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ABSTRACT 

 

ITERATIVE LEARNING CONTROL FOR IMPROVED TRACKING 

OF FLUID PERCUSSION INJURY DEVICE 

 

by 

Steve Susanibar 

 

 

Traumatic brain injury (TBI) afflicts over 10 million people around the world. Injury to the 

brain can occur from a variety of physical insults and the degree of disability can greatly 

vary from person to person. It is likely that the wide range of TBI outcomes may be due to 

the magnitude, direction, and forces of biomechanical insult acting on the head during such 

TBI events. Lateral Fluid Percussion (FPI) brain injury is one of the most commonly used 

and well-characterized experimental models of TBI. A Fluid Percussion Injury (FPI) 

device in the laboratory is used to replicate the injury but does not execute the desired 

pressure profile. The controller used is a QCI-S3-IG Silver Sterling from Quick Silver 

Controls. A limitation innate to the controller was a 3-millisecond sampling of the input 

signal that proved challenging for developing fast, accurate FPI pulses with periods as fast 

as 18-milliseconds. Iterative Learning Control is implemented which conditions the input 

signal to the open loop system offline such that the desired pressure profile is attained. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation - Traumatic Brain Injury  

Every year, an estimated 1.7 million Americans and 10 million people worldwide sustain 

a Traumatic Brain Injury (TBI) [1, 6]. TBI is predominant in low to middle-income 

countries and is correlated with the risk factors and availability of medical treatment in the 

particular countries. Injury to the brain can occur from a variety of physical insults and the 

degree of disability can greatly vary from person to person. TBI can occur from a variety 

of physical insults to the brain from sources such as automobile accidents, sport collisions 

or blast waves, for example. It is likely that the wide range of TBI outcomes may be due 

to the magnitude, direction, and forces of the biomechanical insult acting on the head 

during these insult-driven events.   

The severity in terms of brain pathology and behavioral outcomes in the majority 

of TBI studies is associated with the magnitude of the primary injury. Research has just 

begun on the contributions that the temporal characteristics of the injury such as rise time 

(calculated as the pressure rise from 10% to 90 % of the peak representing the rate at which 

the injury was delivered) and duration of impact have on damage to the brain [4, 5]. In 

closed-head injuries, where no craniotomy is made, axon damage is believed to be caused 

by brain deformation in response to insults [7, 8, 13]. Used to deform the brain of rodents 

to produce both focal and diffuse injury characteristics, lateral fluid percussion injury (FPI) 

is one of the most commonly used and well-characterized experimental models of TBI].  
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Potentially one of the biggest contributors to differences in TBI outcome could be 

the rate at which pressure changes in addition to magnitude of the pressure that deforms 

the brain [3]. Rate refers to the rise time to peak pressure. Since the brain is viscoelastic, 

both rate and magnitude of the pressure will affect how the tissue responds mechanically 

and hence lead to unique pathophysiologies [3]. To illustrate two impacts that differ in 

magnitude, compare a head impact from a fall versus a blast wave; in this case, the latter 

is several orders of magnitude higher. 

 Early head injury physical models discovered injury correlated with rotational 

acceleration of the head [10]. At the time of writing, there are no animal models directly 

examining whether the pathophysiological outcome of injury depends on the rate of the 

delivered injury.  This is due to the limitations of the available animal models to adjust for 

injury magnitude. For instance, FPI and weight drop injury vary either by height adjustment 

of the pendulum in FPI [12] or by height or mass adjustment of the dropped weight [11]. 

The miniature pig injury model is the exception to this. In this model, rotational 

acceleration is adjustable and thus the device rapidly rotates the animal’s head over the 

designated angular profile at predetermined angular accelerations, which correlates with 

severity of diffuse brain trauma. Unfortunately the model is difficult to duplicate and not 

widely used.   
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1.2 Methods of Studying Traumatic Brain Injury 

 

 

Figure 1.1 Pendulum fluid percussion injury setup consists of a pendulum and saline 

reservoir. 

