
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

CHARACTERISTICS OF DIFFERENT DEEP NEURAL NETWORKS AND

APPLICATION OF PRE-TRAINED MODEL WITHOUT TRANSFER

LEARNING

by

Zhiqi Peng

Deep neural networks have been successful in many areas, some of them even surpass

human performances. The goal of this thesis is using data simulations to present different

characteristics of three deep neural networks: fully connected deep neural network,

convolutional neural network, recurrent neural network, which will perform best when

dealing with different feature patterns. By using these characteristics to design a deep

neural network on top of an adopted pre-trained model with untrainable layers, achieved

an averagely 11.1% improvement than a model with transfer learning method.

CHARACTERISTICS OF DIFFERENT DEEP NEURAL NETWORKS AND

APPLICATION OF PRE-TRAINED MODEL WITHOUT TRANSFER

LEARNING

by

Zhiqi Peng

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for Degree of

Master in Science in Computer Science

Department of Computer Science

December 2017

APPROVAL PAGE

CHARACTERISTICS OF DIFFERENT DEEP NEURAL NETWORKS AND

APPLICATION OF PRE-TRAINED MODEL WITHOUT TRANSFER

LEARNING

Zhiqi Peng

__

Dr. Zhi Wei, Thesis Advisor Date

Associate Professor of Department of Computer Science, NJIT

__

Dr. Usman Roshan, Committee Member Date

Associate Professor of Department of Computer Science, NJIT

__

Dr. Hai Phan, Committee Member Date

Associate Professor of Department of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Zhiqi Peng

Degree: 	 Master of Science

Date: 	 December 2017

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2017

• Bachelor of Science in Insurance,
University of International Business and Economics, Beijing, P.R. China 2013

iv

v

AKNOWLEDGEMENT

I would specifically like to thank Prof. Zhi Wei for supervising and advising my research

on this topic and providing resources for my thesis.

Thanks to Prof. Usman W. Roshan and Prof. Hai Phan for being my Committee members.

Additionally, I thank Mr. Jie Zhang and Mr. Fei Tan for providing support during this

research, and Miss Zi Wang for assisting with the chart drawing.

Lastly, I thank my family and friends for their love and support.

vi

TABLE OF CONTENTS

Chapter Page

1 BACKGROUND ……………………... 1

1.1 Neuron …………………………...………………………………………….... 1

1.2 Activation Function …………………………………………………………… 3

1.3 Fully Connected Neural Network …………………………………………….. 4

1.4 Convolutional Neural Network ……………………………………………….. 4

1.5 Recurrent Neural Network ……………………………………………………. 5

1.6 Residual Learning …………………………………………………………….. 6

1.7 Dropout ………………………………………………………………………. 6

1.8 Optimization Function ……………………………………………………….. 6

1.9 Batch Normalization …………………………………………………………. 7

2 SIMULATION …………………………………………………………………….. 8

2.1 Convolutional Neural Network ………………………………………………. 8

 2.1.1 First Experiment ………………………………………………………... 9

 2.1.2 Second Experiment ……………………………………………………... 11

 2.1.3 Summary ……………………………………………………………....... 14

2.2 Fully Connected Neural Network ……………………………………………... 14

 2.2.1 First Experiment …………………………………………………………. 15

 2.2.2 Second Experiment ……………………………………………………… 17

 2.2.3 Summary ……………………………………………………………….... 19

2.3 Recurrent Neural Network …………………………………………………….. 19

 2.3.1 First Experiment ………………………………………………………… 20

vii

TABLE OF CONTENTS

(Continued)

