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ABSTRACT

DIRECT COMPUTATIONS OF MARANGONI DRIVEN FLOWS
USING A VOLUME OF FLUID METHOD

by
Ivana Seric

The volume of fluid (VoF) interface tracking methods have been used for simulating

a wide range of interfacial flows. An improved accuracy of the surface tension force

computation has enabled the VoF method to become widely used for simulating

flows driven by the surface tension force. A general methodology for the inclusion of

variable surface tension coefficient into a VoF based Navier-Stokes solver is developed.

This new numerical model provides a robust and accurate method for computing

the surface gradients directly by finding the tangent directions on the interface using

height functions. The implementation applies to both temperature and concentration

dependent surface tension coefficient, along with the setups involving a large jump

in the temperature between the fluid and its surrounding, as well as the situations

where the concentration should be strictly confined to the fluid domain, such as

the mixing of fluids with different surface tension coefficients. The accuracy and

convergence of the surface gradient computation are presented for various geometries,

and for a classical problem of the thermocapillary migration of bubbles. The study of

several applications of variable surface tension flows is presented, such as the breakup

of liquid metal films and filaments, and the coalescence of drops characterized by

different surface tension.
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CHAPTER 1

INTRODUCTION

Interfacial flows appear in many forms in nature and industry, such as bubbles/drops,

jets, waves and films, and on a variety of length scales from nanoscopic to ocean scale.

Some industrial applications involve chemical engineering, e.g., bubbly flows are in

the core of the chemical reactors and in fuel atomization, or coastal engineering where

understanding ocean waves is of great importance. Thin fluid films are important for

understanding coating and drying processes in printing and polymer production [6, 7],

and many other applications. Particularly in the context of thin films, it is becoming

more and more important to accurately and reliably model the interfacial processes on

very short scales, where the interfacial effects interact closely with the ones involving

fluid/solid interactions (wetting). In this field, a significant amount of research is

carried out using asymptotic long wave theory, however, there is an emerging set of

problems involving large contact angles where such an approach is not accurate. It is

therefore important to be able to compute accurately the interfacial effects by solving

directly Navier-Stokes equations coupled with appropriate boundary conditions.

1.1 Volume of Fluid Method

Tracking the interface accurately is a challenge for simulating interfacial flows, due

to the jump discontinuity in the physical properties of the two fluids separated by

the interface. Some of the methods for tracking interfaces include the front tracking,

boundary integral, level set, and volume of fluid (VoF) methods [8, 9, 10]. The VoF

method tracks the interface implicitly by tracking fluid volume in each computational

cell (control volume), using the volume fraction function, which is advected with the

flow. The volume fraction function is a scalar function defined in each computational
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cell as the ratio of the fluid volume in the cell to the cell volume. The interface is then

reconstructed from the volume fractions. The main challenges in the VoF method are

advection of the volume fraction, interface reconstruction, and accurate calculation of

interfacial geometrical features; most of these difficulties have been resolved in recent

years and empowered the VoF method to become a widespread method for modeling

flows with interfaces [11, 12].

First volume tracking algorithms are introduced by DeBar [13], Hirt and Nichols

[14], and Noh and Woodward [15]. In [14, 15], a simple line interface calculation

(SLIC) for interface reconstruction is used, where the interface is represented by

a piecewise-constant line in each interfacial cell constructed either vertically or

horizontally. In the algorithm by DeBar [13], a piecewise linear interface calculation

(PLIC) is used; improved versions of which [16, 17, 18] are still widely used methods

in volume tracking algorithms [19]. More accurate interface reconstruction methods

can be achieved with least squares VoF interface reconstruction algorithm (LVIRA)

[20]. The interface can also be reconstructed using higher order polynomials, e.g.,

parabolas [21]. More detailed review on interface reconstruction in the VoF method

can be found in [17, 22].

The approximation of the surface tension term is one of the main challenges

in the VoF methods, due to the difficulty of calculating the surface normals and

curvature. In the interface tracking methods, the surface normals and curvature are

computed from the gradients of a function representing the interface or interface

positions: in the front tracking method the position of the marker points on the

interface is known; in the level set method the interface is tracked via a continuous

function, whose gradients can be computed directly using finite difference methods.

On the other hand, in the VoF methods, the position of the interface is approximated

from the volume fractions, i.e., a step functions whose gradients need to be computed

with care.
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A breakthrough for simulating surface tension driven flows in the VoF method

was made by Brackbill et al. [23] with the continuum surface force method (CSF),

where the surface tension force is applied as a volumetric force at the interface.

However, the original approach suffered from spurious currents, i.e., flow induced by

the discretization of the surface force and the pressure gradient, whose magnitudes

do not converge with the mesh refinement. The obstacle of spurious currents creation

has been resolved by applying the surface force consistently with the calculations

of the pressure gradient in balanced force method [21, 24], and by more accurate

calculations of interface normals and curvature using generalized height functions

[11, 12, 24, 25, 26, 27]. A summary of these methods is given in Section 2.2.

1.2 Numerical Simulations of Variable Surface Tension Flows

Flows induced by spatial variations in the surface tension, also known as the

Marangoni effect [28], can be caused by surfactants, temperature or concentration

gradients, or a combination of these effects. Understanding these flows is important

since they are relevant in microfluidics [29], heat pipe flows [30], motion of drops

or bubbles in materials processing applications that include heating or cooling [31],

evolution of metal films of nanoscale thickness melted by laser pulses [32, 33], and in

a variety of other thin film flows, see [34, 35] for reviews.

Numerical methods for studying variable surface tension flows include front

tracking [36], level set [37], diffuse interface [38], marker particle [39, 40], immersed

boundary [41], boundary integral [42], interface-interaction [43], and VoF [44, 45, 2]

methods. The VoF method is efficient and robust for tracking topologically complex

evolving interfaces. The improvements in recent years in the computation of the

surface tension have empowered the VoF method to become a widespread method

for modeling interfacial flows [11, 12]. However, an accurate implementation of the

variable surface tension in the VoF formulation is still lacking a general treatment.
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A challenge for including variable surface tension effects into the VoF method

is that the surface tension is not known exactly at the interface – only the value

averaged over a computational cell containing the interface is known. To obtain the

surface tension at the interface, an approximation from the values near the interface,

usually calculated at the center of each adjacent computational cell, is necessary. As

we outline below, the approximation of the interface values has been carried out in the

literature differently, depending on the physics of the problem studied. An additional

major issue concerns computing the surface gradients of the surface tension at the

interface.

In [46] and [2], the VoF method is used to study flows involving temperature

dependent surface tension. The implementation in [46] solves the heat equation in

fluids on both sides of the interface. Then the continuity of the temperature and

flux at the interface is imposed, along with the conservation of energy in the cell

containing the interface. In the last step, the temperature in the fluid and air in

the cell is approximated. These temperature values are then used to calculate surface

gradients of the temperature from nearby cells that are not cut by the interface; these

gradients are then exponentially extrapolated to the interface. In the work by Ma and

Bothe [2], the temperature at the interface is approximated from the temperatures in

the liquid and the gas by imposing the continuity of heat flux at the interface. The

surface gradients of the temperature are approximated by computing the derivatives

in each coordinate direction using finite differences, and then projecting them onto the

tangential direction. If the interface is not contained in all cells of the finite difference

stencil, then one sided differences are used. Hence, this method requires temperature

solution on both sides of the interface and therefore cannot be used for setups involving

a large difference in thermal conductivity of the two fluids, since the fluids may

have a large temperature difference. Furthermore, both of these methods are not

applicable to setups where the surface tension only depends on the concentration, such
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as mixing of miscible liquids with different surface tension. In the work by James and

Lowengrub [45], the VoF method is used to study the flows induced by the surfactant

concentration gradient. In their method, the concentration values at the interface are

obtained by imposing the condition that the average concentration at the interface

is equal to the average concentration in the cell containing the interface. Then, the

surface gradients are computed using the cell-center interfacial concentration in the

two adjacent cells.

Here, we develop a method that can be applied to both temperature and

concentration dependent surface tension, with the surface gradients computed using

the cell-center values in the interfacial cells only. We find the tangential gradients

directly by computing the tangent directions on the interface using height functions

[1]. This method can be applied to setups such that the concentration is confined to

the fluid domain, e.g., mixing of liquids with different surface tension coefficients, as

well as configurations involving a jump in the temperature between the liquid and the

surrounding. Since our method does not depend on whether we consider temperature

or concentration gradients, we will use them interchangeably in the remaining part

of the paper.

Our numerical method is implemented using Gerris: an open source adaptive

Navier-Stokes solver [47, 1]. The current version includes CSF [23] implementation

of the surface tension force with height function algorithm for computing interfacial

normal and curvature [1]. Here, we present the method for extending this formulation

to include variable surface tension, allowing us to consider the surface force in

the direction tangential to the interface. As far as we are aware, this is the

first implementation of the variable surface tension combined with the accurate

implementation of the CSF method, such that the curvature and interface normals

are computed using generalized height functions [1]. Our extension is a step closer

to to covering all aspects of variable surface tension flows; the remaining one is the
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implementation of the surfactant transport and surface tension gradients due to the

presence of surfactants.

1.3 Contact Angle Implementation

One of the applications of our method involves the breakup of thin films and the dy-

namics of drops on a substrate. In order to study both of these applications, a contact

angle boundary condition needs to be imposed at the substrate. Implementation of

an arbitrary contact angle in three spatial dimensions is also discussed. In particular,

we describe an algorithm for imposing a contact angle boundary condition in VoF

simulations using the height function method described in [48, 4]. We present an

alternative implementation of this method usingGerris flow solver in 2D, and discuss

its extension to 3D.

1.4 Applications of Variable Surface Tension Flows

Directed and self-assembly of nanoparticles are low cost methods for producing arrays

of nanoparticles with controlled particle size and spacing [49, 50]. Ensembles of

nanoparticles have different properties compared to an individual particle or bulk

materials, and can be used in plasmonic light trapping in thin film solar cells [50]. In

spherical nanoparticles arranged into hexagonal arrays a collective plasmonic mode

with diffractive coupling between the particles can be excited, which along with their

fast and inexpensive fabrication procedure, makes them promising for sensing in

biomedical applications [51]. Liquid metals directed assembly has been studied in

experiments where the metal films are liquefied by a laser pulse. The assembly can

be directed by the initial pattern, which dewets and solidifies into arrays of particles on

the substrate [52, 53, 54, 55, 56], by varying the thickness of the initial nanostructures

[57, 58, 58, 59, 60, 61, 62, 63], or by varying the laser source [64, 65].
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Numerically, the breakup of liquid metals has been studied in the long wave

regime, where spinodal dewetting drives the breakup [66, 63]. The thermocapillary

effect is also considered, where the surface tension depends linearly on the temperature

of the film [67, 68], in the parameter regime where the temperature satisfies the steady

state heat equation with variation in the out-of-plane direction only. The heat source

from the laser is modeled by the film absorption of the laser energy according to [69],

with time independent and uniform and spatially dependent laser beam intensity

distribution. The breakup of liquid metal films is also studied using VoF simulations

where the breakup is induced by the Rayleigh-Plateau instability [70] with a sinusoidal

initial film pattern [55], square wave pattern [56, 71], and by dewetting of liquid metal

nanostructures [72] where the capillary force drives the flow.

We study the influence of the variable surface tension coefficient on the directed

and self-assembly of nanoparticles from liquefied metal films and filaments. First,

we investigate a new methodology for directed assembly of metal nanoparticles

from bimetal filaments where the breakup dynamics and the resulting particle

configurations are determined by the Marangoni force caused by the variation in the

metal concentration at the liquid–air interface. Second, we investigate the influence

of the variable surface tension flow created by the temperature variations in the film,

i.e., the thermocapillary force, on the stability of the interface.

1.5 Summary and Overview

The rest of the dissertation is organized as follows: In Chapter 2.2 we introduce

the governing equation of the problem, and give an overview of the VoF method,

including the CSF method for the computation of the surface tension, balanced force

algorithm, and height function method for computation of curvature and interface

normal. Chapter 3 describes in detail the implementation of the variable surface

tension coefficient first for a special case where the surface tension can be modeled
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as a function of the film height in two dimensions in Section 3.1, and second for a

general variable surface tension coefficient in two and three dimensions in Section 3.2.

Section 3.3 illustrates the performance of our method for various test cases, where we

compare the results with exact and asymptotic solutions. Chapter 4 gives an overview

of the contact angle algorithm in two dimensions and a guideline for implementation

in thee dimensions. Chapter 5 gives various physical applications of the developed

numerical method. First, in Section 5.1 we present simulation of the coalescence of

droplets with different surface tensions, and comparison of the results with available

experiments in the literature. Second, we show the influence of the concentration

driven Marangoni force on the breakup of liquid metal filaments in Section 5.2, and

on the breakup of films with cylindrical perturbations in Section 5.3. Next we show

the influence of the thermocapillary force on the breakup of two dimensional liquid

metal films, and three dimensional filaments, in Section 5.4. The dissertation ends

with discussion of results and future direction in Chapter 6. Additional details of

mathematical models and computational algorithms are given in the Appendices.
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CHAPTER 2

MATHEMATICAL MODELS AND OVERVIEW OF THE

NUMERICAL METHODS

In this chapter, we present the governing equations describing the two phase fluid

flow and the equations governing the concentration or temperature in Section 2.1.

We represent the two phase flow by the Navier-Stokes equations, where the material

properties are phase dependent. The surface forces at the interface between two fluids

are z represented by a body force using the CSF method. The temperature or the

concentrations are governed by advection-diffusion equations. In Section 2.2 we give

a brief overview of the numerical methods used in Gerris.

