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ABSTRACT 

DETECTING AND CHARACTERIZING SELF HIDING BEHAVIOR IN 

ANDROID APPLICATIONS 

 

by 

Raina Samuel 

Applications (apps) that conceal their activities are fundamentally deceptive; app 

marketplaces and end-users should treat such apps as suspicious. However, due to its 

nature and intent, activity concealing is not disclosed up-front, which puts users at risk. 

This study focuses on characterization and detection of such techniques, e.g., hiding the 

app or removing traces, known as “self hiding” (SH) behavior. SH behavior has not been 

studied per se – rather it has been reported on only as a byproduct of malware 

investigations. This gap is addressed via a study and suite of static analyses targeted at 

SH in Android apps. 

 SH behavior ranges from hiding the app’s presence or activity to covering an 

app’s traces, e.g., by blocking phone calls/ text messages or removing calls and messages 

from logs. Using static analysis tools on a large dataset of 9,452 Android apps (benign as 

well as malicious) the frequency of 12 such SH behaviors is exposed. It has revealed that 

malicious apps employ 1.5 SH behaviors per app on average. Surprisingly, SH behavior 

is also employed by legitimate (“benign”) apps, which can affect users negatively in 

multiple ways. The approach has high precision and recall (combined F-measure = 

87.19%). This approach is also efficient, with analysis typically taking just 37 seconds 

per app.  
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CHAPTER 1

INTRODUCTION

1.1 Objective

Mobile security research has mostly focused on malware activation, malicious

payloads, permission abuse, or leaking sensitive data. Little attention has been

paid to deceptive mechanisms that are essential for the success of malware, i.e., how

malware manages to get installed, and continues operating on the phone without the

users noticing anything suspicious. To do so, malware uses a range of SHB, e.g.,

hiding the app, hiding app resources, blocking calls, deleting call records, or blocking

and deleting text messages. Surprisingly, extremely popular “benign” apps such as

Airbnb, Truecaller, and Waze also employ certain SH techniques in the name of user

convenience. We believe that SHB is fundamentally deceptive and that having tools

that perform accurate and early detection of SHB is key. First, app marketplaces,

e.g., Google Play or Apple Store, should be able to detect SHB, so that SHB can

be considered in the decision to publish an app or not. Even when an app with

SHB is published on the marketplace, users should be forewarned about the SHB so

they can decide whether to install the app on their phone or not. We address these

problems on the Android platform via several advances: (1) we shine a light on SHB

via detailed characterization, (2) we construct an SHB-detecting tool based on static

analysis, and (3) we show how our approach for identifying SHB can be very effective

at exposing malicious apps as well as deceptive practices in benign apps.

1



CHAPTER 2

SELF HIDING BEHAVIOR

In this section, we provide a comprehensive description of SH behaviors. We define as

SH a behavior meant to hide the app or its actions from being viewed (or heard!) by

the user. Note that we exclude those behaviors meant to evade security mechanisms,

e.g., anti-malware tools or access control mechanisms – they have been studied

thoroughly and are outside the scope of this paper. Our characterization is based

on manual analysis of about 200 malicious apps and automated analysis of about

3,000 other malicious apps. We found 12 SHBs; few of these are even mentioned

in the research community, let alone characterized thoroughly, and some, including

“Hide icon” and “Hide activity”, are not mentioned at all. Users could employ three

main approaches for identifying the presence of malicious apps: inspecting app objects

(icon, app, activity), analyzing remote communication (SMS, MMS, and phone calls)

or checking system reminders (system dialogs, sound, system logs, notifications, recent

apps list, etc). There are two main issues with this approach, though: (1) it requires

a highly knowledgeable user who performs such inspections periodically, and (2)

malware actively attempts to escape (by hiding itself) from such identification.

2.1 App Objects

After installation, benign apps add their icon to the home screen. To hide itself,

a malicious app removes the icon so the user cannot notice the app’s presence. There

are two methods for hiding the icon: (a) Modifying the app’s manifest file to remove

the app from the default launcher, i.e., home screen. This can be done by deleting

category android.intent.category. LAUNCHER from the app’s main activity section

in the manifest file. For example, malware Fake-skype camouflages as the popular app

Skype and runs in the background without an icon in the home screen. (b) Calling an
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Figure 2.1 The numbers of SHBs in two sample sets of 1,000 malware apps and
1,000 benign apps, respectively.

