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ABSTRACT

SECURE ENTITY AUTHENTICATION

by
Zuochao Dou

According to Wikipedia, authentication is the act of confirming the truth of an

attribute of a single piece of a datum claimed true by an entity. Specifically,

entity authentication is the process by which an agent in a distributed system

gains confidence in the identity of a communicating partner (Bellare et al.).

Legacy password authentication is still the most popular one, however, it suffers

from many limitations, such as hacking through social engineering techniques,

dictionary attack or database leak. To address the security concerns in legacy

password-based authentication, many new authentication factors are introduced, such

as PINs (Personal Identification Numbers) delivered through out-of-band channels,

human biometrics and hardware tokens. However, each of these authentication

factors has its own inherent weaknesses and security limitations. For example,

phishing is still effective even when using out-of-band-channels to deliver PINs

(Personal Identification Numbers). In this dissertation, three types of secure entity

authentication schemes are developed to alleviate the weaknesses and limitations of

existing authentication mechanisms: (1) End user authentication scheme based on

Network Round-Trip Time (NRTT ) to complement location based authentication

mechanisms; (2) Apache Hadoop authentication mechanism based on Trusted

Platform Module (TPM) technology; and (3) Web server authentication mechanism

for phishing detection with a new detection factor NRTT . In the first work, a new

authentication factor based on NRTT is presented. Two research challenges (i.e.,

the secure measurement of NRTT and the network instabilities) are addressed to

show that NRTT can be used to uniquely and securely identify login locations and

hence can support location-based web authentication mechanisms. The experiments



and analysis show that NRTT has superior usability, deploy-ability, security, and

performance properties compared to the state-of-the-art web authentication factors.

In the second work, departing from the Kerberos-centric approach, an authentication

framework for Hadoop that utilizes Trusted Platform Module (TPM) technology is

proposed. It is proven that pushing the security down to the hardware level in

conjunction with software techniques provides better protection over software only

solutions. The proposed approach provides significant security guarantees against

insider threats, which manipulate the execution environment without the consent of

legitimate clients. Extensive experiments are conducted to validate the performance

and the security properties of the proposed approach. Moreover, the correctness and

the security guarantees are formally proved via Burrows-Abadi-Needham (BAN) logic.

In the third work, together with a phishing victim identification algorithm, NRTT is

used as a new phishing detection feature to improve the detection accuracy of existing

phishing detection approaches. The state-of-art phishing detection methods fall into

two categories: heuristics and blacklist. The experiments show that the combination

of NRTT with existing heuristics can improve the overall detection accuracy while

maintaining a low false positive rate. In the future, to develop a more robust and

efficient phishing detection scheme, it is paramount for phishing detection approaches

to carefully select the features that strike the right balance between detection accuracy

and robustness in the face of potential manipulations. In addition, leveraging Deep

Learning (DL) algorithms to improve the performance of phishing detection schemes

could be a viable alternative to traditional machine learning algorithms (e.g., SVM,

LR), especially when handling complex and large scale datasets.
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CHAPTER 1

INTRODUCTION

Authentication is the process of gaining assurance that an entity is performing

robustly and precisely as intended [132] [33]. The authentication entity could be

an end user, a web server, a service or even a hardware platform. The authentication

credentials for a platform/service could be a certificate (e.g., X.509 certificate [59]), a

ticket (e.g., Kerberos ticket [99]), or a hardware signature (e.g., Physical Unclonable

Functions [113] ) etc. On the other hand, the authentication credentials for a user

fall into three categories: (1) Something you know (e.g., a password) which is the

most common kind of authentication used for humans. (2) Something you have

(e.g., a smart card) that some object must be with the user any time he want to be

authenticated. (3) Something you are (e.g., a fingerprint) which is based on something

intrinsic to the principal being authenticated.

In this dissertation, we present three types of entity authentication works using

existing and novel techniques: (1) End user authentication: a novel and robust

authentication factor based on network communications latency (Chapter 2); (2) Web

server authentication: a novel and robust phishing detection feature (Chapter 3); and

(3) Platform and service authentication: robust insider attacks countermeasure for

Hadoop: design & implementation (Chapter 4); The dissertation is finally summarized

in Chapter 5.

1.1 End User Authentication

The proliferation of cloud-based services (Gmail, Dropbox, Amazon, Facebook, etc.)

and other web services (social sites, E-commerce, etc.), makes end user authentication

a very important security mandate to enable secure interaction with such services.

Each of the traditional web authentication approaches (e.g., legacy password, multi-

1



factor authentication, etc.) has its inherent weaknesses and suffers from one or more

of the following limitations: (1) potential compromise of credentials through, for

example, internal observation, social engineering, spyware, and leakage from other

verifiers; (2) having single point of failure as in the case of Facebook Connect [93];

(3) vulnerable to active man-in-the-middle attacks through phishing or pharming

[47]; and (4) sometimes having poor user experience due to typing of extra bits of

information or using extra channel or device.

Legacy password authentication is still the most popular one, however it suffers

from many obvious usability and security limitations. For example, users who have

multiple web accounts have either to memorize multiple passwords (poor usability)

or use the same password on multiple accounts (poor security). There have been

many attempts to enhance usability of legacy passwords including LastPass [10],

Facebook Connect [7], and federated passwords such as OpenID [107]. LastPass

remembers user password and fills in the corresponding password fields automatically,

when required. Facebook Connect enables users to sign on into different web services

using their same (e.g., Facebook) authentication credentials. Similarly, OpenID [107]

simplifies web-access by maintaining all the passwords of a user for different website,

and requiring the user to only remember one password, the OpenID password. Then,

while browsing, OpenID provider presents the appropriate password of the user to

other websites, that is, OpenID provider authenticates on behalf of the user. While

such attempts enhance usability, it badly hurts security because attackers gain the

benefit of compromising many web services with single password compromise. To

enhance the security of legacy passwords, graphical passwords [121] and cognitive

passwords [130] have been introduced. However, the proliferation of web services

combined with legacy password vulnerabilities fuels authentication based attacks as

evidenced by RSA study in 2015 [5], which shows that 80% of successful cyber attacks

exploit authentication credentials.
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To overcome the inherited weaknesses of legacy password mechanisms, 2-factor

authentication (2FA) schemes were introduced [108]. 2FA schemes require not only

a password but also an additional piece of information shared only with the user via

out-of-band channels or devices, such as phone SMS and hardware tokens (e.g., RSA

SecurID [13]). However, 2FA schemes introduce new vulnerabilities and suffer from

the following limitations:

1. 2FA does not protect against man-in-the-middle attacks (through, e.g., phishing
[62, 65]).

2. Additional information is exchanged with user through different channels/devices
that are likely to be compromised. For example, smartphone SMS is among
the most widely used 2FA channels but the smartphone itself is vulnerable to
loss and theft (e.g., 4.7 million phones were lost or stolen during 2013 in USA
only [4]). Moreover, smartphones are becoming more and more susceptible to
mobile malware/spyware infections. For example, earlier this year, Symantec
revealed an active Android malware that can intercept SMS messages with 2FA
codes and forwards them to attackers [16]).

3. 2FA may have (i) poor usability, due to typing of extra bits of information and
(ii) poor accessibility, due to the use of extra channel/device.

Biometric-based approaches have also been considered to support secure

authentication by leveraging the uniqueness of physical or behavioral characteristics

of individuals [129]. Nevertheless, there are quite a few limitations that prevent it

from being widely adopted as a web authentication mechanism:

1. Similar to 2FA, biometric authentication schemes have no protection against
active man-in-the-middle attacks for web access.

2. Biometric schemes have even worst user experience due to the extra overhead
required to characterise individuals, e.g. scanning or recording user’s physical
or behavioral characteristics.

3. Often a special device is required for biometric input, which incurs extra cost.

In order to complement the state-of-the-art web authentication schemes by

alleviating many of their inherent weaknesses and vulnerabilities, we propose a
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new authentication factor based on Network Round Trip Time (NRTT ). We

show how NRTT can be used to uniquely and securely identify login locations

and hence can support location-based web authentication mechanisms. The first

research challenge is how to securely measure and verify NRTT to hamper potential

forgery attempts. We address the first challenge by introducing a novel forwarding

device in the path between the server and the client, dubbed delay mask (DM),

which prevents any entity, but the server, from being able to measure the NRTT

for any client. The second research challenge is how to reliably measure NRTT

in the face of variable Internet latencies and connectivity conditions. The second

challenge is addressed by (1) computing the average of a number of NRTT

measurements after outlier removal; (2) applying multiple profiles per user through

the deployment of multiple DMs in diverse geographical locations. We design a

two-factor authentication scheme (dubbed AMAN) that uses legacy passwords as

a first factor and NRTT as a second authentication factor. We conduct extensive

experiments to evaluate Security-Usability-Deployability properties of AMAN and

compare it with state-of-the-art authentication mechanisms. The results show that

AMAN achieves the best combination of these properties.

1.2 Web Server Authentication

Phishing has been defined in various ways. According to PhishTank [100]: “Phishing

is a fraudulent attempt, usually made through email, to steal personal information”.

This definition covers most of the cases in which phishing attackers aim at stealing

personal information such as authentication credentials. In a classic email phishing

scenario, an attacker hosts a fake website and presents web service users with

convincing emails containing a link to the fake website. When any web service user

opens the link and enters his sensitive data, the data will be collected by the server

hosting the fake website.
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Khonji et al. [75] defines phishing as a type of computer attack that commu-

nicates socially engineered messages to humans via electronic communication channels

in order to persuade them to perform certain actions for the attacker’s benefit. This

definition limits the phishing tactic to only social engineering approaches.

In this dissertation, we adopt the definition provided in [133]: “We define a

phishing page as any web page that, without permission, alleges to act on behalf

of a third party with the intention of confusing viewers into performing an action

with which the viewer would only trust a true agent of the third party”. This

definition neither limits the attacker’s goal (e.g., to steal personal information) nor

limits the attack strategy (e.g., through social engineering messages or sophisticated

techniques).

According to the 2015 phishing activity trends report [51], the total number

of unique phishing sites detected from January through September was 630,494. In

addition, the number of phishing websites increased 250% from the 4th quarter of 2015

through the 1st quarter of 2016 [1]. There is no agreement on the financial damage

caused by the phishing attacks due to the lack of data from victim institutions. Some

estimates show that the direct damage caused by phishing attacks ranges from $61

million per year to $3 billion per year within the U.S. alone [58]

Phishing attacks tend to use more sophisticated techniques to lure web service

users into a carefully designed rogue website. On one hand, phishing attackers

become more careful and attentive in designing phishing websites and attempt to

evade current phishing detection methods[1].

More importantly, some phishing groups have the ability and desire to perform

advanced phishing attacks. Avalanche (commonly known as the Avalanche Gang) is

a criminal syndicate involved in phishing attacks [135]. In 2010, the Anti-Phishing

Working Group (APWG) reported that Avalanche had been responsible for two-thirds

of all phishing attacks in the second half of 2009, describing it as ”one of the most
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sophisticated and damaging on the Internet” and ”the world’s most prolific phishing

gang” [18]. It has been proved that Avalanche uses different techniques to evade the

anti-phishing mechanisms.

Anti-Phishing techniques can be broadly classified in two different categories:

(1) Server side solutions such as brand monitoring[20]; and (2) Client side solutions

such as blacklists and heuristics techniques[58]. Alternatively, anti-Phishing techniques

can be classified into 3 categories: (1) preventive solutions such as anti-malware, (2)

detective solutions such as email filtering; and (3) corrective solutions such as Site

takedown.

In this work, we focus on the area of phishing detection. Our goal is to

detect and block Phishing websites immediately after the user clicks its malicious

link. This area is of great importance because if a person behind the keyboard

has been successfully fooled by the Phishing attempt, it doesn’t help how many

firewalls, encryption software, certificates, or two-factor authentication mechanisms

an organization provides [58]. Therefore, we focus here in strengthening the last line

of defence against Phishing by enhancing the chances to detect Phishing attempts

and warning victims before being redirected to the suspicious websites.

The two commonly used ways of client side Phishing detection are heuristics

and blacklists [58]. Heuristics methods examine the contents of web pages including:

(1) surface level contents such as domain name and URL, (2) textual contents such

as words that appear in a given web page, and (3) visual contents such as the layout

and the block regions [91]. These techniques can detect Phishing attacks as soon as

they are launched. However, they introduce relatively high false positive rate. On the

other hand, manually verified blacklist has higher level of accuracy. However, they

do not defend against zero-hour attacks.

In this work, we propose a new phishing detection framework by carefully

combining different phishing detection features together with the phishing target
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identification. Based on the most recent phishing trends, we first perform analysis

of the state-of-the-art phishing detection features collected from the widely used and

popular detection mechanisms. In addition, we introduce a novel phishing detection

factor - Network Round Trip Communications Time (NRTT ) with corresponding

analysis. Then, we present a novel algorithm to identify the target website from

suspicious URL, which is not well addressed by current literature. The evaluation

of the proposed framework show that our proposed mechanism not only has better

performance results but also can neutralize advanced phishing attacks.

1.3 Platform Authentication

Authentication is the process of gaining assurance that an entity is performing

robustly and precisely as intended [132] [33]. In addition, data confidentiality in

the cloud is tightly correlated to the user authentication [140]. Therefore, a secure

and robust authentication mechanism of both users and services is imperative for

secure and private cloud computing and storage operations [86]. However, the

continuous growth and the concentration of data in clouds, combined with the

increasing adoption of security solutions such as authentication, access control,

and encryption drives intruders to be more persistent and creative in developing

sophisticated attack strategies [122]. One way to protect clouds and to successfully

combat such sophisticated attacks is to push the bar higher through the combination

of hardware and software security solutions. Pushing the security down to the

hardware level in conjunction with software techniques provides better protection

over software-only solutions [104], which is especially feasible and suitable for entity

authentication and platform attestation in the cloud.

Hadoop provides an open source framework for the storage and parallel

processing of large-scale data sets on clusters of commodity computers. As the amount

of data maintained by industrial corporations grows over time, big data processing
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becomes more important to enterprise data centers.Hadoop and its MapReduce

programming model have been proposed to address this task. This model is used

to handle large-scale data sets with high efficiency by taking advantage of parallel

data processing.

However, the threat of data leaks also continues to grow due to the increasing

number of entities involved in running and maintaining cloud infrastructure and

operations [140]. The recent boost of big data start-ups such as MongoDB, DataStax,

MapR Technologies and Skytree leads to an increased number of points of access in

the cloud, that is, larger attack surface for intruders. This can be clearly inferred from

a recent report of the Health Information Trust Alliance (HITRUST), which reveals

that the total cost of health-care data breach incidents has grown to $4.1 billion over

the recent years [56].

Currently, Hadoop leverages Kerberos [114] [21] as the primary authentication

method and uses DIGEST-MD5 security tokens [80] to supplement the primary

Kerberos authentication process. This Kerberos based authentication mechanism

was initially implemented by a team at Yahoo in 2009 [80]. However, in addition

to its limitations and security weaknesses, the use of Kerberos for authentication in

Hadoop-based environments raises many security concerns.

The most vital weakness of Kerberos lies in its dependency on passwords. The

session key for data encryption during the initial communication phase with the Key

Distribution Center (KDC) is derived from the user’s password. Disclosure of KDC

passwords allows attackers to capture users’ credentials, which turns all Hadoop’s

security to be useless. The large number of password disclosure incidents through

cracking, social engineering, or even database leakage, clearly indicates that this

threat is real and pervasive.

It has been shown that in many situations passwords are relatively easy to break

(e.g., via hardware key-loggers, spear Phishing with malware, shoulder surfing, etc.)
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For example, in 2013, almost 150 million people have been affected by a breach into

Adobe’s database [37]. The breach is due to mistakes made by Adobe in handling

clients’ passwords. All passwords in the affected database were encrypted with the

same key. Additionally, the encryption algorithm used did not handle identical plain

texts properly. This resulted in similar passwords being encrypted into similar ciphers.

Another important issue of Kerberos lies in its dependency on the KDC which

constitutes a single point of failure and even a single point of attack for persistent and

dedicated attackers. Although Hadoop’s security design introduces delegation tokens

to overcome this bottleneck, they lead to a more complex authentication mechanism

due to the extra tokens and data flows that are required to enable access to Hadoop

services. Many types of token have been introduced, including delegation tokens,

block tokens, and job tokens for different subsequent authentications. This, relatively,

large number of tokens, not only complicates the configuration and the management

of the tokens, but also expands the attack surface [27]. Kerberos keys are stored

in an on-line third-party database. If anyone other than the proper user has access

to the KDC, through, for example, a malware installation by an insider, the entire

Kerberos authentication infrastructure will be compromised and the attacker will

be able to impersonate any user [54]. This highlights the fact that insiders could

create havoc in Kerberos infrastructure itself, and consequently affect the security

posture of the supported Hadoop. It is clear that Kerberos is not well-equipped

against insiders or outsiders who could change the execution environment that the

user trusts. For example, attackers may install key loggers or other malware-tools to

steal users’ credentials and data.

In this work, we depart from the Kerberos-based approach to propose a

TPM-based authentication protocol for Hadoop. To date, more than 500 million PCs

have been shipped with TPMs, an embedded crypto capability that supports user,

application, and machine authentication with a single solution [104]. Additionally,
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many virtual TPM implementations exist for virtualized environments [32] [110].

An application that can be developed using the software TPM will run using a

hardware TPM without changes [88]. TPM offers facilities for the secure generation

of cryptographic keys, and limitation of their use, in addition to a random number

generator.

Beyond providing the regular authentication services supported by Hadoop, our

protocol provides additional security services that are not provided by the current

state-of-the-art Hadoop authentication protocols. In addition to alleviating the

aforementioned security weaknesses of Kerberos, our protocol guards against any

tamper with the hardware or software of the target cloud machines that store and

process users’ encrypted data. The user cannot be presumed to trust the execution

environment on public clouds. Malicious insiders/outsiders can pose great threats

to users’ data even if it is encrypted in the steady state. Insiders may be able to

install malicious software (malware, spyware, etc.) and hardware (key loggers, side

channels, etc.) tools that can extract users’ data and sensitive credentials while

it is being processed. The data has to be decrypted before any processing can be

performed.
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CHAPTER 2

A NOVEL AND ROBUST AUTHENTICATION FACTOR BASED ON
NETWORK COMMUNICATIONS LATENCY

2.1 Introduction

Legacy password authentication suffers from many obvious usability and security

limitations. The credentials of the users not only hacked through social engineering

and dictionary attacks, but also databases storing such credentials have been hacked,

exposing massive number of user accounts [64] [74]. To address the security concerns

in legacy password-based authentication, many new authentication factors have been

introduced and tested, including: (1) random strings delivered through out-of-band

channels such as mobiles and emails; (2) human biometrics such as fingerprints and

iris scans; (3) profile-based factors such as profiling normal user behavior, browser

fingerprinting, IP address information, and login location; (4) physical factors such as

cards, hardware tokens, and mobiles; (5) knowledge-based factors such as recognizing

someone based on photos provided by social websites [30]. However, each of these

authentication factors has its own inherent weaknesses and security limitations.

For example, phishing is still effective even when using out-of-band-channels to

deliver second factor Personal Identification Numbers (PINs) or passwords. Internal

observation can also defeat many of these factors, especially human biometrics and

system fingerprinting [139]. Additionally, some of these authentication factors are

static, such as browser fingerprints and IPs, and hence can be forged or leaked

across different verifiers. Physical factors, on the other hand, can be lost, stolen,

or compromised. Furthermore, some factors have high false negative rate such as

keyboard typing rhythms and end user profiling. It is also worth noting that, in

addition to the security limitations, many of these factors have usability issues due

to the requirement of extra information, devices, or channels. Appendix 2.6 provides
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a more detailed and systematic analysis and comparisons of the vulnerabilities of the

state-of-the-art authentication factors.

In this work, we propose a new authentication factor that does not share the

above mentioned properties with the commonly used authentication factors. That

is, the new authentication factor is oblivious to clients and is not communicated

to the server, but rather is completely measured and verified at the server. Our

proposed authentication factor utilizes what initially appears to be counter-intuitive,

the Network Round-Trip communications Time (NRTT ). NRTT is defined as the

summation of the time a packet takes to travel from the server to the client and the

time its acknowledgment takes to travel back from the client to the server.

In this work, we show how to turn the insecure and potentially unstable NRTT

into a robust authentication factor that is resilient to both client compromise and

communication channel compromise. NRTT offers unique security features such

as resiliency to Phishing, MitM, leakage by other verifiers, and social engineering,

which complements the security features of other authentication factors. Moreover,

NRTT has the advantage of being user transparent (i.e., it does not require clients

to memorize or input any information) and has negligible overhead, which enables it

to be smoothly integrated with other authentication factors in multi-factor authenti-

cation schemes without introducing extra overhead or degrading usability. However,

NRTT can only be used to provide authentication for low mobility users and static

users, similar to location-based authentication schemes. It is intuitive to see that

arbitrarily mobile users cannot benefit from authentication based on NRTT because

such users require to be able to login from any arbitrary location, while NRTT can

only accept logins from previously profiled locations. Nevertheless, NRTT provides

reliable and secure location-based authentication, which is generally used to ensure

that users can perform sensitive operations (e.g. change password, initiate funds

transfers) or access valuable information (e.g., personal medical information) only
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from authorized locations. Additionally, secure location identification is important

for other security purposes. For example, geographical location is one of the

most commonly used indicators to detect phishing based on the observation that

phishing websites are most likely to be hosted in locations different from those of the

corresponding legitimate websites [2].

