Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

LOOPING PREDICTIVE METHOD
TO IMPROVE ACCURACY OF A MACHINE LEARNING MODEL

SubramanyatrﬁlReddy Pogili
The topic of this project is an analysis of drug-related tweets. The goal is to build a Machine Learning
Model that can distinguish between tweets that indicate drug abuse and other tweets that also contain the
name of a drug but do not describe abuse. Drugs can be illegal, such as heroin, or legal drugs with a
potential of abuse, such as painkillers. However, building a good Machine Learning Model requires a large
amount of training data. For each training tweet, a human expert has determined whether it indicates drug
abuse or not. This is difficult work for humans. In this project a new “Looping Predictive Method” was
developed that allows generating large training datasets from a small seed set of tweets by repeatedly
adding machine-labeled tweets to the human-labeled tweets. With this method, an accuracy improvement

of 15.4% was achieved from an initial set of 1,075 tweets, by expanding the training set to 29,908 tweets.

LOOPING PREDICTIVE METHOD
TO IMPROVE ACCURACY OF A MACHINE LEARNING MODEL

By
Subramanyam Reddy Pogili

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science

Department of Computer Science

December 2017

APPROVAL PAGE

LOOPING PREDICTIVE METHOD
TO IMPROVE ACCURACY OF A MACHINE LEARNING MODEL

Subramanyam Reddy Pogili

Dr. James Geller, Thesis Advisor Date
Professor and Associate Dean for Research of the College of Computing Sciences, NJIT

Dr. Soon Ae Chun, Thesis Committee Member Date
Professor and co-Director Information Systems and Informatics,
City University of New York

Dr. Hai Nhat Phan, Thesis Committee Member Date
Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: Subramanyam Reddy Pogili
Degree: Masters in Computer Science
Date: December 2017

Undergraduate and Graduate Education:

e Masters in Computer Science
New Jersey Institute of Technology, Newark, NJ, 2017

e Masters in Computer Applications
Osmania University, Hyderabad, India, 2009

e Bachelor of Science in Computer Science
Sri Venkateswara University, Tirupathi, India, 2006

Major: Computer Science
Work Experience:

Subramanyam Reddy Pogili, “worked as Software QA Engineer Intern at
Externetworks Inc.” New Jersey, US, from June to August 2017.

Subramanyam Reddy Pogili, “worked as Software QA Engineer Intern at
Externetworks Inc.” New Jersey, US, from September to December 2017.

Subramanyam Reddy Pogili, “worked as Lead Engineer at HCL Technologies,”
Hyderabad, India, from May 2014 to Jan 2016.

Subramanyam Reddy Pogili, “worked as Engineer I R&D Support at Quark Software Inc.”
Mohali, India, from July 2011 to April 2013.

Subramanyam Reddy Pogili, “worked as TS Engineer at Quark Software Inc.”
Mohali, India, from May 2013 to May 2014.

Subramanyam Reddy Pogili, “worked as Senior Process Associate at Tata Consultancy Services,”
Mumbai, India, from August 2009 to Jun 2011.

PERSONAL DEDICATION

The research on Looping Predictive Method is dedicated to my brother who has been great support to me
for all the time during my Masters. Without his help, it would not be possible for me to travel to United
States and do my Masters in computer science at New Jersey Institute of Technology. Also, my parents

who asked me to do masters and sent me abroad.

ACKNOWLEDGMENT

This work is supported by Dr. Geller (Associate Dean for Research of the College of Computing Sciences)
from New Jersey Institute of Technology, Dr. Chun (Professor and co-Director Information Systems and
Informatics) from City University of New York, and Dr. Hai (Professor) from New Jersey Institute of
Technology. | would like to extend my thanks to Sophie, who helped to create labels for the initial training

dataset. This is very important to work with any Machine Learning algorithm.

Vi

TABLE OF CONTENTS

Chapter

1.

INTRODUCTION ... e e e
11 BaCKgrouNd.o
I LY 1] PP
PROCESS DA T ASE T ...ttt e e e e e e e
2.1 DIUQ TWEEBLS .. e e e eneneren e
2.2 MaACNINE LEAIMINGu ettt et et et e e et e ettt e

2.3 Support Vector MacChingsccouieie i e e e e

T8 A I -V 0100 N L TS T

3.2 TESEDALA . et e e e e e e s

3.3 Demo code showing the training and test data..............ccooviiieiiiiin i
3.4 Cross Validationc..oeouinie e e e e
41 (OL0 TN]3| V=T o1 (o] S PP
4.2 Term Frequency (TF) - Inverse Document Frequency (IDF)
4.3 ACCUIraCy results at EVEIY STEPeiu ittt e et e et e e
4.4 Weakness of the Model or erroneous datacoveviiinineennnnnns
FUTURE RESEARCH ... e e

vii

10

11

13

17

19

21

24

26

27

TABLE OF CONTENTS

(Continued)
Chapter Page
APPENDIX A PYTHON SOURCE CODE ...t e e e e 28
Al Experimental PYthon COAEcouiiniii i e e 28
A.2 Python code to create a bar graph..........oooouuii i 48
A3 Exporting the Model as DInary......... oo 51
A.4 Draw Comparison Chart using Python Codec.ooe i, 52
APPENDIX B JAVA SOURCE CODE ...t e e e 55
B.1 Class definition to extract tweets from TWitter.............oooiiii i 55
B.2 Prototype declaration for getting the drug information from database 57
B.3 Invoke Twitter API (Application Programming Interface) to extract actual tweets 58
B.4 Mapping Java Code with database t0 StOre tWeetscoovuieiieiiiiieiniineennnes 62
B.5 Remove HTML tags from the tweets if anyccoiieiii i e 64
APPENDIX C COMPARISON CHART .t e e e e e e 65
REFERENCES ... e e e e e e e e e e s 66

viii

LIST OF TABLES

Table Page
1.1 List of tweet eXtraction PAramMeLerSc.uie ittt et e e et e e 3
4.1 Tweet count for training or to predict on each iterative modecooveiiiiiiiiiiininnes 16
4.2 Sample Count Matrix 0F SIZ€ 4 X 14 ... e e e e e e e 18
o =T o I =T [T [0 PP 19

4.4 Normalized Term FrEOUENCYt et e ettt e et e et e et e e e e e eae s 19

I e | B |V 1) T TR P PP 20
4.6 Performance when using COUNEVECIOMIZENiieie et et e e e e 22
4.7 Erroneous Data on each Ierationcoouie it e e e e e e 24

LIST OF FIGURES

Figure Page
4.1 Looping Predictive Method diagram........ ... ouue oo it et e e e 15
4.2 Graph showing the improved performance with CountVectorizer..............ccovieviiiiiiiinnn 22

4.3 Graph showing the improved performance with TF-IDF.............coooiii i 23

Abuse Tweet

Accuracy

Compressed Row

Dataset

Dictionary

Estimator

Model

Opioid

Sparse Matrix

Text Feature

Tweet

LIST OF DEFINITIONS

Tweet that contains drug-abuse-related information

How closely the Machine Learning algorithms classify the tweets between abuse
(true) or Not-abuse (false). This is a standard formula in statistics.

A numeric format of a document or tweet in the Sparse Matrix representation.
In this thesis, dataset refers to a group of structured documents or tweets saved
into a single file.

A list of unique vocabulary terms that is extracted from the tweets containing
drug names.

Part of an algorithm computing an estimate of the performance (correctness)
for the given data by following a rule and using observed data as input.

Model is a (Python) object that is the output of a Machine Learning algorithm
such as Support Vector Machine. The Model is then used to predict the labels
of test data and other new data.

Opioid is a drug that is used to relieve pain. It acts on the nervous system of the
humans. Many opioids are used as prescription drugs.

A group of documents or tweets is converted into number format and arranged
into a matrix that is called ‘Sparse Matrix.’

A compressed row of a document or tweet with the designated label (0 or 1

and unique tweet ID) and ready to feed into the Machine Learning algorithm.

A message that is posted on Twitter is called a “tweet.’

Xi

CHAPTER 1
INTRODUCTION

1.1 Background
The United States are suffering from a drug epidemic. This includes both illegal drugs and legal drugs that
are over-prescribed or prescribed under false claims. More rapid increase in the use of opioid drugs has
been reported in the United States than in any other country (Vox, 2017). Opioids that can be legally
prescribed have caused many deaths in the United States. One way to better understand this problem is to
look at social media. Twitter is chosen as a good source for information about the drug epidemic.
Understanding the size of the problem and its distribution in the country would make it easier to plan
supporting measures. For example, if there is a cluster of drug tweets tied to a certain location, the local

government could consider starting a drug treatment program in the closest hospital.

The main goal of this research is to create a classification system that distinguishes between tweets
that indicate drug abuse and tweets that do not indicate drug abuse. Machine Learning was used to build
a Model that can differentiate between these two kinds of tweets. Among many popular Machine Learning
Models, the Support Vector Machine (SVM) Model was chosen to work with (Understanding support
vector machines, 2017). However, the initial results using SVM were disappointing. Therefore, our
secondary goal in this thesis research was to find a new, better method using SVM to get better results in

classifying drug-related tweets.

1.2 Twitter
Twitter is a web application that is accessible across the globe from the domain twitter.com
(https://twitter.com/). Twitter is recognized across the world by it is signature bird logo. It was developed
by Jack Dorsey, Noah Glass, Biz Stone, and Evan Williams in the year 2006. The main idea of this
application is to post messages in the network of people and interact with them. In Twitter terminology
each message that is posted in the network, is referred to as a ‘tweet.” To be able to post a tweet, the user

must be signed up and logged into the portal. The length of a tweet is restricted to 140 characters. The

users who are not signed into the portal can still read the tweets by opening the application with the link
“https://twitter.com/.” Twitter also implemented mobile applications for Android and iOS environments.
They can be downloaded from Playstore [Android] and AppStore [iOS].

Twitter also exposes API services to extract the tweets from it is network. APl is an Application
Programmable Interface service that is built by specifying the appropriate routes, protocols and rules.
‘Routes’ refer to the context path of an API through which the service is accessible. For example,
searching tweets based on different criteria (words, phrases, hashtags, account names, languages, date
ranges), one can use the AP1 URL (https://twitter.com/search-advanced?lang=en). The context path here
is /search-advanced?lang=en. ‘Protocols’ refer to web protocols such as HTTP, FTP, DNS, etc. ‘Rules’
define how and who can access the API. In case of Twitter, an API key provides accessibility to Twitter
tweets. To get the API key, one would need to sign up for a Twitter account and submit an application for
API key access.