Android API method to disable the icon at runtime. This can be done by invoking

method setComponentEnabledSetting(). For example, malware Facebook-otp (full

package name: jgywwv.jvyjsd.sordvd), masquerades as the Facebook app but disables

its icon immediately after installation. When benign apps are running, they typically

show up in the running app list. In contrast, a malicious app can run as a service, in

the background, hence does not show up in the list.

2.2 Remote Communication

Sending SMS/MMS messages furtively, in the background, is a common

behavior in malware. Therefore, several anti-malware products focus on this to

recognize malware. After sending or receiving SMS/MMS in the background, Android

saves a copy of the SMS/MMS in the outbox or inbox, respectively. To cover its tracks,

malware needs to delete this copy. The malware usually calls delete() on a content

URI, i.e., “content :// sms/inbox/” and “content :// sms/outbox/”, respectively.

Furthermore, malware can also delete SMS/MMS associated with a certain message

ID, time, or phone number. An example is malware XTaoAd.A that deletes a message

upon receipt. After a malicious app sends SMS/MMS to sign up for a premium-rate

service in the background, it will receive a confirmation SMS/MMS sent from the
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service provider. To prevent users from knowing this, the malware has to filter the

received SMS/MMS by calling abortBroadcast().

2.3 System Reminders

System dialogs could reveal the presence of malware by displaying alarms, user

account balances, or other abnormal behaviors to the user. To avoid this, malware has

to dismiss the system dialog by broadcasting the intent ACTION CLOSE SYSTEM

DIALOGS.

Apps can send alerts to the user by generating a notification on the notification

bar. But the malware can delete notifications by calling NotificationManager’s

methods cancel() or cancelAll() when receiving notifications. To cover their presence,

malicious apps often resort to muting the phone or disabling the vibrate function,

to prevent the user from hearing the sound of alarms, notifications, phone calls or

incoming SMSs. This can be accomplished in a variety of ways: switching to silent

mode, calling the vibrator service, setting the phone to mute, or adjusting the volume

to the lowest level. After an app has run, the system puts its activities into the

recent apps list. To prevent this, malware can set the flag excludeFromRecents in the

manifest file, or by calling ActivityManager.setExcludeFromRecents(). Android saves

system activity into the system log, which can be viewed via the logcat. Malware can

call adb logcat -c to delete the logs if the phone is rooted or if the Android API is

lower than 16.
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CHAPTER 3

DETECTING SH BEHAVIORS

Our approach relies on a suite of static analyses to detect SHBs. Figure 2 shows an

overview of our tool’s design. The input is an APK file (APK is the format Android

apps are distributed in). We pass the bytecode to Soot [3]/FlowDroid [4] which

perform basic tasks such as alias analysis, call graph analysis, as well as fixpoint

computations to deal with loops and recursion. Next, we perform our core analyses

(described shortly) on both bytecode and XML files. Finally, a report detailing the

potential SHBs is produced.

3.1 Static Analysis

Our first analysis finds whether SH API calls are invoked (we name this SAPI

analysis for short). We present the analysis in Figure 3. Specifically, the analysis

starts at an Origin (app or activity start). In the first stage, we use control-flow and

call graph analysis to find whether a certain SAPI call is invoked , green nodes

and edges on the left represent methods and call graph edges, respectively. In

the second stage, we use backward dataflow analysis to find if the call is invoked

with certain SH-indicating parameters; more precisely, we walk the def-use chains

backwards (shown in black) until we can find the parameter definition, e.g., a

constant or an alias. For example, to detect the “Hide app” SHB, our analysis

will check whether the call to Context.startService() is reachable when starting in

BroadcastReceiver.onReceive().To check for “Delete message” on the other hand,

we start tracking from BroadcastReceiver . onReceive(SMS RECEIVED ACTION

VIEW) to see if we can reach ContentResolver.Delete(); next, we walk the def-use

chains backwards to see if the argument is “content :// sms”. For certain behaviors,

e.g., “Hide activity”, we use all the app’s entry points as origin; app entry points

5



SH	Behavior	
reports	

APK	

Alias	analysis	
Call	graph	analysis	 Detec4on	Rules	

Pair	Ac4on	Analysis	(PAPI)	

SH	Call	Analysis	(SAPI)	

User	Decision	Analysis	(UD)	

Ac4vity	Finish	Analysis	(AF)	

XML	file	Analysis	

Byteco
de	

Soot/Flowdroid	

AHribute	Analysis	

Figure 3.1 Tool overview.

