

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

 ABSTRACT

LOOPING PREDICTIVE METHOD
TO IMPROVE ACCURACY OF A MACHINE LEARNING MODEL

by
Subramanyam Reddy Pogili

The topic of this project is an analysis of drug-related tweets. The goal is to build a Machine Learning

Model that can distinguish between tweets that indicate drug abuse and other tweets that also contain the

name of a drug but do not describe abuse. Drugs can be illegal, such as heroin, or legal drugs with a

potential of abuse, such as painkillers. However, building a good Machine Learning Model requires a large

amount of training data. For each training tweet, a human expert has determined whether it indicates drug

abuse or not. This is difficult work for humans. In this project a new “Looping Predictive Method” was

developed that allows generating large training datasets from a small seed set of tweets by repeatedly

adding machine-labeled tweets to the human-labeled tweets. With this method, an accuracy improvement

of 15.4% was achieved from an initial set of 1,075 tweets, by expanding the training set to 29,908 tweets.

LOOPING PREDICTIVE METHOD
TO IMPROVE ACCURACY OF A MACHINE LEARNING MODEL

By
Subramanyam Reddy Pogili

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

December 2017

APPROVAL PAGE

LOOPING PREDICTIVE METHOD
TO IMPROVE ACCURACY OF A MACHINE LEARNING MODEL

Subramanyam Reddy Pogili

__
Dr. James Geller, Thesis Advisor Date
Professor and Associate Dean for Research of the College of Computing Sciences, NJIT

__
Dr. Soon Ae Chun, Thesis Committee Member Date
Professor and co-Director Information Systems and Informatics,
City University of New York

__
Dr. Hai Nhat Phan, Thesis Committee Member Date
Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Subramanyam Reddy Pogili

Degree: 	 Masters in Computer Science

Date: 	 December 2017

Undergraduate and Graduate Education:

● Masters in Computer Science
New Jersey Institute of Technology, Newark, NJ, 2017

● Masters in Computer Applications
Osmania University, Hyderabad, India, 2009

● Bachelor of Science in Computer Science
Sri Venkateswara University, Tirupathi, India, 2006

Major: 	 Computer Science

Work Experience:

Subramanyam Reddy Pogili, “worked as Software QA Engineer Intern at
Externetworks Inc.” New Jersey, US, from June to August 2017.

Subramanyam Reddy Pogili, “worked as Software QA Engineer Intern at
Externetworks Inc.” New Jersey, US, from September to December 2017.

Subramanyam Reddy Pogili, “worked as Lead Engineer at HCL Technologies,”
Hyderabad, India, from May 2014 to Jan 2016.

Subramanyam Reddy Pogili, “worked as Engineer I R&D Support at Quark Software Inc.”
Mohali, India, from July 2011 to April 2013.

Subramanyam Reddy Pogili, “worked as TS Engineer at Quark Software Inc.”
Mohali, India, from May 2013 to May 2014.

Subramanyam Reddy Pogili, “worked as Senior Process Associate at Tata Consultancy Services,”
Mumbai, India, from August 2009 to Jun 2011.

iv

v

PERSONAL DEDICATION

The research on Looping Predictive Method is dedicated to my brother who has been great support to me

for all the time during my Masters. Without his help, it would not be possible for me to travel to United

States and do my Masters in computer science at New Jersey Institute of Technology. Also, my parents

who asked me to do masters and sent me abroad.

vi

ACKNOWLEDGMENT

This work is supported by Dr. Geller (Associate Dean for Research of the College of Computing Sciences)

from New Jersey Institute of Technology, Dr. Chun (Professor and co-Director Information Systems and

Informatics) from City University of New York, and Dr. Hai (Professor) from New Jersey Institute of

Technology. I would like to extend my thanks to Sophie, who helped to create labels for the initial training

dataset. This is very important to work with any Machine Learning algorithm.

vii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ……………………….………………………...……………....................... 1

1.1 Background……………………….………………………...……………........................ 1

 1.2 Twitter …………………….……............................……………….……………………. 1

2. PROCESS DATASETS...…………………………………………...……………………………. 5

2.1 Drug Tweets……………………………………………...……………………. 5

2.2 Machine Learning ………………………………………………………........................ 5

2.3 Support Vector Machines ….……………………………………………........................ 7

3. IMPLEMENTATION ………………….……………………………...……….......................... 9

3.1 Training Data ….............…………..........……………………………...……................. 9

3.2 Test Data……………….……………………………...……....................... 9

3.3 Demo code showing the training and test data……………………………........................ 10

3.4 Cross Validation ………………………………...…………………….…....................... 11

4. RESEARCH ……….……………………...…………………………………….......................... 13

4.1 Count Vector ………………………………………………………………………... 17

4.2 Term Frequency (TF) - Inverse Document Frequency (IDF) …………………………… 19

4.3 Accuracy results at every step ……………………………………………....................... 21

4.4 Weakness of the Model or erroneous data ………………………………………………. 24

5. FUTURE RESEARCH ….………………………………………….……………....................... 26

6. CONCLUSIONS……………………………...………………………………....................... 27

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

APPENDIX A PYTHON SOURCE CODE …………...…………………………......................... 28

 A.1 Experimental Python code ……………………………………………………………. 28

 A.2 Python code to create a bar graph………………………………………………………. 48

 A.3 Exporting the Model as binary…………………………………………………………. 51

 A.4 Draw Comparison Chart using Python Code …....…………………………………… 52

APPENDIX B JAVA SOURCE CODE……..............………………………............................ 55

 B.1 Class definition to extract tweets from Twitter………………………………………. 55

 B.2 Prototype declaration for getting the drug information from database ………………. 57

 B.3 Invoke Twitter API (Application Programming Interface) to extract actual tweets …. 58