To search and extract the drug-related tweets, one can use the Twitter Search API. This is one of
the services provided by Twitter and it was used to fetch the tweets that contain the drug names
“meperidine, Cocaine, Codeine, Delphine, fentanyl, Heroin, hydromorphone, LSD, Opiates, Oxycodone,
PCP, Ritalin, Benzodiazepines, and opioid.” The search API allows the users to search in the tweets that
are posted in the past seven days. This means one can only search the tweets in the last seven days. The
Search API can only get the relevant tweets. If you want to get all the tweets, one will need to use the
streaming API. The streaming API is documented at Twitter APl documentation (Twitter developer
documentation, 2017). Following are the steps to build a sample query to extract all relevant tweets

through the API service:

e The standard API search URL (Twitter, 2017) is “https://api.twitter.com/1.1/search/tweets.json.”
Https defines the secure protocol used by Twitter. “api.twitter.com’ is the domain, and ‘/1.1/search
/tweets.json’ is the context path.

e To search for tweets that contain the drug name “Cocaine,” use the needs to append a key value

pair to the above URL. For example, https://api.twitter.com/1.1/search/tweets.json?q=Cocaine

Here ‘g’ refers to query. It searches for any tweets that contain the value *Cocaine’.

e Once the query has been constructed, one can trigger this API with the query using a programming
language such as Python, and get the relevant tweets.
e To trigger the above API, Twitter asks for authentication and authorization. This is documented at

(Twitter developer documentation, 2017).

One can also append different operators along with the query word. The operators will modify the
behavior. The users will need to ensure that the query operators are URL encoded, before they append

them to the search API. Following is a list of operators and their usage.

Table 1.1 List of Tweet Extraction Parameters

Operator Finds Tweets...

watching now Containing both “watching” and “now.”

This is the default operator.

“happy hour” Containing the exact phrase “happy hour.”
love OR hate Containing either “love” or “hate” (or both).
beer -root Containing “beer” but not “root.”

#haiku Containing the hashtag “haiku.”

from: interior Sent from Twitter account “interior.”

list: NASA/astronauts-in-space-now | sent from a Twitter account in the NASA list

astronauts—in—space—now.

to: NASA A Tweet authored in reply to Twitter account “NASA.”

@NASA Mentioning Twitter account “NASA.”

politics filter: safe

Containing “politics” with Tweets marked as potentially

sensitive removed.

puppy filter: media

Containing “puppy” and an image or video.

puppy -filter: retweets

Containing “puppy,” filtering out retweets.

puppy filter: native_video

Containing “puppy” and an uploaded video,

amplify video, Periscope, or Vine.

puppy filter: periscope

Containing “puppy” and a Periscope video URL.

puppy filter: vine

Containing “puppy” and a Vine.

puppy filter: images

Containing “puppy” and links identified as photos, including

third parties such as Instagram.

puppy filter: twimg

Containing “puppy” and a pic.twitter.com

link representing one or more photos.

hilarious filter: links

Containing “hilarious” and linking to URL.

puppy url: amazon

Containing “puppy” and a URL with the word *“amazon”
anywhere within it.

superhero since:2015-12-21

Containing “superhero” and sent since date

“2015-12-21" (year-month-day).

puppy until:2015-12-21

Containing “puppy” and sent before the date
“2015-12-21.”

Movie -scary :)

Containing “movie,” but not “scary,”

and with a positive attitude.

Flight :(

Containing “flight” and with a negative attitude.

CHAPTER 2

PROCESS DATASETS

2.1 Drug Tweets

People communicate with each other by posting messages in the network of Twitter Application. Here,
each message is referred to as a tweet. The tweets contain a drug name such as meperidine, cocaine,
codeine, benzodiazepines, opioid, etc. indicate that they are sharing some information about a drug. These
tweets are distinguished into abuse and non-abuse tweets. Following are examples of both categories:

Abuse Tweet: | was on oxycontin a while back for some severe abdominal pain and it made me so

stupid I still cringe

Non-Abuse Tweet: Whats the name of the girl who broke your heart OxyContin...
In order to determine whether or not a tweet should be labeled as indicating drug abuse, one first has to
determine in what context it is using the drug. For example, there are many tweets where people are
spamming random nonsensical words and happen to mention a certain type of drug. There are also cases
of someone tweeting about something in the news that is related to drug abuse. In such cases, one labels
the tweets with a 0 (non-drug abuse), since the tweet is not giving any indication that the user is taking
drugs. There are cases when a tweet appears to be a computer-generated advertisement, as there are many
duplicates of the same tweets that are slightly modified and are advertising a certain drug. Since these
tweets are most likely generated by a computer, one marks these tweets with a 0. In other cases, a user
outright says that they have taken certain drugs and is getting high. Then, one marks the tweet with a 1,

indicating that this tweet was showing signs of drug abuse by the user.

2.2 Machine Learning
Machine Learning is a field in Artificial Intelligence that develops algorithms to learn from data and
predict results, without the need of any programming. Since 1959, the Machine Learning has advanced

from the study of pattern recognition and computational learning theory in Artificial Intelligence,

according to Arthur Samuel (Samuel, 1959). Machine Learning algorithms are segregated into supervised

and unsupervised learning methods.

Unsupervised Learning

Unsupervised Machine Learning algorithms that make an assumption that a dataset contains input data,
but is not associated with any labels. It is a good technique to look for hidden structures in a dataset. The
most common unsupervised learning methods are Hierarchical clustering, k-Means clustering, Gaussian
mixture Models (Unsupervised learning, 2017), Self-organizing maps, and Hidden Markov Models
(MathWorks, 2017), (Unsupervised learning, 2017), (Zoubin Ghahramani, 2004). Cluster analysis is
widely a used unsupervised learning algorithm in experimental data analysis to discover hidden patterns

and groupings in datasets.

Supervised Learning

Supervised Machine Learning algorithms let machines learn from inputs and known responses. In
Supervised Learning, one trains the machine by providing a list of inputs and corresponding responses.
The learned knowledge is stored in the form of a Models. Later, this mode can be used to predict new
results based on the past evidence. Here, the machine is learning from observations and predicting the
responses for new data. Exposing the Model to more observations, the machine improves the predictive
performance. Once the machine is trained with sufficient training data, it will be able to provide the target
or response for a new input that is likely but not guaranteed to be correct. In supervised learning, one deals
with two types of problems: classification problems and regression problems. If the response is expressed
as distinct, then it is called classification problem. If the response space is continuous then it is a regression
problem. Some of the supervised learning algorithms are Support Vector Machines (SVM), Naive Bayes,
and Nearest Neighbor (Supervised Learning, 2017), (Statistical classification, 2017).

Following are the steps involved in Supervised Machine Learning:

e Create human-labeled dataset of observations and results

e Choose a Machine Learning algorithm
e Build a Model by loading observations and results
e Check the accuracy of predictions by comparing the results on new observations with human results

e Export and use the Model on observations with unknown results

2.3 Support Vector Machines
Support Vector Machine (SVM) is a classification algorithm that is used for Modeling and predicting
categorical variables. SVM understands only numbers. The Model can learn text features, but they have
to be fed in as numbers. The SVM Model classifies the text, based on the training data. In Python, there
is a library “sklearn” which provides the classification capabilities. To use this capability, one needs to
install the Sklearn package and import the library ‘SVM’.

Command to install sklearn package

@8 Command Prompt - conda install Sklearn [H lﬂlﬁj

C:sUserssPB—6FT?M>conda install Sklearn
Fetching package metadata

b

#Command to import the library ‘svm’ from the sklearn package

from sklearn import svn|

following is the sample prediction code in python

In [66]: first Model=svm.SVC(kernel="linear').fit(train features, y train)

[LibSVM]

The SVM library contains a classification function called ‘Support Vector Classification (SVC)’,
it can be used to classify the text based on the training dataset. The training dataset contains the tweets
that let SVC learn Model and use it to classify the new Tweets. The SVC Model learns the features that
are defined in numeric format. Thus, the features are supposed to be converted into numbers through
algorithms like Word to Vector (Scikit-learn, 2017), TF (Term Frequency)/ IDF (Inverse Document
Frequency) (Wikipedia, 2017).

Accuracy is defined as follows:

(TP + TN)
(TP + FP + TN + FN)

ACC =

It is used to judge the quality of the learned Model (Sensitivity and specificity, 2017). TP stands
for True Positive. A True Positive is the prediction that an observation belongs to a category C and it
really belongs to C. TN stands for True Negative. True Negative is the prediction that an observation does
not belong to a category C and it really does not belong to C. FP stands for False Positive. False Positive
is the prediction that an observation belongs to a category C and it does not. FN stands for False Negative.
False Negative is the prediction that an observation does not belong to a category C and it really belongs
to C.

The accuracy would be low, when predicting the new data with the Model that is trained with less
training data. Here the accuracy is calculated based on the number of tweets that are accurately labeled by
a Machine Learning algorithm over the total number of machine-labeled tweets. For instance, if the Model
has predicted 1000 tweets, among which 900 tweets were correctly predicted, then the accuracy is 90%

((900/1000) *100).

CHAPTER 3

IMPLEMENTATION

3.1 Training Data

The initial data W fed to the Model is called training data. The Training Data is required by the Machine
Learning Model to learn prediction capabilities. Humans classify the training data as either Abusive or
Non-Abusive. The Machine Learning algorithms cannot process the vocabulary; therefore, the tweets are
converted into a numeric format, as 1 or 0. Here, 1 represents Abuse and 0 is referred to as Non-Abuse.
For instance, the following a sample that was classified as Abuse (1) by a human:
I was on oxycontin a while back for some severe abdominal pain and it made me so stupid I still cringe

Many tweets like the above constitute the training data 1,075 tweets. This data cannot be fed
directly to the SVC Model. A Sparse Matrix representation was created by extracting the features for each
tweet and storing them as Compressed Row format (Sparse Matrix, 2017), (Feature Extraction, 2017). The
Sparse Matrix is fed into the SVVC algorithm along with the human labels, which then builds the Model to
classify the new tweets. As noted before, the Model only understands the Sparse Matrix that is created by
extracting the features in number format. The training dataset was created by students at NJIT, under the

instructions of Prof. Geller, Prof. Chun, and Prof. Phan.

3.2 Test Data
Test data is a portion of the human-labeled data that was not used for training. This data is used to test the
Model that was built with the training data. It is again a group of tweets that are labeled by humans. Firstly,
the features for the test data are extracted using the same Dictionary (see Section, 4.1). Then the Model
uses these features to predict abuse or non-abuse labels. Finally, the Model output is compared with the

known labels to determine how accurately the tweets were classified.

3.3 Demo Code Showing Training and Test Data
To do an experiment with Support Vector Machines (SVM), one must follow strict requirements for
training and testing datasets. The main requirement in this process is that one will need to make the data
available in a numeric format. The categorical data that is extracted from Twitter in the form of tweets
should be converted to numeric values using any libraries or algorithms. After converting the data into
numeric format, the features of the tweets were extracted, and a Sparse Matrix is created. Later, the Sparse
Matrix is supplied to SVM Model to train. It was observed that the features from the human labeled tweets

were used to predict the new datasets.

Check the shape of the training data in Python:

HLTweets.shape

(1794, 2)

The training data contains 1794 records and ‘2’ refers to two columns.

Check the shape of training data after extracting the features and created the Sparse Matrix:

train_features.shape

(1075, 56542)

Here, 1075 refers to the number of features and 56542 refers to the number of unique words in the Sparse

Matrix.

Check the shape of test data after extracting the features and created the Sparse Matrix:

test_features.shape

(717, 56542)

Here, 717 refers to the number of features and 56542 refers to the number of unique words in the Sparse

Matrix.

10

The total number of drug related raw tweets (not cleaned) that are store in a MySQL database is 106,964.

The number is found by the following SELECT statement on MySQL Workbench.

