem does not vary among different MUs’

Avatars.

Lemma 3. Let τ
′
i be

τ
′

i =
∑
j∈J

∑
k∈K

lijtjk

xoptik + ε
zik, (3.23)

where ε is a very small positive value close to zero. Then, P2 can be equivalently

transformed into:

P3 : arg min
zik

∑
i∈I

∑
j∈J

∑
k∈K

lijtjk

xoptik + ε
zik,

s.t. ∀i ∈ I,
∑
k∈K

zik = 1,

∀k ∈ K,
∑
i∈I

zik ≤ qk,

∀i ∈ I ∀k ∈ K, zik ∈ {0, 1} .

Proof. For each i ∈ I, if xoptik = 0 (i.e., k ∈ K\K′′

i ),
lijtjk

xoptik +ε
→ +∞, and thus zik

should be set to zero in order to minimize the value of τ
′
i ; if xoptik = 1 (i.e., k ∈ K′′

i ),

the expression of τ
′
i is approximately equal to τi. Thus, P2 and P3 are equivalent.

By applying Lemma 3, the problem (i.e., P2) can be transformed into:

arg min
zik

∑
i∈I

∑
k∈K

cikzik (3.24)

s.t. Constraints (3.20), (3.21), (3.22),
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where cik =

∑
j∈J

lijtjk

xoptik +ε
is the weighted E2E delay between MU i and its Avatar located

in cloudlet k.

The proposed Avatar handoff problem is considered as a special case of the

generalized assignment problem (in which Constraint (3.21) is depicted as ∀k ∈

K,
∑
i∈I

aikzik ≤ qk, where aik > 0), which is proven to be NP-hard. Recently,

many heuristics have been designed to find the suboptimal solution of the generalized

assignment problem and each of them has its tradeoff between the complexity and

the performance. In the proposed network, we need to allocate tens of thousands of

MUs into tens of thousands of cloudlets in each time slot. Thus, we design a novel

LatEncy aware Avatar hanDoff (LEAD) algorithm to efficiently solve the proposed

Avatar handoff problem.

3.2.2 LatEncy aware Avatar hanDoff (LEAD)

First, we build a relaxed Avatar handoff problem (i.e., P4) by relaxing Constraint

(3.21), i.e.,

P4 : arg min
zik

∑
i∈I

∑
k∈K

cikzik

s.t. ∀i ∈ I,
∑
k∈K

zik = 1,

∀i ∈ I ∀k ∈ K, zik ∈ {0, 1} .

The optimal solution of P4, denoted as Z ′

i =
{
z
′

ik|k ∈ K
}

, can be easily derived,

i.e.,

∀i ∈ I, z
′

ik =


1, k = arg min

k

{
cik|k ∈ K

}
.

0, otherwise.

(3.25)

The optimal solution of P4 generates the optimal cloudlet (which incurs the

minimum weighted E2E delay among the cloudlets) for each Avatar. However, it
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may not be the feasible solution of the original Avatar handoff problem, i.e., the

total number of Avatars that are hosted by some cloudlets may exceed their capacity.

Denote these set of cloudlets as K1, i.e., K1 =

{
k|
∑
i∈I

z
′

ik > qk, k ∈ K
}

; denote the

set of cloudlets, which have enough resources to host at least one Avatar, as K2,

i.e., K2 =

{
k|
∑
i∈I

z
′

ik < qk, k ∈ K
}

; denote the set of MUs, whose Avatars are hosted

by cloudlet k ∈ K1, as I1, i.e., I1 =
{
i|z′

ik = 1, k ∈ K1, i ∈ I
}

. The basic idea of

the LEAD algorithm is to choose a suitable MU i’s Avatar, whose optimal cloudlet

has violated its capacity limitation (i.e., i ∈ I1), and reallocate the Avatar into its

suboptimal cloudlet, which has enough space for hosting at least one Avatar, for each

iteration. The suboptimal cloudlet, denoted as k
′
, of MU i is defined as the cloudlet

that incurs the minimum weighted E2E delay among the cloudlets, which have enough

resources to host at least one Avatar, i.e., k
′
= arg min

k

{
cik|k ∈ K2

}
.

Denote ∆ci (i ∈ I1) as the weighted E2E delay degradation by reallocating MU

i’s Avatar from its optimal cloudlet k into its suboptimal cloudlet k
′
, i.e.,

∀i ∈ I1, ∆ci = cik − cik′ , (3.26)

where k = arg min
k

{
cik|k ∈ K1

}
and k

′
= arg min

k

{
cik|k ∈ K2

}
. Thus, the

LEAD algorithm will select to reallocate a suitable MU i’s Avatar, where i =

arg min
i

{
∆ci|i ∈ I1

}
, in each iteration in order to minimize the weighted E2E delay

degradation. The iteration continues until K1 = ∅. The detail of the LEAD algorithm

is shown in Algorithm 2.

The complexity of each iteration in LEAD (i.e., from Step-5 to Step-9 in

Algorithm 2) is O(|I| |K|) + O(|I|) + 3 × O(1) = O(|I| |K|), where O(|I| |K|) is

the complexity of Step-5, O(|I|) is the complexity of Step-6, and 3 × O(1) is the

complexity for executing Step-7 to Step-9. In the worst case scenario, the total

number of iterations of LEAD is |I|. Thus, the complexity of LEAD is O(|I|2 |K|).
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Note that the LEAD algorithm cannot guarantee that all the Avatars can be

placed in one of its available cloudlets, i.e., it might happen that some Avatars, all of

whose available cloudlets are full, cannot be hosted by one of its available cloudlets.

Then, these Avatars will be placed in the central cloud (by default, the central cloud

contains at least one replica of each MU’s Avatar).

Lemma 4. The LEAD algorithm terminates after a finite number of iterations,

producing an feasible solution to the original Avatar handoff problem.

Proof. Let ξ =
∑
k∈K1

(∑
i∈I

z
′

ik − qk
)

. Assume K1 6= ∅ initially, and so ξ > 0. Then, in

each iteration, the value of ξ is decreased by one because LEAD will reallocate MU

i’s Avatar from cloudlet k (i.e., set z
′

ik = 0), where k = arg min
k

{
cik|k ∈ K1

}
, into

cloudlet k
′
, where k

′
= arg min

k

{
cik|k ∈ K2

}
. Thus, ξ will be reduced to zero in a

finite number of steps, and hence K1 = ∅.

Similar to LEARN, the LEAD algorithm is also executed in a centralized manner

to determine the locations of Avatars for their MUs in each time slot.

3.3 Simulation Results

In order to evaluate our proposed replica placement algorithm and Avatar handoff

algorithm, we have obtained data traces of more than 13,000 MUs and extracted their

mobility in one day in Heilongjiang province in China5. The whole area contains

5,962 BSs and each MU’s location is monitored during one day period. Specifically,

each packet that is transmitted to/from a MU is monitored, and the packet analyzer

extracts the BS information (i.e., the BS’s ID and location) from each packet and

considers the BS’s location to be the current location of this MU (for instance, if

a packet from the MU contains the information of BS-A, then we say the MU is

currently associated with BS-A and the current location of the MU is BS-A’s location).

5The authors acknowledge the Center for Data Science of Beijing University of Posts and
Telecommunications for providing these invaluable data traces.
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Algorithm 2 LEAD algorithm

Input: 1. The replica placement vector for each MU, i.e., X opt
i =

{
xoptik |k ∈ K

}
,∀i ∈

I. 2. The average E2E delay vector, i.e., T = {tjk|j ∈ J , k ∈ K}. 3. The location

indicator vector for all MUs in the current time slot, i.e., L = {lij|i ∈ I, j ∈ J }.

Output: Avatar location indicator vector for all MUs, i.e., Z ′
=
{
z
′

ik|i ∈ I, k ∈ K
}

.

1: Initialize z
′

ik by solving the relaxed problem (i.e., P4) based on Equation (3.25).

2: Initialize the cloudlet sets K1 and K2 based on their definition.

3: Initialize the MU set I1 based on its definition.

4: while K1 6= ∅ do

5: ∀i ∈ I1, calculate ∆ci based on Equation (3.26);

6: Find MU i, where i = arg min
i

{
∆ci|i ∈ I1

}
;

7: Reallocate MU i’s Avatar from its optimal cloudlet k (i.e., set z
′

ik = 0) into

its suboptimal cloudlet k
′
, (i.e., set z

′

ik′
= 1);

8: Update the cloudlet sets K1 and K2;

9: Update the MU set I1;

10: end while

11: return Z ′
.
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We apply these MU mobility traces to obtain the occurrence probability vector for

each MU among BSs during the day (i.e., the values of P i = {pij|j ∈ J }, where

pij = the total amount of time MU i is associated with BS j
one day period

). Meanwhile, we assume that each

BS is attached to a cloudlet and the average E2E delay between a BS and a cloudlet

(i.e., the value of tjk, where j 6= k) is a function of the geographic distance between

the BS and the cloudlet [66], i.e., tjk = 0.016djk + 22.3, where djk is the distance

between BS j and cloudlet k in unit km and the unit of tjk is in ms. Each BS’s

geographic location (i.e., the longitude and the latitude of the BS) is given by the

MU mobility traces and each cloudlet is attached to a BS, and thus the value of djk

is known; consequently, the value of tjk can be calculated for all j ∈ J and k ∈ K

based on the E2E delay model.

3.3.1 Performance of LEARN

First, we simulate the proposed LEARN algorithm based on the mentioned MU

mobility trace. Specifically, we first calculate the value of pij based on the mentioned

MU mobility trace. Then, by taking P i and T as input parameters, we further

obtain the replica placement vector for each MU by applying the LEARN algorithm.

Consequently, the average E2E delay for all the MUs during the day is derived given

the replica placement vector for each MU. For comparisons, we considered the scenario

that all the MUs’ Avatars are located in the central data center (i.e., MUs’ Avatars

cannot migrate when MUs are roamed among BSs), which is placed in the southeast

point of the area. In this scenario, we also calculate the average E2E delay between

MUs and the data center during the day.