 B.4 Mapping Java Code with database to store tweets ……….…………………………… 62

B.5 Remove HTML tags from the tweets if any ……………………………………………… 64

APPENDIX C COMPARISON CHART…………………………………………....................... 65

REFERENCES ………………………………………………………………………...................... 66

ix

LIST OF TABLES

Table Page

1.1 List of tweet extraction parameters ….…………………………………………..........……… 3

4.1 Tweet count for training or to predict on each iterative mode ...……………………………… 16

4.2 Sample Count Matrix of size 4 X 14 ………………………....………………………………. 18

4.3 Term Frequency ……………………………………………....……………………………… 19

4.4 Normalized Term Frequency …………………………………....…………………………… 19

4.5 TF-IDF Matrix …...…...…...…...…...…...…...…...…...…...…...…...…...…...…...…...…...…. 20

4.6 Performance when using CountVectorizer ...………………….……………………………… 22

4.7 Erroneous Data on each Iteration …………………………...…………………………………. 24

x

LIST OF FIGURES

Figure Page

4.1 Looping Predictive Method diagram……………………………………….…………………. 15

4.2 Graph showing the improved performance with CountVectorizer…………………….............. 22

4.3 Graph showing the improved performance with TF-IDF……………………............................ 23

xi

LIST OF DEFINITIONS

Abuse Tweet Tweet that contains drug-abuse-related information

Accuracy How closely the Machine Learning algorithms classify the tweets between abuse

(true) or Not-abuse (false). This is a standard formula in statistics.

Compressed Row A numeric format of a document or tweet in the Sparse Matrix representation.

Dataset In this thesis, dataset refers to a group of structured documents or tweets saved

into a single file.

Dictionary A list of unique vocabulary terms that is extracted from the tweets containing

drug names.

Estimator Part of an algorithm computing an estimate of the performance (correctness)

for the given data by following a rule and using observed data as input.

Model Model is a (Python) object that is the output of a Machine Learning algorithm

such as Support Vector Machine. The Model is then used to predict the labels

 of test data and other new data.

Opioid Opioid is a drug that is used to relieve pain. It acts on the nervous system of the

humans. Many opioids are used as prescription drugs.

Sparse Matrix A group of documents or tweets is converted into number format and arranged

into a matrix that is called ‘Sparse Matrix.’

Text Feature A compressed row of a document or tweet with the designated label (0 or 1

and unique tweet ID) and ready to feed into the Machine Learning algorithm.

Tweet A message that is posted on Twitter is called a ‘tweet.’

1

CHAPTER 1

INTRODUCTION

1.1 Background

The United States are suffering from a drug epidemic. This includes both illegal drugs and legal drugs that

are over-prescribed or prescribed under false claims. More rapid increase in the use of opioid drugs has

been reported in the United States than in any other country (Vox, 2017). Opioids that can be legally

prescribed have caused many deaths in the United States. One way to better understand this problem is to

look at social media. Twitter is chosen as a good source for information about the drug epidemic.

Understanding the size of the problem and its distribution in the country would make it easier to plan

supporting measures. For example, if there is a cluster of drug tweets tied to a certain location, the local

government could consider starting a drug treatment program in the closest hospital.

The main goal of this research is to create a classification system that distinguishes between tweets

that indicate drug abuse and tweets that do not indicate drug abuse. Machine Learning was used to build

a Model that can differentiate between these two kinds of tweets. Among many popular Machine Learning

Models, the Support Vector Machine (SVM) Model was chosen to work with (Understanding support

vector machines, 2017). However, the initial results using SVM were disappointing. Therefore, our

secondary goal in this thesis research was to find a new, better method using SVM to get better results in

classifying drug-related tweets.

1.2 Twitter

Twitter is a web application that is accessible across the globe from the domain twitter.com

(https://twitter.com/). Twitter is recognized across the world by it is signature bird logo. It was developed

by Jack Dorsey, Noah Glass, Biz Stone, and Evan Williams in the year 2006. The main idea of this

application is to post messages in the network of people and interact with them. In Twitter terminology

each message that is posted in the network, is referred to as a ‘tweet.’ To be able to post a tweet, the user

must be signed up and logged into the portal. The length of a tweet is restricted to 140 characters. The

2

users who are not signed into the portal can still read the tweets by opening the application with the link

“https://twitter.com/.” Twitter also implemented mobile applications for Android and iOS environments.

They can be downloaded from Playstore [Android] and AppStore [iOS].

Twitter also exposes API services to extract the tweets from it is network. API is an Application

Programmable Interface service that is built by specifying the appropriate routes, protocols and rules.

‘Routes’ refer to the context path of an API through which the service is accessible. For example,

searching tweets based on different criteria (words, phrases, hashtags, account names, languages, date

ranges), one can use the API URL (https://twitter.com/search-advanced?lang=en). The context path here

is /search-advanced?lang=en. ‘Protocols’ refer to web protocols such as HTTP, FTP, DNS, etc. ‘Rules’

define how and who can access the API. In case of Twitter, an API key provides accessibility to Twitter

tweets. To get the API key, one would need to sign up for a Twitter account and submit an application for

API key access.

To search and extract the drug-related tweets, one can use the Twitter Search API. This is one of

the services provided by Twitter and it was used to fetch the tweets that contain the drug names

“meperidine, Cocaine, Codeine, Delphine, fentanyl, Heroin, hydromorphone, LSD, Opiates, Oxycodone,

PCP, Ritalin, Benzodiazepines, and opioid.” The search API allows the users to search in the tweets that

are posted in the past seven days. This means one can only search the tweets in the last seven days. The

Search API can only get the relevant tweets. If you want to get all the tweets, one will need to use the

streaming API. The streaming API is documented at Twitter API documentation (Twitter developer

documentation, 2017). Following are the steps to build a sample query to extract all relevant tweets

through the API service:

● The standard API search URL (Twitter, 2017) is “https://api.twitter.com/1.1/search/tweets.json.”