Chapter Page

 2.3.2 Second Experiment …………………………………………………….... 21

 2.3.3 Summary ………………………………………………………………… 23

2.4 Kernel Size Affects Performance of Convolutional Neural Network ………..... 24

2.5 Further Experiment Using Position Related Pattern …………………………… 26

2.6 Discussion ……………………………………………………………………... 28

3 NIH DISEASE DATASET CLASSIFITCATION ………………………………… 29

3.1 Previous Work ………………………………………………………………… 30

3.2 Preprocessing of Data …………………………………………………………. 30

3.3 Architecture …………………………………………………………………… 31

3.4 Training Method ………………………………………………………………. 32

3.5 Conclusion …………………………………………………………………….. 34

3.6 Discussion ………………………………………………………………..…… 35

REFERENCES ………………………………………………………………………. 3

viii

LIST OF TABLES

Table Page

2.1 Architecture and Hyperparameters of each Neural Network for the First

Experiment…………….. 10

2.2 Detailed Results of the First Experiment ………………………………… 11

2.3 Architecture and Hyperparameters of each Neural Network for the Second

Experiment………………………………………………………………… 12

2.4 Detailed Results of the Second Experiment ……………………………… 13

2.5 Architecture and Hyperparameters of each Neural Network for the First

Experiment…………….. 15

2.6 Detailed Results of the First Experiment ………………………………… 16

2.7 Architecture and Hyperparameters of each Neural Network for the Second

Experiment………………………………………………………………… 17

2.8 Detailed Results of the Second Experiment ……………………………… 18

2.9 Architecture and Hyperparameters of each Neural Network for the First

Experiment…………….. 20

2.10 Detailed Results of the First Experiment ………………………………… 21

2.11 Architecture and Hyperparameters of each Neural Network for the Second

Experiment………………………………………………………………… 22

2.12 Detailed Results of the Second Experiment ……………………………… 23

2.13 Hyperparameters of Convolutional Neural Network ………………………. 25

2.14 Architecture and Hyperparameters of each Neural Network ……………… 27

2.15 Detailed Results of Two Model …………………………………………… 27

3.1 Hyperparameters and Output Shape of Customized Block ………………... 32

3.2 Comparison of AUC Values Between Our Models and Previous Results in

Figure 3.2 from Models Trained on NIH Dataset ………………………….. 34

ix

LIST OF FIGURES

Figure Page

1.1 An example of one neuron architecture …………………………………… 2

1.2 An example of fully connected neural network …………………………… 2

1.3 An example of recurrent neural network ………………………………….. 5

1.4 An example of convolutional neural network ……………………………… 5

2.1 A positive sample motifs illustration, each colored rectangular represents

one different motif with step length 5, and is randomly inserted into

sequence with no overlapping ……………………………………………... 9

2.2 The model accuracy results of the first experiment ……………………….. 10

2.3 The model accuracy results of the second experiment …………………….. 12

2.4 Comparison of testing accuracy with different model complexities under

the same dataset ………………………………………………………….... 13

2.5 A positive sample motifs illustration, each colored line represents one

different motif with step length one, and is inserted into sequence at steps:

0,10,20,30,40………………………………………………………………. 15

2.6 The model accuracy result of the first experiment ………………………… 16

2.7 The model accuracy result of the second experiment ……………………… 18

2.8 Comparison of testing accuracy with different model complexities under

the same dataset …………………………………………………………… 19

2.9 A positive sample motifs illustration, each colored line represents one

different motif with step length one, and is inserted into sequence with

random intervals…………………………………………………………… 20

2.10 The model accuracy result of the first experiment ………………………… 21

2.11 The model accuracy result of the second experiment ……………………… 22

2.12 Comparison of testing accuracy with different model complexities under

the same dataset …………………………………………………………… 23

2.13 The model accuracy results of the experiment …………………………… 25

x

LIST OF FIGURES

(Continue)

Figure Page

3.1 Eight visual examples of NIH diseases …………………………………….. 29

3.2 Previous AUC value of NIH disease classification result ………………….. 30

3.3 Main layout of deep learning model ……………………………………….. 33

3.4 Layout of customized block ……………………………………………….. 33

3.5 Layout of c2bn block ………………………………………………………. 33

3.6 Layout of convolutional block …………………………………………….. 33

1

CHAPTER 1

BACKGROUND

1.1 Neuron

To understand how neural network behaves and deliver information, we should start with

the simplest possible neural network: a single neuron (see Figure 1.1). Let’s consider a data

sample that has an input vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4), the output of neural is 𝑜(𝑥), we use

the following equation to describe the relationship between input and output:

𝑜(𝑥) = 𝑊𝑇𝑥 + 𝑏 (1.1)

Where W is the weight matrix of neuron and b is the bias of neuron. After that,

normally an activation function f will apply to the output to keep the non-linearity. The

capability of one neural network to approximate any functions, hidden features, models is

directly related to such non-linear transformation, otherwise, there is no difference between

a neural network and linear regression model. Thus, the output of one neuron will become:

𝑜(𝑥) = 𝑓(𝑊𝑇𝑥 + 𝑏) (1.2)

2

Figure 1.1 An example of one neuron architecture.

Figure 1.2 An example of fully connected neural network.

3

1.2 Activation Function

As we just discussed, activation function servers vital character in the neural network.

There are many activation functions we use, but we will describe only some of them.

Sigmoid

The Sigmoid activation function transforms input into (0-1) interval. It’s commonly used

for binary classification problem and the last activation for the model. We use the following

equation to describe the Sigmoid activation function:

𝑠𝑖𝑔(𝑥) =
1

1+𝑒𝑥𝑝−𝑥
 (1.3)

Hyperbolic Tangent

We commonly use Tanh to denote Hyperbolic Tangent activation function. The tanh

function transform input into (-1,1) interval. We use the following equation to describe the

Tanh activation function:

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥𝑝𝑥−𝑒𝑥𝑝−𝑥

𝑒𝑥𝑝𝑥+𝑒𝑥𝑝−𝑥
 (1.4)

Rectifier

The Rectifier activation function or Relu solved vanishing gradient and accelerate the

backpropagation process by providing simple gradient derivation form. We use the

following equation to describe the Relu activation function:

4

𝑟𝑒𝑙𝑢(𝑥) = max(0, 𝑥) (1.5)

However, Relu function suffers from dying relu problem, which caused by no gradient

flowing backward through the network when outputs within layer are all zero. We can use

Leaky Relu activation function to mitigate such state. We use the following equation to

describe the Leaky Relu activation function:

𝑙𝑒𝑎𝑘𝑦𝑟𝑒𝑙𝑢(𝑥, 𝑎𝑙𝑝ℎ𝑎) = {
𝑎𝑙𝑝ℎ𝑎 ∗ 𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
 (1.6)

1.3 Fully Connected Neural Network

This is the most common form of a neural network. Within such network, neurons between

two adjacent layers are one by one densely connected. Figure 1.2 is an example layout of

fully connected neural network.

