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ABSTRACT 

DEVELOPMENT AND EVALUATION OF COOPERATIVE INTERSECTION 

MANAGEMENT ALGORITHM UNDER CONNECTED VEHICLES 

ENVIRONMENT 

by 

Slobodan Gutesa 

Recent technological advancements in the automotive and transportation industry 

established a firm foundation for development and implementation of various automated 

and connected vehicle (C/AV) solutions around the globe. Wireless communication 

technologies such as the dedicated short-range communication (DSRC) protocol are 

enabling instantaneous information exchange between vehicles and infrastructure. Such 

information exchange produces tremendous benefits with the possibility to automate 

conventional traffic streams and enhance existing signal control strategies. While many 

promising studies in the area of signal control under connected vehicle (CV) environment 

have been introduced, they mainly offer solutions designed to operate a single isolated 

intersection or they require high technology penetration rates to operate in a safe and 

efficient manner. Applications designed to operate on a signalized corridor with imperfect 

market penetration rates of connected vehicle technology represent a bridge between 

conventional traffic control paradigm and fully automated corridors of the future.   

Assuming utilization of the connected vehicle environment and vehicle to 

infrastructure (V2I) technology, all vehicular and signal-related parameters are known and 

can be shared with the control agent to control automated vehicles while improving the 

mobility of the signalized corridor. This dissertation research introduces an intersection 

management strategy for a corridor with automated vehicles utilizing vehicular trajectory-

driven optimization method. The Trajectory-driven Optimization for Automated Driving 



 

(TOAD) provides an optimal trajectory for automated vehicles while maintaining safe and 

uninterrupted movement of general traffic, consisting of regular unequipped vehicles. 

Signal status parameters such as cycle length and splits are continuously captured. At the 

same time, vehicles share their position information with the control agent. Both inputs are 

then used by the control algorithm to provide optimal trajectories for automated vehicles, 

resulting in the reduction of vehicle delay along the signalized corridor with fixed-time 

signal control. To determine the most efficient trajectory for automated vehicles, an 

evolutionary-based optimization is utilized. Influence of the prevailing traffic conditions is 

incorporated into a control algorithm using conventional data collection methods such as 

loop detectors, Bluetooth or Wi-Fi sensors to collect vehicle counts, travel time on corridor 

segments, and spot speed. Moreover, a short-term, artificial intelligence prediction model 

is developed to achieve reasonable deployment of data collection devices and provide 

accurate vehicle delay predictions producing realistic and highly-efficient longitudinal 

vehicle trajectories.   

The concept evaluation through microsimulation reveals significant mobility 

improvements compared to contemporary corridor management approach. The results for 

selected test-bed locations on signalized arterials in New Jersey reveals up to 19.5 % 

reduction in overall corridor travel time depending on different market penetration and lane 

configuration scenario. It is also discovered that operational scenarios with a possibility of 

utilizing reserved lanes for movement of automated vehicles further increases the 

effectiveness of the proposed algorithm. In addition, the proposed control algorithm is 

feasible under imperfect C/AV market penetrations showing mobility improvements even 

with low market penetration rates.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

To improve efficiency and safety of road transportation systems without adding additional 

physical capacity, researchers have begun to investigate the synergy between the 

communication technologies and automotive industry. Those modern technologies paved 

the way for new automotive revolution supported and initiated by the growing connected 

vehicle (CV) technology. The Fixing America’s Surface Transportation (FAST) Act [1] 

was introduced in 2015 with the goal of providing long-term funding for surface 

transportation planning and investment. The authorization of a $305 billion over fiscal 

years 2016 through 2020 created direct opportunity to improve the performance of nation’s 

surface transportation in terms of mobility, job creation, and promotion of innovations. As 

auto manufacturers and academia are responding rapidly by offering various self-driving 

solutions readily available, United States Department of Transportation (USDOT) and 

other public sectors developed a Connected Vehicle Reference Implementation 

Architecture (CVRIA) [2] to support and accelerate the implementation of connected 

vehicles. Under the Connected Vehicle Pilot Deployment Program [3], the USDOT Joint 

Program Office (JPO) has selected three pilot sites in New York City, New York, Interstate 

80 (I-80) in Wyoming, and Tampa, Florida for which they successfully developed the 

concept of operations (ConOps), Deployment Outreach Plan, and Deployment Readiness 

Summary [4]. All those efforts are indicating the rising need for efficient and easily 

implementable control systems that can utilize the connected vehicle environment.  
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Over the past decade, the contemporary traffic operation and control strategies 

focused mainly on fixed-time, actuated, traffic responsive pattern selection (TRPS), and 

Adaptive Traffic Control [5]. The fixed-time control with predetermined time-of-day 

(TOD) plan is still widely used across the country since it is fairly easy to implement. 

Where more complex traffic patterns are observed, many agencies opted for adaptive traffic 

control solutions due to frequently observed day-to-day and hour-to-hour volume 

variations. Almost all adaptive signal control systems utilize the projections of vehicle 

arrivals [6]. In many cases, due to the stochastic nature of the vehicular movement, such 

predictions of vehicles’ arrivals are not sufficiently accurate and can undermine the 

intersection performance.  

Nonetheless, some recent studies show that the predetermined time-of-day (TOD) 

control approach along with reliable prevailing traffic information can provide an adequate 

system efficiency [7]. Those systems heavily rely on the traffic counts and turning 

movement data that is naturally associated with a significant level of variation. Collecting 

such huge amount of data on a daily basis and updating signal control setting would involve 

unacceptable manpower requirements and significant financial resources [8]. Thus, the 

connected vehicle and infrastructure environment attributes can be utilized to develop a 

new traffic control paradigm, where the control system is designed to convey the most 

desirable speed to individual road vehicles, based on the current state of traffic streams, the 

state of signalization, and the position of the individual vehicles in real time.  
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1.2 Problem Statement  

To the best of author’s knowledge, the previous studies offer solutions that are either 

developed to operate on a single, isolated intersection or they require a high market 

penetration of technology. In addition, the majority of reservation-based control algorithms 

are operating on a first-come-first-served (FCFS) rule. Some studies presented in the next 

section of this dissertation indicated a variety of scenarios in which traffic signals 

outperformed the reservation-based control strategies on the arterial roadway. It was found 

that the fairness of the first-come-first-served reservation rule may disrupt the platoon 

progression and therefore increase total vehicle delay of an arterial intersection. The main 

reason can be found in the fact that the vehicles on the local road requested a reservation 

before vehicles on the arterial submitted their requests, therefore, making the conventional 

rules of corridor coordination impossible.  

None of the existing efforts addressed this drawback. The mobility improvements 

that were detected are based solely on an isolated intersection testbed often ignoring the 

corridor-wide context. The same drawback was detected in the area of the trajectory-driven 

control approach used by several authors. Again, all reviewed studies fail to observe the 

corridor-wide context or do not offer a viable option for low market penetration conditions. 

The SPaT-related studies are divided into two major categories 1) Eco-driving 

oriented control strategies, 2) Green-wave oriented control strategies. Reviewed studies 

offer an irreplaceable methodological and practical contribution. The methodology is 

proven and some proposed solutions are even implemented and tested in the field. However, 

all the reviewed studies offer a decentralized solution designed for the operation of a single 
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vehicle (often tested on a testbed consisted of a single isolated intersection) rather than 

offering a system-wide corridor control.  

It is well known that all adaptive signal control systems inevitably depend on the 

projections of vehicle arrivals, and reliability of the detection system. Since the nature of 

the vehicular movement is stochastic, the prediction of vehicles’ arrivals is often inaccurate. 

To remedy mentioned problems many authors investigated the utilization of the connected-

vehicle environment to replace the conventional detection paradigm. However, if large 

portion of the traffic stream is not equipped with a proper communication device, the 

accuracy of the collected parameters (vehicle arrivals, travel time, speeds, queue length 

etc.) do not represent an adequate replacement of the on-line measure and the low 

penetration conditions still encounter the same limitation of the conventional on-line 

optimization.   

 

1.3 Motivation 

In the current state of the practice, various sophisticated signal control solutions have been 

implemented. Introduction of actuated and adaptive systems represent a signal control 

paradigm where traffic control devices are designed to conform to prevailing traffic 

conditions. Due to that, the described signal control utilizes complex detection systems and 

control logic. In contrast to the described paradigm, this research utilizes a connected 

vehicle environment where communication between vehicles and infrastructure allows 

development of the new intersection management paradigm. This paradigm assumes 

instantaneous adjustment of vehicles to given signal timing conditions, produced by control 
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devices. Thus, the main motivation is to develop a new, simple, and low-cost solution, 

functional under the connected and automated vehicles environment.  

 

 

Figure 1.1 The new intersection management concept.   

 

1.4 Goal and Objectives 

All existing signal control strategies are sharing one common approach: manipulating and 

adjusting the signal control devices in the manner that they accommodate prevailing traffic 

conditions. To that end, many complex systems have been introduced often requiring 

significant financial investments, maintenance, and implementation costs. Against the 

existing efforts, the primary goal of this research is to introduce a new signalized corridor 
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management strategy where the traffic streams are manipulated to conform to the signal 

control devices. Signal status parameters (i.e., cycle length and remaining green/red time) 

are continuously captured by the control instance. At the same time, vehicles provide their 

position through the connected vehicle environment. Both inputs are then used by 

predictive, trajectory-driven, control algorithm, namely Trajectory-driven Optimization for 

Automated Driving (TOAD) to adjust the trajectory of each automated vehicle in the 

system. As the proposed control strategy is designed to manipulate the prevailing traffic 

flow, rather than adjusting the signal timing and configuration, simple pre-timed devices 

are sufficient for the successful system operation. It is envisioned that described control 

strategy allows the gradual introduction of the automated vehicles with no need for 

replacement of the contemporary signal control devices.   

 Besides the possibility of utilizing existing conventional control devices, it is also 

important that the solution is capable of handling the low technology penetration rates.  

To this end, the following objectives are addressed: 

• Objective 1: To develop the control algorithm for automated vehicles utilizing 

individual vehicular and signal timing information. The information is captured 

instantaneously and used by the control agent to generate the optimal 

trajectories for the automated vehicles while respecting the prevailing traffic 

constraints.  

 

• Objective 2 To develop an artificial intelligence model to predict prevailing 

traffic conditions to be incorporated into trajectory optimization framework 

 

• Objective 3: To develop the testbed using microsimulation platform and 

evaluate the performances of the developed control algorithms by comparing 

them with existing traffic signal control logic under various volume scenarios. 

The evaluation scenarios include the possibility of utilizing managed lanes 

reserved for movement of automated vehicles. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents the review of existing research efforts in the field automated vehicle-

based intersection control, control strategies utilizing Signal Phase and Timing (SPaT) 

information exchange, and control strategies utilizing on-line optimization. The automated 

vehicle control is divided into two major categories: 1) reservation-based approach and  

2) trajectory-driven approach, while SPaT- related efforts are divided into 1) eco-driving 

and 2) green-wave oriented control strategies. Utilization of the on-line optimization is 

observed from the aspect of the conventional and connected-vehicle oriented approach.   

 

2.1 Automated Vehicle-based Intersection Control 

An automated vehicle refers to a vehicle that can achieve a safe movement on a roadway 

facility without the influence of a human driver. With emerging trend of the connected 

vehicle concept over the past decade, numerous state-of-the-art applications focusing on 

automated vehicle-based intersection control have been proposed. The following section 

focuses on the relevant achievements in this area. Based on the exhaustive literature review, 

the autonomous and automated vehicle-based efforts can be divided in two broad 

categories: 1) reservation based, and 2) trajectory-driven algorithms and solutions.   

 

2.1.1 Reservation-based Control Algorithms 

One among very first studies of the intersection control for autonomous and automated 

vehicles was conducted by Dresner and Stone [9]. The methodology is focusing on an 
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intersection reservation system. In the proposed system, driver agents (i.e., vehicles with 

an onboard unit) “call ahead” to an intersection manager, located at the intersection, to 

reserve the space-time slot needed to cross the intersection safely. The methodology 

assumes the existence of an intersection manager program responsible for spatial and 

temporal manipulation of the vehicles’ positions to achieve safe operation of an 

intersection. The intersection is divided into virtual cells and intersection reservation is 

produced with respect to spatial and temporal occupancies of the virtual cells where vehicle 

maneuvers are adjusted to ensure safe operation. Assuming 100% autonomous vehicles, 

the performance was evaluated for a four-way intersection containing three lanes for each 

approach under traffic volumes of up to 750 vph. Under given conditions, delay reductions 

of up to 94% were detected.   

Similarly, VanMiddlesworth et al. [10] proposed an intersection control mechanism 

for autonomous vehicles based on peer-to-peer communication among vehicles where no 

signals or stop signs are necessary. The control is achieved by making a reservation when 

a vehicle reaches a predetermined point where it needs to convey information to other 

vehicles how it intends to cross the intersection. While achieving significantly low average 

delay (<0.5 sec) for low-volume conditions, the algorithm is not suitable for high-volume 

conditions and it is outperformed by the conventional signal control if the vehicle arrival 

rate is above 0.7 vehicles per second.  

Road time-space occupancy concept was also utilized by Jin and Wu [11] to 

develop a multi-agent intersection control. This connected-vehicle based advanced traffic 

management system (ATMS) assumes communication between vehicles and infrastructure 

in real time to produce intersection time-space reservations and then provide feedback to 
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vehicles. The vehicle agents then adjust their trajectories to meet the assigned time slot. 

The concept was evaluated using microsimulation platform for an isolated intersection 

where reductions of vehicle emissions were observed. The study does not assess the 

mobility aspects and requires all vehicle agents to be fully controllable.  

A reservation-based intersection control system named autonomous control of 

urban traffic (ACUTA) was introduced by Li et al. [12] where vehicles in a reservation-

based system communicate with centralized intersection controller. The intersection 

controller regulates the intersection by determining the passing sequence for all the 

vehicles approaching the intersection. The intersection is divided into a mesh of tiles used 

for the time-space reservation algorithm. Like previously mentioned studies, the 

methodology assumes that the vehicle sends a request along with its location, routing, and 

speed information to the intersection manager. The intersection manager processes the 

reservation request by computing the time-space occupancies for the intersection tiles to 

ensure the safe crossing of the vehicle. The evaluation considered an isolated intersection 

under different volume conditions reporting the increase in the intersection throughput by 

33% percent. 

Huang et al. [13] developed similar, reservation-based methodology. The new 

reservation protocol proposed in this study requires the approaching vehicles to update 

their information at every consecutive time step, based on that information, the system 

recommends a speed profile for vehicles to follow until they cross the intersection, and 

prioritizes vehicle requests, in a hierarchical fashion. The prioritizing is based on several 

factors, including the distances of the vehicles to the stop line. The study reported a 

reduction of average vehicle delay by 85%, fuel consumption by 50%, and emissions by 
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39%-50%. Hausknecht et al. [14] expanded the methodology introduced by Dresner and 

Stone [9] by including different navigation policies which autonomous vehicles can utilize 

to dynamically alter their planned paths. The methodology also introduces a possibility of 

dynamically reversing the flow of traffic along lanes in response to minute-by-minute 

traffic conditions. The proposed algorithm showed about 32% decrease in average vehicle 

delay for a network of four interconnected intersections.  