2.1 Governing Equations

We consider an incompressible two-phase flow described by Navier-Stokes equations

ρ(∂tu+ u · ∇u) = −∇p+∇ · (2µD) + F, (2.1)

∇ · u = 0, (2.2)

and the advection of the phase-dependent density ρ (χ)

∂tρ+ (u · ∇)ρ = 0, (2.3)

where u = (u, v, w) is the fluid velocity, p is the pressure, ρ(χ) = χρ1 + (1−χ)ρ2 and

µ(χ) = χµ1+(1−χ)µ2 are the phase dependent density and viscosity respectively, D is

the rate of deformation tensor D =
(

∇u+∇uT
)

/2. Subscripts 1 and 2 correspond

to the fluids 1 and 2, respectively (see Figure 2.1). Here, χ is the (continuous)

characteristic function, such that χ = 1 in the fluid 1, and χ = 0 in the fluid 2. Note

that any body force can be included in F. The characteristic function is advected
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ρ1, µ1

ρ2, µ2

Fluid 1

Fluid 2

[[n̂ ·T · n̂]] = σ (x)κ

[[n̂ ·T · t̂]] = t̂ ·∇σ (x)

x

y

z

n̂

t̂

Figure 2.1 Schematic of a system with two immiscible fluids and the corresponding
boundary conditions.

with the flow, thus

∂tχ + (u · ∇)χ = 0. (2.4)

Note that solving Equation (2.4) is equivalent to solving Equation (2.3).

The presence of an interface gives rise to the stress boundary conditions, see

Figure 2.1. The normal stress boundary condition at the interface defines the stress

jump [73, 74]

Jn̂ ·T · n̂K = σ (x) κ, (2.5)

where T = −pI+µ
(

∇u+∇uT
)

is the total stress tensor, σ (x) is the surface tension

coefficient, κ is the curvature of the interface, and n̂ is the unit normal at the interface

pointing out of the fluid 1. The variation of surface tension coefficient results in the

tangential stress jump at the interface

Jn̂ ·T · t̂K = t̂ · ∇σ (x) , (2.6)

which drives the flow from regions of low surface tension to those with high surface

tension. Here, t̂ is the unit tangent vector in two dimensions (2D); in three dimensions
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(3D) there are two linearly independent unit tangent vectors. Using the CSF method

[23], the forces resulting from the normal and tangential stress jump at the interface

can be included in the body force F = Fsn + Fst, defined as

Fsn = σ (x) κδsn̂, (2.7)

and

Fst = ∇sσ (x) δs, (2.8)

where δs is the Dirac delta function centered at the interface, δsn̂ = ∇χ, and ∇s is the

surface gradient. Substituting Equations (2.7) and (2.8) in the momentum Equation

(2.1) gives

ρ(∂tu+ u · ∇u) = −∇p +∇ · (2µD) + σ (x)κδsn̂+∇sσ (x) δs. (2.9)

We define the nondimensional variables, denoted with a superscript “*”, as

x∗ =
x

a
, t∗ =

t

tr
, u∗ =

u

U0
, p∗ =

p

p0
,

ρ∗ (χ) =
ρ (χ)

ρ1
, µ∗ (χ) =

µ (χ)

µ1
, σ∗ =

σ

σ0
,

where the scales a, tr, U0, p0, and σ0 are chosen based on the problem studied. Hence

the dimensionless Equation (2.9) is

Reρ∗(∂∗t u
∗ + u∗ · ∇∗u∗) = −∇∗p∗ +∇∗ · (2µ∗D∗)+

+ Ca−1σ∗κ∗δ∗s n̂+
σ0
U0µ1

∇∗

sσ
∗δ∗s t̂, (2.10)

where Re and Ca are the Reynolds and Capillary numbers respectively, defined as

Re =
ρ1U0a

µ1
, Ca =

U0µ1

σ0
. (2.11)
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The surface tension is a function of temperature, T , or concentration, C, which satisfy

an advection diffusion equation

ρ (χ)Cp (χ) (∂tT + (u · ∇)T ) = ∇ · (k (χ)∇T ) , (2.12)

∂tC + (u · ∇)C = ∇ · (α (χ)∇C) , (2.13)

where Cp (χ), k (χ) and α (χ) are the phase dependent heat capacity, conductivity

and diffusivity, respectively. Along with the scales given above, Equations (2.12) and

(2.13) are nondimensionalized using the following scales

k∗ (χ) =
k (χ)

k1
, C∗

p (χ) =
Cp (χ)

Cp1

, T ∗ =
T

T0
, α∗ (χ) =

α (χ)

α1
, (2.14)

where T0 is chosen based on the physics of the system. Hence the dimensionless

equations (2.12) and (2.13) are

Maρ∗C∗

p (∂
∗

t T
∗ + (u∗ · ∇∗)T ∗) = ∇∗ · (k∗∇∗T ∗) , (2.15)

Ma (∂∗tC
∗ + (u∗ · ∇∗)C∗) = ∇∗ · (α∗∇∗C∗) , (2.16)

where Ma is the Marangoni number defined as

Ma =
U0a

α1

. (2.17)

The diffusivity, α1, in the heat equation is α1 = k1/(ρ1Cp1). Surface tension can have

linear or nonlinear dependence on temperature or concentration. In many applications

the surface tension depends on the temperature linearly, i.e.,

σ = σ0 + σT (T − TR) , (2.18)

where σ0 is the surface tension at a reference temperature TR, and σT is a constant.

Then, we can write

∇sσ = σT∇sT, (2.19)
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and compute ∇sT in the same manner as ∇sσ. Using the scales given above, the

dimensionless Equation (2.18) is

σ∗ = 1 +
σTT0
σ0

(T ∗ − T ∗

R) . (2.20)

In the following section, we describe a method for computing ∇sσ in general,

regardless of the dependence on the temperature or concentration.

2.2 Overview of the Numerical Methods

The system given in Equation (2.1) is discretized using a time-splitting projection

method [75]

ρn+1/2

[

u∗ − un

∆t
+ un+1/2 · ∇un+1/2

]

= ∇ ·
[

µn+1/2(Dn +D∗)
]

+ Fn+1/2, (2.21)

χn+1/2 − χn−1/2

∆t
+∇ · (χnun) = 0, (2.22)

un+1 = u∗ −
∆t

ρn+1/2

∇pn+1/2, (2.23)

∇ · un+1 = 0. (2.24)

First the intermediate (auxiliary) velocity, u∗, is calculated from Equation (2.21). The

approximation of the velocity advection term un+1/2 ·∇un+1/2 is carried out using the

Bell-Colella-Glaz second-order unsplit upwind scheme [1, 47, 76]. Then the pressure,

pn+1/2, is found by solving the Poisson equation

∇ ·
(

∆t

ρn+1/2

∇pn+1/2

)

= ∇ · u∗, (2.25)

which is solved using the multilevel solver described in [47]. Surface tension force is

applied to the auxiliary face- and cell-centered velocity field, denoted by superscripts
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f and c respectively, via the balanced force algorithm [21, 24], as follows

uf
∗
= uf

∗
+

∆t σ κfn+1/2

ρn+1/2

∇χf
n+1/2, (2.26)

uc
∗
= uc

∗
+

∣

∣

∣

∣

∣

∆tσ κfn+1/2

ρfn+1/2

∇fχn+1/2

∣

∣

∣

∣

∣

c

. (2.27)

This approach, along with an accurate curvature computation, decreases the spu-

rious currents at the interface for a case of a stationary drop in equilibrium

[21, 24]. Equation (2.21) gives a Crank-Nicholson discretization of viscous terms

and is second order accurate and unconditionally stable [1]. The un+1/2 · ∇un+1/2

term is approximated using the Bell-Colella-Glaz second order unsplit upwind

scheme [76]. This scheme is stable for Courant-Friedrichs-Lewy (CFL) number

(|u|∆t/∆x+ |v|∆t/∆y + |w|∆t/∆z) smaller than one [1]. Note that in Gerris, the

grid is discretized with ∆x = ∆y = ∆z ≡ ∆. The surface tension gives rise to

another time step constraint: ∆t ≤
√

ρ1∆3/πσ [1]. After solving Equation (2.25), a

correction is applied to the intermediate velocity at the cell face

uf
n+1 = uf

∗
− ∆t

ρfn+1/2

∇fpn+1/2, (2.28)

which results in the exactly divergence free face-centered velocity. The cell-centered

velocity is approximately divergence-free and given by

uc
n+1 = uc

∗
−
∣

∣

∣

∣

∣

∆t

ρfn+1/2

∇fpn+1/2

∣

∣

∣

∣

∣

c

, (2.29)

where |.|c denotes the cell-centered value obtained from averaging over all cell faces.

Generalized height functions are used for computing normals and curvature

of the interface [1]. The accuracy of the normal and curvature computation using

height functions is comparable to the normal and curvature computation using the

derivatives of the level set functions [25]. The height function value in each interfacial

cell is a sum of the volume fractions in the fluid column in the given stencil. Figure
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Figure 2.2 Height function computation with compact stencil constructed indepen-
dently for each column. (a) Stencil for a slightly curved interface. (b) Asymmetric
stencil, where each column requires different number of cells. Source: [1].

2.2 shows a compact stencil used for calculating height functions implemented in

Gerris solver [1], where the solid lines show the stencil size required to calculate the

curvature in the cell marked by the bold lines. The height function is then

Hi =
∑

k

χi,k, (2.30)

where the range of index k depends on the stencil size. The stencil size is determined

by visiting the cells in the column, starting from the interfacial cell until a full cell

is found in direction in the fluid – where χ = 1, and an empty cell is found in the

direction outside of the fluid – where χ = 0. In Figure 2.2(a) only three cells are

required for calculating the height function in each column. Figure 2.2(b) shows an

asymmetric stencil where each column requires visiting a different number of cells.

In 2D, the height function can be calculated in either x or y direction, depending

on the orientation of the interface. Here, we will present the discretization for height

function for columns in the y direction (as in Figure 2.2). For heights collected in the

x direction, the equations are equivalent with the derivatives of the height function

with respect to x replaced by the derivatives with respect to y. The curvature of the
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interface is calculated from the height functions as

κ =
Hxx

(1 +H2
x)

3/2
, (2.31)

and the normal vector at the interface is

n̂ =
1

√

1 +H2
x

(Hx,−1) , (2.32)

where the derivatives of the height functions in Equations (2.31) and (2.32) are

calculated using a second order central difference

Hx =
Hi+1 −Hi−1

2∆
(2.33)

Hxx =
Hi+1 − 2Hi +Hi−1

∆2
. (2.34)

where ∆ is the cell size. In 3D, e.g., if the columns are computed in the z direction,

the curvature is

κ =
Hxx +Hyy +HxxH2

y +HyyH2
x − 2HxyHxHy

(

1 +H2
x +H2

y

)3/2
. (2.35)

and the normal vector at the interface is

n̂ =
1

√

1 +H2
x +H2

y

(Hx,Hy,−1) . (2.36)

For the case where consistent height functions cannot be constructed to compute

the derivatives given in Equations (2.33), Gerris uses a so called generalized height

function method [1] to compute the curvature and normals. In this case, interface

height positions are collected and used for fitting a parabola in 2D or paraboloid in

3D, whose derivatives are subsequently used to compute the curvature and normal

vectors.
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CHAPTER 3

VARIABLE SURFACE TENSION IMPLEMENTATION

This chapter gives the details of the numerical implementation of the surface gradients

of the variable surface tension coefficient, ∇sσ. The surface gradients are computed in

two ways. First in Section 3.1 we present a method for a fluid film formulation in 2D,

where the surface tension depends on the temperature linearly, and the temperature

is known at the interface as a function of the film height. Second, in Section 3.2 the

surface gradient is computed in a general manner for any scalar field defined on the

interface, regardless of the interfacial geometry.

3.1 Marangoni Stress with a Given Temperature Field in 2D

As a first simplified case, we implement a method for computing the surface gradients

of the surface tension coefficient, ∇sσ, where σ depends on the temperature linearly,

such as specified by Equation (2.18), and the temperature is known as a function

of the film height, h. These assumptions follow from an application to liquid metal

films melted by a pulsed laser, explained in more detail in Section 5.4.1. Note that

the approach presented here can be used only when the interface is a single valued

function of x or y. Recall from Section 2.1 that the surface gradients of σ can be

computed as in Equation (2.19). In the 2D case, we can write the surface gradient

as ∇s = ∂ /∂s t̂. Following the above assumptions and simplifications, the surface

gradients of σ can be computed as

∇sσ =
σT

∂T
∂h

∂h
∂x

ds
t̂, (3.1)

where ds =
√

1 + (∂H/∂x)2 is the arc length, and H is the height function described

in Section 2.2. The gradient of the temperature with respect to the film height,
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∂T/∂h, is computed analytically, and evaluated at each interfacial cell. Note that

∂h/∂x in Equation (3.1), is equivalent to ∂H/∂x, i.e., the derivative of the height

function with columns in the y direction. Furthermore, ∂H/∂x can be found from

the height function with columns in the x direction, denoted W here, as (∂W/∂y)−1.

Finally, the surface force at the interface is added as a body force using the CSF

method (see Equation (2.9)).

We test the implementation by comparing a growth rate of the perturbations

for a fluid film in the simulations with the prediction from the linear stability analysis

(LSA) derived from the thin film approximation [77]. Consider a thin fluid film lying

on a planar horizontal substrate. The dynamics can be described by applying a long

wave approximation, which reduces the Navier-Stokes equations to a single nonlinear

partial differential equation for the film height h (x, t) [77]

3η
∂h

∂t
= −∇ ·

(

σ0h
3∇∇2h +

3

2
h2∇σ

)

, (3.2)

where the gradient in the 2D case is ∇ ≡ ∂ /∂x. Next we use the LSA to obtain

the dispersion relation. Assume that the film is perturbed about the equilibrium film

thickness h0, as h(x, t) = h0 + εh0e
βt+kx with a small parameter ε, growth rate β

and wave number k. Using this expression for h in Equation (3.2), and keeping only

leading order terms in ε, gives the dispersion relation

β = −h
2
0 k

2

3η

(

σ0h0k
2 − 3

2
σT
∂T

∂h

)

. (3.3)

Here, we assume the surface tension depends on the temperature T linearly via (2.18).