Https defines the secure protocol used by Twitter. ‘api.twitter.com’ is the domain, and ‘/1.1/search

/tweets.json’ is the context path.

● To search for tweets that contain the drug name ‘Cocaine,’ use the needs to append a key value

pair to the above URL. For example, https://api.twitter.com/1.1/search/tweets.json?q=Cocaine

3

Here ‘q’ refers to query. It searches for any tweets that contain the value ‘Cocaine’.

● Once the query has been constructed, one can trigger this API with the query using a programming

language such as Python, and get the relevant tweets.

● To trigger the above API, Twitter asks for authentication and authorization. This is documented at

(Twitter developer documentation, 2017).

One can also append different operators along with the query word. The operators will modify the

behavior. The users will need to ensure that the query operators are URL encoded, before they append

them to the search API. Following is a list of operators and their usage.

Table 1.1 List of Tweet Extraction Parameters

Operator Finds Tweets...

watching now Containing both “watching” and “now.”

This is the default operator.

“happy hour” Containing the exact phrase “happy hour.”

love OR hate Containing either “love” or “hate” (or both).

beer -root Containing “beer” but not “root.”

#haiku Containing the hashtag “haiku.”

from: interior Sent from Twitter account “interior.”

list: NASA/astronauts-in-space-now sent from a Twitter account in the NASA list

astronauts-in-space-now.

to: NASA A Tweet authored in reply to Twitter account “NASA.”

@NASA Mentioning Twitter account “NASA.”

4

politics filter: safe Containing “politics” with Tweets marked as potentially

sensitive removed.

puppy filter: media Containing “puppy” and an image or video.

puppy -filter: retweets Containing “puppy,” filtering out retweets.

puppy filter: native_video Containing “puppy” and an uploaded video,

amplify video, Periscope, or Vine.

puppy filter: periscope Containing “puppy” and a Periscope video URL.

puppy filter: vine Containing “puppy” and a Vine.

puppy filter: images Containing “puppy” and links identified as photos, including

third parties such as Instagram.

puppy filter: twimg Containing “puppy” and a pic.twitter.com

link representing one or more photos.

hilarious filter: links Containing “hilarious” and linking to URL.

puppy url: amazon Containing “puppy” and a URL with the word “amazon”
anywhere within it.

superhero since:2015-12-21 Containing “superhero” and sent since date

“2015-12-21” (year-month-day).

puppy until:2015-12-21 Containing “puppy” and sent before the date

 “2015-12-21.”

Movie -scary :) Containing “movie,” but not “scary,”

and with a positive attitude.

Flight :(Containing “flight” and with a negative attitude.

5

CHAPTER 2

PROCESS DATASETS

2.1 Drug Tweets

People communicate with each other by posting messages in the network of Twitter Application. Here,

each message is referred to as a tweet. The tweets contain a drug name such as meperidine, cocaine,

codeine, benzodiazepines, opioid, etc. indicate that they are sharing some information about a drug. These

tweets are distinguished into abuse and non-abuse tweets. Following are examples of both categories:

Abuse Tweet: I was on oxycontin a while back for some severe abdominal pain and it made me so

 stupid I still cringe

Non-Abuse Tweet: Whats the name of the girl who broke your heart OxyContin...

In order to determine whether or not a tweet should be labeled as indicating drug abuse, one first has to

determine in what context it is using the drug. For example, there are many tweets where people are

spamming random nonsensical words and happen to mention a certain type of drug. There are also cases

of someone tweeting about something in the news that is related to drug abuse. In such cases, one labels

the tweets with a 0 (non-drug abuse), since the tweet is not giving any indication that the user is taking

drugs. There are cases when a tweet appears to be a computer-generated advertisement, as there are many

duplicates of the same tweets that are slightly modified and are advertising a certain drug. Since these

tweets are most likely generated by a computer, one marks these tweets with a 0. In other cases, a user

outright says that they have taken certain drugs and is getting high. Then, one marks the tweet with a 1,

indicating that this tweet was showing signs of drug abuse by the user.

2.2 Machine Learning

Machine Learning is a field in Artificial Intelligence that develops algorithms to learn from data and

predict results, without the need of any programming. Since 1959, the Machine Learning has advanced

from the study of pattern recognition and computational learning theory in Artificial Intelligence,

6

according to Arthur Samuel (Samuel, 1959). Machine Learning algorithms are segregated into supervised

and unsupervised learning methods.

Unsupervised Learning

Unsupervised Machine Learning algorithms that make an assumption that a dataset contains input data,

but is not associated with any labels. It is a good technique to look for hidden structures in a dataset. The

most common unsupervised learning methods are Hierarchical clustering, k-Means clustering, Gaussian

mixture Models (Unsupervised learning, 2017), Self-organizing maps, and Hidden Markov Models

(MathWorks, 2017), (Unsupervised learning, 2017), (Zoubin Ghahramani, 2004). Cluster analysis is

widely a used unsupervised learning algorithm in experimental data analysis to discover hidden patterns

and groupings in datasets.

Supervised Learning

Supervised Machine Learning algorithms let machines learn from inputs and known responses. In

Supervised Learning, one trains the machine by providing a list of inputs and corresponding responses.