Ahmane et al. [15] proposed a control logic for an isolated intersection where the 

right of way information is conveyed through an onboard screen. This reservation-based 

control approach assumes that all vehicles are equipped with an onboard unit and are able 

to wirelessly negotiate the right of way. The control policy for controlling an isolated 

intersection comprises the exchange of the request messages between vehicles. The result 

of the control policy is a sequence of authorized vehicles allowed to traverse an intersection 

in the order of First in First Out (FIFO). The control algorithm is utilizing the self-

organizing theory where simple, locally established rules lead to global complex behavior.  

The proposed approach is tested through a real intersection with four ordinary vehicles and 

a simulation. The simulation considered two levels of traffic flow, 1800 and 2800 vehicles 

per hour revealing almost 50% of the delay reduction compared to the conventional traffic 

signal control. Another, reservation-oriented algorithm for driverless vehicles has been 

proposed by Zhang et al. [16]. The control model assumes autonomous motion with its 

spatial-temporal and kinetic parameters based on centralized scheduling mechanism. The 

control approach respects FIFO priority rules but has an ability to flexibly adapt pass 

requests from emergent vehicles.  
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Lu et al. [17] proposed a priority-based V2V protocol where vehicles equipped with 

sensors share their position, speed, and acceleration to establish a sequence of a vehicle 

passing through an uncontrolled intersection. The set of rules has been introduced 

depending on the current vehicle position and desired maneuver (i.e left, right, or through) 

in the intersection.  If the approaching car needs to yield other cars, the proposed algorithm 

finds a proper deceleration value to execute safe yielding. The car brakes automatically 

using this deceleration value to avoid collision with other cars. Although the methodology 

utilizes the adjustment of vehicle’s trajectory, the methodology has certain similarities with 

previously mentioned, reservation-based methods as the adjustment of the trajectory is 

based on the previously determined sequence of vehicles.  

Elhenawy et al. [18] developed a game-theory based algorithm to replace 

conventional signal-based intersection control by utilizing V2I communication. The 

proposed algorithm is chicken-game inspired and is effective for application in real-time. 

It assumes vehicles can communicate with a central agent at the intersection to provide 

their instantaneous speeds and locations. The developed algorithm is designed to control 

an isolated intersection by resolving the conflict between crossing vehicles considering 

100% market penetration of the automated vehicle technology. Although showing 

promising results, the study did not provide relevant performance evaluation with respect 

to different volume rates and market penetration level.  

Zhu et al. [19] developed a reservation-based algorithm, namely Look-ahead 

Intersection Control Policy (LICP) where the main idea is to choose a right decision 

whether a vehicle can receive a passing permission based on the predictive value of total 

delay if postponing the current reservation request is conducted. The evaluation was 
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conducted using simulator developed by authors. The evaluation was conducted using 

different volume rates and comparison between FIFO-based reservation rule. It was 

determined that LICP can make nearly 25% performance improvement on average 

intersection delay than the previous FIFO method.  

Sharon and Stone [20] studied the possibility of combining reservation-based, first-

come-first-served methodology and conventional signal control to allow intersection 

operation under imperfect market penetration level, namely H-AIM. The H-AIM grants 

reservation in a first-come-first-served (FCFS) order. The algorithm automatically rejects 

reservation requests that conflict with regular, signal controlled vehicle’s trajectory (active 

green trajectory). The methodology was evaluated using microsimulation, showing that the 

protocol can decrease traffic delay for autonomous vehicles even at 1% technology 

penetration rate.  

Although mentioned studies presented promising results for an isolated intersection 

a comprehensive study conveyed by Levin et al. [21] in 2016 revealed a variety of scenarios 

in which traffic signals outperformed the reservation-based control strategies on two 

realistic networks (arterial roadway and downtown city area) in Austin, Texas. It was found 

that the fairness of the first-come-first-served reservation rule increases total vehicle delay 

at an arterial road intersection. One of the main reasons why reservation-based logic was 

outperformed by the conventional signal-based control is that the reservation rule disrupted 

platoon progression that would occur with timed signals on an arterial roadway. Because 

vehicles on the local road requested a reservation before vehicles on the arterial submitted 

their requests, vehicles on the local road have their reservation accepted.  
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2.1.2 Trajectory Planning Algorithms 

In addition to reservation-based control approach, several promising algorithms have been 

proposed utilizing vehicle trajectory adjustment to achieve safe and efficient intersection 

control. The trajectory of a vehicle is described using a time-space diagram (frequently 

used in coordination analysis), that is the predictive position of a vehicle in the observed 

time window where a known kinematic relationship between vehicle velocity, acceleration, 

and time are used.  

Ding et al. [22] developed a centralized cooperative intersection control (CCIC) 

approach for the non-signalized intersections under automated vehicle environment. The 

aim of cooperative intersection control is to guide vehicles passing the intersection using 

V2X communication technology. The objective of centralized cooperative intersection 

control is to minimize the intersection delay, fuel consumption, and emission as well as the 

discomfort level of drivers. Collision avoidance is handled by manipulating the predictive 

trajectories of individual vehicles. The model assumption is that all vehicles are automated 

vehicles equipped with the V2X communication device and they follow the instructions 

absolutely. A microsimulation model of a single four-leg intersection reveals 10.49%-

17.61% improvement in throughput and 17.78%-37.81% of gas savings under traffic 

conditions of  400-900 vehicles per hour per intersection approach.  

Lee and Park [23] developed a Cooperative Vehicle Intersection Control Algorithm 

(CVIC) under the connected vehicles environment. The CVIC algorithm was designed to 

manipulate individual vehicles' maneuvers so that vehicles can safely cross the intersection 

without colliding with other vehicles. To that end, a nonlinear, trajectory-driven 

optimization algorithm was solved using genetic algorithm approach to adjust trajectories 
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of individual vehicles for the safe crossing. A simulation-based case study implemented on 

a hypothetical four-way single-lane approach intersection under varying congestion 

conditions showed that the CVIC algorithm significantly improved intersection 

performance compared with conventional actuated intersection control detecting 99% and 

33% of stop delay and total travel time reductions, respectively.  

Similarly, Wuthishuwong et al. [24] developed a V2I control algorithm for an 

intersection under fully automated traffic conditions. The methodology utilizes intersection 

distance and time discretization where the trajectory of each vehicle is planned by the 

vehicle itself based on the returned timing index from the intersection manager. The four-

way intersection with a single lane of incoming and outgoing traffic is used as the reference 

model in the simulation scenario with the traffic flow rate from the minimum 1 vehicle per 

hour up to the maximum 3,000 vehicles per hour. It was discovered that proposed control 

algorithm outperforms the traditional traffic light in terms of overall delay and throughput.   

 

2.2 Control Strategies Utilizing Signal Phase and Timing (SPaT) Information 

Exchange 

The benefit of utilizing the vehicle to infrastructure (V2I) communication to improve the 

operation of conventional, signalized intersections have been studied extensively over the 

past decade. The main idea behind the concept is to provide the advisory speed through an 

onboard device to improve safety, environmental and mobility performance of a 

conventional, signal-based control strategy or utilize SPaT information to manipulate the 

movement of automated vehicles. While the impact of the SPaT concept on transportation 

safety has not been extensively studied, the relevant SPaT-related research went into two 

directions: eco-driving, and mobility-related (also known as the green-wave) approach.      
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2.2.1 Eco-Driving Oriented Control Strategies 

Jiang et al. [25] proposed an eco-driving system for an isolated signalized intersection 

under partially connected and automated vehicles (C/AV) environment. This system 

prioritizes fuel efficiency before improving mobility and manipulates the entire traffic flow 

by optimizing speed profiles of the connected and automated vehicles. The inputs of the 

optimization algorithm are instantaneous speed for each controlled vehicle, vehicle arrival 

time and signal phase and timing (SPaT) information from the traffic signal, and the 

trajectory information of the preceding vehicle. The objective is to minimize total fuel 

consumption and emissions and maximize comfort while maintaining the throughput at its 

optimum level. The simulation results for an isolated intersection indicate the proposed 

system could save fuel by up to 58%, reduce emissions by up to 33% and improve 

throughput by up to 11%. Although this study provides promising results, it is not clearly 

addressed how will the optimization methodology affect traffic streams on a signalized 

corridor. This aspect is crucial since the paradox described by Levin [21] proves that a 

control strategy performing well on an isolated intersection can be outperformed by the 

conventional signal control strategy if the innovation undermines coordination of a 

corridor.  

Rakha and Kamalanathsharma [26] developed an eco-driving framework that 

utilizes vehicle-to-infrastructure (V2I) communication to receive signal phasing and timing 

(SPaT) information and compute the optimal acceleration rate to minimize fuel 

consumption while passing through an isolated intersection. A vehicle dynamics model is 

used to describe the acceleration maneuver and statistical model consisting of linear, 

quadratic and cubic combinations of speed and acceleration levels using chassis 
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dynamometer data. The eco-drive model predicts the fuel-optimum speed profile for 

vehicles approaching an intersection and provides instantaneous speed assuming Dedicated 

Short-Range Communication (DSRC) connectivity between vehicles and the 

infrastructure. While mainly focusing on the development of the strategy which yields the 

most fuel-optimal speed profile for a vehicle approaching a signalized intersection using 

V2I communication capabilities, the study does not provide detailed performance analysis 

in different traffic volume and technology penetration conditions.   

A field operational testing of an eco-driving technology at a fixed-time signalized 

intersection was performed by Xia et al. [27]. A communication platform based on a 

4G/LTE network link and a cloud-based server were utilized to exchange SPaT information 

between vehicle and infrastructure. The control logic utilizes SPaT and vehicle position 

information, calculates a recommended cruise velocity for the vehicle given the constraints 

of roadway speed limit and surrounding traffic. Based on given information, the algorithm 

is producing the most fuel-efficient acceleration or deceleration profiles for reaching the 

desired cruise velocity. It was found in both the simulation experiment and the field 

operational testing that on average 14% fuel and CO2 savings can be achieved. The optimal 

speed recommendation was delivered to a driver through an onboard device also used for 

computation of the recommended speed trajectory.  

Similarly, Kundu et al. [28] developed a model for eco-driving to minimize total 

fuel consumption for a signalized intersection utilizing SPaT information to calculate 

optimal advisory speed which allows the driver to go through the green light and reduce 

the stop-and-go driving pattern and thus reducing fuel consumption. Simulation results 

discovered that the algorithm can reduce fuel consumption by 10% in a journey for a single 
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fixed platoon of vehicles. Niu and Sun [29] compared two SPaT related models, the eco-

driving model, and the green wave speed guidance model. While the first one mainly 

focuses on the minimization of the fuel consumption and emissions, the second one was 

designed to minimize the travel time of a vehicle through an isolated intersection. The 

guided velocity is dynamically adjusted based on the vehicle s spatial-temporal trajectories, 

in relation to which an optimization-based rolling horizon and a dynamic programming 

approach were adopted. To determine the effectiveness of the overall strategies, 15 typical 

drivers took part in the driving simulator studies and it was determined that the fuel 

consumption and CO2 emissions can be reduced by 25% and 13% under eco-driving and 

green wave guidance respectively.  

Kamal and Yochimura [30] observed a partially connected vehicle environment 

where only a fraction of traffic has Dedicated Short-Range Communication (DSRC) 

connectivity. They also assume that the SPaT information can be broadcasted by the 

intersection agent when vehicles are within the communication range. The optimization 

problem is formulated to drive a single vehicle, with respect to signal timing and preceding 

vehicle constraints. To that end, a cost function with a defined penalty for vehicles violating 

the red signal state was optimized using the finite horizon approach. The evaluation of the 

methodology was conducted for a single technology penetration rate of 10%. It was 

determined that with 10% of technology penetration, the methodology improves fuel 

economy by 4.5% and reduces travel time by 4.7% on a road section of 1 km with a single, 

isolated intersection.   
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2.2.2 Green-wave Oriented Control Strategies  

Besides described eco-driving strategies, some author focused on utilizing SPaT 

information to improve mobility (i.e. travel time, intersection throughput). Chen and Chang 

[31] proposed a framework focusing on cooperative traffic control between vehicle and 

infrastructure producing optimal signal timing pattern and formation of a green wave on a 

signalized corridor. With the assumption of 100% technology penetration almost 50% 

improvement in travel time was detected, however, the impact of the proposed control 

algorithm on the delay of minor street approaches was not addressed in the study. 

 Lee et al. [8] developed a control algorithm to minimize the travel time of a vehicle 

on a signalized corridor with actuated intersections. The algorithm utilizes SPaT data and 

an onboard unit. The onboard unit is a smartphone device which along with SPaT 

information from 11 intersections, and the vehicle position obtained from embedded 

smartphone GPS receiver produces an advisory speed range displayed to the driver. 

Following the advisory speed, driver minimizes the number of stops along the corridor. 

The control algorithm was tested in live traffic on a signalized corridor in New Jersey 

showing up to 25% of travel time reduction.  

A study conducted by Katsaros et al. [32] evaluates the application of a traffic light 

assistant service, namely Green Light Optimal Speed Advisory (GLOSA). Following 

previously mentioned concept, the methodology utilizes SPaT messages that along with 

the provision of vehicle parameters through an onboard unit produces optimal speed value 

to avoid stopping at the signal. The study describes the algorithm operation and reports 

impact on travel time and fuel consumption based on a simulation model of two signalized 

intersections under different market penetration scenarios. The study detected a maximum 
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of 80% reduction in stopping time and up to 7% reduction in fuel consumption in a high 

traffic density scenario.  

Jinjian and Dridi [33] introduced a multi-vehicles green light optimal speed 

advisory algorithm based on the augmented Lagrangian Genetic Algorithm. The study 

introduces an optimized method to get the global optimized fuel consumption based on the 

minimal total running time. This study is processing the multi-vehicles problem by 

assigning car fleet and car-following model. The main idea is to utilize both signal 

information, and position of individual vehicles to form fleets of vehicles that can pass an 

intersection as a group. Firstly, a leading vehicle gets assigned and it searches the most 

related traffic light cycle, in which it could pass the intersection as fast as possible; then, 

all vehicles that have the same most related traffic light cycle are assigned to the same car 

fleet. The simulation was performed for a single fixed-time intersection, revealing 

significant vehicle delay reductions.   