We summarize our contributions in this work as follows:

• Propose a novel secure and usable web authentication factor based on Network
Round Trip Time, NRTT .

• Provide comparative evaluation of NRTT against state-of-the-art authenti-
cation factors using a famous authentication benchmark framework.

• Design and implement a novel network architecture that enables secure
measurement of NRTT .

• Design and implement algorithms to alleviate network instabilities and expand
authentication sample space of NRTT .

• Design, implement and deploy a prototype for a use case of two-factor authen-
tication (AMAN) with legacy passwords as the first factor and NRTT as the
second factor. The prototype helps to practically evaluate the security, usability,
and deploy-ability properties of NRTT -based two factor authentication and to
assess its performance overhead.

• Provide mathematical analysis of the NRTT space space via a case study.

2.2 General Methodology to Use NRTT As an Authentication Factor

Authentication using NRTT is straightforward. At registration, NRTT statistics

(i.e., mean and standard deviation) between the client and the authenticator are

measured and stored at the authenticator as a reference profile. The NRTT statistics

are then re-measured with every login attempt in real-time, and login is granted

only if the new statistics fall within predefined boundaries from the corresponding

registration statistics.

It has been observed, through extensive experiments and monitoring of Internet

communications, that NRTT follows distributions that can be modeled as an
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approximate Gaussian distribution ([80] [120] [125]) as detailed in Section 2.2.1.

We adopt Gaussian approximation to theoretically guide the selection of different

NRTT related parameters in our experiments and theoretical analysis. The mean

and the standard deviation of NRTT measurements vary when the login location

changes, that is, users can be uniquely identified based on their login locations. This

important observation indicates that a login attempt will only succeed if conducted

from the same location as that of registration, which reduces the attack surface

of compromised identities from anywhere in the world to only the registration

location. Note that, location-based authentication is very important in many areas,

such as electronic health record access, sensitive financial transactions, military

communications, industrial control systems, etc. [52, 25] [25] [97] [40]. In addition,

within this work, the login location refers to the last network segment, access point

or 3G/4G cell of the communicating party.

2.2.1 Gaussian Approximation of NRTT

NRTT -based authentication is motivated by the results presented in [80], which show

that network communications latency approximately follows a Gaussian distribution.

This observation is validated by experiments that measure network communications

latency among 130 PlanetLab nodes [37].

We have also conducted extensive and wider set of similar experiments

using GENI nodes, campus and residential users both with wire-line and wireless

connections. Our results validate the results in [80] and further support the

observations about the Gaussian approximation of network communications latency.

Figure 2.1 shows examples of NRTT distributions and the corresponding Gaussian

approximations for three different locations.

Though fine-grained mathematical model (e.g., Rayleigh distribution) may

provide a better approximation, it will introduce much more complicated theoretical
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Table 2.1 List of All the Acronyms

µ Mean of the reference profile

σ Standard deviation of the reference profile

1− αi Confidence level

δ Confidence interval (error tolerance)

x Mean of the real-time profile

y Standard deviation of the real-time profile

N Profiling sample size

analysis with marginal or no additional benefit for the real world implementation

of the proposed algorithms.More importantly, the empirical results of many of the

existing research on round trip network communications latency ([80] [120] [125])

show that Gaussian distribution is an adequate approximation for NRTT . These

conclusions are further supported by our experiments and mathematical analysis

based on the Gaussian approximation of NRTT .

2.2.2 Required Sample Size to Reconstruct the NRTT Profile

NRTT profile is built by exchanging a number of small packets, dubbed profiling

signals, with the user. The number of profiling signals is known as the profiling

sample size. The larger the number of profiling signals, the more accurate the profile

will be. However, the larger the number of profiling signals, the higher the bandwidth

overhead and the longer the login latency. Therefore, it is critical to find a profiling

sample size that leads to an acceptable trade-off between profile accuracy, bandwidth

overhead, and the average time it takes a user to login.

To have an initial estimate of the profiling sample size, we use the Gaussian

approximation of NRTT distribution. Assume a population with Gaussian distri-

bution that has standard deviation σ and mean µ. The goal is to find the minimum
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sample size, N , that produces a mean, x, within a certain error margin (aka, error

tolerance), δ, with a certain confidence level, 1 − α. The error margin δ, is the

maximum allowed distance between µ and x. The confidence level represents how

confident we are that the measured mean (x) falls within the confidence interval. For

Gaussian distributions, it has been shown ([11]) that the minimum sample size N can

be calculated as:

N ≥ (Z1−α/δ)
2σ2 (2.1)

Where Z is the critical value for the normal distribution. In other words, for a sample

size of N , we are 1-α confident that the measured mean (x) will fall in the range of:

µ− δ ≤ x ≤ µ+ δ (2.2)

Similarly, the range of the real-time measured standard deviation σ can be computed

using Chi-Square (χ) table as:√
χ2
L · S2

N − 1
≤ σ ≤

√
χ2
R · S2

N − 1
(2.3)

Where χL and χR are computed for specific values of α using the Chi-Square table.

2.2.3 Mathematical Analysis of the NRTT Sample Space

False negative rate (FN): As mentioned in the previous section, the FN rate of

the Gaussian distribution is α, which stands for the probability that a legitimate user

fails to authenticate from her profiled location. Let δi = Ci · Si where Ci is the error

tolerance coefficient for user i and let U be the total number of users. To compute

FN , we plug δi in (2.1):

Z1−αi = Ci ·
√
Ni
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Figure 2.1 Sample of NRTTs and their Gaussian approximations.

FN =
U∑
i=1

(1− Z−1(Ci ·
√
Ni))/U (2.4)

False Positive Rate (FP): The FP , β, is the probability that a perpetrator

passes authentication from a location other than the profiled one. In other words, false

positive rate is the probability that the real-time measured latency mean and standard

deviation of the perpetrator falls within the grant-access area of the legitimate user.

We first derive a simplified estimate of the false positive rate and then enhance

the derivation accuracy. Figure 2.4 shows the grant-access area for an arbitrary

user (User i) and the grant-access area for a perpetrator (Attacker j) at a random

location. Recall that the perpetrator also possesses the username and password of

the legitimate user. Assume, for now, uniform distribution of the measured mean
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Figure 2.2 The Ecosystem of AMAN.

and standard deviation within the grant-access area (the green rectangle in Figure

2.4 shows the reference profile area of an arbitrary user (User i), dubbed as the

grant-access area (GAA)). Access is granted for any login attempt with measured

(µ, σ) point that falls within the grant-access area.). Also assume that the locations

from which an attacker may try to login are known. Then, the probability that

Attacker j successfully authenticates as User i equals the overlap area between the

grant-access area of the user and the grant-access area of the perpetrator divided by

the grant-access area of perpetrator averaged over all possible attack locations:

βi =
A∑
j=1

GAAi ∩GAAj
GAAj

/
A (2.5)

Where, A is the number of all possible locations from which the attacker may try to

impersonate the user. The overall false positive rate of the system is computed as the

average of false positive rates of all the users of the system:

FP =
U∑
i=1

βi/U (2.6)
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Figure 2.3 AMAN Authentication Flowchart.

Note that even though this is a simplified estimate of the false positive rate, we next

show that it provides an upper bound approximation of the false positive rate.

To derive a more accurate estimate of the false positive rate, we need to identify

the real distribution of latency mean and standard deviation within the grant-access

area, rather than just assuming it to be uniform. Moreover, we need to remove the

assumption of previously known attack locations by acknowledging that attackers

may use any arbitrary previously unknown location to login. Let the mean of network

communications latency be a random variable X in the range [a, b] and let the standard

deviation of the mean X be a random variable Y in the range [c∗X, d∗X]. According to

the conclusions derived in [4], which is also validated by our experiments, both X and

Y are approximately Gaussian with the following probability distribution functions

(pdf):

fX(x) =
1√

2πσ2
x

· e−
(x−µx)
2·σ2x
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Figure 2.4 Graphical illustration of arbitrary grant-access area.

fY (y) =
1√

2πσ2
y

· e
− (y−µy)

2·σ2y (2.7)

For the systems analyzed in [4], a = 5ms, b = 700ms, c = 0.0155, d = 0.196.

Therefore, the sample space of the communications latency X and its standard

deviation Y falls in the shaded area shown in Figure 2.5. Based on these values,

the pdf parameters of the X and Y distributions are:

µx = 221, σx = 83.86 (2.8)

µy = 0.0155x+ (0.196x− 0.0155x)/2 = 0.1058x (2.9)

σy = (y0.005 − µy)/Q−1(0.005) = 0.035x (2.10)
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Figure 2.5 Sample space of the communications latency mean and standard
deviation.

Using Figure 2.4 and assuming error tolerance δ = C · S, the grant-access area can

be computed as:

GAA = [(M + δ)− (M − δ)] · [

√
χ2
R · S2

N − 1
−

√
χ2
L · S2

N − 1
]

According to the experimental results, the optimal false positive rate occurs when

δ = 0.2 · S. Therefore,

GAA = S2/10 (2.11)

Using (2.7), (2.8), (2.9), (2.10), (2.11), the expected value of the grant-access area is

computed as: ∫ b

x=a

∫ d·x

y=c·x

S2

10
· 1√

2πσ2
x

·e−
(x−µx)
2·σ2x · 1√

2πσ2
y

· e
− (y−µy)

2·σ2y dxdy
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Figure 2.6 Sample of communications latency distribution and its Gaussian
distribution.

= 4.74× 10−17 ·
∫ 700

x=5

∫ 0.196x

y=0.0155x

y2

x
· e−7.11×10−5·x2

·e0.0314x+86.367· y
x
−408.16· y

2

x2 dxdy (2.12)

The false positive rate is the probability that an attacker at a random location

successfully impersonates a legitimate user, which is given by:

FP =
E[GAA]

Area of the Sample Space
(2.13)

Using (2.13), for the systems analyzed in [4], the expected value of the false positive

rate is approximately 0.0034. In other words, if the attacker tries to login from 1000

different locations, on average, she successfully authenticates from less than 4 of them.
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This is a very low probability and hence clearly proves the high security guarantees

of AMAN.

Using (2.6), for the systems analyzed in [4], the expected value of the false

positive rate is approximately 0.0068. Therefore, the simplified analysis provided

earlier provides an upper bound estimate of the false positive rate.

False Positive and False Negative Trade-offs: Optimally, we need to keep

both false positive and false negative rates very low. However, these two indicators

are dependent. Decreasing the false negative rate increases the false positive rate

and vice versa. A possible trade-off is to maximize the security guarantees while

maintaining an acceptable functionality level. Using the false positive and false

negative formulas developed in Section 2.2.3, the trade-off can be translated into

the following optimization problem:

Minimize FP =

∑U
i=1 βi
U

=

∑U
i=1

∑A
j=1

GAAi∩GAAj
GAAj

A · U

S.T. FN =
U∑
i=1

[1− Z−1 · (Ci ·
√
Ni)]/U ≤ FNrequired

Ci ≥ 0, Ni, U, A ≥ 0, integer (2.14)

Security administrators can use the optimization problem in (2.14) to guide their

functionality and security configurations.

2.3 Research Challenges to Use NRTT As an Authentication Factor

The naive measurement and usage of NRTT has two main challenges:

Research Challenge I: Attackers can easily estimate NRTT for any location

by simply pinging the server from that location. This represents a serious security

challenge because an attacker can impersonate a user by simulating her communi-
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cations latency. As detailed in Section 2.4.4, this challenge has been addressed by

inserting a special device, delay mask, in the round-trip path between the client and

its authenticator. The goal of the DM is to prevent any entity, but the authenticator,

from being able to estimate NRTT . This marks the two differences between NRTT

and the state-of-the-art authentication factors. The first difference is that the client

does not know the value of its NRTT , which makes it resilient to client compromise.

The second difference is that the value of NRTT is not communicated to the server,

but rather is computed by the server. Deatiled

Research Challenge II Network instabilities may cause communications

latency to vary and consequently result in legitimate login failures, which leads to

poor user experience. Specificall, network communications latency may vary due to

different reasons including congestion, queuing delays, server load, contention ratio in

local network, and ISP throttling or traffic shaping operations. Therefore, the naive

measurement of NRTT may result in poor performance if such network instabilities

are not carefully handled. Our NRTT -based authentication factor is designed with

such instabilities in mind and hence it incorporates the necessary measures to alleviate

the impact of such instabilities. In the following, we classify network instabilities

into three categories, namely, instantaneous instabilities, long-term instabilities, and

routing instabilities, and in Section 2.4, we show how to mitigate the impact of each

category on the measurement of NRTT .

Instantaneous instabilities are instabilities which lead to transient changes

in communications latency and hence, it only affects a few of the profiling signals.

This type of instability is the most common one and can be addressed through outlier

filtering (Algorithm 2) as detailed in Section 2.4.3.

Long-term instabilities are instabilities that stay long enough to affect all or

most of the of profiling signals, however, they are not permanent. Such instabilities

are mainly caused by low bandwidth, congestion, or variable traffic volume at the
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location of the user (i.e., the local network segment connecting the user to the network

backbone). For example, if a user has a low bandwidth Internet, she will experience

longer communications latency while her roommate is watching an HD movie on-line.

We address this category of network instabilities by establishing multiple profiles, as

detailed in Section 2.4.5.

Routing instabilities are instabilities that result in permanent changes in

network communications latency due to, for example, permanent network routing

changes. We introduced a dynamic temporal profiling technique (re-profiling the user

every week based on the most recent login instances) to address long term routing

instabilities. The main motivation of this profiling technique is to capture and handle

changes in NRTT over extended time periods. Changes of the NRTT over long time

periods are mainly due to routing changes in the Internet. We have designed the

temporal profiling algorithm to handle such fairly uncommon cases. The design of

our temporal profiling algorithm (such as the selection to profile every week) is guided

by the long line studies of the routing behavior over the Internet. For example, earlier

studies ([81] [109] [82] [114]) showed that most of the important IP prefixes have stable

routes and that instabilities only exist in a small portion of the global Internet. A

recent study [38], which was based on 3-year daily data and 8-year monthly data,

confirms the results of the earlier studies and further shows that routing changes

have strong weekly periodicity and the rate of change in routing decisions is stable

over time, despite of the overall growth in the size of the Internet. Furthermore, it

also reveals that only a small fraction of ASes are responsible for the vast majority

of routing changes. Additionally, the 2013 experimental data of [80] indicates that

only 2 out of 150 PlanetLab nodes showed 1-hop change while the others remain

unchanged and the latency variance due to the 1-hop change is negligible. Therefore,

routing instabilities are not common and can be addressed, like other unexpected
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events (e.g., forced traffic-reroute, login during DoS attack), using the backup failure

techniques discussed in Section 2.4.6.

2.4 A Use Case of Two-factor Authentication System with NRTT :
Design and Implementation

In this section, we demonstrate the design and the implementation of secure

and reliable NRTT -based authentication factor through a use case of two-factor

authentication scheme, dubbed AMAN. AMAN uses traditional passwords as the

first authentication factor and NRTT as the second authentication factor.

2.4.1 Assumptions

In the context of this work, we assume a powerful attack model, in which attackers

already compromised traditional passwords of users. However, it is intuitive to

conclude that AMAN, solely by itself, does not defend against perpetrators who

both compromise legitimate user credentials and have access to her profiled location.

Such attacks can be thwarted by augmenting AMAN with additional authentication

factors, such as browser fingerprinting, as explained in Section 2.4.6. Additionally,

Denial of Service (DoS) and remote access attacks (e.g., Rootkits and RATs on end

user devices) are out of the scope of this work. We assume that the registration phase,

when reference profiles are built, is secure, which is a reasonable assumption as it is

required by all profiling schemes. We also assume that delay masks are secure and

connected to network segments that are not accessible by attackers.

2.4.2 The Authentication Protocol

As depicted in Figure 2.2, the ecosystem of AMAN comprises three entities, users,

web server (aka, authenticator or verifier), and delay masks. To demonstrate the

authentication protocol in AMAN, we use the typical web-page login scenario depicted

in Figure 2.3. The authentication protocol has two-phases, registration phase and
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login phase. The registration phase is a one-time process that initializes reference

profiles, while the login phase is initiated with every login attempt to build real-time

profiles. A profile is represented by the mean and the standard deviation of a number

(N) of NRTTs measured between user and server. Based on the distance between

real-time profiles and reference profiles, the decision algorithm at the authenticator

grants or denies access. To enhance the accuracy of reference profiles, they are

updated with every successful login, that is, the new reference profile after a successful

login is the combination of the current reference profile and the real-time profile of

the last login. The new reference profile replaces the current one in server database

while the real-time profile vanishes after the access decision is made. Using Figure 2.2,

Algorithm 1 presents the detailed steps of the registration phase and login phase,

where each step in the algorithm maps to the corresponding step in Figure 2.3.

2.4.3 Computing Profile Parameters

As shown in steps #4 and #5 of Algorithm 1, the server measures NRTT statistics

of its users by sending out a set of small packets (similar to ping messages), dubbed as

profiling signals. In current prototype implementation, the profiling signals are a set

of UDP/TCP packets with user login session information in the payload (e.g., session

ID, index number, user’s IP address, etc.) An estimate of the number of profiling

signals (N) that is required to establish a sufficiently accurate profile is discussed in

Section 2.2.2. Before sending profiling signal Si (i ∈ [1, N ]), the server records its

send time (SndT imei). When the corresponding acknowledgment (acki, i ∈ [1, N ])

is received, the server records the reception time (RcvT imei). Then, the server

computes the round trip time of each signal as NRTTi = RcvT imei − SndT imei.

After computing the (N) NRTT values, the server calls Algorithm 2, which uses

the scheme in [84] to first remove the outliers and then, it computes the mean and
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the standard deviation of the remaining NRTT values. Filtering outliers aims at

alleviating potential instantaneous network instabilities (Section 2.3).

2.4.4 Delay Mask

The naive measurement ofNRTT allows attackers to easily figure it out. For example,

the attacker can simply ping the server from the location of the user. Ping packets

provide excellent estimation of the NRTT between the user and the server, and

hence can be used to compute profile parameters. If the attacker learns the profile

parameters of a user and if she is in a location with NRTT less than that of the user,

she can easily mimic the profile of the user; she simply adds appropriate delay before

acknowledging the profiling signals. To address this important security concern,

AMAN introduces a special one-way forwarding device, delay mask, in the route

between the server and its clients. The DM is deployed and controlled by the server

and is set to only relay profiling signals from the server to its users.

The main objective of the DM is to prevent any entity, except the authenticator,

from being able to estimate NRTT . The DM achieves this by creating new path-

segments in the round trip path between the server and its users. Therefore, the

communications time over the newly created path-segments cannot be measured by

outsiders. In Figure 2.2, consider DM1 for instance, the NRTT can be computed as:

NRTT = Ds1 +D1u + 2 ·Du +Dus

where (Du +Dus) is the delay over the path-segments from the user to the server (Ru

and Rus), and D1u and Ds1 are the delays over the path-segments from DM1 to the

user (R1u) and from the server to DM1 (Rs1), respectively. the attacker may be able

to estimate (Du +Dus) by pinging the server from the location of the user, however,

it is not possible for her to figure out D1u and Ds1 due to the stealthy nature of

DM and its one-way communication architecture. In other words, round trip cycles
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Algorithm 1 AMAN Authentication Process

Input : Total number of DMs (D), number of profiles per user (r ≤ D), number

of selected profiles per user (m ≤ r), number of profiling signals per profile (N)

Output : Grant or deny access

1: Registration Request : User sends request to server

2: Profiling Request : Server seeks the permission of the user

3: Ready to Profile:

• User accepts profiling request

• Server randomly picks r out of the D available DMs. Each of the selected

(r) DMs will be used to generate a different profile for user

4: Sending profiling signals : Server,

• Sends r · N profiling signals interleaved among the r DMs. Let ds =

{d1, d2, ..., dr} be the set of selected DMs and let ps = {S1, S2, ..., Sr·N} be

the set of profiling signals. Signal Si in ps is forwarded through DM j in ds,

where j = i mod r + 1.

• Records SndT imei of each Si (i ∈ [1, r ·N ])

5: Acknowledgments : For i ∈ [1, r ·N ],

• User sends acki of Si directly to server

• Server records RcvT imei of acki

• Server computes NRTTi = RcvT imei − SndT imei

Compute profile parameters : For j ∈ [1, r], if all the (N) NRTT values of dj are

ready,

• Server calls Algorithm 2 to compute mean and standard deviation for each

of the r profiles
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6: Registration done: Server,

• Chooses the m most stable profiles out of the computed r ones (i.e. the

m profiles that has the smallest standard deviation values) as the set

of reference profiles for the user. This step helps in alleviating routing

instabilities.