From Equation (3.3) we can see that the unstable modes (β < 0) are possible only if

∂T/∂h < 0. We assume linear temperature dependence on the film thickness h

T (h) = TR +
∂T

∂h
h,

where TR is a reference temperature, and ∂T/∂h is constant.
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Figure 3.1 Temperature of the interface at the initial (a) and final time step (b).
The film is initially perturbed around the equilibrium film thickness h0 = 11 nm. The
temperature is rescaled by the melting temperature of Nickel (TR). Arrows show the
direction of the velocity field.

For the purpose of the illustration of the test simulation setup, Figure 3.1 shows

the interface configuration and the temperature of the interface for initial and final

times of the simulation. In this example, the interface is perturbed with the most

unstable wave number, kmax ≈ 0.0314 nm−1, i.e., the wave number corresponding to

the maximum growth rate, βmax, from Equation (3.3). The material parameters used

correspond to liquid Nickel: density ρ = 7905.0 kg m−3, viscosity η = 5.5× 10−3Pa s,

and in the expression (2.19) for the surface tension, σ0 = 1.778N m−1, σT = −0.38×

10−3N m−1K−1 and TR = 1727K. Symmetry boundary conditions are applied to the

left left, right and top boundary, and no-slip and no-penetration conditions on the

bottom boundary. A contact angle of 45◦ is imposed at the bottom boundary.

Figure 3.2 shows the comparison of the growth rate predicted by Equation (3.3),

and measured from the numerical simulations. The measured points are not exactly

on the analytically-predicted curve, but they follow the same trend. Note that the

exact agreement is not expected here since long wave theory assumes small contact

angles.
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Figure 3.2 Comparison of the growth rate predicted by the linear stability analysis
with the growth rate measured from the numerical simulations. The solid line shows
the growth rate predicted by Equation (3.3), and red symbols show the growth rate
measured from the simulations.

3.2 General Method

The proposed numerical method is implemented into Gerris, which numerically

solves Equations (2.1) to (2.3) using the VoF interface tracking method with an

implicit treatment of the viscous forces [1, 47, 78]. The Gerris code uses octree

(3D) and quadtree (2D) grids, allowing to adaptively refine the grid in the immediate

neighborhood of the interface. While we describe our implementation of the variable

surface tension coefficient for uniform meshes, the extension to adaptively refined

meshes is straightforward, following the implementation details described by [1, 47].

The surface gradient of any scalar field Q is defined as the projection of the

gradient onto the surface, i.e.,

∇sQ = ∇Q− n̂ (n̂ · ∇Q) (3.4)

where n̂ is the unit normal vector at the surface. However, this definition of the

surface gradient can result in inaccuracies when implemented in the VoF method for

general variable surface tension coefficient for two reasons. First, the discontinuities of

the material properties across the interface can result in Q having a large jump across
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the interface: for example, in the case of surface tension coefficient dependence on the

temperature where the fluids on each side of the interface have a large difference in

the conductivity. The second reason is that, in general, the surface tension coefficient

can depend on the concentration: for example, in the case of the mixing of two liquids

with different surface tension coefficients, or in the case of surface tension coefficient

dependent on the surfactant concentration.

Here, we propose a numerical method for implementing a general variable

surface tension coefficient. We compute the surface gradient as

Fst =
∂σ

∂s1
δst̂1 +

∂σ

∂s2
δst̂2, (3.5)

where t̂1 and t̂2 are the unit tangent vectors at the interface, pointing in the s1 and s2

directions, respectively. In our approach, we first define the surface tension coefficient

values at the interface, then compute the derivatives of σ along the interface, and

finally project the derivatives onto the tangent space defined by t̂1 and t̂2. In the

following sections we present the details of the implementation. In Section 3.2.1, we

show how to approximate the value of the surface tension coefficient on the interface

using the cell-center values. Then in Section 3.2.2, we show how ∂σ/∂sd, for d =

1, 2, are evaluated, along with the choice of the tangent vectors and addition of the

tangential surface force using the CSF method.

3.2.1 Approximation of Interfacial Values of the Surface Tension Coefficient

The algorithm for implementing ∇sσ (x) in the VoF method starts with the

approximation of the interfacial values of the surface tension in each cell containing

an interface segment. More precisely, we use the idea of constructing the columns of

cells inspired by the computation of interfacial curvature and normals using height

functions [1] (see Section 2.2). We should note however that to obtain a consistent

height-function approximation, the interface must be sufficiently resolved. While we
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Figure 3.3 An example of the interface orientation, where columns in the x (a) and
the y (b) direction for computing σ̃c (x) contain one interfacial cell. Each color shows
a different column in interfacial cells C.

cannot expect reasonable accuracy for the computation of the surface tension gradient

in the tangential direction at very low resolutions, when the interface becomes very

poorly resolved, one should resort to interpolation methods described by Popinet [1].

We show via examples in Section 3.3.3, the required spatial resolution below which a

consistent height-function approximation is no longer possible.

Let σ(C) be the surface tension coefficient evaluated from the temperature or

concentration at the center of all interfacial cells C, with the volume fraction χ(C). The

surface tension coefficient in each column, denoted by σ̃c (x), is defined so that it has

only one value in each column, regardless of how many interfacial cells are contained

in that column. For illustration, Figure 3.3 shows columns that contain only one

interfacial cell, and Figure 3.4 shows columns that contain more than one interfacial

cell, where the same color denotes cells in the same column. The superscript, c =

x, y, z, represents the column direction. For simplicity, here we show examples of the

implementation in 2D, however, the algorithm extends trivially to 3D.

For columns with only one interfacial cell (see Figure 3.3(a) and (b) for the

columns in the x and y directions, respectively), the surface tension of the interfacial

cells, σ̃c, is equal to the surface tension σ(C) in the same cells. If there is more than
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Figure 3.4 An example of the interface orientation where columns in the x (a) and
y (b) direction for computing σ̃c contain more than one interfacial cell. The cells with
the same color belong to the same column.

one interfacial cell in the column, then σ̃c is approximated by the volume weighted

average of the σ(C) values. In Figure 3.4, the cells labeled with the cell indices will

be used for computing σ̃c for columns in the x and y directions – Figures 3.4(a) and

(b) respectively. For example, in Figure 3.4(a), the σ̃x is computed using the columns

in the x direction, and the value of σ̃x in the column containing cell Ci,j, denoted σ̃x
j ,

is

σ̃x
j =

χi,jσi,j + χi+1,jσi+1,j
∑

χi
. (3.6)

Note that the cells in the same column, in this particular example cells Ci,j and Ci+1,j,

have the same value of σ̃x. For the columns in the y direction, as in Figure 3.4(b), σ̃y

in the column containing cell Ci,j, denoted σ̃y
i , is computed as

σ̃y
i =

χi,jσi,j + χi,j+1σi,j+1
∑

χi
. (3.7)

Again, the cells in the same column, in this case Ci,j and Ci,j+1 have the same value

of σ̃y.

In our implementation, we first define σ̃c for all c in all interfacial cells. For

certain interface orientations, it is possible to define σ̃c for columns in more than one
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direction, e.g., the interface in Figure 3.4. However, this is not always the case, e.g.,

in Figure 3.3(a) we can only compute σ̃x, and in Figure 3.3(b) we can only compute

σ̃y. For the former case, in the following sections we describe how the direction of the

columns is chosen along with the discussion of the computation of the surface forces.

3.2.2 The Computation of the Surface Forces

The next step in the variable surface force implementation is the evaluation of the

derivatives along the interface, ∂σ/∂sd, where d = 1, 2, in equation (3.5). In 2D, we

only need to compute the derivative in one direction, since the basis for a tangent line

consists of only one vector. However, in 3D, we need two tangent vectors to form a

basis for the tangent space, hence we need to evaluate the derivative in two directions.

We now discuss the implementation of the method for 2D and 3D.

The Surface Force in 2D In 2D, Equation (3.5) simplifies to

Fst =
∂σ

∂sc
δst̂, (3.8)

since we only have one tangential direction. In this case, c = x, y, denotes the

direction of the columns (see Section 3.2.1). The derivative of the surface tension

coefficient along the interface, ∂σ/∂sc, is approximated by the derivative of the

interfacial value, σ̃c in the column which is formed in the direction c. The choice

of the direction, c, is based on the interface orientation: c is chosen to be the same as

the largest component of the normal vector to the interface. The same choice is made

for computing curvature and the interface normal using the height functions [1].

In each interfacial cell, we compute the derivative along the interface using the

center difference, i.e., the finite difference of the σ̃c in the two neighboring columns.

For example, in Figure 3.3(a) and 3.4(a), the derivative is computed with respect to
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the y direction, as
(

∂σ

∂sx

)

i,j

=
σ̃x
j+1 − σ̃x

j−1

ds
. (3.9)

As a reminder, σ̃x
j is the interfacial value of the surface tension in the column j

constructed in the x direction. The arc length, ds, is computed from the height

function in the same direction as ∂σ/∂sc. For the example given in equation (3.9),

the arc length is

ds = 2∆
√

1 +Hy, (3.10)

where Hy is the derivative of the height function with respect to the y direction (see

Section 2.2) and ∆ is the cell size.

The next part of the surface gradient implementation is the choice of the tangent

vector, t̂, which is computed so that it satisfies t̂ · n̂ = 0, where n̂ is found using the

Mixed Young’s Center (MYC) method by [79]. We use the MYC method mainly

due to its computational efficiency when compared to the height function method

for computing the normals. This advantage is particularly noticeable in 3D. The

direction of t̂ depends on the direction used for computing ∂σ/∂sc: t̂ points in the

direction of the positive component orthogonal to the c direction. For example, t̂

points in the positive x direction if we construct columns in the y direction.

We have defined ∂σ/∂sc in the interfacial cells. However, in the CSF method

[23], we need to know ∂σ/∂sc in the cells around the interface, i.e., in all the cells

where δs = ||∇χ||2 is nonzero. Consider an intermediate value of the surface force,

G, which includes the correct sign of the surface force, but excludes the magnitude

of the tangential vector, i.e.,

Gx =
∂σ

∂sc
sgn(tx), (3.11)

Gy =
∂σ

∂sc
sgn(ty). (3.12)
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(a) (b)

Figure 3.5 The x (a) and y (b) component of G, with values around the interfacial
cells defined by averaging the neighboring cells.

The intermediate force G can be defined in the cells around the interface by using

the same approach as for defining the curvature in the cells around the interface [78],

i.e., the values in the cells neighboring the interfacial cells are defined by averaging

the values in the direct neighbors that already have the curvature value defined.

This procedure is repeated twice, insuring that the curvature values for the corner

neighbors to the interfacial cells are defined as well. The x and y components of G

in the cells around the interface are subsequently used to compute the surface force,

defined in Equation (3.8), as

Fx = Gx|tx| δs, (3.13)

Fy = Gy|ty| δs. (3.14)

Figure 3.5 shows the result of this procedure for an example of the surface gradient

where we impose a positive uniform gradient of the surface tension in the y direction.

Surface Force in 3D The implementation of the surface gradient in 3D extends

the 2D implementation by considering the second tangential direction as stated in

Equation (3.5). Equivalently as in 2D, we first define the column values σ̃c of the
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Figure 3.6 A stencil used for computing surface gradient in the column containing
the cell Ci,j, with a tangent plane defined by the vectors t̂1 and t̂2. Vectors t̂1,xy and
t̂2,xy are the projections of t̂1 and t̂2 onto the xy-plane respectively.

surface tension coefficient σ. This part of the algorithm is identical to the 2D part,

with the addition of one more direction. After the column values, σ̃c, are defined,

we compute the gradients along the two components orthogonal to the columns: for

example, if the columns are constructed in the z direction, see Figure 3.6, then the

derivatives along the interface are computed in the x and y directions as
(

∂σ

∂sz1

)

i,j

=
σ̃z
i+1,j − σ̃z

i−1,j

2∆
√

1 +H2
x

,

(

∂σ

∂sz2

)

i,j

=
σ̃z
i,j+1 − σ̃z

i,j−1

2∆
√

1 +H2
y

.

(3.15)

As previously discussed in 2D, the direction, c, in which the columns are constructed,

is chosen based on the interface orientation, where c is the same as the direction of

the largest component of the interface normal vector.

The next part of the surface gradient computation is the choice of the tangent

vectors, t̂d, which are computed so that they satisfy t̂d · n̂ = 0. Among all the

possibilities for t̂d, we choose the two whose projections onto the coordinate plane,

defined by all points with c coordinate equal to zero, are parallel to the axes. Figure

3.6 illustrates this procedure by an example where the columns are constructed in the

z direction and the projections of the tangent vectors t̂1 and t̂2 onto the x-y plane

are parallel to the x and y axes and denoted by t̂1,xy and t̂2,xy, respectively. In this
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particular example, the tangent vectors will be of the form

t̂1 = (t1x, 0, t1z), (3.16)

t̂2 = (0, t2y, t2z). (3.17)

The signs of the components of the tangential vectors are chosen so that their

projections onto the coordinate plane point in the positive direction of the coordinate

axes (see e.g., Figure 3.6).

Finally, we compute the surface force, Fst = (Fx, Fy, Fz). In the case such that

the columns are constructed in the z direction, the components of Fst are

Fx =
∂σ

∂sz1
t1x, (3.18)

Fy =
∂σ

∂sz2
t2y, (3.19)

Fz =
∂σ

∂sz1
t1z +

∂σ

∂sz2
t2z . (3.20)

Similarly as in the 2D case, in order to use the CSF formulation, the components

of the tangential force need to be defined in the cells around the interface. This is

done equivalently as in 2D, using the neighbor averaging procedure, see Section 3.2.2.