Similarly, Stebbins et al. [34] examined the possibility of utilizing the optimal green 

light speed advisory trajectories for platoon-based optimization. This algorithm produces 

the advice given to a vehicle, by optimizing the delay while considering the corridor-wide 

trajectory. Optimization is achieved through the provision of initial conditions – time until 

green, distance to the intersection and initial speed. The optimal speed advice also takes 

into account a suitable safety constraint, ensuring that vehicles are always able to stop 

before the intersection during a red interval. Platoon formation is proposed through a time-

loop technique, which allows accurate identification of the leader even when there are 

complex interactions between preceding vehicles. A single intersection was simulated with 
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average traffic flow ranging from 100 to 700 vehicles per hour per lane, providing average 

delay reduction of 30–50%. 

 

2.3 Intersection Control Strategies Utilizing On-line Optimization 

This section provides a review of the research conducted for online signal optimization 

under conventional and connected vehicle environment.   

2.3.1 Conventional On-line Traffic Responsive Control  

Due to its limited ability to deal with traffic flow fluctuations, the fixed-time control was 

replaced by more sophisticated solutions such as adaptive traffic control [35] and actuated 

systems [36]. Thus, the adaptive signal control strategy gained a significant deal of 

attention around the globe. One of the very first studies conducted for the adaptive system 

in Sydney, Australia, namely SCAT, estimated travel times reductions to reach 39.5-

percent in the peak period [35]. Similarly, initial travel time savings for the SCOOT (Split, 

Cycle, Offset Optimization Technique) were estimated to reach 35-percent [37].  

One of the first adaptive control algorithms was first introduced by Miller [38] 

when he proposed a strategy that is based on an online traffic model. The model calculates 

time wins and losses, based on trial and error methodology and produces criteria for the 

different stages of the traffic flow. In sequence, a series of adaptive methods were 

developed. SCOOT minimizes delay by the smooth adaptation of split, cycle time and 

offset. In contrast to general believing only the offset is optimized on the basis of delay 

modeling whereas split and cycle time are adapted according to a saturation criterion. With 

successful trials of SCOOT in different networks, the popularity of the adaptive solutions 
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increased [39]. Even up to now, SCOOT represents the most established control method 

with over 170 implementations all over the world.  

In the early 80’s the Optimized Policies for Adaptive Control Strategy (OPAC) was 

introduced. OPAC is a demand-responsive adaptive traffic control system developed by 

the University of Massachusetts [40]. The strategy is operating acyclic, i.e. it does not 

consider explicitly cycles or offsets. Given prespecified stage schemes, optimal switching 

times over a horizon are calculated. The optimization is based on delay criteria determined 

by simplified traffic models. OPAC have been upgraded since its first prototype. OPAC-1 

and 2 are utilizing dynamic programming (DP) and an exhaustive search algorithm, 

respectively. A perfect information on traffic arrival patterns over the entire cycle length is 

required to obtain optimal signal timing plans.  

The Real-time. Hierarchical, Optimized, Distributed and Effective System 

(RHODES) [41] introduced in late 90’s is another online traffic adaptive control strategy 

introduced by Mirchandani and Head [6]. The methodology introduced an innovative, 

proactive control where optimal timing plans are created by predicting traffic demands on 

a downstream intersection. The proactive control is achieved through implementation of a 

downstream detector located at the preceding intersection allowing short-term volume 

prediction (i.e., 5 seconds).  

A field test performed by Mirchandani et al. [42] for a single intersection, focused 

mainly on functionality and system responsiveness, but did not provide detailed 

information with respect to system performance on a signalized corridor. The system 

performance under different volume and road geometry scenarios was not revealed until 

today.  ACS-Lite is being developed by FHWA to be a cost-effective solution for applying 
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adaptive control system (ACS) technology to current, state-of-the-practice closed-loop 

traffic signal control systems [43]. A feature of the system called Time-of-the-Day (TOD) 

Tuner adjusts plan parameters (cycle, splits, and offsets) based on a long-term historical 

data. There is also a feature called Run-time Refiner that modifies the cycle, splits, and 

offsets of the plan that is currently running based on observation of traffic conditions that 

are outside the normal bounds of conditions that the plan is designed to handle.  

A comprehensive performance evaluation was conducted by Shelby et al. [44] for 

test locations in Gahanna, OH, Houston, TX, Bradenton, FL, and El Cajon, CA and it was 

revealed that the travel time improvements are ranging between 1-11% for the mentioned 

location comprising mainly signalized corridors of up to 10 intersections.  

Although the adaptive approach has been proven to bring direct benefits to users 

and agencies, some recent evaluations [45], [46] revealed significantly lower benefits than 

those initially reported. It is also known that all adaptive signal control systems inevitably 

depend on the projections of vehicle arrivals, and reliability of the detection system. Due 

to this, and many other known issues, a study conducted by FHWA [47] reported some 

direct concerns from practitioners whether the adaptive signal control system would 

resolve the mobility issues as it was expected at the early stage of development. Some 

implementation cost analysis performed by the USDOT in January 2013 [48], estimated 

average implementation costs for adaptive signal control technologies (ASCTs) to be 

between $46,000 and $65,000 for a single intersection. 

2.3.2 On-line Intersection Control under Connected and Automated Vehicles 

Environment 

Several promising studies addressing on-line optimization of signals under connected 

vehicle environment have been proposed.  
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Lee et al. [49] proposed utilization of a connected vehicle environment to remedy 

known limitations of a traffic responsive system. The study presents a cumulative travel-

time responsive (CTR) real-time intersection control algorithm based on a stochastic state 

estimation technique utilizing Kalman filtering that is used in estimating the cumulative 

travel times under imperfect market penetration rates. The CTR algorithm employs 

individual vehicles’ cumulative travel time (CTT) directly measured (under 100% market 

penetration rate). The methodology uses elapsed time spent by vehicles from the time they 

enter the approach link to the moment at the current position of the vehicle on the link, as 

the real-time measure of the proposed intersection control algorithm. Because the accuracy 

of information collected from CVs depends on how many vehicles are equipped with the 

CV devices, the CTR algorithm adopted a Kalman filter–based estimation technique to 

account for imperfect market penetration conditions. A hypothetical isolated intersection 

was used for the evaluations with a total of 40 volume scenarios covering the volume 

capacity ratio ranging from 0.3 to 1.1 and different market penetration levels.  At the 100% 

market penetration rate, the CTR algorithm significantly improved the mobility of an 

intersection when compared to the actuated controls. The total travel times were decreased 

by 34% and the average speeds increased by 36%. Lower market penetration rates (30% 

or less) degraded the performance of an intersection.  

Similarly, Goodall et al. [50] proposed a traffic signal control with connected 

vehicles utilizing decentralized, fully adaptive traffic control algorithm using a rolling-

horizon strategy in which the phasing is chosen to optimize an objective function over a 

15-s period in the future. The objective function uses either delay only or a combination of 

delay, stops, and decelerations. To measure the objective function, the algorithm uses a 
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microscopic simulation driven by present vehicle positions, headings, and speeds. A 

simulation test-bed consisted of four signalized intersections was developed in the 

microsimulation platform where the proposed algorithm was compared to the base case 

scenario (i.e. coordinated actuated signal control). The algorithm showed much greater 

improvements during unexpected demands, for which the baseline coordinated actuated 

timing plan is not optimized, particularly in a simulated incident and with annual traffic 

volume increases when the timing plan is not updated.  

Feng et al. [51] developed an algorithm for a real-time adaptive signal control in a 

connected vehicle environment. The methodology introduces an adaptive signal phase 

allocation algorithm using connected vehicle data which optimizes the phase sequence and 

duration by solving a two-level optimization problem. At the upper level, a dynamic 

program is applied to each barrier group defined as the collection phases between two 

barriers of a standard NEMA ring barrier structure.  The lower level (individual phase) 

optimization is formulated as a utility minimization problem. The objective can be either 

minimizing total vehicle delay or queue length based on different operational policies. The 

arrival flow of each phase at each time step comes from a predicted arrival table. To 

construct the arrival table, the location and speed of each vehicle on the roadway is 

estimated from the available connected vehicle data. A single isolated intersection was 

simulated in a microsimulation platform, for different market penetration and volume rates 

of 375-667 vehicles per hour per lane. The results show an improvement of the proposed 

algorithm compared to actuated control when the penetration rate is equal to or greater than 

50%. The maximal total vehicle delay reduction of 16.33% was also detected in this study.  
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Tiaprasert et al. [52] introduced a mathematical model for real-time queue 

estimation using connected vehicle (CV) technology from wireless sensor networks. The 

objective is to estimate the queue length for queue-based adaptive signal control using a 

discrete wavelet transform (DWT) method. The queue estimation comprises following 

steps: collecting the data from connected vehicles, determining whether a connected 

vehicle is a stopping or moving, and estimating queue length based on two main cases: 1) 

no stopped vehicle is detected and 2) stopped vehicle is detected. The simulation 

assessment of a single intersection including penetration ratios of 10%, 50%, and 80%, and 

different volume rates showed promising queue estimation accuracy with only 8-10% 

relative error.  

Pandit et al. [53] proposed a method to utilize vehicular ad hoc networks (VANETs) 

for collecting and aggregating real-time speed and position information on individual 

vehicles to optimize signal control at traffic intersections. The signal control is formulated 

as a job scheduling problem, with jobs corresponding to platoons of vehicles. An online 

algorithm is therefore developed to minimize the delay across the intersection. The main 

idea behind this method is that the VANET can be utilized to group vehicles into 

approximately equal-sized platoons, whose crossing time can be further scheduled using 

the proposed algorithm. The platooning algorithm is an exhaustive search over all the 

platoon configurations to determine the platoon combination that minimizes the difference 

between the maximum and minimum green times. In this study, an isolated, four-leg 

intersection was observed with eight traffic movement groups. The simulation setup 

included three volume scenarios:  heavy with 1700, medium 800, and light with 400 

vehicles per hour revealing up to 30% of vehicle delay reduction.   
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Li et al. [54] developed a signal control optimization algorithm for automated 

vehicles at isolated signalized intersections.  The methodology assumes that vehicle paths 

and signal control can be jointly optimized based on advanced communication technology 

between approaching vehicles and a signal controller. A rolling horizon scheme was 

developed to implement the algorithm and to continually process newly arriving vehicles. 

At the beginning of the optimization, the algorithm identifies the vehicles inside the 

communication range and gather the required input information for the intersection 

controller, based on the optimization period, minimum green time and maximum green 

time for each approach is calculated, and all the feasible timing plans are enumerated.  At 

last, the algorithm computes the optimum vehicle trajectories and associated minimum 

average travel time delay of each timing plan. It was discovered that the algorithm can 

reduce the average vehicle delay by 16.2–36.9% and increase intersection throughput by 

2.7–20.2%, depending on the demand scenario.  

Arel et al. [55] applied artificial intelligence system to develop a signal control 

policy based on reinforcement learning (RL) framework. This multi-agent approach is 

minimizing the average delay, congestion, and likelihood of intersection cross-blocking. 

Two types of agents are used in this study, a central agent and an outbound agent. While 

the outbound agents schedule traffic signals by following the longest-queue-first (LQF) 

algorithm the central agent learns a value function driven by its local and neighbors’ traffic 

conditions using the Q-Learning algorithm with a feedforward neural network for value 

function approximation. Simulation results demonstrate the advantages of multi-agent-

based control over conventional signal control on an isolated single-intersection.  
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Zohdy et al. [56] introduced a new tool for optimizing the movements of 

autonomous vehicles through intersections, namely iCACC. The main concept of the 

proposed tool is to control vehicle trajectories using Cooperative Adaptive Cruise Control 

(CACC) systems to avoid collisions and minimize intersection delay. The required inputs 

for the system are entry speed and acceleration of all vehicles, the weather condition (dry 

or wet) and the intersection geometry (number of lanes, lane width, etc.). The decision of 

arrival time for each vehicle is made using an optimization module. For vehicle movement 

control, at each time step, an optimization module is used to optimize the time of arrival of 

each vehicle at the intersection stop-line. Simulations were executed to compare 

conventional signal control with iCACC observing delay and fuel consumption. Compared 

to conventional signal control, the savings in delay and fuel consumption of 91 and 82 

percent were detected.  

Wenije et al. [57] proposed a new vehicle detection method for signalized 

intersection using the wireless sensor network (WSN) technology. The algorithm is 

designed to adjust the duration of each phase, determined by the conditions of the vehicle 

that the wireless network detected. The basic idea of the algorithm is to calculate the Lane 

Waiting Queue (i.e., vehicles that waiting on or running on the lane), and the Queue Passing 

Time (i.e., time needed for all of the vehicles in a queue to pass the intersection) to estimate 

the optimal value for the duration of the phase. To demonstrate the effect of the proposed 

algorithm, a single intersection was simulated using microsimulation. On a four-leg 

intersection with total intersection volume of 6100 vehicles per hour, most vehicles 

encountered delay less than 60 seconds.  
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2.4 Chapter Summary and Research Gap 

In the first section of the literature review, a brief review of selected reservation-based 

control algorithms is presented. It was discovered that almost all referenced studies share 

several common limitations. Their methodology is either developed to operate on a single, 

isolated intersection or it requires a high market penetration of technology. In addition, 

majority of reservation-based control algorithms are operating on a first-come-first-served 

(FCFS) rule.  

A comprehensive study conveyed by Levin et al. [21] in 2016 revealed a variety of 

scenarios in which traffic signals outperformed the reservation-based control strategies on 

the arterial roadway. It was found that the fairness of the first-come-first-served reservation 

rule may increase total vehicle delay of an arterial intersection by disrupting the platoon 

progression. This is mainly because the vehicles on the local road requested a reservation 

before vehicles on the arterial submitted their requests undermining the conventional rules 

of corridor coordination.  

To the best of authors knowledge, none of the existing efforts addressed this 

drawback and the presented mobility improvement was detected solely on an isolated 

intersection testbed often ignoring the corridor-wide context. While many authors utilized 

the trajectory-driven control approach where vehicles’ trajectories are manipulated to 

ensure safe and efficient operation, again all reviewed studies fail to observe the corridor-

wide context or do not offer a viable option for low market penetration conditions that are 

inevitably present at the early implementation stages.  

Various SPaT related studies are also presented in the literature review section. The 

two major categories were observed 1) Eco-driving oriented control strategies, 2) Green-
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wave oriented control strategies. Reviewed studies offer an irreplaceable methodological 

and practical contribution by introducing utilization of the SPaT concept, however, all the 

reviewed studies offer a decentralized solution designed for the operation of a single 

vehicle (often tested on a testbed consisted of a single isolated intersection) rather than 

offering a system-wide corridor control.  