• Server acknowledges user and returns

7: Login Request : User sends login request to server

8: Profiling Signals : Server repeats step #4 using m instead of r

9: Acknowledgments : Repeat step #5 using m instead of r

10: Response to User : Server sends the result of calling Algorithm 4

can neither be established on the path-segment between the user and the DM nor on

the path-segment between the DM and the server. Additionally, hiding the location

of the DM (by hiding its IP) prevents estimates of the delays to the DM through

measurement of the delay to close by entities. Therefore, the server is the only entity

of AMAN that can measure profile parameters. We note here that legitimate users

do not learn anything about their profiles or the profiles of other users. This not only

makes NRTT transparent to the users as they do not need to memorize or remember

anything, but also prevents compromised users from breaching the security of AMAN.

Finally, we note that even in the worst case scenario in which NRTT is

disclosed, the attacker can impersonate the user (assuming her password is already

compromised) only from locations that have similar or lower NRTT values compared

to that of the legitimate location, which reduces attack service and makes it harder.

Additionally, as we see in the next section, the deployment of multiple DMs adds

to the complexity and sophistication of such attacks and makes it highly unlikely

because the attack can only succeed from locations that have lower NRTT values for
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all the used DMs; which can be made difficult to achieve by careful deployments of

the DMs.

2.4.5 Multiple Profiles

Delay mask represents a novel idea in the design of AMAN because it makes NRTT

measurement robust and extremely hard to manipulate. However, AMAN with single

DM suffers from two main limitations in the case of password compromise. The

first is its vulnerability to un-throttled guessing due to the low entropy (E) in NRTT

(E ≈ 10 bits [71], the detailed mathematical analysis of NRTT entropy is omitted for

the sake of space). The second is the impact of network instabilities on the usability

of AMAN due to the potential increase in the number of legitimate login failures. To

address these limitations, AMAN deploys multiple DMs in different network locations.

Multiple DMs are used to create multiple different profiles per user. Algorithm 1

shows how AMAN generates multiple profiles using multiple DMs.

In the following, we demonstrate how multiple profiles can deter un-throttled

guessing and alleviate network instabilities, then we present the authentication

decision algorithm.

Defense Against Un-throttled Guessing: In general, un-throttled guessing is

a brute force attack in which the attacker is allowed to try all possible credential

combinations until she hits the right one. However, it is extremely hard for the

attacker to try all possible combinations in AMAN due to physical limitations.

Attacker can only simulate latencies that are higher than her own by appropriately

delaying acknowledgments of profiling signals, that is, there is no possible way for an

attacker to impersonate a user whose NRTT is lower than her own.

Even when passwords are compromised, multiple profiles help in defending

against un-throttled guessing by both expanding authentication sample space (i.e., the

collection of all possible credential combinations) and by making guessing extremely
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hard (if not impossible) to perform. It is fairly easy to show that multiple profiles

considerably expand single-profile sample space. Assume that the entropy of the

single-profile sample space is E, then the entropy of the m-profile sample space is

simply m · E, because the profiles are independent.

More importantly, multiple profiling further reduces the set of possible users

that the attacker can possibly impersonate. For an attacker to impersonate a user,

her NRTTi through DMi (i ∈ [1,m]) has to be faster than the corresponding NRTTi

(i.e., through the same DM) of the user. If any of the NRTTi values of the user

is faster than the corresponding one of the attacker, the attack definitely fails. The

larger the number of DMs (m), the harder the attack can be performed. In fact, by

carefully positioning the DMs, the attack can be made extremely hard to succeed.

Algorithm 2 Compute Profile Parameters

Input: Set R ={NRTTi, i ∈ [1, 2, ..., N ]};

Output: mean and standard deviation

1: procedure Filter outliers

2: Computes the median value of R: M = Median(R)

3: Computes median absolute deviation (MAD) of R:

MAD = b ∗Median(abs(NRTTi −M));

Where b = 1.5 for normal distribution

4: Remove NRTTi > M + τ ×MAD from R;

Where τ = 2 (moderately conservative)

5: end procedure

6: Return mean and standard deviation of R

Alleviating Long-term Instabilities: Network latency comprises delay in local

network and backbone delay. The work in [44] shows that traffic congestion is the

main cause of local network delay, and it only marginally affects backbone delay. It
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also shows that the main contributing factor of the backbone delay is the speed of

light where the delay jitter is extremely low [44]. These results lead to the conclusion

that backbone network is much more stable than local network. The empirical results

in [80] and our experiments also support this conclusion, that is, the main contributor

of long-term network instabilities is traffic congestion in local networks. We design

here a novel algorithm based on multiple profiling to mitigate the impact of such

instabilities on NRTT measurements.

To see that, consider the DMs depicted in Figure 2.2, which are used to establish

different user profiles. All the profiles share the same local network segment (Ru) but

have different and more stable backbone routes (Rs1 + R1u, · · ·, Rsm + Rmu) [44].

Therefore, congestion in the local network (Ru) will introduce similar noise in all the

real-time profiles. To filter out such noise, AMAN uses Algorithm 3. AMAN first

measures the difference between real-time mean (x) and reference mean (µ) of each

profile as 4Ti = xi − µi, where i ∈ [1,m]. Then, AMAN verifies that (i) either all

the 4Ti values are greater than δ or all the 4Ti values are less than −δ, where δ is

the error tolerance defined by Equation (1) in Section 2.2.2, and (ii) the variance of

the 4Ti values is less than η = 0.5, where η is an experimentally predefined value.

If these two conditions are true, then it is highly likely that the noise is caused

by local congestion. In this case, AMAN simply subtracts the average noise value

(4T = mean{4Ti}) from the mean of each real-time profile before applying the

authentication decision algorithm (Section 2.4.5).

The Access Decision Algorithm: The access decision algorithm (Algorithm

4) presents the logic by which AMAN grants or denies access to end users based on

the real-time profiles and the stored reference profiles. As explained in Section 2.4.2,

the server keeps the m most stable profiles as the reference profiles for each user.

With each login attempt, the server builds m corresponding real-time profiles. After
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Algorithm 3 Filter out Long-term Instability

Input: real time means xj; reference means µj, δ, η

Output: shared increment 4T

1: procedure Calculate-Increments

2: Initialization: 4T0 = 0

3: for j ∈ [1, 2, ...,m] do

4: 4Tj = xj − µj

5: if 4Tj · 4Tj−1 < 0 (opposite trend) then

6: return 4T = 0 ;

7: end if

8: if −p < 4Tj < p

(within the error tolerance of the Gaussian distribution) then

9: return 4T = 0 ;

10: end if

11: end for

12: std = standard deviation{4Tj}

13: if std > η

(increments vary a lot) then

14: return 4T = 0;

15: end if

16: 4T = mean{4Tj}

17: return 4T

18: end procedure
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computing the mean (µi) and the standard deviation (σi) of each of the m real time

profiles (Section 2.4.3), AMAN uses the Gaussian PDF algorithm [123] to compute

the distance (scorePDF ) between the reference profiles and the the real-time profiles:

scorePDF =
1

m

i=m∑
i=1

e−
(xi−µ)

2

2·σ2

Access is granted if scorePDF ≥ ThresholdPDF , otherwise access is denied. The

threshold is experimentally selected to match the desirable trade-off between false

positives and false negatives as detailed in Section 2.5.

To further refine and tighten the access decision, AMAN can use out-of-band

channels such as SMS or email to request supporting evidence in doubtful or

borderline situations. In this case, the decision will be either clear accept, clear

deny, or supporting evidence is required. The supporting evidence could be a random

number delivered to the user through an out-of-band channel. This enhancement

serves multiple purposes: (i) it can alleviate legitimate login failures that may occur

due to unexpected events on the Internet such as network traffic re-route, (ii) it can

support arbitrarily mobile clients, (iii) it can be used as a backup channel to recover

from long-term login failures such as exceeding the maximum number of login retries,

and (iv) it can be used to establish new spacial profiles for the user in new login

locations.

2.4.6 Other Important Discussions

The cyber security threat landscape is complex and continuously evolving, and hence,

no security mechanism is foolproof. In this section, we discuss the limitations of the

proposed scheme and provide corresponding solutions, including: (1) the potential

integration of AMAN with other authentication factors to support arbitrarily mobile

clients; (2) defense against sophisticated attacks, in which attackers both compromise

legitimate credentials and have access to the legitimate login locations; and (3) defense
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Algorithm 4 Authentication Decision Algorithm

Input: real time parameters (xj, yj)

reference parameters (µj, σj)

Output: authentication decision: True or False

1: procedure Compare-Profiles

2: 4T = call Algorithm 3

3: scorePDF = 0

4: for j ∈ [1, 2, ...,m] do

5: xj = xj −4T

6: scorePDF+ = e
−

(xj−µ)
2

2·σ2
j

7: end for

8: scorePDF = scorePDF/m

9: if scorePDF ≥ threshold then

10: return True ← Grant access

11: else

12: return False ← Deny access

13: end if

14: end procedure
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against low rate DDoS attack; and (4) considerations of the deployment for the delay

masks.

Mobility and Login Failures: Mobile clients can be broadly classified into: (i)

Low mobile clients who frequently login from a number of locations such as home,

office, and library. In this case, AMAN simply creates a separate profile for each

location. A user will be granted access if her real-time login profile matches any of the

stored profiles. (ii) Arbitrarily mobile clients who may login from any arbitrary

location. In applications that support such mobile clients (also in case of login

failure), AMAN could use other authentication factors such as browser fingerprinting

or random strings delivered through out-of-band-channels such as SMS and emails

and then apply the enhanced decision algorithm as detailed in Section 2.4.5. However,

we note here that if other factors are used to enable arbitrary mobility, mobile users

do not benefit from the added security features provided by NRTT such as resiliency

to Phishing and MitM.

Sophisticated Attackers: As clarification, a sophisticated attacker, in our attack

model, is that an attacker who compromised the password, knows the login location

of the user, and has physical access to the login location of the user. We acknowledge

that such attacker may succeed in impersonating the user, however, we would

like to highlight the following facts: (1) We do not and can not claim that our

authentication mechanism can be used anonymously for any generic application,

but rather we have clearly stated that our NRTT based authentication mechanism

could greatly enhance the security of authentication in certain applications such

as location-based authentication applications. Similar to most of the security

mechanisms, we acknowledge that persistent and targeted attacks (attackers attempt

to detect and exploit individual details of users) are very challenging and hard to block

[83]. However, we note that, most of the authentication-based cyber attacks (e.g.,
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stealing username/password by compromising the database of the web server) do not

incorporate the users’ location information and simply try to use these credentials

as soon as possible from arbitrary locations, before being revoked. Therefore, we

are confident that even though our authentication mechanisms is not completely

fool-proof, it decreases the probability of attack success by greatly reducing the attack

surface from anywhere in the world to only the login location of the user. (2) The

“login location” as defined in our work does not mean the geographical nearby places

but the same login network. For example, NRTT will vary substantially if the user

logs in through different networks (e.g., 4G, WiFi, etc.), even in the same room. (3)

As mentioned in this work, the login location issue can be addressed by augmenting

our authentication mechanism with additional factors such as browser fingerprints

and on-demand dynamic passwords.

Low Rate DDoS Attacks: DDoS attacks are out of the scope of this work.

However, instead of completely taking down the service, low rate DDoS attacks

increase the network traffic (i.e., increase the NRTT ) and hence, it may hinder

the intended functions of our authentication mechanism. This type of attacks may

occur in different scenarios and hence can be alleviated according to each specific

scenario: (1) Low rate DDoS attack in the server or the local network of the user

is implicitly addressed and is already alleviated by the proposed shared increment

removal algorithm utilizing the deployment of multiple DMs. This is simply because

Low rate DDoS attacks in this scenario cause similar delays for all the real time

profiles and hence can be easily filtered out; (2) Low rate DDoS attack against one

of the DMs is alleviated by the design of multiple profiles and the use of the adaptive

decision algorithm. For example, for a design with 3 DMs, even if one of the DM paths

is under low rate DDoS attack, the overall output of the decision algorithm wouldn’t

be affected much because it is an averaging of all the three profiles. In addition, the
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adaptive decision algorithm will warn the server if one of the profiles goes beyond a

certain threshold while the others remain at normal level; (3) The probability of low

rate DDoS attack in multiple DM paths with different rates is very low, however, it

still can be addressed by randomising the DMs per session per user.

Considerations for the Deployment of the DMs: Recall that the DM is

assumed to be connected to a separate dedicated secure network segment such that

attackers (and also legitimate users) do not know its IP and can neither connect from

the location of the DM nor can they compromise it. One way of hiding the IP of

the DM is by spoofing the IP address of the server. Before forwarding the profiling

signal, the DM sets the source IP field of the packet to the IP address of the server

instead of its own IP. In addition to hiding the existence of the DM, this also makes

AMAN transparent to end users. However, controlled spoofing of the IP address of

the server by the DM is very challenging because it requires collaboration with the

ISP hosting the DM to avoid dropping of the spoofed packets.

In addition, Software Defined Network (SDN) provides the possibility of a

lightweight solution due to its centralized control plane design. The ISP controller

could easily modify the forwarding policy globally and route the packets arbitrarily.

Furthermore, the deployment cost of multiple DMs could be reduced by utilizing

existing infrastructure of the web service. For example, Google has many offices,

repair branches, and data centers where DMs could be deployed.

2.5 Evaluation of NRTT As an Authentication Factor Using AMAN

We conduct a thorough set of experiments to evaluate the usability (in terms of false

negative rate, FN) and the security (in terms of false positive rate, FP ) trade-offs

of AMAN. We also study the impact of network instabilities on AMAN and assess

its performance overhead. Specifically, we measure the following five metrics: (i) the

false negative rate (FN), which is the probability that a legitimate login attempt
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fails, (ii) the false positive rate (FP ), which is the probability that a perpetrator

who possesses the password of a legitimate user successfully authenticates on her

behalf, (iii) the login latency overhead (LLO), which is the average extra time it

takes a user to successfully authenticate in AMAN compared to legacy one-factor

password authentication, (iv) the storage overhead (SO), which is the extra storage

space required per user in AMAN, and (v) the bandwidth overhead (BO), which is

the extra network bandwidth incurred per login instance in AMAN. For all these

metrics the lower the value is the better.

We measure the variations in these metrics by varying four parameters: (i) the

number of profiles per user (m), (ii) the decision threshold (DT ), (iii) the number

of profiling signals (N), and (iv) the maximum number of login retries (LR). In all

the following experiments, unless otherwise stated, we use N = 45, LR = 2, m = 2,

DT = 0.85 : 0.005 : 0.92, and Gaussian PDF in the access decision algorithm. We

re-emphasize that the FP values presented here are for powerful attackers, that is,

attackers who already know passwords of legitimate users they try to impersonate.

2.5.1 Experimental Setup

We build a test-bed that implements the three entities of AMAN with the following

configurations:

• Users: The user population consists of 10 Amazon EC2 instances, 130
PlanetLab nodes, 25 GENI nodes, and 63 residential WiFi users randomly
selected from different places in USA and Canada.

• Authenticators: The authenticator runs Apache HTTP Server version 2.4
and a web service implemented in HTML and PHP. The authentication
credentials (username, password, profile mean, profile standard deviation,
decision threshold, etc.) are stored in a MySQL database.

• Delay Mask: We configure 3 PCs to work as the DMs. A C program
is implemented on top of the MAC layer to relay the profiling signals from
authenticators to users. The DMs are deployed in Oregon (USA), Germany,
and Qatar.
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Figure 2.7 ROC curves of FP -FN ; Varying the # of profiling signals N ; P = 2,
LR = 2, DT = 0.85 : 0.005 : 0.95.

2.5.2 Experimental Results

We first present the usability and security trade-offs, then we present the impact of

traffic conditions on the access decision algorithm, and finally, we analyze the storage

and performance overhead of AMAN.

Usability and Security Trade-offs: In this section, we study the trade-offs

between usability (FN) and security (FP ) properties of AMAN under different

system parameters.

To measure FN , for each test instance (e.g., a test with P = 2, N = 45,

DT = 0.92, LR = 2), each of the 25 GENI nodes and 63 residential WiFi users
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Figure 2.8 ROC curves of FP -FN ; Varying the maximum # of login retries LR;
N = 45, P = 2, DT = 0.85 : 0.005 : 0.95.

attempted to login 300 times. The data were collected within one day period for

GENI nodes (i.e., wireline connections). For residential users (i.e., WiFi connections),

the data were collected at random time within one month period). To measure FP ,

each of the 25 GENI nodes tries to login 300 times within one day period using

the username and password of the other 217 clients (i.e., the other 24 GENI nodes,

63 residential users, and 130 PlanetLab nodes), a total of 1,627,500 (25*217*300)

impersonation attempts are launched for each test instance. In all the following

experiments, we vary the DT from 0.85 to 0.92 with 0.005 step and measure FP and

FN values for each threshold point.

Note that, the experiments are indeed conducted over long time periods, not

within a few days. The experimental data for the 63 residential users was collected and
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Figure 2.9 ROC curves of FP -FN ; Varying the # of profiles per user P ; N = 45,
LR = 2, DT = 0.85 : 0.005 : 0.95.

tested over one month period. In addition, our testbed has been running for about one

year. Even though the tests are not performed continuously, they still demonstrate

good performance for each individual test, thanks to the proposed dynamic temporal

profiling algorithm described in Section 2.3.

Varying the number of profiling signals (N): Figure 2.7 shows the ROC

(receiver operator characteristics) curves of FN and FP with variable DT for N

equals 27, 45 and 91. The figure emphasizes the analysis results in Section 2.2.2 as

it clearly shows that both FP and FN improve (lower values) as N increases. For

example, AMAN can achieve FP = 0 and FN ≈ 0.85% for N = 45. The figure also

shows that with N = 91, AMAN achieves FP = 0 and FN = 0.
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Figure 2.10 Raw data of NRTTs for two different profiles taken every 20 minutes
for 60 hours.

Varying the maximum number of login retries (LR): Figure 2.8 shows

the ROC curves of FN and FP with variable DT for LR values of 1, 2, and 3. The

figure clearly shows that LR has big positive impact on FN . When the user has a

second chance to login after the first failed one, FN can be significantly reduced. On

the other hand, LR has a relatively very small negative impact on FP . Increasing

LR, only slightly increases FP because attacker almost gains nothing when given

another login chance, even if the new login chance is performed from a new location,

thanks to the large authentication sample space of AMAN. The figure shows that for

LR = 3, AMAN can achieve both FN = 0 and FP = 0.

Varying the number of profiles per user (m): Figure 2.9 shows the ROC

curve of the FN and FP with variable DT for m values of 1, 2 and 3. The figure
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Figure 2.11 The FN curve with variable DT for three different decision algorithms.

clearly shows that the number of profiles per user has significant positive impact on

FP . The 1-profile FP value is much larger than that of the 2-profile and the 3-profile

cases. This is intuitive because multiple profiles both increase the authentication

sample space, and considerably decrease impersonation by physically limiting the

number of locations from which impersonation could be lunched (Section 2.4.5).

Similarly, the larger the number of profiles, the lower the FN . Recall that multiple

profiles help to filter out network instabilities and hence decreases FN . The figure

shows that with m = 3, AMAN can achieve FP = 0 and FN = 0.

Impact of Network Instabilities: For this experiment, we set a WiFi user

connected to the university campus to login every 20 minutes for 60 hours, from

9AM Friday through 9PM Sunday. Figure 2.10 shows all the NRTT values measured
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Figure 2.12 The CDF of login latency overhead with variable WL.

for two different profiles during the test period, a total of 8100 (60*3*45) NRTTs

per profile. The figure clearly shows the variations in NRTT values over different

time periods. To evaluate the impact of such variations on the FN rate and to

assess the capabilities of AMAN to cope with them, we use the data in Figure 2.10

to compute the FN rate over all the login attempts. Recall that AMAN uses outlier

filtering (Algorithm 2) and shared increment removal (Algorithm 3) to alleviate

instantaneous and long-term instabilities, respectively. Figure 2.11 shows FN as a

function of DT for baseline AMAN (no filtering), AMAN with outlier filtering alone

(AMAN-OF), and AMAN with both outlier filtering and shared increment removal

(AMAN-OFIR) with p = 0.5ms and q = 0.5ms. The figure shows that network

instabilities can badly hurt the usability of AMAN as evidenced by the 10% FN rate,

which is the best FN rate that baseline AMAN can achieve. On the other hand,

46



the figure shows the effectiveness of AMAN in coping with network instabilities as

evidenced by the 0 FN rate achieved by AMAN-OFIR, almost irrespective of the

DT value used. The flexibility in DT is very important as it allows AMAN-OFIR to

achieve lower FP rate as well, because the higher the DT , the better the FP .

2.5.3 Performance Overhead

Login Latency Overhead (LLO): In this experiment, we evaluate the login

latency overhead (LLO) per user in AMAN compared to that in legacy password

authentication. We use the 10 Amazon instances in our test-bed to generate variable

server workload (WL), which is measured by the number of login requests per second.