The learned knowledge is stored in the form of a Models. Later, this mode can be used to predict new

results based on the past evidence. Here, the machine is learning from observations and predicting the

responses for new data. Exposing the Model to more observations, the machine improves the predictive

performance. Once the machine is trained with sufficient training data, it will be able to provide the target

or response for a new input that is likely but not guaranteed to be correct. In supervised learning, one deals

with two types of problems: classification problems and regression problems. If the response is expressed

as distinct, then it is called classification problem. If the response space is continuous then it is a regression

problem. Some of the supervised learning algorithms are Support Vector Machines (SVM), Naive Bayes,

and Nearest Neighbor (Supervised Learning, 2017), (Statistical classification, 2017).

Following are the steps involved in Supervised Machine Learning:

● Create human-labeled dataset of observations and results

7

● Choose a Machine Learning algorithm

● Build a Model by loading observations and results

● Check the accuracy of predictions by comparing the results on new observations with human results

● Export and use the Model on observations with unknown results

2.3 Support Vector Machines

Support Vector Machine (SVM) is a classification algorithm that is used for Modeling and predicting

categorical variables. SVM understands only numbers. The Model can learn text features, but they have

to be fed in as numbers. The SVM Model classifies the text, based on the training data. In Python, there

is a library ‘sklearn’ which provides the classification capabilities. To use this capability, one needs to

install the Sklearn package and import the library ‘SVM’.

Command to install sklearn package

#Command to import the library ‘svm’ from the sklearn package

8

following is the sample prediction code in python

The SVM library contains a classification function called ‘Support Vector Classification (SVC)’,

it can be used to classify the text based on the training dataset. The training dataset contains the tweets

that let SVC learn Model and use it to classify the new Tweets. The SVC Model learns the features that

are defined in numeric format. Thus, the features are supposed to be converted into numbers through

algorithms like Word to Vector (Scikit-learn, 2017), TF (Term Frequency)/ IDF (Inverse Document

Frequency) (Wikipedia, 2017).

Accuracy is defined as follows:

ACC =
()

()

It is used to judge the quality of the learned Model (Sensitivity and specificity, 2017). TP stands

for True Positive. A True Positive is the prediction that an observation belongs to a category C and it

really belongs to C. TN stands for True Negative. True Negative is the prediction that an observation does

not belong to a category C and it really does not belong to C. FP stands for False Positive. False Positive

is the prediction that an observation belongs to a category C and it does not. FN stands for False Negative.

False Negative is the prediction that an observation does not belong to a category C and it really belongs

to C.

The accuracy would be low, when predicting the new data with the Model that is trained with less

training data. Here the accuracy is calculated based on the number of tweets that are accurately labeled by

a Machine Learning algorithm over the total number of machine-labeled tweets. For instance, if the Model

has predicted 1000 tweets, among which 900 tweets were correctly predicted, then the accuracy is 90%

((900/1000) *100).

9

CHAPTER 3

IMPLEMENTATION

3.1 Training Data

The initial data W fed to the Model is called training data. The Training Data is required by the Machine

Learning Model to learn prediction capabilities. Humans classify the training data as either Abusive or

Non-Abusive. The Machine Learning algorithms cannot process the vocabulary; therefore, the tweets are

converted into a numeric format, as 1 or 0. Here, 1 represents Abuse and 0 is referred to as Non-Abuse.

For instance, the following a sample that was classified as Abuse (1) by a human:

I was on oxycontin a while back for some severe abdominal pain and it made me so stupid I still cringe

Many tweets like the above constitute the training data 1,075 tweets. This data cannot be fed

directly to the SVC Model. A Sparse Matrix representation was created by extracting the features for each

tweet and storing them as Compressed Row format (Sparse Matrix, 2017), (Feature Extraction, 2017). The

Sparse Matrix is fed into the SVC algorithm along with the human labels, which then builds the Model to

classify the new tweets. As noted before, the Model only understands the Sparse Matrix that is created by

extracting the features in number format. The training dataset was created by students at NJIT, under the

instructions of Prof. Geller, Prof. Chun, and Prof. Phan.

3.2 Test Data

Test data is a portion of the human-labeled data that was not used for training. This data is used to test the

Model that was built with the training data. It is again a group of tweets that are labeled by humans. Firstly,

the features for the test data are extracted using the same Dictionary (see Section, 4.1). Then the Model

uses these features to predict abuse or non-abuse labels. Finally, the Model output is compared with the

known labels to determine how accurately the tweets were classified.

10

3.3 Demo Code Showing Training and Test Data

To do an experiment with Support Vector Machines (SVM), one must follow strict requirements for

training and testing datasets. The main requirement in this process is that one will need to make the data

available in a numeric format. The categorical data that is extracted from Twitter in the form of tweets

should be converted to numeric values using any libraries or algorithms. After converting the data into

numeric format, the features of the tweets were extracted, and a Sparse Matrix is created. Later, the Sparse

Matrix is supplied to SVM Model to train. It was observed that the features from the human labeled tweets

were used to predict the new datasets.

Check the shape of the training data in Python:

The training data contains 1794 records and ‘2’ refers to two columns.

Check the shape of training data after extracting the features and created the Sparse Matrix:

Here, 1075 refers to the number of features and 56542 refers to the number of unique words in the Sparse

Matrix.

Check the shape of test data after extracting the features and created the Sparse Matrix:

Here, 717 refers to the number of features and 56542 refers to the number of unique words in the Sparse

Matrix.

11

The total number of drug related raw tweets (not cleaned) that are store in a MySQL database is 106,964.

The number is found by the following SELECT statement on MySQL Workbench.

3.4 Cross Validation

Cross validation is one of the methods that is used to evaluate the performance of an estimator. It is

possible that the Machine Learning Model would show perfect score if tested with part of the original

training data, but would fail to correctly predict labels for previously unseen data. To avoid this problem,

it is always required in Machine Learning experiments to hold out part of the labeled data and test the

Model with it. I have used the Python 3.6 library ‘train_test_split’ to create the training and test data of

different folds such as [60,40], [70, 30], [80,20], [75,25] respectively, and compare the performance.