&
S ® select count(*) from t_tweet_info;
6
£ m
Result Grid | | 43 Filter Rows: Export:
count(*)
106964

3.4 Cross Validation

Cross validation is one of the methods that is used to evaluate the performance of an estimator. It is
possible that the Machine Learning Model would show perfect score if tested with part of the original
training data, but would fail to correctly predict labels for previously unseen data. To avoid this problem,
it is always required in Machine Learning experiments to hold out part of the labeled data and test the
Model with it. | have used the Python 3.6 library “train_test_split’ to create the training and test data of
different folds such as [60,40], [70, 30], [80,20], [75,25] respectively, and compare the performance.
The best performance of the Model was achieved when the Model was fed with 60% training data and
tested with 40% test data.

The human-labeled dataset contains two columns: Tweets and Label.

HLTweets.columns.values

array (["Tweets', "Label'], dtype=object)

Following is the sample call of the Python function to split the data into training and test sets.

Training_input, Test_input, Training_flag, Test_flag
= train_test_split(HLTweet_features, HLTweets['Flag'], test_size=0.25)

Training_input is a variable that holds the 75% of the data to train the Model.
Test_input is another variable that stores 25% of the data to test the Model.

Training_flag is a variable of array that contains all the labels for training.

Test_flag holds the labels for test.

11

HLTweet_features is a Sparse Matrix that is created by extracting the word features from the human

labeled tweets.
HLTweets[‘Flag’] is a column contains all the human classification labels.
Test_size is a parameter that specifies how much test data one wants to extract from the given dataset.

This works on a scale from 0 to 1. ‘0’ means 0 %, and 1 defines 100%. In the above example, 0.25

indicates, that the algorithm will randomly extract 25% of the data for testing.

12

CHAPTER 4

RESEARCH

The traditional approach to classify tweets is to train a Machine Learning Model first and use it afterwards
to classify new tweets. In this research, the Machine Learning algorithm “Support Vector Machines”
(SVM) was used to perform the experiments. The initial experiment was performed using 1,075 human-
labeled tweets with 4 different trials where the size of training data is distributed as 60%, 75%, 80 %, 90%
respectively. The SVM Model achieved between 64% to 79% accuracy in predicting the different new
sets of data. The reasons for this low accuracy were as follows. As the number of tweets was low, the
features extracted from the tweets were insufficient. The SVM Model was not trained with enough
features, and it was not able to accurately predict the labels for test data.

The new approach ‘Looping Predictive Method” boosted the accuracy of SVM Model by 15.4%.
CountVectorizer was used to extract the features from the tweets and generate Sparse Matrix.
CountVectorizer is a Python library (Scikit-learn, 2017) and it is an open source. Firstly, it creates a
Dictionary with unique words from all the tweets by assigning a unique id to each word. Later, it creates
unique combinations for each complete tweet and generate a Sparse Matrix that SVM Model can
understand. For instance, if the vocabulary of a sample tweet ‘I feel the barbiturates in my blood’ is

extracted and a Dictionary is created, it would look like in the Sparse Matrix.

I feel the barbiturates in my blood
[232 3134 12 323 17 43 545]

Following is a sample screenshot showing the Dictionary vocabulary from the original experiment.

13

In [27]: dictionary32.vocabulary_

out[27]: {'rule': 1539864,
‘cherrytorn’: 256577,
'thx': 1741478,
'rad’': 146546,
‘director’': 382466,
'domme’ : 400859,
'friend’': 563100,
"https’: 720949,
‘znnq': 2093673,
‘rg’: 1498779,
‘steer’: 1657389,
'kobebryant': 241530,
‘playground’: 1374428,
‘scored’: 1573230,
'pts': 1406823,
'set’': 1586216,
‘world’: 1954634,
'records’': 1483913,
'todo’': 1758460,

' P W —— O WLV W YN

Above, the left column contains terms and right column shows the unique identification number assigned

to each term.

14

Human Labeled Data

Machine Learning (ML) Model

Predicted/Machine Labeled Data - Y

——

Predicted/Machine Labeled Data - Z

Training X = 60% of Human Labeled Data

ML Model 1
Training Data - X+Y

ML Model 2

Training Data X+Y+Z Predicted/Machine Labeled Data - W

ML Model 3

Training Data X+Y+Z+W

Final ML Model

Predicted/Machine Labeled Data - D

Figure 4.1 Looping predictive method diagram

15

In Fig. 4.1, the set T1 of 1,076 human-labeled tweets is combined with the set T, of 1,076 tweets labeled
by using our initial Model M. This results in a new set T, of 2,152 tweets. Next, T is fed into SVM again,
building a second Model M. The output T3 of this second Model is then combined with the input data T>
resulting in a new data set Tz of 4,304. By this approach we are doubling the size of the output at every
step. This approach continues with the sizes as follows: 1,076; 2,152; 4,304; 8,608; 17,216; 34,432;

68,864; until the count reaches 137,728 tweets. These many tweets were collected from Twitter.

Table 4.1 Tweet Count for Training or to Predict on each Iterative Mode

Training Set Model Level Prediction Count
1075 First Model 1075
2152 Second Model 2152
4304 Third Level 4304
8608 Fourth Level 8608
17216 Fifth Level 17216
29908 Sixth Level 29908

Training X Final Model Predict All Data P

As shown in the Table 4.1, the training data X was increased by combining the machine-labeled
data P. Initially, 1,075 tweets were used for training and the Model predicted 1,075 tweets. At the next
level, the human-labeled training data of 10,76 tweets was combined with machine-predicted lebels 1,076,
and therefore the data in updated training set was consisted of 2,152 labeled tweets. Using this updated
training dataset, another 2,152 tweets were predicted. A new Model was built with 4,304 labeled training
tweets and 4,304 newly machine-labeled tweets were generated. This process continued until the final

Model was built by training 29,908 tweets and the Model labeled 29,908 new tweets.

16

4.1 Count Vector

Machine Learning algorithms cannot understand the raw data. Thus, the raw data cannot be directly fed
to the algorithms as they cannot process the strings and they expect the data in numeric form. One needs
to convert the strings into numeric format to make them compatible with Machine Learning Models. The
common ways to extract the features from the strings are tokenization and counting occurrences.
In tokenization, documents are converted into tokens through white-spaces or punctuations and

a unique id is assigned to each token or word. These tokens of each document are arranged into a Sparse
Matrix in numeric format. Tokens are fit into columns of the matrix and document are arranged as rows.
The process of extracting the features from the documents into numerical feature vectors is called
‘vectorization.” The Machine Learning algorithms can process these feature vectors for Modelling and
learning prediction capabilities. Scikit provided the library ‘CountVectorizer’ to extract features from text.
Following is an example of feature extraction.
Document (D;): Pills do not cure pain pain
Document (D): This is unsuitable for human life
Document (Ds): No wonder everyone here needs OxyContin
Document (Ds): Pills cure pain temporarily

Consider D is the number of documents and N is the number of unique tokens that are extracted from
the corpus of tweets. These tokens later form the Dictionary and the size of the vector is given by D X N.
Here, the rows in the Count Vector matrix are created from the frequency of tokens in the document.

Unique tokens: N = |‘Pills’,” do’,” not’,’cure’,’pain’,”This’,’unsuitable’,”human’,’life’,’no’,’here’,

‘need’, ’OxyContin’, "temporarily’| = 14

Number of documents: D =4

17

8T

Table 4.2 Sample Count Matrix of size 4 X 14

Unique tokens in the Dictionary

Documents Pill do not cure pain this unsuitable human life no here need OxyContin temporarily
(1) (22) (23) (249 (25 (27 (32 (33) (34) (35 (41) (28) (30) (20)

D1 1 1 1 1 2 0 0 0 0 0 0 0 0 0

D2 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Ds 0 0 0 0 0 0 0 0 0 1 1 1 1 1

D4 1 0 0 1 1 0 0 0 0 0 0 0 0 1

In Table 4.2, the rows correspond to documents and the columns correspond to tokens with unique integer IDs in the Dictionary. Here, the document can be
read as document D4 has “Pill’: once, “cure’: once, ‘pain’: once, "temporarily’: once. The columns may also be understood as vectors for the corresponding

words. For instance, the word vectors for the tokens ‘pain’, ‘life’, “human’ in the Sparse Matrix are [25,1], [34,1], [33,1] respectively.

4.2 Term Frequency (TF) - Inverse Document Frequency (IDF)
Each document in the corpus can also be treated as ‘bag’ of words. Every document is represented as a
vector; however, the term weight is computed using TF-IDF. In Machine Learning TF-IDF is used to
transform the raw documents to a normalized TF or TF-IDF representation.
Term Frequency (TF): Term weight of a term is the number of times the term T; appears in the document

D;. it is denoted as Fi;.

Fij
Term Frequency formula: TFij — /
Max{Flj,Flj,Flj,Flj F|v|]}
Document (D1): Pills do not cure pain pain
Document (D2): This is unsuitable for human life
Document (Ds): Pills cure pain temporarily
Table 4.3 Term Frequency
Pills Do Not Cure | Pain | This|unsuitable| human life temporarily

D1 1 1 1 1 2 0 0 0 0 0

D2 0 0 0 0 0 1 1 1 1 0

D3 1 0 0 1 1 0 0 0 0 1

TF 2 1 1 2 3 1 1 1 1 1
Normalized TF = Term Frequency/max (Term Frequencies)
Table 4.4 Normalized Term Frequency

Pills Do Not Cure Pain | This |unsuitablel human [life [temporarily,

D1|%=05| %=05 Y= | %=0.5]| 2/2=1 [0/2=0[0/2=0 | 0/2=0 |0/2=0| 0/2=0
0.5

D2|0/1=0| 0/1=0 (0/1=0| 0/1=0 | 0/1=0 |1/1=1| 1/1=1 | 1/1=1 |1/1=1| 0/1=0

D3|1/1=1| 0/1=0 (0O/1=0| 1/1=1 |1/1=1|0/1=0| 0/1=0 | 0/1=0 |0/1=0| 1/1=1

19

Inverse Document Frequency (IDF): Total number of documents over the number of documents T;

appears.

IDF formula: IDFL' - |09(%)

N: Number of documents

DFi: Number of documents containing the term T;

Pills

Do

Not
Cure

Pai

n

This
Unsuitable
Human
Life

Temporarily

TF-IDF matrix = Term Frequency * Inverse Document Frequency

Table 4.5 TF-IDF Matrix

log (3/2)
log (3/1)
log (3/1)
log (3/2)
log (3/3)
log (3/1)
log (3/1)
log (3/1)
log (3/1)
log (3/1)

=0.176
=0477
=0477
=0.176
=0.000
=0477
=0477
=0477
=0477
=0477

Pills Do Not Cure | Pain This Junsuitable| human | life [temporarily,
D1|1*0.176 | 1*0.477 [1*0.477 | 1* | 2*0.000 |0*0.477| 0*0.477 [0*0.477|0*0.477| 0*0.477
0.176
D2 | 0*0.176 | 0*0.477 [0*0.477 | 0* | 0*0.000 |[1*0.477| 1*0.477 (1*0.477|1*0.477| 0*0.477
0.176
D3| 1*0.176 | 0*0.477 [0*0.477 | 1* | 1*0.000 |0*0.477| 0*0.477 [0*0.477|0*0.477| 1*0.477
0.176
Pills Do Not Cure | Pain | This |unsuitable| human life | temporarily
D1| 0.176 |0477| 0477 |0.176 | O 0 0 0 0
D2 0 0 0 0 0 [0477] 0477 0.477 | 0.477 0
D3| 0.176 0 0 0176 | O 0 0 0 0.477

20

4.3 Accuracy Results at Every Step
The data set that is labeled by humans to test the above approach contains two headers: Tweets and Flag.
Total records in the human-labeled dataset are 1794.
First Model was built by training the SVM Model with 1,076 tweets and testing with 717 tweets.
Accuracy: 79%

Second Model: training dataset

HLTweets.columns.values
array (["Tweets', "Flag'], dtype=object)
HLTweets.shape

(1794, 2)

The Model is built by training 60% of the data.

len(train

1875

Following is the first Model that’s created with the above training data.

first Model=svm.SVC(kernel="linear', C=1,random state=10000000,verbose=3)
first Model=first Model.fit(train features, y train)

Here, the option “verbose’ is set to 3 for printing details logging information to the screen.

