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ABSTRACT

SURVIVAL ANALYSIS USING ARCHIMEDEAN COPULAS

by
Xieyang Jia

This dissertation has three independent parts. The first part studies a variation of

the competing risks problem, known as the semi-competing risks problem, in which

a terminal event censors a non-terminal event, but not vice versa, in the presence of

a censoring event which is independent of these two events. The joint distribution of

the two dependent events is formulated under Archimedean copula. An estimator for

the association parameter of the copula is proposed, which is shown to be consistent.

Simulation shows that the method works well with most common Archimedean copula

models.

The second part studies the properties of a special class of frailty models

when the frailty is common to several failure times. The model is closely linked to

Archimedean copula models. A useful formula for baseline hazard functions for this

class of frailty models is established. A new estimator for baseline hazard functions in

bivariate frailty models based on dependent censored data with covariates is obtained,

and a model checking procedure is presented.

The third part studies the properties of frailty models for bivariate data under

fixed left censoring. It turns out that the distribution of observable pairs belongs to a

new class of bivariate frailty models. Both the original model for complete data and

the new model for observable pairs are members of Archimedean copula family. A new

estimation strategy to analyze left-censored data using the corresponding Kendalls

distribution is established.
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CHAPTER 1

INTRODUCTION

Copula models are gaining popularity when modeling dependent random variables.

Among them, Archimedean copula is most widely being used. The merit of copula

models is that it declares a clear form of the joint survival function with respect

to the marginal survival functions. Moreover, the association is captured in a single-

parameter generator function that is straightforward to interpret. Oakes(1989)[14] has

shown that Archimedean copulas naturally arise from bivariate frailty models, which

characterizes the associations among the observable survival data and unobservable

latent random variables.

In this chapter, we will discuss some important factors about frailty models and

Archimedean copula. This chapter starts from the basic ideas of survival analysis in

Section 1.1. Then frailty models and Archimedean copulas are introduced in Section

1.2 and Section 1.3.

1.1 Survival Analysis Basics

Survival analysis studies the expected duration of time until one or more events

happen, for example, the time to death of a patient, or time to failure of a machine.

In general, let T be the time to event, and we assume T to be an absolute continuous

random variable taking on non-negative values. Therefore, T has probability density

function f(t) such that

P (t1 ≤ T ≤ t2) =

∫ t2

t1

f(t) dt, 0 ≤ t1 ≤ t2,

and has cumulative distribution function F (t) defined as

F (t) = P (T ≤ t) =

∫ t

0

f(u) du, t ≥ 0.

1



By the continuity of T , f(t) =
dF (t)

dt
. The survival function S(t) is defined as

S(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(u) du, t ≥ 0,

which measures the probability that the event does not happen by time t. In our

examples above, it is the probability that the patient survives beyond time t or the

machine does not fail until time t.

The hazard function of T at time t is denoted as λ(t) where

λ(t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)

h
= lim

h→0

P (t ≤ T < t+ h)

hP (T ≥ t)

=
1

P (T ≥ t)

[
lim
h→0

P (t ≤ T < t+ h)

h

]
=
f(t)

S(t)
.

The hazard function shows the instantaneous failure rate at time t given that the

event has not happened yet at that moment. Note that

λ(t) =
f(t)

S(t)
= −dS(t)

dt

1

S(t)
= −d logS(t)

dt
.

The cumulative hazard function Λ(t) is defined as

Λ(t) =

∫ t

0

λ(u)du = − logS(t),

or equivalently,

S(t) = e−Λ(t)

The most important and interesting feature of survival analysis is censoring

and truncation of data. For example, in many clinical trials, the true time to event

is not always observable for each individual because of various reasons, such as lost

to follow-up of the participating patients, end of study, competing risks, etc. A more

detailed introduction of censoring and truncation can be found on Klein(2003)[9]

2



Chapter 3. In our proposal, we focus on right censored (see Figure 1.1) and left

truncated data. Note that the main difference between censoring and truncation is

that censored object is detectable but the value is not known, while the object is not

even detectable in the case of truncation due to instrumental limitations.

Figure 1.1 An example of right-censored data.

Non-parametric approaches are widely used to estimate the survival function

and hazard function of T , such as Kaplan-Meier estimator (see Figure 1.2) and

Nelson-Aalen estimator (see Figure 1.3). A detailed explanation of these estimator

was addressed on Klein(2003)[9] Chapter 4. These estimators are straightforward

in visualization and are easy to apply, but the restrictions are also clear that these

non-parametric estimators don’t account for covariate effects. Moreover, they are

based on an assumption of independent censoring. In other words, the knowledge of

a censoring time for an individual provides no further information about this person’s

likelihood of survival at a future time had the individual continued on the study.

If we also want to include covariates to establish regression models, Cox(1972)[2]

introduced proportional hazards model. In this model, the hazard function λ(t) is

3



Figure 1.2 An example of Kaplan-Meier Estimator.

Figure 1.3 An example of Nelson-Aalen Estimator.
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defined as

λ(t,X) = λ0(t) exp (β′X),

where X is the observable covariates of interest with associated coefficient β, and λ0(t)

is called baseline hazard function, which can be interpreted as the hazard function

when all covariates equal to 0. In the proportional hazards model, partial likelihood

is used to estimate the unknown parameter β. The partial likelihood is constructed

on the conditional probability that a particular subject would fail at ti given the risk

set Ri and the fact that exactly one subject fails at that time, i.e.,

PL =
n∏
i=1

λ(ti, Xi)∑
j∈Ri λ(ti, Xj)

=
n∏
i=1

λ0(ti) exp (β′Xi)∑
j∈Ri λ0(ti) exp (β′Xj)

=
n∏
i=1

exp (β′Xi)∑
j∈Ri exp (β′Xj)

.

Note that the risk set Ri is defined as the set of subjects that are alive just before ti.

The beauty of this approach is that we don’t have to specify the baseline

hazard function, and β corresponds to the increase in the log-hazard. However,

the foundation of this model is the independent censoring assumption and the

proportional hazard assumption, which can lead to problems if not taken care of.

More details could be found on Klein(2003)[9] Chapter 8.

1.2 Frailty Models

When modeling continuous survival data, we are inclined to assume independent

censoring, because most canonical approaches such as Cox proportional hazard models

or even Kaplan-Meier estimator relies heavily on this critical assumption. However,

the analysis of the association between the survival time T and the censoring time C

is often an overlooked topic. For example, in an oncology drug study, the progression-

free time may have a positive correlation with lost to follow-up, because as time goes

5



by, more patients are intended to switch to other treatments if the testing drug does

not make a big difference. In this case, we’re not only interested in the survival time

of the patients, but also in the dependence structure, so that we may alter our design

due to the accumulating lost to follow-up patients.

The introduction of frailty by Oakes(1989)[14] provided one way to account for

such random effects and dependence on the survival model. Generally, frailty W is the

common unobserved random effect that modifies multiplicatively the hazard function

of T and C. Moreover, when W is given, T and C are conditionally independent,

which implies that the common dependence of T and C can be fully explained by

frailty W .

In Oakes’s frailty model, the conditional marginal survival functions of T and

C given W are denoted as

Pr(T > t|W = w) = [ST0(t)]
w

and

Pr(C > c|W = w) = [SC0(t)]
w,

where ST0(t) and SC0(c) are the baseline survival functions of T and C, respectively.

Although this set up looks similar to the Cox proportional hazards model, the Cox

proportional hazards model won’t work with unobservable frailty W.

The unconditional survival function is then

ST (t) = E[Pr(T > t|W )] = E[{ST0(t)}W ].

Let the Laplace transform of W be ψ(s) = E[e−sW ], we have

ST (t) = E[elog{[ST0 (t)]W }] = E[eW logST0 (t)] = ψ{− logST0(t)},

6



and the similar approach shows that SC(c) = ψ{− logSC0(c)}. If we denote ψ−1(s)

the inverse function of ψ(s), we have

ψ−1{ST (t)} = − logST0(t)

and

ψ−1{SC(c)} = − logSC0(c).

By the assumption that T and C are independent given W , the bivariate

survivor function is

S(t, c) = E[S(t, c|W )] = E[S(t|W )S(c|W )] = E[ST0(t)
WSC0(c)

W ]

= E[e{W [logST0 (t)+logSC0
(c)]}] = ψ[− logST0(t)− logSC0(c)]

= ψ{ψ−1[ST (t)] + ψ−1[SC(c)]}.

Therefore, using frailty W to model T and C, their dependence structure naturally

follows a bivariate Archimedean copula with copula generator ψ(s), which will be

introduced in Section 1.3.

Moreover, Wang(2014)[22] showed that the marginal survival function of T and

C is given by

ST (t) = ψθ

{∫ t

0

ψ−1′
θ [π(u)]π(u)d ln[S?T (u)]

}

and

SC(c) = ψθ

{∫ c

0

ψ−1′
θ [π(u)]π(u)d ln[S?C(u)]

}
.

In the formula above, π(u) = P (T > u,C > u) for all u > 0.

