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ABSTRACT 

 

FORMULATION OF UV CURABLE RESINS UTILIZED IN VAT PHOTO 

POLYMERIZATION FOR THE ADDITIVE MANUFACTURING OF GUN 

PROPULSION CHARGE IN 3D PRINTERS 

by 

David T. Bird 

 

Formulating resins for Additive Manufacturing (AM), utilizing UV laser 

stereolithography, is a new technique that makes it possible for the fabrication of complex 

geometries with high dimensional resolution.    This layer by layer photopolymerization 

approach spans various industrial sectors from adhesives, inks and optical fibers to 

nanotechnology and biomaterials.  UV curable resins such as epoxides, vinyl ethers and 

other acrylates are important monomers that offer effective mediums for energetic 

materials, and the potential exists to develop environmentally friendly formulations with 

suspended energetic materials at various solids loading levels.   

Developing techniques for UV curing formulations of highly loaded energetic 

suspensions is a challenging feat that must satisfy several requirements and produce a high 

quality formulation with synergistic ingredient combinations to enhance propulsion 

phenomena.  The candidate formulation must be able to operate in a SteroLithography 

Apparatus (SLA) resin tank, meaning the suspension must be at least as fluidic as 

conventional SLA resins; and a thorough understanding of the polymer network structure 

and cure kinetics is essential for a resulting polymer that exhibits good mechanical 

properties. 
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Motivation and Objective 

The development of a photocurable suspension formulation for StereoLithography 

Apparatus (SLA) is a complex system that involves careful selection of resins and a 

thorough understanding of not only how the continuous monomer phase behaves with the 

discontinuous dispersed phase within, but how the resulting polymer impregnated with said 

solids behaves from the perspective of mechanical properties after photopolymerization.   

The photopolymerization development connected with SLA, in this study, utilizes 

a resin tank that is optically transparent and filled with a liquid polymerizable material.  

Irradiating the build region from underneath the transparent resin tank containing the 

unpolymerized material will result in a solid thin layer of the liquid polymerizable material  

in a “bottom up” approach to constructing a three-dimensional object.  Ultraviolet (UV) 

light is the irradiation source used for developing the solid polymer in a layer-by-layer 

formation; and essential to formation of the polymer is the incorporation of a photoinitiator  

(PI) that absorbs UV energy in the spectral area that the UV energy source emits  [1].    Of 

further importance is the efficiency of the irradiation source as the energy delivered to the 

surface per unit area is inversely proportional to exposure (number of passes, duration) [2].  

This work utilizes a commercial off-the-shelf (COTS) SLA 3D printer for forming complex 

geometries that are currently not able to be manufactured utilizing conventional processes.   

The photopolymerization reaction that will be occurring within a formulation resin 

suspension will have competing factors such as solids inhibiting depth of cure and the 

limits of the printer.  Therefore, photoinitiator concentration, solids loading, monomer 



2 
 

properties and structure, stability of the uncured formulation, and resulting mechanical 

properties of cured polymer are critical parameters to study for understanding the design 

space of SLA formulations; hence figuring out how to optimize mechanical properties 

based on this data is the main objective of this study. 

1.2 Background Information ARDEC 

The Propulsion Research and Engineering Branch of the U.S. Army Armament Research, 

Development and Engineering Center (ARDEC), in conjunction with its sister Army 

laboratories, other DoD partners and defense contractors have been exploring Additive 

Manufacturing (AM), and specifically SLA for the purpose of this work, as a method to 

investigate propulsion charges.  Previously, formulation efforts of layering propellants by 

Manning, Park and Klingaman [3] were developed and utilized a high energy, high density 

energetic thermoplastic elastomer (ETPE) propellant for a solventless process in order to 

achieve progressive burning relative to pressure generation.  The advantages of co-layered 

propellant translated to increased muzzle velocity without over pressurization within the 

gun.  However, even though this was a successful method of maximizing the performance, 

the approaches were limited by manufacturing techniques and repeatability; which further 

yielded inferior quality that directly affected these higher performance charges.  AM and 

3D printed propulsion charges are predicted to innovate the layering and production of 

complex geometries that previous manufacturing techniques were not able to deliver [4].   

 Polymer nanocomposites have been a focus for propellant and explosive 

formulators with the goal to increase performance and modify the reactivity of energetic 

materials and their related systems [5].  The potential for its incorporation into the 3D 

printing world would capitalize on the performance enhancements including improved 

burn rates, easy ignition, higher specific impulse, improved combustion efficiency and a 
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greater potential for tuning performance through particle loading and size control.  

Synthesis techniques for polymer nanocomposites are characterized as either top-down or 

bottom-up.  The top down approach (which is investigated in this paper) involves breaking 

down bulk materials gradually into smaller sizes and stabilizing the formulation against 

surface energy related phenomena such as aggregation and Ostwald Ripening.  Examples 

of top-down processing include high-energy ball milling (investigated in this work), 

cryochemical processing, and combustion synthesis.  Bottom-up methods, such as template 

synthesis, chemical (reactive) precipitation, and chemical vapor deposition rely on 

precursors to construct and grow well organized structures at the nanomeric level.  Both 

methods have the potential to incorporate nanoparticles into 3D printable binders that can 

be used in conventional propellant production or conventional 3D printers. 
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CHAPTER 2 

PHOTOPOLYMERIZATION AND MECHANICAL ANALYSES 

 

2.1 Environmental Considerations and Health and Safety 

The photopolymerization world is putting a high demand on performance in a period where 

sustainability, cost, environment, safety and health aspects are of great importance [1,5].  

Toxicity associated with inhalation and ingestion is not concerning with UV materials, but 

skin exposure is important as these compounds are less volatile.   Requirements such as 

low volatile organic compounds (VOC) and solvent free systems are becoming more of a 

necessity, thereby establishing photopolymerization as an ecological alternative to thermal 

systems through the reduction of VOCs.  UV lamps do present an area of concern for skin 

and eyes, but with appropriate personal protective equipment (PPE), the hazard remains 

low.  In addition to VOC free and solventless systems, biopolymers and biomaterials are 

getting significant attention because of environmental concerns and the movement away 

from petroleum based chemicals.  In the present study, new syntheses and derivations 

concerning photopolymerization monomers and additives will be discussed. 

A lot of work has focused on using water-soluble ingredients as it eliminates the 

use of organic solvents (normally incorporated to dissolve insoluble initiators), but this 

enhances the chances of soil mobility so many of the requirements remain difficult to 

achieve.  Recently, Ritter et al [6] formulated a nearly water insoluble PI (2-hydroxy-2-

methyl-1-phenylpropan-1-one) with β-Cyclodextrin to generate a water soluble PI.  The 

resulting cyclodextrin/PI complex did also register a higher polymerization rate and better 

polymerization yield than the standalone α-hydroxy ketone in a kinetic study of 
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polymerization on N-isopropylacrylamide.  In, general, cyclic oligosaccharides exhibit a 

torus-shaped structure with a hydrophobic cavity and hydrophilic exterior.  These 

molecules are able to encapsulate hydrophobic PIs or their side groups within an aqueous 

solution or in an emulsion [7].  See Figure 2.1. 

 

 

Figure 2.1 Water insoluble PI Becomes water soluble. Complexing with β-Cyclodextrin.  

Source: Jeromin, Julia and Ritter, Helmut, “Cyclodextrins in Polymer Synthesis:  Free Radical 
Polymerization of a N-Methacryloyl-11-aminoundecanoic Acid/β-Cyclodextrin Pseudorotaxane in an 

Aqueous Medium” Macromolecules, 32, 16 (1999): pp 5236–5239. 

  

Although the focus of this study is primarily on acrylates, for environmental and 

health and safety considerations, it is important to note that epoxides and vinyl ethers are 

alternative monomers as they do not possess as strong an odor or eye and skin irritation 

issues [1].  However, as this is a cationic photoinitiated method of polymerization, it is 

important to discuss cationic PIs.  The use of cationic PIs generally belong to three main 

classes: diazonium salts, onium salts and organometallic complexes [8].  The limitations 

associated with these compounds can include high toxicity and high cost because of their 

central heavy metals.  It has been reported that long-term exposure to the counter ion of 

onium compounds, especially SbF6
- and AsF6

-, led to increased incidences of various 

cancers.  Therefore, one must compare and contrast the benefits and more undesirable 

characteristics of the monomer(s)/oligomer(s) and photoinitiating system (PIS) before 

deciding on a final formulation. 
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 Miao and Wang [9] reviewed vegetable oils and their inherent triglycerides as an 

important feedstock for polyurethanes, polyesters, polyethers and polyolefins known as 

vegetable-oil-based-polymers (VOBPs).  The triglycerides are precursors for the 

monomers and have the potential to substitute petroleum-based biopolymers.  These bio- 

polymers are important as their triglyceride based monomer selection could be carefully 

selected or tuned for the final formulation, with the resulting polymer possessing the 

desired mechanical properties based on that monomer selection.  These materials could 

also be very useful oligomers in the photopolymerization process.   

The authors reviewed data highlighting the key benefits with each VOBP.  