1.4 Convolutional Neural Network

If information or features of data are connected adjacently, like an image or sequence,

which suggests neural network’s hidden units don’t have to look all parts of data, instead,

features can be learned by only look at part of the data which result in saving computational

resources. A convolutional layer has N filters 𝐹 = {𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑁}, for each filter it will

apply elementwise dot calculation to input feature map x then form into new a feature

presentation map.

5

1.5 Recurrent Neural Network

Traditionally, we assume all inputs are independent of each other or not adjacent features

are independent. But for some tasks, like voice recognition, language translation, sequence

prediction, this assumption may not be valid at all. Thus, the recurrent neural network takes

advantage of its internal memory mechanism to memorize arbitrary information for

prediction purpose.

Figure 1.3 An example of recurrent neural network.

Figure 1.4 An example of convolutional neural network.

6

1.6 Residual Learning

Because very deep neural networks are very difficult to train but are essential for large

dataset such ImageNet, Kaiming He [3] proposed Deep Residual Learning block for image

recognition that achieves high improvement of accuracy on image classification tasks and

has the ability of build very deep convolutional neural network architecture. We use the

following mathematical formula to express residual learning building block:

𝑜(𝑥) = 𝑓(𝑊𝑇𝑥 + 𝑏) + 𝑥 (1.7)

1.7 Dropout

A large number of parameters in the deep neural network makes it powerful to approximate

any functions, but sometimes it can result in severe overfitting problem. Nitish Srivastava

[16] proposed dropout mechanism to address such problem. This mechanism has already

presented its ability to achieve top rank performance in many image classification tasks,

such as Drop-connect [5] block. The idea is to randomly set output of the last layer to zero

to prevent units from co-adapting too much during the training process and will disable

during validation and testing process.

1.8 Optimization Function

Stochastic Gradient Descent

Stochastic Gradient Descent is also known as SGD, is the essential optimization algorithm

used in deep learning models. If we use L(θ) refers as loss function, we can use following

mathematical formula to express SGD:

7

𝜃 = 𝜃 − 𝛼𝛻𝜃𝐿(𝜃, 𝑥, 𝑦) (1.8)

Where α is the learning rate of SGD algorithm.

 Sometimes standard SGD can have a slow converging speed or stuck at local minima. We

can use Momentum mechanism to alleviate such situation. We use m to denote momentum

vector, thus, SGD can be presented as follows:

𝑚 = 𝛾𝑚 + 𝛼𝛻𝜃𝐿(𝜃, 𝑥, 𝑦) (1.9)

𝜃 = 𝜃 −𝑚 (1.10)

Where γ is the momentum factor.

Adam

The Adam algorithm was proposed by Diederik P. Kingma [13]. It’s an algorithm based

on first-order gradient-based optimization function. Adam is capable of adaptive lower-

order momentum and has combined advantages of AdaGrad and RMSProp. Thus, Adam

can address sparse gradients and to deal with non-stationary objectives.

1.9 Batch Normalization

Different layers in the deep neural network may have a different distribution of inputs, this

may slow down the training process due to vanishing gradient problem. Sergey Ioffe [6]

address this problem by proposing batch normalization mechanism. The main idea is to

shifting inputs of each layer to zero mean and unit variance.

8

CHAPTER 2

SIMULATION

My experiments intended to illustrate different characteristics of three different kinds of

neural networks (fully connected neural network, convolutional neural network, recurrent

neural network [7] [8] [9] [10]), and which network achieves the best performance under

different scenarios. We designed three different simulations and with each, we repeat our

experiment five times to eliminate affection of randomness of different initialization and

split of the datasets. Our simulation data were in 2D shape, each sample with the shape of

(step, features). We specifically use DNA type of data and encoded as [1,0,0,0], [0,1,0,0],

[0,0,1,0], [0,0,0,1] corresponding to A(adenine), T(thymine), C(cytosine), G(guanine). We

use “fullyconnected” to represent fully connected neural network, “cnn" to represent the

convolutional neural network, "rnn" to represent the recurrent neural network. For each

neural network, "_i” stands for the ith architecture of one model, for instance, "cnn_1"

means the first model for the convolutional neural network. Unless specified in neural

network’s detail and the last layer of each network, the default activation function for each

layer is Relu. We save the best model based on loss value of validation dataset with the

patience of 100 epochs.

2.1 Convolutional Neural Network

The sequence step length for this experiment is 50, thus dimension for each individual

sample is 50×4. Designed 4 motif patterns which are [A, A, A, A, A], [T, T, T, T, T], [C,

9

C, C, C, C], [G, G, G, G, G], allowed up to 80% mutation for each motif, which means for

each motif, such as [A, A, A, A, A], only 1 step mutation is allowed. And randomly insert

these patterns into an individual sequence from step 0 to 40 with no overlapping. If each

motif pattern occurred only once in a sequence labeled as positive, otherwise labeled as

negative. We generated 10 thousand positive and 10 thousand negative samples. The deep

neural network must first recognize what are the four motifs and then learn to identify if

each motif occurred once or not. This pattern is as identical as finding low-level feature

then combined as a high-level feature.