Source: National Center for Biotechnology Information 

 

In the pendulum fluid percussion injury (PFI) setup a cylindrical tube filled with 

saline fills the interstitial space above the dura without causing skull fracture to produce a 

rapid displacement and deformation of brain tissue.  Indeed, it has been found suitable for 

the study of injury pathology, physiology, and pharmacology in a wide range of species, 

including rats, mice, cats, pigs, rabbits, and dogs and sheep. In this model, the insult is 

inflicted by application of a fluid pressure pulse to the intact dura through a craniotomy, 

which is made laterally usually over the left parietal bone; the craniotomy may be in 

combination with or without a contralateral skull opening. Briefly, the anesthetized animals 

are placed in a stereotaxic frame and their scalp and temporal muscles reflected. A small 

craniotomy is made to allow insertion of a plastic cap that is cemented into place. The FPI 

device consists of a Plexiglas cylindrical reservoir filled with sterile isotonic saline. One 
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end of the reservoir includes a transducer, which is mounted and connected to a tube that 

attaches through a plastic fitting to the cap cemented on the animal’s skull at the time of 

surgery. The strike of a pendulum at the opposite end of the cylindrical reservoir generates 

a pressure pulse that is delivered to the intact dura and instigates deformation of the 

underlying brain. The severity of injury depends on the pressure pulse. 

 

 

Figure 1.2 Controlled Cortical Impact set up with rigid impactor and cranial cross section 

view.   

Source: National Center for Biotechnology Information 

 

Controlled Cortical Impact (CCI) devices are also used to study TBI. The CCI 

device, characterized as direct and localized injury, was designed for simulating 

penetrating injury. In a CCI device, a pneumatic or electromagnetic impact device drives a 

rigid impactor onto the exposed, intact dura and imitates cortical tissue loss, acute subdural 

hematoma, axonal injury, concussion, blood-brain barrier dysfunction and even coma. 

Ferret, rat, and mouse have been primary subjects of study for this type of head trauma. 

This model allows for better control over mechanical factors, such as velocity of impact 

and depth of resulting deformation, thus offering potential advantages over the fluid 

percussion model, especially in biomechanical studies of TBI.   
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The device used in rodent CCI models consists of a pneumatic cylinder usually with 

a 4 to 5-cm stroke, which is mounted on a cross bar so that the position of the impactor can 

be adjusted. The impact velocity used in the majority of studies is between 0.5 and 10 m/s 

depending on air pressure that drives the impactor. The depth of cortical deformation is 

controlled by vertical adjustment of the crossbar holding the cylinder and can be varied 

from between 1 and 3-mm, whereas the duration of the impact (dwell time) can be adjusted 

between 25 and 250-milliseconds. It has been shown that cerebral hemodynamic responses 

such as elevated intracranial pressure, decreased blood and cerebral perfusion pressures, 

histological, and cellular alterations, as well as functional deficits are related to both the 

depth of deformation and the velocity of the impact. Impacts inflicted at a velocity higher 

than 4.3 m/s (4.3– 8.0 m/s) and with a depth of cortical deformation from 1.0 mm initiate 

widespread acute and chronic neuronal injury [15]. 
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Figure 1.3 Shock tube of length 26 inches comprised of an aluminum exterior with 

vasiform exposure chamber. 

 

Shock tube proceedings operate in a similar fashion. Shock tubes have shown to 

produce fast, short duration impacts. A pressure of 25 PSI can be released in under 3-

milliseconds utilizing air-gun technology [16]. A transient shock loading will be generated 

using an unstable pneumatic valve, which releases a pressure wave from pressurized 

reservoir. The air pressure is user set and determines the peak amplitude of the shock 

loading. The unstable valve is triggered by an unbalance in air pressure between the two 

sides of the valve. The shockwave is released into a vasiform exposure chamber where the 

animal is placed [16].  
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CHAPTER 2 

FLUID PERCUSSION 

 

2.1 Introduction to Fluid Percussion 

Fluid percussion injury (FPI) models or simply FPI models is one of the most frequently 

used direct brain deformation models. It has been found suitable for the study of injury 

pathology, physiology, and pharmacology in a wide range of species, including rats, mice, 

cats, pigs, rabbits, and dogs and sheep. In this model, the insult is inflicted by application 

of a fluid pressure pulse to the intact dura through a craniotomy; the craniotomy may be in 

combination with or without a contralateral skull opening. As mentioned previously, TBI 

studies link the magnitude of the primary injury, to severity in terms of brain pathology 

and behavioral outcomes, in this case the peak pressure in the FPI model. 