As shown in Figure 3.6, given the number of replicas (i.e., the value of κ),

the average E2E delay achieved by LEARN is significantly reduced as compared to

that of the traditional big data network (in which the MUs access their Avatars in

the remote cloud/data center via the Internet). Moreover, as the number of replicas
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Figure 3.6 Average E2E delay of the cloudlet network.

Figure 3.7 Statistical results of the MU mobility trace.

increases, the average E2E delay is reduced accordingly. Specifically, as compared to

the traditional data center network, the average E2E delay achieved by LEARN is

improved by 75.79%, 93.12%, 97.27%, and 98.59% when the value of is selected to

be 1, 2, 3, and 4, respectively. Note that κ = 1 (i.e., there is one replica for each MU)

indicates the location of each Avatar is fixed (i.e., the Avatar is placed in the location

where its MU most visit) and the Avatar cannot handoff among the cloudlets because
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Figure 3.8 Average E2E delay of LEAD and LEARN.

no extra replicas are placed in other cloudlets. Also, when the value of κ is greater

than 4, the decrement of the E2E delay by increasing the value of κ is not significant.

We further analyze the mobility trace by calculating at least how many locations, i.e.,

the BSs’ coverage area, that each MU will stay over 90%, 95% and 99% of the time

during the day, respectively. As shown in Figure 3.7, 92.22%, 86.93% and 75.65%

of the MUs spend 90%, 95% and 99% of the time during the day (in terms of 21.6,

22.8 and 23.76 hours) to stay at only four locations, respectively. Thus, placing five

replicas for the MUs may not significantly benefit the average E2E delay during the

day as compared to placing four replicas. Note that placing more replicas for each

Avatar may increase the CAPEX to the cloudlet network provider by deploying more

storage resources. Also, allocating more replicas for each Avatar may generate more

synchronous traffic, and thus increase the traffic load of the cloudlet network.

3.3.2 Performance of LEAD

We further evaluate the performance of our proposed LEAD algorithm. Each Avatar’s

replicas have already been placed to the corresponding cloudlets, which are calculated
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by the LEARN algorithm. Still, MUs’ mobilities and the locations of the BSs follow

the mobility traces that we have sampled from the real world. By applying the

mobility traces, the location indicator vector for all MUs (i.e., the values of L) in

different time slots during the day can be obtained. Initially, we setup the capacity

of all the cloudlet to be the same, i.e., ∀k ∈ K, qk = 10 (each cloudlet can host at

most 10 Avatars in each time slot). We first test the average E2E delay between MUs

and their Avatars during the day. As shown in Figure 3.8, as compared to the results

of the LEARN algorithm6 (which generates the optimal average E2E delay between

MUs and their Avatars without considering the capacity constraints), the average E2E

delay generated by the LEAD algorithm is increased because some Avatars cannot

handoff to their optimal cloudlets (due to the cloudlet capacity limitation) when the

MUs roam away. Consequently, these Avatars need to handoff to their suboptimal

cloudlets or to the remote data center. Note that as the number of replicas increases,

the average E2E delay decreases accordingly. This is because as the number of replicas

increases, the Avatars, whose optimal cloudlets exceed their capacity limitation, have

higher probability to handoff to their suboptimal cloudlets with lower E2E delay. For

instance, as shown in Figure 3.9, assume there are two Avatar’s replicas that have

been optimally placed in cloudlet A and cloudlet B. Suppose the optimal location

of the Avatar is cloudlet A at the current time slot but the cloudlet A is full, and

so the Avatar needs to handoff to the suboptimal cloudlet, which is cloudlet B; this

may increase the E2E delay between the Avatar and its MU, and we denote the E2E

delay increment as tA−B. Then, if there are one more Avatar’s replicas that have

been placed in the cloudlet C, and so the Avatar can be handed off to the suboptimal

cloudlet, which can be cloudlet B or cloudlet C. Thus, the E2E delay increment by

handing off the Avatar to the suboptimal cloudlet is min{tA−B, tA−C}, where tA−C

is the E2E delay increment by handing off the Avatar to cloudlet C. Obviously,

6We consider the average E2E delay of the LEARN algorithm as the lower bound in terms
of the best case scenario of the LEAD algorithm.
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tA−B ≥ min{tA−B, tA−C}. Therefore, the average E2E delay between MUs and their

Avatars decreases when the number of the replicas increases.

Figure 3.9 Illustration of the average E2E delay reduction.

Note that, as mentioned before, the LEAD algorithm cannot guarantee that all

the Avatars can be handed off to their available cloudlets, i.e., some Avatars need to

be handed off to the remote data center, which is the main factor of increasing the

average E2E delay because the average E2E between the MUs and the remote data

center reaches 254.8 ms, which is significantly longer than the average E2E delay

produced by the LEAD algorithm. Thus, we further test the average number of the

remote Avatars, which are defined as the Avatars that have to be handed off to the

remote data center, during the day. As shown in Figure 3.10, the average number

of the remote Avatars decreases as the number of each Avatar’s replicas increases.

This is because that the probability (that all the Avatar’s available cloudlets are full)

decreases as the number of the Avatar’s replicas increases.

As mentioned previously, the average E2E delay of the LEAD algorithm is longer

than that of the LEARN algorithm because LEARN does not consider the capacity

limitation of the cloudlets. In other words, owing to the capacity constraints, some

Avatars cannot be handed off to their optimal cloudlets, thus resulting in the average

E2E delay growth in LEAD. In order to study how the cloudlet capacity impacts the

performance of the LEAD algorithm. We further record the average E2E delay of
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Figure 3.10 Average number of remote Avatars.

Figure 3.11 Average E2E delay over different cloudlet capacities.
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Figure 3.12 Average cloudlet utilization over different cloudlet capacities.

the LEAD algorithm by changing the capacity of each cloudlet. As shown in Figure

3.11, when the cloudlet capacity increases (from 6 to 16), the average E2E delay of

the LEAD algorithm improves tremendously. As the cloudlet capacity reaches 16,

the average E2E delay of the LEAD algorithm does not improve significantly. This is

because most of the Avatars can be handed off to their optimal cloudlets as their MUs

roam away. Although increasing the cloudlet capacity can improve the average E2E

delay, the average cloudlet utilization7 is reduced accordingly. As shown in Figure

3.12, the average cloudlet utilization drops from 35% to 10.9% as the cloudlet capacity

increases from 6 to 26.

Therefore, there is a tradeoff between the average E2E delay and the cloudlet

utilization. In order to optimize the tradeoff, the capacity of different cloudlets should

be varied. Specifically, the cloudlets, whose connected BSs have higher MU density

(such as shopping malls and public transportations), should have larger capacity, and

vice versa. Thus, in the future, we will try to design a cloudlet deployment strategy

7cloudlet utilization = total number of Avatars hosted by the cloudlet
the cloudlet capacity
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to determine the capacity of each cloudlet such that the average cloudlet utilization

can be maximized and the average E2E delay is guaranteed.
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CHAPTER 4

CLOUDLET NETWORK EMPOWERED INTERNET OF THINGS

Today, a tremendous number of smart devices and objects are embedded with

sensors, enabling them to sense real-time information from the environment. This

phenomenon has culminated to the intriguing concept of the Internet of Things (IoT)

in which all the smart things, such as smart cars, wearable devices, laptops, sensors,

and industrial and utility components, are connected via a network of networks

and empowered with data analytics that are forever changing the way we work,

live and play. In the past few years, many startups are embracing and actualizing

the concept of IoT in areas such as smart homes/buildings, smart cities, intelligent

healthy cares, smart traffic, smart environments, etc. Essentially, IoT technology

enables sensors to transmit their sensed data and actuators to be controlled so as

to facilitate users to understand and change the physical world. Basically, as shown

in Figure 4.1, the IoT architecture comprises three layers, i.e., the perception layer,

the network layer, and the application layer [67, 68]. Specifically, the perception

layer represents the physical IoT devices, which perform different functionalities that

are directly related to the hardware, e.g., temperature sensors capture the current

surrounding temperature values and the switch automatically turns off the light. The

perception layer digitizes and transmits the data to/from the network layer, whose

aim is to provide the connectivity among different IoT devices by applying different

communications technologies. The application layer provides various functionalities

(such as resource discovery, data management, and communications management)

and interfaces to access different hardware resources and provision high-quality smart

services to customers.
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Figure 4.1 Basic IoT architecture.

IoT devices are mostly battery-constrained [69], and it is thus not energy

efficient to enable an IoT device (e.g., a temperature sensor) to send its IoT content

(e.g., the current temperature value) to a large number of clients, who try to retrieve

the contents generated by IoT devices. Caching IoT contents in the network layer is

proposed to solve the energy inefficiency problem and speed up the content delivery

process. Specifically, network nodes (e.g., routers and gateways) would cache the

received IoT contents based on their caching strategies [70–74]. Then, if a network

node receives a content retrieval request (from a client) and it has the requested

content, the network node would reply to this request without forwarding it to the

original IoT device. The feasibility of using in-network caching technologies for IoT

has been discussed in the Information-Centric Networking Research Group (ICNRG)

under the Internet Research Task Force (IRTF) [75, 76]. However, the traditional

in-network caching strategies applied in Content Delivery Networks (CDNs) may not

suitable for the IoT system owing to the unique features of IoT [70,74]. First, most of

the IoT devices are resource constrained, and so the main objective of content caching

placement in IoT is to minimize the energy consumption rather than to minimize the

delay for delivering contents to users in CDNs. Second, the contents generated by

IoT servers exhibit transient feature [70, 77–79]; this feature is quite different from

the contents cached in CDNs, whose popularity remains stable over long timescale.
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Typical examples include popular news with short videos, which are updated every

2-3 hours; new movies, which change their popularity every week; new music videos,

which change their popularity about every month [80]. Third, the sizes of IoT contents

may be smaller than the sizes of contents in CDNs, but the number of IoT contents

may be larger than the number of contents in CDNs.