Then, we measure the LLO of 12,420 logins under server workloads of 100, 200 and

300 login requests per second. Figure 2.12 shows the empirical cumulative distribution

functions (CDFs) of LLO under each WL. The figure shows that more than 99%

of the login instances have LLO less than 0.185 seconds, which is unnoticeable to

humans.

Bandwidth Overhead: The bandwidth overhead (BO) is caused by the profiling

signals and the acknowledgments of every login attempt. Each of the m profiles

requires N profiling signals and N acknowledgments per login attempt. The size

of the profiling signal/acknowledgment is about 50 bytes including all the headers.

Therefore, BO = 100 ·m · N bytes/login instance. Based on our experiments, m =

3, N = 45 provides excellent trade-off between FP and FN , and hence, BO =

100 · 3 · 45 = 13500 ≈ 13K bytes. This is a negligible overhead given the fact

that login bandwidth consumed by most of the popular websites (e.g., Chase.com,

Facebook.com, Amazon.com) ranges between 10.98K and 125.47K bytes, according

to a study that we have conducted on 12 popular web services.
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2.6 Evaluation of NRTT and Other State-of-the-art Second
Authentication Factors

In this section, we perform thorough comparative evaluation of NRTT -based

authentication factor against state-of-the-art authentication factors by employing a

famous benchmarking framework for web authentication, which has been proposed

by Joseph Bonneau et al. [29]. We compare NRTT (represented by H in Table

2.2) against: A1: Second Authentication Code (SAC) through email [46], A2: SAC

through mobile SMS/voice [53], B1: disconnected hardware token (e.g., RSA SecurID

[14]), B2: connected hardware token (e.g., smartcard-like USB token, NFC, etc. [50]

[39]), C: paper token (e.g., PIN+TAN [134]), D: biometrics (e.g., fingerprint, iris,

voice recognition, etc. [112]), keystroke [95], E1: non-keystroke device characteristics

(e.g., mouse click pattern, [105]), E2: hardware/system signature (e.g., browser

fingerprint, trusted platform module, etc. [96] [70] [43]), F: knowledge-based

information (e.g., photo recognition of somebody you know [30]).

The benchmark encompasses twenty five properties grouped into three categories,

namely, usability, deploy-ability and security. Each property has two-dimensional

score (V U). The first entry of the score (V ) indicates whether the authentication

scheme offers the property (V = Y ), does not offer the property (V = N), or partially

offer the property (V = A). The second entry of the score (U) indicates whether this

property offering is better than (U = ” + ”), similar to (U = ” ”, i.e., no symbol),

or worse than (U = ” − ”) that of the legacy password scheme (the baseline). For

example, if an authentication scheme offers a certain property better than the baseline,

the score of this authentication scheme against that property will be Y+. Table 2.2

presents the comparison among factors. The results clearly show that NRTT has the

best combination of usability, deploy-ability and security proprieties. In the following,

we explain the benchmark properties that may not be straightforward and drop the

explanation of the intuitive ones.
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Table 2.2 Evaluation of NRTT and Other State-of-the-art Second Authentication
Factors

A1 A2 B1 B2 C D E1 E2 F G H

Resilient-to-Physical-Observation A+ A+ A+ Y+ N- Y+ N- N- Y+ Y+ Y+

Resilient-to-Targeted-Impersonation A+ A+ Y+ Y+ Y+ N- Y Y A+ N- A+

Resilient-to-Throttled-Guessing Y Y Y Y Y Y+ Y Y Y Y Y

Resilient-to-Unthrottled-Guessing Y Y Y Y Y Y+ Y Y Y A- Y

Resilient-to-Internal-Observation N N Y+ N- N- N- N- N- N- Y Y+

Resilient-to-Leaks-from-Other-Verifiers Y+ Y+ Y+ Y+ Y+ N- N- N- N- Y Y+

Resilient-to-Phishing N N N N N N N N N N Y+

Resilient-to-Theft Y N- N- N- N- N- Y Y Y Y Y

No-Trusted-Third-Party N- N- N- N- Y Y Y Y Y Y N-

Requiring-Explicit-Consent Y Y Y A- Y Y Y Y Y Y Y

S
e
cu

ri
ty

Unlinkable N- N- Y Y Y N- N- N- N- A+ Y+

Memorywise-Effortless A+ A+ A+ Y+ Y+ Y+ Y+ Y+ Y+ N Y+

Scalable-for-Users Y+ Y+ N- N- Y+ Y+ Y+ Y+ Y+ N- Y+

Nothing-to-Carry Y N- N- N- N- Y+ Y+ Y+ Y+ Y+ Y

Physically-Effortless N N N A+ N N- N Y+ Y+ N- Y+

Easy-to-Learn Y Y A- Y A- Y Y+ Y+ Y+ Y Y

Efficient-to-Use N- N- A- A- A- N Y Y Y+ N- Y+

Infrequent-Errors Y Y Y Y Y A- A- N- Y A- A-

U
sa

b
il
it

y

Easy-Recovery-from-Loss Y Y N- N- N- N- N- N- N- Y Y

Accessible Y A A A A N- Y Y Y Y Y+

Negligible-Cost-per User Y N- N- N- Y- N- Y Y A- Y Y

Server-Compatible N- N- N- N- N- N- N- N- N- N- N-

Browser-Compatible Y Y Y N- Y N- Y N- N- Y A-

Mature Y Y Y Y Y N- N- N- N- A- N-D
e
p
lo

y
a
b
il
it

y

Non-Proprietary Y Y N- A- Y A- A- Y N- Y Y

”-” = Worse than Legacy Password; no symbol = Same as Legacy Password; ”+” = Better than Legacy Password;

Y = offer the property; N = does not offer the property; A = partially offer the property.
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2.6.1 Security

Resilient-to-Physical-Observation: It evaluates the potential leakage of authen-

tication credentials by physical observation of users during login. For NRTT -based

authentication, even legitimate users can not learn or compute their own profile

parameters (Section 2.4.4). Therefore, it is completely resilient to physical obser-

vation. On the other hand, SAC and legacy password schemes are susceptible

to physical observation. Biometric factors based schemes are partially resilient to

physical observation due to the potential capture of individual biometrics using special

tactics, such as lifting fingerprints from the glass surface of scanners.

Resilient-to-Targeted-Impersonation: It evaluates the potential of targeted

impersonation by capturing or simulating specific user authentication factors. NRTT -

based authentication which has been shown to be robust and unforgeable factor

(Section 2.4.4), and hence, NRTT is completely resilient to targeted impersonation.

Other factors, take biometric factor - fingerprint for example, it is obviously

susceptible due to fixed fingerprint values.

Resilient-to-Internal-Observation: It evaluates whether the attacker can capture

credentials by intercepting the input of the user inside her device. As detailed

in Section 2.4.2, NRTT -based authentication does not require any user input.

Therefore, it is highly unlikely, even for the legitimate users, to learn or compute

their own NRTT . On the other hand, SAC is susceptible to internal observation

since attackers might be able to intercept authentication codes in SMS/email.

Resilient-to-Leaks-from-Other-Verifiers: It evaluates whether specific user’s

credentials could be leaked across different verifiers. For NRTT , thanks to the DMs,

profile parameters across different verifiers are independent, and hence, user profiles
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in one verifier are decoupled from her profiles in other verifiers. However, biometrics

factors (e.g., fingerprint) are completely susceptible.

Resilient-to-Phishing: It evaluates whether man-in-the-middle (MitM) attackers

can capture credentials. Active-Phishing describes the attack in which perpetrators

use forged websites to capture authentication credentials (legacy password, SAC,

fingerprints, etc.) and then, use them in real time to impersonate legitimate users.

The concept of MitM does not apply in the case of NRTT because its users do

not send credentials that could be intercepted by attackers, instead credentials are

measured at the server. Similar to legacy passwords, both SAC and biometric factors

are obviously susceptible to MitM attackers.

Resilient-to-Theft: It evaluates the potential leakage of credentials through loss

or theft of special authentication devices, such as authentication tokens. This is

not applicable to NRTT as it does not require any devices. On the other hand,

SAC through mobile SMS and all token-based factors are susceptible to theft-related

attacks.

Unlinkable: It evaluates whether colluding verifiers can determine user credentials

on other verifiers. As explained in leaks-from-other-verifiers, NRTT profiles across

different verifiers are uncorrelated. However, biometric factors (e.g., fingerprints) are

obviously linkable due to unique user biometrics.

2.6.2 Usability

Scalable-for-Users: It evaluates the burden on users who may have multiple

accounts on different web services. For example, in legacy password systems, a user

has to create a different password for each service. NRTT can be scaled to any

number of accounts per user without creating any extra burden. NRTT profiles for
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the same user on different verifiers are independent and are measured and stored by

the server.

Physically-Effortless: It evaluates whether the authentication factor requires

physical (as opposed to cognitive) user effort beyond, say, pressing a button.

NRTT -based authentication does not require any such effort. On the other hand,

SAC users need to transcribe passwords from their phones/email into browsers and

fingerprint users need to scan their fingerprints.

Efficient-to-Use: It evaluates the time it takes the user to successfully login.

We show that extra login latency overhead of NRTT -based authentication scheme

(compared to the baseline of legacy passwords) is less than 185ms, which is negligible

and is completely unnoticeable by end users. On the other hand, SAC users have to

wait for SMS message to get authentication code, which may take a few seconds, and

biometric factor scanning may take several seconds.

Easy-Recovery-from-Loss: It evaluates the easiness by which users regain the

ability to login if the login credentials are lost or forgotten. Authentication based

on NRTT is completely transparent to users as they do not keep or memorize any

authentication credentials. It is highly unlikely (as proved by the results of our

extensive experiments) for a legitimate user to fail login after three trials. However,

in the very rare case of sudden and permanent changes in profile parameters, NRTT -

based authentication (AMAN as introduced in 2.4) generates new reference profiles

after verifying the identity of the user using either: (i) out-of-band channels such as

email or SMS, (ii) other complementary authentication schemes that may have been

augmented with AMAN such as browser fingerprinting, (iii) if none of the previous

options are available, a user can re-register with the web service as a new user. On
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the other hand, the loss of fingerprint credentials (e.g., physical damage to fingers) is

permanent and impossible to be regained.

2.6.3 Deploy-ability

Accessible: It evaluates whether users may be hindered from using the scheme due

to disabilities or any other physical conditions. Again, NRTT -based authentication

scheme is completely transparent to users and is easily accessible irrespective of any

disabilities. On the other hand, SAC and biometric factor based schemes are less

accessible. For example, blind users cannot read SAC from phones, and users who

broke their fingers cannot scan fingerprints.

Mature: It evaluates whether the scheme has been tested and deployed in

large scale real-world scenarios. NRTT -based authentication (AMAN) is a new

authentication mechanism and hence this property does not apply. However, AMAN

has been extensively tested with relatively good size prototypes (155 non-mobile users

and 63 residential WiFi users). SAC is widely deployed but biometric factor based

authentication has not been used for remote authentication.

Non-Proprietary: It evaluates whether the scheme requires licensing due to

intellectual property or royalties. Similar to SAC, NRTT -based authentication

(AMAN) is an open framework that can be freely implemented by any interested

entity. On the other hand, many biometric authentication schemes have patented

hardware/software.

2.7 Related Work

2.7.1 Security Usage of NRTT

In [125], a packet delay-based scheme is proposed to detect man-in-the-middle (MitM)

attacks. The delay is calculated using TCP packet headers with the assumption that
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the delay increases in the presence of MitM attacker. However, packet delay can

easily be manipulated by, for example, pinging the network service.

2.7.2 IP Based Geolocating

Recently, Gmail has launched a service that enables its users to detect suspicious

account login activities based on their IP information [8]. A suspicious attempt is

detected by matching the relevant IP address(es) to a broad geographical location(s).

However, IP-based verification (fixing a range of IPs) can be easily bypassed via (1)

proxy-server; (2) VPN; (3) IP-hijacking. Many web clients are behind proxies (or

VPN). The client and the proxy may be far apart. For example, the AOL network,

which has a centralized cluster of proxies at one location (Virginia) for serving client

hosts located all across the U.S. [101]. BGP/IP hijacking is much more common

than current researchers think and it is hard to be detected in the form of local BGP

hijacking [126] [48]. Furthermore, IP address based authentication suffers many other

limitations due to current Internet infrastructure including: (1) extensive use of NAT,

especially the use of Carrier Grade NAT (CGN) or Large Scale NAT (LSN) [57]; (2)

complex and various IP address configuration policies by different ISPs. Therefore,

IP address based authentication is more suitable for LAN other than general web

service authentication.

2.7.3 Delay Based Geolocating

The authors of [67] propose a topology based approach to estimate the geographic

location of a certain Internet host. Specifically, they ping the target from a set of

landmarks. Then, based on the end-to-end delay, the target is considered closest

to the landmark with the shortest latency. The primary result is that geolocation

is more accurate when topology is considered (e.g., using traceroute, topology and

per-hop latencies). Francis et al. [45] use traceroute command to collect round trip
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delay data then find the nearest host in terms of low latency. GeoPing[77] provides

a list of end-to-end delays from a target to a set of geographic locations via ping

command to reveal how close a target is to all the landmarks.

However, all of the methods mentioned above use naive measurement of the

(e.g., Ping or traceroute) delay which is not practical on the Internet (e.g., probably

to be blocked). In addition, none of these method consider network instabilities when

using the latency data.

2.8 Conclusions

In this work, we proposed a novel, secure and usable web authentication factor

based on Network Round Trip Time (NRTT ) that strengthens the security of web

service authentication by offering robust defenses against password compromise.

We introduced a novel network component, delay mask, which turns NRTT into

a secure and robust authentication factor. More importantly, we designed and

implemented various algorithms, with the help of multiple DM deployments, to

alleviate network instabilities and expand authentication sample space of NRTT .

The benchmark comparative results (Appendix 2.6) showed that NRTT has superior

security, usability, and deploy-ability properties among state-of-the-art authentication

factors.

We designed, implemented and deployed a prototype for a use case of two-factor

authentication (AMAN) with legacy passwords as first factor and NRTT as a second

factor. The experimental results showed that AMAN can achieve false positive and

false negative rates as low as 0, while maintaining the login latency overhead below

185 ms.

In the future, we plan to make AMAN completely end user agnostic by replacing

passwords with mechanisms that can automatically collect unique user characteristics.
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Such techniques may utilize biometric tools such as typing behavior, screen resolution,

device signatures and others.
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CHAPTER 3

A NOVEL AND ROBUST PHISHING DETECTION FEATURE

3.1 Introduction

Phishing, one form of cyber-attacks, continues to be a growing concern not only to

cyber security specialists but also to e-business users and owners. The severity of

such cyber attack vector is continuously growing with the exponential increase in

digital information generation and the increased reliance of people and business on

cyber space. The Anti-Phishing Working Group (APWG) has seen rapid growth in

the number of unique phishing websites detected from 2014 to 2016 [23]. The average

annual growth rate is 97.36% and is expected to continue to grow. Estimates of

annual direct financial loss to the US economy caused by phishing activities range

from $61 million to $3 billion [58].

To mitigate the increasing damage caused by phishing, a broad range of

anti-phishing mechanisms have been proposed over the past two decades. These

anti-phishing techniques can be categorized into three broad groups [20]: (1) Detective

solutions (e.g., website filtering); (2) Preventive solutions (e.g., strong authentication

[69, 102, 43, 41, 42, 49, 68]); and (3) Corrective solutions (e.g., Site takedown

[73, 72]). In this work, we focus on detective solutions. More specifically, we look

at software-based phishing detection schemes that are specialized in identifying and

classifying phishing websites. This class of approaches is arguably more important

than other approaches because it helps in reducing human errors. Preventative and

corrective solutions take a different approach, but if the user behind the keyboard has

been successfully tricked by a phishing attempt, and willingly submitted sensitive

information, then no firewall, encryption software, certificates, or authentication

mechanism can help in preventing the attack from materializing [58]. Software-based
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phishing detection also delivers improved results compared to detection by user

education (e.g., [78], [79], [116]) because phishing attacks normally aim at exploiting

human weaknesses [75]. For example, a study of phishing detection using user

education [115] shows a 29% false negative rate (FNR) for the best performance,

while the software based approaches that are surveyed by the same study have FNR

in the range of 0.1% to 10%. For this reason, we focus our study on software based

phishing detection systems, and the term “phishing detection” will refer only to this

form of detection in the rest of the dissertation.

In this work, we propose a new phishing detection feature based on the Network

Round Trip Time, dubbed as NRTT . NRTT has been introduced in [61] as a reliable

and robust second web authentication factor. NRTT simply captures the network

round trip time that packets take in its journey from one Internet connected host to

another and back to the original sender. We propose here a two-phase approach based

on NRTT to detect phishing web sites. In the first phase, the targeted victim site

is identified through content analysis of the phishing website, URL characteristics,

spam email content analysis, or combination of them. Victim website identification

is well studied in literature (e.g., [87] [131] [90]), and hence we capitalize on the

state-of-the-art mechanisms to build our victim identification component. In the

second phase, we compare the average NRTT values of both the phishing website

and the targeted victim website from a certain vantage point. If the difference between

the two NRTT averages is greater than a threshold, the link is highly likely a phishing

link. The intuition here is that the phishing website is likely to be hosted on a server

different from that of the victim website, and hence, they will experience different

average NRTT .

We summarize our contributions in this work as follows:

• Introduce a novel and highly usable Phishing detection feature based on
Network Round Trip Time, NRTT .
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• Propose a new phishing detection framework by carefully combining Phishing
detection features based on the most recent Phishing trends and the analysis of
state-of-the-art Phishing detection features.

• Present an algorithm to identify the target website from suspicious URLs.

• Provide comparative evaluation of the proposed scheme against state-of-the-art
schemes and show that our scheme not only has comparable performance results
but also can neutralize advanced Phishing attacks.

3.2 Background

3.2.1 State-of-the-art Phishing Attacks

In this section, we first present the various definitions of phishing, then we introduce

some statistics about phishing between January 2010 and June 2016. Finally, we

describe the phishing ecosystem.

What is Phishing? There is no consensus on how phishing should be defined.

Different phishing definitions lead to different research directions and approaches

(e.g., email filtering or website detection). It is important to clearly identify the

target of any phishing detection approach to avoid confusion about its applicability

in different scenarios. The target and scope of phishing detection approaches can be

analyzed from the definition of phishing which has been adopted by such approaches.

Therefore, presenting a background on the different definitions of phishing can help

the readers understand the scope and the capabilities of different approaches. Table

3.1 summarizes the popular definitions of phishing. On one hand, the definitions of

PhishTank [100], APWG [23], Xiang et al. [136], Tameshe et al. [106] cover the

majority of cases in which phishers aim at stealing sensitive personal information

such as authentication credentials. Table 3.2 shows the comparison of those phishing

definitions based on phishing target and phishing strategy. The most dominant

phishing strategies are social engineering (e.g., through fraudulent emails) and

technical subterfuge (e.g., malware infection). However, sophisticated techniques
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Table 3.1 Most Popular Definitions of Phishing

Definition

PhishTank [100] Phishing is a fraudulent attempt, usually made through

email, to steal your personal information.

APWG [3] Phishing is a criminal mechanism employing both social

engineering and technical subterfuge to steal consumers’

personal identity data & financial account credentials.

Xiang et al. [136] Phishing is a form of identity theft, in which criminals

build replicas of target Web sites and lure unsuspecting

victims to disclose their sensitive information like

passwords, personal identification numbers(PINs), etc..

Whittaker et al. [133] A phishing page is any web page that, without permission,

alleges to act on behalf of a third party with the

intention of confusing viewers into performing an action

with which the viewer would only trust a true agent of

the third party.

Khonji et al. [75] Phishing is a type of computer attack that communicates

socially engineered messages to humans via electronic

communication channels in order to persuade them to

perform certain actions for the attacker’s benefit.

Ramesh et al. [106] Phishing is a fraudulent act to acquire sensitive

information from unsuspecting users by masking as a

trustworthy entity in an electronic commerce.
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Table 3.2 Targets and Strategies of Phishing

Target Strategy

PhishTank [100] Personal information Social engineering

APWG [3]

Identity data,

Financial account

credentials

Social engineering

Xiang et al. [136] Sensitive information Not specified

Whittaker et al. [133] Not specified Not specified

Khonji et al. [75] Not specified Social engineering

Rameshe et al. [106] Sensitive information Not specified

(e.g., pharming [65]) are also used to harvest users’ personal information from the

Internet. On the other hand, the definitions of Whittaker et al. [133] and Khonji

et al. [75] do not limit the attacker’s target (e.g., sensitive personal information).

They describe the phishing strategy (e.g., phishing website or socially engineered

messages) without stating a specific phishing target (e.g., only state the attackers’

benefit). To sum up, the definition of Whittaker et al.[133] is the most general among

those reviewed, while APWG [23] defines the most commonly used phishing attacks

in a specific manner.

How Does Phishing Work? In this section, we introduce the ecosystem of

phishing in terms of phishing process, actors involved, their actions and interactions.