The best performance of the Model was achieved when the Model was fed with 60% training data and

tested with 40% test data.

The human-labeled dataset contains two columns: Tweets and Label.

Following is the sample call of the Python function to split the data into training and test sets.

Training_input is a variable that holds the 75% of the data to train the Model.

Test_input is another variable that stores 25% of the data to test the Model.

Training_flag is a variable of array that contains all the labels for training.

Test_flag holds the labels for test.

12

HLTweet_features is a Sparse Matrix that is created by extracting the word features from the human

labeled tweets.

HLTweets[‘Flag’] is a column contains all the human classification labels.

Test_size is a parameter that specifies how much test data one wants to extract from the given dataset.

This works on a scale from 0 to 1. ‘0’ means 0 %, and 1 defines 100%. In the above example, 0.25

indicates, that the algorithm will randomly extract 25% of the data for testing.

13

CHAPTER 4

RESEARCH

The traditional approach to classify tweets is to train a Machine Learning Model first and use it afterwards

to classify new tweets. In this research, the Machine Learning algorithm “Support Vector Machines”

(SVM) was used to perform the experiments. The initial experiment was performed using 1,075 human-

labeled tweets with 4 different trials where the size of training data is distributed as 60%, 75%, 80 %, 90%

respectively. The SVM Model achieved between 64% to 79% accuracy in predicting the different new

sets of data. The reasons for this low accuracy were as follows. As the number of tweets was low, the

features extracted from the tweets were insufficient. The SVM Model was not trained with enough

features, and it was not able to accurately predict the labels for test data.

The new approach ‘Looping Predictive Method’ boosted the accuracy of SVM Model by 15.4%.

CountVectorizer was used to extract the features from the tweets and generate Sparse Matrix.

CountVectorizer is a Python library (Scikit-learn, 2017) and it is an open source. Firstly, it creates a

Dictionary with unique words from all the tweets by assigning a unique id to each word. Later, it creates

unique combinations for each complete tweet and generate a Sparse Matrix that SVM Model can

understand. For instance, if the vocabulary of a sample tweet ‘I feel the barbiturates in my blood’ is

extracted and a Dictionary is created, it would look like in the Sparse Matrix.

I feel the barbiturates in my blood
 [232 3134 12 323 17 43 545]

Following is a sample screenshot showing the Dictionary vocabulary from the original experiment.

14

Above, the left column contains terms and right column shows the unique identification number assigned

to each term.

15

Figure 4.1 Looping predictive method diagram

Human Labeled Data

Training X = 60% of Human Labeled Data

Predicted/Machine Labeled Data - Y

Training Data - X+Y

Predicted/Machine Labeled Data - Z

Training Data X+Y+Z

Predicted/Machine Labeled Data - W

Machine Learning (ML) Model

ML Model 1

ML Model 3

Final ML Model

Training Data X+Y+Z+W

ML Model 2

Predicted/Machine Labeled Data - D

16

In Fig. 4.1, the set T1 of 1,076 human-labeled tweets is combined with the set T2 of 1,076 tweets labeled

by using our initial Model M1. This results in a new set T2 of 2,152 tweets. Next, T2 is fed into SVM again,

building a second Model M2. The output T3 of this second Model is then combined with the input data T2

resulting in a new data set T3 of 4,304. By this approach we are doubling the size of the output at every

step. This approach continues with the sizes as follows: 1,076; 2,152; 4,304; 8,608; 17,216; 34,432;

68,864; until the count reaches 137,728 tweets. These many tweets were collected from Twitter.

Table 4.1 Tweet Count for Training or to Predict on each Iterative Mode

Training Set Model Level Prediction Count

1075 First Model 1075

2152 Second Model 2152

4304 Third Level 4304

8608 Fourth Level 8608

17216 Fifth Level 17216

29908 Sixth Level 29908

Training X Final Model Predict All Data P

As shown in the Table 4.1, the training data X was increased by combining the machine-labeled

data P. Initially, 1,075 tweets were used for training and the Model predicted 1,075 tweets. At the next

level, the human-labeled training data of 10,76 tweets was combined with machine-predicted lebels 1,076,

and therefore the data in updated training set was consisted of 2,152 labeled tweets. Using this updated

training dataset, another 2,152 tweets were predicted. A new Model was built with 4,304 labeled training

tweets and 4,304 newly machine-labeled tweets were generated. This process continued until the final

Model was built by training 29,908 tweets and the Model labeled 29,908 new tweets.

17

4.1 Count Vector

Machine Learning algorithms cannot understand the raw data. Thus, the raw data cannot be directly fed

to the algorithms as they cannot process the strings and they expect the data in numeric form. One needs

to convert the strings into numeric format to make them compatible with Machine Learning Models. The

common ways to extract the features from the strings are tokenization and counting occurrences.

In tokenization, documents are converted into tokens through white-spaces or punctuations and

a unique id is assigned to each token or word. These tokens of each document are arranged into a Sparse

Matrix in numeric format. Tokens are fit into columns of the matrix and document are arranged as rows.

The process of extracting the features from the documents into numerical feature vectors is called

‘vectorization.’ The Machine Learning algorithms can process these feature vectors for Modelling and

learning prediction capabilities. Scikit provided the library ‘CountVectorizer’ to extract features from text.

Following is an example of feature extraction.

Document (D1): Pills do not cure pain pain

Document (D2): This is unsuitable for human life

Document (D3): No wonder everyone here needs OxyContin

Document (D4): Pills cure pain temporarily

 Consider D is the number of documents and N is the number of unique tokens that are extracted from

the corpus of tweets. These tokens later form the Dictionary and the size of the vector is given by D X N.

