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ABSTRACT 

 

NUMERICAL SIMULATION AND INITIAL EXPERIMENTS FOR 

IDENTIFICATION OF INSECTS USING A CW LIDAR SYSTEM 

 

by 

Christo Videlov 

Mosquitos are the most common vector of disease in the world, causing millions of deaths 

a year. While curing the diseases they cause is one approach to this problem, another could 

be to avoid the mosquitos in the first place. Knowing their flight patterns, location, and 

population in one area could aid in this. Additionally, classifying the mosquitos in an area 

would be helpful. The age and sex of the mosquito is important to find as they affect the 

chances of the insect carrying diseases such as malaria or yellow fever.  

Many current methodologies to monitor insects are based on physical traps, but this 

method is not timely and cost effective. Therefore, a method of easily finding and 

identifying mosquitos is desired. Using LIDAR, or light detection and ranging, to 

characterize insects is much quicker and can identify insects as they pass through a certain 

area. This provides useful information in real time. 

 In this project, both a numerical simulation and experimental work are presented. 

In order to establish the effectiveness of our equipment, a MATLAB program was made to 

evaluate the signal to noise ratio obtained when a mosquito enters the laser beam. In 

addition, continuous waves of the signals initially sent and received will be compared to 

find a phase shift. This phase shift will then give us the distance that the insect is from the 

detector and therefore, the set up. Additional programs will be provided that accomplish 

various tasks of analyzing the signal found. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 General Statement 

 

Mosquitos may be mere annoyances to some parts of the world, but they can be a serious 

threat in others. In fact, these small insects are some of the deadliest creatures on Earth. 

Their ability to transmit diseases through bites make them potent disease vectors. In several 

parts of the world, mosquitos carry dangerous diseases such as malaria, yellow fever, or 

the more recent Zika fever. 700 million people are affected by mosquito borne diseases 

every year, resulting in one million deaths annually [6, 10, 11, 25]. One mosquito species 

alone, the Aedes Aegypti is responsible for carrying several dangerous diseases. 

 While treating the diseases is one way to tackle this issue, dealing with the disease 

vector has proven to be a more effective method [19]. In order to combat this threat, 

insecticides and larvicides are often used to control the population of mosquitos. 

Monitoring mosquito populations and their flight patterns is necessary for these chemicals 

to be most effective.  

 Current population monitoring methods rely on using physical traps and bait, which 

can be difficult to set up in some areas and requires enough capable personnel to run the 

laboratory analysis. Another major limitation to this method is its statistical accuracy. The 

high cost of testing limits the number of assessments, which are needed to ensure accuracy. 

With a small sample size, there is an uncertainty in how accurate this method can be. In 

addition, the location that samples are obtained will have a major effect on the results, as 

mosquitos populations highly vary by location [19]. 
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1.2 Alternative Methodologies and Techniques 

With global climate changes, the flight patterns and species diversity of mosquitos in areas 

becomes more dynamic [19]. This creates issues with standard flight pattern methods, as 

they could become inaccurate quickly. Therefore, there is a demand for a method that will 

identify mosquitos quicker than current methods in the field. Identifying mosquitos out of 

various other types of insects that could possibly fly through the area of interest is 

necessary, but any information determined could be of use. Various features about the 

mosquito such as their age, sex, specific species and various characteristics would be of 

great help for disease prevention [19].  

 Difficulties arise from the large variety of mosquitos that exist. With over 3500 

species and 41 genera of mosquitos, it would seem a difficult task to categorize them all or 

to see the minute differences between each. A narrower focus can be applied to species of 

interest when it comes to certain diseases. For example, the West Nile Virus is typically 

transmitted by one of the Culex species [6]. Specific traits of these species can be focused 

on in the analysis.  

Finding particular characteristics such as the species or sex of a mosquito can be 

done by an experienced individual by eye, but this can be tedious and costly. There are 

more complex methods that can do this currently, but they also run into the problem in 

regards to cost and time. Polymerase chain reaction (PCR) is one such method that involve 

taking mosquitos from the wild and preparing the samples to test them. While this method 

is accurate to each mosquito, it might not be accurate over an area or time.  Many 

environmental factors affect the population density and breeding grounds of mosquitos, 

meaning that the location where these mosquitos are obtained will affect the results [19]. 
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Because of the long time period and cost of PCR, simply taking more samples from a larger 

region is not a feasible solution. A remote sensing method that can be placed in the field to 

obtain real time results will be much more useful to obtain such information. 

Determining the age of mosquitos is epidemiologically important, as age and sex 

are very good indicators that a mosquito may carry disease. Only female mosquitos need 

to consume blood, meaning that they will be the subset of a population that is a vector of 

disease. Typically, mosquitos older than ten (10) days have a higher chance of carrying 

disease. Not many techniques exist which can determine the age of a mosquito. Ovarian 

dissection is one method which is used, but it is again time consuming and skilled work 

[19]. A method that will quickly obtain information about a more significant portion of the 

mosquito population would be preferred.  

Therefore, a long range method that can determine many aspects and traits about 

insects would be beneficial. Current approaches have short comings including time, cost, 

and spatial accuracy. 

  

1.3 Previous LIDAR Studies 

There have been several other experiments and studies that use LIDAR, or Light Detection 

and Ranging, to accomplish similar goals of identifying insects or finding insect flight 

patterns. It is becoming more common in entomology.  

 One previous study done focuses on two traits, the wing beat frequency and the 

body to wing ratio [18]. The ratio between the body and wing size is an important factor 

because it is unique between several types of insects and can be used to characterize signals. 
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Using only those two characteristics has a few limits, namely that some mosquitos 

and insects have overlapping traits, making these two qualities insufficient in absolute 

characterization of specific mosquitos. Thus, they cannot be the only definitive methods of 

identifying specific types of insects, and more parameters must eventually be introduced.  

Several of these papers do not focus on small mosquitos, as done in this thesis. One 

in particular observed many different types of large insects using long distances up to 140 

meters [18]. Mosquitos listed here had a wing cross section almost ten times larger, with a 

slightly larger body cross section compared to what is used in experiments in this thesis. 

Classification was done using mainly wing beat frequency and body to wing ratio.  

These previous studies had a focus on the time of insect’s flight, whereas this thesis will 

try to attain information from the signals to be used for future classification. 

 

1.4 Objective 

The objective of this thesis is to study the use of LIDAR in remotely identifying and 

characterizing mosquitos, using both numerical simulation data and a laboratory 

experiment. In this thesis, numerical simulation and MATLAB (Matrix Laboratory) 

simulation will be used interchangeably. The purpose of the numerical simulation is to 

mimic realistic results using a model based on theoretical formulas and values. As 

equipment can be expensive, having an idea of the feasibility of this project is important. 

A numerical model will give vital information regarding the effectiveness of LIDAR in 

characterizing insects. For example, as the distance between the mosquito and the 

photodetector used to capture the signal increases, the strength of the signal decreases. 

Knowing the distance at which the system is effective is useful, especially for future 
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outdoor experiments. From previous scientific contributions and literature [24], variables 

useful to the model are known. Knowing specific elements of the experiment such as the 

collecting optics and distance to the insect gives enough parameters to create an accurate 

representation of the signal that would be received.  

Initial experiments are done in a laboratory setting as a proof of concept, and to 

find how the experiment could be improved. Finding sources of errors, the signal to noise 

ratio, and limitations of the system to accurately retrieve optical properties of mosquitos 

are vital steps in finding how effective LIDAR could be to remotely characterize 

mosquitos. In addition, the optical properties and wing beat frequency of mosquito species 

and various types of insects will help in the future when classification becomes more 

important, and a database must be set up for the remote identification of insects using 

LIDAR. 
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CHAPTER 2 

LIDAR AND REMOTE SENSING 

   

 

2.1 LIDAR Methodology 

 

Consisting of a laser and a photodetector, LIDAR is used in many fields such as 

atmospheric physics, geography, laser guidance, and many more. These devices are 

effective at detecting the distance from a target to the detector. Usually this is done using 

a pulsed laser, where the difference in time of flight of the pulse is measured between the 

initial pulse and the received pulse. The light must travel to the target, reflect, and then 

travel back to the detector, so the distance is multiplied by two in Equation (2.1). In this 

equation, t is time and c is the speed of light. 

 

𝑡 =
2𝑑

𝑐
 

(2.1) 

  

 One typical use for LIDAR is mapping topography, where a laser is mounted under 

a plane and swept over an area in order to measure the distance from the terrain. Knowing 

the height of the aircraft and principle axes, it is possible to map the terrain measured. It is 

also finding use in autonomous vehicles to detect the area around them and distance 

between other vehicles. As mentioned in Section 1.3, LIDAR has been used in similar 

studies for the purpose of insect flight patterns. 