To produce a controlled fluid percussion, a voice coil actuator can be utilized to 

generate a precise temporal forcing function under closed loop control with a motion 

controller rather than applying a pendulum as the concussive force origin. The voice coil 

coupled to a hydraulic cylinder filled with isotonic water delivers the defined percussion 

waveform [14].  
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2.2 Setup 

 

 

Figure 2.1 The FPI experimental setup with animal included.  

 

A voice coil-driven, actuator fluid percussion injury system controlled by an external 

computer was developed to precisely control the characteristics of the pressure waveform 

including rise time and peak pressure. Fluid percussions were generated by moving a 

rigidly connected hydraulic cylinder with a linear voice coil actuator (LAS28-53-000A, 

BEI Kimco). Accordingly, the controlled motion of the voice coil and hydraulic cylinder 

translates into a controlled rise in fluid pressure. The movement of the voice coil actuator 

is controlled by the QCI-S3-IG Silver Sterling Controller from Quick Silver Controls. A 

linear optical encoder (TONiC T100x RGSZ) was placed underneath the rod of the linear 

drive to track the displacement of the plunger rod of the hydraulic cylinder. A flat-faced 

pressure transducer (px61v0-100gv, Omega-dyne) was mounted at the output of the 

hydraulic cylinder to measure the applied fluid percussion. LabVIEW from National 

Instruments collected the fluid percussion, pressure data for exporting into Excel.  
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Figure 2.2 The FPI experimental setup with stopper and plastic barrier in replacement of 

the rodent. From left to right: Voice coil actuator, linear encoder, hydraulic cylinder with 

reservoir, transducer, and stopper with rubber barrier (as Latex glove in picture).  

 

A green valve showed in the picture seals off the fluid reservoir to the hydraulic cylinder. 

In place of the animal on the end of the hydraulic is a closed valve in with a latex glove to 

serve as the simulated rodent tissue. Once the controller relays a set of motion commands 

to the voice coil, the voice coil drives the piston in the hydraulic cylinder forward and 

returns back to its original position. Whilst the motion commands are executed, the 

transducer records the pressure profile and reads them into LabVIEW. 
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CHAPTER 3 

ITERATIVE LEARNING CONTROL 

 

3.1 Introduction to Iterative Learning Control 

The premise of Iterative learning control (ILC) is that the performance of a system that 

executes the same task multiple times can be improved by learning from previous 

executions (trials or iterations). During a regulation basketball game, a player will attempt 

many shots from different spots on the court. These players strengthen their shooting 

technique of scoring a basket by practicing the shot repeatedly. For every shot the 

basketball player is unsuccessful, he adjusts his technique which may consist of applying 

more force from his legs, snapping his wrist more quickly or changing his body orientation 

with respect to the basket. As the player continues to practice, the correct execution is 

learned and is remembered by his nervous system so that the shooting accuracy is 

iteratively improved. The converged muscle motion profile is an open-loop control 

generated through repetition and learning. This type of learned open-loop control strategy 

is the essence of ILC.  

 We consider learning controllers for systems that perform the same operation 

repeatedly and under the same operating conditions. For such systems, non-learning 

controller yields the same tracking error on each pass. Although the signals from previous 

iterations are information rich, they are unused by a non-learning controller. The objective 

of ILC is to improve performance by incorporating error information into the control for 

subsequent iterations. In doing so, high performance can be achieved with low transient 

tracking error despite large model uncertainty and repeating disturbances.  



11 
 

 ILC differs from other learning-type control strategies such as adaptive control, 

neural networks, and repetitive control (RC). Adaptive control strategies modify the 

controller, which is a system, whereas ILC modifies the control input, which is a signal. 

Additionally, adaptive controllers typically do not take advantage of the information 

contained in repetitive command signals. Similarly, neural network learning involves the 

modification of controller parameters rather than a control signal; in this case, large 

networks of nonlinear neurons are modified. These large networks require extensive 

training data, and fast convergence may be difficult to guarantee whereas ILC usually 

converges adequately in just a few iterations [17]. 