Figure 2.1 A positive sample motifs illustration, each colored rectangular represents one

different motif with step length 5, and is randomly inserted into sequence with no

overlapping.

2.1.1 First Experiment

We use different layouts of the deep neural network as presented in Table 2.1 in the first

experiment. We applied three different dataset sizes (5000, 10000, 20000) to each model,

and take the average and standard deviation of the testing dataset, the result is showed in

Figure 2.2 and Table 2.2. The convolutional neural network takes first place in all

conditions with less trainable parameters.

10

Table 2.1 Architecture and Hyperparameters of each Neural Network for the First

Experiment

Neural Network
Number of

Parameters
Architecture Details

cnn_1 763

Convolution1D(6,6)

LeakyReLU

MaxPooling1D(10)

Convolution1D(12,2)

Convolution1D(12,3)

Flatten

Fullyconnected(1)

fullyconnected_1 835

Flatten

Fullyconnected(4)

Fullyconnected(5)

Fullyconnected(1)

rnn_1 887

LSTM(12)

Fullyconnected(5)

Fullyconnected(1)

Figure 2.2 The model accuracy results of the first experiment.

11

Table 2.2 Detailed Results of the First Experiment

Neural Network Dataset Sample Count
Average Accuracy on

Testing Dataset

Sample Standard

Deviation of Accuracy

fullyconnected_1

5000 0.7133 0.0196

10000 0.7592 0.0708

20000 0.8084 0.0397

cnn_1

5000 0.8656 0.0209

10000 0.8744 0.0402

20000 0.9346 0.0408

rnn_1

5000 0.8220 0.0566

10000 0.8744 0.0563

20000 0.8850 0.0228

2.1.2 Second Experiment

We use different layouts of the deep neural network as presented in Table 2.3 in the second

experiment. We applied three different dataset sizes (10000, 15000, 20000) to each model,

and take the average and standard deviation of the testing dataset, the result is showed in

Figure 2.3 and Table 2.4. The convolutional neural network takes first place in all

conditions with less trainable parameters.

12

Table 2.3 Architecture and Hyperparameters of each Neural Network for the Second

Experiment

Neural Network
Number of

Parameters
Architecture Details

cnn_2 1512

Convolution1D(16,6)

LeakyReLU

MaxPooling1D(10)

Convolution1D(12,2)

Convolution1D(15,3)

Flatten

Fullyconnected(5)

Fullyconnected(1)

fullyconnected_2 3341

Flatten

Fullyconnected(15)

Fullyconnected(15)

Fullyconnected(5)

Fullyconnected(1)

rnn_2 2915

LSTM(24)

LeakyReLU

Fullyconnected(5)

LeakyReLU

Fullyconnected(1)

Figure 2.3 The model accuracy results of the second experiment.

13

Table 2.4 Detailed Results of the Second Experiment

Neural Network Dataset Sample Count
Average Accuracy on

Testing Dataset

Sample Standard

Deviation of Accuracy

fullyconnected_2

10000 0.8270 0.0135

15000 0.8521 0.0132

20000 0.8712 0.0109

cnn_2

10000 0.9074 0.0678

15000 0.9549 0.0104

20000 0.9729 0.0052

rnn_2

10000 0.9032 0.0372

15000 0.9383 0.0124

20000 0.9537 0.0053

Figure 2.4 Comparison of testing accuracy with different model complexities under the

same dataset.

14

2.1.3 Summary

As we summarized in Tables 2.2 and 2.4, during this part of the experiment, convolutional

neural network exhibits high efficiency and high accuracy in identifying motif patterns. In

the first experiment, cnn_1 using 763 parameters to achieve averagely 0.9346 accuracies

compared to fullyconnected_1: 0.8084 with 835 parameters and rnn_1: 0.8850 with 887

parameters when using 20K samples. In the second experiment, cnn_2 using 1512

parameters to achieve averagely 0.9729 accuracies compared to fullyconnected_2: 0.8712

with 3341 parameters and rnn_2: 0.9537 with 2915 parameters when using 20K samples.

When comparing different model complexities under the same dataset as in Figure

2.4, not only average accuracy has increased in all three neural networks, but standard

deviation also decreased as compared to Tables 2.2 and 2.4. Under the 20K sample size,

fullyconnected_2 decreased standard deviation from 0.0397 of fullyconnected_1 to 0.0109,

cnn_2 decreased standard deviation from 0.0408 of cnn_1 to 0.0052, rnn_2 decreased

standard deviation from 0.0228 of rnn_1 to 0.0053.

2.2 Fully Connected Neural Network

The sequence step length for this experiment is 50, thus dimension for each individual

sample is 50x4. The pattern is 5 [A]s for [0, 10, 20, 30, 40] step in each sample. We

generated 10 thousand positive and 10 thousand negative samples. This pattern requires

deep neural network not only able to capture what motifs are but also identify what position

is.

15

Figure 2.5 A positive sample motifs illustration, each colored line represents one different

motif with step length one, and is inserted into sequence at steps: 0,10,20,30,40.