are provided by FlowDroid. Another broad self-hiding category consists of pair

actions, where an app first performs a malicious action then deletes traces of this

action, e.g., deleting a text message after sending it. Our analysis (we name this

PAPI analysis for short) detects six types of pair actions: send message/delete,

message log, receive message/delete message log, receive/block message, make phone

call/delete call log, receive phone call/delete call log, receive/block phone call. Our

pair action detector uses data flow analysis in a manner similar to taint analysis

to see if data flows from a pair start to a pair end. To reduce potential false

positives in cases where SAPI methods are also used by benign apps, we perform

a user-decision analysis that checks whether an API method invocation is the result

of a user decision. We name this UD analysis for short. The user’s GUI actions

can be decision-related or decision-unrelated, as explained next. Decision-related

actions include clicking a button, checking a checkbox or selecting a menu item;

in other words, the user takes decisions (and acts accordingly) in a way meant to

change the app state. Examples of decision-unrelated actions include scrolling down

a window or changing focus. If an SAPI is invoked by a decision-related action,

we rule that call as legitimate, rather than an SH attempt. However, if invoked by

a decision-unrelated action, it can be an SHB. Note that existing research can only

detect whether an API is invoked by a GUI , whereas we further consider whether the

GUI can reflect decisions. In order to present the user-decision analysis approach,
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we introduce several definitions. User-Decision-GUI (UDG) is an interactive GUI

element, e.g., Button, Checkbox, Radio Button, Toggle Button, Spinner, Picker, or

menu. User-Decision-Callback (UDC) is a top-level callback method directly invoked

as a result of the user action, e.g., onClick(), onCheckedChanged(). In contrast,

some callback methods are due to decision-unrelated actions, e.g., onBackPressed(),

onScroll(), onEditorAction(). Android offers two ways for creating a correspondence

between a callback method and a GUI element: statically defining the call-back as

the handler of an event in the GUI element’s layout file or dynamically defining

a callback for the GUI element by registering a listener object – we handle both.

We determine that a given callback is an UDC if either of these two conditions is

satisfied: (1) The corresponding GUI of the callback is an UDG, and the event to

be handled by the callback is a decision-related event, e.g., click. Note that there

exist decision-unrelated events, e.g., scroll and focus change. (2) The corresponding

GUI of the callback is an UDG, and the listener of the callback is decision-related,
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e.g., onCheckedChangeListener . Note that there exist decision-unrelated listeners,

e.g., onCreateContextMenuListener and onFocusChangeListener. Finally, we infer

that an API invocation is user-decided if all of its callbacks are UDC, which includes

callbacks within the same component and callbacks in other components. If any

callback is not UDC, we infer that the API call is not invoked by the user. Further,

if this call is an SAPI, it is potentially an SHB. This analysis detects activity hiding,

i.e., whether an activity is terminated prematurely, before being displayed. To achieve

this, the activity calls finish () within onCreate() , onStart() , or onResume() (or their

descendants in the call graph). Therefore, our analysis starts at the beginning of these

three callback methods. We perform a control flow analysis to check whether there

exists a path from the beginning of the callback to the callback’s end that includes

finish(); if such a path exists, it indicates potential activity hiding. We name this AF

analysis for short. The purpose of this analysis is to check whether the app attempts

to manipulate activity attributes in order to deceive the user. The analysis checks

both the XML manifest file and the attribute-related API methods. For example,

the liner layout of an activity has an attribute “background color”. If the attribute

value is (hex value)00000000, the activity is transparent. An app can set the value

of an attribute in the manifest or layout files, or by calling certain API methods,

e.g., setBackgroundDrawable(), setBackgroundColor() or setBackgroundResource().

Another example is the attribute excludeFromRecents which can be specified in the

manifest file, or set via the API methods setFlags() and addFlags() . We use SAPI,

PAPI, UD, AF, and Attribute to denote the five static analyses. We now explain each

rule. Rule 1 reports “Hide icon” when the main activity is removed from the home

screen without user involvement. Rule 2 detects “Hide app” if starting an app as a

service without user involvement. Rule 3 reports “Hide activity” when the activity

finish analysis returns true or the main activity is transparent. Rule 4 infers behavior

“Delete message” when deleting occurs after receiving or sending a message. Rule
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5 reports “Delete call log” when deleting occurs after making or receiving a phone

call. Rule 6 detects “Block message” if blocking received or sent messages. Rule 7

reports “Block call” when blocking incoming or outgoing phone calls. Rule 8 reports

“Hide alert” if the app closes a system dialog without user involvement. Rule 9 infers

behavior “Hide notification” when canceling a notification without user intervention.