(i) Phishing Process: In a generic/traditional phishing scenario (i.e., massive

email phishing campaigns), an attacker hosts a fake website, and presents users of

a web service with convincing emails containing a link to the fake website. When a

user of the web service opens the link and enters her sensitive data, data is collected

by the server hosting the fake website.
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As illustrated in Figure 3.1, Mihai and Giurea [94] suggest that a generic

phishing process can be identified into five steps: (1) Reconnaissance: Phishers

look for famous web service brands with a broad customer base; (2) Weaponization:

Phishers design the selected phishing websites and social engineer on email spam;

(3) Distribution: Phishers deliver emails to the victims; (4) Exploitation: Phishers

exploit weaknesses of humans to lure the victims into phishing traps via socially

engineered emails. (5) Exfiltration: Phishers collect sensitive data from the phishing

databases.

Unlike generic phishing attacks, spear phishing targets particular individuals

or organizations [31] [128] [103]. Spear phishing attacks typically extract sensitive

data from their victims by attaching a type of malware to emails or in the phishing

website. Industry statistics indicate that spear phishing attacks have a success rate

of 19%, while the success rate of generic phishing attacks is less than 5% [103].

For the purpose of this dissertation, we will not consider email filtering (e.g.,

[137], [26], [85]) as a phishing detection method. Our focus is on detection of website

phishing for both generic and spear phishing attacks.

(ii) Phishing Actors: There are six actors involved in a typical phishing life

cycle (see Figure 3.2), as defined in the following paragraphs:

• Phisher: Individuals or organizations that conduct phishing attacks in order
to obtain a certain type of benefit, such as financial gain, identity hiding (e.g.,
refers to the situation in which phishers do not use the stolen identities directly,
but rather sell them to interested criminals and cyber attackers.), fame and
notoriety, etc. [75][138].

• Web service provider: Companies that provide a certain type of service (e.g.,
email, social network, e-banking, on-line shopping, etc.) on the Internet (usually
through a website).

• Web service subscriber: Customers who subscribe to web services provided
by the web service provider. Subscribers are the potential targets of traditional
phishing attacks.
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Figure 3.1 Illustration of the phishing process.

• Web hosting provider: Companies that provide website hosting services to
web service companies.

• Anti-phishing institutes: Institutes that support those tackling the phishing
menace and provide advice on anti-phishing controls and information on current
trends [3].

• Spear phishing targets: Specific individuals or companies targeted by
phishers.

Each actor involved in the phishing process has different actions and reactions

(summarized in Table 3.3). Phishers try to use sophisticated techniques to evade

phishing detection approaches (e.g., DNS poisoning [19]). In addition, there is a

growing trend in which phishers have decoupled the process of phishing website

hosting from the process of sending phishing emails in order to evade the anti-phishing

solutions (Han, Kheir, & Balzarotti [55]).

63



Table 3.3 Operations of Different Players Involved in Phishing

Basic Operations Advanced Operations

A

1.Data collection

2.Website development

3.Email engineering

1. Evasion of anti-phishing

techniques

B 1.Blacklist announcement
1.User behavior detection

2.Strong authentications

C
1.Human detection

2.Browser filter
1.Phishing detection toolbar

D 1.Policy enforcement 1.Brand monitoring

E
1.Phishing data analysis

2.Anti-Phishing solutions

1.Law enforcement

2.Government coalition

F 1.Employee training
1.Email filtering

2.Phishing detection software

A: Phisher; B: Web service provider; C: Web service subscriber;

D: Web hosting provider; E: Anti-Phishing institute;

F: Spear Phishing targets
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Figure 3.2 Players involved in the phishing process.

Web service providers usually announce blacklists of phishing websites and

recommend users to use strong authentication schemes (e.g., [22, 70, 43, 41, 42]).

Additionally, web service subscribers highly depend on browser filters (e.g., Google

Safe Browser [9]) and other third party anti-phishing toolbars (e.g., Netcraft [2]) to

detect and block phishing attempts.

The role of web hosting providers is rather ambiguous in the phishing process.

Reputable providers usually enforce strict “Terms of Use” and avail certain anti-

phishing solutions (e.g., brand monitoring [20]). Due to financial constraints, many

free-to-use web hosting providers may not be able to afford deploying good anti-

phishing security measures, which leaves their customers not only vulnerable, but

even worse, attractive targets for phishing.
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Anti-phishing institutes collect and analyze phishing data (e.g., suspicious

websites reported by users) from various sources (e.g., users’ reports via anti-phishing

toolbars), and provide anti-phishing suggestions and solutions (e.g., up-to-date

phishing website blacklist, phishing detection toolbars, etc.). In addition, they may

also cooperate with government agencies such as public security and law enforcement

to detect and prevent cyber attacks [3].

What is the Current State of Phishing? According to phishing activity trends

reports published by APWG [23] from Jan. 2010 to Jun. 2016 (shown in Figure 3.3),

the number of unique phishing websites established per month increased significantly

since 2015 (i.e., the average number for 2016 is 2.93 times the average from prior

years). It is clear that phishers profited from this type of cyber-attacks, which

result in financial loss for both web subscribers and business owners. Therefore,

agile techniques to mitigate phishing will continue to be a pressing need.

Phishing attacks tend to empoly advanced techniques to lure web service users

into their rogue websites. Using the database from Trend Micro web reputation

technology, Pajares [12] reports the number of phishing sites that use HTTPS

connections increased significantly in 2014 compared to 2010 (shown in Figure 3.4).

Attackers become more cautious and attentive when designing phishing websites to

evade existing phishing detection methods [1]. Some phishing groups are capable and

desire to perform more advanced phishing attacks. Avalanche (commonly known as

the Avalanche Gang) is a criminal syndicate involved in phishing attacks [135]. In

2010, APWG reported that Avalanche was responsible for two-thirds of all phishing

attacks in the second half of 2009, describing it as “one of the most sophisticated and

damaging on the Internet” and “the world’s most prolific phishing gang” [18]. It has

been discovered that Avalanche uses different techniques to evade the anti-phishing

mechanisms.
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In addition, more and more sophisticated techniques are being used to

implement phishing attacks. For example, the pharming attack, a refined version

of phishing attacks, is designed to steal users’ credentials by redirecting them to

fraudulent websites using DNS-based techniques [47, 73]. Many computer security

experts predict that the use of pharming attacks will continue to grow as more

criminals embrace these techniques [65].

2010 Jan. 2010 Dec. 2011 Dec. 2012 Dec. 2013 Dec. 2014 Dec. 2015 Dec.2016 Jun.
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Figure 3.3 The number of unique phishing sites per month from Jan. 2010 to Jun.
2016.

3.2.2 Life Cycle of Phishing Detection

In this dissertation, we do not incorporate phishing detection approaches that rely on

user education due to their poor performance. In addition, we do not cover phishing

detection methods that perform email filtering because it is a different detection theme
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Figure 3.4 The number of phishing sites that use HTTPS. Re-printed from [12].

that warrants a separate comprehensive study on its own. we reemphasize here that

our focus is on the area of software-based phishing detection which aims at detecting

or blocking phishing websites.

The life-cycle of software-based phishing detection is illustrated in Figure 3.5.

Starting from the initial inputs, the detection scheme extracts phishing detection

features (or called heuristics) and/or blacklists from various sources (e.g., URL

related information, trusted third party, WHOIS server, etc.) via different feature

mining approaches (e.g., search engines, target identification algorithms, etc.).

Then, it applies different data mining algorithms and/or proposes various detection

strategies to the engineered features to achieve its objectives (e.g., identifying phishing

links, blocking phishing websites, etc.). To evaluate the performance of phishing

detection schemes, various evaluation datasets are collected from different sources

(e.g., PhishTank, Yahoo directory, etc.). Finally, leveraging the collected datasets and

following various validation strategies (e.g., cross validation), the proposed scheme is

evaluated based on multiple metrics (e.g., False Positive Rate, False Negative Rate,

etc.).

In the coming sections, following the life cycle of software-based phishing

detection schemes, we present a comprehensive study of the phishing detection

research from five different perspectives, namely, classification of phishing detection
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techniques, validation datasets, detection features, detection techniques and detection

criteria.

Heuristic
Features

Blacklist

Machine 
Learning

Algorithm

Detection
Strategy

Evaluation Data Set

Evaluation Criteria

Validation Strategy

Phishing/Legitimate
Data Sources 

Feature Mining Approach

URL/Blacklist
Data Sources 

Figure 3.5 Life Cycle of typical phishing detection schemes.

3.3 Phishing Detection: Feature Analysis and Selection

In this section, we summarize the most commonly used features taken from various

Phishing detection approaches. Then, we introduce a new phishing detection feature

based on NRTT . Finally, based on the analysis of the presented features, we perform

careful selection from these features to build a new Phishing detection framework.

We note that even though the list of atomic features presented here is not exhaustive,
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it includes the atomic features used in most of the state-of-the-art Phishing detection

approaches.

3.3.1 Atomic Phishing Detection Features

URL-based textual features: A URL (Uniform Resource Locator) is used to

locate website resources. URLs contain many features that have been widely used

in various Phishing detection approaches [28] [136] [133], here are some most used

features:

• URL replaced with IP address: Some Phishing websites do not use host-
names, but rather use IP address directly to locate the fake site. Such behavior
usually used either to obfuscate the legitimate URL or simply to reduce cost.

• The Length of URL: Phishing websites usually have longer URLs comparing
to legitimate websites.

• Number of dots and sub domains: Phishing URLs often contain more
”dots” and sub-domains than legitimate.

• Number of re-directions: Malicious URLs often have multiple URL redirects
in order to evade detection by blacklists.

• Use of HTTPS protocol: Legitimate websites often use HTTPS protocol
while Phishing sites usually do not.

URL-based domain name features:

• Domain name similarity: A measure of the similarity between a potential
Phishing domain name and a target domain name. The similarity can be
measured in many ways. For example, it can be measured based on the Edit
Distance between the two domains [36]. The Edit Distance is the number of
characters that need to be inserted or deleted in order to transform one domain
into another. The smaller the number of insertions and deletions, the higher
the similarity.

WHOIS information: WHOIS is a query and response protocol that is widely

used for querying databases that store information about registered websites [89].
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• Registered information about domain names: For most of the observed
Phishing sites, either the registration record is not available in WHOIS
databases or the claimed identity is not accurate in the record.

• Age of Domain: Many of the observed Phishing websites have domains that
are registered only a few days before Phishing emails are sent out, that is, short
lived domains are likely to be Phishing domains.

Geographic information: Geographical location is one of the most commonly

used indicators in detecting Phishing because Phishing websites are likely to be hosted

in locations different from those of legitimate websites [2].

• IP-based Geographical location: Netcraft [2] provides location information
(i.e., IP-based country information) to help identifying fraudulent URLs. For
example, the real bankofamerica.com is unlikely to be hosted in Russia.

Website textual content: The textual content of the Phishing website can be

used to determine the identity of the target website.

• Term frequency: In [136], the author proposed a content-based approach
to detect Phishing websites based on the TF-IDF (term frequency, inverse
document frequency) information with the help of Google search engine.

– TF-IDF of each term on a suspected web page is calculated.

– Top 5 terms with highest TF-IDF values are selected.

– The top 5 terms are submitted into a search engine and store the domain
names of the n-first returned entries.

– If the suspected domain name is found within the n returned results, then
the site is considered legitimate.

Website visual content:

• Visual similarity: In [91], the authors present a technique to visually compare
a suspected Phishing page with the legitimate one via a set of visual features.
These features include (i) each visible text section with its visual attributes,
(ii) each visible image, and (iii) the overall visual look-and-feel (i.e., the larger
composed image) of the web page visible in the viewport (i.e., the part of the
web page that is visible in the browser window).

71



3.3.2 Network Round Trip Time

The usage of NRTT as a feature for Phishing detection is straightforward. We

simply compare the differences between the NRTT statistics (i.e., mean and standard

deviation) of the phishing website and that of the its targeting website based on the

algorithms discussed in Section 3.4.

Gaussian approximation: It has been observed that the round trip network

communications latency approximately follows a Gaussian distribution [37] [61].

Based on this assumption, the larger the number of profiling signals, the more

accurate the profile. However, the larger the number of profiling signals, the higher

the bandwidth overhead consumed by the verifier. Therefore, it is critical to find a

profiling sample size that leads to an acceptable trade-off between profile accuracy

and bandwidth overhead.

According to the work in [61], for a Gaussian distribution that has standard

deviation σ and mean µ. The minimum sample size N , that produces a mean x,

within a certain error tolerance δ, with a certain confidence level 1 − α, can be

computed as:

N ≥ (Z1−α/δ)
2σ2 (3.1)

Where Z is the critical value for the normal distribution. In other words, for a sample

size of N , we are 1-α confident that the measured mean (x) will fall in the range of:

µ− δ ≤ x ≤ µ+ δ (3.2)

For example, to be 99% confident that x is in the range of ±δ = ±0.5·σ (i.e., the error

tolerance is half of the standard deviation), the number of measurements should be:

N ≥ (Z1−α/δ)
2σ2 = 4·Z0.99 ≈ 27. In other words, with more than 27 profiling signals,

we are 99% confident that real-time profile mean is within 0.5 ·σ from reference profile

mean.
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Network instabilities: NRTT measurements should be robust enough to resist

manipulation attacks and should cope with network instabilities to prevent high false

positive. These NRTT challenges has been well studied and address in [61], where

the authors define three types of network instabilities provide solution that efficiently

address each type of these instabilities.

Instantaneous instabilities cause transient changes in NRTT and hence, they

only affects a few of the profiling signals. This type of instability can be addressed

through outlier filtering based on median absolute deviation[84] .

Long-term instabilities are instabilities that persist long enough to affect all or

most of the of profiling signals yet not permanent. These instabilities are mainly

caused by traffic congestion at the local network segment connecting to the network

backbone. This type of instability can be addressed by establishing multiple profiles

as detailed in [61].

Routing instabilities will result in permanent changes in network communi-

cations latency due to, for example, permanent network routing changes. It has

been shown in many previous researches [38] [81] [109] [82] [114], that only a small

portion of the Internet is responsible for the vast majority of the routing instabilities

and these routing changes exhibit a strong temporal periodicity, despite the growth

of the Internet. We can leverage such periodicity and temporal properties to create

long-term dynamic temporal profiles.

System design for NRTT measurement: We propose a system prototype

(Figure 3.6) to turn NRTT into a robust feature for the proposed phishing detection

framework. The prototype consists of four entities: (1) the user (represented by

a plug-in); (2) the verifier; (3) the locating servers; and (4) the website server.

The verifier and the locating servers form a phishing detection network which are

third trusted parties. This is a valid design because most of the client side phishing
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detection toolbar providers host their own servers that interact with the user’s browser

plug-in (e.g., blacklist updating, user feedback uploading, etc.)

Using the proposed system, the high level measurement procedure involves:

(1) the user installs a browser plug-in and active it; (2) the user opens the faked

website link; (3) the plug-in collects the URL of the faked website and sends it to

the verifier; (4) the verifier goes to the faked website and finds out the target website

(e.g., PayPal) using the algorithm described in Section 3.4.2; (5) the verifier sends

testing requests to multiple Locating Servers (LS) to measure the NRTT from each

LS to the URL hosting server; (6) the verifier leverages the NRTT measurements

together with the proposed phishing detection framework (as detailed in Section 3.4)

to identify potential phishing websites.

Figure 3.6 System model for the measurement of NRTT .

3.3.3 Selection of the Features

In this section, we perform the analysis and selection of the phishing detection

features for the proposed framework. First of all, we classify all the features into two

categories, namely, Identification Dependent Features (i.e., IDF ) and Identification
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Independent Features (i.e., IIF ). Together with the proposed target identification

algorithm (Section 3.4.2), IDF could achieve better detection accuracy. For example,

in [36], the proposed phishing detection toolbar SpoofGuard leverages the domain

name similarity score. However, since it does not provide targeting identification

of the phishing website, it simply compares the phishing domain name with the

the domains in the most recent browser history entries. And this results in bad

performance.

The URL-based features and WHOIS features are still powerful in classifying the

phishing websites due to the attackers’ laziness and their limited resources. However,

webpage content based features suffer from more difficulties than usual [98]. For

example, the attacker can encrypt the phishing website source code to evade website

content based phishing detection methods. Geographic location is a very important

phishing detection feature because the phishing website is most likely hosted in a

place other than the one of the legitimate website [2]. The usage of NRTT provides

similar ability comparing to the IP based geo-location. In addition, it provides

better detection accuracy (e.g., current IP based geo-location schemes only provide

country/state level information) and it could defend against IP/BGP hijacking, which

is even more common than researchers think according to the work in [127]. The

selected phishing detection features are summarized in Table 3.4.

3.4 Phishing Detection Framework Design

3.4.1 Design Overview

In this section, we present the system design of the proposed Phishing detection

framework. As depicted in Figure 3.7, the proposed framework comprises three

modules: (1) Phishing target identification module (TIM); (2) identification dependent

phishing detection module (IDDM); and (3) identification independent phishing
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Table 3.4 Selected Phishing Detection Features for the Proposed Framework

Set Feature Symbol

Network Communications

Round Trip Time
NRTT

IDF
Domain Name Similarity DNS

# of dots in the URL Ndots

IP address in the URL IPurl

# of redirections

of the URL
Nre

Use of HTTPS P

Age of the Domain A

Registering name in WHOIS Rdomain

IIF

Length of the URL Lurl
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detection module (IIDM). The detailed Phishing detection procedure is presented

in Algorithm 1.

Figure 3.7 Design overview.

• TIM: the Phishing target identification and classification module is responsible
of identifying the target website from input URL. The identified result is in
the form of domain names (e.g., www.paypal.com) and it is the premise of
the identification dependent phishing detection (IDDM). Detailed design and
analysis of TIM are presented in Section 3.4.2.

• IDDM: the identification dependent phishing detection module performs the
detection algorithm for all the features that require the target identification of
the website (i.e., Set IDF). Detailed design and analysis of IDDM is presented
in Section 3.4.3.

• IIDM: If TIM cannot verify the identification of the website (less than 5%
of according to the experimental results), IIDM will take over the control
and perform phishing detection based on website identification independent
features (i.e., Set IIF). On the other hand, if TIM successfully identifies the
target website, IDDM will first handle the identification dependent features
then forward the results (i.e., scoreIDDM) to IIDM for final decision. Detailed
design and analysis of IIDM are presented in Section 3.4.4
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Algorithm 1 Phishing Detection Procedure
Input : URLinput

Output : Phishing detection decision: True or False

1: procedure

2: Send URLinput to TIM, Dl= call Algorithm 2

3: if TIM successfully identifies the target then

4: TIM sends the Dl to IDDM.

5: IDDM performs Algorithm 3

6: IDDM forwards scoreIDDM to IIDM

7: IIDM performs Algorithm

8: if scoreIIDM ≥ threshold then

9: return False

10: else

11: return True

12: end if

13: else

14: TIM forwards the control to IDDM.

15: IIDM performs Algorithm

16: if scoreIIDM ≥ threshold then

17: return False

18: else

19: return True

20: end if

21: end if

22: end procedure
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3.4.2 Target Identification

Identification process: The proposed website target identification and classifi-

cation module (TIM) aims at finding out the identification, in terms of target domain

name (e.g.,www.paypal.com), based on the input URL. In this work, TIM first extracts

a list of keywords from several selected website contents. The selected website contents

include:

• URLinput: the input URL.

• Ttitle: the title of the website.

• Tcopyright: the copyright field of the website.

• Ttext: other website text contents, including: pure text, text from the hyperlink,
text extracted from the images.

After obtaining the list of keywords, TIM tries to match the list of keywords to a

pre-defined web service brands whitelist which is further mapped to its corresponding

domain name (e.g, Paypal → www.paypal.com). This whitelist includes 92 most

phished websites information which are collected from 37321 verified phishing websites

of PhishTank [100]. If the extracted list of keywords has no match to the whitelist,

TIM will apply the list of keywords to a searching engine (i.e., Google search) and

record the domain names of the top N (e.g., N = 3) searching results.

As depicted in Figure 3.8 and Algorithm 2., the website target identification

and classification module (TIM) consists of 6 sub-modules:(1) Module 1 simply

records the input URL as a string in SetA; (2) Module 2 extracts the page title

Ttitle and copyright field Tcopyright from the HTML source code then records them as

SetB; (3) Module 3 calculates the term frequency of the all other web page texts

Ttext, then saves the results as SetC (i.e., from text only) and SetD (i.e., from the

image extracted text); (4) Module 4 performs the whitelist matching among all the

sets (i.e, SetA,B,C,D), and saves the hitting list as ListA. (5) Module 5: if there is
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no matching resolved from Module 4, Module 5 will construct ListB in the form of

(SetB, SetC, SetD); (6) Module 6 maps ListA or ListB into corresponding domain

names based on the whitelist or the top N (N = 3) searching result, respectively.

Figure 3.8 TIM working flow.