Owing to these unique features of the IoT system, many in-network content

caching (i.e., caching IoT contents in the network layer) strategies in the context of IoT

has been proposed. Vural et al. [70,71] proposed an in-networking caching method to

facilitate IoT content caching. Specifically, IoT contents are cached in the edge routers

and they argued that clients’ obtaining the contents from the edge routers may lose

freshness (i.e., the obtained data may not be up-to-date) but reduce the network traffic

as compared to the clients’ obtaining the contents from the original servers. Thus,

they dynamically modified the edge routers’ content caching probabilities in order to

optimize the tradeoff between content freshness and network traffic. Similarly, Hail

et al. [72] proposed a network layer IoT content caching strategy in the multi-hop

wireless network scenario, in which IoT devices are equipped to cache the forwarding

contents. They designed a novel distributed probabilistic caching strategy, which is

based on the freshness of the content as well as the energy level and the storage

capability of the device, in order to improve the energy efficiency of the IoT devices

and reduce the content delivery delay. Niyato et al. [81] considered the case that

the contents generated by the IoT devices should be cached in the local wireless

access point and clients should always retrieve the corresponding contents from the

wireless access point. They designed an optimal caching update period for each IoT

device (in updating its content in the wireless access point) in order to maximize

the hit rate in terms of the probability that the clients can successfully obtain the

corresponding contents. Li et al. [82] proposed a novel distributed access control

method to enable network nodes to secure their cached contents, i.e., only authorized
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clients can access the contents cached in network nodes. In order to solve the cache

inconsistency problem, Ha and Kim [83] proposed to enable each IoT device to select

and maintain a set of network nodes in caching its content. Since the IoT device

is aware of which network nodes have cached its content, the IoT device is able

to update the cached content in these network nodes to guarantee the consistency.

This approach, however, incurs heavy burdens on the IoT device, i.e., the IoT device

needs to periodically obtain the information from all the network nodes to determine

which network nodes are suitable to cache its content; meanwhile, the IoT device

needs to send the up-to-date content to all the network nodes (which have cached the

content) by itself. In order to guarantee a client in receiving the up-to-date content,

Quevedo et al. [84] proposed to enable each client to specify the freshness requirement

of the content (i.e., the maximum delay of the content from being generated to being

requested) in the content retrieval request. Thus, if a network node (which has cached

the related content) receives the related content retrieval request, it would respond

with the cached content if the freshness of the cached content satisfies the requirement;

otherwise, it would forward the content retrieval request to the next hop. Yet, it is

difficult for a client to determine the freshness requirement of its requested content;

a lower freshness requirement may result in the content being retrieved from the IoT

device more frequently, and a higher freshness requirement may incur the out-of-date

content being received by the client.

Caching IoT contents in the network layer can potentially solve the energy

inefficiency problem and speed up the content delivery process. However, this would

incur the cache inconsistency problem [75, 85, 86], i.e., the cached content may not

accurately reflect the current state of the corresponding IoT device. For example, the

content generated by a parking spot sensor indicates the state of the parking spot

(i.e., empty or occupied). Suppose that the parking spot is initially empty and this

content is cached by a network node. Afterwards, the parking spot becomes occupied
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and a client, whose content retrieval request is responded by the network node (which

previously cached the content of the parking spot being empty), may not obtain the

correct state of the parking spot. The reason for the cache inconsistency problem is

the transparent nature of IoT contents (i.e., the value of an IoT content is quickly

diminished, and thus this IoT content needs to be replaced by a fresh one) and the

local caching decision made by network nodes (i.e., an IoT device is unaware of its

content having been cached by the network nodes. The IoT device is thus unable to

update the caches in those network nodes).

In order to solve the cache inconsistency as well as the energy inefficiency

problem during the IoT content delivery process, we propose to cache IoT resources

at the mobile edge [77, 87]. Specifically, an IoT resource (which is different from

an IoT content) is defined as a specific physical phenomenon captured by a specific

IoT device. Yet, an IoT content represents the state of a physical phenomenon at

a specific moment. For instance, a temperature sensor is to sense the temperature

value of Bob’s smart home and the current temperature value is 30oC. Then, “the

temperature value of Bob’s smart home” is an IoT resource (which is hosted by the

temperature sensor) and “30oC” is an IoT content. Caching an IoT resource at the

mobile edge indicates that the IoT resource is cached in a broker (which is an IoT

middleware with computing, communications, and storage capabilities) placed in the

nearby cloudlet. Thus, the IoT device will send the up-to-date content to the broker

and clients can retrieve the content of the IoT resource from the broker (rather than

the IoT device) via mobile networks.

Note that IoT resource caching in brokers is different from IoT content caching

in the IoT network layer. First, caching IoT resources, rather than IoT contents, is

implemented in brokers, where an IoT resource is considered as an identifier to specify

a set of related IoT contents, which are generated by the same device and describe

the same physical phenomenon under different time slots. Thus, IoT resources do not
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have the freshness feature. Thus, clients can retrieve up-to-date contents by accessing

the corresponding IoT resources. Second, IoT resources are cached in a broker (i.e.,

a middleware) rather than network nodes. The broker is considered as a cache entity,

which is discoverable by clients and IoT devices. Third, IoT devices make caching

decisions by themselves, and thus are aware of where their cached IoT resources are

located. Hence, it is feasible for IoT devices to update the contents and add access

control policies of the IoT resources cached in the broker. Therefore, IoT resource

caching in the application layer can basically resolve the cache inconsistency and

security problems.

In the next sections, we will explain how to achieve IoT resources caching in

brokers based on the existing IoT application layer protocols and how to leverage the

cloudlet network in conducting IoT resources caching.

4.1 Implementation of Caching IoT Resources in Brokers

In this section, we illustrate the implementation of caching IoT resources in brokers

by applying the current application layer communications protocols.

4.1.1 Constraint Application Protocol (CoAP)

The Constrained RESTful Environments (CoRE) working group within the Internet

engineering task force (IETF) has focused on the development of application layer

protocols by considering the resource constrained nature of IoT devices. Constraint

Application Protocol (CoAP) [88], a Web application transfer protocol intended to

provide RESTful services in constrained nodes and networks, is the main contribution

of such working group.

In CoAP, there are two logical entities: server and client. A server is a resource

host, which generates contents of the resource. A client is a resource requester,

which tries to retrieve contents of the resource. A resource is an object reflecting a
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specific physical phenomenon; normally, a resource is identified by a Uniform Resource

Identifier (URI) [89]. For instance, if Bob’s mobile phone tries to obtain the current

temperature value provided by the temperature sensor, which is equipped in Bob’s

smart home, the temperature sensor is a server, Bob’s mobile phone is a client, and

“the temperature value in Bob’s smart home” is a resource hosted by the server;

meanwhile, this resource can be identified by a URI (i.e., a unique address that can

be searched on the Internet), such as “coap://bob home/temp”. The interactions

between a server and a client follow a request/response model. For instance, as shown

in Figure 4.2, the client (e.g., Bob’s mobile phone) sends a resource retrieval request,

which includes the URI that points to a specific resource in the server (e.g.,“the

temperature value in Bob’s smart home” resource hosted by the temperature sensor).

Consequently, the server responds to the resource retrieval request by sending the

content of the resource to the client. Note that servers and clients are not restricted

to be physical IoT devices, i.e., virtual devices/objects can also be servers and clients.

The concept of a virtual device/object refers to a digital counterpart of a real physical

entity in IoT [90]. For instance, a service/application provided by a mobile phone

can be a virtual device/object.

Figure 4.2 CoAP request/response interaction model.

A client can continuously observe the resource by sending a resource observe

request to the server, which hosts the resource. The resource observe request should

contain the URI of the resource as well as the observe conditions, which indicate

the criteria for the server to transmit the contents of the resource to the client. For
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instance, as shown in Figure 4.3, Client-1 (e.g., bob’s mobile phone) sends a resource

observe request to the server (e.g., temperature sensor), which indicates that Client-1

tries to observe the resource (which is identified by the resource URI) and the server

should send the up-to-date content of the resource every 5 mins.

We can divide the clients into two classes: read clients and observe clients. The

read clients send resource retrieval requests to obtain the contents of resources in

the corresponding servers. Normally, the servers would not store any information

(e.g., URIs) of these clients. The observe clients send resource observe requests to

continuously monitor the status of resources. The servers should maintain the URIs

of the servers and their corresponding observe conditions by storing them in the local

binding table. As shown in Figure 4.3, two clients (e.g., bob’s mobile phone and the

air conditioner) send the resource observe requests to the server (e.g., temperature

sensor). The server should create a binding table [91], which maintains the URIs of

the two clients and their corresponding observe conditions1. Consequently, the server

can send the contents of the resource to the corresponding clients once their observe

conditions are satisfied.

Figure 4.3 Clients observe the resource.

1The thesis uses different terminologies, from those applied in the corresponding IETF RFCs
and drafts.
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4.1.2 Resource Directory (RD)

Figure 4.4 Interactions among server, client, and RD.

Clients need to know the URIs of the resources before they can send the resource

retrieval/observe requests to obtain the contents of the resources. In order to enable

clients to discover the URIs of the interested resources, another entity, i.e., Resource

Directory (RD), has been proposed [92]. An RD hosts the descriptions of resources

and provides the resource lookup functionality to clients. Note that the descriptions

of a resource include the URI and the context information (e.g., the resource type

and the resource location) of the resource. Figure 4.4 illustrates the interactions

among a server, a client, and an RD. First, a server registers its hosting resource to

an RD by sending a resource registration request, which includes the descriptions of

the resource, to the RD2. Second, the RD stores the descriptions of the resource into

its database and returns the database entry ID of the resource3 (e.g., /rd/1001) to

2Note that the URI of the RD is well-known or the server can discover the RD by
broadcasting/multicasting an RD discover message [92].
3The database entry ID of the resource identifies the location of the resource in the RD’s
database. The server should know this information such that it can update or delete the
descriptions of the resource in the RD later on.
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the server. Third, a client may send a resource discovery request to discover the URI

of a specific resource. Note that the resource discovery request may include a set of

query criteria (e.g., resource type=’temperature sensor’ and location=’bob’s home’)

describing the resource that the client wants to discover. As a result, the RD would

return the URI(s) of the resource(s), which matches the query criteria.