Polyurethanes are very versatile and have suitable properties for medical applications due 

to good biocompatibility and mechanical properties such as high tensile strength.  Polyester 

thermosets, derived from a bio-based feedstock, with highly functionalized dicarboxylic 

anhydride/epoxy groups have been reported to have increased Tg and crosslinking 

densities, with Young’s Modulus and tensile strength values reported as high as 1395 MPa 

and 45.8 MPa, respectively.  Polyesters derived from just epoxidized soybean oil had 

values of just 65 MPA and 10.2 MPa, repectively.  Polyethers, derived from vegetable oils, 

have an important application as bio-based surfactants, decreasing the surface tension of 

water to ~30mNm-1 at concentrations as low 0.07 wt. %.  It is believed that these bio-based 

surfactants could be beneficial as dispersants in photopolymerizable suspension 

formulations, ensuring deagglomeration and small particle sizes yield stable homogenous 

suspensions for UV curing.  Polyolefins possessing high chemical stability, good 

mechanical properties and biocompatibility are well established and have been applied for 

surgical applications since the 1950s.  Polypropylene (PP) – acrylic block copolymers have 
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been used as additives in UV curable coatings and inks exhibiting good compatability 

between the polymers and no PP surface treatment required. 

Marie and Bourret [10] investigated bio-polymer additives as ways of preparing 

stabilized alumina suspensions for tape-casting.  Traditionally, these suspensions contain 

binders and plasticizers which are polymers coming from the petrochemical sector and may 

present environmental and/or operator health risks.  Their aim was to identify sustainable 

additives with an end goal of substituting all additives sourced from the petrochemical 

industry, but adapt the biomaterials into formulations with respect to the resulting 

rheological and mechanical properties.  The biomaterial-based additives incorporated were 

pectin as a binder, glycerol as a plasticizer, and ammonium lignosulfonate as a dispersant.  

The outcome of substituting eco-friendly additives into ceramic tape formulations was 

promising from a rheological and mechanical properties standpoint.  The suspensions 

presented shear thinning behavior which is typically required for such a process, and the 

resulting tapes exhibited flexibility and mechanical resistance without defects as evidenced 

by electron microscopy. 

 Lu et al [11] investigated thermosetting acrylate resins derived from soybean oil for 

sheet molding compound (SMC) applications.  Again, the push was to find a renewable 

resource for the raw materials.  Soybean oil has been identified as one attractive renewable 

resource due to its abundance, and is used in industrial processes (mold releases, 

surfactants) and triglyceride composition.  Acrylated epoxidized soybean oil has been 

identified as a rigid polymer attractive for SMC applications due to the C=C groups that 

would undergo Free Radical Initiated Polymerization (FRP), and the hydroxyl groups 

added from the acrylic acid (used in acrylation process) that can be further modified with 
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cyclic anhydrides yielding greater unsaturation.  The synthesis routes to form Acrylated 

Epoxidized Soyabean Oil (AESO) and oligomer triglycerides are depicted in Figure 2.2. 

 

Figure 2.2 Acrylated epoxidized soybean oil triglyceride synthesis. 

Source: Lu, Jue and Wool, Richard P.  “New sheet molding compound resins from soybean oil.  I. 

Synthesis and Characterization.” 46, 1 (2005): 71-80. 

 

 The resulting monomers were copolymerized with 33 wt. % styrene to further 

enhance rigidity within the polymers and meet the requirements for mechanical properties.    

Dynamic mechanical analysis on these resulting polymers indicated modification with 

maleic anhydride that introduced more cross-link sites to the triglyceride, more acid 
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functionality (necessary to the SMC process) and copolymerizing with styrene increased 

both the polymers moduli and Tg to temperatures above 100°C.  The optimized styrene 

and triglyceride-based monomer was formulated to 33.3 wt.% styrene and 66.7 wt. % 

biorenewable monomer and showed significant promise for SMC applications. 

Liu et al. [12] reported on a novel green approach to improving the mechanical 

performance and renewable content of natural vegetable oil-based UV-curable materials 

through the introduction of cashew nutshell liquid (CNL) into the plant oil backbone.  Their 

group reports on formulating acrylated epoxidized soybean oil (AESO) based UV coatings 

and a UV curable branched oligomer based on CNL and ESO known as a soy-based UV-

curable branched oligomer (ACSO), both of which were synthesized by chemical 

modification with acrylic acid to form an acrylated vegetable oil.  Structurally, CNL 

contains a rigid benzene ring and more fatty unsaturated content with a shorter fatty chain 

than the triglyceride; therefore, it was believed CNL would play a role in imparting good 

mechanical properties.  Upon UV irradiation, the ACSO polymer formed with CNL was 

reported to have a higher Tg and biorenewable content, with improved mechanical 

properties and thermal stability over the AESO.  

Overall, positive environmental factors are associated with photointiatiated systems 

(low to no solvent use and ease of cleanup), particularly in aqueous media7.  Further 

monomer/oligomer synthesis and formulation additives from renewable resources such as 

soybean oil and cashew nutshells demonstrate that UV chemistry is a superior 

technological source when compared to many conventional chemistry formulations. 
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2.2 Operating Principle 

Radical and cationic photopolymerization reactions are largely encountered in industrial 

applications within ceramics and radiation curing and imaging areas [1].  Free radical 

polymerization (FRP) or free radical photopolymerization is the most used reaction for 

SLA applications.  Monomers/oligomers with reactive vinyl unsaturation such as acrylates 

and methacrylates, mono- or polyfunctional diluents along with the PI are major 

ingredients of UV-curable formulations.  These formulations are highly sensitive to UV 

irradiation and subsequently possess fast cure speeds as the liquid to solid phase change is 

immediate (~2s or less) upon intense radiation [13].   

 With respect to the Photo Initiating System (PIS), this key factor in 

photopolymerization reactions is responsible for allowing the starting resin formulation to 

absorb the light and to create reactive species that are further able to initiate the 

polymerization [14].  A typical PIS for free radical photopolymerization could consist of 

(i) a photoinitiator (PI; e.g., suitable cleavable ketones), (ii) a photoinitiator (e.g., a ketone) 

and a co-initiator (coI; e.g., an amine, a thiol, a silane, etc.), (iii) a photosensitizer (PS) and 

a PI or (iv) more complex associations such as PS/PI/coI/RS (where RS is a molecule that 

improves the efficiency through additional side reaction).  The radicals, generated after the 

PIS system is irradiated with a light source (e.g. Hg lamp, Xe lamp, Hg-Xe lamp, LED, 

lasers, laser diodes, etc.), are responsible for initiating the polymerization as described in 

Figure 2.3. 
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PIS + hν →→→ R● → Polymer 

 

      (2.1) 

 

Most PIs for free radical polymerization absorb in the UV wavelength and lead to 

the generation, upon excitation from a light source, of a radical initiating species (R●) as 

expressed in (2.1).  There has also been research exploring colored molecules, such as dyes 

or PS, which could play an interesting role in the PIS to absorb light and transfer their 

excitation to a traditional PI as expressed in the FRP reactions in (2.2) and (2.3). 

 

PI + hν (UV light) → PI* → R● (2.2) 

PS + hν (visible light) → PS* → PI* → R● (2.3) 

PS + hν (visible light) → PS* → PS●- + PI●+ → R'●  (2.4) 

  

Photoinitiated polymerization is usually applied to a chain growth and/or 

crosslinking process where both the initiating species and the growing chain ends are 

radicals or ions (Figure 2.3).  As can be seen by observation of Figure 2.3, light is 

responsible for the very first step in photopolymerization, namely absorption and 

generation of the initiating species.  The photointiator (PI) plays a role in the 

polymerization reaction as it activates the monomer/oligomer to propagate and generate 

larger radicals, hence facilitating the chain growth.  Pairing the light source and 

photoinitiator is important because curing lamps must emit UV energy in the spectral area 

that activates the PIs used in a formulation.   
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Figure 2.3.  General presentation of photoinitiated polymerization. 

Source: Yagci, Yusuf; Jockusch, Steffen; and Turro, Nicholas J., “Photoinitiated Polymerization: 

Advances, Challenges and Opportunities,” Macromolecules, 43 (2010): 6245-6260.  

 

 PIs for UV curing are classified as type I (unimolecular cleavage) and type II 

(bimolecular abstraction or electron transfer).  For this study, type I PIs for acrylate 

chemistry were the focus, namely acyl phosphine oxides and α-hydroxyalkyl ketones 

which spontaneously undergo “α-cleavage” generating free radicals after being irradiated 

with light from a UV lamp as depicted in Figure 2.4.  Each PI has advantages and 

disadvantages, and the selection of PI depends on the requirements of a particular 

application.  PIs affect mainly cure speed and cost, but other factors such as commercial 

availability, solubility in monomers, storage stability and cost should also be taken into 

consideration.  The photointiators utilized in this study were supplied directly from a 

vendor and are known under chemical names as (BAPO- Bis(2,4,6-trimethyl 

benzoyl)phenyl phosphine oxide – solid, yellow powder) and Omnirad 2022 (a liquid blend 

of BAPO and α-hydroxyalkylketone).  They were incorporated at about 7% wt./wt. of the 

formulation (2% wt./wt. BAPO and 5% wt./wt. α-hydroxyalkyl ketone, respectively).  
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Figure 2.4. Bisacylphosphine oxide absorbing light to initiate polymerization.  