The surface of the target is of great importance to any laser use. The target and its 

surface determines how much of the laser light will be reflected back. Factors such as the 

size of the target and how reflective the target is are two of the most important values. 
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Cross section will be used rather than size of the target, as the cross section is indicative 

how much of the surface interacts with the laser light.  

The surface of a mosquito is not a diffuse Lambertian reflector, that is to say, it 

does not scatter reflected radiation in all directions equally. The amount of light reflected 

is defined by the reflection and backscatter coefficient which includes both specular and 

scattering reflection. The solid angle of the collecting optics and reflectivity will largely 

determine the amount of light reflected back. 

In order to collect as much reflected laser light as possible, a 3-inch diameter 

parabolic gold mirror is used to collect and focus the light into the detector’s active area. 

As gold is highly reflective in the near and short range infrared region, it is an ideal 

material. 

 

Figure 2.1 Absorbance spectra example. The absorbance of Anopheles arabiensis (top) 

and Anopheles gambiae (bottom) mosquitos is shown here. Although we are used an 

Aedes Albopictus and Culex species, the result will be similar. 

 

Source: [19] 
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The wavelength used is 1.32 µm because mosquitos and several other insects have 

a high reflectance in that region. Figure 2.1 shows one spectra graph of a mosquito, with 

high reflectance around 1.3 µm. This allows the strongest possible signal reflected back. 

In this section, many limitations have been mentioned which lower the signal to much 

weaker power compared to the initial laser power. One of the purposes of the numerical 

simulation is to determine whether enough light can be detected to form a useful signal. 

 

2.2 Formula and Terms 

In this report, a constant power laser is utilized. Therefore, no modulation occurs and no 

range finding is done. Section 2.5 will describe the power once it is modulated for range 

finding use. The actual power is calculated and described in Section 4.1.  

The reflectivity is wavelength dependent. Although Figure 2.1 describes the 

absorbance spectra for one species of mosquito, other sources indicate that the value is 

between 20% and 60% [13, 18].  

As mentioned, some light will reflect diffusely off the insect. This means that out 

of all the reflected light, only a fraction can be collected. Equation (2.2) is used to describe 

the power that is received. 𝐼(𝑑) is the light intensity received back from the mosquito. 

 

𝐼(𝑑) =
𝐾

𝑑2
∗ 𝐼0 (𝑡 −

2𝑑

𝑐
) ∗

𝑐𝑏 ∗ 𝛽𝑏 + 𝑐𝑤 ∗ 𝛽𝑤

𝜋 ∗ (𝑟 + 𝑑𝑖𝑣 ∗ 𝑑)2
 

 

(2.2) 

𝑐𝑏 and 𝑐𝑤 are the cross section of the mosquito’s body and wing respectively, while 

𝛽𝑏 and 𝛽𝑤 are the backscatter coefficient for the mosquito’s body and wing.  𝑟 + 𝑑𝑖𝑣 ∗ 𝑑 

accounts for the change in the radius of the laser’s beam over distance where r is the initial 
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radius of the laser beam, div is the divergence of the laser beam over distance, and d is the 

distance between the Photodetector and the mosquito target. K describes the solid angle of 

the parabolic mirror. This also includes the reflectivity of any optics in the experiment, 

including the three gold mirrors. Equation (2.1) is included here to account for the time the 

light spent traveling before it reaches the detector. Equation (2.2) does not completely 

describe the experimental set up and signal we receive. Most of these restrictions stem from 

the laser, and how the spatial beam profile of the laser changes the power that reaches the 

mosquito. This is defined in more detail in Section 3.2. 

 

2.3 Classification 

When an insect passes through the laser beam and a signal is received, several pieces of 

information are obtained. Putting these pieces of information together will hopefully allow 

classification of signals recorded by mosquito or insect with a degree of certainty. While 

trained individuals may be able to identify insects through sight, a program must be written 

to categorize insect signals received. Insects have several identifying traits that will be 

used.  

The easiest trait is the wing beat frequency. As the mosquito flies through the beam, 

it will flap its wings. When the wings are completely up or down, they will appear very 

different compared to when they are parallel to the body of the mosquito. This will appear 

in the signal as wavelike oscillating behavior. In many insects, the wings are of comparable 

size if not bigger than the body. These wing beat signals should be clearly visible over the 

body contribution in the signal. Many other insects have frequencies in the same range as 

mosquitos [18]. Mosquitos in particular have a unique wing beat which they use in their 
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flight which is described as leading edge vortices and trailing edge vortices [2]. If this 

rotational mechanism is visible in signals, it could help in identifying mosquitos. Figures 

4.7 and 4.8 display the projected area during flight from two perspectives. 

If the wing beat frequency can be retrieved, then the body to wing ratio can also be 

calculated. Depending on the direction that the mosquito is facing relative to the laser 

beam, its body to wing ratio will appear differently in the signal. Figure 3.2 shows 

mosquitos in various orientations. Although this body to wing ratio varies, it could still be 

a useful tool. Not only will the body to wing ratio be found for the purpose of identifying 

the insect or mosquito, but additionally the orientation of the mosquito might be possible 

to extrapolate. 

These are two of the main tools used to identify and characterize the signals of 

insects. Through the experiment, more details are found analyzing the signals that might 

be useful to characterize the insects. For example, the wing beats appear differently through 

many signals, possibly allowing more information to be gained about the flight of the 

insect.  

 

2.4 Range Finding 

A useful tool in classifying insects is to understand the distance where they pass through 

the laser beam. Although not yet used, it is important to understand how it will impact the 

results later on. Knowing the distance, along with the strength of the signal can give a good 

idea of the size of the source. Without this, trouble can arise from situations where larger 

insects that are further away from the laser compared to smaller insects result in signal with 

similar strength. The method of determining the distance will use the phase shift of a 
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continuous wave signal to determine the time of flight of the laser beam, as opposed to the 

pulsed light that is common in LIDAR use. It is described in Equation (2.3). 

 

𝐼0(𝑡) =  𝐼0̅ ∙ (1 + A ∙  cos(2𝜋𝑓𝐿𝑡)) (2.3) 

 

𝐼0̅ is the mean power that the modulation oscillates around, while A influences the 

height of the amplitude. 𝑓𝐿 describes the frequency that will be used in modulation. This 

value must be lower than the bandwidth of the detector, while large enough to obtain 

meaningful distance measurements.  

One main change compared to past studies done comes from the method of which 

range finding is done. While the IR laser beam uses the phase shift to measure the distance 

between the insect and the detector, an alternative method commonly used is based on the 

Scheimpflug principle. For more detail on the range finding using the Scheimpflug 

principle, see the following papers [3, 4, 5, 18]. No modulation is required using this 

method, but the distance given by this method is usually a range. 

An example of how phase shift is used is shown in Figure 2.2. The initial signal 

follows Equation (2.3), while the received signal is one where no power is lost for the 

purposes of showing the phase shift. From Equation (2.1), the distance can be found.  
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Figure 2.2 Representation of the phase shift. Sources of error in determining the distance 

comes when noise is introduced and from hardware limitations in bandwidth. As more 

noise is present, the position where to compare waves becomes less clear. The time of 

flight is used to determine the distance. 

 

 

 The signal can be characterized as a sinusoidal wave with modulating power. 

Although the speed of light is extremely quick, it still takes time to travel and return. An 

example of a modulated signal is shown in Figure 2.2, where an initial signal is sent, then 

after some time, a signal is received. The signal received will have noise from the 

background and detector, and a visible body and wing contribution from the mosquito. In 

this theoretical signal, the modulation of frequency from the initial signal will be seen. In 

experiments where we measure the Aedes Albopictus, the acquisition system uses a 

bandwidth of 30,517 Hz. Using Equation (2.1), we see that the absolute spatial resolution 

would be approximately 4912 meters.  

This is too large to be of any use. However, these measurements are only being 

used to detect the wing beat frequency and body to wing size, so a higher degree of 
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precision is not needed. In future testing, the gain step will be lowered to 0 or 10 so that 

range finding can be done. The bandwidth present on the 0 and 10 gain step is 10 MHz and 

4 MHz, respectively, which have an absolute spatial resolution of 14.99 and 37.47 meters, 

respectively. While still very large, using averaging and a Hilbert transformation will allow 

further precision. Improving the accuracy of range finding is also possible using methods 

such as the heterodyne technique [3]. If a precision within a meter is possible, it would be 

helpful in aiding with the characterization of insects. 