 ILC is perhaps most similar to Repetitive Control (RC) except that RC is intended 

for continuous operation, whereas ILC is intended for discontinuous operation. For 

example, an ILC application might be to control a robot that performs a task, returns to its 

home position, and comes to a rest before repeating the task. On the other hand, an RC 

application might be to control a hard disk drive’s read/write head, in which each iteration 

is a full rotation of the disk and the next iteration immediately follows the current iteration.  

 Traditionally, the focus of ILC has been on improving the performance of systems 

that execute a single, repeated operation. This focus includes many practical industrial 

systems in manufacturing, robotics, and chemical processing, where mass production on 

an assembly line entails repetition. ILC has been successfully applied industrial tools, 

wafer stage motion systems, injection-molding machines, aluminum extruders, cold rolling 

mills, induction motors, chain conveyor systems, camless engine valves, autonomous 

vehicles, antilock braking, rapid thermal processing, and semibatch chemical reactors. 

Additionally, ILC designs using discrete-time linearizations of nonlinear systems often 

yield good results when applied to the nonlinear systems. 
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3.2 Iterative Learning Control Basics 

An intuitive way to understand the basic idea of ILC is using an analogy to Newton’s 

method in numerical analysis. In order to find a solution of the equation ( ) 0f x  , an 

iterative numerical algorithm via Newton’s method is  

 

1
( ),

j j j
x x L f x


    (3.1) 

 

where a good choice for the step size coefficient L  is 1
( '( ))

k
f x


 . Analogously, one can 

consider the response of a control system 

 

( )y P u d   (3.2) 

e r y   (3.3) 

  

Where P  represents the input-output dynamics of the system; , , , ,u d y r  and e  are the plant 

input, the disturbance, the plant output, the reference signal and the tracking error. The idea 

is to find a (feedforward) control that gives a zero error. This can be achieved using an 

iterative control learning law 

 

1j j j
u u Le


   (3.4) 

 

Where L is the learning filter, j is the iteration index.  
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3.3 Method 

Plant inversion methods use models of the inverted plant dynamics as the learning function. 

The discrete-time plant inversion ILC algorithm is given by: 

 

1

1
ˆ( ) ( ) ( ) ( )

j j j
u k u k P q e k




   (3.5) 

 

In this form, the learning function L is chosen to be the inverse of the nominal plant, P̂ . In 

this equation k is the time index. Assume that the disturbance and reference are consistent 

over iterations. As per the learning law, the tracking error evolves as  

 

1 1j j
e r Pu Pd

 
    (3.6) 

                                                      1
( )

j j
r Pu Pd PLe


       

                                                      ( )
j

I PL e    

 

As long as the gain of I PL is below 0 dB, the tracking error will converge to zero over 

iterations. Sometimes I PL  cannot achieve a gain below 0 dB at all frequencies. In this 

situation, a Q-filter is required to restraint the learning in certain frequency bands [17]. 

Thus, the corresponding learning law and the error convergence condition are  

 

1
( )

j j j
u Q u Le


   (3.7) 
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                                                        ( ) 1Q I PL     

 

Another method popular in the literature is the PD ILC which requires tuning of 

gains to assure proper convergence to the desired signal. The PD ILC form is as follows: 

 

1
(q)[u ( ) ( 1) ( ( 1) e ( ))],

j j p j d j j
u Q k k e k k e k k


       (3.8) 

  

Where j is the index of iteration, k is the discrete time variable, (q)Q is the Q-filter, p
K  is 

the gain, 
d

K is the gain, and e  is the error signal.  

3.3.1 Plant Inversion 

By rewriting the learning algorithm, we see that the plant-inversion learning function is 

causal and has zero relative degree. Assuming that the ( )P q is an exact model of the plant, 

it can be verified that the convergence rate is 0  . That is, convergence occurs in just one 

iteration and the converged error is 0e

 .  