4.1.3 Caching IoT resources in brokers

Figure 4.5 Interactions among server, client, RD, and broker.

The interactions among servers, clients, and RDs enable the clients to find their

interested resources’ URIs and obtain the contents of these resources. However, it is

not efficient when many clients try to obtain the same resource during a time period,

i.e., the server may transmit a huge amount of data to these clients. This situation

happens when some popular events take place. For example, when a football game

is held in a stadium, tens of thousands of smart cars would look for empty parking

spots near the stadium. Thus, each street parking meter may need to transmit a

huge amount of data to these smart cars in order to report its parking status (i.e.,

if the parking spot is empty and when it will be empty if it is currently occupied).

Obviously, it is not efficient to enable the street parking meters to transmit the huge
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amount of data, which may exhaust the network resources and the energy supplies of

the street parking meters (which may be powered by batteries). Note that exhausting

the network resources of the street parking meters results in increased delay for the

street parking meters in transmitting the contents to the clients, and exhausting the

energy supplies of the street parking meters disables the street parking meters from

sensing and transmitting data.

In order to efficiently deliver the contents of resources, a new entity, i.e.,

broker, is introduced by the CoAP Publish/Subscribe protocol [93]. A broker is an

application layer middleware node equipped with powerful hardwares and sufficient

energy supplies. One of the functionalities of the broker is to cache IoT resources.

Specifically, a broker can cache a resource hosted by a server, and thus the server

would periodically transmit the up-to-date content of the resource to the broker,

which consequently helps the server forward the content of the resource to the clients

upon requests. Therefore, enabling the broker to deliver the content of the resource

has the potential to reduce the traffic loads of the server, which may finally reduce the

energy consumption of the server. The communications for the server in enabling the

broker to deliver the content of the resource is illustrated in Figure 4.5. 1) The server

would first send a resource creation request to the broker to cache a resource. The

resource creation request should contain the resource URI (indicating which resource

is requested to be cached) as well as the binding table information associated with

this resource. 2) The broker would send the URI of corresponding resource cached in

the broker back to the server if the broker determines to cache the resource. Note that

there are currently two URIs related to this resource: the URI of the resource hosted

by the server and the one cached in the broker. 3) After receiving the response from

the broker, the server would periodically send the up-to-date content of the resource

to the broker. 4) Meanwhile, the server should update the URI of the resource in the

RD’s database such that the clients can find the URI of the resource cached in the
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broker. 5) The read clients, who are interested in the resource, can find the URI of the

resource via the RD. 6) Consequently, these clients can obtain the up-to-date content

of the resource by sending the resource retrieval/observe requests to the broker. 7)

The broker sends the content of the resource to the observe clients based on the

information in the corresponding binding table.

4.2 Broker Deployment

Figure 4.6 Broker deployment in the cloudlet network.

A broker can be a logical entity (i.e., a function embedded in a router or switch)

or a physical entity. A good broker deployment enables each server to discover and

communicate with at least one specific broker such that this server’s hosting resources

can be cached in the corresponding broker. Cloudlets in the proposed cloudlet network

architecture the suitable entity to host brokers. Specifically, as shown in Figure 4.6,

each Base Station (BS), which has already been deployed in the mobile network

and provides high radio coverage, is equipped with multiple wireless interfaces (such

as Zigbee, bluetooth low energy, and low power area network) such that different

servers can communicate with the corresponding BSs. Thus, each BS is considered

as a smart gateway to provide various communications interfaces to its local servers.
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Meanwhile, each BS is connected to a cloudlet, which can host a broker to conduct IoT

resource caching functionality. Thus, each server can actually communicate with the

broker via the corresponding BS. In addition, each broker can communicate with the

Internet as well as other BSs/brokers via the SDN based cellular core. As mentioned

previously, the all the OpenFlow switches are controlled by the SDN controller via

the OpenFlow protocol [38] in the SDN based cellular core. The OpenFlow controller

manages the forwarding plane of BSs and OpenFlow switches, monitors the traffic at

the data plane, and establishes user sessions. The heterogeneous feature of IoT devices

(i.e., requiring different QoS, adopting various communications protocols, applying

different semantics to represent their data, etc.) hinders the communications among

them. The SDN based cellular core can essentially facilitate the communications

among IoT devices (i.e., servers, clients, and brokers). Specifically: 1) The SDN

controller can dynamically set up suitable forwarding rules in OpenFlow switches,

thus provisioning QoS routing to meet the various requirements (e.g., different delay

and jitter requirements) of IoT devices in delivering their contents [94–96]. 2) The

SDN controller can dynamically add protocol conversion functions [97] in BSs (or in

access OpenFlow switches). Thus, IoT devices can communicate with each other even

if they use different communications protocols. For instance, if a client, which applies

the CoAP protocol, tries to retrieve the content of a resource hosted by a server,

which applies the MQTT protocol [98], a function of converting between CoAP and

MQTT will be added in the BS (or the access OpenFlow switch), which serves the

client/server. 3) The SDN controller can dynamically add semantic capabilities and

related ontologies in BSs/OpenFlow switches. Hence, the raw data generated by

IoT devices can be converted into semantic data (e.g., RDF4), thus improving the

interoperability among IoT devices [100].

4Resource Description Framework (RDF) is a type of semantic data model that has been
widely used in IoT. Applying RDF to annotate IoT data allows different IoT devices to
understand the meaning of data. Details of RDF can be found in [99].
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4.3 Popular Resource Caching at the IoT Application Layer

In this section, we first illustrate that caching IoT resources may not always reduce

the energy consumption of their servers. In order to minimize the energy consumption

of servers, we propose to cache IoT resources only if they are popular. We provide

a method to measure the popularity of an IoT resource. Table 4.1 summarizes the

main notations applied in this chapter.

Table 4.1 List of Important Notations in Resource Caching

Notation Definition

I Set of all the IoT resources in the network.

J Set of all the popular IoT resources in the network.

li Average content size of resource i.

λi Average resource retrieval request arrival rate of resource i.

ψi Content update rate of resource i.

η Predefined threshold to measure the popularity of IoT resources.

xjk Binary cache indicator between popular resource j and broker k.

λk Average resource retrieval request arrival rate of broker k.

ub Average service rate of broker k.

usj Average service rate of the server, which hosts popular resource j.

tb Average delay of the broker in transmitting a content.

tsj Average delay of the server in transmitting a content of resource j.

∆T Duration of a time slot.

εi Energy coefficient of the server, which hosts resource i.

Essentially, “a resource is cached in the broker” implies that CoAP Pub/Sub

is applied to enable the broker to deliver the content of the resource to the clients;

otherwise, CoAP is applied to enable the server (which hosts the resource) to deliver
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the content of the resource to the clients. We next provide the smart parking use case

to illustrate the pros and cons for caching resources in the broker.

4.3.1 Use case

In smart cities, there are many street parking spots located near a stadium. Each

street parking spot is equipped with a smart parking meter, which generates the

parking spot status indicating whether the parking spot is empty and when it will

become available if it is currently occupied. Assume there is a broker located near

the stadium and available for all the street parking meters. If there is a football

game hosted in the stadium, as shown in Figure 4.7, tens of thousands of smart

cars would look for the available parking spots near the stadium before the game

starts. Consequently, each parking meter would receive a large number of resource

retrieval requests from smart cars and need to respond to them accordingly. This

would tremendously increase the energy consumption of the parking meter, which

may be powered by its battery.

Figure 4.7 Use case of a street parking meter nearby a stadium before a football
game.

Now, if each parking meter caches its resource in a broker by periodically sending

the up-to-date content of the resource to the broker and let the broker respond to
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Figure 4.8 Use case of a street parking meter nearby a stadium after a football game.

the resource retrieval requests from the smart cars, the parking meter can save a

huge amount of energy by sending less amount of data. The broker normally has

abundant power supply and powerful hardware. In other words, the transmission

rate of the broker should be much higher than that of a parking meter, and thus

caching the parking spot status resources in the broker can reduce the average delay

for delivering contents of the resources to the clients.

Caching the resource in the broker may not always be the optimal solution.

Consider the case that the broker caches many resources and needs to handle a huge

number of resource retrieval requests from the clients; consequently, the average delay

for the broker in delivering contents of the resources may be unbearable. Consider

another case when the football game finishes, as shown in Figure 4.8; smart cars are

no longer interested in the parking spot status resources and some parking spots are

still occupied. If these parking meters do not cache their parking spot status resources

in the broker, they do not need to transmit any packet since nobody is interested in

these resources. Yet, if the parking meters cache their parking spot status resources

in the broker, these parking meters need to transmit their up-to-date statuses to

the broker. Therefore, without caching the resource in the broker may consume less

energy in this scenario. Therefore, caching the resource in the broker by applying
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CoAP Pub/Sub may not always benefit the servers. It is necessary to determine

whether to cache the resources in the broker or not based on different scenarios.

4.3.2 Definition of popular resources

Caching a resource in a broker cannot always benefit the server (which hosts the

resource) because once the resource is cached in the broker, the server needs to

periodically send the up-to-date content of the resource to the broker (in order to

keep the content of the resource in the broker fresh) even if no client is interested in

the resource. On the other hand, if the resource is not cached in the broker (i.e., the

server would respond to the resource retrial requests by itself), the server does not

need to transmit any data when no client is interested in the resource. Therefore,

caching the resource in the broker may not always reduce the traffic load of the server.