Here, the rows in the Count Vector matrix are created from the frequency of tokens in the document.

Unique tokens: N = |‘Pills’,’ do’,’ not’,’cure’,’pain’,’This’,’unsuitable’,’human’,’life’,’no’,’here’,

‘need’, ’OxyContin’, ’temporarily’| = 14

Number of documents: D = 4

Table 4.2 Sample Count Matrix of size 4 X 14

Unique tokens in the Dictionary

 Documents Pill do not cure pain this unsuitable human life no here need OxyContin temporarily
(21) (22) (23) (24) (25) (27) (32) (33) (34) (35) (41) (28) (30) (20)

 D1 1 1 1 1 2 0 0 0 0 0 0 0 0 0

 D2 0 0 0 0 0 1 1 1 1 0 0 0 0 0

 D3 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 D4 1 0 0 1 1 0 0 0 0 0 0 0 0 1

In Table 4.2, the rows correspond to documents and the columns correspond to tokens with unique integer IDs in the Dictionary. Here, the document can be

read as document D4 has ‘Pill’: once, ‘cure’: once, ‘pain’: once, ’temporarily’: once. The columns may also be understood as vectors for the corresponding

words. For instance, the word vectors for the tokens ‘pain’, ‘life’, ‘human’ in the Sparse Matrix are [25,1], [34,1], [33,1] respectively.

18

19

4.2 Term Frequency (TF) - Inverse Document Frequency (IDF)

Each document in the corpus can also be treated as ‘bag’ of words. Every document is represented as a

vector; however, the term weight is computed using TF-IDF. In Machine Learning TF-IDF is used to

transform the raw documents to a normalized TF or TF-IDF representation.

Term Frequency (TF): Term weight of a term is the number of times the term Ti appears in the document

Dj. it is denoted as Fij.

Term Frequency formula: 푇퐹 = 	
, , , ……………. | |

Document (D1): Pills do not cure pain pain

Document (D2): This is unsuitable for human life

Document (D4): Pills cure pain temporarily

Table 4.3 Term Frequency

Pills Do Not Cure Pain This unsuitable human life temporarily

D1 1 1 1 1 2 0 0 0 0 0

D2 0 0 0 0 0 1 1 1 1 0

D3 1 0 0 1 1 0 0 0 0 1

TF 2 1 1 2 3 1 1 1 1 1

Normalized TF = Term Frequency/max (Term Frequencies)

Table 4.4 Normalized Term Frequency

Pills Do Not Cure Pain This unsuitable human life temporarily

D1 ½=0.5 ½=0.5 ½=
0.5

½= 0.5 2/2=1 0/2= 0 0/2= 0 0/2= 0 0/2= 0 0/2= 0

D2 0/1= 0 0/1= 0 0/1= 0 0/1= 0 0/1= 0 1/1= 1 1/1= 1 1/1= 1 1/1= 1 0/1= 0

D3 1/1= 1 0/1= 0 0/1= 0 1/1= 1 1/1= 1 0/1= 0 0/1= 0 0/1= 0 0/1= 0 1/1= 1

20

Inverse Document Frequency (IDF): Total number of documents over the number of documents Ti

appears.

IDF formula: 퐼퐷퐹 = log	()

N: Number of documents

DFi: Number of documents containing the term Ti

Pills : log (3/2) = log (1.5) = 0.176
Do : log (3/1) = log (3) = 0.477
Not : log (3/1) = log (3) = 0.477
Cure : log (3/2) = log (1) = 0.176
Pain : log (3/3) = log (1) = 0.000
This : log (3/1) = log (3) = 0.477
Unsuitable : log (3/1) = log (3) = 0.477
Human : log (3/1) = log (3) = 0.477
Life : log (3/1) = log (3) = 0.477
Temporarily : log (3/1) = log (3) = 0.477

TF-IDF matrix = Term Frequency * Inverse Document Frequency

Table 4.5 TF-IDF Matrix

Pills Do Not Cure Pain This unsuitable human life temporarily

D1 1*0.176 1*0.477 1*0.477 1*
0.176

2*0.000 0*0.477 0*0.477 0*0.477 0*0.477 0*0.477

D2 0*0.176 0*0.477 0*0.477 0*
0.176

0*0.000 1*0.477 1*0.477 1*0.477 1*0.477 0*0.477

D3 1*0.176 0*0.477 0*0.477 1*
0.176

1*0.000 0*0.477 0*0.477 0*0.477 0*0.477 1*0.477

Pills Do Not Cure Pain This unsuitable human life temporarily

D1 0.176 0.477 0.477 0.176 0 0 0 0 0 0

D2 0 0 0 0 0 0.477 0.477 0.477 0.477 0

D3 0.176 0 0 0.176 0 0 0 0 0 0.477

21

4.3 Accuracy Results at Every Step

The data set that is labeled by humans to test the above approach contains two headers: Tweets and Flag.

Total records in the human-labeled dataset are 1794.

First Model was built by training the SVM Model with 1,076 tweets and testing with 717 tweets.

Accuracy: 79%

Second Model: training dataset

The Model is built by training 60% of the data.

Following is the first Model that’s created with the above training data.

Here, the option ‘verbose’ is set to 3 for printing details logging information to the screen.

Test data size:

Accuracy after prediction:

The number of tweets to try the approach that was explained in Section 4, is below.

Result are demonstrated in Table 4.6.

22

Table 4.6 Performance when using CountVectorizer

Figure 4.2 Graph showing the improved performance with CountVectorizer

Training Data Size Accuracy (%)

1075 79

2152 88

4304 90

8608 92

17216 93.9

29908 94.4

23

The Model was tested by feeding the data in six iterations. At the first iteration, when it was tested with

the training data of 1075 tweets, it showed an accuracy result of 79%. After the sixth iteration, the result

was improved to 94.4%, where the size of the training data reached 29,908 tweets. The Looping Predictive

Model helped to boost the performance by 15.4% through CountVectorizer.