Because of the non-identifiability property of copulas under given dependent

censored data (X, δ) as shown in Wang(2012)[21], S?T and S?C , defined as the marginal

7



survival functions of T and C, respectively under the additional assumption that the

two variables T and C are independent, can be achieved using independence copula

where ψ(s) = e−s, and they can be estimated by Kaplan-Meier estimator. These

two formula above will be used to derive our new estimator for the baseline hazard

function.

1.3 Archimedean Copula

A copula is a multivariate probability distribution where the marginal probability

distribution of each variable is uniform. Copula models are popular in survival

analysis because of the Sklar’s theorem, which claims that we can describe any

joint distribution of random variables by the marginal distributions and a copula.

Moreover, the copula is unique if the marginal is continuous. In other words, when

describing the joint distribution of two correlated random variables, copula separates

the marginal distribution from the dependence structure, which is an improved feature

comparing with using joint distribution alone.

There are many copula models, and among them Archimedean copula is a

special class which is most popular because of its simple settings. Under bivariate

setting, denote Cθ(U1, U2) as the copula between two random variables U1 and U2

with parameter θ, Cθ is called Archimedean if

Cθ(u1, u2) = ψθ[ψ
−1
θ (u1) + ψ−1

θ (u2)],

where ψ−1 : [0, 1]×Θ→ [0,∞) is a continuous, strictly decreasing and convex function

such that ψ−1
θ (1) = 0.

In the frailty model, if we choose U1 = ST and U2 = SC , it is clear that the

marginal probability distribution of U1 and U2 are both uniform. By the formula in

the last section,

S(t, c) = ψθ{ψ−1
θ [ST (t)] + ψ−1

θ [SC(c)]} = Cθ[ST (t), SC(c)],

8



which explains why frailty models naturally arises from Archimedean Copulas.

To characterize the global association between variables in Archimedean copula,

Kendall(1938)[8] introduced τ as a non-parametric rank invariant measure:

τ = 1 + 4

∫ 1

0

ψ−1
θ (u)

ψ−1′
θ (u)

du,

which evaluates the probability of concordance minus the probability of discordance.

The association of the random variables is stronger as τ deviates from 0. When τ

approaches 1 indicates a positive correlation and −1 a negative correlation.

There are many copula generators ψ we can choose from, and different

generators imply different underlying distributions of the frailty because it is the

Laplace transform of it. Some examples are given below:

Example 1: Clayton(1978)[1] first introduced the model that when the frailty

W follows Gamma distribution with index (1/θ, 1), the Laplace transform of W is

ψθ(s) = (1 + s)−
1
θ , hence ψ−1

θ (s) = s−θ − 1. Therefore, the bivariate survival function

S(t, c) is

S(t, c) = ψθ{ψ−1
θ [ST (t)] + ψ−1

θ [SC(c)]}

= [ST (t)−θ − 1 + SC(c)−θ − 1 + 1]−
1
θ

= [ST (t)−θ + SC(c)−θ − 1]−
1
θ .

Kendall’s τ is

τ = 1 + 4

∫ 1

0

ψ−1
θ (u)

ψ−1′
θ (u)

du = 1 + 4

∫ 1

0

u−θ − 1

−θu−θ−1
du

= 1− 4

θ

∫ 1

0

(u− uθ+1) du =
θ

θ + 2

9



Figure 1.4 - Figure 1.6 shows the distribution of two random variables under

Clayton copulas with different τ levels. As we can see, Clayton copula is heavily

concentrated near (0, 0). As τ increases from 0 to 1, a positive correlation between

the two random variables is observed.

Figure 1.4 Clayton copula with τ = 0.2.

Example 2: Gumbel model assumes that the frailty has a stable distribution.

Stable distribution is a family of continuous probability distributions parametrized by

location and scale parameters µ and σ, respectively, and two shape parameters θ and

β , roughly corresponding to measures of concentration and asymmetry, respectively.

In Gumbel copula, the Laplace transform of the frailty is ψθ(s) = exp(−s1/θ),

with inverse function ψ−1
θ (s) = [− log(s)]θ. The bivariate survival function is

S(t, c) = exp[−{[− logST (t)]θ + [− logSC(c)]θ}1/θ].

Under this copula generator, Kendall’s τ is

τ = 1 + 4

∫ 1

0

(− log u)θ

θ(− log u)θ−1(− 1
u
)
du

10



Figure 1.5 Clayton copula with τ = 0.6.

Figure 1.6 Clayton copula with τ = 0.9.
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= 1 +
4

θ

∫ 1

0

(u log u) du =
θ − 1

θ

Figures 1.7 - 1.9 shows the distribution of a Gumbel copula. This copula has

more probability concentrated in the tails. It is asymmetric, with more weight in the

right tail.

Figure 1.7 Gumbel copula with τ = 0.

Example 3: Genest(1987)[6] introduced another important class of frailty

models, the Frank models. In Frank model, the copula generator is chosen to be

ψθ(s) = − log(1 + e−s(e−θ − 1)

θ
,

and its inverse function is

ψ−1
θ (s) = log

e−θ − 1

e−θs − 1
.

The bivariate survival function is hence

S(t, c) = ψθ{ψ−1
θ [ST (t)] + ψ−1

θ [SC(c)]}

12



Figure 1.8 Gumbel copula with τ = 0.5.

Figure 1.9 Gumbel copula with τ = 0.9.
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= ψθ

[
log

e−θ − 1

e−θST (t) − 1
+ log

e−θ − 1

e−θSC(c) − 1

]

= ψθ

{
log

(e−θ − 1)2

[e−θST (t) − 1][e−θSC(c) − 1]

}

= −1

θ
log

{
1 +

[e−θST (t) − 1][e−θSC(c) − 1]

(e−θ − 1)2
(e−θ − 1)

}

= −1

θ
log

{
1 +

[e−θST (t) − 1][e−θSC(c) − 1]

e−θ − 1

}
.

In this model, we use numerical methods to find the value of τ .

Figures 1.10 - 1.15 shows the distribution of a Frank copula. Frank copula

is symmetric and has more probability concentrated in the tails like the Gumbel

copula. As τ deviates from 0, the association is stronger. Positive τ indicates positive

correlation and negative τ suggests negative correlation.

Figure 1.10 Frank copula with τ = −0.85.
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Figure 1.11 Frank copula with τ = −0.5.

Figure 1.12 Frank copula with τ = −0.1.
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Figure 1.13 Frank copula with τ = 0.1.

Figure 1.14 Frank copula with τ = 0.5.
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Figure 1.15 Frank copula with τ = 0.85.
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CHAPTER 2

A SEMI-COMPETING RISKS PROBLEM

2.1 Introduction

The outcome of clinical trials and medical researches may consist of different

kind of events, such as terminal events (i.e. death) and non-terminal events (i.e.

relapse, progression of diseases). Traditionally, researchers focus on the behavior

of terminal events, such as overall survival probability. But nowadays, due to the

more sophisticated nature of diseases, the more complicated progression stages, and

the more advanced design techniques, the non-terminal ones carry a lot of practical

meanings in the study. Moreover, the underlying dependence structure between these

two kinds of events can not be ignored, while in some cases even become important

to the decision making.

In contrast to the traditional bivariate competing risks data, in a semi-

competing risks data, when a non-terminal event happens, the corresponding terminal

event is not censored. An example is that when relapse occurs, death could still be

observed, but not vise versa. In fact, death could be caused by either relapse or

graft-versus-host diseases (GVHD). In this case, the distribution of relapse and the

ability of relapse to predict death may be important.

Moreover, in the presence of a univariate independent censoring (i.e. lost to

follow-up) to both events, we face the semi-competing risks problem as introduced

in Fine(2001)[4]. In this project, we not only recover the distribution of both

terminal and non-terminal events for semi-competing risk data, but also estimate

the dependence structure of them.

Let X denote the failure time of the non-terminal event, and Y for the terminal

event. As they are very likely to be positively correlated, we impose an Archimedean
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copula on their dependency, such that

S(x, y) = P (X > x, Y > y) = ψ−1
θ (ψθ[SX(x)] + ψθ[SY (y)]),

where ψθ is the copula generator function and SX and SY are marginal survival

functions of X and Y respectively. Note that in most common Archimedean copula

models, θ is a one-dimensional parameter.

In the presence of a censoring time C which is independent of both X and

Y , for each individual we can observe T2 = min{Y,C}, D2 = 1{Y < C}, T3 =

min{X,T2} and D3 = 1{X < T2}, where 1 is the indicator function. Therefore,

the observed data are n independently identically distributed samples denoted by

{(T2i, D2i, T3i, D3i), i = 1, 2, ..., n}. Figure 2.1 visualizes different scenarios of semi-

competing risks data structure.

Figure 2.1 An example of semi-competing risks data.