Special Cases: We note that there are special scenarios that TIM cannot generate

any outputs (i.e., Dl = ∅), for example, the website source code is protected via

encryption and there is no image on the website. Under such scenario, TIM will fail

to provide outputs and IIDM will take over the control of the detection process as

depicted in Figure 3.7. Alternatively, we can take the screen shoot of the webpage

for further analysis. However, it will increase the system complexity and detection

time overhead. In addition, according to our investigation of 500 legitimate websites,
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Algorithm 2 Target Identification Algorithm
Input : URLinput

Output : Target domain name Dl

1: procedure

2: Feed URLinput to Module 1 to 3

3: Module 1 to 3 outputs SetA,B,C,D.

4: Module 4 matches SetA,B,C,D with the whitelist.

5: if There are matches in Module 4 then

6: Record the matches in ListA

Module 6 maps listA into corresponding domain

names and records the result as Dl.

7: else

8: Create ListB in the form of (SetB, SetC, SetD).

Module 6 applies ListB to the searching engine

and records the top N domain names as Dl.

9: end if

10: Return: Dl

11: end procedure
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encryption is not used by any of these legitimate web services and we can confidently

conclude a phishing. Another possible scenario is that we disable the text extraction

from the website images in order to reduce the overall detection overhead.

3.4.3 Identification Dependent Phishing Detection Module

After obtaining the target identification output (i.e., Dl) from TIM, IDDM takes

over the control of the detection process. IDDM performs evaluation of two target

identification dependent features, namely, normalized domain name similarity score

and the NRTT Gaussian PDF score. After the evaluation, IDDM will forward

the results to IIDM for final analysis. Detailed evaluation process is presented in

Algorithm 3.

Normalized Domain Name Similarity: First, IDDM extracts the domain name

embedded in the URLinput and records it as string ai with length |a|. Then, it denotes

Dl as string bj with length |b|. Finally, IDDM calculates the normalized domain name

similarity score (scoreDNS) using equation (1) and (2) based on the edit distance of

the two strings.

Da,b(i, j) =



max(i, j) if min(i, j) = 0

min


Da,b(i− 1, j) + 1

Da,b(i, j − 1) + 1 otherwise

Da,b(i− 1, j − 1) + 1(ai 6=bj)

(1)

scoreDNS =
max(|a|, |b|)−Da,b(|a|, |b|)

max(|a|, |b|)
(2)

NRTT Gaussian PDF score: As detailed in Section 3.3.2, the IDDM builds m

corresponding real-time profiles for the website represented by URLinput, denoted as

U(µ, σ). Then, IDDM retrieves the pre-stored NRTT profiles (i.e., to reduce usage
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of the bandwidth) or measures the real time NRTT profiles (i.e., to alleviate the

effect of NRTT instability or in the case of no pre-stored reference profiles) for the

websites in Dl, denoted as V (x, y). Finally, IDDM computes the distance between

U(µ, σ) and V (x, y). To measure the distance, we use the Gaussian PDF algorithm

[123] as shown in equation (3):

scoreNRTT =
1

m

i=m∑
i=1

e−
(xi−µ)

2

2·σ2 (3)

We note that, there may be multiple domain names in Dl because of the

uncertainty of TIM (e.g., keywords matching, top N searching). Under this scenario,

IDDM simply calculates scoreDNS and scoreNRTT for each website in Dl and keeps

the highest score respectively. This operation helps to decrease the false positive rate

of the phishing detection system.

3.4.4 Identification Independent Phishing Detection Module

The IIDM performs the evaluations of all the target identification independent

features (i.e., Set IIF). It computes the corresponding evaluation score for each of

the features in Set IIF. The corresponding evaluation score calculations are presented

in Table 3.5. Finally, IIDM calculates the final score scoref based on equation (11).

The decision algorithm is presented in Algorithm 3.5.

There are three types of evaluation scores computed in the proposed framework:

• Comparative score: CS = scoreNRTT + scoreDNS. CS depends on the
outputs of the IDDM that requires the target identification of the input URL.

• WHOIS score: WS = score6 · score7. For the website being examined, if the
there is no registering information in the WHOIS record (i.e., score6 = 0), it is
most likely to be a phishing site and we can confidently set WS = 0.

• URL score: US = score1 ·
∑i=5

i=2(scorei). For the website being tested, if the
corresponding URL contains IP address, it is most likely to be a phishing site
and we can confidently set US = 0.
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Algorithm 3 Identification-Dependent Feature Evaluation

Input : ai = Domain name of URLinput)

1: bi = Dl

Output : scoreDNS and scoreNRTT

2: procedure

3: Da,b(i, 0) = 0, Da,b(0, j) = 0

4: for i ∈ [1, 2, ..., |b|] do

5: for j ∈ [1, 2, ..., |a|] do

6: Da,b(i, j) = Equation (1)

7: end for

8: end for

9: scoreDNS =
max(|a|,|b|)−Da,b(|a|,|b|)

max(|a|,|b|)

10: scoreNRTT = 0

11: for j ∈ [1, 2, ...,m] do

12: xj = xj −4T

13: scoreNRTT+ = e
−

(xj−µ)
2

2·σ2
j

14: end for

15: scoreNRTT = scoreNRTT/m

16: Return: scoreDNS and scoreNRTT

17: end procedure
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Table 3.5 Evaluation Score Calculation Formulas for Identification Independent
Features

Features Calculation Formula

IPurl score1 =

0 if URLinput contains IP

1 otherwise
(4)

Lurl score2 =

 1 if Lurl <= Lthreshold

Lthreshold/Lurl otherwise
(5)

Ndots score3 =

1 if Ndots <= Nthreshold

Nthreshold/Nurl otherwise
(6)

Nre score4 =

1 if Nre <= NRthreshold

NRthreshold/Nre otherwise
(7)

P score5 =

1 if HTTPS is used

0 otherwise
(8)

A score6 =

1 if A <= Athreshold

Athreshold/A otherwise
(9)

Rdomain score7 =

 1 if Rdomain exists

0 otherwise
(10)
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The final score is calculated as:

scoref =
w1 · CS + w2 ·WS + w3 · US

w1 + w2 + w3

(11)

Algorithm 3 Decision Algorithm

Input : URLinput, scoreDNS and scoreNRTT

Output : Detection decision: True or False

1: procedure

2: Compute CS = scoreNRTT + scoreDNS

3: Compute WS = score6 · score7, where

4: score6 = Call equation (9)

5: score7 = Call equation (10)

6: Compute US = score1 ·
∑i=5

i=2(scorei), where

7: score2 = Call equation (5)

8: score3 = Call equation (6)

9: score4 = Call equation (7)

10: score5 = Call equation (8)

11: Calculate the final score:

12: scoref = w1·CS+w2·WS+w3·US
w1+w2+w3

13: if scoref ≥ threshold then

14: return True ← Legitimate

15: else

16: return False ← Phishing

17: end if

18: end procedure
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Figure 3.9 NRTT distributions for five popular web services brands; Blue dots →
Legitimate; Red dots → Phishing.

3.5 Performance Evaluation

In this section, we present the performance evaluation of the selected and proposed

phishing detection features, the target identification method and the proposed

phishing detection framework.

3.5.1 Evaluation Data Sets

We obtain the evaluation data sets mainly from three sources: (1) 2000 to 32683

verified phishing websites provided by PhishTank [100]; (2) Top 500 most visited

legitimate websites list from Alexa (i.e., www.alexa.com); and (3) 142 the manually

collected legitimate websites from other Internet resources. The detail about the data

sets used for each experiment is presented in the following corresponding subsections.
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Figure 3.10 True Positive Rate using NRTT for various error tolerance values.

3.5.2 Evaluation of Features and Feature Sets

In this subsection, we evaluate the trade-off between True Positive Rate (TPR) and

False Positive Rate (FPR) among different selected features and different feature

sets. TPR measures the proportion of positives that are correctly identified (i.e., the

percentage of phishing sites who are correctly identified):

TPR =
Number of correctly identified sites

Total number of phishing sites

FPR measures the proportion of positives that are wrongly identified (i.e., the

percentage of legitimate sites who are wrongly identified as phishing sites):

FPR =
Number of wrongly identified sites

Total number of legitimate sites
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Figure 3.11 Alleviation of the NRTT instabilities.

Figure 3.16 shows FPR and TPR for all the binary features, including: IPurl,P and

Rdomain. We can conclude that IPurl andRdomain introduce 0 FPR while they can only

help to classify < 20% phishing websites which are poorly designed. For P , as more

and more phishing websites deploy the usage of HTTPS protocol, its contribution is

getting lower and lower. However, it still helps in current state. Figure 3.12 shows the

ROC (Receiver operating characteristic) curve of FPR vs. TPR for different URL

based features includes Lurl, Ndots, Nre and the URL set (i.e., combining of all the 3

features plus the binary features P and IPurl). It shows that the URL set alone cloud

achieve about 90% TPR with 2% FPR. Figure 3.13 shows the ROC curve of FPR

vs. TPR for different feature sets, including: WHOIS set, URL set, web of trust score

and the combination of all the 3 sets. The WHOIS set contains 2 features, namely,
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Figure 3.12 ROC curves of FPR-TPR for different URL based features and URL
set.

the age of the domain and the existence of the registering information in WHOIS

database. The web of trust score is provided by SEO (search engine optimization)

that collects all website ranking information based on Google, Bing, Yahoo etc. The

resutls shows the combination of all the selected feature sets can achieve about 93%

TPR with 0.5% FPR. Figure 3.14 shows the ROC curve of FPR vs. TPR for all the

three selected feature set, NRTT and all the feature set (i.e., the proposed scheme).

It clearly shows that with the combination of all the features, the proposed scheme

can achieve 99% TPR and 0.2% FPR.
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Figure 3.13 ROC curves of FPR-TPR for different feature sets.

3.5.3 Evaluation of NRTT

This evaluation aims to prove that NRTT can achieve high detection accuracy in

classifying verified on-line phishing websites. In the first test, we collect the NRTT

data (i.e., measured from a fixed server to all the destinations) of 928 verified on line

phishing websites that are targeting five popular web service brands, namely, Apple,

Ebay, Facebook, Google and AOL. Figure 3.9 shows the corresponding phishing

websites NRTT distributions for each web service brand. The red dots denote

the phishing website’s NRTTs while the blue dots are the NRTT of the legitimate

websites. We can see that the legitimate websites tend to have smaller NRTT values

while the phishing websites have various NRTT values ranged from a few million
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Figure 3.14 ROC curves of FPR-TPR for selected features set, NRTT and the all
feature set.

seconds to hundreds of million seconds. It clearly shows that NRTT is able to

distinguish between the phishing websites and legitimate website.

Using the same data set, the second test quantitatively shows the detection

accuracy in terms of true positive rate (TPR, i.e., the number of correctly detected

phishing sites divided by the number of all phishing sites) for different values of error

tolerance. As depicted in Figure 3.10, the usage of NRTT for phishing detection can

achieve very high true positive rate (i.e., greater than 93% for a 10 ms error tolerance)

despite of the detection time periods (The blue curve is measured during night time

00:00 AM and the red curve repeat the same detection process during day time 12:00

PM).

92



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

 

All Sets

Other 3 Sets

NRTT

Figure 3.15 True Positive Rate for the website identification algorithm: (1) Text
extraction only; (2) Text extraction plus Image Processing.

To alleviate the impact of the network instabilities, we apply the algorithms

similar to [61] in processing the raw data of the NRTT . These algorithms includes:

(1) outliers filtering; and (2) shared increments removal. Figure 3.11 shows 135 real

time measured profiles for each of the two profiles of one legitimate website for 60

hours from 9:00 AM Friday to 9:00 PM Sunday. The blue dots indicates the real

time profiles without algorithm (1) and (2) while the red small circles are the real

time profiles after applying the algorithms. It clearly shows the proposed algorithms

successfully alleviate the impact of the network instabilities, thus, it helps to reduce

the false positive rate of the system.
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Figure 3.16 True Positive Rate and False Positive Rate for different binary features.

3.5.4 Evaluation of the Target Identification Algorithm

In this test, we use the date set with 851 verified on-line phishing websites (from

PhishTank) and 498 legitimate websites (from Alexa) to evaluate the true positive

rate (i.e., the number of correctly identified sites divided by the number of all sites)

and the false positive rate (i.e., the number of wrongly identified sites divided by the

number of all identified websites) of the proposed target identification algorithm.

As depicted in Figure 3.15, with the help of image processing (i.e., extracting

text from website images), as detailed in Section 3.4.2), the proposed target

identification algorithm can achieve 95% TPR while having a false positive rate less

than 5%. We note that, vast majority of the false positives occurred in phishing
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Table 3.6 Comparative Evaluation among Different Schemes

Scheme Year Data TPR FPR

Set

Guang Xiang et al. 2011 940 93% 0.4%

Colin Whittaker et al. 2010 16,967 90% 0.1%

Kurt Thomas et al. 2011 500,000 87% 0.3%

Gowtham Ramesh et al. 2014 3374 99% 0.3%

Teh-Chung Chen et al. 2014 1945 99% 0.7%

Samuel Marchal et al. 2016 1553 99% 0.1%

Proposed scheme 2016 2000 99% 0.2%

websites (the false positive rate for legitimate website is less than 1%), and hence, it

will not affect the TPR of the proposed phishing detection system.

3.5.5 Comparison between the Proposed Framework with State-of-the-
art Schemes

Table 3.6 compares the evaluation results of the proposed framework to the most

cited state-of-the-art schemes [34] [90] [136] [133] [124] [106]. We note that the a

low false positive rate is of great importance for a phishing detection scheme because

classifying a legitimate website as a phishing would results in serious consequences

[24]. On the other hand, the true positive rate is less important than the false positive

rate. In addition, the TPR highly depends on the phishing test set used and we cannot

conclude scheme A is better than scheme B only if the TPR of A is 1% higher than

the TPR of B. From Table 3.6, we can see that the proposed scheme has comparative

performance comparing to the state-of-the-art schemes.
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3.6 Conclusion

In this work, we propose a new phishing detection framework by integrating a set

of selected phishing detection features. The comparative evaluation of the proposed

scheme shows that it has comparable performance results compared to the state-of-

the-art schemes. In addition, we introduce a new robust phishing phishing detection

feature based on Network Round Trip Time, NRTT . The evaluation results show

that NRTT can achieve high detection accuracy (> 93%) even if using it alone.

To enforce the proposed scheme, we design a novel algorithm to identify the target

website from suspicious URL. The experimental results show that the identification

accuracy can reach 95%.
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CHAPTER 4

ROBUST INSIDER ATTACKS COUNTERMEASURE FOR HADOOP:
DESIGN & IMPLEMENTATION

4.1 Introduction

APACHE Hadoop provides an open source framework for the storage and parallel

processing of large-scale data sets on clusters of commodity computers. As the amount

of data maintained by industrial corporations grows over time, big data processing

becomes more important to enterprise data centers. However, the threat of data leaks

also continues to grow due to the increasing number of entities involved in running

and maintaining cloud infrastructure and operations [140]. The recent boost of big

data start-ups such as MongoDB, DataStax, MapR Technologies and Skytree leads to

an increased number of points of access in the cloud, that is, larger attack surface for

intruders. This can be clearly inferred from a recent report of the Health Information

Trust Alliance (HITRUST), which reveals that the total cost of health-care data

breach incidents has grown to $4.1 billion over the recent years [56].

Authentication is the process of gaining assurance that an entity is performing

robustly and precisely as intended [132] [33]. In addition, data confidentiality in

the cloud is tightly correlated to the user authentication [140]. Therefore, a secure

and robust authentication mechanism of both users and services is imperative for

secure and private cloud computing and storage operations [86]. However, the

continuous growth and the concentration of data in clouds, combined with the

increasing adoption of security solutions such as authentication, access control,

and encryption drives intruders to be more persistent and creative in developing

sophisticated attack strategies [122]. One way to protect clouds and to successfully

combat such sophisticated attacks is to push the bar higher through the combination

of hardware and software security solutions. Pushing the security down to the
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hardware level in conjunction with software techniques provides better protection

over software-only solutions [104], which is especially feasible and suitable for entity

authentication and platform attestation in the cloud.

Currently, Hadoop leverages Kerberos [114] [21] as the primary authentication

method and uses DIGEST-MD5 security tokens [80] to supplement the primary

Kerberos authentication process, as detailed in Section 4.2. However, in addition

to its limitations and security weaknesses, the use of Kerberos for authentication in

Hadoop-based environments raises many security concerns. The most vital weakness

of Kerberos lies in its dependency on passwords. The session key for data encryption

during the initial communication phase with the Key Distribution Center (KDC) is

derived from the user’s password. Disclosure of KDC passwords allows attackers to

capture users’ credentials, which turns all Hadoop’s security to be useless. The large

number of password disclosure incidents through cracking, social engineering, or even

database leakage, clearly indicates that this threat is real and pervasive. For example,

in 2011, RSA was a target of a spear Phishing attack [118]. A backdoor was installed

due to a mistake by an employee who retrieved the Phishing email from her junk

mail box and opened it. The malware successfully harvested credentials as confirmed

by RSA FraudAction Research Labs. It threatened the security of many important

defense contractors like Northrop Grumman, Lockheed Martin, and L-3.

Another important issue of Kerberos lies in its dependency on the KDC which

constitutes a single point of failure and even a single point of attack for persistent and

dedicated attackers. Although Hadoop’s security design introduces delegation tokens

to overcome this bottleneck, they lead to a more complex authentication mechanism

due to the extra tokens and data flows that are required to enable access to Hadoop

services. Many types of token have been introduced, including delegation tokens,

block tokens, and job tokens for different subsequent authentications. This, relatively,

large number of tokens, not only complicates the configuration and the management
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of the tokens, but also expands the attack surface [27]. Kerberos keys are stored

in an on-line third-party database. If anyone other than the proper user has access

to the KDC, through, for example, a malware installation by an insider, the entire

Kerberos authentication infrastructure will be compromised and the attacker will

be able to impersonate any user [54]. This highlights the fact that insiders could

create havoc in Kerberos infrastructure itself, and consequently affect the security

posture of the supported Hadoop. It is clear that Kerberos is not well-equipped

against insiders or outsiders who could change the execution environment that the

user trusts. For example, attackers may install key loggers or other malware-tools to

steal users’ credentials and data.

In this work, we design and implement a TPM-based authentication protocol

for Hadoop that provides strong mutual authentication services among internal

Hadoop entities, in addition to mutually authenticating external clients. Each

entity in Hadoop is equipped with a TPM (or vTPM in the case of multi-home

virtualized environments) that locks-in the root keys for authenticating the entity

to the outside world. In addition to locally hiding the authentication keys and

the authentication operations, the TPM captures the current software and hardware

configurations of the machine hosting it in an internal set of Platform Configuration

Registers (PCRs), as detailed in Section 4.2.3. Using the authentication keys and the

PCRs, the TPM-enabled communicating entities are able to establish session keys

that can be sealed (decrypted only inside the TPM) and bound to specific trusted

platform software and hardware configurations. The bind and seal operations protect

against malicious insiders, because they will not be able to change the state of the

machine without affecting the values of the PCRs. Our protocol enables remote

platform attestation services to clients of third-party, possibly not trusted, Hadoop

providers. Moreover, the seal of the session key protects against the ability to disclose

the encrypted data in any platform other than the one that matches the trusted
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configurations specified by the communicating entities. As Figure 4.1 shows, the

protocol consists of three overlapping phases: (1) Secure exchange of the session key

at the beginning of each communication session; (2) Session key management; and

(3) “Fingerprint” attestation mechanism. The details are presented in the subsequent

sections.

Our contributions can be summarized as follows:

• Propose a novel TPM-based authentication protocol among Hadoop entities to
reduce the risk of the continuously evolving insider attacks, especially due to
the proliferation of cloud services and big data applications.

• Propose a periodic remote mechanism for attesting the hardware and software
platform configurations. Such attestation mechanism provides hardware level
security that supports other software mechanisms in reducing the risk of
internal, as well as, external threats.

• Implement the whole system on real world Hadoop platforms and conduct
extensive sets of experiments to evaluate the performance overhead and the
security merits of our mechanism. The performance and security evaluation
clearly shows that our framework provides better security guarantees with
acceptable performance overhead compared to the state-of-the-art Kerberos-
based implementations.

• Provide a thorough theoretical analysis using the BAN logic to rigorously
prove the correctness and the trustworthiness properties of our authentication
protocol.

4.2 Background

In this section, we introduce necessary information about Hadoop architecture,

state-of-the-art Hadoop security design and the basis of Trusted Platform Module

technology (TPM).

4.2.1 Hadoop Structure

As depicted in Figure 4.2, Hadoop clusters have three major categories of server roles:

(1) Client machines, (2) Master nodes, and (3) Slave nodes. The role of the client
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Figure 4.1 Overlapping phases of the TPM-based authentication protocol.

machine is to load the data into the cluster, to submit MapReduce jobs describing

how data should be processed, and to fetch or view the results of the task when

processing finishes. The Master nodes (i.e., NameNode, Secondary NameNode and

JobTracker) supervise the two major components of Hadoop, namely, the distributed

data storage (HDFS), and the distributed data processing (MapReduce) [30] [29].