 Typically a transformation is used to measure the phase shift. The angle between 

the initial signal and the received signal describes the phase shift present. Results of the 

numerical simulation phase tests are summarized in Section 3.4. 
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CHAPTER 3 

NUMERICAL SIMULATION 

 

 

 

3.1 Purpose 

 

There were several outcomes obtained from the numerical simulation. However, three of 

them were of high importance. The signal to noise ratio vs distance, the phase shift vs. 

distance, and the amplitude of the initial signal. The signal to noise ratio would give 

information about how much signal we would ideally be receiving over the noise. 

Considering the small portion of light that would return compared to the initial laser light 

sent by the laser, this value is very important. It is necessary that we are able to see the 

mosquito’s signal sufficiently over the noise present from the laser, detector, and 

background. A ratio above ten is typically desired. Prior to choosing the Thorlabs 

PDA20CS Photodetector, this numerical simulation was also used to test the effectiveness 

of each possible detector option. Once the PDA20CS was selected and tested, each gain 

step was tested for the three previously stated values. 

This information could give an idea of how well the detector would work both 

indoors in the laboratory setting and outdoors for possible field measurements. While the 

PDA20CS is being currently used, another Photodetector, the PDA10T, was found that 

would possibly be better suited for the longer distances in an outdoor setting. However, a 

much higher cost makes it unwarranted for indoor use. 

Each gain step increases the gain by a large factor, while slightly increasing the 

noise. Therefore, the signal to noise ratio increases with each gain step. The tradeoff with 

each increase in gain step is a loss in bandwidth. This loss would make phase measurements 
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less accurate. Therefore, a compromise must be made here between precise distance 

measurements and signal strength. As previously mentioned in Section 2.4, the amount that 

we modulated the power of the initial laser is also a variable which must be found. The 

accuracy of the phase shift measurements is related to the amplitude of the laser power. As 

amplitude decreases, the influence noise has on the modulation becomes more apparent. 

When the amplitude is larger, it is easier to correctly identify the sine wave from 

modulation, which the Hilbert transformation used for phase shift relies upon.  

 

3.2 Assumptions 

Several assumptions are made in this simulation. This is necessary for a numerical 

experiment to be done as there are many variables which cannot be accounted for precisely. 

Some aspects of the experiment are random and changing every iteration, while others 

cannot be found without specialized equipment. One example is the power of the laser 

beam throughout its cross section, which is commonly referred to as the laser beam spatial 

profile, or Gaussian beam. Many lasers have a similar profile such as in Figure 3.1. 
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Figure 3.1 Typical Spatial Beam Profile. This three dimensional graph shows an example 

of the Gaussian spatial beam profile of a laser. In the very center of the beam, its intensity 

is at its highest, while it decreases further away. 

 

 

Commonly, the intensity of the laser beam is greatest in the center of the laser beam 

cross section, with the intensity decreasing further from the center. As the mosquito will 

be flying in a straight line through the middle of the laser beam, a two dimensional equation 

is sufficient. Flying at a constant speed, the equation is able to be converted from power 

vs. distance, to power vs. time. This allows a Gaussian profile to be used in the simulation. 

This will be visible in signals as mosquitos traveling in the beam will reflect varying power 

depending on their location in the laser beam profile.  

As stated, the insect is assumed to fly straight across the center of the beam once 

each iteration. There are no turns or changes to the direction of its flight. The top speed of 

a mosquito is estimated at 120 cm/s (1.2 m/s) for some species, but as that is extremely 

quick, we will assume the speed of mosquitos to be 2 km/h, or 0.555 m/s [23]. This will be 

used to determine the time the mosquito will spend in the beam, or transit time, if it flies 

straight across. At 4 meters, with a laser beam diameter of 16.7 mm, the mosquito would 
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have a transit time of 0.03 seconds which gives about 18 wing beats assuming every wing 

beat is positioned in the cross section of the laser beam. Laboratory experiments will likely 

give different values, as the mosquitos will be travelling at various speeds. Experimental 

signals showed mosquitos in the laser beam for longer periods of time than assumed here. 

Because of the large possible range seen in the reflectivity values of the mosquito 

from 20 to 60%, a specific value is difficult to assume. Therefore, the middle value of 40% 

will be used in the simulation.  

The orientation of the mosquito relative to the laser beam must be taken into 

consideration as it affects the cross section of the body and wings. Two different 

orientations are considered in this simulation. One is sideways, where the mosquito flies 

directly across the laser beam, similar to the mosquito on the right in Figure 3.2. The second 

is flying vertically with respect to the laser beam. The wing contribution changes the most 

between orientations. When the mosquito is sideways, only one wing is seen as it flaps, 

whereas when the mosquito flies vertically, both wings can be seen, multiplying the wing 

cross section by two. While this is a simplification of the mosquito’s flight mechanics, it is 

considered sufficient for the purposes of the simulation. 

 



18 
 

  

Figure 3.2 Several mosquito orientations. The appearance of the wings in the signal is 

highly dependent on the orientation of the mosquito when it is in the laser beam. In this 

photo are three possible orientations of the mosquito, each showing a different cross 

section to the laser beam. 

 

Source: https://www.youtube.com/watch?v=JQl4OP2XdYA [2] 

 

 

The average wing beat frequency of male and female mosquitos is different 

depending on the species. Using Aedes Aegypti as a reference, male mosquitos have a 

frequency of 711 Hz, with a standard deviation of 78 Hz, and females having a frequency 

of 511 and a standard deviation of 46 Hz [1]. In this numerical analysis, we will assume a 

frequency of 600 Hz for the hypothetical insect, in between the two sexes. Many different 

species have a wing beat frequency that is quite similar.  

The noise from the detector is assumed to be Gaussian distributed. Several 

measurements of only the detector noise were obtained using the Tektronix MDO2042C 

oscilloscope. The active area of the detector was covered with a provided cover so no 

additional noise was received from any background light sources. The Snapshot function 

was used which gave several values including the maximum, minimum, mean, and Root 

Mean Square (RMS) values of the detector noise. Four trials were done, and the average 

https://www.youtube.com/watch?v=JQl4OP2XdYA
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of each respective value was taken. Using the randn function, a random number generator, 

in MATLAB, a random Gaussian distribution was made with values that most matched the 

values obtained of the noise. Experimentally, more noise was received than expected 

because of two parts of the experimental set up. In order to match this new increased value, 

the noise was multiplied by 6. No baseline is used, as the baseline changes several times, 

from optimizing and improving the experimental set up. 

  

3.3   Inputs and Equations 

Several values for the initial laser power, 𝐼0 are tested. To more closely match the 

experimental set up, a constant power of I = 3.75 Watts is chosen. However, when running 

tests on the effectiveness of phase shift measurements, Equation (2.3) is used as the initial 

signal. Several values of 𝐼0̅ and ‘A’ are chosen making the power modulate from the lowest 

of 3-4 Watts, up to 3.8-4 Watts. The power received is similar to Equation (2.2). 

 The one difference is a factor P which accounts for the Gaussian spatial beam 

profile, and how the mosquito occupies an area of the total laser beam cross section. This 

multiplies all of Equation (2.2) by a Gaussian function. 

If the mosquito travels through the widest part of the beam, as assumed, then the 

Gaussian beam spatial profile can be viewed as a two dimensional profile, rather than three 

dimensional, as in Figure 3.1. It will resemble a typical Gaussian distribution as a function 

of power and distance in the x direction. Because the mosquito is travelling at a constant 

speed, and assumed to enter the beam at the same time throughout the simulation, this two 

dimensional spatial beam profile can converted from a unit of distance, to one of time.  
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Using a ruler to measure the body of a laboratory mosquito, and assuming an eclipse 

shape for both the body and wing, the body cross section was estimated as 2.6 mm2, and 

the wing cross section as 0.8 mm2 each wing. The radius of the laser beam is measured as 

12.7 mm, or half an inch. Divergence has the value previously mentioned, 1 mrad, at a 

distance of 3.6 meters from the detector. 

All previously stated signals, I, have the units of Watts. Using the responsivity and 

gain specifications of the photodetector, the signal can be converted in Volts. Appendix A 

includes all gain step specifications. According to the manufacturer, responsivity is about 

0.85 A/W at 1300 nm.  

 In order to be more accurate, the results of the experiment were compared to that 

of the simulation to see possible sources of error in order to further calibrate the simulation. 

One important correction came from the shadow of the sending mirror in front of the 

sending mirror. To allow the laser beam and collecting optics to be co-axial, a sending 

mirror must be placed in front of the parabolic mirror. This results in some of the reflected 

radiation being blocked by the sending mirror and its post from reaching the parabolic 

mirror and ultimately reaching the detector. After accounting for a lower collection of light, 

the results closer matched that of experiments.  