Fine(2001)[4], Lakhal(2008)[10] and other authors have proposed some estimators

for marginal distributions and association parameter θ in these situations. However,

these approaches have some restrictions that make application infeasible. For
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example, Fine(2001)[4] proposed a parameter estimator using the concordance of the

data, but only works for Clayton model. Moreover, our assumption of homogeneity

of the marginal distribution of X on X < Y and X > Y is plausible. The method

we introduce will be straightforward, simple and stable.

This chapter will be organized in the following way. In Section 2.2, we propose

our estimator for the copula association parameter. In Section 2.3, we prove the large

sample properties of this estimator, and then we recover the marginal distributions in

Section 2.4. The following Section 2.5 shows the simulation results, with a real data

example in Section 2.6. We end this chapter with some discussions in Section 2.7.

2.2 Parameter Estimation

The copula association parameter θ reveals the relationship between the marginal

distribution of the terminal and non-terminal event. To understand the behavior and

correlation between these two kinds of events, it is always important to get a solid

estimation for it.

Because the existence of X does not censor the occurrence of Y or C, the

pair (T2, D2) is always observable for each sample, and therefore we can estimate

SY by the well-established Kaplan-Meier estimator, denoted as S̃Y . Fleming &

Harrington(2005)[5] has shown that it is a uniform consistent estimator of SY on [0, t0)

where t0 = max{T2}. We try to construct another estimator of SY , parameterized

with θ, denoted ŜY , so that the association parameter θ can be solved by minimizing

the distance between S̃Y and ŜY .

To construct ŜY , we extend the copula graphical estimator, introduced by

Rivest(2001)[16] into semi-competing risks setting. In the original paper, when X

and Y follows Archimedean copula and censors each other, denote Zi = min{Xi, Yi}

and Di = 1(Yi < Xi), Rivest suggested that

ŜY (y) = ψ−1
θ

[
−

∑
Zi≤y,Di=1

ψθ[π̂(Zi)]− ψθ[π̂(Zi)− 1/n]

]
,
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where π̂(z) =
n∑
i=1

1{Zi ≥ z}
n

is the empirical estimator of π(z) = P (X > z, Y > z).

The copula graphical estimator is uniformly consistent on [0, t0) if ψθ is correctly

specified.

With semi-competing risks data, the presence of C turns Z into a variable that

is not always observable, and π(z) cannot be estimated using the empirical way.

Therefore, the original copula graphical estimator cannot be used directly.

However, Z = min{X, Y } is independently censored by C, thus we can estimate

π(z) = P (Z > z) by the Kaplan Meier estimator calculated by the observable pair

(T3,1{Z < C}), denoted by π̂2, and the copula graphical estimator can be modified

as

ŜY (y) = ψ−1
θ

[
−

∑
Zi≤y,Di=1

ψθ[π̂2(Z−i )]− ψθ[π̂2(Zi)]

]
.

Note that when C < Z, both X and Y are censored, hence D is not observable

in this case. We have to discard these data when calculating the copula graphical

estimator. Fortunately, the independence of C guarantees that this will not affect the

consistency of the estimator when the sample size and censoring rate is moderate.

Since ŜY and S̃Y both consistently estimate SY , we can use the minimum

discrepancy approach that minimize the Cramér-von Mises distance between these

two estimators to find the value of θ̂. In particular,

θ̂ = argmin
θ

1

n

∑
S

[ŜY (Yi)− S̃Y (Yi)]
2,

where the summation is on the set S = {Yi : Yi = T3i}. This is because the step

function S̃Y jumps on {Yi : Yi < Ci}, where Xi could be less than Yi. However ŜY

only jumps on {Yi : Yi = T3i}. Taking the intersection of these two sets gives us set

S.
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To solve for θ̂, it is equivalent to solve

Ψn(θ) =
1

n

n∑
i=1

1{Yi < min{Xi, Ci}}[ŜY (Yi)− S̃Y (Yi)]
∂ŜY (Yi)

∂θ
= 0. (2.1)

Therefore, we propose our estimator to be the root θ̂ of equation 2.1, in the sense of

a Z-estimator.

2.3 Consistency of θ̂

In this section, we prove the consistency of the estimator θ̂.

Theorem 1: Let X, Y and C be under semi-competing risks setting and ŜY ,

S̃Y be defined as above. Then

θ̂ = argmin
θ

1

n

∑
A

[ŜY (Yi)− S̃Y (Yi)]
2

is a consistent estimator of θ0.

Proof: The copula graphical estimator can be expressed in counting process

notation as

Ŝ(y) = ψ−1
θ

[
− 1

n

∫ y

0

1{B(u) > 0}ψ′

θ

(
B̄(u)

n

)
dN̄(u)

]
,

where B(u) = 1{Z ≥ u}, N(u) = 1{Z ≤ u,D = 1}, B̄(u) =
n∑
i=1

B(u) and N̄(u) =

n∑
i=1

N(u). Rivest(2001)[16] showed that it is a uniformly consistent estimator of

S?(t) = ψ−1
θ

[
−
∫ t

0

ψ
′

θ(π(u))π(u) dΛ#(u)

]
,

where Λ#(u) is the cumulative crude hazard function. When the copula for the

dependency is Archimedean, with generator function ψθ, S
? = S.

To begin with, since S̃Y and ŜY converges in probability to SY and S?

respectively, ŜY (Yi)− S̃Y (Yi) is asymptotically equivalent to S?(Yi)− SY (Yi). When
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θ = θ0 where θ0 is the true association parameter, S? = SY and S?(Yi)− SY (Yi) = 0

for all Yi > 0.

Then we prove that
∂ŜY (Yi)

∂θ
is asymptotically equivalent to

∂S?(Yi)

∂θ
.

∂ŜY (u)

∂θ
=

∂

∂θ
ψ−1
θ

[
− 1

n

∫ t

0

1{B(u) > 0}ψ′

θ

(
B̄(u)

n

)
dN̄(u)

]

=
∂ψ−1

θ

∂θ

[
− 1

n

∫ t

0

1{B(u) > 0}ψ′

θ

(
B̄(u)

n

)
dN̄(u)

]
[
− 1

n

∫ t

0

1{B(u) > 0}∂ψ
′

θ

∂θ

(
B̄(u)

n

)
dN̄(u)

]

=
∂ψ−1

θ

∂θ
[ψθ(ŜY (u))]

[
− 1

n

∫ t

0

1{B(u) > 0}∂ψ
′

θ

∂θ

(
B̄(u)

n

)
dN̄(u)

]
.

Under proper assumptions on the smoothness of ψθ, by continuous mapping

theorem,

∂ψ−1
θ

∂θ
[ψθ(ŜY (u))]

P−→ ∂ψ−1
θ

∂θ
[ψθ(S

?(u))].

Moreover, since ψθ(ŜY (u)) converges to ψθ(S
?(u)) in probability, simply replace the

function in the integral results in

− 1

n

∫ t

0

1{B(u) > 0}∂ψ
′

θ

∂θ

(
B̄(u)

n

)
dN̄(u)

P−→ −
∫ t

0

∂ψ
′

θ

∂θ
(π(u))π(u) dΛ#(u).

Combining the two results above,

∂ψ−1
θ

∂θ
[ψθ(ŜY (u))]

[
− 1

n

∫ t

0

1{B(u) > 0}∂ψ
′

θ

∂θ

(
B̄(u)

n

)
dN̄(u)

]

P−→ ∂ψ−1
θ

∂θ
[ψθ(S

?(u))]

[
−
∫ t

0

∂ψ
′

θ

∂θ
(π(u))π(u) dΛ#(u)

]
,
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i.e.,
∂ŜY (Yi)

∂θ

P−→ ∂S?(Yi)

∂θ
. Therefore, Ψn(θ) is asymptotically equivalent to Ψ

′

n(θ) =

1

n

n∑
i=1

1{Yi < min{Xi, Ci}}[S?(Yi)− SY (Yi)]
∂S?(Yi)

∂θ
.

Denote Ψ(θ) the expectation of 1{Yi < min{Xi, Ci}}[S?(Yi)− SY (Yi)]
∂S?(Yi)

∂θ
,

notice that Ψ(θ0) = E

[
1{Yi < min{Xi, Ci}}[SY (Yi)− SY (Yi)]

∂S?(Yi)

∂θ

]
= 0. By law

of large numbers, sup
θ
‖Ψn(θ)−Ψ(θ)‖ P−→ 0.

When |θ − θ0| > ε for any fixed ε > 0, by Proposition 2 of [16], under most

Archimedean copulas, S?(Yi) − SY (Yi) is either always positive (or always negative,

depends on the magnitude of θ against θ0) for all Yi > 0. Moreover,

∂S?(Yi)

∂θ
= lim

ε→0

S?θ+ε(Yi)− S?θ (Yi)
ε

,

and since the numerator is stochastically ordered by the same proposition,
∂S?(Yi)

∂θ
is

always positive (or always negative) as well. Finally, 1{Yi < min{Xi, Ci} ≥ 0, which

proves that the expectation is always positive (or negative).

Therefore, inf
|θ−θ0|>ε

‖Ψ(θ)‖ > 0 = ‖Ψ(θ0)‖. By construction, Ψn(θ̂) = 0, and

using Theorem 5.9 of [19], θ̂
P−→ θ0. An example of Clayton copula is given below.