The NameNode is responsible for coordinating data storage operations when a client

machine requests to load the data into HDFS, while the JobTracker is in charge of

supervising parallel MapReduce processing. The slave nodes (i.e., DataNodes and

TaskTrackers) are responsible for storing the data and executing the computational

tasks assigned by the Master nodes, respectively.

4.2.2 Hadoop Security Design

Hadoop uses Kerberos for its authentication operations [80]. The complete authen-

tication process is illustrated in Figure 4.3. The client obtains a Delegation Token

(DT) through initial Kerberos authentication (step 1). When the client uses the DT

101



Figure 4.2 Hadoop architecture based on server roles.

Figure 4.3 Authentication process in Kerberos-based Hadoop.

to authenticate, she first sends the ID of the DT to the NameNode (step 2). Then, the

NameNode checks if the DT is valid. If the DT is valid, the client and NameNode try

to mutually authenticate using their own Token Authenticators, which are contained

in the delegation tokens, as the secret key using DIGEST-MD5 protocol (steps 3-6)

[130].

4.2.3 Trusted Platform Module (TPM)

TPM is a secure crypto-processor, which is designed to protect hardware platforms by

integrating cryptographic keys into devices [107]. It has been designed with the goal
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to enhance platform security through mechanisms that are beyond the capabilities of

today’s software-based systems [13].

TPM supports three main services: (1) The remote attestation service creates

a nearly un-forgeable hash-key summary of the hardware and software configurations

in a way that allows other parties to verify the integrity of the software and the

hardware. (2) The binding service encrypts data using the TPM endorsement key,

a unique RSA key burned into the chip during its production, or another trusted

key descended from it. (3) The sealing service encrypts data in a similar manner to

binding, but it additionally specifies the state that the TPM must be in for the data

to be unsealed (decrypted) [107].

The platform configuration register (PCR) of the TPM is a 160-bit storage

location that is used to record aggregate software and hardware measurements of the

platform, which include: (1) BIOS, ROM, Memory Block Register [PCR index 0 - 4];

(2) Operating System (OS) loaders [PCR index 5 - 7]; (3) Operating System (OS)

[PCR index 8 - 15]; (4) Debug [PCR index 16]; (5) Localities, Trusted OS [PCR index

17 - 22]; and (6) Applications specific measurements [PCR index 23] [4].

The TPM is capable of creating an unlimited number of Attestation Identity

Keys (AIK). Each AIK is an asymmetric key pair that is used for signing data that

is internally generated by the TPM, such as the storage key. A storage key is derived

from the Storage Root Key (SRK), which is embedded in the TPM chip during the

manufacturing process. Using the generated storage key along with the PCR values,

one could perform sealing to bind the data to a certain platform state (i.e., a specific

platform software and hardware configuration). The encrypted data could only be

unsealed (decrypted) under the same PCR values (i.e., the same platform state).

To date, more than 500 million PCs have been shipped with TPMs, an

embedded crypto capability that supports user, application, and machine authenti-
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cation with a single solution [104]. Additionally, many virtual TPM implementations

exist for virtualized environments [32] [110].

4.2.4 Integrity Measurement Architecture

Co-operating with the hardware TPM, the integrity measurement architecture (IMA)

(proposed by IBM [17]) provides an efficient measurement system for dynamic

executable content. IMA provides real time measurements of the platform (user

applications, OS libraries, etc.) during the post-boot period, while the TPM enables

the pre-boot measurements. In this dissertation, we assume the IMA is pre-configured

and installed on each platform.

4.3 TPM-based Hadoop Authentication Framework

In this section, we first introduce the attack model, then, we present the design of

the proposed TPM-based Hadoop authentication protocol.

The protocol uses the key binding of the TPM to secure the exchange and

management of the session keys between any two Hadoop communicating entities

(NameNode/JobTracker, DataNode/TaskTracker and Client). To achieve this, we

assume that every Hadoop entity has a TPM. Figure 4.4 (a) depicts the high-level

processes of the protocol which are detailed in the following subsections. The protocol

consists of two processes, the certification process and the authentication process.

Note that the public key infrastructure (PKI) is only used to secure the exchange

of the symmetric session keys. The expensive certification and management process

is only used during the certification process, where the cost amortized through the

use of TPM AIK functionality as explained in Section 4.3.2.

4.3.1 Attack Model

In addition to the traditional external threats, we believe that clouds are more

susceptible to internal security threats, especially from other untrusted users [92]
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[123]. Many enterprises are likely to deploy their data and computations across

different cloud providers for many reasons including load balancing, high availability,

fault tolerance, and security, in addition to avoiding single-point of failure and vendor

lock-in [63] [44] [108]. However, such behavior increases the attack surface and the

probability of compromise of Hadoop entities. For example, a DataNode may get

infected with a malware that makes it unsafe to operate on sensitive data. Therefore,

it is imperative for any security solution for Hadoop to enable the detection of any

unauthorized change in the software and hardware configurations of its entities. Our

entity authentication protocol is specifically designed to counter such adversarial

actions, assuming an attack model with the following attacker capabilities and

possible attack scenarios:

• Attacks against TPM: We do not address the attacks against TPM (e.g., side
channel timing attack [117]).Thus, we assume attackers can not compromise the
TPM chip or its functions.

• Attacks against slave nodes or client machines: We assume that attackers
are capable of installing (directly or remotely) malware or making malicious
hardware changes in the compromised slave nodes (e.g., the DataNodes) or
client machines.

• Attacks against master nodes: We assume that attackers are capable
of installing (physically or remotely) malware or making malicious hardware
changes in the master nodes (e.g., the NameNode). However, this capability
could be revoked if the NameNode is deployed in a trustworthy environment
(e.g., a private cloud with strict security policy enforced), as detailed in Section
4.3.4.

• Denial of Service attacks (DoS attacks): We do not address DoS attacks.

4.3.2 TPM-Based Hadoop Certification Process

The certification process (similar to that presented in [7]) is triggered by the client

or the NameNode and is depicted in Figure 4.4 (b). The client in this work refers

to any entity that interacts with the NameNode such as a user submitting a job or
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a DataNode. The TPM of the client/NameNode creates a RSA key using the SRK

as a parent. This key is used as the AIK. The AIK is then certified by a PCA.

This process is a onetime pre-configuration operation that takes place once during

the initialization of the TPM. The client’s/NameNode’s TPM then creates a binding

key that is bound to a certain platform. Then the TPM seals the private part of the

binding key with a certain PCR configuration. Finally, the client/NameNode uses

the AIK to certify the public part of the binding key. Once the AIK is certified by the

PCA, it can be used to sign all types of keys generated by the TPM without referring

back to the PCA, which greatly reduces the communication overhead.

Figure 4.4 (a)The high level processes of our TPM-based Hadoop authentication
protocol (Client to NameNode in this example); (b)TPM-based Hadoop certification
process; and (c)TPM-based Hadoop authentication process.
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4.3.3 The Authentication Process

The authentication process (cf. Figure 4.4 (c)) implements the mutual authentication

between the NameNode and the client. The Client sends a random number K1 along

with the corresponding IDs (e.g., remoteID in Hadoop codes) to the NameNode. This

message is encrypted by the public binding key of the NameNode. The NameNode

sends a random number K2 along with the corresponding ID to the client. This

message is encrypted by the public binding key of the client. Using K1 and K2,

both the client and the NameNode generate the session key key session = K1 ⊕K2.

Note that only the correct NameNode can obtain K1 by decrypting the message

sent by the client using the NameNode’s SK bind, which is bound to the target

NameNode’s TPM with a certain software and hardware configuration (sealed binding

key). Similarly, only the correct client can obtain K2 by decrypting the message sent

by the NameNode using the client’s SK bind, which is bound to the client’s TPM

with the corresponding software and hardware configurations. This ensures mutual

authentication between the client and the NameNode.

The newly exchanged session key is then locked into a certain PCR value in

an operation known as seal operation using the TPM’s command “Seal”. Seal takes

two inputs, the PCR value and the session key (Seal(PCRindexes,Key session)).

This ensures that key session can only be decrypted using the hardware secured

keys of the TPM in that particular platform state. By sealing the session key to

specific acceptable hardware and software configurations (i.e., specific PCRs value),

we protect against potential tampering with the firmware, hardware, or software on

the target machine (e.g., through malware installations or added hardware/software

key loggers). Moreover, the session key (key session) is made to be valid only for a

predefined period of time, after which the session key expires and the authentication

process has to be restarted to establish a new session key as needed. The validity

period of the session key is an important security parameter in our protocol. Short
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validity periods provide better security in the case of session key disclosure since fewer

communications are exposed by disclosing the key. However, shorter periods incur

extra overhead in establishing more session keys.

Additionally, a nonce is added to every message to prevent replay attacks.

Finally, message authentication codes (MAC) are included with each message to

ensure data integrity. The communication message format is as follows:

(Message,MAC,Nonce = Nonce+ +, IDs)key session

.

4.3.4 Periodic Fingerprint Checking (Cross-Platform Authentication)

In a non-virtualized environment, the TPM specification assumes a one-to-one

relationship between the OS and the TPM. On the other hand, virtualized scenarios

assume one-to-one relationship between a virtual platform (virtual machine) and a

virtual TPM [129]. However, Hadoop systems employ a master/slaves architecture.

The NameNode is the master that manages many DataNodes as slaves. If the

number of DataNodes grows, the number of session establishment processes that the

NameNode is involved in also grows. Each session involves many TPM operations

(e.g., seal and unseal). For large systems, the TPM may become a bottleneck

due to the limitation of one TPM/vTPM per NameNode according to current

implementations of TPM/vTPM.

To address this practical issue and alleviate the potential performance penalty of

TPM operations, we introduce the concept of periodic platform-Fingerprint checking

mechanism based on the heartbeat protocol in Hadoop (cf. Figure 4.5). The idea

is to offload most of the work from the TPM of the NameNode to the NameNode

itself. However, this requires us to loosen our security guarantees and change the

attack model by assuming that the NameNode is “partially” trusted. We argue
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that this assumption is reasonable for the following reasons: (i) Hadoop deployment

usually involves one or few NameNodes [119], and hence, it is plausible and affordable

to secure them in a trusted environment. For example, an enterprise can secure its

NameNode by deploying it in the enterprise’s local data center or in a high-reputation

cloud platform with strict security standards. While the DataNodes can be deployed

in environments with less strict security requirements. (ii) Our protocol is designed to

limit the potential security damage of untrusted NameNode. A NameNode that gets

compromised (that is, its software and/or hardware configuration is changed illegally)

will only stay unnoticed for a short time, because other parties (such as DataNodes

and clients) are designed to randomly request attestation of the authenticity of the

NameNode. In on-demand attestation, an interacting entity with the NameNode

asks the NameNode to send a TPM-sealed value of its current software and hardware

configurations. If the requesting entity receives the right values for the PCR of the

NameNode within a predefined time, then the NameNode is trusted; otherwise, a

suspicious alert is raised about the trustworthiness of the NameNode.

The platform Fingerprints (i.e., PCR values) of each Hadoop entity that

interacts with the NameNode (e.g., DataNode) are collected a priori and stored in

the NameNode. This can be achieved during the registration process of the entity

with the NameNode. The heartbeat protocol in Hadoop periodically sends alive

information from one entity to another (e.g., from DataNode to NameNode). We

leverage this native Hadoop feature by configuring each Hadoop entity to periodically

(or on-demand) send the new PCR values (modified by PCR extension operations)

to the NameNode for consistency checking with the stored PCR values. The TPM in

the interacting entity signs its current PCR values using its AIK key and sends the

message to the NameNode. When the NameNode receives the signed PCR values, it

verifies the signature, and if valid, it compares the received values with the trusted

pre-stored values. If a match is found, the authentication succeeds and the session
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continues. Otherwise, the authentication fails and penalty may apply (e.g., clear

up the session key, shut down the corresponding DataNode, etc.). By doing so, the

number of NameNode TPM operations decreases significantly as we replace the TPM

seal and unseal operations with the Fingerprint verification that is performed outside

the TPM (cf. Figure4.5).

However, there is a tradeoff between the security guarantees and the interval of

the Fingerprint verification process, which reflects the extra overhead of the system.

In other words, the interval value depends on the user’s security requirements and is

application dependent.

So far we have assumed that the NameNode is partially trusted and argue

in favor of that. Nevertheless, in systems that require higher security guarantees

and that can afford redundancy, we can eliminate the assumption of partial trusted

NameNode. Untrusted NameNode can be neutralized by borrowing concepts from

the fault tolerance domain. Multiple redundant NameNodes can be deployed and

the NameNode attestation can be achieved through majority voting among the

responses of the different NameNodes [111, 66, 76]. In fact, multiple NameNodes

have been used in Hadoop implementations to scale up services such as directory,

file and block management [119]. We can leverage such deployment (or deploy new

NameNodes if necessary) to implement majority voting on the process of periodic

platform-Fingerprint checking mechanism. Correct NameNode operations can be

achieved as long as the total number of NameNodes is more than 2n, where n is the

number of compromised NameNodes (assuming no faulty nodes). For example, given

5 NameNodes that are independently running on different clouds, the attestation

decision can be made based on the majority voting among them. Under this scenario,

even if two of the NameNodes are compromised, the attestation decision will still be

the correct one.
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4.3.5 Security Features

The security features of our design include: (1) Session key binding. The session

key is generated by XORing a local and an external random numbers (K1 and K2).

This ensures that only the party that has the appropriate private portion of the

binding key will be able to decrypt the message and get the external random number.

Furthermore, the decryption keys exist only inside the TPM chip and are sealed to

specific hardware and software configurations. This would protect against potential

malicious insiders as they will not be able to know anything about the session key.

(2) Session key sealing. The session key is sealed with TPM functions. The sealed

session key can be decrypted only under the same platform conditions (as specified

by the PCR values) using the associated sealing key that resides inside the TPM.

(3) Periodic Fingerprint attestation mechanism. This guards against malicious users

who attempt to change the execution environment in a DataNode (by, for example,

installing malware/spyware) in a bid to compromise data confidentiality.

4.4 Formal Security Analysis

We use Burrows-Abadi-Needham (BAN) logic ([7]) to formally prove the following

two properties of the proposed authentication protocol:

• Correctness: Implies that the protocol performs as intended, that is, two
legitimate parties should always correctly authenticate.

• Trustworthiness: Implies that the protocol is secure under the attack model
defined earlier, that is, only legitimate parties can successfully authenticate.

The proof sketch is shown as follows:

1. Present the notations and postulates/rules of BAN logical.

2. Generate a simplified version of the original protocol.

3. Idealize the simplified protocol.
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Figure 4.5 Illustration of the random attestation and the periodic Fingerprint
verification.

4. Symbolize the assumptions.

5. Formalize the goals.

6. Present the formal prove of the goals.

Recall that the proposed protocol (cf. Figure 4) consists of two main phases: (1)

the certification phase and (2) authentication phases. The simplified objective of the

protocol is to correctly and securely exchange the necessary keys among legitimate

entities in the presence of the defined attackers. Therefore, we first prove that the

public keys distributed by the PCA correspond to the claimed owners, that is, the

mutual authentication parties believe in the public keys of each other, and that the

random numbers (K1 and K2) are securely exchanged. Second, we need to prove that

only legitimate entities can compute the session keys, that is, an entity can get the

session key if and only if it maintains the same hardware and software state bound

to that key.
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Figure 4.6 Flow of seal and unseal operations within the various TPM-based Hadoop
implementation layers.

4.4.1 Notations and Postulates/Rules of BAN Logical

Following is a list of the BAN logical notations that we use in our proof steps:

Basic notations:

• C,N, P denote the client, the NameNode and the PCA.

• K1 and K2 are random numbers.

• Kcn is the computed symmetric session key, which is only known by C and N ,
where, Kcn = K1 ⊕K2.

• Kc, Kn, Kp are the public keys of C, N , and P .

• K−1c , K−1n , K−1p are the private keys of C, N , and P .

• X or Y : represents a formula (e.g., a message sent).

In addition to the traditional basic notations, we introduce two new basic

notations that represent the hardware and software configurations (recorded in the

PCR values of the TPM):
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Figure 4.7 Illustration of the detailed process of periodic Fingerprint checking
mechanism.

• U and U ′ represent the TPM combined hardware and software initial state and
the state when authenticating, respectively.

Logical notations:

• C |≡ X : C believes/would be entitled to believe X;

• C C X : C sees X. Someone has sent a message containing X to C, who can
read and repeat X;

• C |∼ X : C said X. The principal C at some time sent a message including the
statement X;

• C |=⇒ X : C controls X. The principal C is an authority on X and should be
trusted on this matter;

• C
X

 N : X is only known by C and N ;

• C Kcn↔ N : Kcn is the key shared by C and N ;

• #(X) : X is fresh. X has not been sent in a message at any time before the
current run of the protocol;

• {X}Kcn : X is encrypted by Kcn;
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• Kc7→ C : Kc is a public key of C;

• X
Y

: if X is true, then Y is true.

Ban logical postulates: BAN logic consists of many logical rules. These pre-

agreed rules are used as theorems in the deduction. For the purpose of the current

proof, we use 4 of the existing rules, in addition to a new TPM unsealing rule. Note

that every C in the rules could be replaced by N .

– The Message meaning rule for the interpretation of messages. Here, we only
use the rule for public keys.

C |≡K7→ P, P C {X}K−1

C |≡ P |∼ X

That is, if C believes that K is P ’s public key, and C receives a message encoded
with P ’s secret key, then C believes P once said X.

– The nonce-verification rule expresses the check that a message is recent, and
hence, that the sender still believes in it:

C |≡ #(X), C |≡ P |∼ X

C |≡ P |≡ X

That is, if C believes that X could have been uttered only recently and that P
once said X, then C believes that P believes X.

– The jurisdiction rule states that if C believes that P has jurisdiction over X,
then C trusts P on the truth of X:

C |≡ P |=⇒ X, C |≡ P |≡ X

P |≡ X

– If a principal sees a formula, then he also sees its components, provided that he
knows the necessary keys:

C |≡K
−1

7→ N , C C {X}K
P C X

– If a principle’s hardware and software state equals to the initial state, then he
is able to unseal the content he sealed before.

C(U ′) == C(U), C C {X}seal
C C X
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4.4.2 The Simplified Version of the Original Protocol

The original authentication protocol (ref. fig 5) can be simplified as follows:

Step 1: C and N get each other’s public key from P:

P → C : {Kn, N}K−1
p

; P → N : {Kc, C}K−1
p

Step 2: C and N exchange two random numbers K1 and K2 to generate the session

key.

C → N : {K1, C}Kn ; N → C : {K2, N}Kc

Step 3: C and N unseal K−1c and K−1n to extract K1 and K2 if the software and

hardware configuration do not change, then the shared session key Kcn = K1⊕K2

can be generated and used for later communication.

C gets K2; N gets K1

4.4.3 The Idealized Protocol

Now we idealize the original protocol to the standard form of BAN logic:

Step 1: P → C : {Kn7→ N}K−1
p

;

Step 2: P → N : {Kc7→ C}K−1
p

;

Step 3: C → N : {K1}Kn ;

Step 4: N → C : {K2}Kc ;

Step 5: C C K2, N C K1.

4.4.4 Symbolizing the Assumptions

We formalize the assumptions of the proposed protocol as follows:

C |≡K7→ C, N |≡K7→ N , C |≡Kp7→ P , N |≡Kp7→ P
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P |≡Kc7→ C, P |≡Kn7→ N , P |≡K7→ P

C |≡ (P |=⇒Kn7→ N), N |≡ (P |=⇒Kc7→ C)

C |≡ #(K1), N |≡ #(K2)

C |≡ C
K1


 N , C |≡ C
K2


 N

C |≡ #(
Kn7→ N), N |≡ #(

Kn7→ N)

C and N know the public key of P, as well as their own keys. In addition, P

knows his own keys, and the public keys of C and N . C and N trust P to correctly

sign certificates giving the public keys of them. Also, C and N believe the random

numbers that they generate are fresh, secure. Last but not least, C and N assume

that the message containing the public key of each other is fresh.

4.4.5 Formalization of the Security Goals

The security goals of the proposed protocol can be formalized as:

Goal 1: C and N trust each other’s public keys.

C |≡Kn7→ N , N |≡Kc7→ C

Only if C and N believe in the public keys of each other, then the two random

numbers K1 and K2 can be securely exchanged.

Goal 2: C and N both get the session key if they maintain the same hardware and

software state.

C(U ′) == C(U) and N(U ′) == N(U)

C
Kcn

 N

117



4.4.6 Formal Proof

Proof of Goal 1: ∵ the assumption: C |≡Kp7→ P , and the protocol step 1: C C

{Kn7→ N}K−1
p

, according to rule (1):

∴ C |≡ P |∼Kn7→ N (1)

∵ the assumption: C |≡ #(
Kn7→ N), and equation (1), according to rule (2):

∴ C |≡ P |≡Kn7→ N (2)

∵ the assumption: C |≡ (P |=⇒Kn7→ N), and equation (2), according to rule (3):

∴ C |≡Kn7→ N

Similarly, we can prove that: N |≡Kc7→ C Therefore, Goal 1 is verified.