This literature review section also presents relevant studies in the field of 

conventional and connected-vehicle based on-line optimization. Although the adaptive 

approach has been proven to bring direct benefits to users and agencies, the operational 

and cost-related disadvantages have been published [45, 46, 47]. The implementation of 

the concept across the globe also revealed significantly lower benefits than those that were 

published while the concept was still in the early development stage. It is well known that 

all adaptive signal control systems inevitably depend on the projections of vehicle arrivals, 

and reliability of the detection system. Sine the nature of the vehicular movement is 

stochastic, the prediction of vehicles’ arrivals is often inaccurate. To remedy mentioned 

problems many authors investigated the utilization of the connected-vehicle environment 

to replace the conventional detection paradigm. However, if large portion of the traffic 

stream is not equipped with a proper communication device, the accuracy of the collected 

parameters (vehicle arrivals, travel time, speeds, queue length etc.) do not represent an 

adequate replacement of the on-line measure and the low penetration conditions still 

encounter the same limitation of the conventional on-line optimization.   
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3 CHAPTER 3 

METHODOLOGY FOR TRAJECTOR-DRIVEN  

OPTIMIZATION AND CONTROL 

 

This chapter discusses methodologies to develop the TOAD algorithm. The overall 

architecture is illustrated and described outlining all necessary components of the system. 

The Trajectory-driven Optimization for Automated Driving (TOAD) is described through 

theoretical, evolutionary-based formulation of the optimization problem, and the control 

algorithm framework.  

The functionality of the algorithm is demonstrated using a numerical example for 

a single and a group of automated vehicles. The proof of concept is conveyed through more 

extensive evaluations presented in the next chapter. The overall methodology with 

performed activities is presented in Figure 1. 

 

 

Figure 3.1 The methodology overview. 
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3.1 Modeling Assumptions 

The methodology presented in this dissertation introduces control strategy for a signalized 

arterial with fixed-timing signals under imperfect market penetration of the connected 

vehicle technology.   The methodology assumes the provision of vehicular parameters (i.e. 

speed and position) by utilizing connected and automated vehicle environment (C/AV). 

Information exchange and proactive adjustment of vehicles’ trajectories is handled by the 

computer system, namely TOAD control agent. The TOAD control agent collects 

necessary vehicular and signal status information from equipped vehicles and traffic signal 

controllers to determine the optimal speed for every automated vehicle in the system, while 

allowing regular, unequipped vehicles, to maintain safe and uninterrupted movement along 

the corridor. Both automated and unequipped vehicles share the same roadway facility, 

however, after the proportion of automated vehicles in the traffic stream exceeds a 

predetermined benchmark point, the inclusion of reserved lanes is possible to increase the 

effectiveness of the control strategy. It is envisioned that the inclusion of the reserved lanes 

is achievable by utilizing overhead signs, and left turn movements through the provision 

of jug-handle configuration. 
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Figure 3.2 Proposed corridor control architecture. 

 

3.2 Trajectory-driven Optimization for Automated Driving (TOAD) Framework 

The methodology assumes that the vehicle trajectory can be defined as a cubic interpolated 

spline allowing flexible accommodation of the trajectory to the given signal timing 

obstacles in the time-distance searching space. An example of the trajectory is illustrated 

in Figure 3.3, where control points 𝑝1(𝑥, 𝑦1) … 𝑝𝑀(𝑥𝑀, 𝑦𝑀) were used for the trajectory 

interpolation. By respecting interpolation and monotonicity rules [58], the trajectory T will 

be produced in the field of real numbers giving the sequence of coordinates in the defined 

coordinate space: 

 
𝑇:     𝑥𝑇 = (𝑥1, … … . , 𝑥𝑛);  𝑦𝑇 = (𝑦1, … … . , 𝑦𝑛)      (3.1) 
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                (a) arrival during red interval                             (b) arrival during green interval 

Figure 3.3 Trajectory defined using cubic interpolation. 
 

The main objective of the trajectory optimization is to minimize the sum of all the 

trajectory curves for vehicles in the control space C. The length of the curve illustrated in 

Figure 3.3, with n number of elements of the trajectory is therefore calculated as the sum 

of Euclidean distances between successive 𝑥𝑖𝑎𝑛𝑑 𝑦𝑖 elements of the trajectory as follows:  

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝐿𝑒𝑛𝑔𝑡ℎ = ∑ √∆𝑥𝑖
2 + ∆𝑦𝑖

2 = ∑ √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2𝑛−1
𝑖=1

𝑛−1
𝑖=1  (3.2) 

where 

∆𝑥 = change in time  

∆𝑦 = change in distance  

 

In order to maintain cruising condition along the green-band of the corridor, and comply 

with the posted speed limit the optimization model is formulated for the corridor with N 

number of vehicles, H number of intersections, and M number of control points for each 

vehicle trajectory, as presented in Table 3.1. The first and the second group of constraints 

was designed to adjust the trajectory curve for two possible cases (Figure 3.3), that is 
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passing during the green interval, 𝐺 starting with the predefined beginning of green (bog) 

(Figure 3.3a) or passing during the red interval, 𝑅  (Figure 3.3b). It is noted that all 

combinations are possible, for example, a vehicle can pass on the green at the first, but 

arrives on the red at the second intersection etc. Described transformation allows nonlinear 

programming algorithms, specifically,  Genetic Algorithm [59] to evaluate all possible 

combinations of a chromosome and determine the best individual that is the most optimal 

vehicle trajectory to minimize total travel time of the corridor while satisfying defined 

safety constraints (Table 3.1).  

The third group of constraints was introduced to adjust the slope of trajectories so 

that they do not violate the speed limit of a road section, taking into consideration current 

distance of a vehicle to intersections. Those distances are denoted as  𝑑1, 𝑑2 … 𝑑𝑀 

representing the distance to the first, second, and 𝑀𝑡ℎ intersection respectively.  

The last group of constraints was designed to prevent the collision of the leading 

and the following vehicle in the control environment by maintaining the safety headway 

denoted in Table 3.1 as h, which is possible as the assumption of the model is that all 

vehicles in the system share their position with the control agent.  
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Table 3.1 Mathematical Model Formulation for the Corridor-level Control Algorithm 

 

 

3.3 TOAD Control Algorithm 

The overall optimization framework is illustrated in Figure 3.4. The procedure starts by 

collecting the distance to all intersections downstream of the vehicle and speed information 

of the first vehicle 𝑗 = 1 followed by the collection of the current signalization status. The 

signal status includes the beginning of green (bog) for the next several cycles of all corridor 

intersections as illustrated in the time-space diagram in Figure 3.3. With known position 

and signalization information the GA algorithm described in the previous section is 
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executed to manipulate a chromosome consisted of control points 𝑝1 … 𝑝𝑀 until the optimal 

solution comprising the best possible individual is produced. After storing the best 

individual into the pool of solved trajectories 𝑇1 … 𝑇𝑛 its position is further included into 

the constraint of the next vehicle 𝑗 = 2  to avoid violation of the safety headway (h) and 

collision of the two successive vehicles. The procedure is further continued until the 

trajectory is determined for the last vehicle = 𝑁  . After creating the most desirable 

predictive trajectory for the last vehicle, the information is returned to the control agent for 

the immediate execution after which the new iteration of the control algorithm is started 

again updating all necessary information and generating updated trajectories for vehicles 

𝑗 = 1, … , 𝑗 = 𝑁. 

 

Figure 3.4 Control algorithm framework. 
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3.4 Numerical Example 

This numerical example illustrates the procedure of evaluating the fitness of an individual 

for the proposed evolutionary optimization algorithm. Let there be a signalized corridor 

with three signalized intersections and a speed limit of 55 mph (24.8 m/s) Assumed green 

interval of each intersection is 20, 30, and 25 seconds, followed by the red interval of the 

same length, for intersections one to three respectively. The lengths of the corridor links 

are 1,640 ft (500 meters), between intersections one and two, and 1,312 ft (400 meters) 

between intersections two and three. 

There is a vehicle 2,788 ft (850 meters) from the stop bar of the first intersection.  

This example illustrates evaluation of the feasibility for a given trajectory for the vehicle 

with initial values 𝑥1 = 0, 𝑥2 = 110,  𝑥3 = 110, 𝑥4 = 155,   𝑥5 = 155, 𝑥6 = 210,  𝑥7 =

227 

Due to the described corridor geometry following distance values are known:  

𝑦1 = 0,  𝑦2 = 850, 𝑦3 = 850,  𝑦4 = 𝑦5 = 850 + 500,   𝑦6 = 𝑦7 = 850 + 500 + 400 

For the first vehicle 𝑗 = 0 and H=3 since there are three intersections downstream of the 

vehicle. Therefore, decision variables will be indexed as follows for the constraint group 

1. This constraint group 1 (Table 3.1) is being utilized for the vehicle arrival during the 

green interval at intersections 1 and 2.  Correspondingly, the constraint group 2 is utilized 

at intersection 3 as the vehicle arrives within the red interval at this intersection: 

𝑋2+(2∗3+1)∗0−𝑋3+(2∗3+1)∗0 = 0; 𝑋2+(2∗3+1)∗0 ∈ 𝐺1𝑢      ∀𝑗 ∈ 𝐶 

𝑋4+(2∗3+1)∗0−𝑋5+(2∗3+1)∗0 = 0; 𝑋5+(2∗3+1)∗0 ∈ 𝐺2𝑢      ∀𝑗 ∈ 𝐶 

𝑋6+(2𝐻+1)∗0−𝑋7+(2∗3+1)∗0 = 0; 𝑋6+(2∗3+1)∗0 ∈ 𝐺3𝑢      ∀𝑗 ∈ 𝐶 

or 
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𝑋2−𝑋3 = 0; 𝑋2 ∈ 𝐺13 

𝑋4−𝑋5 = 0; 𝑋5 ∈ 𝐺23 

−𝑋7 + 𝑏𝑜𝑔
35

≤ 0; 𝑋6 ∈ 𝑅35 

 

The signal timing constraints are defined as follows: 

1) 𝑥2 − 𝑥3 = 0, 𝑎𝑛𝑑 𝑥2 = 110 𝑠𝑒𝑐 ∈ 𝐺13 = [100,120] which is the green interval of the 

third cycle at intersection 1,  

2) 𝑥4 − 𝑥5 = 155 − 155 = 0 𝑠𝑒𝑐, 𝑎𝑛𝑑 𝑥3 = 155 𝑠𝑒𝑐 ∈ 𝐺23 = [150,180]  which is the 

green interval of the third cycle at intersection 2 

3) 𝑥7 ≥ 𝑏𝑜𝑔35 = 225 𝑠𝑒𝑐, 𝑠𝑖𝑛𝑐𝑒 𝑥6 ∈ 𝑅35 = [200,225] which is the red interval of the 

fifth cycle at intersection 3 

The observed individual satisfies signal timing constraints (constraint groups 1 and 2). 

In order to assure the compliance with the posted speed limit, following constraints are 

evaluated (constraint group 3): 

𝑑1/(𝑋
2+(2𝐻+1)𝑗

− 𝑋1+(2𝐻+1)𝑗) ≤ 𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡 

𝑑2/(𝑋
4+(2𝐻+1)𝑗

− 𝑋3+(2𝐻+1)𝑗) ≤ 𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡 

𝑑3/(𝑋
6+(2𝐻+1)𝑗

− 𝑋5+(2𝐻+1)𝑗) ≤ 𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡 

 

Therefore, this set of constraints is also satisfied because of the following: 

1) 𝑥2 − 𝑥1 = 110 sec 𝑎𝑛𝑑 110 𝑠𝑒𝑐 ≥
850 𝑚

24.8
𝑚

𝑠

 

2) 𝑥4 − 𝑥3 = 110 sec 𝑎𝑛𝑑 45 𝑠𝑒𝑐 ≥
500 𝑚

24.8
𝑚
𝑠
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3) 𝑥6 − 𝑥5 = 110 sec 𝑎𝑛𝑑 55 𝑠𝑒𝑐 ≥
400 𝑚

24.8
𝑚
𝑠

 

A cubic interpolated curve will be calculated by respecting the interpolation and 

monotonicity rules for the control points: 

𝑝1(0,0),     𝑝2 = 𝑝3(110,850),    𝑝4 = 𝑝5(155,1350),    𝑝6(210,1750),    𝑝7(227,1750), 

and it is resulting in the interpolated cubic curve with 46 interpolation points illustrated in 

Figure 3.5. 

 

Figure 3.5 Evaluated cubic interpolated trajectory. 
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Therefore, the fitness function value will be calculated for the given trajectory as follows: 

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝐿𝑒𝑛𝑔𝑡ℎ = ∑ √∆𝑥𝑖
2 + ∆𝑦𝑖

2 = ∑ √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2𝑛−1
𝑖=1

46
𝑖=1 =1760.02 

As the preceding vehicle does not exist in this numerical example the fourth group of 

constraints is not presented, but it is utilized in the control algorithm when information 

about the preceding vehicle is available.  

The problem formulated in the previous section was also demonstrated using a 

realistic scenario where a platoon consisted of N=25 vehicles is passing through the same 

corridor. This time MATLAB 2015b [60] was used due to the complexity of the 

optimization problem.  

  The leading vehicle of the platoon was 2,788 ft (850 meters) from the stop bar of 

the first intersection, and the last vehicle was 3,215 ft (980 meters) from the stop bar. 

Vehicles in-between had assumed headway of 10-16 ft assigned randomly. 

The problem was successfully solved using Genetic Algorithm (GA) programmed 

in MATLAB 2015b [60] with the population size of 50. The program successfully returned 

an optimal solution after evaluating 43 generations and 1344 different individuals, with 

CPU time less than 120 seconds. It is noted that this numerical example represents only 

one iteration of the TOAD control algorithm. For the evaluation purpose, the same solution 

will be executed in the second-by-second fashion, every time updating vehicle speed and 

positions. The optimal solutions with corresponding vehicular trajectories are illustrated in 

Figure 3.6. 
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Figure 3.6 Optimal trajectories for a platoon of 25 automated vehicles. 

 

3.5 Proof of Concept and Test Bed Development 

The simulation test-bed used in this paper integrates 1) calculations and optimization solver; 

2) microscopic traffic simulator. While microscopic simulator provides vehicular 

information for each individual vehicle in the network (i.e. distance to the stop bar, current 

vehicle speed, and signalization status), optimizer solves a non-linear optimization problem 

with the data input obtained for each individual vehicle. To adequately implement both 

tasks mentioned above, the optimizing task is handled by MATLAB [60] and microscopic 

traffic simulator PTV VISSIM [61] where the exchange of information between MATLAB 

and VISSIM is conveyed through Common Object Model (COM) [62]. As illustrated in 

Figure 3.7, the executive code written in Microsoft C# serves as a control agent instance, 
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synchronizes information flow, combines parameters obtained from both platforms, and 

executes the optimal trajectories determined by the algorithm in the microsimulation.  

 

Figure 3.7 Simulation test bed framework. 

 

3.5.1  Test Bed 1: US-1 in Princeton, NJ 

The first test bed location (Figure 3.8) selected for the system evaluation is located in 

Princeton Township, New Jersey. A section of US-1 in Mercer County, between Carnegie 

Center Boulevard and Ridge Road, is about 5 miles long, with mainly six lanes in two 

directions. Coordinated intersections include jug-handle ramps with no left turns allowed 

from the mainline (i.e., US 1). The roadway has a speed limit of 55 mph. The corridor has 

numerous jughandle ramps allowing restriction of left turns from the mainline of the 

corridor.  
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Figure 3.8 VISSIM model for selected test corridor in Princeton, New Jersey. 