Example (Clayton copula): For any 0 < u < 1, v > 0 and θ > 0,

ψθ(u) = u−θ − 1,

ψ
′

θ(u) = −θu−θ−1,

∂ψ
′

θ(u)

∂θ
= u−θ−1(θ lnu− 1) < 0,

ψ−1
θ (v) = (1 + v)−

1
θ ,

∂ψ−1
θ (v)

∂θ
=

1

θ2
(1 + v)−

1
θ ln(1 + v) > 0.
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Therefore,

∂S?(Yi)

∂θ
=
∂ψ−1

θ

∂θ
[ψθ(S

?(u))]

[
−
∫ t

0

∂ψ
′

θ

∂θ
(π(u))π(u) dΛ#(u)

]
> 0.

Moreover,

ψ
′

θ0
(u)

ψ
′
θ(u)

=
θ0

θ
uθ−θ0

is increasing when θ > θ0, which implies that S?(Yi) ≤ SY (Yi) for any Yi > 0.

Therefore, Ψ(θ) < 0. Similarly, Ψ(θ) > 0 for any fixed θ < θ0. But either way,

‖Ψ(θ)‖ > 0,

2.4 Marginal Distribution Estimation

When θ̂ estimating θ0 consistently, we can retrieve the marginal distribution of X, Y

and C. For SY and SC , using Kaplan-Meier estimator calculated by (T2, D2) is the

most straightforward way. To estimate SX , we can use the copula graphical estimator

with ψθ̂. That is

ŜX(x) = ψ−1

θ̂

[
−

∑
Zi≤x,Di=0

ψθ̂[π̂2(Z−i )]− ψθ̂[π̂2(Zi)]

]
.

2.5 Simulation Results

We began by generating 500 pairs of (X, Y ) using Clayton copula. Their marginal

distributions were chosen to be exponential with parameter 1.5 and 1, because of the

nature that the terminal event usually happens after non-terminal event. We chose

θ to be 0.5, 2 and 8 so that the corresponding τ is 0.2, 0.5 and 0.8, respectively. We

used exponential distribution with parameter 0.5 and 1 for the marginal distribution

of the independent censoring time C to see the performance of the estimator under

different censoring rate. We repeated this process 1000 times to get the mean square

error of τ̂ , which is one-to-one mapped to θ̂. We also simulated data when sample size

is not quite large. When n = 200, the MSE of τ̂ is shown in the parenthesis. In the
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end, we generated 200 bootstrap samples to check the performance of the variance.

The result is shown on Table 2.1.

Table 2.1 Simulation Results for Clayton Copula

τ 0.2 0.5 0.8

θ0 0.5 2 8

Censor 19% 31% 22% 36% 24% 39%

MSE 0.0026 0.0054 0.0017 0.0024 0.0008 0.0010

(0.0117) (0.0184) (0.0056) (0.0088) (0.0032) (0.0085)

Var 0.0019 0.0039 0.0012 0.0016 0.0004 0.0005

VarBS 0.0019 0.0034 0.0014 0.0016 0.0005 0.0007

From Table 2.1, we can see that under moderate censoring rate, the performance

of both the parameter estimator and the marginal distribution estimator are

extremely good. In fact, as the dependency getting stronger, this approach is

producing highly accurate estimation. As censoring rate decreases, we have more data

to use in calculating θ̂, therefore the MSE drops as well. The variance and bootstrap

variance of the estimator also agrees with one another. However, when we reduce

the sample size, MSE under low dependency (τ = 0.2) is not quite appealing. This

is not surprising because small sample size, censoring, plus subsetting in estimation

can magnify the effect of bad inputs. In addition, the estimator is designed to be

used when the dependency is strong. In practice, we suggest that a maximum of 30%

censor rate should be hold when sample size is less than 500.

An example of marginal distribution estimation can be found in Figure 2.2. The

blue estimation follows quite close to the underlying distribution. In fact, in almost

all the cases, the semi-parametric estimator estimates the distribution really well.
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Figure 2.2 An example of ŜX vs. SX .

Similar results can be found in Table 2.2, where the copula used is Gumbel with

ψθ(u) = [− log(u)]
1
θ .

Table 2.2 Simulation Results for Gumbel Copula

τ 0.2 0.5 0.8

θ0 0.8 0.5 0.2

Censor 19% 31% 22% 36% 24% 39%

MSE 0.0042 0.0046 0.0018 0.0025 0.0011 0.0017

Var 0.0030 0.0032 0.0012 0.0016 0.0002 0.0004

VarBS 0.0028 0.0039 0.0017 0.0013 0.0004 0.0005

2.6 Leukemia Data Example

We analyze the Leukemia data ’bmt’ from R package ’KMsurv’. The data records the

survival state of 137 patients after taking bone marrow transplant, see Klein(2003)[9].
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The patients experience either relapse, GVHD or was alive at the end of the study.

Relapse and GVHD are the main causes of death and we are interested in the

distribution of relapse, as well as predicting death when relapse happens. Two time

points and three indicators were kept, which can be translated into our T2, T3, D2

and D3.

Using Clayton copula model, our estimate to the association between relapse

and death θ̂ = 6.41, with corresponding τ = 0.76. This suggests a very strong positive

relation between them. We also estimated the marginal distribution ŜX , as shown in

Figure 2.3.

Figure 2.3 ŜX of Leukemia data.

2.7 Conclusion

Under semi-competing risks data, the estimator we proposed works for most common

Archimedean copulas. It performs best when the dependence is strong. A weight

term should be considered during estimation process in the future. The asymptotic

normality of this estimator can also be proved.
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CHAPTER 3

A NEW ESTIMATOR OF BASELINE HAZARD FUNCTION

In clinical trials, we encounter clustered data all the time. For example, most clinical

trials assign patients into a treatment group and a control group. The survival time

in different groups shall follow different distributions. In such cases, group is a cluster

factor. The cluster factor is always observable at the end of the experiment, although

in a double blind trial this factor may not be known during the experiment.

Previously, to fit a frailty model to correlated clustered survival data, EM

algorithm was applied and Breslow estimator was used to estimate the baseline hazard

functions(see Lin(2007)[11]). However, for this class of models, we will show that the

baseline hazard function can be estimated using an alternative approach and our

estimator is comparable with the Breslow estimator. Furthermore, our estimator

can be used as a model checking tool for corresponding frailty distribution based on

dependent censored data.

3.1 Frailty Model for Clustered Data

To account for the association between the failure time and the censoring time

for clustered data, Manatunga(1999)[13] proposed the following frailty model to fit

matched pair survival data (T,C) that

ΛT (t|ZT , ZC ,W ) = ΛT0(t)hT (β′TZT )W

and

ΛC(c|ZT , ZC ,W ) = ΛC0(t)hC(β′CZC)W,

where Z = (ZT , ZC) is the observable covariate vector denoting cluster, hT and

hC are known positive convex functions, and W follows some frailty distribution
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with the unknown parameter θ. For simplicity, we choose hT (u) = hC(u) = eu.

Wang(2015)[23] showed that the joint survival function of T and C in the model

above satisfies

S(t, c|Z) = ψθ{ψ−1
θ [ST (t|Z)] + ψ−1

θ [SC(c|Z)]},

which means that this clustered frailty model also naturally arises from Archimedean

copula given the cluster covariate.

Now, we extend the distribution of marginal survival functions as shown in

Section 1.2 into the clustered setting.

Theorem 1: Assume that the distribution of (T,C|Z) can be modeled by an

Archimedean copula with generator ψθ such that

S(t, c|Z) = ψθ[ψ
−1
θ (ST (t|Z)) + ψ−1

θ (SC(c|Z))].

and that the marginal distribution functions of T |Z and C|Z are absolutely

continuous. Then we have

ST (t|Z) = ψθ

{∫ t

0

ψ−1′
θ [π(u|Z)]π(u|Z) d ln[S?T (u|Z)]

}

and

SC(c|Z) = ψθ

{∫ c

0

ψ−1′
θ [π(u|Z)]π(u|Z) d ln[S?C(u|Z)]

}
,

respectively for all t > 0 and c > 0.

In the formula above, π(u|Z) = P (T > u,C > u|Z) for all u > 0. S?T (t|Z) and

S?C(c|Z) are the marginal survival functions of T |Z and C|Z, respectively, under the

additional assumption that the two variables T and C are conditionally independent

given Z.
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Under the model assumption, we have that

ΛT (t|ZT , ZC ,W ) = ΛT0(t)e
β′
TZTW

= − log[ST0(t)]e
β′
TZTW = − logST (t|ZT , ZC ,W )

where ΛT0(t) = − log[ST0(t)] and ST0(t) is the baseline survival function. If we take

the derivative of the equation above with respect to t, we also have

λT (t|ZT , ZC ,W ) = λT0(t)e
β′
TZTW.