 

3.4 Simulation Results 

A basic output of the numerical simulation is included in Figure 3.3. As stated, in the 

middle of the mosquito’s signal, the signal is at its highest, where the laser beam spatial 

profile is at its strongest. 
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Figure 3.3 Simulated LIDAR Signal at 3.6 meters, the middle distance in the 

experimental set up. The baseline is set at zero, compared to the experiment, where the 

background will introduce a baseline noise. The gain step simulated is 50 db. The SNR 

found here is 11.8. 

 

 

Two different transit times were used in simulated results. One assumes the 

mosquito travels at 0.555 mph, and one that has the previous transit time multiplied by 

four, as used in Figure 3.3. An increased transit time was introduced after experiments were 

done, because transit times ended up being longer than anticipated. 

 The signal to noise ratio is the first value of importance obtained from the numerical 

simulation. It is calculated as the ratio of the maximum value of the signal over the standard 

deviation of the noise. Two conditions are used, one using the indoor laboratory conditions 

of the experiment, and another outdoor setting. 
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Figure 3.4 Simulated Indoor and Outdoor SNR. The main results here are the maximum 

distance where useful results can be obtained. 

 

  

 In an indoor setting, SNR will reach 1 after 8 meters. As the outdoor setting will 

have different conditions, several parts of the experiment will be changed. The simulation 

will assume a larger parabolic mirror in use that is 10 inches in diameter, which is used for 

the further distances needed experimentally outdoors. In addition, as a large part of the 

noise comes from parts of the set up and background in the laboratory, the outdoor set up 

will assume no further noise apart from the photodetector. These aspects that increase the 

noise are specified in Section 4.1. 

 The outdoor results show a much further distance possible than using indoor 

conditions. After 45 meters, SNR is around 1. This is a distance more than 5 times further. 

These results show an adequate range if this system was to be used outdoors. 

 Early results in the numerical simulation show that the Hilbert transformation is 

more effective than the Fourier transform in this application. It is similar to a Fourier 

transformation, which is commonly used to measure the phase in signal analysis. One 
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setback with the Hilbert transformation is that it requires a high signal to noise ratio. A 

gain setting of 10 is used in the numerical analysis of the phase shift, with 200 kHz 

modulation for Figures 3.5 and 3.6. A larger mosquito cross section is used from 

“Observation of Movement Dynamics of Flying Insects Using High Resolution LIDAR” 

[18]. 

 
 

Figure 3.5 3.8-4 Watt Amplitude Phase Shift. Using a smaller amplitude resulted in 

multiple distances having the same phase shift result. While there was an upward trend 

with distance, this would be unusable and gave information that a larger amplitude was 

necessary. 

 

 

 Using an amplitude from 3.8 to 4 Watts, the smallest tested amplitude, results 

showed that a larger amplitude would be necessary to determine the distance. Although 

there is an upward trend in phase shift with distance, this amplitude would not allow 

distance to be accurately measured. 
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Figure 3.6 3-4 Watt Amplitude Phase Shift. A larger amplitude showed much more 

promising results, with clearer upward trend with distance. However, there was still 

results that had the same phase shift with different distances. 

 

 

 With a greater amplitude of 3 to 4 Watts, phase shift appeared to vary more with 

distance, but still not sufficiently. A slightly greater amplitude will be necessary in 

laboratory experiments. The same value of the angle between transformations is given for 

several distances, which makes it unsuitable. As modulation was not in use, no further tests 

were ran to establish a proper amplitude range. Further tests would have used a modulation 

of 2.5 to 4 Watts. 

 

3.5 Discussion 

While Figure 3.3 allows a wing beat frequency to be determined, experimentally it is likely 

to be much higher. This is because the mosquito may start out stationary within several 

inches of the laser beam, not allowing the insect to build up speed, causing it to fly through 

the laser beam for longer periods of time. In addition, it will likely not only travel directly 
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across the beam, but in many different directions, some of which result in a longer transit 

time in the beam. 

 As many numerical simulations make assumptions and take values from other 

sources, there are many sources of error. There are multiple differences between the 

simulation and experiments, which account for the differences present. All cross section 

measurements are done with a ruler, including the mosquito and laser beam radius. The 

mosquito’s small size makes accurate measurements more difficult, while the laser beam 

is not in the visible wavelength, making infrared sensitive cards necessary to see its size. 

Only one male Aedes Albopictus mosquito was measured with a ruler to determine its size, 

while females and males, and each individual species have different sizes. 

 A wide range in backscattering coefficient introduces another source of error, as 

the backscatter combined with the cross section of the insect give a high possible error in 

Equation (2.2). 

 In future experiments that might be done outdoors, it can be assumed that there will 

be less noise. Calculating how much noise is difficult. Two parts of the laboratory set up 

that will be expanded upon later, the slanted glass and beam stop, introduce more noise to 

the signal. However, these are necessary to the indoor experiment, and will most likely not 

be included outdoors, or be placed much further away. With less noise present in the signal, 

a higher SNR will be possible for further distances. 
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CHAPTER 4 

EXPERIMENTS 

 

 

 

4.1 Optical Layout and Specifications 

 

The optical set up uses three separate mirrors, two of which are outlined in Figure 4.1. One 

sending mirror, not shown in Figure 4.1, is between the converging lens and sending mirror 

shown in the figure. An off-axis parabolic mirror collects the radiation which is scattered 

from the mosquito, while the two sending mirrors are used to position the laser beam 

properly. This parabolic mirror is the K variable that was previous discussed in Section 

3.3. The mosquitos are placed in a long plastic tube, approximately 1.2 meters in length, 

which has three circular holes drilled in it. These are used for blowing air into, as mosquitos 

are generally stationary without stimuli. The distance from the parabolic mirror to the 

beginning of the tube is 2.98 meters. At the end of the tube, a beam stop is placed, which 

is highly absorptive of infrared radiation.   

 

Figure 4.1 Optical Layout of the system. A borosilicate glass is placed at the front of the 

Plexiglas tube to prevent escape. 



27 
 

 Two species of mosquito tested so far were Aedes Albopictus and an undetermined 

Culex species. Their sex can be easily determined visually based on body size and 

bushiness of their antennae. The males have much more small hairs (fibrillae) on their 

antennae and smaller bodies than the females. Mosquitos are inserted approximately 3.6 

meters from the detector following the path of the beam. A large distance allowed multiple 

measurements with a variety in strength of signal. 

To double check on the power of the laser, an optical power detector was used. The 

power of the laser is not constant, as it has some degree of noise, and changes with 

temperature caused by the temperature controller and stabilization. As we used about 3.6 

Watts of power, we could not measure the power directly using this detector. It had a limit 

of 1 Watt maximum power detected, so a different approach was used to measure the power 

of the laser. An attenuator glass filter with low transmission at the infrared range was used. 

Two Amps of current were applied to the laser, which put the power well within the 1 Watt 

maximum power limit. This resulted between 0.7196 and 0.7395 Watts of power measured, 

changing over time. Placing the low transmission glass between the laser and detector 

resulted in a power of 85.18 mW measured, which is between 11.565% and 11.837% of 

the total power. Using the 10 Amps that were used throughout the experiments, a signal 

with the attenuator glass filter results in between 0.4279 Watts and 0.434 Watts of power 

measured. This means that in the experiment, the power wavered between 3.6148 and 3.75 

Watts. This wavering of the laser power was not sudden, but appeared slowly as the 

temperature was stabilized. 

As the worry of mosquitos escaping grew larger, more measures had to be taken to 

prevent it. The beam stop was placed on the back of the enclosure to prevent escape from 
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the back of the tube, and a borosilicate glass was placed in the front of the enclosure. 

However, a reflectivity of 10% in the infrared range caused saturation in the detector. To 

remedy this, the glass was slanted down, causing any reflection of the glass to not be 

recorded by the detector. A 3-D printed cover was placed between the glass and the tube 

to fill the gap. 

Moving the parabolic mirror over, to prevent the shadow of the sending mirror and 

post was tested briefly, but results were not much better, so the original set up remained. 

While a sufficiently high bandwidth is necessary for phase measurements on the 

other of Megahertz, it is not needed for early experiments. For the preliminary experiments, 

other factors are observed such as the wing beat frequency, body to wing contribution and 

other characteristics in the wing beats. According to the manufacturer, the 50 gain step has 

a gain of 238 kV/A with a bandwidth of 67 kHz. The acquisition card uses a bandwidth of 

30,517 Hz, which is more than enough to measure the wing beats of the mosquitos, which 

should be no more than 850 Hz. Additionally, the software that uses the acquisition card 

used to record results was unable to record measurements with extremely high bandwidth 

at the time of this report. 