However, in 3D, there is one extra step due to one of the components containing an

addition of two terms, e.g., as in Equation (3.20). In order to illustrate this, consider

the general form of the x component of the tangential force

Fx =































(∂σ/∂sx1)t1x + (∂σ/∂sx2)t2x if c = x,

(∂σ/∂sy1)t1x if c = y,

(∂σ/∂sz1)t1x if c = z.

(3.21)

Similarly as in 2D, differences in the sign of the derivatives, ∂σ/∂scd, may arise from

the choice of column directions. We proceed by defining the intermediate value of the

surface force, G. The components of G are computed equivalently as in 2D, except
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for the c component which is defined as

Gc =
(∂σ/∂sc1)t1c + (∂σ/∂sc2)t2c

√

t21c + t22c
, (3.22)

where c is the direction of the columns. Now we can carry out the averaging procedure

for each component of G. Finally, the component of the force in the direction c is

Fc = Gc|t1c|δs +Gc|t2c|δs. (3.23)

The other components are computed equivalently as in the 2D case.

3.3 Validation Results

3.3.1 Flat Film Geometry

We first present the validation of our methodology for computing the surface gradient

in 2D geometry where we can compute the gradient exactly. The simplest geometry

that we consider is a flat perturbed interface, i.e., let the interface be a function of x,

defined as

h (x) = h0 + ε cos(2πx). (3.24)

Let the surface tension coefficient be a function of the interface position, defined as

σ (h) = 1 + σhh (x) . (3.25)

Figure 3.7 shows the interface profile and surface tension coefficient at the interface,

for h0 = 0.5, ε = 0.05, and σh = −10−2 in a computational domain of 1× 1, with the

symmetry boundary conditions imposed on all sides. In this case, apart from using

the definition of the surface gradient given in Equation (3.4), we can also compute

the exact surface gradient using the chain rule as

∇sσ =
σhHx

√

1 +H2
x

t̂, (3.26)
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σ

Figure 3.7 The setup of the perturbed interface with a surface tension coefficient
dependent on the interface profile h (x) = h0 + ε cos(2πx). The color represents the
surface tension coefficient at the interface, with dark red and dark blue being the
maximum and minimum values respectively.

where the unit tangent vector, t̂, is defined to point in the positive x direction as

t̂ =
(1,−Hx)
√

1 +H2
x

. (3.27)

Note that the numerator in Equation (3.26), σhHx, is equivalent to the numerator

of Equation (3.9); hence, we can compare their computed values to the exact ones

directly. We present the errors associated with computing σhHx and Hx, separately,

as well as each component of the surface gradient in Equation (3.26). We test the

convergence as a function of the mesh size, ∆, using L1 and L∞ norms to define E1

and E∞ errors respectively as

E1(f) =

N
∑

j

|fapprox − fexact|

N
, (3.28)

E∞(f) = max |fapprox − fexact|, (3.29)

where the summation is over all N interfacial cells. The interface position in each cell

can influence the errors obtained in constructing the columns for the computation
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Figure 3.8 The computed errors for E1(σhHx) (•), E∞(σhHx) (N), E1(Hx) (�), and
E∞(Hx) (+). The order of convergence is 2 for σhHx for both E1 ( ) and E∞ ( )
errors and for hx for both E1 ( ) and E∞ ( ) errors. The symbols represent the
errors from the computations and the lines show the linear fits.

of both surface gradients, ∂σ/∂sy , and the derivative of the height function, Hx.

To avoid this error bias, we average the errors from 100 simulations where h0 was

modified to h̃0 = h0 + hr, where hr is a random number in the interval [0,∆] with

uniform distribution.

We initialize the surface tension coefficient, σ, directly as a function of x, i.e.,

σ (h) = 1 + σh(h̃0 + ε cos(2πx)). Figure 3.8 shows the convergence of the computed

σhHx as a function of the mesh refinement. As shown, the order of convergence is

2 for both E1 and E∞ errors. In this test case, the interfacial value of the surface

tension coefficient σ̃y is computed in the y direction for all cells. Figure 3.8 also shows

the order of convergence of Hx, computed using height functions (see Section 2.2),

that is also 2 for E1 and E∞ errors. We note that in order to eliminate errors in

initializing the volume fractions, we prescribe the initial shape with a more refined

mesh.

Next we investigate the accuracy of the computed surface gradient

∇sσ (x) = (∇sσ)x î+ (∇sσ)y ĵ,
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Figure 3.9 The computed errors for E1((∇sσ)x) (•), E∞((∇sσ)x) (N), E1((∇sσ)y)
(�), and E∞((∇sσ)y) (+). The order of convergence is 2 for (∇sσ)x for both E1 ( )
and E∞ ( ) errors and for (∇sσ)y for both E1 ( ) and E∞ ( ) errors. The symbols
represent the errors from the computations and the lines show the linear fits.

where ((∇sσ)x, (∇sσ)y) = (Gx|tx|, Gy|ty|). Figure 3.9 compares the x and y

components of the surface gradient with the exact solution. As shown, E1 and E∞

errors for both x and y components converge with second order.

3.3.2 Circular Geometry

Next we test the convergence for a more general interfacial geometry where the

interfacial values of σ̃c are computed using columns in both x and y directions (see

Section 3.2). We consider a circle of radius a = 0.25 positioned at (0.5, 0.5) in a 1× 1

domain with an imposed temperature distribution

T (x, y) = ∆T (x+ y) , (3.30)

where ∆T is a constant. We assume that the thermal diffusivity is equal for the fluid

inside and outside of the circle, i.e., k1 = k2, Cp1 = Cp2, ρ1 = ρ2, µ1 = µ2, where

the subscripts 1 and 2 denote the surrounding fluid, and the fluid inside of the drop,

respectively. Figure 3.10 shows the setup with color representing the temperature
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field. Here we choose ∆T = 0.1, k1 = 1, Cp1 = 1 and ρ1 = 1. For simplicity, we

ρ1, µ1

k1, Cp1

a

Figure 3.10 The initial setup of a circular drop with an imposed uniform
temperature gradient. The color shows the temperature with dark blue and dark
red being the minimum and maximum values respectively.

assume that the surface tension coefficient is a linear function of temperature, i.e.,

σ (T ) = 1 + σTT, where we let σT = −0.1. We set the velocity to zero, and knowing

that the interface is exactly circular, we can compute the exact surface gradient from

the definition

∇sσ = ∇σ − n̂ (n̂ · ∇σ) , (3.31)

=
σT∆T

a2

〈

a2 − x2 ∓ x
√
a2 − x2, x2 ∓ x

√
a2 − x2

〉

, (3.32)

=
σT∆T

a2

〈

y2 ∓ y
√

a2 − y2, a2 − y2 ∓ y
√

a2 − y2
〉

. (3.33)

Equations (3.32) and (3.33) give the surface gradient as a function of x and y,

respectively.

We initialize the temperature following two approaches, and discuss their

performance. The first approach is to define the interface as a function of x and

y depending on the more favorable interface orientation as follows

T (x, y) =















∆T
(

x±
√
a2 − x2

)

if |x| < |y|,

∆T
(

y ±
√

a2 − y2
)

otherwise,

(3.34)
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Figure 3.11 The computed error for E1((∇sσ)x) (•), E∞((∇sσ)x) (N), E1((∇sσ)y)
(�), and E∞((∇sσ)y) (+). The order of convergence for (∇sσ)x is 0.85 and 0.021 E1

( ) and E∞ ( ) errors respectively, and the order of convergence for (∇sσ)y is 0.856
and 0.046 for E1 ( ) and E∞ ( ) errors, respectively. The symbols represent the
errors from the computations, and the lines show the linear fit of those points.

where x and y are coordinates of the cell centers. The second approach is to use

positions of the centroid of the interface contained in each cell to initialize the

temperature by Equation (3.30). We show below that the second approach leads

to more accurate results.

We compare the computed surface gradient with the exact solution by consider-

ing E1 and E∞ errors defined in Equations (3.28) and (3.29), respectively. Similarly

as in the previous example, in order to eliminate the dependence of the errors on

the interface position in the cell, the center of the drop is positioned randomly in

the interval [0,∆]× [0,∆], and the errors are averaged over 100 random realizations.

Figure 3.11 shows the convergence to the exact solution for the x and y components

of the gradient. The convergence of the E1 error is found to be of order 0.85 and

0.86 for the x and y components, respectively. The slow convergence of the E∞ error

observed in the figure is due to the errors in initializing the temperature at the lines

|x| = |y| from Equation (3.34), demonstrated later in this section.
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Figure 3.12 The computed errors for L1((∇sσ)x) (•), L1((∇sσ)y) (N), and L1(T )
(�). The order of convergence for (∇sσ)x and (∇sσ)y is 1.2 ( ) and 1.4 ( ), respectively.
The order of convergence of T (x, y) at the interface is 1.2 ( ). The symbols represent
the errors from the computations and the lines show the linear fit of those points.

In order to reduce the influence of the initialization of T on the convergence,

we also compute the convergence of the L1 norm of each component of the surface

gradient

L1 (f) =
1

N

N
∑

i

|fi|, (3.35)

where fi is the x or y component of the surface gradient, and N is the number of

interfacial points. Figure 3.12 shows the convergence of the L1 norm for the x and y

components of the surface gradient and the convergence of the temperature T (x, y)

in the interfacial points as a function of the mesh size, ∆. We find the order of

convergence of the x and y components of the surface gradient to be 1.2 and 1.4. The

order of convergence of T (x, y) along the interface is 1.2. This indicates that the order

of convergence of the surface gradient is limited by the order of convergence of the

initial temperature at the interface.

Figure 3.13(a) shows the distribution of errors at the circular interface for one

random realization. The largest errors appear around the lines |x| = |y|. Based
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Figure 3.13 Errors of the x component of the surface gradient at the interfacial cells
for ∆ = a/8 (•), a/32 (N), a/128 (�), and a/512 (+). Initializing the temperature
using (a) Equation (3.34) and (b) Equation (3.36). θ is defined to be zero at the
positive x axis and increasing counterclockwise.

on this we conclude that the lack of convergence of the E∞ error is caused by the

initialization of the temperature which changes the dependence on x or y variable at

the lines |x| = |y|.

In order to initialize the temperature more accurately at the interface we use

the centroid of the interface segment contained in each cell, (xc, yc). Then the initial

temperature is given by

T (x, y) = ∆T (xc + yc) . (3.36)

This reduces the errors from initializing the temperature at the lines |x| = |y|

compared to using Equation (3.34). Here, we also explore a different way of

approximating interfacial temperature, and use surface area weighted average instead

of volume fraction weighted average (see Section 3.2). The volume weighted average

gives the temperature at the center of the mass of the fluid phase in the column,

whereas the surface area weighted average gives the temperature at the center of the

interface in the column. Hence, the latter is consistent with the initialization of the

temperature using Equation (3.36).

36



10
−5

10
−4

10
−3

10
−3

10
−2

∆

E
rr

o
r

Figure 3.14 The computed errors for E1((∇sσ)x) (•), E∞((∇sσ)x) (N), E1((∇sσ)y)
(�), and E∞((∇sσ)y) (+). The order of convergence for (∇sσ)x is 0.94 ( ) and 0.63 ( )
for E1 and E∞ errors, respectively, and the order of convergence for (∇sσ)y is 0.89 ( )
and 0.57 ( ), respectively. The symbols represent the errors from the computations,
and the lines show the linear fit of those points.

Figure 3.13(b) shows the errors of the x component of the surface gradient at the

interfacial cells if the temperature is initialized using Equation (3.36). The errors are

still largest around |x| = |y|, however those are the usual “weak” spots of the height

function construction [1]. Figure 3.14 shows the improvement in the convergence

to the exact solution using L1 and L∞ norms for the x and y components of the

surface gradient as a function of mesh refinement. The order of convergence for

the L1 norm is 0.94 and 0.89 for the x and y components of the surface gradient,

respectively, and the order of convergence for the L∞ norm is 0.63 and 0.57 for the x

and y components of the surface gradient, respectively. Hence, the second approach

of initializing the temperature (using Equation (3.36)) improves the convergence of

the L∞ norm significantly.

3.3.3 Drop Migration

We further test our numerical implementation using a classical problem of the

thermocapillary drop migration (see the reviews [31, 80]). A drop or a bubble placed
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in a fluid with an imposed temperature gradient moves due to the variation in the

surface tension coefficient as a function of temperature. Several authors have used this

problem for benchmarking their numerical algorithms for a temperature dependent

surface tension coefficient [2, 81, 3]. We show the comparison of our numerical results

with the available work in the literature. We also show the comparison with the

analytical solution of the drop terminal velocity by Young et al. [82]. Young et al.

show that the nondimensional velocity of the drop in an unbounded domain for an

axysimmetric geometry in the limit of small Ma and Ca numbers can be approximated

as

v∗ygb =
µ1

σTa∆T

2

(2 + kr)(2 + 3µr)
, (3.37)

where µ1 is the viscosity of the surrounding fluid, σT is the (constant) gradient of

the surface tension coefficient with respect to the temperature, a is the drop/bubble

radius, ∆T is the imposed temperature gradient, and kr and µr are the thermal

conductivity and viscosity ratios, respectively, for the drop/bubble compared to the

surrounding fluid.

In what follows, we choose a combination of Re, Ma, and Ca numbers to compare

our results with those in [2, 81, 3], as well arbitrarily small Re, Ca, and Ma, while still

computationally manageable, when comparing with the theoretical prediction above

(Equation 3.37) which is valid in the limit of Re, Ma → 0.

Figure 3.15 shows the considered setup: a drop or a bubble of radius a is placed

in an ambient fluid, with a linear temperature gradient imposed in the y direction.