The same condition holds for C that

ΛC(c|ZT , ZC ,W ) = ΛC0(c)e
β′
CZCW

= − log[SC0(c)]e
β′
CZCW = − logSC(c|ZT , ZC ,W )

and

λC(c|ZT , ZC ,W ) = λC0(c)e
β′
CZCW,

where ΛC0(c) = − log[SC0(c)].

Similar to what we’ve shown in Section 1.2,

S(t, c|Z) = E[S(t, c|Z)|W ] = E[ST (t|Z,W )SC(c|Z,W )]

= E[exp{logST (t|Z,W ) + logSC(c|Z,W )}]

= E[exp{−ΛT0(t)e
β′
TZTW − ΛC0(c)e

β′
CZCW}]

= ψ{ΛT0(t)e
β′
TZT + ΛC0(c)e

β′
CZC}
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Considering the fact that S(t, 0|Z) = ST (t|Z) and S(0, c|Z) = SC(c|Z), we have

ST (t|Z) = ψθ{ΛT0(t)e
β′
TZT + ΛC0(0)eβ

′
CZC} = ψθ{ΛT0(t)e

β′
TZT }

and similarly

SC(c|Z) = ψθ{ΛC0(c)e
β′
CZC}

Therefore,

ψ−1
θ [ST (t|Z)] = ΛT0(t)e

β′
TZT ,

and

ψ−1
θ [SC(c|Z)] = ΛC0(c)e

β′
CZC

Comparing the formula above, we have found that

ΛT0(t)e
β′
TZT =

∫ t

0

ψ−1′
θ [π(u|Z)]π(u|Z)d ln[S?T (u|Z)]

and similarly

ΛC0(c)e
β′
CZC =

∫ c

0

ψ−1′
θ [π(u|Z)]π(u|Z)d ln[S?C(u|Z)],

and these equations will lead to the main result. Now we propose Theorem 2.

Theorem 2: Assume that the distribution of (T,C|Z,W ) can be modeled by

a frailty model such that

ΛT (t|Z,W ) = ΛT0(t) exp(β′TZT )W

and

ΛC(c|Z,W ) = ΛC0(c) exp(β′CZC)W,
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where W follows some distribution with parameter θ with the Laplace transform

ψθ(s) = E(e−sW ), then the baseline cumulative hazard functions can be expressed as:

ΛT0(t) =

∫ t

0

ψ−1′
θ [π(u|Z)]π(u|Z)

exp(β′TZT )
d ln[S?T (u|Z)]

and

ΛC0(c) =

∫ c

0

ψ−1′
θ [π(u|Z)]π(u|Z)

exp(β′CZC)
d ln[S?C(u|Z)]

respectively, where S?T and S?C are the marginal survival functions of T |Z and

C|Z, under the additional assumption that the two variables T and C are in fact

independent given Z.

Theorem 2 tells us that for bivariate frailty models with a common frailty, the

baseline distributions of failure times are actually not arbitrary. In fact, they are

functions of the ψ and the distribution of (X, δ|Z) = (min{T,C}, IT<C |Z). This

means that if we have know the parameters θ, β = (βT , βC) and the distribution of

(X, δ|Z), we can determine the baseline distributions of failure times uniquely.

If there are no covariates, i.e., βT = βC = 0, the formulas for baseline hazard

functions can be simplified to

ΛT0(t) =

∫ t

0

ψ−1′
θ {π(u)}π(u)d ln[S?T (u)]

and

ΛC0(c) =

∫ c

0

ψ−1′
θ {π(u)}π(u)d ln[S?C(u)],

respectively.

We conclude this section by two examples.

Example 1: Suppose that (T,C) follows the Clayton copula model with

association parameter θ. T and C follow the same marginal distributions as exp(λ)
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so that the joint survivor function of (T,C) is:

S(t, c) = [ST (t)−θ + SC(c)−θ − 1]−
1
θ = (eθλt + eθλc − 1)−

1
θ .

For simplicity, we don’t consider the covariate Z, i.e., βT = βC = 0. By the

non-identifiability property, we note that

π(u) = S(u, u) = S?(u, u) = S?T (u)S?C(u).

If we further assume S?T (u) = S?C(u), it follows that

[S?T (u)]2 = (eθλu + eθλu − 1)−
1
θ = (2eθλu − 1)−

1
θ .

Therefore,

[S?T (u)] = [S?C(u)] = (2eθλu − 1)−
1
2θ

Then we use the formulas in Theorem 2 to estimate the baseline hazard. In a

Clayton model, ψ−1
θ (s) = s−θ − 1, therefore,

ψ−1′
θ [π(u)]π(u) = −θπ(u)−θ−1π(u) = −θπ(u)−θ,

where π(u) = S?T (u)S?C(u) = (2eθλu − 1)−
1
θ and

d ln[S?T (u)] = d ln(2eθλu − 1)−
1
2θ = − 1

2θ
d ln(2eθλu − 1)

= − 1

2θ(2eθλu − 1)
d(2eθλu − 1).

Finally,

ΛT0(t) =

∫ t

0

−θ(2eθλu − 1)(− 1
θ

)(−θ)
[
− 1

2θ(2eθλu − 1)

]
d(2eθλu − 1)

=
1

2

∫ t

0

d(2eθλu − 1) =
1

2
(2eθλu − 1)

∣∣∣t
0

= eθλt − 1.
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Similarly, ΛC0(c) = eθλc − 1. And the corresponding bivariate frailty model is

ΛT (t|W ) = ΛT0(t)W = (eθλt − 1)W,

ΛC(c|W ) = ΛC0(c)W = (eθλt − 1)W.

Example 2: Suppose that (T,C) follows the Gumbel copula model with

association parameter θ. T and C follow the same marginal distributions as exp(λ)

so that the joint survivor function of (T,C) can be written as:

S(t, c) = exp[−{[− logST (t)]θ + [− logSC(c)]θ}1/θ]

= exp{−[(λt)θ + (λc)θ]1/θ}.

Similar to Example 1,

π(u) = [S?T (u)]2 = exp{−[(λu)θ + (λu)θ]1/θ} = exp{−21/θλu},

and

[S?T (u)] = [S?C(u)] = exp{−21/θ−1λu}.

As in Gumbel model, ψ−1
θ (s) = (− log s)θ, therefore,

ψ−1′
θ [π(u)]π(u) = θ[− log π(u)]θ−1 1

−π(u)
π(u)

= −θ[− log π(u)]θ−1 = −θ(21/θλu)θ−1

= −21−1/θθλθ−1uθ−1,

while

d ln[S?T (u)] = d(−21/θ−1λu) = −21/θ−1λdu.
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Therefore,

ΛT0(t) =

∫ t

0

−21−1/θθλθ−1uθ−1(−21/θ−1λ)du

= λθ
∫ t

0

θuθ−1du = λθ(uθ)
∣∣∣t
0

= (λt)θ

and ΛC0(c) = (λc)θ. Finally, the corresponding bivariate frailty model is

ΛT (t|W ) = ΛT0(t)W = (λt)θW

and

ΛC(c|W ) = ΛC0(c)W = (λc)θW

3.2 A New Estimator of Baseline Hazard Function

Let our observed dependent censored data set be (Xi, δi, Zi), where Xi = min{Ti, Ci}

and δi = ITi<Ci . Using Theorem 2 we can construct an alternative estimator of

baseline cumulative hazard function of Tas

Λ̂T0(t) =
∑
Xi<t

−ψ−1′
θ̂

[π̂(Xi|Z)]π̂(Xi|Z)

exp(β̂′TZT )
× ∆N̄(Xi|Z)

Ȳ (Xi|Z)

=
∑
Xi<t

−ψ−1′
θ̂

[π̂(Xi|Z)]∆N̄(Xi|Z)

nZ exp(β̂′TZT )
.

In this formula, θ̂ and β̂T is the estimation of θ and βT by EM algorithm(see

Dempster(1977)[3]). Let Ni(t|Z) = IXi<t,δi=1|Z and N̄(t|Z) =
∑

iNi(t|Z), so that

∆N̄(t|Z) is the number of events at time t. Similarly, we define Yi(t|Z) = IXi≥t|Z so

that Ȳ (t|Z) =
∑

i Yi(t|Z) is the number of people at risk at time t. nZ =
∑

i(IZi=Z)

is the total number of people in group i.

Using counting process, our estimator can be written as:

Λ̂T0(t) =

∫ t

0

−ψ−1′
θ̂
{π̂(u|Z)}

nZ exp(β̂′TZT )
dN̄(u|Z)
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=

∫ t

0

−ψ−1′
θ {π(u|Z)}

nZ exp(β′TZT )
dN̄(u|Z)

+

∫ t

0

(
ψ−1′
θ {π(u|Z)}

nZ exp(β′TZT )
−
ψ−1′
θ̂
{π̂(u|Z)}

nZ exp(β̂′TZT )

)
dN̄(u|Z).