 

4.2 Results 

Three total batches of mosquitos were received from the Center of Biology Vector at 

Rutgers University, the first and third batch of only Aedes Albopictus, and the second batch 

containing Aedes Albopictus and a Culex Species.  

 Figure 4.3 is an example of a mosquito sighting that was recorded. Sharp peaks 

were typically seen indicating mosquito wing beats. 
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Figure 4.2 Signal received from a female Aedes Albopictus mosquito. The wings appear 

to be enter the beam before the body, and its orientation allowed for very prominent, 

sharp wing beats to be seen. 

 

In several mosquito sightings, sharp peaks were prominent where the wing beats 

were. The mosquito body appeared as expected, rising and falling gradually in the signal. 

The frequency of the wing beats was found using the Fourier transformation of the signal.  
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Figure 4.3 Absolute value of the Fourier transformation of Figure 4.2. Looking at the 

maximum value between the ranges where mosquito wing beat frequencies are known to 

be, the frequency can be identified as 491 Hz. Multiple harmonics can be found in higher 

frequencies, seen at around 1000 Hz. 

 

 

 This Fourier transformation allowed the wing beat frequencies of all signals to be 

recorded. A signal from a male of the same species is included which shows the 

difference in wing beat frequency and the difference possible in signals. 
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Figure 4.4 Signal received when a male Aedes Albopictus mosquito flies through a beam. 

The body to wing ratio is not constant through the signal, lower in the beginning of the 

signal, but growing near the middle. A frequency of 560 Hz is measured. 

 

There are multiple patterns that are visible in the wing beats, such as peak 

sharpness, body to wing ratio, and change in frequency over a single signal. These can be 

indications of orientation, speed, or some other aspect of the mosquitos. As seen in Figure 

4.5, multiple patterns exist for mosquito wing beats. They have been narrowed down to 

four main categories. One is the sharp narrow peaks already seen in Figures 4.2 and 4.4. 

Another is a dull wide peak seen in graph B of Figure 4.5. There are also peaks that clearly 

have a smaller secondary peak that appear after the main sharp or double peaks mentioned. 

These will be split into two more categories called sharp/double and dull/double. 

Sharp peaks that occur come from specular reflection off of the wing of the 

mosquito [4, 5]. When the wings are normal to the path of the laser, specular reflection is 

being captured as opposed to the usual diffuse reflection. Specular reflection is much 

stronger than diffuse reflection, causing the increase in signal strength in short time periods. 
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This type of wing beat is visible among all of the mosquitos measured and is present in the 

majority of signals. 

In the first batch of Aedes Albopictus measurements, there is a wavelike behavior 

in the noise that appears. We have attributed this noise, which has a frequency of 120 Hz 

to the lights that were on in the room. In further measurements, the lights were turned off 

at the time of recording. 

 

Figure 4.5 Four Different Peak Types, Voltage Vs. Time. A) represents a sharp peak 

type, occurring when specular reflection is detected. B) represents a dull peak, occurring 

less often than sharp peaks, and is caused by diffuse reflection. C) and D) depict a second 

peak that is visible after each main peak. All signals are from a male Aedes Albopictus 

using the same time scale. 

 

 

 Specular reflection occurs when the light travels back at the same angle that it is 

sent. Because of the sending mirror that is in the way of the parabolic mirror, this angle is 

not exactly 180 degrees. As the wing must be in a certain position to cause the specular 

reflection, we assume that these sharp peaks indicate that the mosquito is in a certain 

position with respect to the laser beam. 
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 In order to obtain more information about where this specular reflection could come 

from, all of the mosquito signals were categorized to five types of peaks. All of this 

categorization was done by eye. The ‘other’ category was reserved for signals that were 

different enough from the other categories that they did not fit them but did not have any 

significant pattern to place them in their own category. Signals where no wing beat 

frequency was visible or hard to differentiate from the noise were ignored. 

 

Table 4.1 Characterizing Wing Beat Peaks 

 First Batch Second Batch & Third Batch 

Aedes Albopictus Aedes Albopictus Culex Species 

Male Female Male Female Male Female 

Sharp Peaks 3 (25%) 6 (66.6%) 15 

(14.56%) 

5 (12.5%) 15 

(57.7%) 

12 

(30.77%) 

Dull Peaks 2 (16%) 1 (11.1%) 19 

(18.44%) 

5 (12.5%) 2 (7.7%) 9 

(23.08%) 

Sharp double 

peaks 

1 (8.33%) 1 (11.1%) 54 

(52.43%) 

24 (60%) 4 

(15.4%) 

13 

(33.33%) 

Dull double 

peaks 

1 (8.33%) 1 (11.1%) 15 

(14.56%) 

4 (10%) 2 (7.7%) 4 

(10.26%) 

Other 5 0 0 2 3 1 

Total 12 9 103 40 26 39 

 

 The majority, 67.4%, of all visible wing beats are, or have a majority of, sharp or 

sharp double peaks. As a change in orientation occurs sometimes when the mosquito is in 

flight, the type of wing beat peaks will change in a single signal. For example, Figure 4.5 

A and B are from the same mosquito sighting. The first batch is separated from the second 

and third batch because mosquitos from the first batch were introduced from the side using 

a small tube to place them directly into the laser beam. Mosquitos in the second and third 

batch were placed in the tube, where they could fly freely in multiple directions during 

recording. As this likely influences their orientation when a signal is recorded, they are 
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separated. Discounting the first batch, 68.6% of freely flying mosquitos register a sharp 

peaking wing beat.  

 As previously stated, it is believed that the different types of peaks correspond to a 

different orientation of the mosquito in the laser beam. When the body to wing ratio is 

observed overall, it appears to have a very wide range. However, as the body to wing ratio 

is connected to the orientation as well, it makes sense that there is more order when the 

ratios are split into categories.  

Table 4.2 Male Aedes Albopictus Body to Wing Ratio 

Type of Peak Sharp Dull Sharp/Double Dull/Double 

Average 1.2081 4.8535 1.4294 5.2368 

Standard Deviation 0.9401 2.3174 0.912 3.028 

 

Table 4.3 Male Culex Species Body to Wing Ratio 

Type of Peak Sharp Dull Sharp/Double Dull/Double 

Average 1.4785 2.2769 0.7294 3.9279 

Standard Deviation 0.70218 0.0895 0.422 1.901 

 

A computer model was made which replicated the unique flight pattern of a 

mosquito. Using this model, the projected area of the insect was calculated and plotted. 

This shows how the body to wing ratio and wing beat peaks can change as the orientation 

is different. 
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Figure 4.6 Projected area of a mosquito using a side view of a mosquito over two full 

cycles. This assumes that the mosquito is facing sideways such that it crosses the laser 

beam. Very small peaks are seen in between the main peaks. 

 

 

 Small second peaks seen here do not describe the large peaks seen in several of the 

mosquito signals. Therefore, another projected area graph was done from a new orientation. 

This new orientation has the mosquito directly facing the direction that the laser beam is 

coming from. As there are numerous orientations possible, not many of them have been 

plotted yet. 
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Figure 4.7 Projected area of a mosquito using a front view of a mosquito over two full 

cycles. Here, two peaks are seen over one cycle, with a very strong second peak visible.  

 

 If the previous theory is correct that the sharp peaks are caused by specular 

reflection of the wings, then this could introduce problems. The wing contribution in the 

signal is not necessary caused by the cross section of the wings, but by the angle that they 

face. Therefore, the ratio is not only surface area, but also strongly influenced by the 

orientation of the insect. If the amount by which specular reflection increases the signal is 

calculated, it could be possible to extrapolate the true wing beat surface area, and use this 

value instead.  

 One category often stated to be used in species characterization is the body to wing 

ratio. As mosquitos can be different sizes, it is possible that this value could be used for 
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identification. Comparing Tables 4.2 and 4.3, there is a clear difference in ratios that 

appear. However, there are two limitations that prevent this from clearly being able to be 

used for characterization. First of all, the standard deviation varies greatly in both species. 

As there are four broad categories, each includes a wide range in ratios. Further categories 

could further limit the range so that greater certainty is achieved. Secondly, the male Aedes 

Albopictus contains 103 mosquito events, while the male Culex Species only contains 25 

events. Statistically, these numbers are far apart, with far less events in each category in 

the Culex species. As there is a large standard deviation in many of the ratios, the results 

could change with more samples. 

In addition, the sharp/double category is one that can be expanded upon greatly. A 

large variety of peaks that appear differently appear here. In general, this category was 

reserved for sharp peaks, that appeared twice within one wing beat frequency, but the 

strength of the second peak ranged from barely visible but still distinguishable from the 

noise, to very close in strength to the regular wing beats. Expanding upon this range and 

differentiating the body to wing ratio between more categories of the double wing beat 

peak could lower the standard deviation that appears. 