 

The VISSIM simulation model was developed and calibrated using multiple traffic 

counts and travel time data sources. The developed simulation model was calibrated and 

fine-tuned to represent the actual field conditions. Travel time was selected as an index of 

comparison. The field travel time data obtained from GPS equipped probe vehicles were 

used as ground truth travel time. VISSIM provides a possibility of using 25 different 

variables for the purpose of calibration; however, the number of combinations for the 25 

parameters is enormous. Therefore, the Quasi Monte Carlo (QMC) algorithm was applied 

to reduce the number of combinations down to a reasonable level. After multiple simulation 

runs were conducted using QMC based parameter sets, the parameter values were 

calibrated and selected as illustrated in Table 3.2. The travel time results obtained from the 

calibrated VISSIM model were compared again to the ground truth travel times.  
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Table 3.2 Calibrated Parameter Values 

Variable Name Value 

Accepted deceleration (own) -0.58 

Accepted deceleration (trailing vehicle) -7.48 

Amber behavior alpha 1.51 

Amber behavior beta 1 -0.26 

Amber behavior beta 2 0.68 

Maximum cooperative deceleration -11.37 

Deceleration reduction distance (own) 171.47 

Deceleration reduction distance (trailing vehicle) 329.16 

Look ahead distance (maximum) 268.65 

Look ahead distance (minimum) 251.69 

Look back distance (maximum) 405.13 

Look back distance (minimum) 89.17 

Maximum deceleration (own) -3.97 

Maximum deceleration (trailing vehicle) -8.54 

Minimum headway 2.00 

Safety distance reduction factor (lane change) 0.48 

Safety distance reduction factor (signals) 0.32 

Safety distance reduction factor end (signals) 194.46 

Safety distance reduction factor start (signals) 215.53 

Temporary lack of attention - sleep duration 1.37 

Temporary lack of attention - sleep probability 0.13 

W74ax: Average standstill distance  

(Wiedemann 74) 

3.61 

W74bxAdd: Additive factor for security distance  4.09 

W74bxMult: Multiplicative factor for security distance 2.34 

Desired Speed Distribution Number 2.10 

 

 

The comparison between the ground truth and the simulation data is presented in 

Figure 3.9.  
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Figure 3.9 Comparison between ground truth and simulation travel time results. 

 

3.5.2 Test Bed 2: US-1 in Woodbridge, NJ 

Due to the different geometrical and traffic volume characteristics, the second testbed was 

developed to provide additional proof of the algorithm functionality. This corridor is 

characterized by different lengths of the corridor links, and slightly different volume rates 

in the observed time period. In addition, this corridor contains an isolated intersection and 

an intersection without a jughandle ramp. The second test corridor is presented in Figure 

3.10. The test bed selected for the system evaluation is located in Woodbridge Township, 

New Jersey. A section of US-1 in Middlesex County, between Gill Lane and Prince Street, 

is about 4 miles long, with mainly seven lanes in two directions (four lanes north-east, and 

three lanes south-west direction). Coordinated intersections include jughandle ramps with 

no left turns allowed from the mainline (i.e., US 1). The roadway has a speed limit of 55 

mph.  Traffic volume and signal timing data were obtained directly from the New Jersey 

Department of Transportation (NJDOT).  
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Figure 3.10 VISSIM model for selected test corridor in Woodbridge, New Jersey. 

 

3.6 Experimental Scenarios  

The simulation results comprise eleven different market penetration conditions (0%-100%, 

in 10% increments) and were examined with five consecutive simulation runs for both 

testbed locations. Some more detailed information about simulation scenarios and 

simulation results are provided in the following section. To assess benefits of the proposed 

control strategy, the mobility performance measures (average total travel time for the whole 

network) were collected and compared with base-case conditions.  

 

3.7 Simulation Results for Testbed in Princeton, New Jersey  

To properly estimate potential benefits of proposed TOAD control algorithm, the real-

world volume, turning movement, and signal timing data was obtained for a typical 

weekday and a time period from 1 PM to 3 PM.  Eleven different market penetration 
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conditions (0%-100%, in 10% increments) were examined with five consecutive 

simulation runs totaling in 55 simulation runs. The average corridor travel time 

measurements comprise values of both southbound and northbound directions. The 

aggregated simulation results are illustrated in Figure 3.11.  

 

Figure 3.11 Simulation results for different market penetration and lane configurations 

 

During the evaluation, it was observed the overall travel time of the corridor 

decreases with an increased market penetration rate of TOAD control strategy. Low market 

penetration rates (i.e. 0%-30%) of automated vehicles produced marginal reductions in 

overall corridor travel time ranging from 0.3% to 1.5%. Benefits are more visible with the 

percentage of automated vehicles higher than 30% resulting in 3.4% reduction in travel 

time with 30% of automated vehicles in the traffic stream. The travel time savings for a 

corridor with 100% of automated vehicles achieved almost 12% of travel time reduction 
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under given volume conditions presented in Table 3.3. Most of the intersections on this 

corridor except US1 at Fisher Place operated under the level of service B.  

Table 3.3 Traffic Conditions on the Test Corridor in Princeton, NJ  

 

Intersection 
Ridge 

Road 
Independence 

Way 
Lower 

Harrison 

Street 
Fisher 

Place 
Washington 

Road 
Carnegie 

Center 

Boulevard 

LOS B B B C B B 

V/C Ratio 0.42 0.45 0.38 0.45 0.43 0.41 

 

 

Table 3.4 summarizes average corridor travel times for TOAD-equipped and 

unequipped vehicles. Expectedly, the TOAD vehicles achieved lower travel times by 0.1-

6.0% depending on market penetration level. The difference between equipped and 

unequipped vehicle’s travel time is larger as market penetration level increases. Also, the 

travel time of both vehicle types decreases with market penetration rate as TOAD vehicles 

generally influence the movement of unequipped vehicles. This influence is present at 

higher market penetration rates when automated vehicles are predominant in the traffic 

stream and unequipped vehicles are often forced to follow automated vehicles while facing 

indirect benefit of the TOAD optimization. For small market penetration levels, the 

difference between automated and unequipped vehicles is smaller as the prevailing nature 

of unequipped vehicles in the stream obstruct automated vehicles, further decreasing 

compliance with optimal trajectories generated by control agent.  
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Table 3.4 Average Travel Times for Different Vehicle Types (seconds) 

Market 

Penetration 

 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Equipped 

Vehicles 

 
n/a 304.7 302.3 296.6 294.0 286.4 280.4 277.0 275.3 270.5 270.3 

Unequipped 

Vehicles 

 
305.8 304.9 305.4 304.9 296.2 293.6 292.5 290.4 291.4 287.8 n/a 

Difference 

(%) 

 
n/a 0.1 1.0 2.7 0.7 2.4 4.2 4.6 5.5 6.0 n/a 

 

 

In addition to described benefits, it is also evident  from Table 3.4 that travel time 

for unequipped vehicles decreases with market penetration of automated vehicles. The 

decrease in travel time of unequipped vehicles is an indirect benefit. Equipped vehicles 

make influenece on unequiped vehicls, and this infuelnce is higher as market penetration 

increases. One example of the infuelnce are unequiped vehicles following equiped vehicles, 

which is further rsulting in decreased number of stops. This allows unequiped vehicles to 

indirectly benefit from the TOAD management strategy, however, automated vehicles still 

outperform unequipped vehicles. Another reason for the indirect benefit of unequipped 

vehicles is the overall mobility improvement of the signalized facility where corridor 

throughputs, number of stops, and vehicle delay decrease with market penetration rate, 

allowing more vehicles to be served with less delays. This represents an important fact 

from the aspec of equity, allowing TOAD management strategy to be implemented without 

negative impact on unequipeed vehicles.   

 

3.8  Simulation Results for Testbed in Woodbridge, New Jersey  

Just as in the previous case, a typical weekday and a time period from 1 PM to 3 PM was 

observed. Again, eleven different market penetration conditions (0%-100%, in 10% 

increments) were examined with five consecutive simulation runs, totaling in 55 simulation 

runs. The results include average corridor travel time measurements of both southbound 



50 

and northbound directions. Traffic conditions used for the test, are presented in Table 3.6. 

Again, the low market penetration rates (i.e. 0%-30%) of automated vehicles produced 

marginal reductions in overall corridor travel time ranging from 0.04% to 0.4 % depending. 

The improvement becomes visible after 30% technology penetration and it gradually 

increases until the corridor achieves 100% of market penetration. Under 100% of market 

penetration and under the described traffic conditions the highest possible travel time 

reductions are 9%. Average corridor-wide travel times for different market penetration 

reveals similar trends to those observed at the first test location, however, the magnitude 

of the travel time reductions is slightly lower for the test location in Woodbridge.  

 

Figure 3.12 Simulation results for different market penetration and lane configurations 

 

By observing differences between the two vehicle types, presented in Table 3.5, it 

is again confirmed that this difference is more visible as market penetration increases. 
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Although the second testbed location has different geometrical and signal timing 

characteristics, this finding is consistent with the one detected on the first testbed locations.   

Table 3.5 Average Travel Times for Different Vehicle Types (seconds) 

Market 

Penetration 
 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Equipped 

Vehicles 
 n/a 308.9 303.8 304.4 298.0 294.6 285.6 284.0 283.0 282.2 282.3 

Unequipped 

Vehicles 
 310.2 310.2 311.2 311.0 305.0 302.0 298.0 300.0 299.5 300.3 n/a 

Difference 

(%) 
 n/a 0.4 2.4 2.1 2.3 2.4 4.2 5.3 5.5 6.0 n/a 

 

 

It can be inferred from Table 3.5 that travel time of unequipped vehicles decrease 

with market penetration of automated vehicles. Although the decrease is marginal for 

unequipped vehicles, it assures this vehicle group is not affected by proposed management 

strategy, confirming previously described equity aspect of the TOAD control methodology. 

Traffic conditions correspond to those observed at the first test bed location and 

include the level of service of B and C. The detailed intersection performance and volume 

conditions applied in the simulation are summarized in Table 3.6.   

Table 3.6 Traffic Conditions on the Test Corridor in Woodbridge, NJ 

 

Intersection 
Gill 

Lane 
Ford Avenue Parsonage 

Road 
Grandview 

Avenue 
Prince Street 

LOS B C B C B 

V/C Ratio 0.39 0.49 0.45 0.49 0.40 

 

 

It must be noted that the benchmark point when the reserved lane is introduced is 

extremely important. For the observed locations, the inclusion of a dedicated lane in 

conditions where the number of automated vehicles in the traffic stream is low  

(e.g., 5-10 %) will most likely undermine the system performance. The main reason can be 



52 

found in a fact that, in described conditions, the general traffic would operate with 

significantly reduced capacity, while automated vehicles have not yet started achieving 

visible travel time reductions on a corridor level. On the other hand, correct manipulation 

of the lane configuration will result in significantly better operation of the corridor as 

illustrated in Figure 12 and 13. 

 

3.9 Chapter Summary 

This chapter describes methodology applied to develop a trajectory-driven control 

algorithm for automated driving on the signalized corridor. The algorithm designed to work 

with imperfect market penetration rates was tested through series of simulations. The 

proposed algorithm was successfully simulated on two test bed locations indicating up to 

12% of corridor-wide travel time reductions. It was also discovered that the proposed 

algorithm provides visible results only after technology penetration reaches 30%. The 

optimization methodology presented in this chapter does not utilize information about 

prevailing traffic conditions for better vehicle arrival prediction. The inclusion of 

prevailing traffic conditions into the proposed framework is necessary to achieve more 

realistic and more accurate vehicle trajectories. This parameter was not included in this 

initial control algorithm assessment, therefore, the methodology to detect, predict, and 

incorporate the parameter is presented in the next chapter of this dissertation.  

The comparison between equipped and unequipped vehicles revealed improvement 

for both vehicle groups. The mobility improvement of unequipped vehicles is caused by 

an indirect influence of equipped vehicles and it increases with market penetration of the 

technology. Application of the TOAD algorithm improves overall mobility performance 
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of the facility by decreasing average travel time, vehicle delay, and increasing overall 

throughput. All this produces better performance of both equipped and unequipped 

vehicles allowing TOAD control management to achieve it’s benefits without affecting 

user equity.   
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4 CHAPTER 4 

PREVAILING TRAFFIC CONDITIONS AND ARTIFICIAL  

INTELLIGENCE MODEL 

 

4.1 Short-term Prediction of Prevailing Traffic Conditions  

and Trajectory Adjustment 

The inclusion of predicted vehicle delay  is essential for a realistic trajectory generation. 

Without predicted vehicle delay, application of the generated trajectory is challenging as 

the vehicle cannot fully achieve assigned speed profile due to the influence of downstream 

traffic. The prevailing traffic conditions can be directly measured using conventional data 

collection devices such as loop detector, Remote Traffic Microwave Sensor (RTMS), video 

detection, Bluetooth or Wi-Fi sensors. Those devices provide instantaneous information 

with respect to prevailing traffic volumes, spot speed, or travel time.  

Although prevailing traffic conditions devices are highly accessible in the current 

state of technology, it is often not possible to have data collection devices densely deployed.  

Devices that are not densely deployed provide information suitable for the vehicle control, 

only to automated vehicles that are in the near proximity to those sensors. Vehicle located 

far from data collection points (i.e. 1-2 miles upstream) would not receive accurate 

information as traffic conditions are likely to change by the time they arrive at the data 

collection point. 

In order to have a reasonable number of data collection points, but still, provide 

accurate information about prevailing traffic conditions it is necessary to incorporate a 

short-term prediction of the traffic parameters for vehicles entering the control space. That 

way, the costs of having densely deployed detectors can be significantly decreased.   
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To adequately adjust predicted vehicle trajectory to prevailing traffic conditions on 

downstream links a predicted vehicle delay information can be incorporated into existing 

trajectory generation framework. Figure 4.1 illustrates an ideal vehicle trajectory and an 

adjusted (realistic) trajectory altered with respect to predicted vehicle delay on downstream 

link. When the predicted delay is not included in the constraint function, the maximum 

velocity is equal to the free flow speed. This would often result in the undermined 

performance of the control algorithm as the algorithm will assume speeds that are not 

achievable in the given traffic conditions. The described trajectories would be additionally 

corrected by the fourth constraint group from Table 3.1 in order to avoid collision with the 

preceding vehicle, but would not provide an ideal trajectory prediction. 

4.1.1 Application of Artificial Neural Networks for Short -term Prediction 

Artificial neural network (ANN) algorithms are frequently used to perform nonlinear 

statistical modeling used for developing predictive models. This type of statistical models 

generally offer ability to implicitly detect complex nonlinear relationships between 

dependent and independent variables, and ability to detect all possible interactions between 

predictors [63].  