Test data size:
len(y_test

717

Accuracy after prediction:
first Model.score(test features,y test)

8.79679457967940702

The number of tweets to try the approach that was explained in Section 4, is below.
tweets.shape

(48@56, 1)

Result are demonstrated in Table 4.6.

21

Table 4.6 Performance when using CountVectorizer

Training Data Size Accuracy (%)
1075 79
2152 88
4304 90
8608 92
17216 93.9
29908 944

Model Performance with CountVectorizer Features

Accuracy in percentage (%)

1075 2152
Training Data Size in Number of Tweets

4304

8608 17216 29908

Figure 4.2 Graph showing the improved performance with CountVectorizer

22

The Model was tested by feeding the data in six iterations. At the first iteration, when it was tested with
the training data of 1075 tweets, it showed an accuracy result of 79%. After the sixth iteration, the result
was improved to 94.4%, where the size of the training data reached 29,908 tweets. The Looping Predictive

Model helped to boost the performance by 15.4% through CountVectorizer.

Model Performance with Tfldf Features

100 H

80 +

60 -

Accuracy in percentage (%)

20 1

1075 2152 4304 8608 17216 29908
Training Data Size in Number of Tweets

Figure 4.3 Graph showing the improved performance with TF-IDF

InFigure 4.3, itis illustrated that the accuracy of TF-IDF prediction algorithm was not stable, not showing
any consistent improvement, and it showed high accuracy through all the iterations. Thus, the Looping
Predictive Model was not the best fit with TF-IDF features. On the other hand, CountVectorizer showed

consistent improvement on each iteration and this iterative approach was a better with CountVectorizer.

23

4.2 Weakness of the Method or Erroneous Data

Erroneous data is a certainty that one must deal with in any data processing through Machine Learning
Models. This has a negative impact on data quality that one feeds into the Machine Learning Model and
may produce additional erroneous predictive results. A thorough analysis on the factors of erroneous data
and finding workarounds will help improve the data quality. The weakness of the Looping Predictive
Method is that the training data used in this method on every iteration has some erroneous data, because
it was automatically generated. After the first iteration, when the method used 100% accurate data that
was labeled by humans, it displayed 79% accuracy. This means the prediction result had 21% percent of
erroneous data. The algorithm incorrectly labeled 225 tweets from the input of size 1,075 tweets. On the
second iteration, the Model labeled 258 tweets incorrectly from 2,152. After six iterations, the error rate
was drastically reduced from 21% to 5.6%. This confirms that the Model used some erroneous data on
each iteration. However, one can observe the error rate decreasing and accuracy improving.

Table 4.7 depicts detailed information of each iteration.

Table 4.7 Erroneous Data on each lteration

Iterations Training Data Test Data| Accuracy Incorrect Error
Size Size (%) Labels Rate (%0)

lh 1075 717 79 225 21
I2 2152 7+130=847 88 258 12
I3 4304 1435 90 430 10
l4 8608 2870 92 688 8

Is 17216 5738 93.9 1050 6.1
le 29908 11476 944 1674 5.6

24

In Table 4.7, the first iteration I1 used 1,075 tweets as a training dataset and the Model was able to predict
test data labels with 79% accuracy. Here, a 21% error rate Err; was observed. After the second iteration
I2, the error rate was reduced to 12% and the Machine Learning Model was able to predict the labels for
2,152 tweets with 88% accuracy. After performing the iterations Iz, I2, I3, 14, Is, Is by doubling the training
data size, the error rate dropped from 21% to 5.6%. This can be further improved.

The drawback of this research is that the Looping Predictive Method was not tested with human-labeled
data in all iterations. The first iteration was tested with the human-labeled data and 79% accuracy was
achieved. The second iteration was built with the training dataset that was created by combining the
machine-labeled 1,076 tweets with 1,076 human-labeled tweets.

In the second iteration, the Model was tested with updated test data and the prediction capability was
increased by 9% (= 88% —79%). The revised test data contained 130 machine-labeled tweets and the 717
human-labeled tweets. However, the updated test data had 21% of incorrect machine-labeled tweets.
Through all the iterations, this test data was combined with some portion of the incorrect machine-labeled
data. Thus, the improvement with the performance was not good enough, because, the model was not
tested with the original human-labeled data in all iterations and test data had incorrectly labeled tweets.

This tradeoff was necessary due to the difficulty of getting humans to label tweets.

25

CHAPTER 5

FUTURE RESEARCH

In this research, six iterative Models were experimented with, with a maximum of 29,908 tweets. The
Looping Predictive Method can be further extended to work with larger numbers of tweets by creating
bigger training datasets, extracting more vocabulary, and adding the converted documents or tweets to the
Sparse Matrix. To get a good accuracy of prediction, the Model must be tested with human-labeled data
through all iterations. However, following are the challenges that may occur while working on this
approach with massive datasets.
e Processing text is a very expensive task in terms of system memory
e Looping Predictive Method requires to run multiple times and it takes more time on every iteration
as the number of tweets increases
o Small scale systems can be crashed if one attempts to run the approach with huge datasets. Thus,
one needs to deploy and run the code on large scale hardware
e Running time with every iterative Model will be at least, doubled as the number of features fed
into Model is getting doubled
To improve the accuracy, one could create a custom Dictionary with phrases that contain specific negative
and positive words, and use that dictionary while extracting the features for inclusion in the Sparse Matrix.
Doing more research on this approach and testing with the human-labeled dataset could decrease the error
rate. Once the Model has been built with consistent performance, one must try to find ways to optimize
the run time. This is very important when the Model is used in real-time applications, as end users expect

fast response time.

26

CHAPTER 6

CONCLUSIONS

This thesis introduced a new approach in Machine Learning, where the accuracy of a Machine Learning
Model that was built using a Support Vector Machine (SVM) was improved by 15.4%. The initial iteration
showed 79% accuracy on testing the Model with human-labeled data. The second iteration was
implemented by doubling the training data and the performance of the Model was improved by 9%, The
training data was doubled through combining machine labeled data with human-labeled data. To ensure
the Model performs consistently, six iterations were performed, and every iteration was executed by
doubling the training data from the previous iteration. The performance of the Model was stable, and the
accuracy rate was consistently improved throughout the six iterations.

The research was performed using the Machine Learning algorithm *“Support Vector
Machine.” Constructing the data for the SVM Model was challenging as the tweets for each iteration had
to be cleaned, inserted in a Python array object and converted into numeric format. Specially, when
transforming the human-labeled data into a Sparse Matrix, it took an effort to ensure that the tweet features
and human-label for that tweet were correctly placed in the Sparse Matrix. Overcoming all these problems,
the experiment was performed successfully, and the output was collected and analyzed. The experimental
outcome demonstrated that the iterative method boosted the accuracy of SVM Model. In summary, it was
proven that adding more data to the training dataset will increase the predictive capabilities of Machine

Learning Model.

27

APPENDIX A

PYTHON SOURCE CODE

A.1 Experimental Python code

import the Library 0S, it helps to work with operating system functionality
import os

check the current working directory and store into ‘cwd’ variable/object
cwd = os.getcwd()

print the value of ‘cwd’
print(cwd)

C:\Users\PB-6FT7M\Subu\python

set the working directory where the training and
testing data sets are available
os.path.realpath('\\SUBU-PC\Tweets\pythonwd")

'C:\\SUBU-PC\\Tweets\\pythonwd"'

Load all the tweets into a python object from the TSV file
Tweets = pd.read csv("C:/subu/python/workdir/Tweets.tsv", na filter=False)

Load all the human Labeled tweets into a python object from the TSV file
HLTweets = pd.read_csv("C:/subu/python/workdir/HLDataSet.tsv",
na_filter=False,
quoting=3,
sep="\t")

#Print the python object and see i1f the data is Loaded
print (HLTweets)

Tweets Flag

(%) A client with a history of abusing barbiturate... 5]
1 Have frecklesYesYou suffer from Alcohol addict... 2}
2 sherlock fucking holmes of Rx just uncovered t...]

28

1764
1G5
1766
1767
1768
1769
1770
T#/1
1772
1773
1774
1775
1476
1777
1/78
1479
1780

Have boils on your ear lobesYou probably have
Have you eaten todayYou probably have Bipolar....
I havent smoked a cig in about a month AKA its...
will only the three bs can kill you beerbarbit...
I feel the barbiturates in my blood
AlexWodak also Barbiturates = sleeping pills e...
Have a lack of motivationYou probably have ADD...
kathygriffin Id rather take a handful of barbi...
I11 hit you as hard as barbiturates in the rib...
Cosain®2Cosain foxnation ChelseaClinton Barbit...
The Use of Benzodiazepines for Tinnitus System...
RT MadInAmerica “Study Reveals Benzodiazepines...
Psychiatric drugs are doing us more harm than
RubinReport See they put Benzodiazepines and s...
.realDonaldTrump Treatment 4 bipolar mania are...

Good thing benzodiazepines are cheaper than a
owldarall2 Im thinking benzodiazepines before

RT IBSRemedy Chronic use of certain sedativehy.
Chronic use of certain sedativehypnotic drugs
Yes. Terrible. And for some benzodiazepines an...
Study Nearly 1 in 3 patients who used heroin c...
people say BenZo and i just think of benzodiaz...
mhcreek Hahahaha Thats way different than anti...
If youve seen the movie "Limitless" then you k...
I am so relieved I have a cracker box full of
But heres to the pain of only seeing you when
Have an imaginary friendYou probably have Mela...