Note that a heavier traffic load of the server incurs a higher energy consumption of the

server. Here, the traffic loads mean the total amount of data needs to be transmitted

in response to the resource retrial requests during a time slot. Note that the resource

retrieval requests for each resource comprises two parts: 1) the resource retrieval

requests from the read clients; 2) the current content satisfies some observe conditions

in the binding table, and thus the server/broker would automatically generate the

resource retrieval requests in order to deliver current content to the corresponding

observe clients.

In order to reduce the energy consumption of servers, only popular resources

should be cached in brokers. A resource is considered popular if caching this resource

by a broker will result in energy consumption reduction of its hosting server by η

during ∆T time period, where η ≥ 0 is the predefined traffic load threshold. Denote

I as the set of the resources in the network, i as the index of the resource, li as the

average content size of resource i, λi as the average arrival rate of resource retrieval

request (i.e., the average number of resource retrieval requests per second during a
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Figure 4.9 Amount of data sent by a server by adopting two different methods.

time slot) for resource i, ηi as the average content delivery rate of resource i (i.e., the

number of times that the server delivers the up-to-date content of resource i to the

broker per second during a time slot) when the resource is cached in the broker, and

∆T as the duration of a time slot.

As shown in Figure 4.9, if resource i is not cached in the broker, the server needs

to transmit liλi∆T amount of data in order to publish the contents of resource i to

the clients; accordingly, the energy consumption of the server is εiliλi∆T , where εi is

the energy coefficient of the server (which hosts resource i), which maps transmitting

one bit of data into energy consumption. On the other hand, if resource i is cached

in the broker, the server needs to send liηi∆T amount of data to the broker and let

the broker publish the content of resource i to the clients; accordingly, the energy

consumption of the server is εiliηi∆T . Apparently, if Eq. 4.1 is satisfied, then the
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server can reduce its energy consumption by η during ∆T time period if resource i

hosted by the server is cached in the broker.

εili∆T (λi − ηi) > θ. (4.1)

Thus, we define resources which satisfy Eq. 4.1 as popular resources (i.e., J =

{i|εili∆T (λi − ηi) > θ, i ∈ I}, where J denotes as the set of popular resources in the

network) and define resources, which do not satisfy Eq. 4.1, as unpopular resources.

Note that a server would send a resource caching request to the broker if its resource

becomes popular.

4.3.3 Resource caching strategy in brokers

A broker only caches popular resources. If a resource is no longer popular, the broker

would notify the server (which hosts the resource) that the resource is no longer

suitable to be cached in the broker. Accordingly, the server would deliver the contents

of the resource by itself. On the other hand, a broker may be congested if it caches

all the popular resources such that the broker needs to transmit a huge volume of

data for delivering the cached resources’ contents. Consequently, the average delay

for enabling the broker to deliver a content of a resource may be longer than the

average delay for enabling a server itself to deliver a content of its hosting resource.

Therefore, it is beneficial to design a dynamic resource caching mechanism for the

broker to determine which popular resource should be cached in the broker in order

to maximize the total energy savings from servers, while guaranteeing the average

delay.

Average delay for the broker to deliver the content of the popular resource

The broker should estimate the average delay for publishing a popular resource’s

content to respond to the corresponding resource retrieval request. Denote j as the
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index of these popular resources. Let xj to be the binary variable indicating whether

popular resource j should be cached in broker (i.e., xj = 1) or not (i.e., xj = 0);

thus, X = {xj|j ∈ J } denotes the popular resource caching strategy adopted by the

broker. Meanwhile, we assume that the content size of the popular resources, i.e.,

{lj|j ∈ J }, follows a Poisson distribution and l̄ is the average content size among

all the popular resources. Consequently, the service rate of the broker (the average

number of resource retrieval requests handled by the broker per second) also follows

a Poisson distribution and l̄
ub

is the average service rate of the broker, where ub is

the average transmission rate of the broker. In addition, assume that the resource

retrieval request arrivals for each resource exhibits a Poisson distribution and λj is the

average arrival rate of resource retrieval request for resource j. Then, we can model

the broker’s publishing contents of the cached popular resources in response to the

resource retrieval requests from the clients as an M/M/1 queueing model, and so the

average delay (i.e., the average queueing delay plus the average transmission delay)

for the broker’s publishing a popular resource’s content in response to the resource

retrieval request can be expressed5:

tb =
1

ub
l̄
−
∑
j∈J

λjxj
. (4.2)

Average delay for the server to deliver the content of the resource The

broker estimates the average delay if the content of the popular resource is delivered

by the server. If the average delay to deliver the content of the resource by the server

is lower than that by the broker, this popular resource is not suitable to be cached in

the broker.

5The average delay of a broker is the average queueing delay of a resource’s content waiting
in the broker’s network queue plus the average transmission delay of the broker in sending
the content out of its network interface. The propagation delay for transmitting the content
to the client over the network is not considered.
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Assume each server hosts one resource and denote usj as the average transmission

rate of the server, which hosts popular resource j. Since the content size of popular

resource j, i.e., the value of lj, is normally fixed over time, the average service rate

for this server in handling the resource retrieval requests is deterministic, which is

usj
lj

. Meanwhile, since the resource retrieval request arrival rate for popular resource

j exhibits a Poisson distribution with the average arrival rate of λj, we model the

server in delivering the content of resource j to the clients as an M/D/1 queueing

model, and so the average delay for the server in delivering resource j’s content to a

client, denoted as tsj , can be expressed:

tsj =
lj

2usj
× λj

usj
lj
− λj

. (4.3)

Problem formulation We formulate the dynamic resource caching problem (i.e.,

P5) in the broker as follows:

P5 : arg max
xj

∑
j∈J

εili∆T (λi − ηi)xj, (4.4)

s.t. ∀j ∈ J ,
xj

ub
l̄
−
∑
j∈J

λjxj
≤ tsj , (4.5)

∑
j∈J

λjxj <
ub
l̄
, (4.6)

∀j ∈ J , xj ∈ {0, 1} . (4.7)

P5 is to maximize the energy savings from servers. Constraint (4.5) is to guarantee

tb ≤ tsj for all the resources cached in the broker. Constraint (4.6) is to ensure the

system is stable, i.e., the average arrival rate should be less than the average service

rate in the broker to assure the queue does not overflow. Constraint (4.7) imposes xj

to be a binary variable.

Theorem 1. P5 is NP-hard.
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Proof. By combining Constraints (4.5) and (4.6), P5 can be transformed into:

P6 : F(X ) = arg max
xj

∑
j∈J

εi∆T li (λi − ηi)xj,

s.t. ∀j ∈ J ,
∑
j∈J

λjxj +
1

tsj
xj ≤

ub
l̄
, (4.8)

∀j ∈ J , xj ∈ {0, 1} .

Consider the case that Constraint (4.8) is equivalent to
∑
j∈J

(∑
j∈J

λjxj+
1
tsj
xj

)
≤∑

j∈J

ub
l̄

, which is transformed into:

∑
j∈J

(
|J |λj +

1

tsj

)
xj ≤

|J |ub

l̄
. (4.9)

P6 can be transformed into:

P7 : arg max
xj

∑
j∈J

εili∆T (λi − ηi)xj,

s.t. Constraints (4.7) and (4.9). (4.10)

Obviously, P7 is the 0-1 knapsack problem, where εili∆T (λi − ηi) is the value of item

j, |J |λj + 1
tsj

is the weight of item j, and |J |u
b

l̄
is the weight capacity of the knapsack.

Note that the 0-1 knapsack problem is a well known NP-hard problem. Therefore, we

conclude that the 0-1 knapsack problem is reducible to the original dynamic resource

caching problem (i.e., P5), and so P5 is NP-hard.

Energy Aware and latency guaranteed dynamic reSourcE caching (EASE)

We propose EASE to solve P66. Specifically, we relax Constraint (4.8) to construct

6As mentioned previously, P6 is equivalent to P5. Thus, we will try to solve P6.
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the following Lagrangian problem of P6:

L(W)=max
xj

∑
j∈J

(
εili∆T (λi − ηi)−λj

∑
j∈J

ωj−
ωj
tsj

)
xj

+
(ub
l̄

)∑
j∈J

ωj, (4.11)

s.t. Constraint (4.7),

where W = {ωj ≥ 0|j ∈ J } are the Lagrangian multipliers. Note that the above

Lagrangian problem will have the optimal solution X ∗ =
{
x∗j |j ∈ J

}
, where:

x∗j =


1, εili∆T (λi−ηi)−λj

∑
j∈J

ωj− ωj

tsj
>0.

0, εili∆T (λi−ηi)−λj
∑
j∈J

ωj− ωj

tsj
≤0.

(4.12)

Lemma 5. L(W) provides an upper bound on F(X ).

Proof. Assume X̂ = {x̂j|j ∈ J } is a feasible solution of F(X ). Thus, ∀j ∈

J ,
∑
j∈J

(λjx̂j) + 1
tsj
x̂j − ub

l̄
≤ 0. Since ∀j ∈ J , ωj ≥ 0, we can derive:

∑
j∈J

(
ωj

(∑
j∈J

(λjx̂j)+
1

tsj
x̂j−

ub
l̄

))
≤ 0,

i.e.,

∑
j∈J

εili∆T (λi − ηi)x̂j−
∑
j∈J

(
ωj

(∑
j∈J

(λjx̂j)+
1

tsj
x̂j−

ub
l̄

))

≥
∑
j∈J

εili∆T (λi − ηi)x̂j,

which implies that L(W) ≥ F(X̂ ).

Since L(W) is an upper bound on F(X ), the next step is to select suitable

values of W such that the gap between L(W) and F(X ) is as small as possible.