Rule 10 detects “Mute phone” when muting the phone surreptitiously. Rule 11 finds

SHB “Exclude from recent apps list” if the attribute EXCLUDE FROM RECENTS

is set without user’s involvement. Rule 12 reports “Delete system log” if that specific

shell command is not launched by the user.

3.2 Implementation

We implemented our tool on top of the Soot and FlowDroid static analysis

frameworks. These frameworks only analyze bytecode, so we added modules to

analyze XML files (e.g., categories and attributes in AndroidManifest.xml, style.xml,

etc). Our static analysis modules use both data-flow and control-flow analyses.

Finally, the analysis results are produced using the detection rules.

3.3 Limitations

Our tool has several analysis limitations. First, if an SHB is invoked by

GUI interaction but the GUI text does not reflect the invocation of the SHB, the

tool will not report it; Huang et al.’s idea of finding mismatches between user

interface and app behavior could be used to address this limitation. Second, there

were a few apps that, due to obfuscation, could not be analyzed, e.g., TripAdvisor

(com.tripadvisor.tripadvisor.apk) and KCLS (com.bibliocommons.kcls.apk). Our

analysis, built on top of FlowDroid, is based on over-approximation, and handles

reflection/native code conservatively, this can be a source of false positives. Also,

the SAPI functions with zero parameters tend to have more false positives, a more

9



precise alias and flow analysis would improve precision. There could be other classes

of SHBs, beyond the ones we have discovered. Nevertheless, our list of SHBs: (1) is

effective at malware discrimination, and (2) exposes questionable practices in benign

apps. Finally, our approach cannot recognize specific malware families: certain SHBs

might span multiple malware families. This is expected, as our design goal was at a

lower level, automatic SHB identification, rather than clustering malware by family.
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CHAPTER 4

EVALUATION

In this section, we present an evaluation of our approach along several dimensions:

Is the approach effective at identifying SHBs? Is the approach efficient? What are

the main causes of false positives/false negatives? We begin by describing the two

datasets used in our evaluation. Our first dataset, which we name MA-198, contains

198 malware samples that were decompiled and analyzed manually, in detail. The 198

samples come from the Malware Genome Project [5], Drebin [2], and AndroZoo [1].

The second dataset, which we name ALL-9452, consists of 6,233 benign apps and 3,219

malicious apps. These apps were analyzed automatically. To ensure that the benign

set does not contain malware, we sent all the apps in this set to VirusTotal, a public

malware scanning service. If an app is reported by at least one common anti-virus

tool as malicious, we removed it from the benign set. For the malware samples, we

performed a quick and simple static analysis to eliminate the samples without any

possibility to have SHBs. This is done by searching requested permissions, major

SAPI calls and intent actions. For example, if an app does not have permissions

SEND SMS and RECEIVE SMS, it is impossible to have the SHB “Delete message”.

Moreover, in order to make sure that the samples are malware, we sent them to

VirusTotal. If an app was reported malicious by less than two scanners, we removed

it from the malware set. The static analysis tool ran on an 8-core Intel Xeon i7-4770

(8MB Cache, 3.4 GHz) with 32GB of RAM. The system ran Ubuntu 14.04.1, Linux

kernel version 3.13.0-32-generic.

4.1 Effectiveness

The test for evaluating effectiveness consists of two steps: SHB detection

validation (manual) and large scale measurement (automatic). As there is no existing
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oracle to determine SHB, we manually verified each static analysis report. Specifically,

we reverse-engineered each app, decompiled the app (to source code) via the JADX

decompiler. Note that decompilation is not always possible due to obfuscation, so

some of our manual analysis was based on source code inspection, some on Dalvik

bytecode inspection. This yields an F-measure of 85.71%, indicating that our tool is

quite effective. A sample is identified as malicious if it exhibited any one of the SH

behaviors. The tool missed (false negatives, or ‘FN’) 311 samples from the malware

set, hence the recall value is 90.62%. The tool also reported 996 benign apps as

having SHB (false positives, or ‘FP’) from the benign set, hence the precision is

84.02%. While these 996 apps were not malicious, their use of SHB is questionable

– we discuss such uses at length in Section 5. Finally, the F-measure is 87.19%; the

malware set exhibited 1.5 SHB per sample on average5 while the benign set exhibited

only 0.2 SHB per sample. We believe that the high F-measure value and the per-app

figures of 1.5 SHB (malicious) vs 0.2 (benign) indicate that our approach is effective

for detecting SHB (and perform SHB-based triaging) in Android apps. To better

understand the causes of false positives, in Figure 4.1 we have grouped them by SHBs.