Source: Sitzmann, E. V. Critical Photointiators for UV-LED Curing: Enabling 3D Printing, Inks and 

Coartings.” Radtech, Redondo Beach, CA, March 2015. 

 

Overall radical photopolymerization process of acrylates will occur in three stages:  

initiation, propagation and termination10.  Initiation has been covered extensively within 

this section and is characterized more succinctly by the reaction (2.5) where PI* is the PIS 

that has undergone excitation after irradiation from a light source and generates two free 

radicals (as exemplified by BAPO in Figure 2.4). 

 

PI + hν →PI*→ R1● + R2● (2.5) 

 

One or both of the radicals (R1● + R2●) will combine with the monomer/oligomer 

(M) in the formulation, and subsequently generate a new radical RM which will propagate 

polymerization as described by (2.6). 

 

R●  + M → RM●  (2.6) 
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Propagation is the stage where successive addition of monomer/oligomer units on 

the growing chain takes place to generate larger radicals. 

 

RMn●  + M → RMn+1●  (2.7) 

 

Finally, termination corresponds to the end of the photopolymerization process 

either via combination or disproportionation.   

 

RMn+1● + RMn+1●  → terminated polymer (2.8) 

 

Several analytical tools are utilized to characterize the conversion and rate of 

polymerization with a particular emphasis on Real-Time Infrared Spectroscopy (RTIR), 

Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy.   

FRP is susceptible to molecular oxygen, a common inhibitor that will significantly 

hinder the rate of propagation.  Inhibitors are molecules that can retard or prevent the 

polymerization reaction so that the radicals generated are unable to react with another 

monomer.  Such molecules may be introduced to monomers that are being stored for 

periods of time, then removed by distillation or packed column when ready to use for 

polymerization reactions [16].  In another approach, inhibitors of polymerization have been 

used in continuous liquid interphase printing [2].  Inventors looking to provide a method 

of forming a 3D printable object with sufficient resolution and relative ease have developed 

commercial-off-the-shelf (COTS) 3D printers that utilize this concept when fabricating 

their printers.  The printers include a zone which comprises a carrier, build surface and an 
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optically transparent resin tank (which holds the unpolymerized monomer) as seen in 

Figure 2.5.  Within this zone, a build region exists which is defined as the area filled with 

unpolymerized monomer that is subsequently irradiated from below the optically 

transparent resin tank.  However, not only light permeates through this optically transparent 

tank, it is also permeable to inhibitors of polymerization (e.g. oxygen) which are essential 

in the fabrication of three dimensional objects.   

 

Figure 2.5  Diagram of an SLA 3D printer.  This printer utilizes a bottom-up approach as 

the laser permeates the optically transparent build surface and initiates polymerization 

within the resin tank.  The build surface is also permeable to oxygen which is claimed to 

allow polymerization inhibitor migrate through the resin tank. 

Source: DeSimone, Joseph M.; Ermoshkin, Alexander; Ermoshkin, Nikita, Samulski, Edward T. “Continuous 

Liquid Interphase Printing.” Redwood City, CA (US), 2016 . 

 

 

Essential to printing a final resin suspension, the formulation must be developed 

with a particular emphasis on homogeneity.  The attritor mill is a simple and effective 

agitating ball-mill useful for decreasing particle size and deagglomeration within a 

suspension for batch or continuous operation.  This mill has been widely used for preparing 

homogenous UV curable suspensions in the ceramic industry, and was utilized in this work 



16 
 

for similar purposes.   The mill employs an overhead shaft with cross arms that rotate at 

high speed exposing the grinding media (stainless steel, chrome steel, tungsten carbide, 

ceramic or zirconium oxide) and rotating shaft to the material to be ground.  The material 

of interest and the grinding media are placed in a stationary, jacketed grinding tank.  The 

agitated media exert shearing and impact forces on the material, resulting in size 

reduction/agglomeration.  Particle distribution can be easily controlled, and ingredients can 

be added directly to the grinding tank without premixing.  A diagram of an attritor mill is 

displayed in Figure 2.6.  

 

Figure 2.6 Diagram of an attritor mill. 

Source: Mikrons Grinding & Dispersion Made Easy.  How an Attritor Works? 
http://attritor.in/attritor_working.html, accessed October 9th, 2009. 

 

2.3 Mechanical Analyses 

Dynamic Mechanical Analysis (DMA) utilizes an applied oscillating force to a sample and 

then subsequently measures the materials’ response to that force [17].  The applied force, 

or stress (σ) a material is subjected to gives rise to deformation, or strain (ε).  Simply by 

measuring stress and strain and plotting them on a Cartesian, one can calculate the modulus 

(stiffness), resistance to flow (viscosity), and the ability to recover from deformation 
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(elasticity).  This is the basis for tensile testing.  The stress-strain curves vary depending 

on many factors, and a simple analysis of a typical stress-strain curve is given in Figure 

2.7.  Since we are dealing with polymers, it is important to give an overview and depict 

several trends polymers display as a function of stress/strain.  Figure 2.8 shows the effects 

of structural changes on stress-strain curves.  For polymers, stress-strain curves change as 

temperature increases and as fillers are added to the polymer.  As a polymer is heated, it 

becomes less brittle and more ductile.  The same is true for the addition of plasticizers.  

However, when adding fillers, particularly powders, elongation and ultimate strength will 

decrease as the concentration of filler increases.  There is also a maximum limit to the 

amount of filler that can be added to the polymer while still maintaining the desired 

mechanical properties.  If there is not enough polymer matrix to hold the composite 

together, the material is useless. 

 

Figure 2.7 Typical stress-strain curve as shown by extension. 

Source: Menard, Kevin P.  Dynamic Mechanical Analysis: A Practical Introduction.  Boca Raton: CRC Press, 

1999. 

  

 A material under sinusoidal stress, as in a dynamic analysis, exhibits a certain 

amount of strain corresponding to the elastic response (as long as the material is kept in its 

linear viscoelastic region).  If the material deforms with the applied stress as a perfectly 
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elastic solid, then there is an in-phase response.  A purely viscous material would give an 

out-of-phase response as molecular motion, entanglements, etc. within the polymer sample 

and would give rise to a phase lag between the applied stress and measured strain.  A 

viscoelastic material lies somewhere in between.  This is exemplified in Figure 2.9.  The 

difference in phase angle δ corresponds to the difference between the applied stress and 

resultant strain.  This allows a modulus data point to be broken into two terms, one related 

to the storage of energy (E') which quantifies the elasticity of the polymer, sometimes 

referred to as the in-phase or storage modulus, and another term (E'') which quantifies the 

viscous behavior or the energy loss in internal motion arising from viscous behavior.  E' 

and E'' can be calculated as follows from Equation (2.1) and (2.2). 

 

Figure 2.8 Effects of polymer structural changes on stress-strain curves. 

Source: Menard, Kevin P.  Dynamic Mechanical Analysis: A Practical Introduction.  Boca Raton: CRC Press, 

1999. 

 

 

 
2.1 

 

2.2 
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where δ is the phase angle, b is the sample geometry term, ƒ0 is the force applied at the 

peak of the sine wave, and k is the sample displacement at the peak. 

 

Figure 2.9 Material response to applied stress.  Elastic solids give an in-phase response as 

is seen in (a).  Purely viscous materials give an out of phase response (b), and viscoelastic 

materials fall in between (c).  The relationship between phase angle and E is given in (d). 

Source: Menard, Kevin P.  Dynamic Mechanical Analysis: A Practical Introduction.  Boca Raton: CRC Press, 

1999. 

       

The thermal transitions in polymers that are subjected to DMA have been described 

in terms of free volume.  Changes in free volume are connected to loss of stiffness, 

increased flow and change in relaxation time; and these changes arise from intrinsic 

polymer properties such as viscoelasticity, aging and impact properties.  From this 

description, the various transitions that polymers undergo can be characterized and this 

process is exemplified in Figure 2.10.  With increase in temperature, the molecules 
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transition from being tightly compressed with limited free volume, to more mobile 

segments having the ability to move in various directions characterized by bending and 

stretching.  Continued heating and a further increase in free volume enables the glass 

transition temperature (Tg) of the amorphous polymer to be reached, which is characterized 

by large scale motions of polymer chains.  This stage has been described by many as a 

major transition where the polymer material goes from being hard and glassy to a rubbery 

state.  As heating continues, the sample passes through the rubbery plateau, associated with 

chain entanglements and crosslinks between polymer segments.  Finally, thermoplastic 

samples will transition through the melting temperature (Tm); which is characterized by 

chain slippage and material flow.  This behavior is a function of molecular weight.  