RT yeezyzus person of cocaine
I want some fucking cocaine
I see it in ya face I got the good stuff cocai...
RT ARBasgall i too take my cocaine from glass
RT LADEKRANE Nigerian lawSteal 5 yrsCocaine 8
That was only the beginning Read killthemessenger
The Contras Cocaine and U.S. Covert Operations
RT blurryaids AmazingPhil sniff cocaine on my
i too take my cocaine from glass bottles
RT yeezyzus person of cocaine
RT Awpalot The jokes on you officer. That brea...
RT TobyHater This year more people will use co...
Named her cocaine.
PsyQoKolby rainy days in your head Cocaine hyd...
glittercocaine nice Haha i want taco soup
i see it in your facei got the good stuff.coca...
Lets get him in the HOF who cares about those

29

POOOOOFROFRFOOOO®® I I ® -

OFRFFRFFOODIOIDOIOHFRF 0000 FRIOIFRF OO

1781 RT Adweek Two men and one cocaine bear just ma...
1782 Amen
1783 sdchargerlover enews LOLOLOLOLOL in my mind it...
1784 RT BREWMYSTEW jasmine HETERO THAT COCAINE FETU...
1785 I like girls that like girls ???
1786 RT Sadnightvibes 7. Yayo unreleased video unre...
1787 cocainemamili nooo your always good enough ur n...
1788 RT ShekeidraK Lmfao?
1789 RT Adweek Two men and one cocaine bear just ma...
1790 greece Athens Rochester woman charged outside

1791 RT setaveli Dont nobody fwm hmp or none of that ?
1792 How are you so thinWhips out vial of cocaine."...
1793 RT CelebslnHS math teacherspoke way too fastob...

OO0 IOIO®O®O

[1794 rows x 2 columns]

check the titles of tweets that are loaded in the python object
HLTweets.columns.values

array(['Tweets', 'Flag'], dtype=object)

#create empty dictionary

tweet_dictionary = CountVectorizer(analyzer = "word",
tokenizer = None,
preprocessor = None,
stop_words = 'english',
max_features = 10000000)

#define a python class to clean the tweets

def process(tweet text, preproc):

Remove html tags from the tweets
tweet text = BeautifulSoup(tweet text,preproc).get text()

Filter only the text using regular expressions
extractText = re.sub("["a-zA-Z?]", " ", tweet text)

Transform the tweet text to Lower case
wordList = extractText.lower().split()

Purge the stop words

stpWordList = set(stopwords.words("english™))
meaningful words = [w for w in wordList if not w in stpWordList]

30

Return the processed tweet
return(" ".join(meaningful words))

Find the size of tweets in the python object ‘HLTweets’
HLTweets_len = HLTweets["Tweets"].size

Print HLTweets_Len object to see the Length
print(HLTweets len)

1794

Declare an empty object or array variable
clean_HLTweets = []

Loop through all the tweets and
#clean by calling the process function
for i in range(©, HLTweets_len):
clean_HLTweets.append(
process(HLTweets["Tweets"][i],"1xml"))

Find the length of new dataset
tweets len = Tweets["Tweets"].size

Print tweets len object to see the Length
print(tweets len)

119433

Declare an empty object or array variable
to process new dataset
clean_tweets = []

Loop through all the new tweets and
#clean by calling the process function
for 1 in range(©, tweets _len):
clean_tweets.append!
process(Tweets["Tweets"][i],"1xml"))

31

Find the length of cleaned tweets
len(clean_tweets)

119433

Print clean tweets object to see the Length
print(clean_tweets)

['even withdrawal benzodiazepines may cause tinnitus well', 'blastbeatfreakx r
xisk scary constantly antipsychotics antidepressants years benzodiazepines las
t', 'im tryna get benzodiazepines rn ya digg', 'idea concern widespread benzod
iazepines drs filled pharmaci', 'klonopin slippery slope benzodiazepines ptsd

mentalhealth', 'benzodiazepines antidepressants may spark longterm use via psy
chcongress', 'risks taking benzodiazepines klonopin xanax ativan prescribed vi
a youtube', 'safely tapering benzodiazepines info tips', 'call get best treatm
ent options heroin cocaine alcohol barbiturates benzodiazepines amphetamine ec
stasy lsd', 'benzodiazepines antidepressants may spark longterm use', ‘essay d
issertation help postmortem toxicology analysis benzodiazepines suspected acut
e click help', 'safety benzodiazepines opioids severe respiratory disease nati
onal prospective study', 'didnt leave husband dumb ass cheated benzodiazepines
deserve get didnt leave', 'healing psychiatry community art book madinamerica

bigpharma benzodiazepines', 'wickedwalnut papercakes benzodiazepines longer ge
t paxil prozac celexa clonodine', 'benzodiazepines associated increased body s
way elderly potentially lead', 'longterm use benzodiazepines elderly lead phar
macological syndrome symptoms including', 'djpsywarrior benzodiazepines hope w
orks well', 'use prescribed benzodiazepines asscociated increased rate attempt
ed completed suicide', 'studies shown longterm use benzodiazepines benzodiazep
ine receptor agonist', 'chrissanford kielyclan factors habit forming drugs lik

Create a data frame
for the cleaned human Labeled tweets
first=pd.DataFrame(data={"Tweets":clean HLTweets})

Create a data frame
for the cleaned raw tweets
second=pd.DataFrame(data={"Tweets":clean_tweets})

Create an array of data frames
with first and second data frames
dataFrames = [first, second]

32

Extract the features from all the tweets
all tweet_ features = tweet_dictionary
.fit transform(combineData['Tweets'])

print the vocabulary from the dictionary
sorted(tweet_dictionary.vocabulary)

[»

['aa’,

'aaa',

'aaaaa’,
'aaaaaa’,
'aaaaaaa’,
'aaaaaaaaa’,
'aaaaaand’',
'aaaaaarms’',
'aaaaam’,
'aaaaand’,
'aaaaddictttt',
'aaaah',
'aaaahhh’,
'aaaahhhhh',
'aaaand',
'aaaanyway',
'aaaccckkkkkkkk',
‘aaagh',

'aaah',

'aaahh', .

Find the unique id for the given token
or word from the dictionary
tweet dictionary.vocabulary ['orange’]

63823

Another way to find the unique 1id
tweet_dictionary.vocabulary .get('orange’)

63823

Test the dictionary
by transforming a sample tweet to vector
tweet_dictionary.transform
(['aa longterm use benzodiazepines '+
'may similar effect brain alcohol also implicated']).toarray()

array([[1, ©, ©, ..., 0, @, 0]], dtype=int64)

33

#E#EH#HA#HF Loopin Predictive Model Iteration I #HHH#HHHHHH#H

Create train and test data sets
from the human Labeled data

check the Length
len(clean_HLTweets)

1794

Split 60% data for training
trn = int((len(clean_HLTweets)/100)%60)-1
print(trn)

1075

Create test data

test len=len(clean HLTweets)-1

train = clean HLTweets[@:trn]

test = clean HLTweets[trn+l:test_len]
print(len(test))

737
Extract features
from trainig dataset into sparse matrix

train_features = tweet dictionary.transform(train)
train_features

<1075x98860 sparse matrix of type '<class 'numpy.int64'>’
with 8866 stored elements in Compressed Sparse Row format>

Check shapre of training data features
train_features.shape

(1075, 98860)

34

Assign the training labels to python object
y_train = HLTweets["Flag"][@:trn]

Check the Labels are assigned properly
y_train[5:10,]

OO Ok

ame: Flag, dtype: object

Extract features

from test dataset into sparse matrix

test features = tweet dictionary.transform(test)
test_features

<717x98860 sparse matrix of type '<class 'numpy.int64'>’
with 5454 stored elements in Compressed Sparse Row format>

Check shapre of test dataset features
test features.shape

(717, 98860)

Assign the test Labels to python object
y_test = HLTweets["Flag"][trn+l:test_len]

Check the labels are assigned properly
y_test[5:190,]

1e81 ©
1082 !
1083 (%]
1084 1
1085 (<)

Name: Flag, dtype: object

35

Create first machine lLearning model

first Model=svm.SVC(kernel='linear’,
C=1,
random_state=10000000,
verbose=3).fit(train_features, y_train)

[LibSVM]

Print the parameters used with the model
print(first_Model)

SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear’,
max_iter=-1, probability=False, random_ state=10000000, shrinking=True,
t01=0.001, verbose=3)

Test the model and find out the accuracy
firstModel Accuary = first Model.score(test features,y test)
print(firstModel Accuary)

0.790794979079

#####H### Loopin Predictive Model Iteration II ##########

Create training dataset II for Iteration II
predict 1=clean_tweets[0:1793]
len(predict_1)

1793

Extract features from training dataset II
predict 11 = tweet dictionary.transform(predict 1)
predict 11

<1793x98860 sparse matrix of type ‘'<class 'numpy.int64'>’
with 11961 stored elements in Compressed Sparse Row format>

Classify the Labels using the first
machine Learning model (frist Model)
predict 111 = first Model.predict(predict 11)

36

Create a data frame and
1insert the predicted labels
dataFrame_1 = pd.DataFrame(
data={"Flag":predict 111,
"Tweets":clean tweets[0:1793]})
dataFrame 1 = dataFrame 1[["Tweets","Flag"]]

Export the data frame to TSV file

dataFrame 1.to_csv("C:/subu/python/workdir/1.tsv",
index=False,
quoting=3,
sep="\t")

Combine the human Labeled data (HLTweets+1l.tsv = HLML1.tsv)
with machine Llabeled data
and train the model with it

MLHL1 = pd.read_csv("C:/subu/python/workdir/HLML1.tsv",
sep="\t", na_filter=False)

Find the size of combined dataset
MLHL1 len = MLHL1["Tweets"].size
print(MLHL1 len)

3587

Create an empty array object for MLHL1
clean MLHL1 = []

Process MLHL1 dataset
for i in range(©, MLHL1 len):
clean MLHL1.append(
process(MLHL1["Tweets"][i],"1xml"))

Check 1if any data is Lost after cleaning
len(clean_MLHL1)
3587

37

Split the data for training and test datasets
datasetIII len = int((len(clean_MLHL1)/100)*60)

#Create training dataset III
trainIII=clean MLHL1[@©:datasetIII len-1]

Check the size of the training data
to ensure intended lLength of data 1is
split for training the model
len(trainIlI)

2131

#Create test dataset III
testIII=clean MLHL1l[datasetIII len:3587]

Check the size of the test dataset
to ensure intended Length of data 1is
split for testing the model
len(testIII)

1435

Extract trainIII dataset features
trainlII features = tweet dictionary.transform(trainIII)
trainIII features

<2151x98860 sparse matrix of type '<class 'numpy.int64'>'

with 16979 stored elements in Compressed Sparse Row format>

Extract testIII dataset features
testIII features = tweet dictionary.transform(testIII)
testIII features

<1435x98860 sparse matrix of type '<class 'numpy.int64'>'
with 10377 stored elements in Compressed Sparse Row format>

38

Create second machine Learning model
second_Model=svm.SVC(kernel="linear’,
c=1,
random_state=106600000,
verbose=3)
.fit(trainIII features,
MLHL1["Flag'][@:datasetIII len-1])

[LibSVM]

Test the second model and find out the accuracy
second _Model.score(testIII features,
MLHLI['Flag'][datasetIII_len:BSS?])