The temperature at the top and the bottom boundaries is set to constant values and

a zero heat flux boundary condition is imposed at the left and right boundaries. The

boundary conditions for the flow are no-slip and no penetration at the top and bottom

boundaries and symmetry at the left and right boundaries.
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1

T ∗ = T ∗

2
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Figure 3.15 The initial setup of the drop migration problem. The color represents
the linear temperature distribution with imposed temperatures T ∗

1 and T ∗

2 at the
horizontal boundaries.

We solve Equations (2.10) and (2.15) and consider the following scales

p0 =
µ1U0

a
, tr =

a

U0
, U0 =

σTa∆T

µ1
T0 = a∆T,

where the subscript 1 denotes the properties of the ambient fluid. The surface tension

at the interface between the drop and the ambient fluid is assumed to depend linearly

on the temperature as given by Equation (2.20), which with the above scales yields

σ∗ = 1 + Ca (T ∗ − T ∗

R) . (3.38)

Next we present the comparison of our results with the available studies in the

literature.

We start by comparing our results with those of Ma & Bothe [2]. The

material properties are ρ1 = 500 kg m−3, µ1 = 0.024 Pa s, σ0 = 10−2N m−1, σT =

2 × 10−3N m−1K−1, k1 = 2.4 × 10−6W m−1K−1, Cp1 = 10−4 J kg−1K−1, ∆T =

200K m−1, T2 = 290K, a = 1.44 × 10−3m. The ratio of the material properties

between the ambient fluid and the drop is 2. These physical properties give the

nondimensional parameters Re = Ma = 0.72, Ca = 0.0576, and the velocity scale
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Figure 3.16 The velocity field in the drop and the surrounding fluid.

U0 = 0.024m s−1. Figure 3.16 shows the computed velocity field in the drop and the

surrounding fluid. The gradient of the surface tension coefficient drives the flow from

regions of low (top) to high (bottom) surface tension. This creates the flow inside the

drop and as a result the drop moves in the positive y direction. The drop velocity is

computed using the following definition of the centroid velocity

v∗c =

∑

i,j

v∗i,jχi,j (∆
∗

i,j)
2

∑

i,j

χij (∆∗

i,j)
2

where v∗i,j is the y component of the cell-center velocity.

Figure 3.17 shows the computed velocity of the drop compared to the results

in [2]. In this test case, the computational domain is a square box with a side length

equal to four times the drop radius; the drop is initially placed at the center of the

domain. As shown, a good agreement is obtained with the result in [2], corresponding

to ∆ = 1/32 in our results. We also note a decay in the migration velocity at a later

time. This effect is due to fact that the drop is getting closer to the top boundary.

This decay also exists in the simulation of [2], although it is less pronounced. We

have checked and noticed that the migration velocity does not exhibit a decay when
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Figure 3.17 The drop migration velocity for Re = Ma = 0.72 and Ca = 0.0576
for ∆ = 1/32 ( ), 1/64 ( ), 1/128 ( ), and 1/256 ( ) compared with the result given
in [2] ( ) - with the resolution corresponding to ∆ = 1/32 in our results - for 2D
simulations.

extending the vertical size of the domain. We do not show these results here for

brevity. We must note here that for a mesh resolution below ∆ = 1/32, i.e., 8

grid points per drop radius, a consistent height-function approximation is no longer

possible and we cannot expect accurate solutions at such low resolutions.

Next, we carry out another comparison for a smaller value of Re and Ca numbers

and when Ma = 0; we choose Re = Ca = 0.066 in accordance with the results

presented by Herrmann et al. [3] for the VoF method. The computational box is a

rectangle of size 10a× 15a. The grid size is ∆ = 5a/512. The density of the ambient

fluid is set to ρ∗1 = 0.2, and the viscosity is µ∗

1 = 0.1. The ratio of the physical

properties of the drop to those of the ambient fluid is set to 1. The surface tension

coefficient is σ∗

0 = 0.1 at the reference temperature T ∗

R = 0, with σ∗

T = −0.1, see

Equation (2.20). The temperature gradient is set to ∆T ∗ = 0.13̄, which is fixed by

setting T ∗

1 = 0 and T ∗

2 = 1. The drop is initially centered horizontally at a distance

3a from the bottom wall. Figure 3.18 shows the comparison of our method with the

results in [3], along with the temporal convergence of our method. Compared to the
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Figure 3.18 The convergence of the migration velocity as a function of the time
step for ∆t = 10−4 ( ), 5 × 10−6 ( ), 10−5 ( ), and 5 × 10−6 ( ) compared with the
results in [3] ( ) for 2D simulation, for Re = Ca = 0.066 and Ma = 0. The velocity is
rescaled by v∗ygb. The grid size is ∆ = 5a/512.

results of [3], our results do not exhibit oscillations, which agrees with the asymptotic

solution of constant rise velocity. Another difference is that our terminal velocity

converges to a smaller value with decreasing time step. However, the timestep used

in the results of [3] is not specified.

We also test the convergence to the analytical solution obtained in the limit of

Ma and Re approaching zero and in the unbounded domain, where the terminal

velocity approaches v∗ygb value given in Equation (3.37). Figure 3.19 shows the

terminal velocity of a droplet for a 2D simulation as a function of a distance from

the wall for Re = Ma = 2.5 × 10−3 and Ca = 1.25 × 10−3. The grid size here is

∆ = a/32, except for the case h∗ = 1.666, where ∆ = a/48. Note that the Ca

number is chosen small enough to prevent droplet oscillations, and it does not affect

the migration velocity. The terminal velocity converges to a value lower than v∗ygb due

to the difference in the geometry. We next show that our 3D result in fact converges

to this analytical solution.

We perform similar tests for the 3D simulations. Figure 3.20 shows the

migration velocity for Re = Ma = 0.72 and Ca = 0.0576. The parameters and the
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Figure 3.19 The convergence of the terminal velocity with an increased distance
from the wall, h∗, for Re = Ma = 2.5×10−3 and Ca = 1.25×10−3 for 2D simulations.
The grid size is ∆ = a/32, except for h∗ = 1.666 case where ∆ = a/48.

domain size are equivalent to the simulation results shown in Figure 3.17. We note

again that for a mesh resolution below ∆ = 1/64, i.e., 16 grid points per drop radius, a

consistent height-function approximation is no longer possible, and we cannot expect

accurate solutions at such low resolutions; such a result for ∆ = 1/64 ( ) is shown in

Figure 3.20. (A consistent construction of height functions fails at a higher resolution

in 3D than in 2D, see e.g., [1] and references therein.) Also as in 2D, we note a decay in

the migration velocity at a later time. We have checked and this decay does not exists

in the simulation when extending the vertical size of the domain. The results also

show that the oscillations in the computed velocity decay with mesh refinement and

the terminal velocity converges to a higher value compared to the 2D case. However,

this value is still smaller than v∗ygb due to the small domain size and relatively large

Re and Ma numbers.

Figure 3.21 shows the terminal velocity of a droplet for a 3D simulation as a

function of a distance from the wall for Re = Ma = 2.5 × 10−3 and Ca = 10−3. As

shown, the terminal velocity approaches the analytical value v∗ygb. The grid size here

is ∆ = a/16, except for the case h∗ = 1.666, where ∆ = a/24.
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Figure 3.20 The convergence of the migration velocity in a 3D simulation with
mesh refinement for ∆ = 1/32 ( ), 1/64 ( ), and 1/128 ( ); Re = Ma = 0.72 and
Ca = 0.0576.

In this section, we have shown the comparison of our method with existing

literature and with a limiting analytical solution. Our method shows the convergence

to the analytical value of the terminal velocity. The trend of the obtained solutions

under grid refinement, as well as the time needed to reach the terminal velocity are

consistent with the previously reported results.
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Figure 3.21 The convergence of the terminal velocity with increased distance from
the wall, h∗, for Re = Ma = 2.5 × 10−3 and Ca = 10−3 for 3D simulations. The grid
size is ∆ = a/16, except for the case h∗ = 1.666, where ∆ = a/24.
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CHAPTER 4

CONTACT ANGLE

A contact angle is the angle which the fluid-fluid interface makes with a solid

phase substrate. In VoF methods, the contact angle is imposed using geometrical

methods, which ensure that the reconstructed interface reflects the imposed angle.

One method to do this is based on the height function method developed in [48].

This method modifies the height functions at the contact line, which are used in the

calculations of curvatures and normal vectors at the interface (see Section 2.2), and

is currently implemented in Gerris flow solver only in 2D. However the extension of

this algorithm to 3D is not trivial. Therefore, we propose and implement in 2D, an

algorithm which can be more simply extended to 3D.

In order to implement the height function method for imposing contact angle

boundary condition in 3D, we use an older version of the algorithm for computing

the curvature at the interface using the height function approach. Gerris flow solver

contains two algorithms for computing curvature and normals at the interface. The

newer algorithm includes the implementation of the contact angle boundary condition.

However, this algorithm is only implemented in 2D, due to its nontrivial extension

to 3D for an adaptive mesh. The old algorithm for curvature computation is already

implemented in 3D: therefore the remaining part is to impose the contact angle

boundary condition.

The height function approach for imposing the contact angle at the solid

boundary modifies the height function in the cells near the contact line [48]. The

value of the height function is computed with two constraints: it preserves the volume

fraction value in each cell, and it ensures that the normal vector at the contact line

is consistent with the imposed contact angle. This height function value is then used
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for calculating the curvature at the contact line, which enters in the computation of

the surface tension force.

i-1 i i+1

(a)

2

1

0

(b)

Figure 4.1 Height function in a ghost cell in (a) vertical and (b) horizontal direction.
Source: [4].

The height function at the contact line is computed differently depending on

whether the height functions are collected in the direction normal or parallel to the

solid boundary. For the height function normal to the solid boundary (see Figure 4.1

(a)) the height of both the contact line and the cell to the left, need to be modified

by the boundary condition. Height hi is computed so that the volume fraction of the

ghost cell in the boundary reflects the direction of the contact angle θ, and height

hi−1 is

hi−1 = hi −∆tan θ (4.1)

where ∆ is the cell size. For height functions parallel to the solid boundary, Figure

4.1(b), the value of the height in the ghost cell is

h0 = h1 +
∆

tan θ
. (4.2)

This implementation relies on the use of the height function algorithm, which

defines heights in all cells first and then computes the curvature and the normals at
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the interface. Note that for an adaptive mesh, an interfacial cell may not have the

same size as its neighbor, and heights are computed relative to each cell’s size. In order

to calculate the curvature at the cell center of each interfacial cell, an interpolation

of the height function values in the neighboring cells is used, when calculating its

derivatives in equations (2.33) [11]. The extension of this method to 3D is nontrivial

for an adaptive mesh. Consequently, the curvature computation using this method

has not been extended to 3D so far.

(a) (b)

Figure 4.2 2D drops in equilibrium with imposed contact angle (a) θ = 25◦ and
(b) θ = 135◦. The substrate is at the bottom boundary. The dashed line shows the
initial condition for both simulations is θ = 90◦.

In order to overcome the difficulty described above, we implement a variation of

the height function method, which computes the height functions in the neighboring

cells relative to the cell size of the central cell, i.e., the cell for which we want to

compute the curvature. For example, if the neighboring cell is larger than the center

cell, then the height function will be calculated using a virtual cell of the same size

as the center cell. This algorithm is easier to extend to 3D.
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Figure 4.2 shows drops in the equilibrium using our new implementation with

imposed contact angle (a) θ = 25◦ and (b) θ = 135◦. In both simulations, the initial

condition is a semicircular drop with 90◦ contact angle. The homogeneous Neumann

boundary condition is imposed on all boundaries for the pressure, and on all except the

bottom boundary for the velocity field, where a no-slip and no penetration boundary

condition is used. Note that the height function method implicitly defines a slip

condition at the contact line with slip length of ∆/2 [48].

The presented implementation in 2D provides the basis for extension to 3D,

where conceptually the same approach could be used, although the geometrical

complexity makes the algorithm more involved. This extension is left for future

work.
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CHAPTER 5

APPLICATIONS

5.1 Coalescence and Mixing of Sessile Drops

Here we demonstrate the performance of our numerical methods through an example

of the coalescence behavior of sessile drops with different surface tension. We

model the experiments of the coalescence of two droplets with different alcohol

concentrations by Karpitschka et. al. [5, 83, 84]. In their experimental study, they

show three coalescence regimes depending on the surface tension difference between

the two droplets: immediate coalescence, delayed coalescence, and non-coalescence.

They identify a key parameter that governs the transition between the delayed and

non-coalescence regimes: specific Marangoni number M = 3∆σ/(2σ̄θ2) [84], where

∆σ is the difference in the surface tension between the two drops and σ̄ is the average

of the surface tension of two drops. They determine a threshold Marangoni number

Mt ≈ 2 ± 0.2 experimentally for the transition between the delayed coalescence and

non-coalescence regimes.

Here we show that our numerical simulations also reveal the three regimes

in agreement with the experimental observations in [5, 83]. From the numerical

simulation point of view, this problem involves a level of difficulty: unlike temperature,

the concentration should remain strictly confined to the liquid phase and should not

leak out to the ambient phase. To avoid this difficulty, we combine our variable

surface tension methodology with the numerical technique already implemented in

the original version of gerris[78] which prevents the concentration from leaking out

of the liquid domain into the ambient phase.