Importantly, thermosets experience no Tm as crosslinks and molecular weight prevent 

chain slippage.  When high enough temperatures are met, burn and degradation occurs. 
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Figure 2.10 Ideal DMA temperature ramp of a polymer.  Starting with low temperatures 

on the left.  The scan moves from very low temperatures and passes through solid state 

transitions as the temperature increases; the warming is associated with free volume 

increase and localized polymer bond rotations/bends/stretching. 

Source: Menard, Kevin P.  Dynamic Mechanical Analysis: A Practical Introduction.  Boca Raton: CRC Press, 

1999. 
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CHAPTER 3 

LITERATURE OVREVIEW AND PRESENT STATUS 

 

In this section, photoinitiated polymerization and SLA results from the literature will be 

explored with an emphasis on studies involving solids from the ceramics industry.  The 

focus will be on suspensions of acrylate monomers and experimental techniques for 

reducing/deagglomerating particles and some of the analytical techniques that are deployed 

for the determination of cure kinetics, mechanical properties and rheological 

determinations.  

For more than 30 years, photointitated polymerization has been the basis for 

conventional industrial applications in coatings, adhesives, inks, printing plates, optical 

waveguides, and microelectronics [1].  Other studies, involving various 

photopolymerization processes, have been conducted in biomaterials for bones and tissue 

engineering, microchips, curing of acrylate dental fillings, optical resins and recording 

media, clay and metal nanocomposites, photoresponsive polymers, liquid crystalline 

materials, interpenetrated networks, microlenses, multilayers, surface modification, block 

and graft copolymerization, living/controlled polymerization, interfacial polymerization, 

and so forth.  In contrast to thermally-cured polymers (often requiring elevated 

temperatures), photopolymerization can be performed at room temperature or lower.  

Additionally, these monomers are often readily polymerizable and used for applications in 

which heating is unacceptable such as dental fillings or energetic materials.   
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3.1 Additive Manufacturing and SLA Printing 

Chartier et al. [13] evaluated the respective contribution to the rheology of suspensions 

containing different concentrations of SiO2 (d50 = 2.25µm) and the influence of the 

rheology of the intergranular reactive phase on the photopolymerization (measurement of 

the kinetics of conversion and the conversion rate).  They also evaluated the influence of 

changing powder concentrations on UV reactivity with respect to parameters such as 

polymerized thickness (Ep) and polymerized width (Lp).  The UV curable system consisted 

of a PI (2,2-dimethoxy-1,2-phenylacetophenone (DMPA)) with a reactive amine modified 

polyester acrylate (PEAAM) and 1,6 hexanediol diacrylate (HDDA) as a diluent monomer.  

The suspensions were prepared by attrition utilizing 1 mm diameter zirconia media and 

varying wt. % of a phosphate ester dispersant.  The rheological changes, induced by 

particle-monomer and particle-particle interactions at concentrations above 10 vol. %, 

decrease the % conversion of the suspensions as well as the polymerization rate.  This was 

believed to be due to the increase in viscosity associated with the evolution of polymer 

chains which subsequently generates a “resistance” to the diffusion of the radical species 

formed during propagation which are essential in polymer formation.  At higher 

concentrations of solids loading (>10 vol. %), the challenge remains to be able to maintain 

the viscosity of the continuous phase low enough so that it is flowable while preserving the 

photoreactivity of the suspension.  

 Ep and Lp were determined by spreading the uncured silica suspensions with 

varying concentrations (5-50 vol. %) onto a fabrication plate with known dimensions, 

curing with a 353nm wavelength argon ionized laser with 1W maximum output power and 

cutting the resulting polymer into filaments.  By utilizing an optical microscope with a 

camera and the necessary software, Ep and Lp could be measured.  As expected, Ep 
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decreased with increasing concentration of silica due to smaller penetration of the laser 

beam (DP) caused by particle light scattering.  On the other hand, LP which represents 

dimensional resolution (one of the key attributes to SLA techniques in AM) is increasing.  

This challenge is directly associated with the addition of solid particles to monomers; the 

reactivity to UV of the suspension is critical for polymer formation and was found to be in 

agreement with the Beer-Lambert law.  As silica concentration is increased, less light 

energy is absorbed by the system to generate radicals; therefore, the energy necessary for 

the polymerization is decreasing which is evident by decreased polymer thickness at higher 

silica concentrations.   

 Griffith and Halloran [18] investigated SLA methods involving the incorporation 

of differing volumes of ceramic materials (silica (SiO2) and alumina (Al2O3)) into a curable 

solution with a focus on cure thickness and viscosity control to produce a high quality 

ceramic formulation.  Preliminary work revealed that cure depth was controlled by particle 

size and the difference in refractive index between the ceramic and the ultraviolet solution.  

The systems investigated were fluid suspensions with both ceramic materials as the solid 

phase and 30 wt. % acrylamide and 70 wt.% crosslinking monomer methylene bis-

acrylamide in the liquid phase.  The PIS involved was 0.4w/o phosphine oxide with 0.7 

w/o ketone derivative.  The lamp incorporated was a medium pressure mercury UV lamp 

with a max irradiance density of 2.51 W/cm2.  UV curing of both ceramic suspensions at 

high volume percent solids revealed that depth of cure (Dc) was greater when the ceramic 

particle sizes were smaller indicating that DC is inversely proportional to the particle size.  

A standard expression for the turbidity of suspensions was postulated to be a predictor for 

the cure depth for any ceramic powder in any UV curable suspension based on the 

differences between refractive indices of monomers and ceramic particles under UV light.   
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This was based on the observation at higher vol. %; larger values for Dc were quantified 

for silica (refractive index RI = 1.56) than alumina (RI = 1.7).  More testing with different 

monomers and ceramics was to be carried out to increase DC. 

 Chartier and Dupas [19] investigated and evaluated the influence of processing 

parameters (laser power, scanning speed, number of irradiations, and the impact of 

irradiation of subsequent upper layers onto the previously deposited/irradiated layers) on 

the degree of polymerization by Fourier Transform Infrared Spectroscopy (FTIR) and 

Raman spectroscopy within an SLA printer.  These spectroscopic methods are commonly 

utilized in the polymer industry to determine the final degree of polymerization due to 

characteristic acrylate double bond stretching being proportional to bond concentration; 

hence one can follow the evolution of polymerization as the double bond is the reactive 

site on the monomers, but is non-existent once the polymer is formed.  The monomers 

chosen were Hexanediol Diacrylate (HDDA) and pentaerythritol tetracrylate (PPTTA) in 

a 10% PPTTA/90% HDDA ratio and Dimethoxy phenylacetophenone (DMPA) as a PI.  

The ceramic was alumina with a mean particle size of 0.5µm.  The formulation was ball 

milled with the aid of a dispersant and thin layers with a fixed 50 µm thickness were 

prepared for multilayer (2 -12 layers) sample preparation.  The results obtained indicated 

that layer thickness had a direct effect on the degree of conversion between the sides of 

each layer, and up to several layers can be affected by the irradiation of the subsequent 

upper layers.  This phenomenon was associated with inhomogeneous polymerization 

meaning internal stresses become favorable and the risk of crack propagation and/or 

deformation could be inevitable.  Constant and reduced energy density irradiation with a 

low scanning speed were favorable processing parameters for reaching homogeneous 

polymerization. 
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 Badev and Abouliatim et al [20] investigated the photoinitiated polymerization of 

a commercial amine modified polyether acrylate oligomer with HDDA as the diluent and 

DMPA as the PI.  RTIR was utilized to study the effect of light intensity, PI concentration, 

and diluent concentration in the homogenous phase.  Next, ceramic fillers (SiO2, Al2O3 

(three different P.S.), ZrO2 and SiC) were attritor-milled and added to form suspensions; 

then the resulting kinetics of polymer conversion was characterized.  The nature of the 

discontinuous ceramic phase, the particle size and concentration, as well as subsequent 

viscosity increase, upon formation of the suspension, were the main parameters controlling 

reaction rates.  HDDA as a diluent (concentrations 10-15 vol. %) was found to enhance 

double bond conversion as evidenced by RTIR confirming viscosity control as one of the 

main parameters governing the polymerization reaction.  Light propagation behavior, in 

agreement with Griffith and Halloran [18], showed that the difference in refractive index 

between acrylate monomers and ceramic particles was responsible for the decrease in 

converted final polymer (and polymerization rate) as solids loading is increased.  With 

respect to particle size, decreased particle size induced a deterioration in final conversion 

to polymer, attributed mostly to light scattering affects. 

 Lei and Frazier [21] utilized DMA in tensile-torsion mode to predict the curing 

behavior of a phenol-formaldehyde (PF) composite resin on paper adhesive emphasizing 

stability during the cure.  The strain curves were used to identify the onset of curing 

temperature and cure degree (thermally activated cure, not photoinitiated), and the cure 

behavior of the resin was calculated by combining the G’, tan δ, and strain curves.  The 

DMA was operated in torsion mode with a fixed frequency at 0.5 Hz.  The prepared 

samples were initially pre-cured at 60°C for 60 min. and subjected to temperature ramps 
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(25-180°C; 5°C, 10°C and 15°C/min and oscillation stress = 10MPa) with at least three 

replications being conducted.   