Define

Mi(t|Z) = Ni(t|Z)−
∫ t

0

Yi(t|Z) dΛ?(t|Z)

and

M̄(t|Z) = N̄(t|Z)−
∫ t

0

Ȳ (t|Z) dΛ?(t|Z),

by Theorem 1.3.1 on Fleming(2005)[5], Mi and M̄ are martingales with respect to

the σ fields

F i
t = σ{IXi≤u,δi=1, IXi≤u,δi=0, 0 ≤ u ≤ t|Z}

and Ft = ∨ni=1F
i
t respectively, where

Λ?(t|Z) =

∫ t

0

f ?(u|Z)

S?(u|Z)
du

is the cumulative hazard function of T |Z under the assumption of T |Z and C|Z are

independent. Therefore we have

Λ̂T0(t) =

∫ t

0

−ψ−1′
θ {π(u|Z)}

nZ exp(β′TZT )
dM̄(u|Z) +

∫ t

0

−ψ−1′
θ {π(u|Z)}

nZ exp(β′TZT )
Ȳ (u|Z) dΛ?(u|Z)

+

∫ t

0

(
ψ−1′
θ {π(u|Z)}

nZ exp(β′TZT )
−
ψ−1′
θ̂
{π̂(u|Z)}

nZ exp(β̂′TZT )

)
dM̄(u|Z)

+

∫ t

0

(
ψ−1′
θ {π(u|Z)}

nZ exp(β′TZT )
−
ψ−1′
θ̂
{π̂(u|Z)}

nZ exp(β̂′TZT )

)
Ȳ (u|Z) dΛ?(u|Z).
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After some simplification we have:

Λ̂T0(t)− ΛT0(t) =

∫ t

0

−ψ−1′
θ {π(u|Z)}

nZ exp(β′TZT )
dM̄(u|Z)

+

∫ t

0

−ψ−1′
θ {π(u|Z)}

exp(β′TZT )
(π̂(u|Z)− π(u|Z)) dΛ?(u|Z)

+
1

nZ

∫ t

0

(
ψ−1′
θ {π(u|Z)}
exp(β′TZT )

−
ψ−1′
θ̂
{π̂(u|Z)}

exp(β̂′TZT )

)
dM̄(u|Z)

+

∫ t

0

(
ψ−1′
θ {π(u|Z)}
exp(β′TZT )

−
ψ−1′
θ̂
{π̂(u|Z)}

exp(β̂′TZT )

)
π̂ dΛ?(u|Z).

Using Lengart’s inequality and similar arguments to prove Theorem 3.4.2 in

Fleming(2005)[5], we can show that the first term and the third term go to zero

in probability when nZ → ∞. Using the Glivenko-Cantelli Theorem, it is easy to

show that other two terms go to zero uniformly in probability under the boundedness

assumptions of the first and second derivatives of ψ−1. Therefore we have proved the

uniform consistency of our estimator.

To derive large sample results for our estimator, we have

√
nZ

(
Λ̂T0(t)− ΛT0(t)

)
=

∫ t

0

−ψ−1′
θ {π(u|Z)}

√
nZ exp(β′TZT )

dM̄(u|Z)

+
√
nZ

∫ t

0

−ψ−1′
θ {π(u|Z)}

exp(β′TZT )
(π̂(u|Z)− π(u|Z)) dΛ?(u|Z)

+
1
√
nZ

∫ t

0

(
ψ−1′
θ {π(u|Z)}
exp(β′TZT )

−
ψ−1′
θ̂
{π̂(u|Z)}

exp(β̂′TZT )

)
dM̄(u|Z)

+
√
nZ

∫ t

0

(
ψ−1′
θ {π(u|Z)}
exp(β′TZT )

−
ψ−1′
θ̂
{π̂(u|Z)}

exp(β̂′TZT )

)
π̂(u|Z) dΛ?(u|Z).
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The third term converges uniformly to zero in probability because the corresponding

predictive variation process of the third term has a compensator∫ t

0

(
ψ−1′
θ {π(u|Z)}
exp(β′TZT )

−
ψ−1′
θ̂
{π̂(u|Z)}

exp(β̂′TZT )

)2
Ȳ (u|Z)

nZ
dΛ?(u|Z)

which converges to zero in probability. The first term, the second term and the fourth

term all converge to Gaussian processes. Using the Taylor expansion, we have

XnZ (u) =
√
nZ

{
ψ−1′
θ {π(u|Z)}
exp(β′TZT )

−
ψ−1′
θ̂
{π̂(u|Z)}

exp(β̂′TZT )

}

≈ exp(−β′TZT ){∂ψ
−1′
θ {π(u|Z)}

∂π

√
nZ(π̂(u|Z)− π(u|Z))

−
{
∂ψ−1′

θ {π(u|Z)}
∂Θ

}T √
nZ(Θ̂−Θ) + ψ−1′

θ {π(u|Z)}ZT√nZ(β̂T − βT )}

which converges weakly to a mean zero Gaussian process X(u) on D[0, t0). Define

the limiting covariance of XnZ as:

cov(XnZ (s), XnZ (t)) = V0(s, t).

Define the covariance between XnZ and M̄ as

cov(XnZ (s), M̄(t)) =
√
nZV1(s, t).

Let YnZ (u) =
√
nZ(π̂(u|Z)− π(u|Z)). The covariance between YnZ and M̄ is

cov(YnZ (s), M̄(t)) = −
√
nZπ(s)Λ?(s ∧ t)

as has been shown in Rivest(2001)[16]. Define the covariance between XnZ and YnZ

as

cov(XnZ (s), YnZ (t)) = V2(s, t).
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Define A(u) = ψ−1′
θ (π(u))/ exp(2βZ). The asymptotic variance of

√
nZ

(
Λ̂T0(t)− ΛT0(t)

)

is I1 + I2 + I3 + C1 + C2 + C3, where

I1 =

∫ t

0

A2(u)π(u)dΛ?(u),

I2 = 2

∫ t

0

∫ s

0

A(u)A(s)[π(u)− π(u)π(s)]dΛ?(u)dΛ?(s),

I3 =

∫ t

0

∫ t

0

V0(u, s)π(u)π(s)dΛ?(u)dΛ?(s),

C1 = −A(t)

∫ t

0

A(s)π(s)Λ?(s)dΛ?(s) +

∫ t

0

∫ t

0

π(s)Λ?(s ∧ u)A(s)dA(u)dΛ?(s),

C2 = A(t)

∫ t

0

V1(s, t)π(s)dΛ?(s)−
∫ t

0

∫ t

0

V1(s, u)π(s)dA(u)dΛ?(s)

and

C3 =

∫ t

0

∫ t

0

V2(u, s)A(u)π(s)dΛ?(u)dΛ?(s).

In above expression, s ∧ u represents the minimum value of s and t. In summary, we

have proved:

Theorem 3: Let t0 > 0, be such that π(t0) > 0. Assume that the distribution

of (T,C)|Z,W can be modeled by a frailty model such that

ΛT (t|Z,W ) = ΛT0(t) exp(β′TZT )W

and

ΛC(c|Z,W ) = ΛC0(c) exp(β′CZC)W,
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where W follows some parametric distribution with the Laplace transform ψ(s) =

E[exp(−sW )]. Suppose that the first two derivatives of ψ−1(s) with respect to s and

θ are bounded for s ∈ (t0, 1) and the parameter estimates of unknown parameters θ, βT

and βC are all asymptotically normal, the process
√
nZ

(
Λ̂T0(t)− ΛT0(t)

)
converges

weakly on D[0, t0) to a mean zero Gaussian process with variance function v(t) =∑3
i=1 Ii +

∑3
i=1Ci.

In practice, v(t) is hard to estimate and bootstrap estimators will be applied to

estimate corresponding variances. It is worth mentioning that our estimator presented

above is an estimator of cumulative hazard function given the covariate Z (we used

Λ̂T0(t) instead of Λ̂T0(t|Z) because the baseline cumulative functions of T are the same

for different covariate values). Notice the fact that for each Z = zj (here we assume

Z is a discrete covariate), we have an estimator of the baseline cumulative hazard

function of T . An overall estimator of the baseline cumulative hazard function for T

can thus be given by the weighted average of Λ̂T0(t|Z):

Λ̂Overall(t) =
∑
j

Λ̂T0(t|Z = zj)P̂(Z = zj).

3.3 A Model Checking Procedure for Frailty Models

Under our frailty model assumption, the baseline hazard functions are independent

of covariate values based on Theorem 2. This fact motivates us to establish a model

checking procedure for our frailty model assumption when the covariate Z takes finite

values. For simplicity, we assume that the covariate ZT = ZC = Z is a binary variable

and for different Z values, we have independent estimators of corresponding baseline

hazard functions (we denote them by Λ̂T0(t|Z = Zi) for i = 1, 2 respectively) which

should be the same asymptotically because:

Λ̂T0(t|Z = Z1)− Λ̂T0(t|Z = Z2)
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=
(

Λ̂T0(t|Z = Z1)− ΛT0(t)
)
−
(

Λ̂T0(t|Z = Z2)− ΛT0(t)
)
→ 0

almost surely when n → ∞. If we plot two estimators Λ̂T0(t|Z = Z1) and

Λ̂T0(t|Z = Z2) against T respectively (or Λ̂C0(c|Z = Z1) and Λ̂C0(c|Z = Z2) against

censoring time C respectively), they should look similar graphically under the correct

model assumption. A test may be established based on the asymptotic properties

proved in Theorem 3, however, as the analytic form of the variance formulas is not

available, a bootstrap procedure has to be applied to perform such a test based on the

difference between baseline cumulative functions corresponding to different covariate

values.