Proof of Goal 2: ∵ C sealed its private key K−1c himself (i.e., C C {K−1c }seal),

according to rule (5):

∴
C(U ′) == C(U)

C C K−1c
(3)

∵ The assumption: C |≡K7→ C, the protocol step 4: C C {K2}Kc and

equation(3), according to rule (5):

∴
C(U ′) == C(U)

C C K2

(4)

∵ C generates K1 and equation (4).

∴
C(U ′) == C(U)

C C (Kcn = K1 ⊕K2)
(5)

Similarly, we can prove that:

N(U ′) == N(U)

N C (Kcn = K1 ⊕K2)
(6)
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Consequently, based on equation (5) and equation (6), we can conclude that:

C(U ′) == C(U) and N(U ′) == N(U)

C
Kcn

 N

Therefore, Goal 2 is verified.

4.5 Implementation

4.5.1 Implementation of the Authentication Protocol

To efficiently manage the complex communication flows, Hadoop utilizes RPC-

Dynamic Proxy that creates a simple interface between one client and one server [6].

We divide the implementation of our authentication protocol into three sub-tasks.

Task 1: Includes the exchange of two random numbers K1 and K2 between the

client and the server. In general, multiple “calls” (i.e., different HDFS/MapReduce

commands or operations) may occur within one RPC connection, and we use the

first call in each RPC connection to exchange K1 and K2. For sending K1 from

the client to the server, we create a new variable Call.connection.K1 in the RPC

connection header field, and then use WriteRPCHeader() function in Client.Java

to forward it to the server. The server then reads K1 in ReadAndProcess()

function. For sending K2 from the server to client, we also create a new variable

Call.connection.K2 and conditionally (i.e., if K2 has never been sent) forward it to

the client via SetupResponse() function in Server.java. The client then decodes K2

in ReceiveResponse() function.

Note that both K1 and K2 are encrypted using the corresponding receiver’s

public binding key and decrypted via their sealed private binding key which is bound

to a certain platform configuration.

Task 2: Includes the dynamic protection of the Session Key = K1 ⊕ K2

using TPM seal and unseal operations. After securely exchanging the two random

numbers K1 and K2, each of the client and the server generates its own copy of
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the Session Key. Right after the generation of the Session Key, a java runtime

process is invoked to execute a shell script (i.e., seal.sh) that immediately seals the

Session Key using jTPM commands via jTSS java interface. Whenever there is a

need to use the Session Key, the client/server invokes another java runtime process

to conduct a shell script (i.e., unseal.sh) to unseal the Session Key for encryption

or decryption of the data. Figure 4.6 illustrates the flow of seal and unseal operations

within the various TPM-based Hadoop implementation layers.

Task 3: Includes the management and synchronization of the security

credentials (e.g., Session Key , Sealed Session Key and Unsealed Session Key).

In order to efficiently and securely manage the communication credentials, we build a

management and synchronization mechanism for the TPM-based Hadoop. Firstly, we

distinguish the Session Key by the users (e.g., hdfs, mapred) in the same platform.

Since Hadoop utilizes RPC dynamic proxy to simplify the communication, the RPC

connections of the same user could share the same Session Key. This mechanism

greatly reduces the number of seal/unseal operations while maintaining the same

security level. Secondly, since many RPC connections share the same Session Key,

synchronization issues arise (i.e., simultaneous accesses to the same Session Key).

To handle such issues, we create a file called session key list that records the IDs

of all the Session Keys that currently exist. The client/server checks the list before

creating or using the Session Key, and locks the corresponding Session Key while

using it. Thirdly, we define different access control policy and lifetime for different

security credentials. The Session Key has the shortest lifetime (i.e., deleted right

after sealing it) and could only be accessed by the user who created it and the TPM

owner who seals it. The Sealed Session Key holds the longest lifetime (its lifetime

could be adjusted according to the user’s security requirements) and could only be

accessed by the owner of the TPM (i.e., the one who knows the password of the

TPM). The Unsealed Session Key keeps the medium lifetime (depends on the user’s
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Table 4.1 Access Control Policy and Lifetime for Different Security Credentials

Session Sealed UnsealedTPM Session

Key Session Session Sealing Key

Key Key Key List

Lifetime

Shortest Longest Medium Permanent Permanent

Access All TPM User TPM All

Control Users Owner Owner Users

security requirements) and could only be accessed by the user of the corresponding

Session Key. Furthermore, the sealing key (i.e., used for seal/unseal operations)

is well protected by the TPM and can only be accessed by the owner of TPM.

In addition, the session key list only contains the IDs of the Session Keys, thus

knowing the contents of the session key list will not help the attacker to obtain the

Session Key. Table 4.1 shows the access control and lifetime for different security

credentials.

4.5.2 Heartbeat Protocol Implementation

As mentioned in Section 4.3.4, in order to offload the work of the TPM on the

NameNode, we introduce the periodic Fingerprint checking mechanism based on the

heartbeat protocol in Hadoop.

We introduce a new variable PCR signed (the attestation PCR value signed

by the AIK) in the DataNodeCommand array of the DataNode.java and the

NameNode.java. The DataNode will periodically exchange the DataNodeCommand

array with the NameNode via heartbeat protocol. After receiving the attestation

data, the FSNamesystem.java running on the NameNode verifies the signature and
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the PCR values’ using the Fingerprint pool (which contains all the clients’ PCR

values). Finally, a response is generated. For example, if the attestation failed, a

penalty may be applied (e.g., shut down the corresponding DataNode).

The PCR values are periodically updated through ReadPCR() function in

DataNode.java via a runtime process (i.e., ExtendPCR.sh). The shell script extends

the PCR value using previous PCR value and the new measurements produced by

measurements.sml, as shown in Figure 4.7.

4.6 Performance Evaluation

4.6.1 Test-bed Design and Configuration

To evaluate the security guarantees and the runtime overhead of our authen-

tication protocol, we compare three different Hadoop implementations, namely,

baseline Hadoop (no security), Kerberos-based Hadoop and TPM-based Hadoop (our

protocol). For Kerberos, we use krb5.x86 64 [15]. For TPM, we use Software-based

TPM Emulator because we target the public cloud which relies on virtualized

environment. Additionally, according to IBM’s introduction of software TPM, an

application that can be developed using the software TPM will run using a hardware

TPM without changes[88]. On the other hand, using hardware-based TPMs is easier

and provides better performance, therefore, the performance results obtained here

will be better if hardware-based TPMs were used. To incorporate TPM with Hadoop

project, we modify the source code of Hadoop using ant within eclipse [82] and

use IAIK jTSS (TCG Software Stack for the Java (tm) Platform [81]) and IAIK

jTpmTools (jTT) as the communication interface between Hadoop and TPM. The

detailed test-bed configuration is listed below:

Hadoop Deployment: We configure Hadoop in a test-bed environment that

involves Ubuntu 10.04 LTE operating system, 2GB memory, 60 GB hard disk, Java
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version = Oracle Java-1.7.0 67. There are two DataNodes, two TaskTrackers, one

NameNode and one JobTracker in the Hadoop system.

Hadoop Deployment with Kerberos: For Hadoop security design with Kerberos,

we choose krb5-server.x86 64, krb5-workstation.x86 64, and krb5-devel.x86 64.

Hadoop Deployment with TPM: Hadoop deployment here involves two parts:

(1) virtual TPM configuration and jTSS communication interface configuration;

(2)Hadoop source code modification environment setup. We use software-based ETH

Zurich virtual TPM [109]. The virtual TPM provides all the functionalities of the

hardware TPM. However, the virtual TPM is slower than the hardware TPM and,

hence, the overhead results presented for our protocol are upper bounds. The runtime

overhead of our protocol is expected to be lower when hardware TPM is used.

4.6.2 Runtime Overhead Analysis

It is important to emphasize that developing a new secure authentication protocol,

even though is important, is not enough unless it is feasible and practical. Therefore,

we have to keep the performance penalty and cost of the added security features within

acceptable bounds. In this section, we thoroughly analyze the runtime overhead of

our protocol and compare it with the baseline and the Kerberos-based authentication

protocols.

The cost of cryptographic processes that prevent replay attacks and ensure data

integrity and confidentiality over various communication paths is the same for both

TPM-based protocol and Kerberos-based protocol. On the other hand, each protocol

has a different overhead that does not exist in the other. The TPM-based protocol

incurs a one-time TPM setup overhead that takes place when the TPM in each entity

of Hadoop generates the binding keys, AIK, in addition to obtaining certificates for

these keys. This is a lightweight overhead and does not create big impact on the
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Table 4.2 One Time Overhead of the Proposed System Design

binding

key

binding

key

AIK AIK binding

key

Sum

creation loading creation loading certification

˜355.8ms ˜27.1ms ˜108.4ms ˜24.1ms ˜17.0ms ˜532.4ms

day-to-day operations of Hadoop as it is a pre-configuration one time overhead. Table

4.2 shows the pre-configuration runtimes for TPM-based Hadoop under our system

configurations. On the other hand, Kerberos-based Hadoop has pre-configuration

overhead to perform KDC registration (e.g., adding principal to the KDC database)

and to acquire and renew TGT (Ticket Granting Ticket).

The runtime overhead of TPM-based Hadoop is mainly due to: (1) the seal

operation to encrypt the Session Key, (2) the unseal operation to retrieve the

Session Key whenever required, and (3) the extend and read PCR operation of

the heartbeat protocol. The number of seal/unseal operations depends on the life

cycle of the Unsealed Session Key (identical to Session Key which is deleted right

after the seal operation). The life cycle of the Unsealed Session Key depends on

the verification interval value of the Fingerprint process.

The overall runtime overhead of TPM-based Hadoop (T ) can modelled as:

T = function(Ns× Ts,Nu× Tu,Np× Tp, To)

Here, Ns is the number of seal operations; Ts is the time cost for one seal

operation; Nu is the number of unseal operations; Tu is the time cost for one unseal

operation; Np is the number of extend and read PCR operations; Tp is the time

cost for one extend and read PCR operation; To is the other extra time costs (e.g.,

verification of PCR signature or exchange of two random numbers, which incurs

negligible time cost compared to the above TPM operations).
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Figure 4.8 Runtime overhead relative to the baseline Hadoop on 5 different types
of MapReduce applications.

Overall Runtime Overhead for Different MapReduce Applications: In this

experiment, we measure the overall runtime of five different MapReduce applications

to compare the overhead of the two secure Hadoop implementations relative to the

baseline (none secure) implementation of Hadoop. The first two applications are

HDFS write and HDFS read, both of which belong to Hadoop TestDFSIO benchmark.

These two test cases focus on testing Hadoop IO performance. The third test case

is PI example, which calculates the value of π in a distributed way. It has moderate

computation workload and low communication traffic. Another test case is TeraSort

benchmark, a sorting application that collectively tests the HDFS and MapReduce

layers. The last test case is WordCount example, which has moderate communication

traffic and small computation load.

Figure 4.8 presents the results of this experiment. For Kerberos-based Hadoop,

the runtime overhead is about 20% relative to the baseline Hadoop. For the TPM-
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Figure 4.9 Runtime overhead relative to the baseline Hadoop under different
workloads.

based Hadoop, the runtime overhead is about 42% for the HDFS write/read and about

25% for the other 3 applications. The relatively high overhead in HDFS write/read

is due to the heavy load created by these applications on DataNodes.

Runtime Overhead under Different Workloads: In this experiment, we use

the matrix multiplication MapReduce job produced by John Norstad, Northwestern

University [60] to test the impact of varying workloads on the overall runtime overhead

of the three Hadoop implementations under investigation. We vary the matrix size

to generate different workloads. We select three dense matrices with different sizes

(i.e., 250x250, 500x500 and 1000x1000). We run the experiment 10 times for each

matrix size and compute the average runtime over all the runs. Figure 4.9 shows

the results. The figure shows that the TPM-based Hadoop has an extra overhead

of about 6.1% over that of Kerberos-base Hadoop due to the TPM operations. The

runtime overhead decreases as the workload increases for both Kerberos and TPM-

126



10 20 40

5%

10%

15%

20%
R

e
la

ti
v
e

 c
o

m
m

u
n

ic
a
ti

o
n

 o
v

e
rh

e
a
d

Number of Map tasks per job

Figure 4.10 Estimated communication overhead of TPM-based Hadoop relative to
Kerberos-based Hadoop.

based Hadoop. This trend in the overhead is mainly because of the quadruple increase

of the original computational time which makes the approximately linear TPM and

Kerberos operations relatively smaller.

Communication Overhead: To test the communication overhead, we choose the

Sleep example in Hadoop. In the Sleep example, all tasks do nothing but wait for

an assigned amount of time. The purpose of this test scenario is to eliminate the

computational overhead by making it the same among all implementations. According

to previous non-HDFS applications’ experiments, the TPM-based Hadoop has an

average of 6.7% extra overhead than Kerberos-based Hadoop. After eliminating this

difference, the estimated communication overhead (TPM-based Hadoop compared

to the Kerberos-based Hadoop) is summarized in Figure 4.10. The communication

overhead increases as the number of Map tasks increases. This is due to the increase

in the number of TPM operations for the additional RPC sessions that deliver Map
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Figure 4.11 Runtime overhead of TPM-based Hadoop relative to baseline with
variable session key lifetime.

tasks. TPM has an average of 13.4% communication overhead over Kerberos. This

extra communication overhead includes the exchange of the random numbers for

session key establishment and the Fingerprint verification operations.

Variable Session Key Lifetime and Heartbeat Interval Values: As mentioned

in Section 4.3.4, the number of NameNode side TPM operations decreases significantly

as we replace the TPM seal and unseal operations with the Fingerprint verification

that is carried out outside the TPM.

Figure 4.11 presents the runtime overhead for different session key lifetimes

without the Fingerprint verification mechanism. Shorter session key lifetime achieves

better security guarantees at the cost of higher runtime overhead. The overhead is

mainly due to the unseal operations to retrieve the session key. On the other hand, the

Fingerprint verification helps to offload the NameNode’s TPM while maintaining the

same security guarantees by carefully adjusting the attestation interval value which is
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Figure 4.12 Runtime overhead of TPM-based Hadoop relative to the baseline with
variable Fingerprint attestation intervals for various session key lifetimes.

based on the heartbeat rate. Figure 4.12 shows the runtime overhead relative to the

baseline Hadoop for the PI example for various attestation intervals. Intuitively, the

figure shows that the higher the attestation interval, the lower the overhead. Also, the

higher the lifetime of the session key, the lower the overhead. The former trend is due

to the lower number of Fingerprint operations with high attestation intervals; while

the latter trend is due to lower number of seal/unseal operations with high session key

lifetime. Therefore, by turning the session key lifetime and the attestation interval,

we can control the tradeoff between the overhead and security in TPM-based Hadoop.

4.7 Related Work

In early 2013, Project Rhino was launched by Intel as an open source project

with a goal to improve the security capabilities of Hadoop. The group proposes

Task HADOOP-9392 (Token-Based Authentication and Single Sign-On) which

129



intends to support tokens for many authentication mechanisms such as Lightweight

Directory Access Protocol (LDAP), Kerberos, X.509 Certificate authentication, SQL

authentication, and Security Assertion Markup Language (SAML) [10]. The project

mainly focuses on how to extend the current authentication framework to a standard

interface for supporting different types of authentication protocols. Nevertheless, all

these authentication protocols, including Kerberos, are software-based methods that

are vulnerable to privileged user manipulations. An insider or possibly an outsider

could indirectly collect users’ credentials through, for example, the installation

of malware/spyware tools on the machines they have access to in a way that is

transparent to the victims. Rhino design trades off flexibility with complexity.

Overall, it enhances the flexibility of the authentication mechanisms at the cost of

increasing the complexity of the system.

In [7], the author proposes a TPM-based Kerberos protocol. The proposed

protocol is able to issue tickets bound to the client platform through integrating

PCA functionality into the Kerberos authentication server (AS) and remote attes-

tation functionality into the Ticket-Granting Server (TGS). However, the proposed

mechanism does not provide any attestation for Hadoop’s internal components.

Nothing can prevent malicious Hadoop insiders from tampering with internal Hadoop

components. In this work, we use TPM functionalities to perform authentication

directly inside Hadoop and eliminate the need for any trusted-third-party.

In [35], the authors propose a Trusted MapReduce (TMR) framework that

integrates MapReduce systems with the TCG (i.e., Trusted Computing Group)

trusted computing infrastructure. They present an attestation protocol between

the JobTracker and the TaskTracker to ensure the integrity of each party in the

MapReduce framework. However, they mainly focus on the integrity verification

of the Hadoop MapReduce framework without addressing the authentication issues

130



of Hadoop’s HDFS and Clients. Therefore, the authors do not provide a general

authentication framework for the whole Hadoop ecosystem.

In [8], the authors present a design of a trusted cloud computing platform

(TCCP) based on TPM technologies. The proposed design guarantees confidential

execution of guest VMs, and allows users to attest to the IaaS provider to determine if

the service is secure before they launch their VMs. Nevertheless, they do not provide

details about how their design will be implemented and no performance evaluations

are provided. Also, they fail to provide a complete authentication framework among

all the components of Hadoop.

4.8 Conclusion

In this work, we design and implement a TPM-based authentication protocol for

Hadoop that provides strong mutual authentication between any internally interacting

Hadoop entities, in addition to mutually authenticating with external clients. The

bind and seal operations supported by the TPM protect against malicious insiders

since insiders cannot change the machine state without affecting the PCR values.

Furthermore, our protocol alleviates the use of the trusted third party by using the

AIK certification. Moreover, we compare the security features and overhead of our

protocol with the state-of-the-art protocols and show that our protocol provides better

security guarantees with acceptable overhead.

In the future work, we will tighten the security requirements of the NameNode

by removing the assumption of partial trust.
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CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

5.1 Summary

In this dissertation, we present three types of entity authentication mechanisms:

(1) End user authentication: a novel and robust authentication factor based on

network communications latency (Chapter 2); (2) Web server authentication: a

novel and robust phishing detection feature (Chapter 3); and (3) Platform and

service authentication: robust insider attacks countermeasure for Hadoop: design

& implementation (Chapter 4);

In the first work, we propose a new authentication factor based on Network

Round Trip Time (NRTT ) and show howNRTT can be used to uniquely and securely

identify login locations and hence can support location-based web authentication

mechanisms. Two research challenges are identified and resolved. The first research

challenge is that the naive measurement ans usage of NRTT allow the attackers

to easily manipulate or brute force the NRTT profile of the user. We address

this research challenging by introducing a novel network segment: Delay Mask

(DM), to hide the NRTT from the attackers (as well as the legitimate users). In

addition, with multiple DMs deployment (i.e., multiple NRTT profiles), the sample

space of NRTT is enlarged such that manipulation of the NRTT profiles is more

difficulty. The second research challenge is the network instabilities. First, we

classify these network instabilities into three different categories: (1) Instantaneous

instabilities are instabilities which lead to transient changes in communications

latency; (2) Long-term instabilities are instabilities that stay long enough to affect

all or most of the of profiling signals; and (3)Routing instabilities are instabilities

that result in permanent changes in network communications latency. We address
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these network instabilities through three novel algorithms, namely, outlier removal

based on Gaussian approximation, shared increment removal algorithm and long

term dynamic temporal profiling. We conduct extensive experiments to evaluate

Security-Usability-Deployability properties of NRTT as an authentication factor and

compare it with state-of-the-art authentication mechanisms.

In the second work, we introduce a new robust phishing phishing detection

feature based on Network Round Trip Time, NRTT . In addition, we design a

new phishing detection framework by integrating a set of selected phishing detection

features together a phishing target identification algorithm. The experimental results

shows the usage of NRTT could increase the detection accuracy while maintaining

a low false positive rate. The comparative evaluation of the proposed scheme shows

that it has comparable performance results compared to the state-of-the-art schemes.

In the third work, we design and implement a TPM-based authentication

protocol for Hadoop that provides strong mutual authentication between any

internally interacting Hadoop entities. The bind and seal operations supported by

the TPM protect against malicious insiders since insiders cannot change the machine

state without affecting the PCR values. Furthermore, our protocol alleviates the use

of the trusted third party by using the AIK certification. Moreover, we compare the

security features and overhead of our protocol with the state-of-the-art protocols and

show that our protocol provides better security guarantees with acceptable overhead.

5.2 Future Direction

In the future, we plan to further investigate the effectiveness and security impacts of

using NRTT and other phishing detection features in a more comprehensive way.

Firstly, we plan to investigate and evaluate more phishing detection features

based on both the detection accuracy and the security impacts (e.g., unforgerybility)

because it is paramount for phishing detection approaches to carefully select the
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features that strike the right balance between detection accuracy and robustness in

the face of potential manipulations.

In addition, we plan to leverage Deep Learning (DL) algorithms to improve the

performance of phishing detection schemes because DL could be a viable alternative

to traditional machine learning algorithms (e.g., SVM, LR), especially when handling

complex and large scale datasets.
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