Figure 4.3 Graph showing the improved performance with TF-IDF

In Figure 4.3, it is illustrated that the accuracy of TF-IDF prediction algorithm was not stable, not showing

any consistent improvement, and it showed high accuracy through all the iterations. Thus, the Looping

Predictive Model was not the best fit with TF-IDF features. On the other hand, CountVectorizer showed

consistent improvement on each iteration and this iterative approach was a better with CountVectorizer.

24

4.2 Weakness of the Method or Erroneous Data

Erroneous data is a certainty that one must deal with in any data processing through Machine Learning

Models. This has a negative impact on data quality that one feeds into the Machine Learning Model and

may produce additional erroneous predictive results. A thorough analysis on the factors of erroneous data

and finding workarounds will help improve the data quality. The weakness of the Looping Predictive

Method is that the training data used in this method on every iteration has some erroneous data, because

it was automatically generated. After the first iteration, when the method used 100% accurate data that

was labeled by humans, it displayed 79% accuracy. This means the prediction result had 21% percent of

erroneous data. The algorithm incorrectly labeled 225 tweets from the input of size 1,075 tweets. On the

second iteration, the Model labeled 258 tweets incorrectly from 2,152. After six iterations, the error rate

was drastically reduced from 21% to 5.6%. This confirms that the Model used some erroneous data on

each iteration. However, one can observe the error rate decreasing and accuracy improving.

Table 4.7 depicts detailed information of each iteration.

 Table 4.7 Erroneous Data on each Iteration

Iterations Training Data

Size

Test Data

Size

Accuracy

(%)

Incorrect

Labels

Error

Rate (%)

I1 1075 717 79 225 21

I2 2152 717+130=847 88 258 12

I3 4304 1435 90 430 10

I4 8608 2870 92 688 8

I5 17216 5738 93.9 1050 6.1

I6 29908 11476 94.4 1674 5.6

25

In Table 4.7, the first iteration I1 used 1,075 tweets as a training dataset and the Model was able to predict

test data labels with 79% accuracy. Here, a 21% error rate Err1 was observed. After the second iteration

I2, the error rate was reduced to 12% and the Machine Learning Model was able to predict the labels for

2,152 tweets with 88% accuracy. After performing the iterations I1, I2, I3, I4, I5, I6 by doubling the training

data size, the error rate dropped from 21% to 5.6%. This can be further improved.

The drawback of this research is that the Looping Predictive Method was not tested with human-labeled

data in all iterations. The first iteration was tested with the human-labeled data and 79% accuracy was

achieved. The second iteration was built with the training dataset that was created by combining the

machine-labeled 1,076 tweets with 1,076 human-labeled tweets.

In the second iteration, the Model was tested with updated test data and the prediction capability was

increased by 9% (= 88% ̶ 79%). The revised test data contained 130 machine-labeled tweets and the 717

human-labeled tweets. However, the updated test data had 21% of incorrect machine-labeled tweets.

Through all the iterations, this test data was combined with some portion of the incorrect machine-labeled

data. Thus, the improvement with the performance was not good enough, because, the model was not

tested with the original human-labeled data in all iterations and test data had incorrectly labeled tweets.

This tradeoff was necessary due to the difficulty of getting humans to label tweets.

26

CHAPTER 5

FUTURE RESEARCH

In this research, six iterative Models were experimented with, with a maximum of 29,908 tweets. The

Looping Predictive Method can be further extended to work with larger numbers of tweets by creating

bigger training datasets, extracting more vocabulary, and adding the converted documents or tweets to the

Sparse Matrix. To get a good accuracy of prediction, the Model must be tested with human-labeled data

through all iterations. However, following are the challenges that may occur while working on this

approach with massive datasets.

 Processing text is a very expensive task in terms of system memory

 Looping Predictive Method requires to run multiple times and it takes more time on every iteration

as the number of tweets increases

 Small scale systems can be crashed if one attempts to run the approach with huge datasets. Thus,

one needs to deploy and run the code on large scale hardware

 Running time with every iterative Model will be at least, doubled as the number of features fed

into Model is getting doubled

To improve the accuracy, one could create a custom Dictionary with phrases that contain specific negative

and positive words, and use that dictionary while extracting the features for inclusion in the Sparse Matrix.

Doing more research on this approach and testing with the human-labeled dataset could decrease the error

rate. Once the Model has been built with consistent performance, one must try to find ways to optimize

the run time. This is very important when the Model is used in real-time applications, as end users expect

fast response time.

27

CHAPTER 6

CONCLUSIONS

This thesis introduced a new approach in Machine Learning, where the accuracy of a Machine Learning

Model that was built using a Support Vector Machine (SVM) was improved by 15.4%. The initial iteration

showed 79% accuracy on testing the Model with human-labeled data. The second iteration was

implemented by doubling the training data and the performance of the Model was improved by 9%, The

training data was doubled through combining machine labeled data with human-labeled data. To ensure

the Model performs consistently, six iterations were performed, and every iteration was executed by

doubling the training data from the previous iteration. The performance of the Model was stable, and the

accuracy rate was consistently improved throughout the six iterations.

The research was performed using the Machine Learning algorithm “Support Vector

Machine.” Constructing the data for the SVM Model was challenging as the tweets for each iteration had

to be cleaned, inserted in a Python array object and converted into numeric format. Specially, when

transforming the human-labeled data into a Sparse Matrix, it took an effort to ensure that the tweet features

and human-label for that tweet were correctly placed in the Sparse Matrix. Overcoming all these problems,

the experiment was performed successfully, and the output was collected and analyzed. The experimental

outcome demonstrated that the iterative method boosted the accuracy of SVM Model. In summary, it was

proven that adding more data to the training dataset will increase the predictive capabilities of Machine

Learning Model.