2.2.1 First Experiment

We use different layouts of the deep neural network as presented in Table 2.5 in the first

experiment. We applied three different dataset sizes (200, 2000, 10000) to each model, and

take the average and standard deviation of the testing dataset, the result is showed in Figure

2.6 and Table 2.6. The fully connected network takes first place in all conditions with less

trainable parameters.

Table 2.5 Architecture and Hyperparameters of each Neural Network for the First

Experiment

Neural Network
Number of

Parameters
Architecture Details

fullyconnected_1 203

Flatten

Fullyconnected(1)

Fullyconnected(1)

cnn_1 311

Convolution1D(10,2)

Convolution1D(10,2)

GlobalMaxPooling1D

Fullyconnected(1)

rnn_1 206
LSTM(5)

Fullyconnected(1)

16

Figure 2.6 The model accuracy results of the first experiment.

Table 2.6 Detailed Results of the First Experiment

Neural Network Dataset Sample Count
Average Accuracy on

Testing Dataset

Sample Standard

Deviation of Accuracy

fullyconnected_1

200 0.9600 0.0418

2000 0.9920 0.0097

10000 0.9992 0.0003

cnn_1

200 0.6200 0.0837

2000 0.6250 0.0515

10000 0.6254 0.0175

rnn_1

200 0.7200 0.1255

2000 0.9000 0.0180

10000 0.9664 0.0289

17

2.2.2 Second Experiment

We use different layouts of the deep neural network as presented in Table 2.7 in the second

experiment. Since fullyconnected_1 performs exceptionally in the first experiment, there

is no need to increase the model complexity of the fully connected network, we simply

apply same architecture during the second experiment. We applied three different dataset

sizes (2000, 10000, 20000) to each model, and take the average and standard deviation of

the testing dataset, the result is showed in Figure 2.7 and Table 2.8. The fully connected

neural network still takes first place in all conditions with less trainable parameters.

Table 2.7 Architecture and Hyperparameters of each Neural Network for the Second

Experiment

Neural Network
Number of

Parameters
Architecture Details

fullyconnected_1 203

Flatten

Fullyconnected(1)

Fullyconnected(1)

cnn_2 1021

Convolution1D(20,2)

Convolution1D(20,2)

GlobalMaxPooling1D

Fullyconnected(1)

rnn_2 611
LSTM(10)

Fullyconnected(1)

18

Figure 2.7 The model accuracy results of the second experiment.

Table 2.8 Detailed Results of the Second Experiment

Neural Network Dataset Sample Count
Average Accuracy on

Testing Dataset

Sample Standard

Deviation of Accuracy

fullyconnected_1

2000 0.9920 0.0097

10000 0.9986 0.0015

20000 0.9992 0.0003

cnn_2

2000 0.6520 0.0251

10000 0.6502 0.0226

20000 0.6600 0.0189

rnn_2

2000 0.8610 0.0766

10000 0.9604 0.0373

20000 0.9775 0.0320

19

Figure 2.8 Comparison of testing accuracy with different model complexities under the

same dataset.

2.2.3 Summary

As we summarized Table 2.6 and Table 2.8, during this part of the experiment, fully

connected neural network exhibits high efficiency and high accuracy in identifying motif

patterns. In the first experiment, fullyconnected_1 using 203 parameters to achieve

averagely 0.9992 accuracies compared to cnn_1: 0.0.6254 with 311 parameters and rnn_1:

0.9664 with 206 parameters when using 10K samples. In the second experiment,

fullyconnected_1 achieve averagely 0.9992 accuracies compared to cnn_2: 0.6600 with

1021 parameters and rnn_2: 0.9775 with 611 parameters when using 20K samples.

2.3 Recurrent Neural Network

The sequence step length for this experiment is 50, thus dimension for each individual

sample is 50x4. The pattern is [G, A, G, T, C, C, T, A, G, C] with a total of 10 step features,

and randomly inserted into sample's 50 steps with the preserved order. If the sample does

20

not contain such sequence, labeled as negative, otherwise labeled as positive. We generated

10 thousand positive and 10 thousand negative samples. Identifying this pattern requires

the deep neural network capable to memorize occurrence of motif sequence.

Figure 2.9 A positive sample motifs illustration, each colored line represents one different

motif with step length one, and is inserted into sequence with random intervals.

2.3.1 First Experiment

We use different layouts of the deep neural network for as presented in Table 2.9 in the

first experiment. We applied three different dataset sizes (5000, 10000, 20000) to each

model, and take the average and standard deviation of the testing dataset, the result is

showed in Figure 2.10 and Table 2.10. The recurrent neural network takes first place in all

conditions with less trainable parameters.

Table 2.9 Architecture and Hyperparameters of each Neural Network for the First

Experiment

Neural Network
Number of

Parameters
Architecture Details

rnn_1 206
LSTM(5)

Fullyconnected(1)

cnn_1 651

Convolution1D(10,3)

Convolution1D(10,5)

GlobalMaxPooling1D

Fullyconnected(1)

fullyconnected_1 629

Flatten

Fullyconnected(3)

Fullyconnected(5)

Fullyconnected(1)

21

Figure 2.10 The model accuracy results of the first experiment.