©.8801393728222997

Calculate the max Length of new dataset
max_len = int(len(clean_MLHL1)/2)+1+ len(clean_MLHL1)

int(len(clean_MLHL1)/2)+1

1794

Get the tweets from int(len(clean MLHL1)/2)+1 to max_Len
predict 2=clean_tweets[int(len(clean MLHL1)/2)+1:max_len]

Extract the features from the dataset predict 2
predict_22 = tweet_dictionary.transform(predict_2)

Classify the Labels using the first
machine lLearning model (second_Model)
predict 222 = second Model.predict(predict 22)

Create a data frame and
insert the predicted Llabels
dataFrame_2 = pd.DataFrame(
data={"Flag":predict 222,
"Tweets":clean_tweets[1794:1794+1en(clean_MLHL1)]})
dataFrame_2 = dataFrame 2[["Tweets","Flag"]]|

39

Export the data frame to TSV file
dataFrame_2.to csv("C:/subu/python/workdir/2.tsv",
index=False,
quoting=3,
sep="\t")

Number of records predicted by second model
len(predict_2)

3587

Combine the data of HLML1 and 2.tsv

MLHL2 = pd.read_csv("C:/subu/python/workdir/HLML2.tsv",

sep=rr \t" .
na_filter=False)

Find the lLength of the MLHL2 dataset size
MLHL2 len = MLHL2["Tweets"].size
MLHL2_len

7174

Create an empty array object or variable
clean MLHL2 = []

Process the MLHL2 dataset
for i in range(©, MLHL2 len):
clean_MLHL2.append(process(MLHL2["Tweets"][i],"1xml"))

Check the size of the cleaned MLHL2 dataset
len(clean_MLHL2)

7174

Separate 66% data from MLHL2 for training
trainMLHL2 len = int((len(clean_MLHL2)/160)%*60)
trainMLHL2 len

4304

40

Training Dataset from MLHLZ2
train2=clean MLHL2[@:trainMLHL2 len-1]
len(train2)

4303

Test Dataset from MLHL2
test2=clean MLHL2[trainMLHL2 len:len(clean_MLHL2)]
len(test2)

2870

Extract features from train2
train2_features = tweet _dictionary.transform(train2)
train2_features

<4303x98860 sparse matrix of type '<class 'numpy.inté4'>’
with 32698 stored elements in Compressed Sparse Row format>

Extract features from test2
test2 features = tweet dictionary.transform(test2)
test2_features

<2870x98860 sparse matrix of type '<class 'numpy.inté4'>’
with 23762 stored elements in Compressed Sparse Row format>

Create third machine Llearning model
third_Model=svm.SVC(kernel="'linear"',
Cc=1,
random_state=10000000,
verbose=3)
.fit(train2_ features,
MLHL2['Flag'][©:1en(train2)])

[LibSVM]

Test the third model and find out the accuracy
third_Model.score(test2_features,
MLHL2['Flag'][trainMLHL2_len:len(clean_MLHL2)])

©.9031358885017422

predict 3=clean_tweets[5382:12555]

41

predict 33 = tweet _dictionary.transform(predict_3)
predict 333 = first Model.predict(predict 33)

len(predict_3)

7173

Create data frame three
dataFrame_3 = pd.DataFrame(data={"Flag":predict_ 333,

"Tweets":clean_tweets[5382:12555]})
dataFrame_ 3 = dataFrame 3[["Tweets","Flag"]]

Export the predicted Labels

dataFrame_3.to csv("C:/subu/python/workdir/3.tsv",
index=False,
quoting=3,
sep="\t")

Import HLML3 to a python object

MLHL3 = pd.read _csv("C:/subu/python/workdir/HLML3.tsv",
sep="\t",
na_filter=False)

Find the size of MLHL3
MLHL3 len = MLHL3["Tweets"].size

Declare an empty array object
clean MLHL3 = []

Process MLHL3 dataset
for i in range(©, MLHL3_len):
clean_MLHL3.append(process(MLHL3["Tweets"][i],"1xml"))

Create train dataset 3
train3=clean MLHL3[©:8607]

Create test dataset 3
test3=clean MLHL3[8608:14346]

42

Extract features for the train3 dataset
train3_features = tweet dictiocnary.transform(train3)

Extract features fro th test dataset
test3 features = tweet dictionary.transform(test3)

Create fourth machine Llearning model
fourth Model=svm.SVC(kernel="linear"',
C=1,
random_state=10000000,
verbose=3)
.fit(train3_ features,
MLHL3["Flag'][©:8607])

[LibSVM]

Test the fourth model and find out the accuracy
fourth Model.score(test3 features,
MLHL3["Flag'][86©8:14346])

©.91686958554339494
predict_4=clean_tweets[12556:26901]

predict 44 = tweet dictionary.transform(predict 4)

predict_444 = first_Model.predict(predict_44)

Create dataframe 4

dataFrame_4 = pd.DataFrame(data={"Flag"”:predict_444,
"Tweets":clean_tweets[12556:26901]})

dataFrame_4 = dataFrame_4[["Tweets","Flag"]]

Export classified labels to TSV file
dataFrame_4.to_csv("C:/subu/python/workdir/4.tsv",
index=False,

quoting=3,
sep="\t")
len(predict_4)

14345

43

Import the data from HLML4 dataset

MLHL4 = pd.read_csv("C:/subu/python/workdir/HLML4.tsv",
Sep:”\tll .
na_filter=False)

Find the length of MLHL4 dataset
MLHL4 len = MLHL4["Tweets"].size
MLHL4 len

Create an empty array object for MLHL4
clean MLHL4 = []

for i in range(©, MLHL4 len):
clean MLHL4.append(process(MLHL4["Tweets"][i],"1xml™))

Create train dataset from MLHL4
traind=clean MLHL4[©:17215]

Create test dataset from MLHL4
testd4=clean_MLHL4[17216:28692]

Extract features from train4d dataset
train4_features = tweet_dictionary.transform(traing)

Fetch freature from test4 dataset
test4 features = tweet_dictionary.transform(test4)

Create fifth model
fifth_Model=svm.SVC(kernel='linear’,
C=1,
random_state=10000000,
verbose=3).fit(train4_features,
MLHL4['Flag'][©:17215])

[LibSVM]

Test the fifth model and find out the accuracy
fifth Model.score(test4 features,MLHL4['Flag'][17216:28692])

8.53595259672353707

44

predict 55 = tweet dictionary.transform(predict_5)
predict_555 = first_Model.predict(predict_55)

Create a data frame 5
dataFrame 5 = pd.DataFrame(
data={"Flag":predict_555,
"Tweets":clean_ tweets[26902:55594]})
dataFrame 5 = dataFrame 5[["Tweets","Flag"]]

Export the newly classified data to TSV file
dataFrame_5.to_csv("C:/subu/python/workdir/5.tsv",
index=False,
quoting=3,
sep="\t")

Import the data from HLML5.tsv

MLHLS5 = pd.read_csv("C:/subu/python/workdir/HLMLS5.tsv",
Sep=ll\tl! 5
na_filter=False)

Check the size of MLHL5
MLHL5 len = MLHL5["Tweets"].size

Create an empty array object for MLHL5
clean_MLHL5 = []

for i in range(©, MLHL5 len):
clean MLHL5.append(process(MLHL5["Tweets"][1],"1xml"))

Train dataset 5
train5=clean MLHL5[©:34430]

Test dataset 5
test5=clean MLHL5[34431:57384]

45

Extract features from train5 dataset
train5_ features = tweet dictionary.transform(train5)

Extract features from test5 dataset
test5_ features = tweet _dictionary.transform(test5)

Create sixth model
sixth_Model=svm.SVC(kernel="linear',
C=1,
random_state=10000000,
verbose=3)
.fit(train5_features,
MLHLS5['Flag'][©:34430])

[LibSVM]
Test the sixth model and find out the accuracy

sixth Model.score(test5 features,
MLHLS5['Flag'][34431:57384])

0.95094323182154838
predict 6=clean_tweets[55595:106964]
predict 66 = tweet dictionary.transform(predict 6)

predict 666 = first Model.predict(predict 66)

Create data frame 6
dataFrame 6 = pd.DataFrame(
data={"Flag":predict 666,
“Tweets":clean tweets[55595:106964]})
dataFrame 6 = dataFrame 5[["Tweets"”,"Flag"]]

46

Export the newly lLabeled data to tsv file
dataFrame 6.to _csv("C:/subu/python/workdir/6.tsv",
index=False,

quoting=3,
sep="\t")
len(predict_6)

51369
Import the data from HLML6.tsv file
MLHL6 = pd.read_csv("C:/subu/python/workdir/HLML6.tsv",

Sep=lr\tl! s
na_filter=False)

Find the MLHL6 dataset size
MLHL6 len = MLHL6["Tweets"].size

Create an empty array object for MLHL6
clean MLHL6 = []

Create train5 dataset
train5=clean MLHL5[©:51645]

Create test5 dataset
test5=clean MLHL5[51646:86076]

Extract features from train5 dataset
train5 features = tweet _dictionary.transform(trains5)

Extract features from test5 dataset
test5 features = tweet dictionary.transform(test5)

47

Create seventh model
seventh Model=svm.SVC(kernel="linear"’,
c=1,
random_state=10000000,
verbose=3)
.fit(train5_ features,MLHL5['Flag'][©:51645])

[LibSVM]

Test the seventh model and find out the accuracy
seventh Model.score(test5 features,
MLHL5['Flag'][51646:86076])

©.96287905193447199

A.2 Python code to create a bar graph

Import the Llibraryies required to draw bar chart
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np

import matplotlib.pyplot as plt

Arrange number of tweets
from different Iterations on X-Axis
x_tweets = ('1075', '2152', '4304', '8608', '17216', '29908')

Number of positions where
bar charts are supposed to be created
y_pos = np.arange(len(X_tweets))

Assign accuracy List from
the iterations to a python array object
Accuracy = [79,88,90,92,93.9,94.5]

48

Plotting the bar chart
plt.bar(y_pos,
Accuracy,
align="center’,
alpha=6.5,
color="dodgerblue")

<Container object of 6 artists>

Mark the position on bar chart
plt.xticks(y pos, x_ tweets)

([<matplotlib.axis.XTick at @x7176050>,
<matplotlib.axis.XTick at ©x72a4bfo>,
<matplotlib.axis.XTick at ©x72dc4fe>,
<matplotlib.axis.XTick at ©x71c6770>,
<matplotlib.axis.XTick at ©x71c6dle>,
<matplotlib.axis.XTick at ©x71lcd2de>],

<a list of 6 Text xticklabel objects>)

Setting the Label for Y-Axis
plt.ylabel('Accuracy in percentage (%)"')

Setting the label on X-Axis
plt.xlabel('Train Data Size in Number of Tweets')

<matplotlib.text.Text at ©x7163450>

Creating a title for the bar chart
plt.title('Model Performance with CountVectorizer Features')

<matplotlib.text.Text at ©x719d150>

49

Render the bar chart that is created
plt.show!()

Model Performance with CountVectorizer Features

Accuracy in percentage (%)

1075 2152 4304 2608 17216 29908
Train Data Size in Number of Tweets

50

A.3 Exporting the Model as binary

Import the Library required to export
the machine Llearning model as binary file
import pickle as pk

Export the model to a specific location in binary

with the name 'exportedModel’

wb - write binary file

pk.dump(sixth Model,
open("C:/subu/Thesis/model/exportedModel™, 'wb'))

Loading the binary machine Llearning model

back to python object 'importedModel '

rb - read binary file

importedModel = pk.load(
open("C:/subu/Thesis/model/exportedModel”, 'rb'))

Testing the imported model with test dataset
result = importedModel.score(test features, y test)

Print the accuracy of the imported model
print(result)