28

APPENDIX A

PYTHON SOURCE CODE

A.1 Experimental Python code

29

30

31

32

33

34

35

36

37

38

.

39

40

41

42

43

44

45

46

47

48

A.2 Python code to create a bar graph

49

50

51

A.3 Exporting the Model as binary

52

A.5 Draw comparison Chart using Python code

53

54

55

APPENDIX B

JAVA SOURCE CODE

B.1 Class definition to extract tweets from Twitter

56

57

B.2 Prototype declaration to get the drug information from database

58

B.3 Invoke Twitter
API (Application Programming Interface) to extract actual tweets

59

60

61

62

B.4 Mapping Java Code with database to store tweets in database

63

64

B.5 Remove html tags from the tweets if any

65

APPENDIX C

COMPARISON GRAPH

Figure 5.1 and 5.2 Performance comparison between when using TF-IDF and CountVectorizer.

Figure A.1 Comparison Chart Depicting the performance improvement with data prediction
when using the library TF-IDF and CounterVectorizer.

66

REFERENCES

Twitter developer documentation (2017). Application Program Interface (API) and available methods.
https://dev.twitter.com/rest/public/search.

Twitter OAuth (2017). Send secure authorized requests to the Twitter API https://dev.twitter.com/oauth

Machine Learning (2017). Machine Learning and different type of approaches. https://en.wikipedia.org

/wiki/Machine_learning

Machine Learning (2017). Depth introduction to Machine Learning in 25 hours.

https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-
of-expert-videos/

Mathworks (2017). Elaborative information about unsupervised learning. https://www.mathworks.com

/discovery/unsupervised-learning.html

Supervised learning (2017). Details about Machine Learning and data mining. https://en.wikipedia.org

/wiki/Supervised_learning

Supervised learning (2017). Supervised Machine Learning and algorithms. https://www.mathworks.com
/help/stats/supervised-learning-machine-learning-\workflow-and-algorithms.html

Wikipedia (2017). Support vector machines (SVM). https://en.wikipedia.org/wiki

 /Support_vector_machine

Python (2017). Python documentation to write the Model, run, test the result. https://docs.python.org/3/

A group of Machine Learning libraries ‘Numpy, Sklearn, BS4, Re, Nltk, Scipy, Numpy, Tsv, Pandas,

CountVectorizer, and TF/IDF’

Supervised learning (2017). Concept of supervised Machine Learning. https://en.wikipedia.org

/wiki/Supervised_learning

Cross Validation (2017). Evaluating estimator parameters in Machine Learning. http://scikit-learn.org

/stable/modules/cross_validation.html

Random split (2017). Splitting arrays into random train and test subsets http://scikit-learn.org

/stable/modules/generated/sklearn.Model_selection.

Understanding Support Vector Machines (2017). Practical implementation of SVM for classification

https://sadanand-singh.github.io/posts/svmpython/

Accuracy and precision (2017). Measure of statistical visibility, and list of formulas

https://en.wikipedia.org/wiki/Accuracy_and_precision and https://en.wikipedia.org/wiki
/Sensitivity_and_specificity

Deep learning 4j organization (2017). Introduction to word2vec https://deeplearning4j.org
/word2vec.html

67

Scikit-learn organization (2017). Text Feature Extraction http://scikit-learn.org/stable

/modules/feature_extraction.html

Wikipedia page (2017). Term Frequency (TF) / Inverse Document Frequency (IDF),

 https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Wikipedia page (2017). Unsupervised learning, https://en.wikipedia.org/wiki

/Unsupervised_learning

MathWorks (2017). Unsupervised learning, https://www.mathworks.com/discovery

/unsupervised-learning.html

Vox (2017). The opioid epidemic, https://www.vox.com/science-and-health/2017/8/3/16079772

/opioid-epidemic-drug-overdoses

A.L. Samuel (1959). Some Studies in Machine Learning Using the Game of Checkers,
 http://ieeexplore.ieee.org/document/5392560/?reload=true

Twitter (2017). Advanced search, https://twitter.com/search-advanced?lang=en

Zoubin Ghahramani (2004). Unsupervised Learning, http://mlg.eng.cam.ac.uk/zoubin/

 papers/ul.pdf

Wikipedia (2017). Statistical classification, https://en.wikipedia.org/wiki

 /Statistical_classification

Scikit-learn (2017). CountVectorizer, http://scikit-learn.org/stable/modules/generated

 /sklearn.feature_extraction.text.CountVectorizer.html

Wikipedia (2017). Sensitivity and specificity, https://en.wikipedia.org/wiki

 /Sensitivity_and_specificity

Drugfreeworld (2017). Opioids, http://www.drugfreeworld.org/drugfacts/prescription/opioids-

 and-morphine-derivatives.html

Feature Extraction (2017). Loading features form Dictionary, http://scikit-learn.org/stable

 /modules/feature_extraction.html

Sparse Matrix (2017). Compressed sparse row, https://en.wikipedia.org/wiki/Sparse_matrix

Wikipedia (2017). Estimator, https://en.wikipedia.org/wiki/Estimator

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Personal Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Process Datasets
	Chapter 3: Implementation
	Chapter 4: Research
	Chapter 5: Future Research
	Chapter 6: Conclusions
	Appendix A: Python Source Code
	Appendix B: Java Source Code
	Appendix C: Comparison Graph
	References

	List of Tables
	List of Figures
	List of Definitions