We model the 2D problem since the dominant flow dynamics in the problem is

in the region connecting the two droplets, where the surface tension gradient is the

strongest, and in this region we can ignore the out of plane curvatures. Initially, the
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Figure 5.1 A schematic of the drop coalescence problem.
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Figure 5.2 Viscosity (a) and surface tension (a) of the mixture of 1,2-Butanediol
and water as a function of alcohol concentration. Points represent the data from [5],
and the lines show the fit of the points.

drops have the shape of a circular segment with the base radius Rb and a contact

angle θ, and are connected by an overlap of 0.25Rb (see Figure 5.1). The drops have

equal base radius Rb and we assume that their densities are equal. The viscosity

depends on the alcohol concentration C, where we use a nonlinear fit to the data

given in [5] of the form

µ (C) = µ1 + aµ (µ2 − µ1) (1− C)nµ , (5.1)

shown in Figure 5.2(a). Drops are composed of the mixture of the 1,2-Butanediol

and water, but they differ in the concentrations of alcohol. Figure 5.2(b) shows the

surface tension dependence on the concentration of 1,2-Butanediol in water. Similarly
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Figure 5.3 Evolution of two drops with equal alcohol concentration, i.e., no surface
tension difference, at times t = 0 s, t = 0.02 s, t = 0.04 s, t = 0.1 s and t = 1 s from
top to bottom. The color shows the concentration of alcohol. Each box is equivalent
to 2mm.

as for the viscosity, we fit this data to a function of the form

σ (C) = σ1 + aσ (σ2 − σ1) (1− C)nσ , (5.2)

where parameters a and n are determined from the fit.

We first show a simulation of two drops, with equal surface tension. We

consider the case where the concentration of alcohol is 45%, and the base radii of

the circular segments are both Rb = 3mm. Along with a no-slip boundary condition

at the substrate, we also impose a θ = 15◦ contact angle. For the contact angle

implementation in gerris and related numerical discussion, the reader is referred to

[4, 85]. Figure 5.3 shows the evolution of the interface at different times. The droplets
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Figure 5.4 Evolution of two drops with small surface tension difference at times
t = 0 s, t = 0.1 s, t = 1 s, t = 5 s, and t = 10 s from top to bottom. The color shows
the concentration of alcohol. Each box is equivalent to 2 mm.

Figure 5.5 Closeup of the neck region between the two drops shown in Figure 5.4,
at times t = 0.1, s, t = 1 s, and t = 5 s from left to right. The color shows the
concentration of alcohol.

coalesce immediately, fully merge after 0.1 s, and assume an equilibrium shape of one

large circular segment at a later time. The color represents the concentration of

alcohol, which is contained inside of the fluid and is zero in the surrounding region.

Next we examine the case where M ≈ 1.2 < Mt. Figure 5.4 shows the

simulations of this intermediate regime where droplet coalescence is delayed. Here,

we set drop 1 to 45% and drop 2 to 35% of alcohol. The connected drops move in the

direction toward the drop with higher surface tension due to the Marangoni induced

flow until the concentrations are mixed, resulting in a smaller gradient in the surface

tension. Figure 5.5 shows closeup images of the neck region between the two drops

corresponding to the three middle panels of Figure 5.4. In this figure, we show the

flow mixing dynamics which leads to the decrease of the surface tension difference in

the neck region, resulting in a consequent full coalescence of the two drops.
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Figure 5.6 Non-coalescence of drops at times t = 0 s, t = 0.1 s, t = 1 s, t = 2 s, and
t = 6 s from top to bottom. The color shows the concentration of alcohol. Each box
is equivalent to 2 mm.

Figure 5.7 Closeup of the neck region between the two drops shown in Figure
5.6, at times t = 0.1 s, t = 1 s, and t = 2 s from left to right. The color shows the
concentration of alcohol.

Next we consider a case in the non-coalescence regime. We set drop 1 to 45% and

drop 2 to 33% of alcohol. Figure 5.6 shows the simulation results for M ≈ 1.8 ≈ Mt. In

this case, the Marangoni induced flow initially pushes the fluid from drop 1 towards

drop 2. However, this results in the thinning of the connecting neck between the

drops (at t = 1 s), and the fluid cannot pass from drop 1 to drop 2 anymore. Figure

5.7 shows closeup images of the neck region between the two drops corresponding to

the middle three panels shown in Figure 5.6. Compared to the previous case where

droplet coalescence is delayed (M ≈ 1.2), the behavior of the mixing of the fluids in

the neck region is prevented by the thinning of the neck. Hence, these droplets do not

coalesce, but instead they move together with a constant velocity ud on the substrate

in the direction of the higher surface gradient.

This quasi-steady behavior is also observed in the experiments [83]. Figure

5.8(a) shows the velocity of the points at the interface after the quasi-steady state is

54



0

10

20

30

−1.0 −0.5 0.0 0.5 1.0

Db [mm]

u
 [
m

m
/s

]

(a)

38

40

42

44

−1.0 −0.5 0.0 0.5 1.0

Db [mm]

C
 [
%

]

(b)

Figure 5.8 The x component of the velocity field at the interface interfacial points
(a) and the concentration of alcohol at the interfacial points (b) for the non-coalescent
drops for the example shown in Figure 5.6. The color shows different times, with red,
green and blue being t = 4 s, t = 5 s, and t = 6 s, respectively.

reached as a function of the distance from the bridge region, Db. The points to the

left of the bridge region have a velocity ≈ 2ud (solid line). At the bridge region the

interface is close to the solid substrate and the velocity becomes close to zero due to

the no-slip boundary condition. In the region close to the bridge in drop 2, the velocity

has a jump and reaches the maximum value due to the Marangoni effect resulting

from a high surface tension gradient at the neck region. Away from the bridge, the

velocity is again comparable to ud. This behavior is in qualitative agreement with

the experimental observation [83, 84]. To provide more insight into the flow through

the neck region, in Figure 5.8(b) we present the alcohol concentration at the interface

as a function of the distance from the bridge region, Db. As shown, a localized and

steady state surface tension gradient is established through the neck region. This

Marangoni effect can counteract the capillary effect that would otherwise result in

the coalescence and can therefore sustain the non-coalescence and the movement of

drops temporarily.
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5.2 Breakup of Liquid Metal Filaments with Marangoni Effects

In this section, we consider a breakup of bi-metal filaments deposited on a solid

substrate. These filaments are exposed to laser irradiation and, while in the liquid

phase, evolve by a process resembling breakup of a liquid jet governed by the Rayleigh-

Plateau (RP) instability. The Marangoni effect, resulting from a different surface

tension coefficient of the two metals from which the filament is built, is crucial in

understanding the instability development. In particular, the Marangoni effect may

lead to the inversion of the breakup process, producing droplets at the locations where

according to the RP theory dry spots would be expected. These results suggest the

possibility of using the Marangoni effect for the purpose of self- and directed-assembly

on the nanoscale.

In section 5.2.1, we present the experimental results carried out by our

collaborators at the University of Tennessee: Chris A. Hartnett, Kyle Mahady, Jason

D. Fowlkes and Philip D. Rack. In section 5.2.2, we show the results from the direct

numerical simulations, using methods described in Chapters 2 and 3.

5.2.1 Experimental Methods

Initially, thin film strips (TFS) of Nickel (Ni) with thin Copper (Cu) layers on top are

patterned on a supporting substrate of 100 nm SiO2 on Si. The Ni-Cu system is chosen

since it is an isomorphous system with complete solubility in the solid and liquid state;

thus secondary phase formation and reactions do not complicate the physics or mass

transport. The results presented here contain TFS of width w = 185 nm, and height

h = 12 nm. The top Cu layers are of height 2 nm. Note that both the experiments and

the simulations are also performed with w = 370 nm, yielding the same qualitative

behavior as the presented results.

For comparison, each experiment includes a non-perturbed Ni TFS and a Ni

TFS with a co-linear Cu TFS with half of the Ni width patterned on it. Figure 5.9(a)
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Figure 5.9 (a) Illustration and (b) SEM image of the experimental TFS geometry
setup. Strip (i) is a pure Ni TFS, (ii) is Ni TFS with a Cu strip patterned on top along
the centerline, at half the width of the Ni strip, iii) is a Ni strip with Cu patterned
at a wavelength (λm) with the same width as the Ni but only half of the wavelength.
Strip (iv) is similar to (iii) however the Cu pattern is phase shifted for λm/2 relative
to strip (iii) (Cu in pattern (iv) is aligned with Ni-only regions in strip (iii)). The Ni
and Cu regions in (b) are distinguished by the difference in the brightness, where Ni
is brighter than the Cu.

shows an illustration of the experimental setup and geometry. Figure 5.9(b) shows

a representative scanning electron microscope (SEM) image of a fabricated sample

with (i) pure Ni TFS, (ii) co-linear Ni-Cu TFS, and (iii) and (iv) two Ni-Cu TFS with

patterned Cu rectangle perturbations, one of which is simply phase shifted relative

to the other. Note that the Cu volume for (ii) is the same as for (iii) and (iv), since

the Cu in (ii) is the full length of the Ni strip, but half the width; whereas the Cu in

(iii) and (iv) is the full width of the Ni but half of the total length. The differences

in the results between (i)-(iv) will allow us to analyze the influence of the Marangoni

effect on the instability development. Conveniently, there is adequate contrast in the

secondary electron coefficients of Cu and Ni as the Cu appears darker and the Ni

brighter in the as-synthesized patterned strips as evidenced in the secondary electron

image.

The spacing of the top Cu rectangle perturbations corresponds to the fastest

growing wavelength predicted by the (linear) RP stability analysis and the extent of

the perturbation is half of the wavelength. According to the RP analysis [86, 87],
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growth rate, β, of the perturbations of a free jet is determined by

β2 =
σ

ρR3

[

kR
(

1− k2R2
) I1(kR)

I0(kR)

]

(5.3)

where R is the radius of the jet, and I0 and I1 are the modified Bessel functions.

Hence the stability of a jet depends on its radius, R, such that the modes k for which

kR < 1 are unstable and the modes for which kR > 1 are stable. Here, k is the

wavenumber related to the perturbation wavelength, λ, by k = 2π/λ. The fastest

growing mode corresponds to kmR ≈ 0.7. In the context of a TFS on the substrate,

R corresponds to the radius of the rivulet of the same cross-sectional area as a TFS

of thickness h, width w, and the equilibrium wetting angle θ, i.e.,

R =

√

hw

θ − cos θ sin θ
. (5.4)

Figure 5.10 shows the growth rate of the perturbations of a free standing jet given

by Equation (5.3). In the experimental setup, with the equilibrium wetting angle of

Ni in contact with SiO2 of θ = 69◦, the radius of the rivulet is R = 51 nm and the

fastest growing unstable wavelength is λm = 455 nm.

A krypton fluoride (KrF) excimer laser, with wavelength λKrF = 248 nm, fluence

energy E0 = 250mJ cm−2, and pulse-width of tp = 18± 2 ns, is used for pulsed laser

induced dewetting (PLiD). The area of the laser spot is ∼ 1 cm2, which is much larger

than the ∼ 1mm2 area containing the patterned samples, thus ensuring a spatially

homogenous fluence on the sample. The liquid lifetime of the TFS is dependent on

the energy fluence delivered by a laser pulse and the thermal and optical properties of

the Ni, the supporting SiO2 layer, and the underlying Si substrate. Due to the finite

liquid lifetime per laser pulse (∼ 20 ns) and rapid cooling, a series of individual laser

pulses can be used to control the instability evolution and interrogate morphological

changes of the liquid filament [57].
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Figure 5.10 Growth rate of the perturbations of a free standing jet given in
Equation (5.3), for h = 12 nm, w = 185 nm, and contact angles of θ = 69◦ and
θ = 90◦ used in the experiments and simulations, respectively.

5.2.2 Computational Methods

The liquid metal filament is modeled as an isothermal, incompressible Newtonian

fluid using the Navier-Stokes equations, given in Equation (2.1). The material

concentrations are advected with the flow according to

∂tCi + (u · ∇)Ci = 0, (5.5)

where Ci is the material concentration and i = Cu, Ni. Note that we have ignored

the diffusion here (compared to Equation (2.13)). An extrapolation of the Cu self-

diffusion (migration of the Cu atoms with the bulk) coefficient α at the Ni melting

temperature results in a diffusion coefficient of α ∼ 6 × 10−9m2s−1 [88]. Thus an

estimate of the diffusion distance (
√
4αt, where t is the liquid lifetime, and α is

assumed to be constant at the Ni melting temperature yields
√
4αt ∼ 22 nm. The

results of simulations show that advection leads to complete coverage by Cu, therefore

Cu covers the distance of ∼ 100 nm in approximately 1/3 of the liquid lifetime). We
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conclude that advection effects are dominant, justifying ignoring diffusive effects in

the simulations.

The concentrations are initialized according to the experimental geometry

shown in Figure 5.9(a) (iii) and (iv), where we simulate 4 perturbation wavelengths

and one half of the filament along the long axis of symmetry. In order to model the

fluctuations existing in fabrication of the experimental initial geometry we perturb the

initial height of the filament by random noise of the form hr =
∑N

i ai cos (iπx/4λm),

with a constraint that |hr| < 1 nm, where ai and are random amplitudes taken

from a uniform distribution, and N = 125 gives the smallest wavelength that can

be resolved with at least 8 computational cells. We present the results for four

realizations of random noise. In these simulations, due to the limitations of the

present simulation setup, we use a contact angle of 90◦ resulting in λm = 340 nm (see

Figure 5.10). The boundary condition for the in-plane velocities on the substrate is

the Navier-slip boundary condition (u, w) |y=0 = Λ∂y (u, w) |y=0, where (u, w) are the

in-plane components of the velocity, and Λ = 20 nm denotes the slip length; note, y

points out of the plane of the substrate, and x along the filament.