 It is well known that female mosquitos that have recently fed are unable to fly very 

far. At one point, we received measurements from a mosquito that had recently fed on 

blood. However, there were not enough measurements made to draw a conclusion from. 

More signals than usual appeared to have dull wing beats, but there were not enough total 

signals to be statistically relevant. 

 In order to study how the wing beat of a single mosquito may vary, one particularly 

long signal was observed. This signal was approximately 0.53 seconds long, giving a 
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period of time where the mosquito’s wing beat frequency was likely to change. In order to 

observe the wing beat frequency over individual wing beats, the peaks were used. The local 

maxima of each peak was considered the wing beat, and from two maxima, a frequency 

was calculated without using the Fourier transformation. Over the entire length of the 

mosquito event, there are multiple regions where the peak is not clear, and therefore a 

frequency is not measured there. In Figure 4.8, this is signified by a change in color to the 

graph. 

 

Figure 4.8 Change in Frequency over a large time period. The x-axis is every wing beat 

that is measured.  

 

 

 In a span of half a second, the frequency of the mosquito varies greatly. Excluding 

the extreme changes in frequency that occur the frequency varies from 565 to 635 Hz. 

Although some of the extreme changes in wing beat frequency can be explained by the 

peak in the signal not measuring a frequency precisely, there is still a noticeable trend 

where the mosquito will change frequency. Overall, there appears to be an upward trend 

with frequency growing higher. 
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In addition to the two species of mosquitos that were obtained, two other insects 

were captured and measured using the laboratory set up. This was done to see how different 

insects would appear in the signal and whether they would be easily differentiated from the 

mosquitos. The two insects were a common housefly, or Musca domestica, and a drain fly, 

of the family Psychodidae. Both of these insects were identified by eye, and measured 

using the same set up and specifications as the mosquitos. Their wing beat frequency results 

are listed in Figure 4.11. 

One additional possibility of classification between sexes of mosquito species could 

come from their transit time. The average transit time in signals for the male Aedes 

Albopictus and Culex mosquito was 0.135 seconds and 0.145 seconds respectively, while 

it was 0.065 seconds and 0.069 seconds for the female of the same mosquito species. This 

may be a result of a different flight speed of each, although no literature has been found 

that suggests this. For now, more tests must be run for a more conclusive theory. 

 

4.3 Comparison to Simulation 

In order to calibrate the simulation to ensure accuracy, several values had to be 

adjusted. Once these changes were made, the results of the simulation were accurate 

compared to that of the experiments. Comparing Figure 3.3 to Figure 4.2 shows both 

similarities and differences. The most obvious arises from the wing beat peaks. As 

previously mentioned, a majority of the wing beat peaks present were sharp peaks that are 

believed to occur when there is specular reflection. This, alongside with the fact that the 

wing beats did not appear to be sinusoidal in signals, make the wing beats appear different. 

Specular reflection increases the recorded signal greatly, possibly accounting for the 
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different in signal strength. The simulation assumed entirely Lambertian reflection, where 

in an experimental setting, more backscatter occurred at the 180 degree angle. In one 

recorded signal, the SNR reached up to 33.9 compared to the 11.2 of the simulation. This 

is a factor of three.  

Therefore, it is safe to assume that a larger distance than expected would be possible 

from the outdoor set up in the simulation. Although obtaining a SNR of 10 at 30 meters, as 

previously assumed, would result in a large distance being possible, this new information 

would mean that further distances are possible. Mosquitos fly at low heights, so if a drone 

were to be outfitted with this LIDAR system, it would be possible to point at the ground 

and obtain good results. If placed on the ground, we can assume that more than 30 meters 

could result in a good signal.  

Another noticeable difference is the time period of which the mosquito is visible in 

the signal. In the simulation, although the mosquito is assumed to fly well below its 

maximum speed, it appears to fly even slower experimentally. This causes the time period 

which the mosquito is present in the laser beam to be longer.  

Different body and wing contributions also appear in signals such as Figure 4.2. 

For a short period of time, the wings are visible as sharp peaks before the body contribution 

is even seen. This occurs as the mosquito may have their wings only in the laser beam as 

they extend further than their bodies. Erratic flight behavior of the mosquitos also appears 

as uneven signals, which alongside the orientation possibilities, account for many of the 

differences seen between simulation and experiment. 

 Apart from differences in the structure of the signal, there are sources of error in 

the values input in the equations. The reflection of the mosquito’s body and wings is 
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estimated at 40%, but sources vary, including Figure 2.1, which put absorbance at 50%. A 

margin of error could come from the measurement of the cross section of the body, which 

was mostly done by eye, in addition to the difference in male and female mosquito size.  

A large source of error comes from the beam spatial profile. The laser beam spatial 

profile has not been measured, which makes it difficult to implement into the numerical 

simulation. The Gaussian function is an approximation for the beam spatial profile.  

As stated previously, there is a shadow caused by the sending mirror and post in 

front of the parabolic mirror which reduces the signal it receives. As shadow is difficult to 

measure, the value used is estimated. 

 

4.4 Data Analysis 

An important aspect of any experiment is how the data is analyzed. In order to locate when 

the mosquitos had passed the beam in a set of data that is lengthy (> 1 minute), a MATLAB 

program was created which would be used to find the areas where a mosquito likely crossed 

the laser beam. It also calculated the wing beat frequency of the mosquito. What was 

considered the wing beat frequency of the insect is the peak, or highest point, of the Fourier 

transform of the data, and not the middle of the full width half max. Only the range of 

380:800 of the Fourier transform was considered. The following is the process used to find 

possible mosquito sightings. 

t is defined as the total time in seconds of recording and Fs as the sampling 

frequency used. The following was done to filter and find the appropriate mosquito 

sightings: 

1. The time, t, is split into one second intervals. The Fourier transformation is taken 

of each second into Fs number of bins.  
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2. The peaks and width using the findpeaks function are observed in the range between 

380 and 850 Hz, the likely frequencies of the mosquito wing beat. These values are 

adjusted according to the species of mosquito used. 

 

3. If the peaks are sufficiently high and widths sufficiently wide (of the findpeaks 

function), then that time period most likely has a mosquito sighting in it. 

 

4. A few more filters are placed in order to lower the sensitivity to random signals or 

noise. For example, the signal must have values above the baseline noise and cannot 

have such a large range or value that it is not an insect. This prevents saturated 

signals from being interpreted as a mosquito sighting. 

 

 The wing to body ratio was calculated by a program as well. Using the wing beat 

frequency as a unit of time, a window was created which contained a signal wing beat. 

p is used as the number of wing beats to observe for this calculation. An odd value is used 

so that an even amount of wing beats on each side, starting from the center, maximum wing 

beat. An experimental program is being tested that will count every wing beat that appears 

over the entire signal, but it has not been finished. 

1. Finding the index of the maximum point of the wing beats. This method operated 

on the assumption that there were multiple wing beats surrounding this maximum. 

 

2. Depending on the width of the frequency bin findpeaks function, the number of 

points, p, are chosen. A higher width would likely mean that more wing beats were 

visible and a larger p value could be chosen, while a lower width would likely mean 

the opposite.  

 

3. A window the size of one wing beat is made, using the Fs and the wing beat 

frequency found. This window is shifted to the left p/2-1 over to begin left of the 

maximum point. 

 

4. At each window, a minimum and maximum value is found, where the wing 

contribution is at its highest and lowest. The highest contribution assumes that the 

wing is fully seen, while the lowest contribution assumes that there is no wing 

contribution and only the body of the mosquito is contributing to the signal. This 

window slides down, measuring multiple wing beats. 

 

5. A noise reference is taken over the entire one second window where the mosquito 

sighting is. This noise reference is the mode of that window. The minimum value 

in a window minus the noise reference is considered the body contribution, while 
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the maximum value minus the minimum value is considered the wing contribution. 

An average is taken from all the windows. 
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Figure 4.9 Separation into body and wing contribution. See Figure 4.2 for original signal.   

The MATLAB program returns a body to wing ratio of 0.94628. 

 

 

 There is a wide distribution of body to wing contributions that appear here. This is 

believed to be because of small movements of the mosquito, and changes in its orientation. 

Additionally, closer to the center of the laser beam, the laser beam spatial profile is 

stronger. 

A minimum of 26 usable measurements existed for each individual sex and species 

of mosquito. Each of these signals had their wing beat frequencies recorded, then all signals 

from one sex and species were fit with a Gaussian distribution.  
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Figure 4.10 Gaussian fit over mosquito frequencies. All of the frequency data points of 

the mosquitos have been plotted on a Gaussian fit. While there is a bit of overlap between 

the female Albopictus and male Culex, they are still distinguishable for the most part.  