Although prediction problem described in this section can be solved using some of 

the most widely used models (i.e. ARIMA time-series, Box-Jenkins, Kalman filtering, etc.), 

some studies indicate varying performance during congested periods  [64]. 

Aforementioned models also include the smoothing of input data over long time intervals 

(i.e., 5 minutes) which can produce poor performance in short-term predictions [65]. On 

the other hand, numerous studies successfully applied ANN models for short-term 
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prediction of traffic flow parameters [65] [66] [67] showing sufficiently high prediction 

accuracy suitable for traffic operations and signal control.  

To allow accurate short-term prediction of vehicle delay, an Artificial Neural 

Network (ANN) trained with available traffic stream factors is designed and presented in 

the following section. This short-term prediction model alleviated two potential challenges 

of the TOAD algorithm:  

1) The necessity for the dense detector deployment,  

2) Improved trajectory prediction.  

 

Figure 4.1 Trajectory with and without prevailing traffic constraints.  

 

4.2 Neural Network Model for Short Term Vehicle Delay Prediction  

To adequately estimate delays caused by prevailing traffic conditions, an Artificial Neural 

Network, specifically Multilayer Layer Perceptron (MLP) Network has been trained with 

known traffic flow and signalization parameters. MLP is a supervised learning algorithm 
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that utilizes a training dataset also known as a set of features and a target parameter to be 

predicted. The input features form a set of neurons further transformed in the hidden layer 

with weighted linear summation followed by a non-linear activation function. The purpose 

of the developed model is to predict delay over the horizon of 200 seconds, allowing 

described adjustment of the vehicle trajectory. MLP networks solve problems 

stochastically allowing accurate solutions for non-linear function approximation, 

regression, and classification tasks. Since delay prediction is based on real-time 

information for spot speed, volume rate, travel time, number of lanes, and signalization 

status, the model uses those parameters as a set of neurons to represent input features. A 

comprehensive training set includes a wide range for all input features covering all possible 

traffic scenarios that a vehicle may encounter in the observed signalized corridor. The 

comprehensive training set also contains all possible combinations of the input features 

resulting in a wide range of the target feature (vehicle delay) making this prediction 

problem adequate for classification algorithms.  

4.2.1 Initial ANN Model Design 

In MLP neural network models, the inputs are multiplied by weights followed by the 

summation and addition of the constant bias term. The result is further used by the 

activation function that is either hyperbolic tangent (tanh) or a sigmoid function. As 

described before, the short-term prediction using ANN model is achieved using the 

following parameters obtained from the microsimulation model for signalized corridor: 

1. Spot speed obtained from loop detector or RTMS device 

2. Vehicle counts from loop detector or RTMS device 

3. Travel time obtained from Bluetooth or Wi-Fi sensors 
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4. And signal setup (i.e. green interval length) obtained from the controller 

To successfully predict vehicle delay based on provided input parameters, a 

multilayer network with several nodes connected in series and parallel needs to be formed 

as illustrated in Figure 4.2.  

 

Figure 4.2 Multilayer MLP network for the proposed ANN model. 

 

To produce an accurate neural network allowing satisfactory MLP network 

performance, the training and preparation of the network represent a data fitting task, where 

parameters to be updated are weights (W) and biases (b). Determination of the two 

parameters is achieved using learning or teaching algorithm. Two most frequently used 

methods are back-propagation and Levenberg-Marquardt algorithms. The task can only be 

completed using a set of high fidelity training parameters that will provide a robust 

parameter estimation. The procedure of network training used for the prediction of vehicle 

delay comprises the following steps: 

1) Step 1: Aggregation and collection of the training data 

2) Step 2:  Model training (including determination of network size, training algorithm, 

and training performance) 
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3) Step 3: External validation using experimental setup for testing in microsimulation 

platform 

Some more details with respect to the determination of the measured dataset are described 

in the following section.   

4.2.2 Aggregation of the ANN Training Set  

Training set for the vehicle delay prediction model was generated using microsimulation 

model in PTV VISSIM. The network geometry used for this purpose correspond to the 

network previously used in simulation assessment.  

 

Figure 4.3 Network segment for training set data collection in PTV VISSIM. 

 

To collect all necessary training set parameters, the simulation setup was formed as 

illustrated in Figure 4.3. The data collection nodes were placed on each corridor segment 

to collect vehicle delay for all evaluated scenarios. Travel time measurements were also 

deployed to measure travel time values for each corridor segment. Data collection points 
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were in the middle position of every link to collect vehicle counts and spot speed for each 

corridor segment. To produce a comprehensive training set, a wide variety of input and 

output parameters had to be covered. Therefore, the training set was generated through 

following scenarios: 

Table 4.1 Scenarios for Training Set Generation 

Simulation Factor Range Increment Scenarios / Factor 

Input Volume Rate 100-6500 veh/h 100 65 

Green interval length 10-100 sec 10 10 

  
Total Number 

of Scenarios 
650 

 

As presented in Table 4.1, volume rates ranging from 100 to 6500 veh/hr with an 

increment of 100 vehicles per hour produced 65 different simulation scenarios. The green 

interval for the mainline approaches ranging from 10 to 100 seconds in 10-second 

increment was applied to all 65 volumes scenarios totaling in 650 simulation runs. The 

main purpose of such an intensive scenario generation was to cover training parameter 

ranges to the greatest possible extent. Through 650 microsimulation scenarios, a wide 

variety of parameter values were covered: the range of values, for each model input, is 

illustrated in Figure 4.4. In addition to the four training inputs, the data set also covered 

mainline green interval length from 10-100 seconds in 10-second intervals. As illustrated 

in the individual value plot presented in Figure 4.4, the dataset covers almost all delay 

values from 0 to 2000 seconds and spot speeds from 10 to 100 kilometers per hour. Travel 

times are covered for values between 30 and 1900 seconds per link. 
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Figure 4.4 Individual value plot for collected training parameters. 

 

4.2.3 Definition of Network Size and Training Performance 

The first step of the training procedure was to initiate an ANN network with some small 

number of hidden layers which can later be increased depending on training performance. 

With some initial network size, the weight and bias values are also initiated through random 

assignment. The size of validation and test samples were assumed to be 15% of the original 

dataset for each, leaving 70% of the dataset to be used for actual training.  

 With this initial setup, the training is conducted, and the mean squared error (MSE) 

is recorded to determine the performance of the training. The error is basically computed 

using validation and training datasets and is an essential indicator of the training 

performance. The complete training framework is illustrated in Figure 4.5. 
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Figure 4.5 Network training framework. 

 

After an initial training is conducted, the MSE value is compared with some 

arbitrarily determined threshold. If the MSE value is below the expected threshold the next 

step is to increase the network size (number of hidden layers) followed by retraining of the 

network. Once the assigned network size is tested it is necessary to check if there is a rising 

trend in MSE value of the model. If that is the case, the framework suggests trying another 

training algorithm while keeping the record of all previous training iterations. The same 

steps are repeated for different training algorithm finding the best possible performance. 
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Once the optimal point for network size and training algorithm type is found, the model is 

finalized. For this purpose, three different training algorithms were tested including: 

1) Levenberg-Marquardt Training Algorithm 

2) Bayesian Regularization Algorithm 

3) Scale Conjugate Gradient Approach 

Figure 4.6 illustrates the performance of the described training algorithms for 

different network size. It was discovered that the best training performance was achieved 

using the Levenberg-Marquardt Training Algorithm producing the following final outcome: 

1) MSE= 0.1 

2) 633 training epochs 

3) 25 hidden layers 

 

Figure 4.6 Training performance for different training algorithm types. 

 

Optimal network size for this training algorithm was achieved using 25 hidden 

layers, and a further increase in network size gave no improvement in terms of model 

accuracy. The second-best training algorithm for the delay prediction was Bayesian 
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Regularization, while Scale Conjugate approach achieved significantly less effective 

training performance.   

Figure 4.7 illustrates training performance of described network setup. The 

smallest MSE value was achieved at 633rd iteration.  

 

Figure 4.7 Training performance using Levenberg-Marquardt algorithm. 
 

Figure 4.8 illustrates the distribution of absolute training error. It can be inferred 

from the graph that the error ranges from -1.41 to 1.18 seconds. However, the majority of 

records had an absolute error of -0.0005 seconds and -0.23 seconds, respectively.  
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Figure 4.8. Distribution of absolute validation errors for Levenberg-Marquardt 

algorithm. 

 

4.2.4 External Model Validation Assessment 

External validation performed through microsimulation assumes the exposure of the 

trained network to an experimental setup with various traffic and signal timing conditions. 

The validation assessment reveals the possibility of the model to achieve an adequate 

generalization as it is tested with data inputs different from those utilized for training.  

The experimental setup in through microsimulation include the following elements: 

1) Microsimulation model for signalized corridor in PTV VISSIM 

2) VISSIM data collection tool (i.e., evaluation node) for the collection of 

individualized vehicular parameters (i.e., vehicle delay) 
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3) Travel time measurements for each corridor link 

4) One mid-block detector (data collection measurement) for retrieval of vehicle 

counts and speeds 

5) ANN model for prediction of the delay caused by prevailing traffic conditions 

 

Figure 4.9 Experimental setup for the model validation in VISSIM. 

 

The experimental setup allows instantaneous collection of vehicular data. In 

particular, the delay experienced by each individual vehicle is of special interest for this 

evaluation. Such data is obtained through VISSIM direct data output features where 

individualized data is stored in an external database. Once the vehicle enters the corridor, 

a prediction model is initiated and predicted delay value together with vehicle ID number 

is recorded. Such information is later used for the comparison of predicted versus actual 

vehicle delay. Once the simulation is completed, it was possible to compare individual 

vehicular record that stores information for delay experienced on every evaluation node in 
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the network. With known vehicle ID, the predicted delay value delivered to a vehicle upon 

his entrance to the VISSIM network was compared to the actual delay experienced by the 

vehicle and detected by the evaluation node located downstream of the entry point.  

After 3600 seconds of simulation with calibrated simulation model described in 

Chapter 3, the comparison revealed an excellent correlation between predicted and 

measured vehicle delay. With isolated vehicular data, the regression plot illustrated in 

Figure 4.10 was created showing the R-squared value of 0.99.   

 

Figure 4.10. Correlation between predicted and measured vehicle delay values. 

 

The described procedure confirmed the correctness of the model training process. 

The next step in the evaluation of the proposed control strategy assumes integration of the 

prediction tool into existing control algorithm for automated vehicles. The predicted 

vehicle delay can be added to the constraint function of existing TOAD algorithm. Some 
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more details regarding integration of the prediction model and its impact on overall 

performance of the TOAD control algorithm are presented in the next section.  

 

4.3 Integration of the Prediction Model into Existing TOAD Algorithm 

The delay caused by prevailing traffic on a signalized corridor is integrated into existing 

TOAD algorithm structure to constrain the range of possible trajectories. The purpose of 

incorporating such a constraint is to provide a more accurate prediction of vehicle arrival, 

therefore making optimization more effective. Trajectories generated without 

consideration of the prevailing traffic are applicable in the simulation, however, such 

predictions are assuming that no vehicle delay is present along the corridor.   

With the inclusion of the predicted vehicle delay, the algorithm receives more 

accurate information regarding vehicle arrival at the intersection stop bar, eliminating the 

correction of the trajectory in the later update iteration of the algorithm. The integration of 

the prevailing traffic prediction requires the following activities: 

1) Inclusion of the vehicle delay produced by the prediction model into existing 

constraint function 

2) The inclusion of the real-time data collection from the mid-block and travel time 

detectors to feed the prediction model in every simulation step of the 

microsimulation platform. 

The formulation of the optimization model presented in Table 3.1 in Chapter 3 is 

based on the adjustment of control points of the interpolated trajectory curve with respect 

to four groups of constraints (i.e., signal timing, speed limit, and preceding vehicle 

constraints). An additional constraint can now be added to adjust control points to conform 
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with prevailing traffic conditions. With known predicted delay while using the same 

notation presented in Table 3.1 in Chapter 3, the constraint can be defined as follows: 

𝑋2+(2𝑁+1)𝑗 − 𝜃1 ≤ 0 

𝑋4+(2𝑁+1)𝑗 − 𝜃2 ≤ 0 

𝑋6+(2𝑁+1)𝑗 − 𝜃3 ≤ 0 
                                                                              .  .  . 

𝑋𝑀+(2𝑁+1)𝑗 − 𝜃𝑀 ≤ 0 

Where, 

 

𝑋𝑀+(2𝑁+1)𝑗  represent a time dimension of the M-th  control point for trajectory covering 

N number of intersections and vehicle j, defined in Chapter 3 

 

𝜃𝑀    represent a predicted vehicle delay on the corridor link corresponding to control 

point M. 

The overall information flow with integrated vehicle delay prediction is illustrated 

in Figure 4.11.  

 

Figure 4.11 Information flow for optimization algorithm with predicted delays. 
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4.4 Inclusion of the Left-Turn Trajectories into the Existing Control Framework 

The optimization method presented in Chapter 3 does not distinguish left turning vehicles 

as a separate group of controlled vehicles. Their trajectories were optimized with respect 

to the state of the signalization for through movements and distances to the stop bar of the 

major street approach. In such control setup, vehicles making left turns are exiting the 

control space, and are removed from the system once they step on the links representing 

the minor street. Such concept was improved by including information about vehicles static 

route into the existing control logic. The routing information is shared with the control 

agent once the vehicle accepts routing decision assigned to the left turn. Such vehicle signal 

timing information is followed by the corrected remaining distance to the stop bar of the 

jughandle ramp since left turns are executed through them throughout the whole corridor. 

To calculate remaining distance to the stop bar in this special case, the total length of 

jughandle (𝑙𝑗𝑔) is added to the remaining distance to the jughandle ramp (𝑑𝑗𝑔) as illustrated 

in Figure 4.12. The new, adjusted remaining distance calculates as: 

𝑑 = 𝑙𝑗𝑔 + 𝑑𝑗𝑔     (4.1) 

  Aforementioned information improves the accuracy of the predicted arrival time 

for left turning vehicles. By adjusting their trajectory adequately, this group of vehicles 

utilizes signal status for the opposing phase allowing them to minimize the overall travel 

time and stopping condition as much as possible. The described adjustment is illustrated in 

Figure 4.13 where the final control point is assigned by respecting jughandle geometry and 

the corresponding signal timing phase serving the minor street link (i.e. jughandle 

approach).  
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Figure 4.12 Remaining distance for left turns. 

 

In the simulation environment, the routing information is retrieved using route 

number attribute of the vehicle object through VISSIM COM.  

 

Figure 4.13 Optimal trajectory of a left turning vehicle.  
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4.5 Evaluation Results for TOAD Algorithm  

with Inclusion of Prevailing Traffic Conditions 

Chapter 3 summarized findings for the TOAD algorithm where no prevailing traffic 

conditions were included in the process of generating optimal vehicle trajectories. In this 

assessment, some general findings indicate substantial reductions in average corridor-wide 

travel time as technology penetration increases. It was also discovered that inclusion of the 

reserved lane for movement of the automated vehicle further increases benefits of the 

developed control strategy.  