Five SHBs, “hide activity”, “hide notification”, “hide icon”, “hide app” and “delete

system log”, generated the most false positives. We investigated this and found that

the false positives were due to several reasons: (1) Certain apps employ SHB, such as

running in the background without the user having started the app, or without the

user being able to see that running app, in the name of improving user experience

(see Section 5). (2) Static Analysis: alias, data-flow, and control-flow analyses are

over-approximating, which is inherent in static analysis. We have categorized the

false negative sources as follows: (1) Parameters of an SHB are dynamically sent

from a remote-control server, hence our static analysis cannot identify the behavior.

For example, spyware Saveme has a remote server that sends the id, time or phone

number through the network to delete certain SMS/MMS messages. (2) SHBs are

12



Figure 4.1 FPs generated by each SHB.

launched by GUI interaction, but the behavior mismatches the content shown on the

GUI. For example, apps Pure girl and iCalendar employ this behavior. (3) Some

malware samples do not have SHB, though they do invoke SAPI calls, e.g., Towelroot

and FakeCMC. Our tool did not identify these samples as malicious.

4.2 Efficiency

Running our tool on the 9,452 apps took about 10 days. The datasets had

substantial variety in terms of app size, and some apps’ bytecode size was as large as

24 MB. The “Time” grouped columns show running time statistics for each dataset.

We focus on AA-9452 as it is larger, hence more representative. The mean analysis

time was 84 seconds while the median was 37 seconds, which shows that our analysis

is practical. Finally, we believe that even the maximum analysis time of 15,290

seconds (i.e.,4 hours 15 minutes) is acceptable for a static analysis. To conclude, with

a median analysis time of 37 seconds on a median app size of 2.4MB we believe that

our approach is efficient at SHB analysis.

13



CHAPTER 5

SELF-HIDING BEHAVIOR IN BENIGN APPS

For each SHB category our tool has found in benign apps, we performed a

two-part targeted manual investigation: first, we analyzed the disassembled bytecode,

and then ran the app with instrumentation to confirm the SHB. We focused this

investigation on two categories of apps: (1) apps that are very popular, e.g., with

more than 100 million installs; or (2) less popular apps which displayed severe cases

of SHB. Ultimately, we aimed to answer the questions “Why does this SH behavior

occur and what are the consequences for the user?” This section summarizes some of

our findings; we limit the discussion to 8 SHBs for brevity.

5.1 Hide App

Many popular benign apps, such as Airbnb and BBM start themselves as an

automatic service after receiving the BOOT COMPLETED event. This event, which

requires the permission RECEIVE BOOT COMPLETED, notifies the app that the

system has rebooted. In conjunction with this event and permission, there is a

function which launches the auto-start service. Our tool reports this as “Hide app”

SHB. Apps employ this technique as a means to initialize app-specific information

and functions upon startup. While it could be argued that the app is not hiding in

the malicious sense (rather it is running in the background to have access to certain

types of data, most commonly, location services), we believe that users should know

when such apps are running: (1) so they understand why the battery is draining, and

(2) so they understand the privacy implications of apps accessing and transmitting

sensitive information (e.g., location) in the background.
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5.2 Hide Notification

Certain apps, such as Waze, Truecaller, All in One Toolbox, Quick Heal Mobile

Security and MiniFetion use NotificationManager. cancel() or NotificationManager-

.cancelAll() to block notifications without user intervention. As a result these apps

have been marked as having the “Hide notification” SHB. This is due to the nature

of cancel() and cancelall() , which cancel all previously-shown notifications. Apps

employ this technique as a means to update the user to the most recent notification

or to consolidate notifications, especially in communication apps such as MiniFetion

and TrueCaller. Lately, many “clean up” and “device maintenance” apps have

started to exhibit this behavior for the same reasons. Consolidated notifications

may appear convenient to the user; however the app does not have a means to show

high-priority notifications first (other than through chronological order). Therefore,

users might prefer to receive notifications for all messages to reduce the risk of

missing an important notification. However, in the case of Waze, the app blocks

certain notifications using Vanagon Notification Manager which cancels all app

notifications when the user is not driving. While the app might be trying to appear

helpful, notification cancellation and blocking without user’s consent/awareness is

questionable at best.