 

 

 The frequencies between the insects tested are different enough that they can be 

distinguished. Using a single species, the frequency ranges are far apart that a male and 

female can be distinguished with ease. Between the two species, the frequencies are still 

far apart that some characterization can be done based on the wing beat frequency. 

 The female Aedes Albopictus and male Culex had the only significant overlap in 

wing beat frequency. Other sexes and species tested could be differentiated by frequency. 

This gives credence to the theory that LIDAR could be used for the characterization of 

mosquitos. In addition to frequency, the body to wing ratio seems to be useful in 

characterization if the orientation of the insect is known. This additional characterization 

allows for more accuracy in insect classification.  

 Some interesting results stem from the width of each Gaussian function. The male 

Aedes Albopictus mosquito had a wide Gaussian fit, as this had a wide range of frequencies 
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measured, while the female Culex mosquito had a much taller fit, because of a lower range 

of frequencies. 

 With additional mosquito species, more data could be added to compare the wing 

beat frequencies across multiple species. In a field setting, multiple signals would be 

required to establish classification of one population. In addition to mosquito, two other 

insects were recorded, and had their frequencies fit with Gaussian distributions. 

 

Figure 4.11 Gaussian fit over all insects. The two flies measured are different enough 

that differentiating between mosquitos and these two flies is possible with only the wing 

beat frequency. 

 

 

The house fly and drain fly wing beat frequency results are much lower than the 

mosquitos, which means mosquitos should be easily characterized, at least compared to the 

larger insects tested here. Obviously this is not an absolute indicator that mosquitos will be 

distinguishable, but these two fly species are a good start in allowing this system to classify 

different insects. A clear difference can be seen between two distinct types of insects. 
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CHAPTER 5 

CONCLUSION 

 

 

 

5.1 Discussion 

 

In this report, a new methodology was assessed that remotely monitored flying mosquitos 

using an infrared LIDAR system. The numerical simulation was used to study the 

feasibility of this new method. Important values such as the signal to noise ratio as a 

function of distance were retrieved, which shows that in an outdoor setting using the same 

equipment, a distance up to 45 meters can be recorded. A laboratory set up was also made 

and optimized which was an effective proof of concept. Both the body to wing ratio and 

the wing beat frequency can be determined. Between the two species of mosquito tested, 

the two sexes can be easily differentiated, which is promising for future classification. 

However, as the wing beat frequencies do overlap slightly, there is a slight degree of error.  

Additional information can be obtained about the flight pattern of the mosquito by 

observing the wing beat peaks and the body to wing ratio. However, for additional 

characterization, and to ensure a higher degree of certainty about species classification, 

more characterization should be added. 

 While about two signals were usually obtained every minute, this was done in an 

enclosed container with minimum air flow and limited space. The mosquitos did not appear 

to move normally on the plastic tube as much as they did in their paper container, possibly 

limiting their frequency they were in flight. If an enclosure that more closely resembled 

their natural habitat was used, it could be possible to obtain signals more often.  
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5.2 Future Direction 

5.2.1 Dual Wavelength 

While the body to wing ratio and wing beat frequency will give some information about 

the insects that fly through the beam, they may not tell the full story. Both of these values 

are not constant for mosquito species, even for the very same mosquito. As orientation, 

speed and direction of flight can vary, these values will appear different every time. 

Additionally, some families of insects such as Psychodidae (drain fly) and smaller 

Chironomidae (lake fly / nonbiting midge) insects have wing to body ratios that overlap 

with that of mosquitos. Similarly, multiple other insects have wing beat frequencies that 

vary between 100 Hz and 1000 Hz. This overlap and variance among insects mean that 

there must be additional characteristics and approaches to differentiate mosquitos apart if 

high accuracy is desired, to allow more species of mosquitos to be characterized. 

Two wavelengths will be used in the future parts of the project. Currently, only a 

1.32 µm (Infrared) laser is being used. Reflectance is dependent on wavelength, and will 

change as the wavelength does. 1.32 µm was chosen as it had a high value of reflectance. 

A 950 nm laser is being considered here as it still has a high reflectivity for insects. It is 

the future goal of this project to have the ratio of the signal between each wavelength aid 

in characterizing and identifying insects.  

5.2.2 Polarization 

Light is known to be a wave, which can vibrate in multiple directions and planes. Polarizing 

light means to filter out certain directions of vibration so that only one plane of vibration 

passes through. Applying the knowledge of polarization to this system, information can be 

gained about the surface that light has interacted with. In the case of the mosquito, 
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polarization can be used to tell how smooth the surface of the mosquito is. As mosquitos 

can range from smooth, segmented and covered in small hairs, this information can be of 

use to further characterize signals received back from the LIDAR system. 

The signal from both wavelengths mentioned in the previous section will be split 

and one of the reflected laser beams will be polarized in two planes. The ratio between the 

two planes of polarization can be observed and studied. For example, the male Aedes 

Albopictus mosquito has fuzzy antenna, while the female Aedes Albopictus has smooth 

antenna. If this feature is visible, it adds criteria to base classifications upon. Alongside the 

wing beat frequency, these details allow more certainty with classification. These two 

additions to the LIDAR system will allow for far more characterization to be done to more 

insects, and will give further information in their classification. 
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APPENDIX A 

 

PHOTODETECTOR SETTINGS AND SPECIFICATIONS 

 

 

 

The 50 gain step is used in Section 4 throughout as a high bandwidth is not necessary. In 

future experiments, a 0 or 10 gain step might be utilized. 

 

Table A.1 InGaAs Transimpedance Amplified Photodetector (PDA20CS) gain setting 

chart.  

Gain Step (dB) Gain (+/- 2%) NEP (pW/sqrt(Hz)) Bandwidth (Hz) 

0 0.75 kV/A 51.2 10,000,000 

10 2.38 kV/A  31.1 4,000,000 

20 7.5 kV/A 6.54 1,870,000 

30 23.8 KV/A   3.04 660,000 

40 75 kV/A 1.14 200,000 

50 238 kV/A 2.91 67,000 

60 750 kV/A  1.76 25,000 

70 2.38 MV/A 5.89 4,000 
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APPENDIX B 

 

LASER SPECIFICATIONS 

 

 

 

Laser power vs. Current. Although the laser came with this chart, tests were ran to ensure 

accuracy. 

 

 
Figure B.1 Output of laser according to current input. Used in addition to calibration 

measurements to determine optical power. 
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APPENDIX C 

 

NUMERICAL SIMULATION SOURCE CODE 

 

 

 

The MATLAB source code that describes the numerical simulation that is used.  

 

%            Christo Videlov            % 

%  LIDAR Mosquito Detection Simulation  % 

%                8/1/17                % 

 

prompt= {'What distance is the mosquito? (meters)',... 

    'What is the average value of the noise? (Microvolts)' ,... 

    'What is the standard deviation of the noise? (microvolts)',... 

    'What is the modulation frequency of the signal? (Hz)' ,... 

    'What is the wing beat frequency of the insect? (Hz)',... 

    'Is the mosquito in the beam perpendicular or sideways? (P/S)',... 

    'Would you like a plot of the signal? Y/N '... 

    'Which gain step would you like to use? (0-70, increments of 10)'};  

dlg_title = 'User Inputs'; 

num_lines=1; 

defaultans= {'3.6' ,'1880','476.7', '0', '600', 'P', 'Y', '50'}; 

UserInput=inputdlg(prompt,dlg_title, num_lines, defaultans); 

% Allows the user to input multiple variables in the simulation 

 

d=str2double(cell2mat(UserInput(1))); % Distance 

avgnoise=str2double(cell2mat(UserInput(2))); % Average noise 

stdnoise=str2double(cell2mat(UserInput(3))); % Standard deviation of noise 

mfreq=str2double(cell2mat(UserInput(4))); % Frequency that signal is modulated 

wingbeat=str2double(cell2mat(UserInput(5))); % Mosquito wing beat frequency 

dirofins=UserInput(6); % Orientation of insect 

dirofins=char(dirofins); 

gainstep=str2double(cell2mat(UserInput(8))); % Gain step 

% Converts these variables from cells to their formats (doubles/characters) 