 

Figure 3.1 DMA Temperature ramp of PF composite. 

Source: Lei, Hong; and Frazier, Charles E.  “A dynamic mechanical analysis method for predicting curing 
behavior of phenol-formaldehyde resin adhesive,” Journal of Adhesion Science and Technology, 29, 10 

(2015): 981-990. 

 

By analyzing the temperature ramp of the paper impregnated with PF resin (Figure 

3.1), the significant reduction in G' values observed were indicative of substantial softening 

of the polymer up to about 60°C.  This was where the storage modulus leveled off at a 

minimum plateau due to crosslinking effects.  The G' value stayed fairly constant until the 

temperature reached about 125°C and the gelation point (Tgel) was reached, characterized 

by an abrupt increase in G' or the maxima of the tan δ curve. 
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 From the strain curve, it was evident to researchers that strain was increasing 

complement to resin softening until 108.9°C, at which the strain reached a maximum.  This 

temperature was indicative of mechanical cure within the polymer chains overtaking the 

physical effects of resin softening and was taken to be an accurate measurement of curing 

temperature (Tcur) due to its simplicity and clarity. 

 

Figure 3.2 PF composites subjected to differing heating rates.  The shift to the right is in 

agreement with the time-temperature superposition theory. 

Source: Lei, Hong; and Frazier, Charles E.  “A dynamic mechanical analysis method for predicting curing 
behavior of phenol-formaldehyde resin adhesive,” Journal of Adhesion Science and Technology, 29 (10) 

2015: 981-990. 

 

 In Figure 3.2, the strain curves of the PF composite specimens were subjected to 

different heating rates.  Subsequently, the increase in heating rate from 5 to 15°C/min. 

shifted the Tcur as explained by the time-temperature superposition theory (see APPENDIX 

A) where the increased heating rate could be viewed as an increase in test frequency or a 

shortening of the observation time.  By utilizing G' or strain curves from DMA, the authors 

were able to calculate the curing degree, β of a resin at time t by the following: 
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(3.1) 

 

where G'min, G'max and G'(t) are the minimum G', maximum G', and G' at time t during the 

curing process, respectively.  Curing degree could also be calculated by strain curves (seen 

as a more accurate method for determining the onset point) as seen below: 

 

 

(3.2) 

 

 

where, A(T) was the integral area from the beginning of testing (25C°) to a temperature, T 

on the temperature/strain curve where T was higher than Tcur, A(Tcur) was the integral area 

from the beginning temperature to Tcur, and A was the total integral during the entire 

temperature scan.  The average degree of curing of the resin could then be calculated based 

on Equation 3.2, and was plotted in Figure 3.3 for two different heating rates (5 and 

10 °C/min).  It was clear to researchers that, with a lower heating rate, the resin would get 

completely cured at a lower temperature. 
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Figure 3.3 Curing degree as a function of heating rate.  A full degree of cure could be 

reached with a slower heating rate at a lower temperature. 

Source: Lei, Hong; and Frazier, Charles E.  “A dynamic mechanical analysis method for predicting curing 

behavior of phenol-formaldehyde resin adhesive,” Journal of Adhesion Science and Technology, 29 (10) 

2015: 981-990. 

 

 Overall, the researchers showed that DMA in tensile-torsion mode was a suitable 

method for monitoring cure behavior and onset of curing temperature through G' and strain 

curves.  The integral area under strain curves was demonstrated to be a good method for 

calculating curing degree.  It was further shown that the combination of G', tan δ and strain 

curves was a valuable and comprehensive method for investigating cure behavior. 
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CHAPTER 4 

PREPARATION AND CHARACTERIZATION OF THE UV-CURABLE 

FORMULATIONS 

 

4.1 Formulation Preparation 

A list of monomers chosen for this study are summarized in Table 4.1. 

Table 4.1 Monomers/Oligomers from IGM Resins Used for Formulation Development 

Chemical Name Structure Additional 

2-

[[(butylamino)carbonyl]

oxy]ethyl acrylate 
 

Monofunctional 

urethane acrylate, 

diluent, monomer 

Ethoxylated (3) 

trimethylolpropane 

triacrylate 

 

Aliphatic trifunctional 

acrylate 

Aliphatic urethane tri-

Acrylate 

Proprietary High viscosity, oligomer 

Glycerol propylene 

glycol ether (1:3), mixed 

acrylates and adipates 

Mixture 

 

 

Tetra functional polyester 

acrylate oligomer, low 

viscosity 

Acrylated aliphatic 

urethane 

Proprietary Aliphatic urethane, low 

viscosity.  Oligomer 

1,6-Hexanediol 

Diacrylate 

 

Low viscosity diluent, di-

functional monomer 

Isobornyl Acrylate 

(IBOA) 

 

Monofunctional monomer, 

high flexibility, low 

viscosity diluent 
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The monomers and oligomers utilized in the different formulations were supplied 

by IGM Resins, and had varying structures, functionalities, molecular weights, glass 

transition temperature (Tg), hardness, adhesion properties, and wetting capabilities.  The 

properties of the resins were important in considering that a suspension was to be formed 

having an inert solid (melamine) of various particle sizes and solids loadings suspended 

within.  Furthermore, the solids should ideally be homogenously dispersed throughout the 

resin, requiring the addition of dispersing agents and viscosity modifiers in some instances.  

Another aspect of the suspension formulation was the solubility of the suspended particle 

with the resin as this could lead to potential aggregation and larger solid particles via 

Ostwald ripening, and other instabilities that could interfere with the polymerization. 

The objective of this study was to evaluate the formulation ingredients (inert 

acrylate monomers and oligomers) and form suspensions with inert solids (melamine) to 

propose ingredients for a candidate formulation that ultimately meets stability criteria and 

would have the potential to translate to energetic materials.  The desired parameters on 

stability focused on particle size of the suspended solid, rheology, addition of stabilizers, 

diluents, dispersants/wetting agents/coupling agents, photoinitiators, monomer and 

oligomer chemical structures, solids loading within the resins and the conditions that can 

affect mechanical properties and ultimately, innovate propulsion charge design to meet 

new demands for increased performance. 

4.2 Formulation Preparation for Mechanical Testing 

Eleven mixes, having varying amounts of melamine loaded into several formulations of 

UV curable resins, were prepared.  The mixtures prepared are outlined in Table 4.3.  To 

add the melamine to the resins, a SpeedMixer (FlackTek) was used.  The appropriate ratios 

of resin and melamine were added to the disposable containers of the lab size batch mixer, 
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and mixed at 3000 rpm for 3 minutes under vacuum.  All the formulations were well-mixed, 

and the melamine was fully wetted into the resins without agglomeration, air bubbles or 

inhomogeneity.  After mixing, these samples were transferred into a mold of rectangular 

shaped geometry and cured with a FireEdge FE200 Solid State UV LED Curing lamp 

manufactured by Phoseon.  The Peak Irradiance was 2.0 W/cm2, and the dominant 

wavelength was 395 nm. 

The melamine was supplied by Sigma Aldrich and the particle size was measured 

using a Cilas 1190 laser particle sizer operating in liquid dispersion mode incorporating 

sonication.  The particle size analysis (PSA) is shown in Figure 4.1, and the results are 

summarized in Table 4.2. 

 

Figure 4.1 PSA of melamine measured in water with sonication. 

Table 4.2 Distribution of Particle Size of Melamine. 

Diameter at 10% Diameter at 50% Diameter at 90% Mean Diameter 

47.47  µm 95.19 µm 174.19µm 104.39 µm 
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Table 4.3 Formulations Investigated by DMA 

Run Name Resin 

Solids 

(melamine) Comments 

    wt/wt % wt/wt %   

Mix 1 FLGPCL02 50% 50% 
melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 2 FLGPCL02 25% 75% 
melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 3 DB-1 50% 50% 
melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 4 DB-1 25% 75% 
melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 5 DB-6 65% 35% milled melamine ~10 µm 

Mix 6 JR-1 100% 0% no solids 

Mix 7 JR-1 50% 50% 
melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 8 JR-1 25% 75% 
melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 9 JR-2 100% 0% no solids 

Mix 10 JR-3 100% 0% no solids 

Mix 11 FLGPCL02 100% 0% no solids 

 

FLGPCL02 was a fully formulated resin purchased from Formlabs known as Clear 

Photoreactive resin.  This resin was chosen as FormLabs recommended it for superior 

mechanical properties.  From the safety data sheet (SDS), we knew that this was a blend 

of proprietary methacrylated monomers, oligomers and PIs.  The JR-1 through JR-3 

formulations were 50% IBoA and 50% proprietary aliphatic urethane triacrylate oligomer.  

For DB-1, there was about 30% of the same aliphatic urethane triacrylate oligomer, 10% 
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of the monofunctional urethane acrylate monomer, 33% of the aliphatic trifunctional 

acrylate, and 20% of a di-functional diluent, 1,6 hexanediol diacrylate, which was added 

to keep the viscosity of the resin lower and promote flow when added to the SLA tank.  