One of the immediate difficulties with the plant inversion approach occurs when 

dealing with non minimum phase systems, in which direct inversion of the plant ( )P q

results in an unstable filter. Although finite-duration iterations ensure bounded signals, the 

unstable filter undoubtedly generates undesirably large control signals. This problem can 

be avoided by using a stable inversion approach, which results in noncausal learning 

function. For nonlinear systems, direct inversion of the dynamics may be difficult. 

However, in some cases, inversion of the dynamics linearized around the dominant 

operating conditions may be sufficient to achieve good results [19].  
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Whether ( )P q is minimum phase or not, the success of the plant inversion method 

ultimately depends on the accuracy of the model. A mismatch between the model ( )P q and 

the actual dynamics ( )P q prevents convergence from occurring in one iteration. 

Furthermore, mismatch can lead to poor transient behavior.  

To work around this problem, one can use a stable pseudo-inverse of the nominal 

plant. Assume that 

 

( ) ( )ˆ
( )

a u
B z B z

P
A z

  
(3.9) 

 

Where A and B are polynomials of z , u
B  includes all uninvertible zeros. A stable pseudo-

inverse of P is  

 

1

†

2

A( ) ( )

( )[ (1)]

u

a u

z B z
P

B z B



  
(3.10) 

 

This model has shown to have a near-unit response, i.e., it has zero phase over all 

frequencies and maintains a 0dB gain up to a certain frequency [18].  
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3.4 Problem Formulation 

To this end, in order to study how these factors such as rise rate and duration have an effect 

on the pathophysiology of a head induced trauma. A fluid percussion injury device must 

be operational to perform desired pressure profiles. A linear voice coil actuator will be used 

with controller and identification of the system will be carried out along with an open-loop 

control known as ILC. This control alters the input signal until the signal converges to a 

signal that guarantees output of the desired signal after being passed through the controller.  

 

3.5 Objectives 

The objectives are: 

1.  Identify and extract a plant model from the linear drive-controller configuration 

from which will be utilized in the ILC algorithm. 

2.  Since the plant is not guaranteed to be accurate due to the limited sampling by 

the system, more than one ILC version will be tested. The ILC design with 

appropriate learning function and a proper Q-filter will be chosen to give an 

acceptable number of iterations for convergence.  

3. Results will be compared and validated with output of controller. 
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CHAPTER 4 

 RESULTS 

 

4.1 Creating Input Signal  

MATLAB generated the desired input signal; sinusoidal waveforms were the most popular 

waveforms considering the direct applications. Amplitude and period were the primary 

parameters altered.  

 

 

Figure 4.1 Pictured is a Sinusoidal pressure wave generated in MATLAB. 
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Following the creation of the desired pressure wave. The data points comprising the signal 

were then placed into an excel sheet which generated the following velocity segments in 

the following sub section to feed into the QCI Silver Sterling S3-IG controller as a text file.  

 

4.1.1 Interpolated Motion Segment 

The QCI Silver Sterling controller generates a trajectory for the linear drive to follow via 

an interpolated motion segments (IMS). It does this through a series of velocity segment 

motion commands. Below is the input signal from the previous figure prepared for the 

controller to feed to the linear drive as motion commands. It is clear the sinusoidal nature 

extends from the cyclic nature of the position plot.  

 

 

Figure 4.2 Velocity segments are ready to be sent to linear drive for operation for 

Sinusoidal pressure wave. 
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The controller generates the segments by calculating required velocity and 

acceleration to reach consecutive positions.  

 

 

Figure 4.3 Interpolated control signal used to model and extract transfer function picture 

above. Values are approximated from constant acceleration over every 3-milliseconds.  

 

It was discovered that the default settings of the controller produces a new motion 

command every 3-milliseconds. Hence, the control signal was adjusted such that sequential 

intervals of 3-milliseconds contained a velocity segment with constant acceleration as 

pictured in Figure 4.3 
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4.2 Plant Identification 

Least Squares was utilized in finding the transfer function of the plant. The following 

equation for least squares regression is as follows: 

 

0

M T m

mm
y w x z


   (4.1) 

 

Where y is the target or output signal, x  is the input, w is the coefficients of x and z is 

noise usually Guassian. The regression was performed on a discrete transfer function of 

the form: 

 

1 2

1 2

1 2

1 2

...
( )

1 ...

n

o n

n

n

a a z a z a z
H z

b z b z b z

  

  

   


   
 

(4.2) 

 

Multiple regressions were attempted for first, second, third and fourth order regressions.  