5.3 Mute Phone

Our tool discovered the use of AudioManager.setRingerMode() in the benign

app Camera360.As its name states, this is a camera app which edits and takes photos;

it has more than 100 million installs and was “Best App of 2016 on Google Play in

several countries”. Many camera apps use volume controls when recording audio.

Our tool also discovered the “Mute phone” SHB in certain benign popular apps like

Smart Truck Route and All in One Toolbox due to the use of Vibrator.cancel() and

AudioManager.setRingerMode(). Regarding Smart Truck Route, the app directly
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checks and manipulates the device’s audio settings, including its ringer mode. As for

All in One Toolbox, the app mutes the phone based on the SDK version of the device.

This is dubious behavior for a utility app aimed at optimizing the Android device.

To sum up, even though it seems reasonable in some of these cases, we believe that

muting the phone should be done by the user through a system-wide control rather

than silently by the app.

5.4 Block Message

As the BroadcastReceiver is usually a dormant app component, it is not

surprising that its methods can be categorized as SHBs, especially abortBroadcast().

As a result, many benign apps can exhibit this behavior. Interestingly, these apps

are not limited to those which rely heavily on BroadcastReceiver. For example,

the popular navigation app Waze uses abortBroadcast() which can be construed as

the “Block Message” SHB. The abortBroadcast() method is used to prevent other

receivers from obtaining the broadcast, thus blocking the communication. It might

be justified that Waze employs this tactic as a means to prevent itself from getting

location-based alerts that may be irrelevant or annoying to the user. While the

intentions of message-blocking apps might appear benign, such blocking removes

decision-making from the user and can interfere with usability.

5.5 Block Call

Apps which use ITelephony.endCall() are considered to have the “Block Call”

SHB. The benign app Truecaller has the sole purpose to identify and block spam

calls, hence it was obviously marked to have this behavior. Despite explicitly stating

that it automatically blocks calls, an app which decides for the user which calls are

spam can be maliciously manipulated against the user’s interest.
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5.6 Hide Icon

“Hide icon” achieves its goal by deleting an activity’s category. LAUNCHER

from the Android manifest. While this deletion merely indicates that that activity

should appear as an initial activity of a task, it is evident that a deceitful app can

use hide-icon to promote other activities, masking the deceitful app beneath. Many

popular benign apps such as ES File Explorer and Next Launcher 3D Shell Lite have

this behavior. For example, app Next Launcher 3D Shell Lite is a premium launcher

for Android’s home screen, but one of its key features is that it draws 3D icons and

widgets over their original counterparts. App ES File Explorer has permissions to

draw over apps, which is surprising and might be regarded as excessive for a file

manager. By having the ability to promote certain activities and controlling the

launcher’s top level apps, apps with this SHB should be treated with caution.

5.7 Delete Call Log

The app Quick Heal Mobile Security exemplifies this SHB. The app uses Content

Resolver Delete() to delete the call logs on the device. The app has call filtering

capabilities and has explicit permissions to read and write call logs on the user’s

device. Nevertheless, (1) users may not be aware of the security implications of log

deletion, and (2) the user does not initiate call deletion. These two factors make this

particular SHB instance quite problematic.

5.8 Delete System Log

MiniFetion, an app from the Baidu app marketplace, sends free SMS to the

user’s contacts. Despite the seemingly straightforward nature of the app, we found

two highly questionable behaviors. First, the app deletes the system log via “logcat

-c”. Second, the app has an activity MobClickAgent which uploads device logs to

a third party server. Thus the app is able to manipulate, as well as exfiltrate, the
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system logs without the user’s awareness. While not many popular apps have this

SHB, users need to be extremely suspicious of any app which send device logs and

user information to third-party servers.
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CHAPTER 6

CONCLUSION

Motivated by the common tendency of Android malware to self-hide in order to

deceive users and cover malicious traces, we define a set of self-hiding behaviors and

construct a suite of static analyses to reveal such behavior. Our experiments indicate

that the presence of self-hiding behavior is strongly associated with malice in a given

app. Nevertheless, we also found plenty of benign, widely-popular apps that employ

hiding techniques, which suggests that end-users and marketplaces would benefit from

using an approach like ours to shed light on potential nefarious behavior in Android

apps and improve user experience.
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