This formulation approach was recommended by the vendor.  The oligomer was extremely 

viscous at room temperature and had to be heated to 60°C to reduce viscosity to about 

3,000 mPa·s, which is close to the maximum viscosity for an SLA tank.  As the blend of 

monomers and oligomer cooled for DB-1, the viscosity started to increase.  Therefore, 20 

wt. % of 1,6 hexanediol diacrylate was added to reduce viscosity. 

DB-6 incorporated melamine that was milled in an agitated style batch ball mill 

consistent with the design of an attritor mill.  The addition of a polymeric dispersant, 

supplied by Lubrizol, was added and recommended to be beneficial for organic material 

particle size reduction in UV cured formulations.  First, the monomers/oligomers were 

blended together with the aid of an overheard stirrer, and the addition of the PI and 

dispersant were performed while the mixture was warmed to about 50°C.  After cooling, 

the melamine was added and hand-mixed to ensure that it was wetted within the resin, then 

poured into the stationary, jacketed grinding tank with ceramic grinding media of the ball 

mill.  The mixture was milled in the dark for about an hour, then imaged within an SEM 

(see Figure 4.1.2).  The sample was prepared by dissolving a quantity of the resin 

suspension in isopropanol (IPA), then pipetting it onto a watch glass and allowing the IPA 

to evaporate within a fume hood.  As the IPA and resin mixture evaporated, mostly the 

milled melamine sample was left on the watch glass due to the low solubility of melamine 

in IPA.  
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Figure 4.2 SEM image of milled melamine taken from resin suspension.  The particle size 

is a d(0.9) of ~10µm. 

 

Dynamic Mechanical Analysis (DMA) has been widely used to investigate and 

characterize the relaxation behaviors of polymeric materials since it provides information 

about changes in the state of atomic and molecular motion with varying temperature and 

frequency [17].  DMA (Q800 V21.3 Build 96) was run twice in multi-frequency strain 

mode to investigate the thermo-physical properties of the polymer formulations.  The 

temperature was equilibrated at -150.00°C, then held isothermally for 5 min, and 

subsequently ramped at 2.00°C/min to 200°C at a frequency of 1 Hz. The formulations 

listed in Table 4.3 utilized DMA to further characterize the Tg of polymers (taken as peaks 

in the loss modulus (E”)) and how the formulation compositions (monomers, oligomers, 

solids loading, different cross-linking, side chains, orientation) influence the formation of 

a polymer network structure.  This is considered as critical information to the polymer 

formulator because, above the critical molecular weight (Mc), the mechanical properties 

dictate the performance of propellants; therefore, ingredient choice of formulation is 

crucial [17].   

Tensile testing has been extensively used to explore a material’s response to 

uniaxial loading.  The test can provide information about a material’s elastic modulus , 
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fracture point and yield strength; it has been widely utilized by industry for quality control 

purposes and predictions on behavior within specific applications due to stresses [22]. 

Tensile tests were performed using a benchtop Instron (Pneumatic grip control) testing 

machine, with a load cell maximum load of 100N.  The formulations, listed in Table 4.4, 

utilized tensile testing to coincide with DMA and further characterize how formulation 

compositions and cure conditions affect the resulting polymer.  The uniaxial tensile test 

experiments were performed at room temperature (25°C).  The strain rate used was 5 mm 

sec-1.  The load (N), time (seconds) and elongation (mm) were recorded and subsequently 

converted to stress, ɛ and strain, σ, which were calculated using the cross-sectional areas 

and lengths of the specimens (Table 4.5)  

For tensile testing, six samples were prepared in triplicate with varying solids 

loading into an optimized version of the DB UV curable resins.  The mixtures prepared are 

outlined in Table 4.4.  The continuous phase of the DB resin contained 50 wt.% IBoA, and 

50 wt. % of the low viscosity tetrafunctional polyester acrylate oligomer.  The suspensions 

were prepared by adding the melamine to the resin blend and homogenizing with an IKA 

® ULTRA-TURRAX ® disperser tool.  After mixing, the samples were transferred into 

dog-bone mold (see Figure 4.3) having rectangular geometry and cured with the same UV 

LED Curing Lamp utilized for the DMA samples.   
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Table 4.4 Formulations Prepared for Tensile Testing 

Run Name Resin 

Solids 

(melamine) 

Comments 

  wt/wt % wt/wt %  

Mix 1 DB 7 50% 50% melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 2 DB 7 60% 40% melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 3 DB 7 70% 30% melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 4 DB 7 80% 20% melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 5 DB 7 90% 10% melamine d(0.9) 174.09µm 

(assuming no agglomeration) 

Mix 6 DB 7 100% 0% no solids 
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Table 4.5 Dimensions of the Samples Prepared by Dog Bone Molds. 

 

Sample Length (mm) Thickness (mm) Width (mm) 

DB (no solids) 25.1 0.78 13.2 

DB(10wt.%solids) 38.1 2.05 12.9 

DB (20 wt.% solids) 25.0 1.00 13.0 

DB (20 wt.% solids) 25.0 1.30 13.8 

DB (30 wt.% solids) 25.0 1.00 13.0 

DB (30 wt.% solids) 96.5 1.65 12.3 

DB (40 wt.% solids) 120.0 1.06 12.9 

DB (50 wt.% solids) 76.2 1.00 13.2 

    

Figure 4.3 Dog bone mold utilized for tensile testing of polymer 

samples. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

The purpose of this chapter is to evaluate the formulations of interest and determine their 

ability to print in a COTS printer, and systematically evaluate the key ingredients in listed 

formulations.  The key components of interest are the monomers/oligomers, the structure 

and functional groups they possess, their interaction with suspended melamine and the 

mechanical properties of the resulting polymer formed.  Acrylate monomers cure very fast, 

and COTS 3D printers, utilizing LED lasers, present a good platform for 3D printing a 

complex geometry.  Suspending solid particles into an acrylate resin can introduce a major 

challenge in terms of still printing a complex geometry.  This is related to cure phenomena 

and particles scattering light resulting in an increase in LP and decrease in EP.  Optimizing 

the monomer suspension is crucial for the design of a complex geometry polymer 

composite.  With this optimization in mind, the first experiment involved introducing a 

foreign monomer/oligomer blend (not formulated by Formlabs) into the resin tank of a 

Formlabs 1+ 3D printer, and verifying that the formulation is 3D printable.  The second set 

of experiments consisted of taking various formulations, and loading varied amounts of 

melamine into the formulation and testing the resulting mechanical properties after UV 

curing to form a polymer.  The samples for mechanical analyses were prepared using molds 

and were cured with UV light.  DMA testing enabled the formulator the ability to get vital 

information relating to cure behavior and how solid particles restrict polymer chain 

movement, resulting in Tg observance and Tg shifting resulting from post cure within 

multiple runs of DMA.  Tensile testing has been extensively explored for quality control 

and can provide a benchmark for tuning the desired mechanical properties.  Comparisons 
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between tensile data of new formulations and legacy materials could drive and innovate 

new synergetic formulations for optimization and enhanced performance. 

5.1 Capability of Optimized Resin to Print in COTS 3D Printer 

 Approximately 300mL of DB-1 was poured into a Form 1+ SLA tank that utilizes 

a 405nm violet laser with an intensity of 120mW.  The Formlabs printer utilized an upside-

down (inverted) SLA process to print and it was successful in printing (though not 

recommended by Formlabs) when a foreign resin not formulated by them was introduced  

into the SLA tank.  Some of the prints suffered from poor resolution and they stuck to the 

polycarbonate/silicone resin tank as seen in Figure 5.1.  

  

  

  

 Figure 5.1 Images of DB-1 after being introduced to the Formlabs 1+ (polymerized). 
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According to FormLabs Help and Support, the resin partially cures in the silicone layer at 

the bottom of the tank and they recommended changing the tanks for every two liters of 

resin used.  It would be interesting to know the source of silicone they use, as it may be 

possible that the hydrophobicity of organosilicones could prevent adhesion between the 

resin and the tank if a more hydrophilic resin with higher surface tension values was 

selected.  Also to note, many vendors of photocurable resins share information on how well 

a resin adheres to substrates; so it was believed to avoid monomers/oligomers that have 

enhanced adhesion properties and this would be a requirement when trying to introduce 

foreign resins into their SLA tanks.  Additional testing with polyethylene glycol (PEG) 

diacrylates (monomer with hydrophilicity) and low PI concentrations (0.1 wt. %) of BAPO 

did not adhere strongly to the organosilicone layer upon irradiation with the Phoseon lamp.  

 

Figure 5.2 PEG diacrylates.  Their ethylene oxide groups can be water soluble depending 

on their molecular weight. 

 

5.2 Dynamic Mechanical Analysis (DMA) 

The DMA’s ability to give modulus values for each point in a temperature scan has proven 

to be a valuable tool for formulating polymers and polymers loaded with filler (inert or 

propellant) by providing key information about polymer network structure and the degree 

of cure.  For this application, DMA provided information relating to cure depth limitations, 

critical solids loading, Ultimate Tg and Tg related phenomena, and how introducing solids 

can affect storage modulus (E') and loss modulus (E'').  The DMA data for the samples, 
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investigated in this work (listed in Table 4.3), is given in Figures 5.3, 5.4, 5.5, and Figure 

5.6.  Some data is not reported due to sample breakage either prior to or during testing. 

 

Figure 5.3 Storage modulus (E') of UV cured formulations from Table 4.3 (1st Run) 

obtained by DMA. 