We apply the subgradient method to iteratively select the values of W in order to
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find the minimum gap. Specifically, we first select the initial values of W , denoted

as W (0) =
{
ω

(0)
j ≥ 0|j ∈ J

}
. Then, W are updated in each iteration based on the

following equation:

∀j ∈ J , ω
(k+1)
j = ω

(k)
j − α(k)∂L(W (k))

∂ω
(k)
j

=ω
(k)
j +α(k)

(∑
j∈J

(
λjx

∗(k)
j

)
+

1

tsj
x
∗(k)
j −ub

l̄

)
, (4.13)

where ω
(k)
j is the value of ωj in the kth iteration; x

∗(k)
j , which is calculated based on

Equation 4.12, is the optimal solution of the Lagrangian problem in the kth iteration

(note that x
∗(k)
j may not be the feasible solution of P6 since x

∗(k)
j may not satisfy

Constraint(4.8); thus, we have to map the optimal solution of the Lagrangian problem

into the feasible solution of P6, i.e., x̂
(k)
j = M(x

∗(k)
j ), where x̂

(k)
j is the feasible

solution of P6 in the kth iteration and M (·) specifies the mapping); α(k) is the step

size adopted in the kth iteration [101]:

α(k) = β
L
(
W (k)

)
−Fmax

∑
j∈J

(∑
j∈J

(
λjx̂

(k)
j

)
+ 1
tsj
x̂

(k)
j −

ub
l̄

)2 , (4.14)

where β is a decreasing adaption parameter with 0 < β < 2 and Fmax is the maximum

objective value for P6 found so far, i.e., Fmax = max
{
F(X̂

(1)
),F(X̂

(2)
), ...,F(X̂

(k)
)
}

(where X̂
(k)

=
{
x̂

(k)
j |j ∈ J

}
is the feasible solution calculated in the kth iteration

and F(X̂
(k)

) is the corresponding objective value for P6).

The values of W continue to be updated until the gap between the Lagrangian

problem and the maximum objective value for P6, i.e., L
(
W (k)

)
−Fmax, does

not change over iterations or the number of iterations is equal to or larger than a

predefined threshold. EASE is summarized in Algorithm 3.
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Algorithm 3 The EASE algorithm

Input:

1. The content size vector of popular resources, i.e., L = {lj|j ∈ J }.

2. The average resource retrieval request arrival rate vector for popular

resources, i.e., λ = {λj|j ∈ J }.

3. The average transmission rate of the broker, i.e., ub, and the average

transmission rate of the servers (which hosts the popular resources), i.e.,

U s =
{
usj|j ∈ J

}
.

Output: The resource caching vector in the broker, i.e., X = {xj|j ∈ J }.

1: Calculate T s =
{
tsj|j ∈ J

}
based on Equation 4.3.

2: Initialize W = 0.

3: Calculate X ∗ =
{
x∗j |j ∈ J

}
based on Equation 4.12.

4: Calculate X̂ = {x̂j|j ∈ J }, where X̂ = M (X ∗).

5: Initialize Fmax = F(X̂ ) and X = X̂ .

6: Calculate the value of L (W) based on Equation 4.11.

7: while L (W)−Fmax changes over the iterations && The number of iterations

is less than the threshold do

8: Update the step size α based on Equation 4.14;

9: Update the values of W based on Equation 4.13;

10: Update the values of X ∗ based on Equation 4.12;

11: Calculate the values of X̂ , where X̂ = M (X ∗).

12: if F(X̂ ) > Fmax then

13: Fmax = F(X̂ ) and X = X̂ .

14: end if

15: end while

16: return X .
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As mentioned previously, the mapping function M (·) involved in Algorithm 3

is to convert the optimal solution of the Lagrangian problem (i.e., X ∗ =
{
x∗j |j ∈ J

}
)

into the feasible solution of the primal problem (i.e., P1) such that Constraint 4.8

is satisfied by all j ∈ J . The basic idea of the mapping function is that the broker

iteratively drops a suitable popular resource (note that the broker dropping a popular

resource means the popular resource is not selected to be cached by the broker) among

all the popular resources that are currently cached by the broker (which are calculated

by Equation 4.12) until Constraint 4.8 is satisfied by all j ∈ J . The suitable popular

resource, denoted as j
′
, is defined as the popular resource that incurs the minimum

average delay (for enabling its server to deliver the content of the resource) among

all the currently cached popular resources, i.e.,

j
′
= arg min

j

{
tsj|x∗j = 1, j ∈ J

}
. (4.15)

The mapping function is summarized in Algorithm 4.

Algorithm 4 The mapping function X̂ = M (X ∗).

1: Obtain the popular resource set J ′
=
{
j|x∗j =1, j ∈ J

}
.

2: Find the suitable resource j
′

based on Equation 4.15.

3: while ∀j∈J ,
∑
j∈J

λjx
∗
j+

1
tsj
x∗j≤ ub

l̄
cannot be satisfied do

4: x∗
j′

= 0;

5: Remove j
′

from resource set J ′
;

6: Find the suitable resource j
′

based on Equation 4.15;

7: end while

8: return X̂ = X ∗.

4.4 Evaluations

In this section, we will present simulation results to demonstrate the performance of

EASE. Consider the scenario with N = 100 servers deployed in an area covered by a
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Base Station (BS), which is attached to a broker. Each server can communicate with

the broker via the BS based on different kinds of communications technologies (e.g.,

NarrowBand IoT, Bluetooth Low Energy, Zigbee, etc.) and clients are able to retrieve

the contents of resources (from the broker or the server) via the BS. Meanwhile, each

server hosts one IoT resource and the content size of each resource is generated from

a Poisson distribution with mean l̄ = 500 Kb. In addition, the average transmission

rate of each server is obtained from a Poisson distribution with the average value of

8Mbps. If the resource is cached in the broker, the server should deliver the up-to-date

resource content to the broker and we assume that the average content delivery rate

is the same among all the resources during a time slot, i.e., ηi = 0.01 update/second7.

Moreover, the average transmission rate of the broker is ub = 350 Mbps. The energy

coefficients of all the servers in the network are the same, i.e., εi = 1 unit/bit, where

i ∈ I. Clients from the Internet send the resource retrieval requests to retrieve the

contents of the resources. The average arrival rate of resource retrieval requests for a

resource is randomly selected between 0 and 0.1 request/second during a time slot,

i.e., λi = U (0, 0.1). The energy threshold θ is set to be 0 and the duration of a time

slot is 10 mins.

We compare the performance of EASE with other two baseline strategies, i.e.,

Caching Preferred (CP) and Caching Non-Preferred (CNP). The basic idea of CP is

that each popular resource j (j ∈ J ) is preferred to be cached in the broker until

the broker is overflowed8. Meanwhile, the intuition of CNP is that each popular

resource j is not preferred to be cached in the broker if its server can still handle

the corresponding resource retrieval requests (i.e.,
lj
usj
> λj). Note that if the server

7The physical meaning of ηi = 0.01 update/second implies that the server, which hosts
resource i, would generate and deliver one updated content within every interval of 100
seconds.
8The broker is overflowed means the average utilization of the broker’s network card is no
less than 1. That is, the average arrival rate of resource retrieval request of the broker is
no less than the average service rate of the broker, i.e.,

∑
i∈I

λixi ≥ ub
l̄

.
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cannot handle the resource retrieval requests (i.e.,
lj
usj
≤ λj), then this resource has

to be cached in the broker in CNP. Note that each server would send the resource

caching request to the broker as long as its resource becomes popular in each time slot

and the broker would determine whether to cache these popular resources by running

the three caching strategies in each time slot. The total simulation period is 100 time

slots and the Monte Carlo results are generated to measure the performance of the

three caching strategies.

4.4.1 Overall performance

Figure 4.10 Average overall delay and the amount of energy savings.

As shown in Figure 4.10, EASE and CP save similar amount of energy from

servers, which is much more than the one saved by CNP. This is because CNP does

not prefer to cache popular resources in the broker, and so servers need to transmit

the contents of their hosting resources by themselves, which cannot saves energy of

the servers. Figure 4.11 shows the number of popular resources that are cached in

the broker by applying different strategies. CNP has the fewest number of resources
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Figure 4.11 Average number of resources cached in the broker.

Figure 4.12 Average delay among servers and Average delay of the broker.
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Figure 4.13 Amount of energy savings.

cached in the broker than CP and EASE; this is why CNP saves less energy from

servers than CP and EASE.

As shown in Figure 4.10, although EASE and CP generate similar energy

savings, EASE incurs much lower average overall delay9 for publishing a content of a

resource as compared to CP. To explain this, we analyze the average delay among the

9Average overall delay is the mean of the average delay of all the resources, i.e.,
average overall delay =

∑
i∈I

(
tbxi + tsi (1− xi)

)
/ |I|, where tbxi + tsi (1− xi) refers to the

average delay for delivering a content of resource i and |I| is the total number of the
resources.

73



Figure 4.14 Number of cached resources.

servers10 and the average delay of the broker 11 with respect to the three strategies.

As shown in Figure 4.12, CP incurs much higher average delay of the broker than

EASE and CNP because CP only tries to maximize the energy savings by enabling

the brokers to cache as many popular IoT reosurces as possible. This would result

in the broker being congested, thus incurring high average delay of the broker in

10Average delay among the servers indicates the mean of the average delay of all the resources,
whose contents are delivered by their servers (i.e., the resources that are not cached by the
broker), i.e., average delay among servers =

∑
i∈I

tsi (1− xi)/
∑
i∈I

(1− xi), where tsi (1− xi)

refers to the average delay for the server in delivering a content of resource i, which is not
cached by the broker, and

∑
i∈I

(1− xi) is the total number of the resources not being cached

by the broker.
11The average delay of the broker is the mean of the average delay of all the resources, whose
contents are delivered by the broker (i.e., the resources that are cached by the broker), i.e.,
average delay of the broker =

∑
i∈I

tbxi/
∑
i∈I

xi, where tbxi refers to the average delay for

the broker in delivering a content of resource i, which is cached by the broker, and
∑
i∈I

xi is

the total number of the resources being cached by the broker.
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Figure 4.15 Average overall delay.

delivering the content of a resource. In other words, the broker needs to handle

too many resource retrieval requests such that the average delay for the broker in

delivering a content of a resource increases significantly. Accordingly, high average

delay of the broker causes high average overall delay for CP. On the other hand,

although CNP incurs the lowest average delay of the broker (since a few number of

popular resources are cached in the broker, and thus the broker is lightly loaded),

it generates the highest average delay among servers as compared to EASE and CP.