These results were also cross validated with a transfer function estimator in MATLAB that 

included a nonlinear estimator called “tfest”. It was found that a second order discrete 

transfer function was the optimal fit. Table 4.1 shows some the transfer functions that were 

attempted along with their averaged RMS percent difference from data:  
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Table 4.1 Transfer Function Results 

Transfer Function Percent Fit to Data  

1

1 2

0.2015 0.01989z

1 1.007 0.01474z z



 



 
 

64.01% 

1 2

1 2 3

0.2018 0.02854z 0.008503

1 1.421 0.4169 0.007759

z

z z z

 

  

 

  
 

64.02% 

1 2 3

1 2 3 4

0.2078 0.02562z 0.01094 0.01583

1 1.247 0.5017 0.7476 0.002446

z z

z z z z

  

   

  

   
 

65.52% 

 

Least squares was performed on a separate data set from the set “tfest” was implemented 

upon, after which the coefficients were cross-validated with the predicted transfer 

functions. Normalize root mean square error is pictured in the second column of Table 4.. 

A second order infinite impulse response model with two poles and one zero offered the 

most consistent simulations results when compared to actual controller response. 

 

4.3 Iterative Learning Control Design 

Simulations were conducted in Simulink implementing two different ILC schemes, which 

is PD tuning ILC and Plant Inversion ILC. Figure 4.1 shows the Simulink model of the PD 

ILC. 
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Figure 4.4 A system block diagram of PD ILC 

 

PD ILC converged to a sinusoidal input in approximately 3 iterations for pressure 

waves. The selection of the gains from trial and error did not appear to change the number 

of iterations drastically. The error converges after 3 iterations to a local minimum value 

using p
K  and d

K  values of 36 and 9 respectively. 

The next model attempted was the Inversion plant ILC. The Simulink model is 

shown in Figure 4.5. 
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Figure 4.5 Plant inversion Simulink model with inverted plant in place of gains. The 

model converges in one iteration to desired signal. 

 

After attaining the new input signal u(k) from the converged results of the Simulink 

model, these new signals were passed through the FPI controller in the laboratory and their 

resulting pressure waves recorded. The pressure waves collected were plotted against the 

desired output signal as show in the Results section to confirm the accuracy of the two 

models. 

4.4 Pressure Wave Statistics 

The ILC scheme with the better results was assessed with pressure wave characteristics 

including peak pressure, rise rate and impulse, in this PD ILC. Rise rate was calculated as 

the pressure increase from 10% to 90% of peak pressure. Impulse of the pressure waveform 

is a representation of the total energy transferred to the brain tissue and was calculated as 

the area under the pressure wave recording using the formula: 

 

( )
e

t s

I P t


  
(4.3) 
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Where I is the impulse (units PSI-s), ( )P t is the pressure waveform, t s  is the start of 

the positive pressure region, t e  is the end of the positive pressure region.  

 

 

 

 

 

 

 

 

Figure 4.6 Controller response for sinusoidal pressure wave of 5 PSI Peak Pressure and 

24ms duration at zeroth iteration of PD ILC. 
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Figure 4.7 First and Second iteration response from controller for desired Sinusoidal 

Pressure wave of 5 Peak Pressure and 24-millisecond duration in magenta. 

 

 

All measurements had a standard error of  1ms along with pressure error of  0.0005 PSI. 

Error in Table 4.2 and consecutive tables was calculated taking the difference between the 

sixth iteration value and the desired value and expressing it as a percentage of the desired 

value.  
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Table 4.2 Pressure Wave Characteristics for PD ILC  

Iteration 

Number 

Peak 

Pressure 

(PSI) 

% Error 

(5 PSI 

Desired) 

Rise 

Time 

(ms) 

% Error 

(10 ms 

Desired)  

Impulse 

(PSI-s) 

% Error 

(0.06 

PSI-s 

Desired)  

0 0.101 97.98% 7.0 30% 0.0016 97.33% 

1 6.33 26.60% 9.0 10% 0.0809 34.83% 

3 5.304 6.08% 9.0 10% 0.0654 9.00% 

6 5.305 5.08% 9.0 10% 0.0654 9.00% 

                                                 

 

Figure 4.8 Controller response for sinusoidal pressure wave of 2 PSI Peak Pressure and 

30-millisecond duration at zeroth iteration of PD ILC. 
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Figure 4.9 First and Second iteration response from controller for desired Sinusoidal 

Pressure wave of 2 PSI Peak Pressure and 30-millisecond duration in magenta. 