 

Figure 5.4 Storage modulus (E') of UV cured formulations from Table 4.3 (2nd Run) 

obtained by DMA. 
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Table 5.1 Ultimate Tg Values Identified as the Peak of the E'' Curve 

 

 

 

 

 

 

 

In typical DMA experiments for thermosetting polymers, a sample is tested twice 

to ascertain any changes in the polymer network structure after heating.  A shift in glass 

transition temperature (Tg) between the first and second runs often indicates that the 

polymer was not fully cured and required post-curing to ensure full extent of conversion or 

reaction.  In Figures 5.7 and 5.8, a normalized loss modulus is plotted to compare the Tg 

between the first and second runs of the JR1 formulation and FLGPCL02 commercial 

formulation with different filler loadings.  For the 50 wt. % and 75 wt. % JR1 formulations, 

the Tg increased between the first and second run, thereby indicating a reduction in the 

extent of cure during photo-polymerization.  Without second run data for the unfilled JR1 

formulation, it is difficult to attribute this trend to the lack of penetration depth of the UV 

(too thick of samples) or whether the melamine is affecting the generation of free radicals 

and their mobility during cure.  There is also the possibility of partially solubilized particles 

and aggregation of solids contributing to the lack of penetration depth as Ostwald ripening 

would have an adverse effect on curing.  Future experiments will be conducted to isolate 

Mix Tg (°C) 

1 - FLGPCL02, 50 wt% 

melamine 

101.53 

2 - FLGPCL02, 75 wt% 

melamine 

104.16 

3 - DB1, 50 wt% 

melamine 

 

60.62 

6 - JR1, 0 wt% 

melamine 

 

Broken sample 

7 - JR1, 50 wt% 

melamine 

 

84.59 

8 - JR1, 75 wt% 

melamine 

100.50 
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the effect of UV penetration depth and its influence on cure.  When comparing the 50 wt. % 

and 75 wt. % JR1 formulations, the Tg increased more with higher filler loading between 

the first and second runs.  Also, the ultimate Tg of the second run is higher with more filler.  

With more filler present, the polymer chains become restricted from the segmental motion 

that occurs during the glass to rubber transition and results in a higher Tg. Because the Tg 

of the first runs of the 50 and 75 wt. % samples were similar and the change in Tg was 

more significant for the 75 wt. % formulation, we speculate that the presence of melamine 

influences the extent of cure and that there may be a threshold value for filler content as 

observed in the literature [17]. 

 

Figure 5.5 Loss modulus (E'') of UV cured formulations from Table 4.3 (1st Run) obtained 

by DMA. 
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Figure 5.6 Loss modulus (E'') of UV cured formulations from Table 4.3 (2nd Run) obtained 

by DMA. 

 

In Figure 5.7, the loss modulus is shown for the first and second DMA scans for 

the FLGPCL02 formulations with 50 and 75 wt. % melamine.  In the first DMA scan for 

both formulations, multiple peaks appear in the loss modulus data and suggests the 

formation of alternate network structures.  This is an indication that homopolymerization 

kinetics dominate the copolymerization kinetics that ties each material into the polymer 

network structure.  Because the sample cure was quenched due to diffusion limitations of 

the free radicals, we had the ability to observe how the polymer structure was formed and 

how it was influenced by the amount of filler.  The fact that the ultimate Tg remained 

unaffected (as observed in the second DMA scans) does not signify a negative impact of 

the melamine on the mechancial/thermal properties of the polymer.  However, it is 

important to consider that the filler has the potential to influence the formation of polymer 
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network structure and properties.  For example, the 75 wt. % melamine formulation 

induced the formation of an additional network structure compared to the 50 wt. % 

formulation, thereby showing that melamine content influenced the formation of the 

polymer network structure.  The ability to use DMA to investigate the polymer network 

structure will assist in selecting monomers to blend into the formulation in future work.  

For example, the JR1 formulations shown in Figure 5.7 do not show the presence of 

alternate network structure and suggests that isobornyl acrylate copolymerizes readily with 

the urethane acrylate monomers. 

 

 

 

 

Figure 5.7. Loss modulus (E'') data for 1st and 2nd runs from DMA scans for JR1.  These 

plots compare the effect of melamine content on the Tg of the JR1 Formulations and how 

the polymer network structure changes after heating. 
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Figure 5.8 Loss modulus (E'') data for 1st and 2nd runs from DMA scans for FLGPCL02.  

These plots compare the effect of melamine content on the Tg and network formation of 

the FLGPCL02 formulations. 

 

5.3 Tensile Testing 

Tensile testing for composite materials has proven to be a valuable tool for formulating 

polymer composites as the results from this technique can be very useful for downselecting 

formulation ingredients and it gives predictions on polymer behavior under stress [22].  In 

this set of experiments, the effects of filler at varying concentrations was evident in the 

experimental runs, and the profile of the stress/strain curves generally correpsond to trends 

and observations in the literature [23, 24].  Increasing the concentration of melamine 

powder (considered an organic rigid filler) raised the modulus corresponding to the 

increase in concentration as depicted in Figure 5.9.  Due to the brittle nature of these 

composites, some data is not reported due to sample breakage. 
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Figure 5.9 Typical stress-strain curves outlining the effects of polymer formulating. 

Source: Menard, Kevin P.  Dynamic Mechanical Analysis: A Practical Introduction.  Boca Raton: CRC 

Press, 1999 

 

Agglomeration  was difficult to recognize, when the suspensions were prepared, 

due to turbidity within the samples, but it became evident once the samples cured (see 

Figure 5.10).  This could be contributed to insufficient mixing, Ostwald Ripening and/or 

the settling of larger particles (d(0.9) melamine – 174.09µm).  This puts emphasis on why 

a Flackek should be used for efficient mixing, or why the ceramic industry utilizes ball 

mills to deagglomerate/reduce particle size and employ dispersants for preventing 

agglomeration in suspension.  Also, the scattering of light within the suspension and the 

resulting degree of cure would play a tremendous role in how well the monomer 

polymerized around the wetted solids to form a polymer binder.   Sample inhomogeneity 

has widely been cited as a problem in literature [23, 24, 25] and results correlate with 

propellant researchers who have investigated  the failure mechanism of hydroxyl 

terminated poly-butadiene (HTPB) binder systems filled with ammonium perchlorate (AP) 

and aluminum (Al).  van Ramshorst [23] frequently cited inhomogeneity within the 
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samples, in which the data was very scattered due to the large particle size of AP (ca. 200 

µm). 

 Stress as a function of strain plots for the specimens in this study are shown in 

Figure 5.11.  A strain rate of 5mm min-1 at 25°C was implemented.  The pneumatic gripping 

clamps of the Instron were sufficiently powerful enough to damage many of the solid 

impregnated (brittle) samples.  For such reasons, limited replicates were able to be tested.  

This phenomenon was reported by Wang et al. [24] who were able to incorporate an 

aluminum gripping jaw which was capable of avoiding initial pre-strain on the sample 

before testing had begun.  Table 5.2 highlights the mechanical properties that were 

calculated based on the stress-strain diagrams for the formulations in Figure 5.11.  A linear 

plot was constructed to easily observe the affect of solids loading on modulus and  ultimate 

strength in Figure 5.12.  The trends followed the literature for samples with solids loadings 

of 0 wt./wt. % through 40 wt./wt.% as the slope of the curves increased and shifted to the 

left as depicted in Figure 5.9 and Figure 5.12 [13, 27].  Also, the point of fracture followed 

the same trend as the modulus increased but decreased ultimate strength.  Importantly, the 

data iterates that  there is a clear issue with solids loading and tensile strength for this resin 

blend with 50 wt./wt. % melamine as the samples were too brittle to even clamp into the 

Instron.  In-situ SEM images of the fracture surface, taken by van Ramshorst [23], 

confirmed that large AP particles separated from the binder; hence, there was little 

attraction between the large AP particles and the polymer binder.  Similarly, it is believed 

that little attraction between the DB polymer and the large melamine particles enabled a 

clean separation between binder and suspended particle (see Figure 5.13).  Tensile testing 

performed by van Ramshort [23] made use of crosshead speeds of 750 µm min-1, which is 

considerably  slower than the strain rates incorporated for this study; however, both studies 
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are examining failure mechanisms based on void formation, particle size affects and sample 

inhomogeneity with similar outcomes.  Efforts involving in-situ SEM with tensile testing 

would be highly advantageous in examining polymer mechanical deformation processes. 