3.4 Simulation Studies

In this section, we conduct simulation studies to compare our estimator with the

Breslow estimator. We generate dependent censored data (T,C)|Z from Clayton

copula for Z = 0 and Z = 1 respectively. The Kendall’s τ is chosen to be on

four levels: 0.2, 0.4, 0.6 and 0.8 so that the association parameter θ is 0.5, 1.33, 3

and 8. The sample sizes corresponding to each covariate Z is chosen to be 500.

The baseline hazard functions are assumed to be constant 1. Then we calculate the

baseline cumulative hazard functions Λ̂T0 andΛ̃T0 using our estimator and Breslow

estimator, respectively.

First, we could apply our graphical model checking procedure to see if the

assumed frailty distribution fits the data. As we can see from Figure 3.1, the red

line(Z = 0) and the blue line(Z = 1) are very close, which supports our theory

that our estimator is independent of the covariate. In other words, under different

covariate levels, our estimators share a common distribution.
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Figure 3.1 Model checking procedure.
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More specifically, in our simulation, we used Clayton model to generate data,

which implies that the frailty follows a Gamma distribution. When estimating

the baseline cumulative hazard function, we used the Clayton copula generator

in calculating our estimator, which is graphically consistent with the assumption.

However, if we use the Gumbel copula generator for our estimator, the result, as

shown in Figure 3.2, is clear that the two estimators are not consistent.

We ran 100 replications of the simulations above and compare the MSE of

our estimator with Breslow estimator, as shown in Figure 3.3, we find that the

two estimators are comparable in terms of mean square error. Although Breslow

estimator slightly reduces the MSE, our estimator has some properties over the

Breslow estimator that are very useful in practice.

For one thing, our estimator provides a model checking tool for the underlying

frailty distribution. Sometimes we would like to know the distribution of these latent

effects, so as to have a better understanding of our data. Then our approach provides

a way into such concerns.

For another, as a semi-perimetric estimator, our estimator gives an explicit form

of the baseline cumulative hazard function. The Breslow estimator uses EM algorithm

to solve for the baseline cumulative hazard functions numerically, but does not have

an analytical form as ours.

3.5 Discussion

In this project, we have established a formula for the baseline cumulative hazard

functions in bivariate frailty models described in Oakes(1989)[14] and Manatunga

(1999)[13]. We propose a new estimator of the baseline hazard functions based on

our formula. From our simulation studies, we can see that our estimator is comparable

with the Breslow estimator for this type of models. A clear advantage of our estimator

is that it can be used to check the frailty model assumption or perform the frailty
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Figure 3.2 Model checking procedure (wrong model).
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Figure 3.3 Comparison of two estimators
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model selection. Because our estimator can be applied for groups of patients with

different covariate values, subgroup analysis can be conducted using our proposed

approach.

Although the estimator is proposed based on dependent censored data, the

method can certainly be applied to multivariate failure time data if we assume that

(T1, T2) follows our bivariate frailty model. In fact, dependent censored data contains

less information than bivariate failure time data because both T1 and T2 are available

in the latter case and it is easier for us to estimate the parameters in our model

accordingly.
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CHAPTER 4

LEFT CENSORED BIVARIATE DATA ANALYSIS

In this project, we study the properties of frailty models for bivariate data under

fixed left censoring. It turns out that the distribution of observable pairs belongs

to a new class of bivariate frailty models. Both the original model for complete

data and the new model for observable pairs are members of Archimedean copula

family. We propose a new estimation strategy to analyze left censored data using

the corresponding Kendall’s distribution. A general goodness-of-fit test procedure is

then established for original models based on left censored data. Our strategies are

generalization of the methodologies proposed in Wang(2007)[20], Romdhani(2011)[17]

and Genest(2006)[?]. We demonstrate our new strategies using simulations and an

illustrative example.

4.1 Properties of Frailty Models for Left Censored Bivariate Data

In this section, we assume that (T11, T21), . . . , (T1n, T2n) are independent and identically

distributed pairs which can be modeled by a bivariate frailty model such that:

ΛT1(t1|W ) = ΛT10(t1)W

and

ΛT2(t2|W ) = ΛT20(t2)W,

where W is the frailty whose distribution can be specified with unknown parameter θ.

Denote the Laplace transform of W by ψ(s) = E[exp(−sW )] and the density function

of W by Gθ(W ). λT1 , λT2 and λT10 , λT20 are defined as the hazard and baseline hazard

functions for T1 and T2 respectively. The baseline cumulative hazards ΛT10 and ΛT20
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satisfies

ΛT10(t1) =

∫ t1

0

λT10(u)du <∞ and ΛT20(t2) =

∫ t2

0

λT20(u)du <∞

for all t1 ∈ [0,∞) and t2 ∈ [0,∞). Similar to Chapter 2,

S(t1, t2) = ψ[ψ−1
{
ST1(t1)

}
+ ψ−1

{
ST2(t2)

}
],

where ψ−1 is the inverse function of ψ. Therefore (T1, T2) follows an Archimedean

copula model with generator ψ(s).

Suppose (T1, T2) is subject to fixed left censoring/truncation at (L1, L2), then

the joint survival function of (T1, T2) given T1 > L1 and T2 > L2 is:

S(t1, t2|T1 > L1, T2 > L2) =
Pr(T1 > t1, T2 > t2)

Pr(T1 > L1, T2 > L2)

=
ψ[− log(ST10(t1))− log(ST20(t2))]

ψ[− log(ST10(L1))− log(ST20(L2))]

=
ψ[− log(ST10(t1)/ST10(L1))− log(ST20(t2)/ST20(L2))− log(ST10(L1))− log(ST20(L2))]

ψ[− log(ST10(L1))− log(ST20(L2))]

=
ψ(s+ L)

ψ(L)
= ψ?(s)

where

L = − log(ST10(L1))− log(ST20(L2)) = ψ−1(S(L1, L2))

is independent of t1 and t2, and

s = − log(ST10(t1)/ST10(L1))− log(ST20(t2)/ST20(L2))

(see Manatunga(1996)[12]).

Based on above derivations, if we let t2 = L2, we have

S(t1|T1 > L1, T2 > L2) = S(t1, L2|T1 > L1, T2 > L2) = ψ?(− log(ST10(t1)/ST10(L1))),
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therefore,

(ψ?)−1[S(t1|T1 > L1, T2 > L2)] = − log(ST10(t1)/ST10(L1)).

Similarly, we can show that

(ψ?)−1[S(t2|T1 > L1, T2 > L2)] = − log(ST20(t2)/ST20(L1)).

Combining above results, we can conclude that

S(t1, t2|T1 > L1, T2 > L2) = ψ?{(ψ?)−1[S(t1|T1 > L1, T2 > L2)]+(ψ?)−1[S(t2|T1 > L1, T2 > L2)]}.

Therefore, the conditional distribution of (T1, T2) given T1 > L1 and T2 > L2

still follows an Archimedean copula model with the copula generator ψ?(s) =

ψ(s + L)/ψ(L). It turns out that ψ?(s) is the Laplace transform of the frailty W1

that follows the distribution with density function:

fW1(w1) =
exp(−Lw1)dF (w1)

ψ(L)

for w1 ∈ (0,∞) where F is the distribution function of W1. In summary, we have

reached a similar conclusion as described in Manatunga(1996)[12].

Theorem 1: Suppose that (T1, T2) follows a bivariate frailty model such that:

ΛT1(t1|W ) = ΛT10(t1)W

and

ΛT2(t2|W ) = ΛT20(t2)W

where W is the frailty whose distribution can be specified with unknown parameter θ.

Denote the Laplace transform of W by ψ(s) = E[exp(−sW )]. Assume that (T1, T2)

is subject to fixed left censoring/truncation with the censoring vector (L1, L2), then
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(T1, T2|T1 > L1, T2 > L2) follows an Archimedean copula model with generator

ψ?(s) =
ψ(s+ L)

ψ(L)
,

where

L = − log(ST10(L1))− log(ST20(L2)) = ψ−1(S(L1, L2))

and

s = − log(ST10(t1)/ST10(L1))− log(ST20(t2)/ST20(L2))

Now we use an examples to illustrate this theorem.

Example 1: When the frailty W follows a Gamma distribution, ψ(s) = (1 +

s)−1/θ. Therefore,

ψ?(s) =
ψ(s+ L)

ψ(L)
= (1 + s/(1 + L))−1/θ.