 

 

Table 4.3 Pressure Wave Characteristics for PD ILC 

 

 

 

 

Iteration 

Number 

Peak 

Pressure 

(PSI) 

% Error 

(2 PSI 

Desired) 

Rise Time 

(ms) 

% Error  

(9 ms 

Desired) 

Impulse 

(PSI-s) 

% Error 

(0.03 

PSI-S 

Desired) 

0 0.047 97.65% 10.0 11.11% 0.0140 66.34% 

1 2.045 2.25% 10.0 11.11% 0.0357 19.00% 

3 1.992 0.4% 13.0 44.44% 0.0309 3.00% 

6 1.997 0.15%  13.0 44.44% 0.0309 3.00% 
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Figure 4.10 Controller response for sinusoidal pressure wave of 5 PSI Peak Pressure and 

36-millisecond duration at zeroth iteration of PD ILC. 

 

 

 

 

 

 

 

 

 

Figure 4.11 First and second iteration response from controller for desired Sinusoidal 

Pressure wave of 5 Peak Pressure and 36-millisecond duration in magenta. 
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 Table 4.4 Pressure Wave Characteristics for PD ILC  

* Due to sampling resolution of 1 millisecond, we can be certain error is at most 8%  

 

Impulse was calculated using the “trapz” function in MATLAB. Impulse for the iterations 

had average values of 0.2788, 0.2476 Pa-s for Figures 4.2 to 4.3 respectively.  It should be 

noted that rise time had a resolution of 1-millisecond. PSI measurements were sub 10 PSI 

and the plant generated was only tested in this regime. The controller itself had PID settings 

of p
K  = 12, i

K  = 0, and
d

K  = 0 whilst performing experiments and following motion 

commands.  Finally, after the sixth iteration all pressure waves maintained the same shape 

and impulse, rise time, and peak pressure values were within 0.01% error of the desired 

values.  

 

 

 

 

 

 

Iteration 

Number 

Peak 

Pressure 

(PSI) 

% 

Error  

(5 PSI 

Desired) 

Rise Time 

(ms) 

% Error 

(12 ms 

Desired) 

Impulse 

(PSI-s) 

% 

Error 

(0.03 

PSI-S 

Desired) 

0 0.142 97.16% 10.0 16.67% 0.0014 95.33% 

1 5.685 13.70% 14.0 16.67% 0.0357 19.00% 

3 3.882 22.36% 12.0 < 8.00%* 0.0309 0.03% 

6 3.893 22.14%  12.0 < 8.00%* 0.0308 2.67% 
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CHAPTER 5 

CONCLUSIONS 

 

Plant estimation for this model was not approximate and two different methods were 

utilized and compared against each other. The inversion ILC scheme did not perform well 

and thus PD ILC was further investigated as the primary tool of choice. As inverting a plant 

is not robust against system variation and uncertainty, it was expected PD tuning ILC 

would fare better in practice as the final data did indeed show and is apparent from Figure 

5.1.  

 

Figure 5.1 Blue, red, and green curves are for the desired, ILC Plant Inversion, and ILC 

PD tuning signal. 

 

Additionally, whilst collecting data for plant identification, it was noted that most 

pressure waves recorded and collected for regressing the transfer function were not fast 
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(<20-milliseconds) and hence gives reason to believe that the present plant model is not 

accurate for generating percussion injury waves that are faster than 24-milliseconds. The 

controller is capable of producing pressure waves with semi-accurate tracking for durations 

of greater than 24-milliseconds from the tabulated error. If larger amplitude pressure 

profiles exceeding 10 PSI were desirable, then the p
K  gain of the controller would have 

to be increased and another plant to be regressed.  
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