Table 2.10 Detailed Results of the First Experiment

Neural Network Dataset Sample Count
Average Accuracy on

Testing Dataset

Sample Standard

Deviation of Accuracy

fullyconnected_1

5000 0.7856 0.0118

10000 0.8010 0.0117

20000 0.8231 0.0178

cnn_1

5000 0.6644 0.0308

10000 0.6892 0.0139

20000 0.7134 0.0143

rnn_1

5000 0.8976 0.0436

10000 0.9474 0.0240

20000 0.9500 0.0318

2.3.2 Second Experiment

We use different layouts of the deep neural network for as presented in Table 2.11 in the

second experiment. We applied three different dataset sizes (10000, 15000, 20000) to each

model, and take the average and standard deviation of the testing dataset, the result is

showed in Figure 2.11 and Table 2.12. The recurrent neural network takes first place in all

conditions with less trainable parameters.

22

Table 2.11 Architecture and Hyperparameters of each Neural Network for the Second

Experiment

Neural Network
Number of

Parameters
Architecture Details

rnn_2 611
LSTM(10)

Fullyconnected(1)

cnn_2 2301

Convolution1D(20,3)

Convolution1D(20,5)

GlobalMaxPooling1D

Fullyconnected(1)

fullyconnected_2 2131

Flatten

Fullyconnected(10)

Fullyconnected(10)

Fullyconnected(1)

Figure 2.11 The model accuracy results of second experiment.

23

Table 2.12 Detailed Results of the Second Experiment

Neural Network Dataset Sample Count
Average Accuracy on

Testing Dataset

Sample Standard

Deviation of Accuracy

fullyconnected_2

10000 0.8022 0.0123

15000 0.8229 0.0176

20000 0.8385 0.0087

cnn_2

10000 0.7216 0.0082

15000 0.7374 0.0094

20000 0.7301 0.0126

rnn_2

10000 0.9762 0.0195

15000 0.9909 0.0143

20000 0.9984 0.0017

Figure 2.12 Comparison of testing accuracy with different model complexities under the

same dataset.

2.3.3 Summary

As we summarized in Tables 2.10 and 2.12, during this part of the experiment, recurrent

neural network exhibits high efficiency and high accuracy in identifying motif patterns. In

the first experiment, rnn_1 using 206 parameters to achieve averagely 0.9500 accuracies

24

compared to fullyconnected_1: 0.8231 with 651 parameters and cnn_1: 0.7134 with 629

parameters when using 20K samples. In the second experiment, rnn_2 using 611

parameters to achieve averagely 0.9984 accuracies compared to fullyconnected_2: 0.8385

with 2301 parameters and cnn_2: 0.7301 with 2131 parameters when using 20K samples.

When comparing different model complexity under the same dataset as in Figure

2.12, not only average accuracy has increased in all 3 neural networks, but standard

deviation also decreased when comparing Table 2.10 and Table 2.12. Under 20K sample

size, fullyconnected_2 decreased standard deviation from 0.0178 of fullyconnected_1 to

0.0087, cnn_2 decreased standard deviation from 0.0143 of cnn_1 to 0.0126, rnn_2

decreased standard deviation from 0.0318 of rnn_1 to 0.0017.

2.4 Kernel Size Affects Performance of Convolutional Neural Network

We want to determine what influences of kernel size may have when changing its kernel

size. We use the same dataset in the previous experiment which convolutional neural

network performs best. The dataset has four motifs each with a 5x4 shape. If we change

the kernel size of the first convolutional layer, we change the shape of lowest level features

that model captures. If the kernel's filter has less than five steps, we may assume all the

motif information were split into each kernel. On the contrary, if the filter has more than

five steps, we may deduce that each filter captures some noises.

We use same architecture of convolutional neural network except for the first layer

and repeat our experiment five times for each architecture to eliminate affection of

25

randomness of different initialization and split of the dataset. The results are shown in

Table 2.13 and Figure 2.13.

Table 2.13 Hyperparameters of Convolutional Neural Network

Filter Number Step Length Parameters

Average

Accuracy of

Testing

Dataset

Standard

Deviation

3 8 652 0.9000 0.0120

4 5 661 0.8871 0.0465

6 5 751 0.9201 0.0348

6 6 775 0.9469 0.0395

6 8 823 0.9633 0.0237

6 10 871 0.9383 0.0336

12 3 925 0.8920 0.0328

12 6 1069 0.9685 0.0099

Figure 2.13 The model accuracy results of the experiment.

26

As seen in Figure 2.13, surprisingly the result of 4-5 (which suppose to be the

optimum value), reached lowest average accuracy 0.8871 with highest standard deviation

value 0.0465. Comparing results of 4-5 and 6-5, 6-6 and 12-6, indicates more filter number

may result in higher accuracy with more stable performance. Comparing results of 6-6 and

12-3, indicates even with same total filter size, if filter’s step length cannot cover the

ground truth, will perform worse on average accuracy. Comparing results of 6-5, 6-6, 6-8

and 6-10, simply expanding single filter size will not necessarily increasing model’s

performance as larger filter size will contain more noise.