For computational efficiency and to minimize the effect of the surrounding vapor

(i.e., air), we set µv = µl/20 and ρv = ρl/20; the factor of 20 is sufficiently large to

ensure that its exact value is not important. To confirm that this is the case, we

have carried out additional simulations with the factor of 100 and found that the

only effect of this larger value is slightly faster (1 − 2 ns) breakup. Furthermore, we

assume the values of µl and ρl are those of Ni at the melting temperature for both

the Cu and Ni regions. Hence, the material parameters are: ρ = 7810 kg m−3 and

µ = 4.9mPa s. The spatial discretization is accomplished using an adaptive mesh,

with the resolution at the fluid-vapor interface of being approximately 1.5 nm.
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Figure 5.11 Simulation snapshots of the evolution of four realizations of the
random noise on top of Ni-Ni TFS geometry where the spacing of the rectangular
Ni perturbations corresponds to λm.

5.2.3 Results

We first illustrate the influence of the rectangular perturbations on top of Ni TFS on

the instability evolution and final nanoparticle placement. The simulated geometry is

the same as outlined above, however, we assume the perturbations are of Ni material,

so that there is no difference in the surface tension coefficient between the TFS and

the perturbations. Figure 5.11 shows the evolution of four filaments with different

realizations of the random noise. The following purely geometric effects are observed:

(1) following the melting by the laser, patterned 2 nm regions generate peaks in

the height profile and troughs in the unpatterned regions, producing a filament

height perturbation; (2) as the filament evolves, the troughs propagate toward the

substrate since the wavelengths are unstable with respect to RP type of instability;

(3) eventually the filament breaks up and the resultant nanoparticles are positioned

at the locations where the original 2 nm of additional Ni material was patterned.

With this context, we demonstrate that patterned Ni-Cu setups evolve quite

differently due to the Marangoni effect. The surface tension coefficient of Cu (σCu =
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1.28N m−1) at the Ni melting temperature (TM = 1728K) is lower than that of Ni

(σNi = 1.78N m−1). Thus, during PLiD, if the Marangoni effect is operative and

dominant it should induce material flow from the thicker patterned Cu region to the

adjacent Ni region and ultimately generate a surface perturbation where the resultant

nanoparticles locate in the initially thinner Ni-only regions.

Figure 5.12 Experimental PLiD results for the Ni-Cu TFS geometry after (a) one
and (b) five lasers pulses; (i) pure Ni TFS, (ii) co-linear Ni-Cu TFS, and (iii)-(iv)
Ni-Cu TFS geometries with patterned Cu rectangle perturbations with spacing
corresponding to λm, and one pattern is phase shifted relative to the other.

Figure 5.12 shows the experimental results for the Ni-Cu geometry patterned at

the maximum instability wavelength; (a) shows the overlay of the original and after a
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single laser pulse and (b) is an overlay of the original and after 5 laser pulses. In the

single laser pulse image, the instability development for the pure Ni thin film strip (i)

and the co-linear Ni-Cu strip (ii) is much slower compared to the pattered rectangular

Cu perturbations geometries in (iii) and (iv), where the breakup already occurred.

The five laser pulse image shows little perturbation growth in (i), compared to the

full development and breakup of the filaments in (ii), (iii) and (iv). The nanoparticle

formation occurs with random positions in (ii), and with very good location fidelity

corresponding to the original Ni-only regions in (iii) and (iv).

Figure 5.13 Simulation snapshots of the evolution of the Ni-Cu TFS geometry
where the spacing of the rectangular Cu perturbations corresponds to λm; (a) four
independent realizations of the random noise; (b) close up of (a) over one perturbation
wavelength showing a half of the filament width, with the color representing the
concentration of Cu at the interface, and the vector field representing the velocity
field at the cross section along the axis of the symmetry of the filament.
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Figure 5.13 shows the evolution of the Ni-Cu TFS. At t = 2ns we can see from

the velocity field that the Marangoni effect drives the fluid away from the Cu regions

towards the adjacent Ni areas. At t = 4ns the perturbation locations are inverting,

and the peaks are shifting towards the Ni regions. As the filament continues to evolve

with time, the RP-type instability eventually breaks the filament into nanoparticles

located at the initially lower Ni regions. In agreement with the experimental results

in Figure 5.12, the nanoparticle positions are at the locations where dry spots would

be expected if there was no surface tension difference between the materials (as in

Figure 5.11). We refer to this phenomenon as the “breakup inversion”.

t � ���5ns

Figure 5.14 Simulation snapshots of the evolution of four realizations of the
random noise on top of Ni-Cu TFS geometry where the spacing of the rectangular
Cu perturbations corresponds to an unstable wavelength λ = 182 nm.

Next, we demonstrate the importance of the choice of the perturbation

wavelength to achieve the breakup inversion. Figure 5.14 shows the evolution of

a filament with the Cu perturbation spacing of λ = 182 nm, which corresponds to

kR = 1.1, i.e., a stable mode based on Equation (5.3). At t = 5ns we can see that

the perturbation locations are shifting, however, since the perturbation wavelength is

stable, the filaments do not immediately break into nanoparticles at those locations.
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At t = 15 ns, a perturbation with a larger wavelength than the initially patterned one

is developed, eventually breaking the filament into nanoparticles with two primary

nanoparticles per computational domain, corresponding to a spacing of ∼ 364 nm.

Therefore, perturbing TFS by the wavelengths that are stable with respect to the RP

stability analysis does not lead to the formation of particle assemblies conforming to

the wavelength of imposed perturbations.

5.2.4 Conclusions

Until now, the directed assembly of metallic nanostructures using PLiD has focused

on imparting instabilities by lithographically patterning geometric perturbations to

direct the ordering of resultant nanoparticles. Here we investigate a new approach

to imparting instabilities by templating the regions with different surface tension by

selectively patterning the surface of a Ni thin films strips with Cu where the patterning

length scales were selected as the wavelengths of maximum growth rate predicted

by the Rayleigh-Plateau stability analysis. Experimental results are confirmed and

rationalized via fully non-linear 3D simulations using a VoF method that includes

the spatially varying surface energy. The patterned Cu regions have a lower surface

energy than the Ni regions and induce Marangoni flow. Future work will explore

applications of a similar approach to directed assembly for other relevant geometries.

5.3 Breakup of Flat Metal Films with Cylindrical Perturbations

In this section, we explore a concentration induced Marangoni flow for a different

geometry compared to Section 5.2: we consider a flat Ni film of thickness h0 = 12 nm

with cylindrical Cu perturbations arranged in a square pattern with spacing S, height

∆h = 2nm and radius Rcyl = S/4. Figure 5.15(a) shows the initial setup of the

cylinder arrangements. The symmetry in the cylinder arrangement allows us to

reduce the computational domain to a square domain containing one quarter of the
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Figure 5.15 (a) The initial setup of a flat film with cylindrical perturbations
arranged in a square pattern; (b) the computational domain. The color represents
the concentration of Cu at the interface.

cylinder and extending to S/2 towards centers of the neighboring cylinders, as shown

in the highlighted shape in Figure 5.15(a). For clarity, Figure 5.15(b) shows the

computational domain, where the boundary conditions at the horizontal boundaries

are the symmetry boundary condition. The spacing between the cylinders, S, is

chosen based on the LSA of a perturbed 3D film. In this section, we show the

results for S = λm, the wavelength of the maximum growth, and S & λc, an

unstable wavelength close to the critical wavelength. We compare the simulations

with Cu cylindrical perturbations – including the concentration dependent surface

tension coefficient – with the simulations with Ni cylinders where the surface tension

is constant.

The destabilizing mechanism leading to the breakup of the nanoscale films is

modeled by the fluid-structure interaction in the form of a disjoining pressure [89].

The disjoining pressure can be included in the Navier-Stokes equations (Equation

(2.1)) as a body force as follows

ρ(∂tu+ u · ∇u) = −∇p+∇ · (2µD) + σ (x) κδsn̂+∇sσ (x) δs + Fvdw (y) δs, (5.6)
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where

Fvdw (y) = Kπ

[(

h∗

y

)m

−
(

h∗

y

)n]

n̂, (5.7)

Kπ =
σ0(1− cos θeq)

Mh∗
, (5.8)

M =
n−m

(m− 1)(n− 1)
, (5.9)

where σ0 is the surface tension coefficient of Ni, θeq = 70◦ is the prescribed equilibrium

contact angle,m = 3 and n = 2 are the exponents in the Lennard-Jones type potential,

h∗ ≈ 2 nm is the thickness of the equilibrium film. The details of the implementation

of the disjoining pressure in the VoF method can be found in [90].
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Figure 5.16 The growth rate of a perturbed film given in Equation (5.14).

As indicated above, the spacing between the cylinders, S, is chosen based on the

linear stability of the 3D perturbed film. Starting from the long wave approximation

2µht + σ∇ ·
(

h3∇∇2h
)

+∇ ·
[

h3∇Π (h)
]

= 0, (5.10)

Π (h) =
σ (1− cos θ)

Mh∗

[(

h∗
h0

)n

−
(

h∗
h0

)m]

(5.11)

M =
n−m

(n− 1) (m− 1)
, (5.12)

we assume the film is perturbed around an equilibrium film thickness h0 as h (x, z, t) =

h0 + h0εe
i(kx+lz)+βt, where ε is a small parameter, k and l are the wave numbers of
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the perturbations in the x and z directions respectively, and β is the growth rate

β = − 1

3µ

(

k2 + l2
)

{

σ (1− cos θ)

Mh∗h0

[

n

(

h∗
h0

)n

−m

(

h∗
h0

)m]

− σ
(

k2 + l2
)

}

. (5.13)

To simplify the analysis, assume the perturbations in the x and z directions, have the

same modes, i.e., l = k, then we have

β = −2k2

3µ

{

σ (1− cos θ)

Mh∗h0

[

n

(

h∗
h0

)n

−m

(

h∗
h0

)m]

− 2k2σ

}

. (5.14)

Figure 5.16 shows the growth rate β as a function of the wavenumber k. Note that to

obtain the expression for the dispersion relation, Equation (5.14), we ignored the

effects of the variable surface tension, which we included previously in Equation

(3.3). The inclusion of the variable surface tension coefficient would significantly

complicate the analysis here, since the surface tension gradients are initially only

at the boundaries of the two materials, and as Cu spreads during the evolution the

gradients change as well.

Figure 5.17 shows the evolution of the Ni film with cylindrical perturbations

where the spacing between cylinder centers is S = λm. There is a significant difference

in the evolution dynamics and the final droplet configuration. In the simulation with

Ni cylinders, at t = 10 ns the cylinder perturbations are smoothed out, but secondary

perturbations start forming at positions between the cylinders on diagonals of the

squares of initial cylinder positions. At time t = 17 ns, the perturbations start to

reach the precursor film thickness, and the primary and secondary droplets start

forming at the cylinder and diagonal positions respectively. Additionally, filaments

are formed connecting the secondary droplets. At time t = 30 ns the film has reached

the steady state, and tertiary droplets have formed from the filaments between the

secondary droplets. In the simulation with Cu cylinders, at time t = 5.0 ns rings of

lower film height start forming around the cylinders due to the flow created by the

surface tension gradients between Ni and Cu material. As the rings grow in depth

68



t = 0.0 ns

t = 10.0 ns

t = 17.0 ns

t = 30.0 ns

(a)

t = 30.0 ns

� 	 
��0 ns

t = 5.0 ns

t = 0.0 ns

(b)

Figure 5.17 The evolution of the Ni film with cylinder perturbations where the
spacing between the cylinder centers is S = λm, and the perturbations are composed
of (a) Ni and (b) Cu.
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and reach the precursor thickness, they spread and, at time t = 20.0 ns, a network

of rivulets forms intersecting in a square arrangement around the original cylinder

positions from the material that was pushed by the growing rings. Each ring also

leaves a droplet in the middle. At time t = 30.0 ns the rivulets break into droplets

with largest drops at the rivulet intersections, and smaller drops forming from the

rivulets between the intersections.

Note that the final configuration of larger vs. smaller droplets in Figure 5.17

is reversed in the simulations with Ni and Cu cylinders. In the simulation with Ni

cylinders, the perturbations are enhanced at the cylinder positions, hence the final

droplets are largest at those positions. On the other hand, in the simulation with Cu

cylinders, the Marangoni flow around the cylinders moves the material away from the

cylinders in the early stage of the evolution, which eventually causes the droplets at

the cylinder positions to be smaller than the droplets at the diagonals.

Next we attempt to make the secondary droplets at the cylinder locations

smaller by allowing more time for the Marangoni flow to push the material away

from the cylinder positions. We pick the spacing between the cylinders corresponding

to an unstable wavelength close to the critical wavelength λc. Hence, the growth rate

of the perturbations is slower compared to the growth rate at λm. Figure 5.18 shows

the evolution of the Ni film with spacing between the centers of the cylinders S & λc.

The development of the instabilities and the breakup dynamics are similar to the case

of S = λm. However, due to a smaller spacing between the initial cylinders, the final

droplet configuration is different. In the case of Ni cylinders the perturbation peaks

first start developing at the positions of the original cylinders. However, unlike in the

case S = λm, there are no secondary peaks at the diagonals between the cylinders.

In fact, at t = 10 ns the valleys of the perturbations first reach the precursor film

thickness at the diagonals between the cylinders. As a result, there are no secondary

droplets. The tertiary droplets do not develop either. The primary droplets are larger
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Figure 5.18 The evolution of the Ni film with cylinder perturbations where the
spacing between the cylinder centers is S & λc, and the perturbations are composed
of (a) Ni and (b) Cu.
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compared to the case S = λm, and there is little space left between the primary drops.

In the case of Cu cylinders, first at time t = 4.0 ns rings of film with lower height

start forming around the cylinders due to the Marangoni flow pushing the material

away from the Cu cylinders. Similar to the case of the S = λm, a square network of

rivulets forms as the rings reach precursor thickness, however, they break into larger

droplets leaving no material or space for tertiary droplets to form.