 

c=299792458; % Speed of light m/s 

adj=(2*d)/c; % Time shift from distance 

r=0.0127; % half an inch (in meters), initial radius of the beam 

div=(1*10^-3); % Divergence of beam over distance 

time=((r+(d*div))/0.67056); % Time mosquito is in beam from distance 

... Multiplied by 4 to closer match real signal 

 

if(gainstep == 0) 

t=linspace(0-adj,1-adj,10000000); % Time initialize function, 1 second, 10 MHz 

resolution 
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elseif (gainstep == 10) 

t=linspace(0-adj,1-adj,4000000); % 4 MHz resolution 

elseif (gainstep == 20) 

t=linspace(0-adj,1-adj,1870000); % 1.87 MHz resolution 

elseif (gainstep == 30) 

t=linspace(0-adj,1-adj,660000); % 660 kHz resolution 

elseif (gainstep == 40) 

t=linspace(0-adj,1-adj,200000); % 200 kHz resolution 

elseif (gainstep == 50) 

t=linspace(0-adj,1-adj,67000); % 67 kHz resolution 

elseif (gainstep == 60) 

t=linspace(0-adj,1-adj,25000); % 25 kHz 

elseif (gainstep == 70) 

t=linspace(0-adj,1-adj,4000); % 4 kHz 

else 

    displacement('This is not a valid gain step'); 

end; 

% Time resolution according to gainstep specified 

hz=length(t); 

 

amp = 0.1428; % Amplitude of modulation signal 

% 0.2304 = 2.5 - 4 Watts 

% 0.1428 = 3 - 4 Watts 

% 0.0955 = 3.3 - 5 Watts 

% (1/15) = 3.5 - 4 Watts 

% 0.0525 = 3.6 - 4 Watts1 

% 0.02562 = 3.8 - 4 Watts 

 

% Power which it is modulated about 

% I = 3.25; % 2.5 - 4 Watts 

% I = 3.65; % 3.4 - 4 Watts 

% I = 3.9; % 3.8 - 4 Watts 

% I = 3.8; % 3.6 - 4 Watts 

% I = 3.75; % 3.5 - 4 Watts 

% I = 3.5; % 3 - 4 Watts 

%Io = I*(1+amp* cos(2*pi*t*mfreq)); % initial signal with frequency 

I=3.75; 

 

displacement=0.0002*length(t); % Time for insect to fully enter/exit beam 

ta=linspace(0,0.5,length(t)/2); % First part of time resolution 

tb=linspace(0.5,1,length(t)/2); % Second part of time resolution 

timetopoint=time*(length(t)); % time insect is in the beam converted to index 

timetopoint=round(timetopoint); % Rounded to nearest number 

timetoa=((length(t)/2)+timetopoint); %Body begins to leave beam 

timetob=((length(t)/2)+displacement+timetopoint);%Body totally leaves beam 

timetob=round(timetob); % Rounded to nearest number 
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if (timetob>length(t)) 

    disp('You have input too long a distance, and therefore too long a time.'); 

else 

end; 

% prevent times which are too long 

u=.50+time/2; 

%omega=time/3.229; 

omega=time/5; 

%G=(1/(omega*sqrt(2*pi)))*exp(-.5*(t-u/omega).^2); 

G=(1/(omega*sqrt(2*pi)))*exp((-(t-u).^2)/(2*omega.^2)); 

G=G/82.0597; 

msize=0.0026; % Mosquito body cross section 

csbody=-16.5*t+(16.50652*(timetoa/length(t))); % Slope for mosquito body leaving 

csbody(timetob:length(t))=0; % No mosquito 

csbody(1:(length(t)/2))=16.5.*ta-8.2467; % Slope for mosquito body entering 

csbody(1:round((length(t)/2)-displacement))=0; %  No mosquito 

csbody((length(t)/2):timetoa)=msize; % Maximum mosquito body in beam 

% Simulates mosquito entering beam. Time is according to distance and  

... size of the beam. It has a linear slope for the mosquito to enter and exit 

if (gainstep == 50) 

csbody(67000)=0; 

end; 

%Fixes an error with 67 kHz bandwidth where last index is a large number 

 

wing=0.0008*2; % Cross section of wing, there are two 

if (dirofins=='P'|| dirofins=='p'); 

cswing=wing*sin((t*2*wingbeat*pi))+wing; % Wing beat simulation, frequency of 600 

elseif (dirofins == 'S'|| dirofins == 's'); 

cswing=(wing/2)*sin((t*4*wingbeat*pi)+pi)+wing/2; % Sideways, twice the frequency 

...half the amplitude 

    else 

        disp('Not a valid orientation of insect.') 

end; 

    cswing(1:round(length(t)/2-displacement))=0;  

    cswing(round(timetoa+displacement/2):length(t))=0; % No mosquito 

 

cswing(1:10)=0; % No mosquito 

cswing((timetob+1000):(size(t)))=0; % After mosquito leaves 

bbody=0.4; % Backscatter of body 

bwing=0.4; % Backscatter of wing 

% Values range from 20% to 60%, middle value chosen 

 

% This is the original signal, used for phase shift measurements 

% It=I*(1+amp* cos(2*pi*mfreq*(t-adj))); % Initial signal, that accounts for time shift in 

signal 
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%It(1:10)=0; 

% It is used only in the Iphase to account for the distance traveled 

 

mirrorsize=0.0206; % Size of parabolic mirror 

K=(mirrorsize^2)/(2); % formula for the surface of the parabolic mirror. 

%K=(mirrorsize^2/2*d^2); 

% .0254 is the laboratory setup (1 inch radius) 

% .254 is the outdoor setup (10 inch radius) 

% 0.0206 corrected for shadow 

 

% PofI=((msize*100)+(wing*100))/(pi*(r*100)^2); % Percentage of beam spatial profile 

reflected back 

%SpatialProf=cos((236)*t);% Parabolic beam spatial profile 

%60 When multipled by 4 

% 236 when normal time 

Id=0.85*0.97^3*(K/d.^2).*I.*G.*(((csbody*10^-3).*bbody+(cswing*10^-

3).*bwing)/(pi*(r+(div*d)).^2)); % Signal recieved, 

...no modulation, used after distance is calculated 0.97 reflection of gold mirror 

  

% Iphase=(K/d.^2).*Id.*(csbody*bbody+cswing*bwing)/(pi*(r+div.*d).^2); % Signal 

recieved, modulation 

 

baseline=0; 

noise=(10^-6)*(avgnoise+stdnoise*randn(size(t))); % noise of detector 

noise=noise*6; 

% minnoise=-170micro 

% maxnoise=3.87 mV 

if (gainstep == 0) 

Vx=(750); % total signal converted to volts, according to the listed gain of the detector 

elseif (gainstep == 10) 

Vx=(2.38*10^3); 

elseif (gainstep == 20) 

Vx=(7.5*10^3); 

elseif (gainstep == 30) 

Vx=(23.8*10^3); 

elseif (gainstep == 40) 

Vx=(75*10^3); 

elseif (gainstep == 50) 

Vx=(238*10^3); 

elseif (gainstep == 60) 

Vx=(750*10^3); 

elseif (gainstep == 70) 

Vx=(2380*10^3); 

else 

disp('Not a valid gain step'); 

stop 
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end; % How much the signal is multiplied by 

 

V=Vx*Id+noise+baseline; 

% Watts converted to Volts 

% Noise multiplied by 6 for background 

 

s=UserInput(7); 

s=char(s); 

if s==('Y'); 

    (plot(t,V)); 

else 

end; 

% Plots the voltage vs time if user specifies 

 

%SNRV=(Id((hz/2):timetoa).*Vx); % Signal without noise/baseline 

%SNRV=SNRV((length(t)/2)+500:timetoa-500); % Limits to higher part of mosquito 

%SNRNoise=noise(1:length((hz/2):timetoa)); % Noise to use as reference 

%SNR=snr(SNRV,SNRNoise); 

% SNR given in decibels 

% Signal to noise ratio based on rms of each 

SNRV=max(Id*Vx)-mode(noise); 

SNRnoise=std(noise); 

SNR=SNRV/SNRnoise; 

 

% PSsignal2=fft(V((length(t)/2):timetoa)); 

% PSinitial2=fft(Io((length(t)/2):timetoa)); 

% PSsignal=hilbert(V((length(t)/2):timetoa)); 

% PSinitial=hilbert(Io((length(t)/2):timetoa)); 

% Phase=angle(PSinitial/PSsignal); 

% Phase2=angle(PSinitial2/PSsignal2); 

 

% end 

%Test of two different sides of Phase difference 

% As phase calculations are dependent on bandwidth,  

 

output=['Signal to Noise ratio (db)   ','Phase difference   ','Calculated Distance',... 

    '    Input Distance']; 

output2=['       ',num2str(SNR),        ];%          ', num2str(Phase),'           ',... 

   %num2str(Phase2), '                  ', num2str(d)]; 

 

disp(output); 

disp(output2); 
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