©.927475592748

51

A.5 Draw comparison Chart using Python code

Import the libraryies required to draw bar chart
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np

import matplotlib.pyplot as plt

Create a python and object, and assign

the accuracy Llist from iterations of CountVectorizer

CountVectorizer_AccuracyPattern = (79, 88, 9@, 92, 93.9, 94)

Create a python and object, and assign
the accuracy List from iterations of TF-IDF
TFIDF_AccuracyPattern = (89, 108, 95, 94.6, 96.7,98)

Create a python and object, and assign
tweet count of each iteration
tweetCount = ('1075', '2152', '4304', '8608', '17216',

Find size of elements

for creating number of bars on the bar chart
bar_count = len(CountVectorizer_AccuracyPattern)
print(bar_count)

6

Invoke subplots
fig, ax = plt.subplots()

Create the index for bar count
index = np.arange(bar_count)

Declare the size of the bar
bar_width= ©.25

Declare the see through effect of the bars
opacity = 0.8

52

'29908"')

Create bar graph for CountVectorizer

first_barChart = plt.bar(index,
CountVectorizer_AccuracyPattern,
bar_width,
alpha = opacity,
color ='g',
label="CountVectorizer')

Create bar graph for TF-IDF
first_barChart = plt.bar(index + bar_width,
TFIDF_AccuracyPattern,

bar_width,
alpha = opacity,
color ='b',

label="TF-IDF"')

plt.xlabel('Training Data Size (number of tweets)"')
plt.ylabel('Accuracy (%)"')
plt.xticks(index + bar_width + ©.25, tweetCount)

([<matplotlib.axis.XTick at ©x77296de>,
<matplotlib.axis.XTick at ©x7c3cdbe>,
<matplotlib.axis.XTick at Bx7c31le38>,
<matplotlib.axis.XTick at ©x7dc4f5e>,
<matplotlib.axis.XTick at ©x7dcb518>,
<matplotlib.axis.XTick at @x7dcbabe>],

<a list of & Text xticklabel objects>)

53

Plot the final graph
plt.legend()
plt.tight_layout()

plt.show()
100 1 HEE CountVectorizer
BN TF-IDF
80 -
£ 60
=
[%)
g
=
[=)
T
4’0 s
20 -
ﬂ =

1075 2152
Training Data Size (number of tweets)

54

4304

8608

17216

29908

APPENDIX B

JAVA SOURCE CODE

B.1 Class definition to extract tweets from Twitter

import java.util.*;
import twitter4j.Status;

String Tweet;
String Uname;
Double UserlLat;
9 Double UserlLong;
18 Double Geolat;
11 Double Geolong;
12 int TId;
13 String City;
14 int RTCount;
15 Date CreatedAt;
16 int Drugld;

1
2
3
4 - public class Tweet {
5
6
7
8

17

18 public Tweet() {}

19

20 - public Tweet(Status s, DrugInfo d) {
21

22 setCity(s.getUser().getLocation());

23 setCreatedAt(s.getCreatedAt());

24 //setUserLat(s.getUser().getLocation());
25 - if (s.getGeolLocation() != null) {

26 setGeolLat(s.getGeolLocation().getlLatitude());
27 setGeolong(s.getGeolLocation().getlLongitude());
28

29 setRTCount(s.getRetweetCount());

30 String str = TweetExtraction.cleanString(s.getText().replaceAll("http[*\\s]+", ""));
ciil //str = str.replaceAll("\n", "").replaceAll("...", "");

32 setTweet(str);

33 setDrugId(d.DruglD);

3}

35

36 ~ public String getTweet() {
37 return Tweet;

38}

39

40 ~ public void setTweet(String tweet) {
41 Tweet = tweet;

42 }

43

44 ~ public String getUname() {
45 return Uname;

46 }

47

48 + public void setUname(String uname) {
49 Uname = uname;

58}

51

52 » public Double getUserLat() {
53 return UserlLat;

54}

55

55

56 + public void setUserLat(Double userLat) {

57 UserlLat = userlLat;

58 }

59

66 + public Double getUserLong() {
61 return UserlLong;

62 }

63

64 ~ public void setUserlLong(Double userLong) {
65 UserLong = userlLong;

66 }

67

68 ~ public Double getGeolLat() {

69 return GeolLat;

7@}

74

72 ~ public void setGeolLat(Double geolLat) {
73 GeolLat = geolat;

74}

75

76 ~ public Double getGeolLong() {
77 return Geolong;

780 }

79

80 ~ public void setGeoLong(Double geolLong) {
81 GeolLong = geolong;

82 }

83

84 ~ public String getCity() {

85 return City;

8 }

87

88 + public void setCity(String city) {

89 city = TweetExtraction.cleanString(city.replaceAll("http[~\\s]+", ""));
%@ City = city;

91 }

92

93 -~ public int getRTCount() {

94 return RTCount;

95 3}

96

97 ~ public void setRTCount(int rTCount) {
98 RTCount = rTCount;

99 }

180

101 - public Date getCreatedAt() {

102 return CreatedAt;

103 }

1e4

105 -~ public void setCreatedAt(Date createdAt) {
106 CreatedAt = createdAt;

107 }

1e8

109 - public int getDrugld() {

110 return Drugld;

111}

112

113~ public void setDrugId(int drugId) {
114 DrugId = drugld;

115}

116

107 }

56

B.2 Prototype declaration to get the drug information from database

1~ public class DrugInfo {
public int DrugID;
public String DrugInfo;

public DrugInfo(int id, String info) {
this.DrugID = id;

9 this.DrugInfo = info;

10 }

11}

12

2

5

4

5 public DrugInfo() {}
6

7~

8

57

LU T+ JREN (s A TRV S N U VA SR P

20
21
22
23
24
25
26
2
28
29
3e
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
438
49
5@
51
52
53
54
55
56
57

import
import
import
import
import
import
import
import
import
import

~ public

B.3 Invoke Twitter

API (Application Programming Interface) to extract actual tweets

java.io.*;

java.util.*;
twitter4dj.TwitterException;
twitterdj.TwitterFactory;
twitter4j.Query;
twitter4j.Query.ResultType;
twitter4j.QueryResult;
twitter4j.RateLimitStatus;
twitter4j.Status;
twitter4j.conf.ConfigurationBuilder;

class TweetExtraction {

static PrintWriter pw = null;
static twitter4j.Twitter t = null;
static ArraylList < Tweet > Tweets = new ArraylList < Tweet > ();

//@SuppressWarnings("deprecation™)
» public static void main(String args[]) throws TwitterException,
ConfigurationBuilder cb = new ConfigurationBuilder();
// cb.set]SONStoreEnabled(true);

cb.setDebugEnabled(true).setOAuthConsumerkKey ("

SetOAUthConsimenSacret (™. cox s vov v vemcswcs o E)
«SEEOMUIENACCESSTORBNN" woonsinsms-simssssnoaismsssmarsises ")
SEEDAUEHACCE S STOKBNSEEIEE (" v o mie snsmionssmimsmin s iminsia mso rie i

TwitterFactory tf = new TwitterFactory(cb.build());

t =

tf.getInstance();

String fileRead = "List of drugs.txt";

// Name of the file to be read

String fileWrite = "CSV file 4th and 5th Nov";
// Name of the file to be written

FileReader fileReader = new FileReader(fileRead);
BufferedReader br = new BufferedReader(fileReader);

pw = new PrintWriter(new FileWriter(fileWrite +

Jesu™))s

IOException {

pw.println("Drug name, Related Tweet, User name, City, Longitude");
pw.print("Latitude, Time of Tweet, Retweet count");
DBUtility db = new DBUtility();

ArrayList < DrugInfo > list = db.getDrugList();

String line = null;

tey {
for (DrugInfo d: list) {

line = d.DrugInfo;

long maxID = -1;

final int TWEETS_PER_QUERY = 160;
final int MAX_QUERIES = 7;

// This returns all the various rate limits
// in effect for this instance with the Twitter API
Map < String, RatelLimitStatus > ratelLimitStatus = t.getRatelLimitStatus();

// This finds the rate limit specifically for doing the search
// API
// call we use in this program

58

58
59
60
61
62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

20
91
92
93
94
a5
96
=7
98
99
1lee
1e1
le2
103
104 ~
1e5
1e6
1e7
168 -
1e9
1ie -
317
112
113
114
115 ~
116
117

RateLimitStatus searchTweetsRatelLimit
= rateLimitStatus.get("/search/tweets");

// See how much time is remaining
System.out.println("You have "

+ searchTweetsRatelLimit.getRemaining()
" calls remaining out of "
searchTweetsRatelimit.getLimit()
", Limit resets in "
searchTweetsRatelimit.getSecondsUntilReset()
" seconds\n");

+ + + + +

Date since, until = null;

long DAY_IN_MS = 1000 * 68 * 60 * 24;

for (int queryNumber = ©; queryNumber < MAX_QUERIES; queryNumber++) {
// System.out.printf("\n\n!!! Starting loop %d\n\n",
// queryNumber);

// Do we need to delay because we've already hit our rate
// limits?

if (searchTweetsRateLimit.getRemaining() == @)
// Yes
System.out.printf("!!! Sleeping for %d seconds due to rate limits\n",

searchTweetsRatelimit.getSecondsUntilReset());
Thread.sleep((searchTweetsRateLimit.getSecondsUntilReset() + 2) * 58);

System.out.println();

System.out.println("Drug name : " + line);
System.out.println("Related tweets - ");

Query searchQuery = new Query(line + " exclude:retweets");

searchQuery.setCount (TWEETS_PER_QUERY);

searchQuery.setLang("en");
searchQuery.setResultType(ResultType.mixed);
searchQuery.setSince("2016-11-84");
searchQuery.setUntil("2016-11-85");

// If maxID is -1, then this is our first call and we do
// not
// want to tell Twitter what the maximum
// tweet id we want to retrieve. But if it is not -1, then
[f 1k
// represents the lowest tweet ID
// we've seen, so we want to start at it-1 (if we start at
// maxID, we would see the lowest tweet
// a second time.
if (maxID != 1) {
searchQuery.setMaxId(maxID - 1);
¥
QueryResult gr = null;
try {
gr = t.search(searchQuery);
} catch (Exception e) {
System.out.println(e);
continue;
s
int totalTweets = ©;
for (Status string: gr.getTweets()) {
writeToCSV(string, line);
DblWritelList(string, d);

59

118

119 totalTweets++;

12e if (maxID == -1 || string.getId() < maxID) // Keep track
121 // of the

122 // lowest

423 // tweet ID

124 ~ {

125 maxID = string.getId();

126 }

127

128 } // End of for Status loop

129 System.out.println("Total number of tweets = " + totalTweets);
13e ~ if (totalTweets == @) {

1371 break;

132 }

453 } // End of for QueryNumber loop

134

135 } // End of while loop

136 br.close();

137 pw.close();

138 /] fos.close();

139 ~ } catch (Exception e) {

148 System.out.println("That didn't work well");
141 e.printStackTrace();

142 ~ } finally {

143 br.close();

144 pw.close();

145 z

146 db.InsertTweets(Tweets);