This is because some servers may be over-loaded to handle many resource retrieval

requests, thus suffering from high delay. As a result, high average delay among servers

causes high average overall delay for CNP. Therefore, we conclude that EASE can

determine suitable resource to be cached in the broker in order to save almost the

same amount of energy from servers as compared to CP while ensuring the lowest

average overall delay.
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4.4.2 Performance comparison by varying the average transmission rate

of the broker

Figure 4.16 Average delay among servers and average delay of the broker.

We further compare the performance of the three strategies by changing the

average transmission rate of the broker, i.e., the value of ub. As shown in Figure

4.13, EASE and CP always incur the similar amount of energy savings; meanwhile,

the amount of energy savings increases as ub increases. This is because when ub

increases, the broker caches more popular resources by applying EASE and CP, thus

potentially reducing the energy consumption of the servers. Figure 4.14 demonstrates

that the number of resources cached in the broker increases as ub increases when EASE

and CP are applied. However, as shown in Figure 4.14, the amount of energy savings

incurred by CNP does not change as ub varies because CNP does not prefer to cache

the resources in the broker even if the broker has a larger capacity to cache more

popular resources.

Figure 4.15 shows the average overall delay by applying the three strategies. The

average overall delay of EASE decreases as ub increases and EASE always outperforms
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CP and CNP. Note that the average overall delay of CP is monotonically increasing

when ub < 440 Mbps and monotonically decreasing when ub ≥ 440 Mbps because

as ub increases, CP would cache more popular resources in the broker, and so the

broker needs to handle more resource retrieval requests from the clients. Thus, as

shown in Figure 4.16, the average delay of the broker for applying CP is increasing

as ub increases; this increases the average overall delay of CP accordingly. When

ub ≥ 440 Mbps, all the popular resources have already been cached in the broker,

i.e., the average arrival rate of resource requests of the broker would not increase as

ub increases. Consequently, as shown in Figure 4.16, the average delay of the broker

for applying CP decreases, thus resulting in the decrease of the average overall delay

of CP.
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CHAPTER 5

FUTURE WORK

The cloudlet network has been proposed in Chapter 2 to provision mobile edge

computing. In order to maintain low E2E delay between MUs and their Avatars,

the adaptive Avatar handoff process has been proposed in Chapter 3 to hand off

Avatars among cloudlets based on the movements of their MUs. Caching popular

IoT resources in the context of the cloudlet network has been proposed in Chapter 4

to reduce the energy consumption of IoT devices and speed up the content delivery

process. In this chapter, we will briefly discuss how to further enhance the IoT

content delivery process in the context of the cloudlet network and how to increase

the throughput of the mobile access network.

5.1 Traffic Load Balancing among Brokers in the Cloudlet Network

As mentioned in Chapter 4, brokers are hosted by cloudlets, which are distributed at

the mobile edge; meanwhile, caching popular IoT resources in the nearby brokers can

substantially reduce the energy consumption of servers. However, caching popular IoT

resources in the nearby brokers is not the optimal solution, i.e., the traffic loads among

brokers are not balanced (some brokers are heavily loaded, but others are lightly

loaded), and thus the delay of delivering the contents of IoT resources is not minimized

[87]. For example, as shown in Figure 5.1, broker-1 caches two popular resources, i.e.,

resource-1 and resource-2, and broker-2 caches one popular resource, i.e., resource-3.

Thus, broker-1 needs to respond to 2n and 3n resource retrieval requests related to

resource-1 and resource-2 during a time slot, respectively. Meanwhile, broker-2 needs

to respond to n resource retrieval requests related to resource-3 during a time slot. If

the sizes of these resources’ contents are the same, broker-1 would transmit more data

to the clients than broker-2 would, i.e., traffic loads are unbalanced between the two

78



brokers. The unbalanced traffic loads may significantly increase the average delay of

delivering the contents of popular resources to clients.

Figure 5.1 Illustration of unbalanced traffic loads among brokers and the resource
re-caching process.

In order to reduce the average delay, traffic loads can be offloaded from heavily

loaded brokers to lightly loaded brokers. For example, as shown in Figure 5.1, broker-

1 can offload its traffic loads to broker-2 by enabling broker-2 to cache resource-2

(such that broker-2 should take the responsibility to respond to the resource retrieval

requests related to resource-2). Here, we define the process of a popular resource,

which is originally cached by one broker, to be cached by another broker as resource

re-caching. Essentially, balancing the traffic loads among brokers is implemented by

resource re-caching.

Although re-caching resources from heavily loaded brokers to lightly loaded

brokers can reduce the average delay to distribute the contents, re-caching resources

may generate extra communications overheads, which may potentially increase the

energy consumption of the server as well as the traffic load of the SDN based cellular

core. Figure 5.2 shows the procedure of a popular resource being re-cached from

Broker-1 into Broker-2:

• Step-1: once the popular resource is determined to be cached by Broker-2,

Broker-1 should send a resource creation request to Broker-2. The resource

creation request includes the URI of the popular resource hosted by the server
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as well as the binding table of the popular resource. Note that transmitting

the binding table to Broker-2 is to inform Broker-2 about the observe clients

(which are defined in Section III.A) of the popular resource such that Broker-2

can continue to transmit the up-to-date contents of the popular resource to

those observe clients.

• Step-2: once Broker-2 receives the resource creation request, it would store the

binding table, create a new URI, which identifies the popular resource cached

in Broker-2, and return this new URI to Broker-1.

• Step-3: Broker-1 needs to inform the server about the new URI (which points

to the popular resource in Broker-2) by sending a notification message to the

server such that the server can send the up-to-date contents to Broker-2 (rather

than Broker-1).

• Step-4: after receiving the notification message, the server needs to respond

with a confirmation message to Broker-1.

• Step-5: after receiving the new URI, the server should update the URI of the

popular resource in the RD by sending a resource update request to the RD

such that the read clients can find the new URI, which points to the popular

resource in Broker-2.

• Step-6: after receiving the resource update request, the RD needs to send to

the server with a resource update response in order to confirm that the URI has

been updated.

Extra messages are generated by the two brokers in Step-1, Step-2, and Step-3.

Denote ζ as the amount of communications overheads incurred from Step-2 to Step-3.

Note that the value of ζ is the same among different popular resources, i.e., no matter

which popular resource is re-cached, the total amount of communications overheads

incurred from Step-2 to Step-3 is the same. The value of ζ depends on the size

of the resource creation response message (in Step-2) and the notification message

(in Step-3). Denote ωj as the amount of data incurred by Step-1. The value of ωj

depends on the size of the binding table of resource j, which is further determined

by the number of observe clients of resource j, i.e., more observe clients of resource
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Figure 5.2 Illustration of communications overheads incurred by popular resource
re-caching.

j result in a larger size of the binding table of resource j, thus increasing the value

of ωj. Hence, we have ωj = a + bnj, where nj is the number of the observe clients

of resource j, b is the coefficient that maps the number of the observe clients into

communications overheads, and a is the offset of communications overheads. Note

that the values of a and b can be obtained by measuring the size of the resource

creation request (in Step-1) under different numbers of the observe clients. Thus,

we can derive the total amount of communications overheads by re-caching popular

resource j as follows:

oj = a+ bnj + ζ. (5.1)

On the other hand, extra messages are generated by the server (which originally

hosts the resource that is re-cached by a different broker) in Step-4 and Step-5. Thus,

the total amount of communications overheads incurred by the server is determined

by the size of the notification confirmation message (in Step-4) and resource update

request (in Step-5).

All in all, re-caching popular IoT resources from heavily loaded brokers to lightly

loaded brokers can reduce the average delay to distribute the contents; however,
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re-caching a popular IoT resource from one broker into another broker may incur non-

negligible communications overheads, which may increase the energy consumption of

the server as well as the traffic load of the SDN based cellular core. Therefore, it

is necessary to design an efficient IoT resource re-caching method to determine the

location of each IoT resource (i.e., each IoT resource is cached by which broker in the

cloudlet network) such that both the energy consumption of servers and the average

delay of delivering the contents of IoT resources are minimized.

5.2 Drone Aided Mobile Access Networks

Global mobile data traffic is increasing dramatically over the years. According to

Cisco Visual Networking Index [102], global mobile data traffic reached 7.2 exabytes

per month at the end of 2016. Monthly global mobile data traffic will reach 49

exabytes by 2021, i.e., the amount of data traffic in 2021 will be almost seven times

that of in 2016. On the other hand, the average mobile network connection speeds

cannot catch up with the growth of mobile traffic. Table 5.1 lists the average mobile

network connection speeds among different areas, where in North America, the mobile

network speed in 2021 (25.2 Mbps) is less than two times that of in 2016 (13.7 Mbps).

Thus, we can conclude that mobile access networks could be the bottleneck of the

entire system. This may degrade the performance of mobile edge computing.

In order to increase the throughput of mobile access networks, the current

solution is to deploy a massive number of small cells (e.g., femto cells and pico cells) in

the network. It is reported that hundreds of thousands of small cells are expected to

be deployed across the U.S. by 2020 to support the exponential growth of the traffic

demands. The number of small cell sites could surpass traditional wireless towers

(macro base stations) by 2019, possibly numbering approximately 455,000 by 2020,

assuming speedy siting procedures [103]. Deploying a massive number of small cells is

a way to increase the throughput of mobile access networks, but not an efficient one.
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Table 5.1 Projected Average Mobile Network Connection Speeds (Mbps)

2016 2017 2018 2019 2020 2021

AsiaPacific 9.8 10.6 12.9 16 18.8 20.4

LatinAmerica 3.8 4.9 6.4 7.9 10 12.4

North America 13.7 16.3 17.6 19.8 22.8 25.2

WesternEurope 11.4 16 18.6 21.6 25.7 28.5

CentralandEastern Europe 6.3 10.1 12.3 13.6 16.2 18.4

Middle EastandAfrica 3.8 4.4 5.3 6.8 8.5 10.8

Source: [102].