With similar evaluation scenario setup, the performance assessment can be 

performed for the TOAD algorithm with integrated delay prediction model. Performing 

analysis using two microsimulation models presented in Chapter 3, with identical input 

parameters allow side-by-side comparison of the two control algorithms. The same test-

bed setup was enhanced with the delay prediction model as described in section 4.3. 

Evaluation of this setup will reveal the influence of delay prediction and its inclusion into 

trajectory generation.  

4.5.1 Simulation Results for Testbed in Princeton, New Jersey 

The results for the testbed in Princeton were evaluated under two congestion levels. The 

first one represents less congested conditions where the most of intersections operate under 

the level of service (LOS) of C as summarized in Table 4.2. Such uncongested conditions 

provide generally fewer control delays and insignificant vehicle queues on signalized 

intersections. 
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Table 4.2 Traffic Conditions and LOS values for Corridor in Princeton, NJ 

 

Intersection 
Ridge 

Road 
Independence 

Way 
Lower 

Harrison 

Street 
Fisher 

Place 
Washington 

Road 
Carnegie 

Center 

Boulevard 

LOS B B B C B B 

V/C Ratio 0.42 0.45 0.38 0.45 0.43 0.41 

 

The second, more congested condition includes LOS E on most corridor 

intersections. Those traffic conditions include significant delays and queues on signalized 

intersections. Such conditions are summarized in Table 4.3.  

Table 4.3 Traffic Conditions and LOS Values for Corridor in Princeton, NJ 

Intersection Ridge 

Road 
Independence 

Way 
Lower 

Harrison 

Street 
Fisher 

Place 
Washington 

Road 
Carnegie 

Center 

Boulevard 

LOS D E C E E E 

V/C Ratio 0.72 0.95 0.68 0.95 0.95 0.95 

 

 

Total average stop delay decreases with increased technology penetration rate. As 

it can be seen in Figure 4.14 the reductions in average stop delays are more intensive under 

LOS C. The slope of the LOS C curve is higher compared to LOS E; this is due to decreased 

capabilities of the trajectory optimization in congested roadway conditions. While under 

LOS C, the average stop delay curve decreases gradually, the same curve representing LOS 

E is almost flat between market penetration rate 10% to 70%. After this point reductions 

are more visible since the majority of vehicles in a signalized corridor are automated 

vehicles controlled by TOAD.  
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Figure 4.14 Total average stop delay for testbed in Princeton, NJ. 

 

 

Figure 4.15 Total average delay for testbed in Princeton, NJ. 

 

Average delay per vehicle was also observed and is illustrated in Figure 4.15 for 

the two traffic conditions. The trend of average delay curves is similar to the one observed 

for average stop delay. The curve is nearly flat under LOS E indicating low possibilities 

for vehicle delay reduction due to congestion and is more intensive under LOS C.  
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Figure 4.16 Total number of served vehicles for testbed in Princeton, NJ. 

 

The impact of TOAD algorithm on an overall number of served vehicles is also 

visible under both traffic conditions.  

 

Figure 4.17 Total average travel time for testbed in Princeton, NJ. 

 

It is clear from Figure 4.16 that a total number of served vehicles increases with 

market penetration of TOAD technology and is more visible under LOS C.  
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The impact on overall corridor travel time is illustrated in Figure 4.17. Under 

uncongested corridor conditions, travel time reductions can reach 19.5% compared to base 

case scenario. Under same conditions, the benefits become more intensive after the market 

penetration rate reaches 50%. The same trend is more or less gradual under LOS C but is 

also characterized by the lower magnitude of travel time reductions that reached 8.9% with 

100% of automated vehicles in the corridor. The main reason for this is that V/C ratios of 

the corridor presented in Table 4.3 are mostly around 0.95 which represent congested 

conditions which allow very limited possibilities for optimization.  

Although benefits are significantly smaller under congested conditions, they still 

allow application of TOAD algorithm and produce improvements. In addition, even low 

market penetrations produce some level of travel time reductions indicating the possibility 

of TOAD algorithm to work under imperfect market penetration conditions.  

4.5.2 Simulation Results for Test-bed in Woodbridge, New Jersey  

The algorithm was additionally tested on the second test bed location, again exposing it to 

two traffic conditions described in Tables 4.4 and 4.5. The conditions summarized in Table 

4.4 include mostly uncongested traffic conditions where V/C ratios generally range from 

0.39 to 0.49 and level of services are mainly B or C. Such traffic conditions correspond to 

those observed on the first testbed locations allowing confirmation of findings summarized 

for the Princeton testbed site.  
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Table 4.4 Traffic Conditions and LOS Values for Corridor in Woodbridge, NJ 

 

Intersection 
Gill 

Lane 
Ford Avenue Parsonage 

Road 
Grandview 

Avenue 
Prince Street 

LOS B C B C B 

V/C Ratio 0.39 0.49 0.45 0.49 0.40 
 

Table 4.5 summarizes more congested corridor conditions with frequent stops and 

significant queues. V/C ratio and LOS values are similar to those observed on the first 

testbed location.  

Table 4.5 Traffic Conditions and LOS Values for Corridor in Woodbridge, NJ 

 

Intersection 
Gill 

Lane 
Ford Avenue Parsonage 

Road 
Grandview 

Avenue 
Prince Street 

LOS D E E E D 

V/C Ratio 0.71 0.92 0.95 0.93 0.73 

 

It is again confirmed that the average stop delay decreases with market penetration. 

Figure 4.18 shows the lower magnitude of stop delay reductions for LOS E and generally 

higher stop delay values. Average delay per vehicle is also similar. The slop of LOS E 

curve in Figure 4.19 is lower compared to the slope of the curve under LOS C again 

indicating reduced possibilities for TOAD optimization under highly congested conditions. 

Although reductions are lower under LOS E for both average stop delay and average 

vehicle delay, the decreasing trend is visible, and benefits exist even under lower market 

penetration rates.  
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Figure 4.18 Total average stop delay for testbed in Woodbridge, NJ. 

 

 

Figure 4.19 Total average delay for testbed in Woodbridge, NJ. 
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Increase in throughput revealed similar trend as it was detected on the first test bed 

location. The number of served vehicles is generally higher under LOS E and some more 

visible increase occurred after market penetration reached 60%. The same curve for LOS 

C is approximately flat as it was already observed on testbed location in Princeton.   

The maximal travel time savings were achieved under 100% of automated vehicles, 

reaching almost 19% compared to the base case scenario. The travel time reductions are 

much more visible under LOS C and are generally increasing faster after the market 

penetration exceeds 50% which is again similar to what was detected on the first testbed 

location. The travel time reductions are less visible under congested conditions and in the 

best-case scenario with 100% of automated vehicles, they can reach nearly 9.5%.   

 

Figure 4.20 Total number of served vehicles for testbed in Woodbridge, NJ. 
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Figure 4.21 Total average travel time for testbed in Woodbridge, NJ. 

 

4.6 Chapter Summary 

This chapter introduced a methodology for the inclusion of prevailing traffic conditions 

into previously defined TOAD control management strategy. To achieve low-cost and 

reasonable sensor deployment, the short-term prediction described in this chapter was 

applied. The capabilities of the TOAD algorithm assessed through series of simulations 

revealed potential mobility improvements under any market penetration level. 

Under two different corridor traffic conditions, the inclusion of prevailing traffic 

conditions allowed better optimization by generating more accurate predictions of vehicle 

arrivals on the signalized corridor. Under perfect market penetration level, it was 

discovered that the methodology can bring up to 19.5% in travel time reductions. When 

some highly congested conditions are applied, benefits can drop to approximately 8.4% 

but are still present even under low market penetration rates.  
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In addition to travel time reductions, the TOAD methodology with artificial neural 

network model for short-term prediction of prevailing traffic conditions significantly 

reduces average stop delay, average vehicular delay, and increases overall corridor 

throughputs.  

Although findings presented in this chapter indicate significant mobility 

improvements under described corridor layout, further improvement of the mobility can be 

archived through the application of reserved lanes for automated driving. The operational 

characteristics and potential benefits of the reserved lane strategy are introduced in the next 

chapter of this dissertation.  
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5 CHAPTER 5 

APPLICATION AND EFFECTIVENESS OF RESERVED  

LANES FOR AUTOMATED VEHICLES 

 

The concept of reserved lanes for automated vehicles assumes the inclusion of such lanes 

into existing signalized corridor using overhead gantries. The reserved lanes allow TOAD 

vehicles to be segregated from the general traffic in order to eliminate the interaction 

between two vehicle groups. The lane reservation concept allows smooth integration of 

automated vehicles assuming road users are well familiar with similar lane assignment 

concepts such as High Occupancy Vehicle (HOV) lanes, high-occupancy toll (HOT) lanes, 

or eco-lanes. The possibility to integrate reserved lanes for automated vehicles from the 

aspect of their efficiency and geometrical design is presented in this chapter. The efficiency 

of such lanes is evaluated under identical traffic conditions presented in Chapter 4. 

Comparison between mobility performance measures for the corridor with and without 

reserved lanes gives insight into the applicability of the concept under different traffic 

conditions.   

 

5.1 Corridor Design for Automated Driving with Reserved Lanes 

To adequately integrate reserved lanes into signalized arterial, the optimal lane group to be 

used are inner lanes (i.e. left-most lanes). The main reason for described lane assignment 

is that the left-most lane allows uninterrupted movement of automated vehicles in cases 

where unequipped vehicles are making right turns at intersections or access points of the 

corridor. 
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To apply such lane assignment strategy, the signalized corridor must be equipped 

with jughandle intersections as left-most lanes cannot be used for left turns. Therefore, all 

vehicles are assumed to make left turns using jughandles, and automated vehicles making 

left turns must leave reserved lane and become a part of general traffic in order to access 

jughandle ramp. Jughandle ramps on signalized corridors are frequently applied traffic 

regulation strategy as it is well known to improve intersection capacity. This strategy along 

with reserved lanes for automated driving can further improve mobility performance of a 

signalized corridor.  

 

             (a) With reserved lane for TOAD                        (b) Without reserved lane for TOAD 

Figure 5.1 Simulation of the TOAD control strategy in PTV VISSIM. 

 

5.2 Evaluation Scenarios for Signalized Corridor with  

Reserved Lanes for Automated Driving 

As it was described in Chapter 4, the simulation results comprise eleven different market 

penetration conditions (0%-100%, in 10% increments) and were examined with five 

consecutive simulation runs but this time for additional two cases: 1) with reserved, and  

2) without reserved lanes for automated vehicles under the peak and off-peak traffic 
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conditions. Simulation for eleven different market penetration conditions for both lane 

configurations was repeated five times, every time changing random seed parameter. Thus, 

this evaluation required a total of 110 simulation runs. 

Table 5.1 Evaluation Scenarios for Assessment of Reserved Lanes  

Simulation Scenario Factors Level 

Inclusion of the reserved lanes  1) With reserved lanes for TOAD 
2) Without reserved lanes for TOAD 

Volume rates 1) Peak period volumes 
2) Off-peak period volumes 

Technology market penetration From 0% to 100% 
in 10% increment 

 

5.3 Lane Configuration under Different Market 

Penetration and Volume Conditions 

Throughout simulation assessment, it was discovered that the best lane configuration setup 

depends on current traffic and market penetration levels. Specifically, under LOS A to C, 

the first reserved lane can be introduced as soon as market penetration level reaches 10% 

and additional reserved lane can be introduced with 50% of automated vehicles in the 

corridor. Under more congested conditions (i.e. LOS C to E) it is not recommended to 

assign any reserved lanes until the market penetration exceeded 60%. At this point, it is 

recommended to include two reserved lanes for automated vehicles. The reason for not 

including reserved lane before 60% market penetration can be explained using Figures 5.10 

and 5.18. By observing those figures, it can be inferred that inclusion of reserved lanes 

before mentioned threshold might provide lower benefits compared to corridor without 

lane reservation.  
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Figure 5.2 Recommended lane configuration for different traffic and market penetration 

levels  

 

The main reason for lower benefits under unstable traffic conditions is an 

oversaturation of lanes assigned to general traffic under low market penetration levels. In 

such conditions, every time one or two lanes are assigned to automated vehicles, the lanes 
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average corridor travel time. The same conflict does not occur under lower LOS values, as 

the volume rates of the corridor are generally lower, making this limitation of the lane 

assignment strategy less visible.  
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40% of automated vehicles had similar values. For market penetration values from 40% to 

60% the delay significantly decreases and again becomes evenly distributed between 60-

80%. The reason for described fluctuation in the stop delay can be found in the lane 

configuration adjustment. Once the number of lanes changes, the decrease in stop delay 

cannot be achieved instantly, and generally occurs once the reserved lane produces an 

appropriate level of utilization.  

In case of the corridor without reserved lanes, the decrease in stop delay is gradual 

in its nature and does not contain significant fluctuations.  

 

Figure 5.3 Total average stop delay for testbed in Princeton, NJ, under LOS C. 

 

A decreasing trend was detected for the average delay as well. The overall average 

delay is lower for a corridor with reserved lanes.  Similar fluctuations as described for the 

average stop delay were observed. Again, the overall nature of the average delay curve for 

the corridor without reserved lane comprises gradual decrease with no distinctive 

fluctuations.  
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Figure 5.4 Average delay per vehicle for testbed in Princeton, NJ under LOS C. 

 

The total number of served vehicles increased with a number of automated vehicles 

in the traffic stream. This trend was expected since decreased stop delay and a total number 

of stops provides better corridor progression. In addition, the more automated vehicles are 

present in the traffic stream, the less start-up lost time is experienced leading to increase in 

intersection throughputs along the corridor. Again, a certain level of fluctuations was 

detected for the corridor with reserved lanes due to described change in a number of lanes 
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without reserved lanes. Since the overall utilization of such lanes fluctuates so does the 

overall throughput.  
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Figure 5.5 Total average number of served vehicles for testbed in Princeton, NJ, under 

LOS C. 

 

The described mobility performance measures such as average stop delay, average 

vehicle delay, and increased throughput values are inevitably leading toward a decrease in 

overall travel time of the corridor. Nonetheless, the introduction of reserved lanes further 

increases the effectiveness of the proposed control algorithm. Figure 5.6 illustrates the 

average total travel time for described corridor under different market penetration rates. 

Expectedly, the overall travel time decreases as a number of automated vehicles increases. 

Although benefits are marginal for low market penetration levels from 0-20% the overall 

functionality of the strategy is confirmed. Some more visible travel time reductions can be 

expected for market penetration rates higher than 20%. The trend of the travel time curves 
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lanes contains a certain level of decrease. Some more abrupt decrease is detected for market 

penetration rates higher than 50% in both lane configuration cases. For market penetration 

rates higher than 80%, the detected benefits are similar for both lane configuration cases 

as a result of a generally high number of automated vehicles in the traffic stream.  