The corresponding survival function for S(t1, t2|T1 > L1, T2 > L2) is:

S(t1, t2|T1 > L1, T2 > L2) = ψ?({(ψ?)−1[S(t1|T1 > L1, T2 > L2)]+(ψ?)−1[S(t2|T1 > L1, T2 > L2)]}

=

{
1

S(t1|T1 > L1, T2 > L2)−θ + S(t2|T1 > L1, T2 > L2)−θ − 1

}1/θ

which has the same form as the original Clayton copula. This result basically

shows that if the original data follows the Clayton copula with parameter θ,

the uncensored/untruncated data also follows the Clayton model with the same

parameter value θ. This is the invariance property of the Clayton copula under

left censoring/truncation shown in Oakes(2005)[15].
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4.2 Parameter Estimation

For left censored bivariate data, because the uncensored pairs still follow the

Archimedean copula models, we can directly apply the existing strategies to fit the

Archimedean copula model based on completely observable pairs. However, their

estimation procedure tends to be quite complicated and the performance of their

estimators is quite unstable based on our simulation studies. In this section, we

propose an alternative estimation approach based on the new frailty distribution

derived in the previous section. We have:

Theorem 2: Suppose that (T1, T2) are defined as the previous section, then

the random variables

V = S(T1, T2|T1 > L1, T2 > L2)

and

U = ψ?−1(S1(T1|T1 > L1, T2 > L2))/ψ?−1(S(T1, T2|T1 > L1, T2 > L2))

are independently distributed with the Kendall distribution and Uniform(0, 1)

distribution respectively. Moreover, the Kendall distribution function of V can be

written as:

K?(v) = v − ψ?−1(v)/ψ?−1′(v) = v − [ψ−1(vv?)− ψ−1(v?)]/(ψ−1′(vv?)v?)

for v ∈ (0, 1) where v? = S(L1, L2).

Based on Theorem 2, The log-likelihood function of S(T1, T2|T1 > L1, T2 > L2)

can be written as:

l =
∑

i:T1i>L1,T2i>L2

log(k(Vi))

=
∑

i:T1i>L1,T2i>L2

[
log(ψ−1(ViV

?)− ψ−1(V ?)) + log(ψ−1′′(ViV
?))− 2 log(−ψ−1′(ViV ?))

]
.
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To estimate the unknown parameter θ in frailty distribution, we first replace V ? and

Vi’s by corresponding empirical estimates

V̂ ? =
#{T1i > L1, T2i > L2}

n
and V̂i =

#{T1j > max{T1i, L1}, T2j > max{T2i, L2}}
n

to establish our estimating equation:

1

n

∂l

∂θ
(θ̂) =

1

n

∑
i:T1i>L1,T2i>L2

∂li
∂θ

(V̂ ?, V̂i, θ̂) = 0.

Using the Taylor expansion, we have

1

n

∂l

∂θ
(θ̂) ≈ 1

n

∂l

∂θ
(θ) +

1

n

∂2l

∂θ2
(θ)(θ̂ − θ).

It then follows from above equation that

n1/2(θ̂ − θ) ≈ n1/2 {(1/n)∂l/∂θ(θ)}
{(1/n)∂2l/∂θ2(θ)}

.

We can actually show

Theorem 3: Under necessary regularity conditions, our parameter estimator

θ̂n is consistent and n1/2(θ̂n−θ) is asymptotically normal with zero mean and variance

σ2.

4.3 Simulation Results

In this section, we conduct simulation studies to demonstrate our estimation and test

procedures. We generate bivariate data (T1, T2) with standard exponential marginal

distributions from the Hougaard model corresponding to different dependence levels

(measured by Kendall’s τ values: τ = 0.2, 0.4, 0.6 and 0.8). (T1, T2) is also subject to

fixed left censoring with the detection limits L1 = L2 = 0.1 (i.e., we can observe

(T1, T2) only if T1 > L1, T2 > L2). Then we apply two estimation strategies:

our proposed strategy based on the Kendall distribution function and the strategy
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Table 4.1 Estimator Comparison

Sample Size n = 100 Sample Size n = 200

τ θ̂ θ̃ θ̂ θ̃

0.2 0.8687 0.9149 0.9132 0.9464

(0.0204) (0.0258) (0.0226) (0.0276)

0.4 0.6260 0.6535 0.6799 0.6651

(0.0109) (0.0169) (0.0068) (0.0334)

0.6 0.3894 0.3456 0.4017 0.3738

(0.0034) (0.0258) (0.0016) (0.0195)

0.8 0.2008 0.0896 0.1971 0.1602

(0.0104) (0.0206) (0.0005) (0.0081)

proposed by Genest(1995)[7] and Shih(1995)[18] to fit assumed frailty models (they

are all Archimedean copula models. The results are presented in Table 4.1. We

compare our estimatorθ̂ and the traditional estimator θ̃. For each τ , the first row is

the estimate mean and the second row represents the mean square error. It turns out

that our estimator has smaller bias and MSE.

4.4 Discussion

Oakes(2005)[15] has shown that the Clayton model is invariant under under left

truncation. In this paper, we have shown that the same fact holds for Archimedean

copula models. The main difference between the frailty model for original data and the

frailty model for uncensored data lies in the corresponding frailty distributions (i.e.,

corresponding copula generators). Based on above fact, we propose a new parameter

estimator when the bivariate data is under fixed left truncation or censoring. From

our simulation study results, we can see that our estimator is less biased and more

efficient than the popular estimator proposed by Shih(1995)[18] under the Hougaard
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model assumption. Under the Clayton model assumption, the performances of two

estimators are similar(in a simulation study not presented in this paper).

55



BIBLIOGRAPHY

[1] D. G. Clayton. A model for association in bivariate life tables and its application
in epidemiological studies of familial tendency in chronic disease incidence.
Biometrika, 65(1):141–151, Apr. 1978.

[2] D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological), 34(2):187–220, 1972.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

[4] J.P. Fine, H. Jiang, and R. Chappell. On semi-competing risks data. Biometrika,
88(4):907–919, Dec. 2001.

[5] T.R. Fleming and D.P. Harrington. Counting Processes and Survival Analysis.
Hoboken, NJ, Wiley, 2005.

[6] C. Genest. Frank’s family of bivariate distributions. Biometrika, 74(3):549–555, 1987.

[7] C. Genest, K. Ghoudi, and LP. Rivest. A semiparametric estimation procedure of
dependence parameters in multivariate families of distributions. Biometrika,
82(3):543–552, Sep. 1995.

[8] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, Jun.
1938.

[9] J. P. Klein and M. L. Moeschberger. Survival Analysis: Techniques for Censored and
Truncated Data. Springer, 2003.

[10] L. Lakhal, L. P. Rivest, and B. Abdous. Estimating survival and association in a
semicompeting risks model. Biometrics, 64(1):180–188, Mar. 2008.

[11] D.Y. Lin. On the breslow estimator. Lifetime Data Analysis, 13(4):471–480, 2007.

[12] A. K. Manatunga and D. Oakes. A measure of association for bivariate frailty
distributions. Journal of Multivariate Analysis, 56(1):60–74, Jan. 1996.

[13] A. K. Manatunga and D. Oakes. Parametric analysis for matched pair survival data.
Lifetime Data Analysis, 5(4):371–387, Dec. 1999.

[14] D. Oakes. Bivariate survival models induced by frailty. Journal of the American
Statistical Association, 84(406):487–493, Jun. 1989.

[15] D. Oakes. On the preservation of copula structure under truncation. Canadian
Journal of Statistics, 33(3):465–468, Sep. 2005.

56



[16] LP. Rivest and M. T. Wells. A martingale approach to the copula-graphic estimator
for the survival function under dependent censoring. Journal of Multivariate
Analysis, 79(1):138–155, Oct. 2001.

[17] H. Romdhani and L. Lakhal-Chaieb. On the association between variables with lower
detection limits. Statistics in Medicine, 30(26):3137–3148, Nov. 2011.

[18] J. H. Shih and T. A. Louis. Inferences on the association parameter in copula models
for bivariate survival data. Biometrics, 51(4):1384–1399, Dec. 1995.

[19] A.W. van der Vaart. Asymptotic Statistics. New York, NY, Cambridge, 2007.

[20] A. Wang. The analysis of bivariate truncated data using the clayton copula model.
The International Journal of Biostatistics, 3(1), 2007.

[21] A. Wang. On the nonidentifiability property of archimedean copula models under
dependent censoring. Statistics and Probability Letters, 82(3):621–625, Mar.
2012.

[22] A. Wang. Properties of the marginal survival functions for dependent censored data
under an assumed archimedean copula. Journal of Multivariate Analysis,
129(3):57–68, Aug. 2014.

[23] A. Wang et al. The identifiability of dependent competing risks models induced by
bivariate frailty models. Scandinavian Journal of Statistics, 42(2):427–437,
Jun. 2015.

57


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: A Semi-Competing Risks Problem
	Chapter 3: A New Estimator of Baseline Hazard Function
	Chapter 4: Left Censored Bivariate Data Analysis
	Bibliography

	List of Tables
	List of Figures