 Wang et al. [24] investigated a similar binder system for propellant as van Ramshort 

[23], but quotes differing distributions on the particle sizes of AP.  This was to increase AP 

solids loading to as high as almost 70.0 wt./wt. % AP (9.5 wt./wt. % small, 60.0 wt./wt. % 

larger).  These samples were tested uniaxially with varied temperature (233, 243, 253 and 

298 K) and constant crosshead rates (28, 280, 1000 and 3000 mm s-1).  The variations of 

mechanical parameters tested at different temperatures were similar to those tested in this 

study with different solid particle concentrations.  Wang [24] reported that (E – the elastic 

modulus or Young’s Modulus) increased with decreasing temperature, comparable with 

the trend of E increasing with increasing solids loading or E decreasing with the addition 

of plasticizer  (see Figure 5.9).  This is explained by the mobility of polymer chains and 

their respective movement with increasing/decreasing temperature or restriction by 

introducing filler.  This has been extensively researched and has been monitored by DMA 

in this study and in the literature [21].  The eventual mechanical failure mechanism is put 

down to microcrack initiation due to stress concentrations arising from testing.  This 

phenomena is associated with dewetting, or pulling the binder off of filler particles with 

uniaxial tensile testing.  This was observed and characterized via SEM (see Figure 5.13) 

for the DB resins.  The appearance of cavities and bare melamine particles are apparent 

and consistent with the literature as increasing filler leaves less volume of binder to hold 

the matrix together.  Wang et al. [24] reported similar fracture of propellant samples as 

HTPB binder would actually tear from the added stress and SEM confirmed holes where 

dewetted AP particles used to be. 
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 From Figure 5.12 (linear curve) and Table 5.2, it could be observed that the DB 

resin with solid particles was becoming stiffer as the solids loading increased.  This was 

evident as the E values increased, while  εmax decreased with increasing filler concentration.  

This coincides with literature [23, 24] and what the DMA data reported previously.  The 

polymer chains were becoming more restricted with increasing solids loading.  Decreasing 

the temperature (as observed by Wang et al [24]), or increasing the solids loading (as 

observed in this study) has been observed to increase the stiffness, hence E increases as 

does εmax (see Figure 5.12 and Table 5.2). Figure 5.10 depicts the 40 wt./wt.% solids loaded 

sample in DB polymer binder undergoing tensile testing.  The sample had started to reach 

its critical solids loading limit and was becoming very brittle.  The E value had increased 

from 73 MPa for the 30 wt./wt.% to 80 MPa for 40 wt./wt.%.   

 

 

Figure 5.10 Tensile testing of DB with 40 wt./wt. % melamine.  The agglomeration within 

the suspension became obvious once the formulation was UV cured.  Agglomerated 

particles arising from inhomogeneity in suspension.  Attributed to insufficient 

mixing/deagglomeration. 
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Table 5.2 Mechanical Properties of Formulations Tested for Tensile Testing 

Sample Maximum 

Load (N) 

σmax 

(MPa) 

εmax Modulus 

(MPa) 

Notes 

DB (no solids) 105 0.49 0.04 227.48  

DB (20 wt.% 

solids) 

72 0.48 0.032 465.27 Brittle 

DB (30 wt.% 

solids) 

73 0.55 0.034 517.41 Brittle 

DB (40 wt.% 

solids) 

80 0.67 0.01 878.37 Brittle  

DB (50 wt.% 

solids) 

15 0.13 0.01 260.36 

Highly brittle 

sample. Limit 

reached on solids 

loading for this 

resin 

 

 

Figure 5.11 Stress-strain curves for the DB polymer suspensions.  Modulus values increase 

as well as εmax coinciding with literature reports 
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Figure 5.12 Linear plots of the stress strain curves for the DB suspensions.  Loading 

filler into the polymer followed trends reported in Menard (Figure 5.9) 

 Tian and Yu [26] investigated UV-cured epoxy composites loaded with solid 

polymer microspheres prepared by sol gel dispersion polymerization at varying 

concentrations.  Interestingly, their composite materials follow opposite trends exemplified 

by this work indicating modulus decreases with increasing weight fraction of solids in the 

composite.  This indicates that the composition of the solid filler within a polymer 

composite needs be thoroughly understood as well as the resulting mechanical properties 

when stress is added.  Work carried out by Fernandes and Kirwan et al. [27] investigated 

composite blends of purified epoxidized waste vegetable (EVO) and diglycidyl ether 

bisphenol-A (DEGBA) to locate alternative/renewable sources for epoxy resins.  The 

composites consisted of milled recycled carbon fiber (MCF) reinforcements with content 

loads as high as 30 wt. %.  Tensile testing on the respective formulations coincided with 

what was observed in this study as increasing organic filler content increased the values of 

Young’s Modulus in both instances. 
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Figure 5.13 SEM images of DB resin with 40 wt./wt.% melamine.  The observance of 

microcracks and fractured melamine particles.  Microcracks, fractures and 

inhomogeneity were all present and led to fracture. The dewetting of particles is apparent 

as the circular holes are where larger melamine particles once resided. 
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melamine 
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Melamine 
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Dewetted particles dislodged 

More 

polymer 

binder 



56 
 

 

 

Figure 5.14 Trends observed with DB polymer composite modulus values.  DB composite 

Modulus (bottom) coincide with those reported in the literature as epoxy polymer 

composites with MCF Modulus values (top) increased with increasing filler concentration.   

The decrease in Modulus for DB at 50 wt./wt. % melamine indicated that the critical solids 

loading for this sample had been achieved. 

Source: Fernandes, Felipe C.; Kirwan, Kerry; Lehane, Danielle; Coles, Stuart R.  “Epoxy resin blends and 

composites from waste vegetable oil.” European Polymer Journal, 89, (2017): 449-460. 
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tensile testing.  The formulations consisted of 60 wt./wt. % HMX as solid filler, with 

glycidyl azide polmer (GAP) and an isocyanate and/or alkyne at differing ratios for the 

curing agent.  Tensile testing (tensile strength, elastic modulus and elongation at break) 

was evaluated based on historical/legacy formulations to give a rough indication of what 

polymer system to incorporate and what mechanical properties to strive for, while DMA 

was utilized to identify the Tg, investigate interactions between binder and filler and 

characterize ways for mechanical improvements.  Tensile tests revealed GAP with alkyne 

curing agent and the addition of plasticizer was able to deliver the desired mechanical 

properties, which could lead to the belief that plasticizer is necessary to balance or “tune” 

the resulting mechanical properties based on the difficulties of homogeneously 

impregnating polymer with solids and issues involving solubility of filler in binder systems.    
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 

With the foundations of Additive Manufacturing (AM) already set and ample examples 

from industry, the military’s willingness and desire to investigate innovative technologies 

to print complex geometries focuses on SLA techniques that hold the potential to deliver 

the next generation of propulsion charges and achieve some of the past works to increase 

gun performance1.  Formulating with inert acrylates and solids to gain understanding on 

how to formulate acrylates with solids suspended within appears to be a beneficial way to 

aid the propulsion formulators on some of the challenges and obstacles ahead.  Formulating 

an energetic or non-energetic suspension to be added to an SLA tank introduces many 

challenges for the formulator including abnormal and unwanted rheological behavior, 

undesired mechanical properties, settling of the dispersed solid, partial solubility of the 

solid in the resin, Ostwald ripening, and poor curing from photopolymerization.  This 

research shows some of the initial efforts to formulate new polymeric binders for SLA 

resins.  The ability to print custom resins in an SLA printer has been established.  DMA 

has proved to be a valuable tool in observing how changes in the formulation (monomers, 

PI content, filler content, etc.) influences Tg and the formation of the polymer network 

structure.  Tensile testing can validate and is a good accomplice to DMA data for 

information regarding the structural integrity of polymer composite formulations. 

 

6.1 FUTURE WORK 

Formulation development and considering stabilizing the monomer/oligomer suspensions 

will be valuable for maintaining homogeneity within the SLA tank and for the subsequent 
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polymer formed.  DMA provides a quick determination of polymer network structure and 

mechanical/thermal properties and should be used for down-selection.  Tensile testing is 

important for determining the behaviors of the polymers and qualifying composite 

formulations at the interface between polymer binder and suspended particle(s).  Future 

tensile tests should include varied strain rates, temperatures and environmental conditions 

for further analysis of polymer composites and the structural integrity.  Also, high rate 

compression testing will be used in conjunction with flexural and fracture properties to 

fully characterize the mechanical properties of newly formulated SLA materials.  To 

qualify formulations, the mechanical property data generated will be compared to baseline 

formulations that are known to be good performers.  AM allows for printing new SLA 

propellant formulations into a host of geometries, thereby enabling the assessment of 

mechanical properties that are traditionally difficult to obtain for propellant formulations. 
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APENDIX A 

TIME-TEMPERATURE SUPERPOSITION THEORY 

Strain is a function of temperature.  This is shown in Figure A.1.  This relates to the study 

of Lei and Frazier [29] by portraying strain to be accelerated by faster heating ramps. 

 

Figure A1 Idealized strain curves (a) and the respective shift with differing temperatures. 

Source: Alwis, K. G. N. C.; Burgoyne, C.J.  “Time-Temperature Superposition to Determine the Stress-

Rupture of Aramid Fibres.”  Applied Composite Materials, 13, 4 (2006) 249-264. 
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