 

Figure 5.6 Total average travel time for testbed in Princeton, NJ under LOS C. 

 

Some more congested traffic conditions summarized in Table 4.3 changed the 

overall magnitude of the mobility parameters. The reductions in total average stop delay 
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Figure 5.7 Total average stop delay under LOS E for testbed in Princeton, NJ. 

 

The total average delay revealed similar trends. The total reductions under LOS C 

of 47% are now 13% which can also be described as the influence of generally congested 

corridor conditions. In such conditions, possibilities for generating more efficient vehicle 

trajectory are lower, as well as possibilities for lane changing. In general, delays are lower 

for the corridor with reserved lanes but the slope is significantly lower compared to the 

same curve generated under LOS C. The benefits for market penetration rates under 30% 

are almost similar, while after 30% they become more distinctive. An abrupt drop in 

average delay occurred after 80% of automated vehicles for the corridor without reserved 

lanes, while the overall trend of the same curve for the corridor with reserved lanes 

decreases gradually with increase in penetration level of automated vehicles.  
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Figure 5.8 Total average delay under LOS E for testbed in Princeton, NJ. 

 

Under LOS E the overall number of served vehicles increased by 8.5%. The LOS 

C revealed a slightly lower increase of 1.4% with 100% of automated vehicles in the traffic 

stream.  

 

Figure 5.9 Total number of served vehicles under LOS E for testbed in Princeton, NJ. 
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Figure 5.10 Average total travel time under LOS E for testbed in Princeton, NJ. 
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highly questionable if the concept of reserved lanes can be applied under highly congested 

traffic conditions.  

5.3.2 Evaluation Results for Testbed in Woodbridge, New Jersey 

The second testbed location generally confirmed findings outlined in the previous section. 

The influence of automated vehicles decreased total average stop delay of the entire 

network. The maximum reduction under 100% market penetration reached 72% under 

uncongested traffic conditions described in Table 4.4. The overall reduction is higher for a 

corridor with reserved lanes although it becomes slightly lower under market penetrations 

80-90%. Also, certain fluctuations are present in the case with reserved lanes due to reasons 

described in the previous section. Again, the total stop delay reductions are more gradual 

for the corridor without reserved lanes. 

 

5.11 Total average stop delay for testbed in Woodbridge, NJ under LOS C.  

Maximal reductions in average delay under 100% market penetration are 45% and 
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higher for the corridor with reserved lanes which confirmed findings from the first testbed 

location.  

 

5.12 Total average delay for testbed in Woodbridge, NJ under LOS C 

 

5.13 Total number of served vehicles for testbed in Woodbridge, NJ under LOS C. 
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from 0-90% is higher with reserved lanes although both cases with and without reserved 

lanes revealed rising trend.  

 

5.14 Average total travel time for testbed in Woodbridge, NJ under LOS C.  
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corridor with reserved lanes after the market penetration achieved 30%. Under 10% of 

automated vehicles, the average stoop delay is slightly higher for the corridor with reserved 

lanes.   

 
Figure 5.15 Total average stop delay for testbed in Woodbridge, NJ under LOS E. 

 

The average delay per vehicle increased due to an increased level of congestion on 

the corridor, but so did the overall reductions in average delay. Under LOS C such 

reductions were 72%. Under congested corridor conditions, such reductions dropped to 34% 

for 100% market penetration of automated vehicles.  

The total average vehicle delays also increased under congested conditions. The 

magnitude of the average delay reductions also decreased. While under LOS C the maximal 

reduction under 100% market penetration was 45%, under congested conditions the 

reduction was 12%. The reductions are higher for the corridor with reserved lanes just as 
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values for different market penetration rates are illustrated in Figure 5.16.  
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Figure 5.16 Total average delay for testbed in Woodbridge, NJ under LOS E. 

 

The increase in throughput is visible under congested traffic conditions. Again, on 

the corridor with reserved lanes, the throughput is slightly lower and the maximal increase 

in throughput under 100% of automated vehicles is around 7%.  

 

Figure 5.17 Total vehicles served for testbed in Woodbridge, NJ under LOS E.  
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Once again, the performance of the corridor with reserved lanes under congested 

traffic conditions on the signalized corridor in Woodbridge showed significantly lower 

benefits of reserved lanes compared to uncongested conditions. The findings with respect 

to corridor travel times correspond to those detected on the first testbed locations and are 

illustrated in Figure 5.18.  

 

Figure 5.18 Average total travel time for testbed in Woodbridge, NJ under LOS E. 
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in the corridor, the travel time savings of the corridor with no reserved lane for automated 

vehicles are lower (2.1% for the first and the second testbed location) than those of the 

corridor with reserved lanes (0.3.5 % - 5.1 % for the first and second testbed locations 

respectively). Under stable traffic conditions (i.e., LOS C), a further increase in market 

penetration levels brings additional benefits ranging from 2.4-19.4% and 3.3-18.5% for 

market penetrations of 40-100% for the first and second testbed location respectively, with 

no reserved lanes for automated vehicles.  

The findings also imply that for the signalized corridors observed in this study, 

under given traffic conditions, the benchmark point for the introduction of a reserved lane 

is 30% of automated vehicles in the system. The simulation methodology also detected that 

the second reserved lane for automated vehicles should be included when the proportion 

of automated vehicles exceeds 50%. Under those lane configuration cases, total reductions 

in total corridor travel times are ranging from 5.1% to 19.4% and 6.5% to 18.5% for market 

penetrations of 40-100% for the first and second testbed location respectively. This 

additional benefit is a product of physical separation of the two vehicle groups allowing 

TOAD algorithm to produce additional benefits for automated vehicles operating in 

isolated conditions where the influence of unequipped vehicles is excluded.  

Congested traffic conditions (i.e., LOS E) are also examined in this chapter for both 

lane configuration cases. It was discovered that additional benefits produced by lane 

reservation strategy produced fewer improvements in such traffic conditions. Although all 

observed traffic stream parameters such as stop delay, average vehicle delay, number of 

served vehicles and total average travel time generally decrease as market penetration 

decreases, the inclusion of reserved lanes brings marginal improvements for market 
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penetrations above 60%. For the first test bed location the travel time reductions with 

reserved lanes is ranging from 5.9% to 7.4% (5.1% to 7.4% for the second testbed location) 

for market penetrations of 60-90% while the travel time reductions for the corridor without 

reserved lanes are ranging from 5.7% to 7.8% (5.3% to 7.6% for the second testbed 

location). For market penetration levels below 60%, both corridors showed insignificant 

differences between travel time results for cases with and without reserved lanes.  

It is also clear that congested traffic conditions decrease overall travel time 

reductions produced by TOAD algorithm. Total travel time reductions with 100% market 

penetration decrease from 19.5% to 8.5% under LOS C and LOS E respectively. Such 

reduced benefits under significantly congested conditions still provide noticeable benefits 

and allow an uninterrupted operation of automated vehicles under imperfect market 

penetration rates.  
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6 CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes findings, research contributions and recommendations for further 

research.  

 

6.1 Conclusions  

The TOAD control algorithm proposed in this study recommends the utilization of existing 

fixed-time signal control devices under connected vehicle environment. Under connected 

vehicle environment, all vehicular and signal-related parameters are known and can be 

shared with the control agent to control automated vehicles while improving the mobility 

of the signalized corridor. Since the whole concept of connected vehicles is likely to be 

initiated gradually, the TOAD control strategy was designed to work under imperfect 

market penetration level of automated vehicles technology. The control algorithm was 

tested through series of simulation scenarios and it was discovered that even with low 

market penetration, the technology reduces overall travel time of the corridor.  

The evaluation was conducted for different traffic conditions. Under stable traffic 

conditions with LOS C and V/C ratio between 0.38 and 0.49, the reductions in stop delay 

of almost 80% can be achieved. The total vehicle delay also decreases and it can be reduced 

by up to 47% while throughputs can be increased by 8.7%. The total travel time decreases 

with market penetration of automated vehicles and under described conditions, those 

reductions can reach 19.5% with 100% market penetration. The algorithm is also functional 
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with low market penetration rates 10-20% where travel time reductions of approximately 

1.5% are detected. 

The TOAD algorithm  also achieves benefits even under unstable flow conditions 

examined in this dissertation research. Such unstable conditions include LOS E with V/C 

ratios ranging from 0.68 to 0.95. Travel time reductions under congested conditions 

reached 8.4% with 100% of automated vehicles in the corridor. Although some marginal 

reductions (i.e 0.6-0.9%) were detected for market penetration rates of 10-20%, the finding 

imply the algorithm is still functional even with low market penetration of the technology..  

Further inclusion of lanes specifically reserved for the movement of automated 

vehicles brings additional benefits. For market penetrations between 20 and 80%, a TOD 

algorithm together with reserved lanes can reduce travel times by 3.5-17.9% which is 

higher than reductions for the corridor without reserved lanes ranging from 1.5 to 16.1%. 

Under unstable traffic conditions, lane reservation is less effective and clear benefit of such 

lanes are visible after the market penetration reached 60% before this point the performance 

of the corridor with reserved lanes is close to the one without such lanes. Even with minor 

reductions in travel time, utilization of reserved lanes for automated vehicles might serve 

as a measure to further foster the application of connected and automated vehicles on 

signalized arterials.  

The inclusion of prevailing traffic conditions into trajectory prediction is of an 

essential importance. This dissertation research conducted simulation assessment for the 

TOAD algorithm without the inclusion of predicted vehicle delay where significantly lower 

benefits were detected. The TOAD algorithm without short-term prediction of vehicular 

delays, based on real-time readings from the mid-block detectors gained travel time 
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reductions of 0.04% to 11.61% for market penetration levels from 10 to 100% which is 

significantly lower than results achieved with the integration of the artificial intelligence 

model described in Chapter 5.  

It is worth clearly noting that besides the mobility improvement, the TOAD control 

strategy utilizes existing fixed-time controllers eliminating significant initial investments. 

Through series of simulations, it was also concluded that such system can work with 

minimal investments in detection systems (approximately one mid-block detector for each 

signalized intersection). Moreover, the strategy is easily implementable under existing 

infrastructure conditions, allowing a smooth transition from the contemporary signal 

control into connected and automated vehicle environment. 

 

6.2 Research Contributions 

This dissertation research made several contributions in the field of automated and 

connected vehicle modeling. The key contributions are as follows: 

1. This dissertation research has developed a control algorithm for automated vehicles 

tested and evaluated through microsimulation platform.   

a) It was discovered that the algorithm allows the introduction of automated 

vehicles into existing signalized corridor while achieving better mobility 

performance of the corridor. 

b) The algorithm is applicable even under low market penetration rates and does 

not require additional investment into signal-control devices. 

c) The TOAD algorithm produces its mobility improvements without affecting 

mobility performance of unequipped vehicles in a signalized corridor.  
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2. The developed simulation framework is suitable for testing of other connected 

vehicle applications such as eco-driving on a signalized corridor.  

3. This dissertation has developed a framework for the evaluation of reserved lanes 

for automated vehicles and answered several relevant questions such as: 

a) Efficiency of reserved lanes under different traffic conditions 

b) Impact of such lanes on overall mobility performance of a signalized corridor 

with the possibility of automated driving. 

4. Finally, this dissertation research offers a low-cost solution with insignificant 

investments into detection system, as developed artificial intelligence model 

provides a short-term prediction of traffic parameters necessary for vehicle control 

while minimizing the number of deployed sensors.  

 

6.3 Recommendations 

The methodology presented in Chapters 3 to 5 assume existence of the connected vehicle 

environment where all communicational, legislative, and technological aspects are fulfilled. 

Even with all necessary prerequisites, the introduction of the automated vehicles is 

expected to start gradually, where only few automated vehicles are present in the early 

stage of the new, connected vehicle, era, eventually leading toward massive 

implementation. With respect to that, it is recommended to implement the management 

strategy for signalized corridors presented in this dissertation in two phases:  

Phase 1: The “start-up” phase, where the new connected vehicle technology is 

introduced but has not reached higher technology penetration rates (i.e., < 10%) 
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Phase 2: The mature phase, where the recommended management strategy is well 

accepted and high technology penetration rates exist (i.e., > 10%)For both 

implementation phases it is necessary to include following roadway features: 

1) Contemporary intersection signal control devices (i.e. pretimed signal control) 

2) Mid-block loop detectors for retrieval of vehicle counts and speed 

3) A pair of Wi-fi or Bluetooth sensors for travel time measurements on each corridor 

link. 

4)  Centralized control agent (i.e. computing unit) 

 

Existence of the lane reservation is also essential but is only recommended for the 

mature phase after which the overhead gantries need to be installed. Although lane 

reservation is recommended as soon as the implementation reached phase 2 (market 

penetrations >10%), under congested traffic conditions (Table 6.2) it is not recommended 

to use lane reservation before technology penetration reaches 60% due to performance 

constraints described in Chapter 5.  

Table 6.1 Implementation Roadway Features for Uncongested Conditions 

Phase                          1 2 

Technology 

Penetration 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Reserved 

Lanes 
No Yes 

Signal 

Control                                                     
               Pretimed 

Overhead 

Gantry 
No Yes 

Detection 

System 
Wi-Fi (Bluetooth), Mid-block 
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Table 6.2 Implementation Roadway Features for Congested Conditions 

Phase                          1 2 

Technology 

Penetration 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Reserved 

Lanes 
No Yes 

Signal 

Control                                                     
Pretimed 

Overhead 

Gantry 
No Yes 

Detection 

System 
Wi-Fi (Bluetooth), Mid-block 

 

6.4 Future Research 

The modeling framework and control algorithm can be improved in several ways. Various 

microsimulation platforms apply different lane-changing and car-following models. 

Recently, the Intelligent Driving Model (IDM) gained significant interest in the area of 

evaluation and modeling of connected and automated vehicles. Such car following model 

can be incorporated into existing TOAD control strategy and can be used as an essential 

component of the trajectory prediction. The model is suitable for the mentioned task as it 

already defines the impact of the leading vehicle and allows adjustment of vehicles’ 

acceleration based on the behavior of the leading vehicle, following headway, and the 

current speed of the following and leading vehicle. Such set of parameters is already 

available in the existing modeling framework presented in this research.   

The existing control algorithm for automated vehicles can be further improved by 

utilizing a lane-changing model for driving under mixed conditions. Such model, included 

into existing control algorithm might further improve lane utilization parameters of a 

signalized corridor which is further expected to improve the overall capacity of the 

signalized corridor.  
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The existing control algorithm can further be improved from the aspect of lane 

configuration. Additional methodology can be developed to determine an online control 

logic for determination of number of reserved lanes based on real-time data for market 

penetration of automated vehicles, corridor performance (V/C ratio, vehicle counts, etc.)  
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