This is because 1) deploying a small cell, which costs from $15,000 to $20,000 [104],

is not cheap; 2) small cells are statically placed to cover some possible hotspots.

However, some hotspots appear unpredictably and occasionally, thus hampering these

small cells from covering these hotspots efficiently. A new hotspot might arise, for

example, after an accident owing to an auto accident, when MUs begin to stress the

access point by downloading and watching related news content. A stadium would

become a hotspot when a football game or a concert is underway; 3) small cells

are normally deployed near the ground, and thus the links between MUs and small

cells are likely to be non-light-of-sight (NLOS), which may reduce the mobile access

network speed.

To address this problem, Drone-mounted Base Stations (DBSs) have been

developed to help accelerate traffic delivery to MUs [105–107]. A drone is a

low-cost unmanned aerial vehicle designed to be flown under remote control or

autonomously using embedded software and sensors (e.g., GPS) [108]. Drones have

been deployed for many applications, such as public safety [109], rescue missions [110],

and reconnaissance over disaster recovery [111]. A DBS is essentially a movable small

cell that can be automatically and flexibly deployed in any hotspot to assist the access
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node (e.g., the macro BS) to deliver traffic to MUs in the hotspot. Specifically, as

shown in Figure 5.3, a DBS hovering over a hotspot can download data from the access

node via the wireless backhaul link and relay them to the MUs in the hotspot at a

higher data rate than that achievable when the MUs are downloading data directly

from the access node [106].

Figure 5.3 DBS aided mobile access network architecture.

Different from traditional small cells (whose locations are normally fixed), DBSs

have been identified with their unique advantages, i.e., faster and cheaper to deploy,

more flexibly reconfigured, and likely to have better communications channels owing

to the presence of short-range Line-of-Sight (LoS) links [112–114]. These features

enable DBSs to be quickly deployed to the random hotspots in the network to increase

the data rate of the MUs in the hotspot areas.

Although deploying DBS to assist mobile access networks can speed up the

macro base station in delivering traffic to MUs and provide flexibility to mobile

network providers, some challenges are still existed.

1. Optimal DBS placement

Essentially, the optimal DBS placement is to determine the longitude, latitude,

and altitude of a DBS such that the overall throughput of the mobile access

network is maximized, which depends on the throughput of both wireless access

link as well as wireless backhaul link. The optimal DBS placement problem is

difficult to be solved because the DBS placement may affect the throughput of

both wireless access link and wireless backhaul link.
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DBS placement impacts on the throughput of the mobile access link: traffic

demands in the network exhibit temporal and spatial dynamics. Deploying a

DBS over an area with high traffic demands (i.e., a hotspot) may significantly

speed up traffic delivery from an access node to the MUs in the area. However,

many hotspots may coexist in an access node’s coverage area. Some can be

served by the access node, but some cannot. Thus, it is critical to optimize

the latitude and longitude of the DBS in order to maximize the throughput of

the mobile access network. In addition, the altitude of the DBS also affects the

throughput of the mobile access link. Specifically, the DBS at lower altitude

reduces the distance between the DBS and the MUs, thus potentially reduce

the path loss1 from the DBS to the MUs; on the other hand, since the wireless

access channel between the DBS and the MUs is modeled by a probabilistic

LoS channel [115–118], the DBS with lower altitude increases the probability of

None LoS (NLoS) to the MUs, thus potentially increasing the path loss from

the DBS to the MUs.

DBS placement impacts on the throughput of the wireless backhaul link: the

data rate of the wireless backhaul link (between the macro base station and

the DBS) is a function of the distance between the DBS and the macro base

station, i.e., the DBS placed closer to the macro base station would incur higher

throughput of the wireless backhaul link, and vice versa.

2. Limited battery life

A DBS is normally powered by its portable battery which limits the aloft time

of the DBS. The DJI PHANTOM 4, for example, can only fly approximate 28

minutes [119] and the Yuneec Q500 has the maximum flight time of 25 minutes

[120]. The short battery life of a drone cannot keep a DBS aloft continuously

to assist the access node in delivering flash crowd traffic. Simply increasing the

battery capacity of a drone cannot significantly increase the flight time because

the weight of the drone also increases accordingly [121]. Therefore, the drone

has to be charged when its battery is drained.

Harvesting energy from the sun is an option for charging a drone without landing

[122–125]. However, the solar energy harvesting efficiency heavily depends on

the sky condition [126], i.e., a drone cannot prolong its flight time by harvesting

energy from solar if the sky is covered by clouds. Rossi et al. [125] concluded

that harvesting energy from solar can increase the flight time of a drone up

1Note that lower path loss between the DBS to the MUs results in higher throughput.
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to 20% in the best case scenario. Meanwhile, a drone can also be charged

wirelessly, which is more convenient than ground charging [121,127,128]. That

is, the charging station on the ground may transfer energy to the drone through

radio waves or microwaves while the drone is hovering in the air. For example,

Gmez-Tornero et al. [129] proposed to use a frequency agile coaxial magnetron

as the power source (with 70 kW peak power) to transfer power carried at

Ku-band (in a 200 MHz range from 16.15 GHz to 16.35 GHz), with only 21.3

W of power reaching a drone at a 25 meter distance.

3. Logistic challenges

Federal Aviation Administration (FAA) has already made rules of how to

operate drones in the real world [130]. For example, a drone should be no

more than 55 pounds; a drone must stay with operators line of sight; a drone

cannot fly over 400 ft, etc. These rules actually hamper the usage of DBSs to

be applied in mobile access networks. Definitely, regulations are needed when

flying a drone. But, too much is too much. We could image a drone could be

much safer than any vehicle in the future and some rules are not necessary when

flying a drone.
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CHAPTER 6

CONCLUSION

The MCC technology is used to offload the workloads from mobile devices to the cloud,

and so mobile devices only need to conduct some simple tasks; on the other hand, the

remote cloud would help the mobile devices execute offloaded tasks and return related

results to the mobile devices. MCC can not only reduce energy consumption of mobile

devices but also accelerate the execution time of the applications. However, owing to

the long E2E delay between mobile devices and the cloud, offloading the workloads of

many interactive mobile applications (e.g., augmented reality, virtual reality, online

gaming, etc.) to the cloud may not be suitable. In order to reduce the E2E delay,

a novel cloudlet network architecture has been proposed to bring the computing and

storage resources from the remote cloud to the mobile edge. In the proposed cloudlet

network, each BS is attached to a cloudlet, which comprises a number interconnected

physical machines providing computing and storage resources to mobile devices. Each

MU is associated with a specific Avatar in the nearby cloudlet. Thus, MUs can

offloaded their workloads to their Avatars with low E2E delay. Note that the proposed

cloudlet network architecture not only facilitates MUs in offloading their workloads to

their Avatars but also benefits other applications, such as mobile crowd sensing and

mobile big data analysis. In particular, each Avatar can process mobile data streams

from its MU, extract the high-level knowledge information hidden behind the mobile

data streams, and send the knowledge information to the corresponding application

VM, which provides related services to MUs. Three use cases, i.e., Terrorist Detection,

ParkNet, and FaceDate, have been given to demonstrate how the cloudlet network

architecture facilitates mobile crowd sensing and mobile big data analysis.
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MUs may roam among BSs in the mobile network and so the E2E delay between

MUs and their Avatars may become worse if the Avatars remain in their original

cloudlets. Thus, the idea of handing off a MU’s Avatar when the mobile user roams

away has been proposed to reduce the E2E ddelay between the MU and its Avatar.

In order to reduce the average Avatar handoff time, placing each Avatar’s replicas

into suitable cloudlets has been proposed. The LEARN algorithm has been designed

to determine the locations of each Avatar’s replicas in order to minimize the average

E2E between an MU and its Avatar during a time period (i.e., one day). After each

Avatar’s replicas have been deployed into their suitable cloudlets, the LatEncy aware

Avatar handDoff (LEAD) algorithm has been designed to determine the location of

each MU’s Avatar in each time slot (e.g., 30 minutes) in order to minimize the average

E2E delay among all the MUs and their Avatars. The performance of LEAD has been

demonstrated via extensive simulations.

The cloudlet network architecture not only facilitates mobile users in offloading

their computational tasks but also empowers Internet of Things (IoT). The idea

of caching popular IoT resources in brokers has been proposed to reduce the energy

consumption of the servers, which host these popular IoT resources. Here, the brokers

are considered as application layer middleware nodes hosted by cloudlets in the

cloudlet network, and servers can always communicate with nearby brokers via their

associated BSs. In order to minimize both the total energy consumption of servers

and the average delay of delivering contents of IoT resources, the EASE algorithm

has been designed to enable each broker to cache suitable popular IoT resources. The

performance of EASE has been demonstrated via extensive simulations.

Two future works have been presented. First, caching popular IoT resources

in the nearby brokers has been identified to result in unbalanced traffic load among

the brokers in the cloudlet network. The unbalanced traffic load may significantly

increase the average delay of delivering contents of IoT resources to clients. How to
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balance the traffic load among brokers has been investigated to accelerate the IoT

content delivery process. Second, mobile access networks may be the bottleneck of the

whole system, and thus degrade the performance of mobile edge computing. In order

to increase the throughput of the mobile access networks, the drone aided mobile

access network architecture has been proposed. In addition, three challenges and the

potential solutions in the context of the drone aided mobile access networks have been

discussed.
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