2.5 Further Experiment Using Position Related Pattern

As we discussed in Section 2.2, fully connected neural network performed best when the

pattern is position related. However, such pattern is uncommon in the real world. But is it

possible to solve such pattern using the convolutional layer to extract features followed by

fully connected layer to preserve location information? We used the same dataset in Section

2.2, with a slightly differ convolutional neural network architecture as well as same fully

connected neural network result. Table 2.14 describe details of each model, the second

layer of cnn_fullyconnected model is actually a fully connected layer connected to a

convolutional layer since the output of layer-Convolution1D(10,2) is (49,10) and output of

layer-Convolution1D(1,49) is (1,1).

27

Table 2.14 Architecture and Hyperparameters of each Neural Network

Neural Network
Number of

Parameters
Architecture Details

fullyconnected_1 203

Flatten

Fullyconnected(1)

Fullyconnected(1)

cnn_fullyconnected 583

Convolution1D(10,2)

Convolution1D(1,49)

GlobalMaxPooling1D

Fullyconnected(1)

Table 2.15 Detailed Results of Two Model

Neural Network Dataset Sample Count
Average Accuracy on

Testing Dataset

Sample Standard

Deviation of Accuracy

fullyconnected_1

2000 0.9920 0.0097

10000 0.9986 0.0015

20000 0.9992 0.0003

cnn_fullyconnected

2000 0.9925 0.0029

10000 0.9988 0.0014

20000 0.9991 0.0007

As the results in Table 2.15 indicate, it is possible to solve such pattern using the

convolutional layer to extract features followed by fully connected layer to preserve

location information. The difference between convolution neural network in Section 2.2

and network in this section is the lack of fully connected layer after convolutional layer to

preserve such location information.

28

2.6 Discussion

For 2D data samples, if a pattern is a certain combination of lower level features, the

convolutional neural network may be a better choice considering efficiency and

performance. If a pattern is position related, a fully connected neural network is probably

best since it preserves position information comparing with pooling layers wildly used in

the convolutional neural network. If a pattern is order-related and with random steps, the

recurrent neural network is the best choice. Additionally, recurrent performed averagely

best in all three patterns we previously addressed, although not with the highest efficiency.

With higher network's complexity and sample number, it can achieve the same level

accuracy of other network architectures. The major setbacks of recurrent neural network

susceptible to unstable training process and difficulty of interpreting parameters.

Filter numbers and filter size are two important hyperparameters we need to decide

when designing convolutional neural network. As in Section 2.4, we should avoid setting

filter size smaller than lowest level features, slightly larger filter size and more filter

number should achieve a better result. However, we should balance model’s complexity

and size of the dataset, as we should be considering the over-fitting scenario.

29

CHAPTER 3

NIH DISEASE DATASET CLASSIFICATION

NIH Clinical Center recently provided 112,120 chest x-ray scan images from more than

30,000 patients. This dataset includes many advanced lung diseases and each sample may

contain multiple disease labels. The collection of diseases includes 14 categories:

Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia,

Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, Hernia.

Original image sample has the dimension of 1024×1024.

Figure 3.1 Eight visual examples of NIH diseases.

Sources: Wang, Xiaosong, et al. "ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on

Weakly-Supervised Classification and Localization of Common Thorax Diseases." arXiv preprint

arXiv:1705.02315 (2017).

30

3.1 Previous Work

Xiaosong Wang [1] performed transition training and fine tuning based on AlexNet,

GoogLeNet, VGG-16, ResNet-50 of first 8 primary diseases. The detail of AUC values is

in Figure 3.2.

Figure 3.2 Previous AUC value of NIH disease classification result.

Source: Wang, Xiaosong, et al. "ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on

Weakly-Supervised Classification and Localization of Common Thorax Diseases." arXiv preprint

arXiv:1705.02315 (2017).

3.2 Preprocessing of Data

Since the memory requirement will be massive (219 GB) if we just loaded original dataset

using float16 datatype, this kind of situation requires modification of dataset to minimize

memory usage.

1. We observed for most of samples, the location of each disease is not located at edge

of each sample, thus we perform 80% center cropping for each sample.

2. Resized each sample to 299×299 dimension.

3. Load each sample as only 1×299×299 dimension using int8 datatype

4. Balancing number of positive and negative samples for each individual disease.

5. Randomly shuffle the dataset.

31

3.3 Architecture

Many deep neural network models have shown the strong ability to classifying

thousands of categories on ImageNet dataset. Fine tuning pre-trained model on smaller

dataset has demonstrated the successful application of medical disease classification

problem [1] [14]. The main goal of transfer learning method is to adapt those pre-trained

features on the previous dataset to the new dataset. However, we are using pre-trained

models to replace features from original dataset by freezing all layers in pre-trained models,

instead of transfer learning model.

Since we load our dataset as one channel images, which is not compatible with

models pre-trained on ImageNet dataset, we need to apply a channel expansion layer before

we adopt pre-trained models. Then we applied pre-trained models and removed all fully-

connected layers and kept the last convolution layer. We added a customized deep neural

network block and output layer after pre-trained model.

Initially, we applied this dataset to both InceptionV3 [4] model and ResNet-50 [3]

model, but InceptionV3 model beat by ResNet-50 model during most of the experiments.

Thus, we only adopted ResNet-50 model instance pre-trained on ImageNet dataset.