147 } // End of try block

148

149 ~ private static void DbWritelList(Status s, DrugInfo d) {

150 // TODO Auto-generated method stub
151

152 Tweets.add(new Tweet(s, d));

153 }

154

155 ~ private static void writeToCSV(Status s, String drugName) {
156 String result = s.getText();

157 String nullString = null;

158 result = cleanString(result.replaceAll("http[*\\s]+", ""));
159 result = result.replaceAll("\n", "");
160 pw.print(drugName);

161 pw.print(",");

162 pw.print(result);

163 pw.print(",");

164 pw.print(s.getUser().getName());

165 pw.print(",");

166 pw.print(s.getUser().getlLocation());
167 pw.print(",");

168 pw.print(nullString);

169 pw.print(",");

17 pw.print(nullString);

171 pw.print(",");

172 pw.print(s.getCreatedAt());

173 pw.print(",");

174 pw.println(s.getRetweetCount());

175}

176

177 ~ public static String cleanString(String dirtyString) {

178 HashSet < Character > removeChars = new HashSet < Character > ();
179 ~ for (char c: "~?&"$#@!()+-,:;<>3 @'-_*\"".toCharArray()) {

180 removeChars.add(c);

181 }

60

182 ~ for (Status s: t.getUserTimeline()) {

183 ~ if (s.getRetweetedStatus().getId() == status.getId()) {

184 return true;

185 }

186 }

187 return false;

188 }

189 ~ [

190 * private static String calcFreq() { String[] words = new

191 * String[arr.length]; Map<String, Integer> map = new HashMap<>(); for
192 ~ * (string w : words) { Integer n = map.get(w); n = (n == null) ? 1 : ++n;
193 * map.put(w, n); } }

154 *f

195 }

186

61

W oSl wmbswmeRE

B.4 Mapping Java Code with database to store tweets in database

import java.sql.*;
import java.text.SimpleDateFormat;
import java.util.*;

» public class DBUtility {

Connection conn = null;
public Connection getConnection() throws SQLException {
// String dbURL = "jdbc:mysql://localhost:3306/";

String dbURL = "jdbc:mysgl://localhost:3306/tweetanalysis?”
+"useUnicode=yes&autoReconnect=trueduseSSL=Ffalse";

// String dbInstanceName = "tweetanalysis";
String dbDriver = "com.mysql.jdbc.Driver";

String dbUserName = "root";
String dbPassword = "root";

try {
Class.forName(dbDriver).newInstance();

conn = DriverManager.getConnection(dbURL, dbUserName, dbPassword);
// conn = DriverManager.getConnection(dbURL + dbInstanceName,
// dbUserName, dbPassword);

} catch (Exception e) {
e.printStackTrace();
System.out.println("Connection Failure to the database.");

;

return conn;

}

public ArraylList < DrugInfo > getDruglList() {
ArraylList < DrugInfo > list = new Arraylist < DrugInfo > ();
try {
conn = getConnection();
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("Select * "
+"from t_druginfo Where IsActive = 1");

while (rs.next()) {
int id = rs.getInt("Drug_ID");
String info = rs.getString("Drug_Name");
System.out.println("Drug ID = " + id);
System.out.println("Drug name = " + info);
list.add(new DrugInfo(id, info));

}
} catch (SQLException e) {
e.printStackTrace();

¥

return list;

}

public void InsertTweetsBulk(ArraylList < Tweet > tweets) {
try {
conn = getConnection();
Statement stmt = conn.createStatement();
conn.createStatement().execute("SET NAMES utfdmb4");
String query = null;

62

59
608
61
62 -
63
64
65
66
67
68
69
78
71
72
73
74
75 *
76
T
78
79
80 -
81 ~
82
83
84
85
86
87
88
89
28 ~

il
92
93
94
93
96
97
98
o5
100
1e1
102
1083
1e4
105
106
107
188
109
11e
o by B

query = "INSERT INTO t_tweet_info(tweet_text,Username,City,Longitude_User"
+",Latitude_User,Longitude_Geoloc,Latitude_Geoloc,"
+"RT_count, Tweeted_on,DrugID) VALUES";

for (Tweet t: tweets) {

wiron wir om n1 on
£

query += "('" + t.Tweet + + t.Uname + + t.City +
+ t.Userlong + "," + t.UserLat + "," +t.GecLong + ","
+ t.GeoLat + "," + t.RTCount + ",'"
+ new SimpleDateFormat("yyyy-MM-dd").format(t.getCreatedAt())
+ ""," + t.Drugld + "),";

i

query = query.substring(®, query.lastIndexOf(","));
// System.out.println(query);

int rs = stmt.executeUpdate(query);
System.out.println(rs + " Rows executed");

} catch (SQLException e) {

e.printStackTrace();

)

public void InsertTweets(ArraylList < Tweet > tweets) {

try {
conn = getConnection();

Statement stmt = conn.createStatement();

conn.createStatement().execute("SET NAMES utfsmb4");

String query = null;

query = "INSERT INTO t_tweet_info(tweet_text,Username,City,longitude_User"
+",Latitude_User,Longitude_Geoloc,Latitude_GeolLoc,RT_count"+
+",Tweeted_on,DrugID) VALUES";

int rs = 9;

for (Tweet t: tweets) {

String queryvalues = "('" + t.Tweet + + t.Uname + "',"" + t.City
+ "'," + t.Userlong + "," + t.UserLat + "," + t.GeolLong
"," + t.GeolLat + "," + t.RTCount + ",""
new SimpleDateFormat("yyyy-MM-dd").format(t.getCreatedAt())
G b DPUETEd. #)

wiroan
e

+ + +

try {
rs += stmt.executeUpdate(query + queryValues);

} catch (Exception e) {

T

}
// query = query.substring(@, query.lastIndexOf(","));
// System.out.println(query);
System.out.println(rs + " Rows executed");

} catch (SQLException e) {
e.printStackTrace();

i

e

63

B.5 Remove html tags from the tweets if any

import java.ic.BufferedReader;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.FileWriter;

import java.io.PrintuWriter;

+ public class cleanTweets {

LUo T IREN s TRV B S VI SR P

~ public static void main(String[] args) throws Exception {
1e // TODO Auto-generated method stub
101 BufferedReader br = new BufferedReader(

12 new FileReader("Largest data set combined.csv"));
13 String line;

14 PrintWriter pw = new PrintWriter(new FileWriter("LargestOutput .csv"));
15

16 ~ while ((line = br.readlLine()) != null) {

il line = line.replaceAll("["a-zA-Z]", "").toLowerCase();

18 System.out.println(line);

19 pw.write(line + "\n");

20 }

21}

22

23}

24

64

APPENDIX C

COMPARISON GRAPH

Figure 5.1 and 5.2 Performance comparison between when using TF-IDF and CountVectorizer.

100 { W CountVectorizer

TR
80
60
40
20
0 ,

1075 2152 4304 8608 17216 29908
Training Data size (number of tweets)

Accuracy (%)
i i

Figure A.1 Comparison Chart Depicting the performance improvement with data prediction
when using the library TF-IDF and CounterVectorizer.

65

REFERENCES

Twitter developer documentation (2017). Application Program Interface (API) and available methods.
https://dev.twitter.com/rest/public/search.

Twitter OAuth (2017). Send secure authorized requests to the Twitter API https://dev.twitter.com/oauth

Machine Learning (2017). Machine Learning and different type of approaches. https://en.wikipedia.org
/wiki/Machine_learning

Machine Learning (2017). Depth introduction to Machine Learning in 25 hours.
https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-
of-expert-videos/

Mathworks (2017). Elaborative information about unsupervised learning. https://www.mathworks.com
/discovery/unsupervised-learning.html

Supervised learning (2017). Details about Machine Learning and data mining. https://en.wikipedia.org
Iwiki/Supervised_learning

Supervised learning (2017). Supervised Machine Learning and algorithms. https://www.mathworks.com
/help/stats/supervised-learning-machine-learning-\workflow-and-algorithms.html

Wikipedia (2017). Support vector machines (SVM). https://en.wikipedia.org/wiki
/Support_vector_machine

Python (2017). Python documentation to write the Model, run, test the result. https://docs.python.org/3/

A group of Machine Learning libraries ‘Numpy, Sklearn, BS4, Re, NItk, Scipy, Numpy, Tsv, Pandas,
CountVectorizer, and TF/IDF’

Supervised learning (2017). Concept of supervised Machine Learning. https://en.wikipedia.org
Iwiki/Supervised_learning

Cross Validation (2017). Evaluating estimator parameters in Machine Learning. http://scikit-learn.org
/stable/modules/cross_validation.html

Random split (2017). Splitting arrays into random train and test subsets http://scikit-learn.org
/stable/modules/generated/sklearn.Model_selection.

Understanding Support Vector Machines (2017). Practical implementation of SVM for classification
https://sadanand-singh.github.io/posts/svmpython/

Accuracy and precision (2017). Measure of statistical visibility, and list of formulas
https://en.wikipedia.org/wiki/Accuracy_and_precision and https://en.wikipedia.org/wiki
/Sensitivity_and_specificity

Deep learning 4j organization (2017). Introduction to word2vec https://deeplearning4j.org
/word2vec.html

66

Scikit-learn organization (2017). Text Feature Extraction http://scikit-learn.org/stable
/modules/feature_extraction.html

Wikipedia page (2017). Term Frequency (TF) / Inverse Document Frequency (IDF),
https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Wikipedia page (2017). Unsupervised learning, https://en.wikipedia.org/wiki
/Unsupervised_learning

MathWorks (2017). Unsupervised learning, https://www.mathworks.com/discovery
/unsupervised-learning.html

Vox (2017). The opioid epidemic, https://www.vox.com/science-and-health/2017/8/3/16079772
/opioid-epidemic-drug-overdoses

A.L. Samuel (1959). Some Studies in Machine Learning Using the Game of Checkers,
http://ieeexplore.ieee.org/document/5392560/?reload=true

Twitter (2017). Advanced search, https://twitter.com/search-advanced?lang=en

Zoubin Ghahramani (2004). Unsupervised Learning, http://mlg.eng.cam.ac.uk/zoubin/
papers/ul.pdf

Wikipedia (2017). Statistical classification, https://en.wikipedia.org/wiki
/Statistical_classification

Scikit-learn (2017). CountVectorizer, http://scikit-learn.org/stable/modules/generated
/sklearn.feature_extraction.text. CountVectorizer.html

Wikipedia (2017). Sensitivity and specificity, https://en.wikipedia.org/wiki
/Sensitivity_and_specificity

Drugfreeworld (2017). Opioids, http://www.drugfreeworld.org/drugfacts/prescription/opioids-
and-morphine-derivatives.html

Feature Extraction (2017). Loading features form Dictionary, http://scikit-learn.org/stable
/modules/feature_extraction.html

Sparse Matrix (2017). Compressed sparse row, https://en.wikipedia.org/wiki/Sparse_matrix

Wikipedia (2017). Estimator, https://en.wikipedia.org/wiki/Estimator

67

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Personal Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Process Datasets
	Chapter 3: Implementation
	Chapter 4: Research
	Chapter 5: Future Research
	Chapter 6: Conclusions
	Appendix A: Python Source Code
	Appendix B: Java Source Code
	Appendix C: Comparison Graph
	References

	List of Tables
	List of Figures
	List of Definitions