32

Table 3.1 Hyperparameters and Output Shape of Customized Block

Description Hyper parameter Padding Output shape

Spatial Dropping 90% Not applicable (2048,10,10)

c2dbn 48-1-1 Same (48,10,10)

Convolutional Block 128 Same (128,10,10)

Convolutional Block 128 Same (128,10,10)

Global Max Pooling Not applicable Not applicable (128,)

Dropout 50% Not applicable (128,)

Fully Connected 30 Not applicable (30,)

Output Layer 1 Not applicable (1,)

The main idea of Convolutional Block as shown in Figure 3.4 was borrowed from

InceptionV3 module and the experiment we just conducted: using different kernel size

trying to capture each feature with minimum noise included, and saving computational

resources by letting each branch to capture part of extracted features then add them up.

3.4 Training Method

We separated 70% of data as the training dataset, 10% as validation dataset, 20% as the

testing dataset. We set patience as 50 epochs and use Adam as default optimizer. Due to

the massive requirement of computational resources, we freeze all layers of the pre-trained

model.

33

Figure 3.6 Layout of convolutional block.

Figure 3.3 Main layout

of deep learning model.

Figure 3.4 Layout of

customized block.

Figure 3.5 Layout of

c2bn block.

34

We tuned the weighted-class parameter and applied multi-label classification

training method during the training process, like W-CEL [1], but we cannot obtain the

desired result. We had to follow the simplest rule: train one model for each disease with

balanced dataset using same hyperparameters. Additionally, we applied fully-connected

layer after second Convolutional Block in Figure 3.4, if extracted features from second

Convolutional Block is position related, the result would be improved as in Chapter 2.5.

The result is shown in the following table:

Table 3.2 Comparison of AUC Values Between Our Models and Previous Results in

Figure 3.2 from Models Trained on NIH Dataset

Model Atelectasis Cardiomegaly Effusion
Infiltratio

n
Mass Nodule Pneumonia

Pneumothora

x

Our Model 0.7833 0.8721 0.8549 0.6907 0.7306 0.6738 0.7001 0.8503

Add fully-

connected

layer

0.7665 0.8341 0.8398 0.6789 0.7247 0.6638 0.7036 0.8277

Wang, et.al 0.7069 0.8141 0.7362 0.6128 0.5644 0.7164 0.6333 0.7891

3.5 Conclusion

Due to only customized block is needed to be trained, our number of trainable parameter

is 346,189, our model’s total parameter count is 23,936,813, which means only 1.45% of

total parameters were trained. Comparing with non-fully-connected models, there was no

improvement, thus the extracted features from second Convolutional Block were not the

position-related pattern. Our result is better in most of the diseases as in the previous table,

average AUC score improvement is 11.1%. This indicates transfer learning of pre-trained

model is not necessary if represented features from any pre-trained model are sufficient.

35

3.6 Discussion

Considering factors such as computational power and training time, our training method

didn’t include image augmentation techniques. Random cropping, image flip, image

random rotation, image normalizations etc. have shown their ability to alleviate overfitting

problem and improve recognition accuracy by increasing data diversity in many image

recognition tasks [2] [5]. In our model, we applied 90% of spatial dropping and 50% of

fully connected dropping due to severe overfitting problem which may suggest the

ImageNet pre-trained models are presenting too many features and data augmentation

methods have potential to improve classification result.

36

REFERENCES

[1] Wang, Xiaosong, et al. "ChestX-ray8: Hospital-scale Chest X-ray Database and

Benchmarks on Weakly-Supervised Classification and Localization of Common

Thorax Diseases." arXiv preprint arXiv:1705.02315 (2017).

[2] Ciregan, Dan, Ueli Meier, and Jürgen Schmidhuber. "Multi-column deep neural

networks for image classification." Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on. IEEE, 2012.

[3] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016.

[4] Szegedy, Christian, et al. "Rethinking the inception architecture for computer

vision." Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2016.

[5] Wan, Li, et al. "Regularization of neural networks using dropconnect." Proceedings of

the 30th international conference on machine learning (ICML-13). 2013.

[6] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep

network training by reducing internal covariate shift." International Conference

on Machine Learning. 2015.

[7] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural

computation 9.8 (1997): 1735-1780.

[8] Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. "Learning to forget:

Continual prediction with LSTM." (1999): 850-855.

[9] Graves, Alex. Supervised sequence labelling with recurrent neural networks. Vol.

385. Heidelberg: Springer, 2012.

37

[10] Gal, Yarin, and Zoubin Ghahramani. "A theoretically grounded application of

dropout in recurrent neural networks." Advances in neural information processing

systems. 2016.

[11] Bengio, Yoshua, Patrice Simard, and Paolo Frasconi. "Learning long-term

dependencies with gradient descent is difficult." IEEE transactions on neural

networks 5.2 (1994): 157-166.

[12] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities

improve neural network acoustic models." Proc. ICML. Vol. 30. No. 1. 2013.

[13] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980 (2014).

[14] Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep

neural networks." Nature 542.7639 (2017): 115-118.

[15] Chollet, F. (2015). Keras: Deep learning for python

[16] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from

overfitting." Journal of machine learning research15.1 (2014): 1929-1958

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Simulation
	Chapter 3: NIH Disease Dataset Classification
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