5.3.1 Conclusions

In this section, we demonstrated the possibility of creating inverted droplet config-

urations, by exploiting the difference in the surface tension coefficient between the

Cu and Ni material, for a second geometry in addition to the perturbed filaments

presented in Section 5.2. The presented study is in no way extensive: further analysis

can be done to study different arrangements of the cylinder perturbations, different

radii of cylinders compared to the cylinder spacing, different film and cylinder heights.
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5.4 Thermocapillary Breakup of Liquid Metals

The variations in the temperature of the liquid metal films melted by a pulsed laser,

can be caused by the variations in the film height. More specifically, the variations in

the temperature are caused by the dependence of the optical properties of the metal

on the film height [69]. The variations in the temperature can lead to dynamics

different from those occurring in an isothermal setting. In this section we explore the

influence of the temperature dependent surface tension coefficient and viscosity on

the breakup of liquid metal films and filaments.

The variations in the surface tension due to temperature in the liquid metal

films can be spatial, due to the variations in the absorption of the laser energy, and

temporal, due to the time dependence of the laser pulse fluence. In this section

we study the influence of the spatial and temporal temperature variations on the

breakup of 2D thin metal film and on the breakup of 3D filaments. We outline two

temperature solutions used in the study of film breakup: first in Section 5.4.1, we

present a reduced model that ignores in-plane heat conduction, as well as temporal

evolution of the film or filament (referred to as the “reduced model” from now on)

[58]; and second in Section 5.4.3, we present the numerical 2D temperature solution

computed using Gerris (referred to as the “complete model”). In Section 5.4.2, we

outline an analytical solution for a flat film, which we use for validating and comparing

the two models above.

Next, we study the influence of the temperature on the stability of 2D thin

films. First, in Section 5.4.4, using the linear stability analysis (LSA), we find that

the spatial temperature variations in the film can have a stabilizing or destabilizing

effect depending on the film height: for films of height less than a critical value hc,

the temperature variations have a stabilizing effect, and for the films of heights above

hc, the temperature variations have a destabilizing effect. Second, in Section 5.4.5,

using the direct numerical simulations, we compare the influence of the temperature
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variations on the film breakup using reduced and complete temperature models. We

find that in the reduced model the thermocapillary force is exaggerated due to the

lack of in-plane heat conduction. Furthermore, we find that compared to the spatial

variations, the temporal temperature variations have a stronger influence on the film

stability.

Finally, in Section 5.4.7, we consider the influence of the thermal variations

on the breakup on the liquid metal filaments. We find that the thermocapillary

flow caused by these variations is weak compared to the evolution governed by the

Rayleigh-Plateau (RP) instability.

5.4.1 Reduced Model for the Temperature of a Thin Film

In this section, we outline the reduced model for the metal temperature; a version of

such model is discussed in Trice et al. [58]. The film–substrate bilayer is assumed to

be infinitely wide in the in-plane directions, so that the film height is small relative

to its width. The substrate layer is assumed to be thick compared to the film height

and it is modeled as a semi-infinite medium 0 ≤ y < −∞. The small ratio of the

out-of-plane and in-plane scales in the metal film implies that the heat conduction

in the in–plane direction in the film is negligible compared to the conduction in the

out-of-plane direction. Hence, within this reduced model, the heat conduction in the

bilayer can be described by the one-dimensional heat equation in each layer,

(ρCp)m
∂Tm
∂t

= km
∂2Tm
∂y2

+ S(y, t) in the fluid, (5.15)

(ρCp)s
∂Ts
∂t

= ks
∂2Ts
∂y2

in the substrate, (5.16)

where Cp is the effective heat capacity and k is the thermal conductivity. The

subscripts s and m correspond to substrate and metal properties, respectively. The

source term can be written as

S(y, t) =
E0f (t)√
2πσtp

[

1− r0
(

1− e−arh
)]

e−αm(y+h), (5.17)
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where the first factor represents the incident energy from the laser source, the second

factor accounts for the reflectance of the metal film, and the last factor represents the

energy absorbed by the film. More details regarding the derivation of the source term

and the explanation of the parameters are given in Appendix A. In Equation (5.17),

E0 is the intensity of the incident radiation, σtp is the width of the Gaussian laser

pulse, and f(t) gives the temporal profile of the laser fluence, f(t) = e−(t−tp)2/(2σ2

tp).

The boundary conditions are as follows

∂Tm
∂y

= 0 at the fluid air interface y = h(t, x), (5.18)

km
∂Tm
∂y

= ks
∂Ts
∂y

at the fluid substrate boundary y = 0, (5.19)

Tm = Ts at the fluid substrate boundary y = 0, (5.20)

Ts → T0 as y → −∞, (5.21)

where y = h(x, t) corresponds to the air-film interface, and y = 0 is the film-substrate

interface.

The spatial variations of the temperature in the metal film are expected to be

small due to the small film height and high thermal conductivity of the metal. Hence,

within this model, it can be assumed that the temperature is constant in the film,

and the temperature of the liquid-air interface can be approximated by the average

film temperature, T ∗

m = 1
h

∫ h

0
Tm dy. Integrating Equation (5.15) with respect to y,

from y = 0 to y = h, and using the boundary conditions (5.18) and (5.19), gives the

equation for averaged temperature of the film, T ∗

m

∂T ∗

m

∂t
= S∗ (h, t)− 1

h

qs(t)

(ρCp)m
, (5.22)

S∗(h, t) =
E0f (t)√

2πσtp(ρCp)m

[

1− r0
(

1− e−αrh
)] [

1− e−αmh
] 1

h
, (5.23)

where qs(t) = ∂Ts/∂y|y=0. The heat equation for the substrate (5.16) can be solved

using Green’s functions or Laplace transform. Using the boundary conditions (5.19),
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(5.20) and (5.21), the average temperature of the film is found to be

T ∗

m (h, t) = T0+

S∗ e−
t
2
p

2σ2

∫ t

0

exp

(

−(t− u)2

2σ2
+
tp
σ2

(t− u)

)

eK
2u erfc(K

√
u) du, (5.24)

where

K (h) =

√

(ρCpk)s
(ρCp)mh

.
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Figure 5.19 The average temperature of a metal film, T ∗

m as a function of film
height and time. The red highlighted curve represents the melting temperature of
Nickel, TM = 1728K.

Figure 5.19 shows the contour plot of the average temperature of the metal

film, T ∗

m(h, t), as given by Equation (5.24). The red highlighted curve represents

the melting temperature of Nickel (TM = 1728K). The dependence of the energy

absorption on the film height leads to the non-monotonic dependence of the film

temperature on the film height, h. For a small film height, h < hc ≈ 14.3 nm, only a

part of the laser energy is absorbed, which leads to low film temperatures. For film
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heights h > hc the film absorbs most of the laser pulse energy. Hence, the film of

height h ≈ hc reaches the highest temperature, and for the film of heights h > hc, the

temperature decreases as h grows due to the larger amount of material that needs to

be heated. Later in Sections 5.4.4 and 5.4.5, we study the dynamics of two different

film heights such that one of them is h0 < hc and one is h0 > hc.

A known temperature at the interface which is expressed as a function of the

film height, h, and time, t only, is convenient for implementing the Marangoni force

in the VoF solver. As described in Section 3.1, we can directly compute the surface

gradients using Equation (3.1), where ∂T/∂h is computed as ∂T ∗

m/∂h analytically

from Equation (5.24) as follows

∂T ∗

m

∂h
(h, t) =

∂S∗

∂h
e−

t2p

2σ2

∫ t

0

exp

(

−(t− u)2

2σ2
+
tp
σ2

(t− u)

)

eK
2u erfc(K

√
u) du+

2S∗ e−
t
2
p

2σ2

∫ t

0

dK

dh
exp

(

−(t− u)2

2σ2
+
tp
σ2

(t− u)

)

[

KeK
2u erfc(K

√
u)−

√

u

π

]

du

(5.25)

where erfc(u) is the complementary error function and

dK

dh
= −

√

(ρCpk)s
(ρCp)mh2

,

and

∂S∗

∂h
=

E0√
2πσtp(ρCp)m

{

[

−r0are−arh
)

]
[

1− e−αmh
] 1

h
+

[

1− r0
(

1− e−arh
)]

[

[

αme
−αmh

] 1

h
−
[

1− e−αmh
] 1

h2

]}

.

For small film heights, T ∗

m and ∂T ∗

m/∂h need to be carefully computed to ensure the

integrals in Equations (5.24) and (5.25) converge, see Appendix B. When used in our

simulations, both T ∗

m and ∂T ∗

m/∂h are evaluated for an array of t and h values before

the start of the simulations. During the simulation, we use bilinear interpolation

to find the temperature at each interfacial cell and each time step. This makes
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the computations significantly faster, since we do not need to use the numerical

integration to compute the integrals in Equations (5.24) and (5.25) for each interfacial

cell at each time step.

5.4.2 Analytical Solution of the Heat Equation in a Film–Substrate

System

The system of Equations (5.15) and (5.16), including the spatial variations in the

y-direction in both the metal and the substrate, can be solved analytically using

separation or variables, following the technique given by Ozicsik [91]. The analytical

solution presented here is used for the verification of the reduced model given in

Equation (5.24) and the complete model presented in Section 5.4.3.

In contrast to the reduced model presented in Section 5.4.1, for computing the

analytical solution, we assume that the substrate is of finite depth. However, when

comparing the solutions from different models, we use substrate depth large enough

that the temperature solution is converged with increasing substrate thickness, and

the solution is equivalent to that for the semi-infinite substrate (see Figure C.1 in

Appendix C). The modified boundary condition (5.21) is

Ts = T0 at the bottom of the substrate z = −b, (5.26)

where b is the substrate thickness.

The solution can be found using separation of variables [91], and it can be

written compactly in terms of Green’s functions as

Tm (z, t) =

∫ t

0

∫ b

a

G12 (z, t; ξ, τ)
α2

k2
S (ξ, τ) dξdτ (5.27)

Ts (z, t) =

∫ t

0

∫ b

a

G22 (z, t; ξ, τ)
α2

k2
S (ξ, τ) dξdτ (5.28)

where G12 and G22 are given in Appendix C along with the details of the solution.
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Figure 5.20 The analytical solution for the temperature of the film (y > 0) and
the substrate (y < 0). The film height is (a) h0 = 10 nm (b) h0 = 20 nm.

Figure 5.20 shows the analytical temperature solution in the metal film (y > 0)

and the substrate (y < 0). The temperature variation across the film height is small

compared to the variation in the substrate. Therefore, ignoring temperature gradients

across the film, as used in the reduced model, is justified. We note, however, that

such a conclusion can be reached only for stationary flat films. As we will see later,

using the reduced model for nonuniform films, or for the time dependent films, in

general cannot be justified. On a different note, we point out that since there is no

in-plane dependence in the source term, the 1D analytical solution presented here

holds for a 2D or a 3D flat stationary film.

5.4.3 Numerical Model for the Temperature of a Film–Substrate System

Next we consider the outlined problem via direct numerical simulations, using the

finite volume Navier–Stokes solver with VoF interface tracking (see Chapter 2). The

presented numerical solution can be used for arbitrary metal-air interface shape. We

solve the advection-diffusion equation in the liquid-air domain and the diffusion

equation in the solid domain. The simulation setup has to address the following

issue: using Gerris flow solver we cannot solve for the temperature inside of the
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Figure 5.21 The fluid–substrate setup used in the direct numerical simulations.

solid substrate directly, since except on the boundaries, the implementation of the

solid entities does not contain the computational cells. Hence, in order to solve for the

temperature in the fluid and the substrate using Gerris we treat the solid domain

– the substrate – as an immobile fluid. Furthermore, in order to impose the no-slip

boundary condition on the metal-substrate boundary, we separate the two phases

by a solid plate, which effectively creates a domain decomposition setup, i.e., the

computational domain is separated into two disconnected subdomains, see Figure

5.21. Later in this section we show that this setup, referred to as the “complete

model”, is valid. This is done by direct comparison with the analytical solution.

We denote the top subdomain containing metal and air by Ωf , and the bottom

subdomain containing the substrate by Ωs. In general, the temperature in Ωf , denoted

Tf , satisfies the advection-diffusion equation, and the temperature in Ωs, Ts, satisfies
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the diffusion equation

ρ (χ)Cp (χ) [∂tTf+(u · ∇ )Tf ] = ∇ · (k (χ)∇Tf ) + Sn(x, t) in Ωf (5.29)

(ρCp)s ∂tTs = ks∇2Ts in Ωs (5.30)

where ρ (χ), Cp (χ) and k (χ) are the phase dependent density, heat capacity and the

conductivity of the metal and air, defined as the volume fraction weighted average

of the metal and air properties (see Chapter 2). The boundary conditions for the

temperature at the bottom boundary of Ωf and at the top boundary of Ωs, couple

the temperatures of the two subdomains.

The coupling of the temperature solution between the liquid and solid domains

is accomplished using Newton’s law of cooling, which we impose on the top and

bottom of the solid plate as follows

km
∂Tf
∂y

= α (Tf − Ts) at the top of the solid, (5.31)

ks
∂Ts
∂y

= α (Tf − Ts) at the bottom of the solid, (5.32)

where α is the heat transfer coefficient. Note that the right hand sides of Equations

(5.31) and (5.32) are equal, implying the continuity of the flux between the liquid and

substrate. Furthermore, in the limit α → ∞, the boundary conditions (5.31) and

(5.32) both imply Tf = Ts. Hence, the boundary conditions given in Equations

(5.31) and (5.32) effectively encapsulate both continuity of flux, Equation (5.19),

and continuity of temperature, Equation (5.20). Additionally, in Appendix C, in

Figure C.2, we confirm that the analytical solution, given in Section 5.4.2, with the

Newton’s cooling law boundary condition converges to the solution with the continuity

of temperature for large α.

In the remainder of this section, we verify that the numerical solutions to

Equations (5.29) and (5.30), along with the boundary conditions, Equations (5.31)

and (5.32), converge with the increasing heat transfer coefficient, α, and the substrate
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size, b. To do this, we consider the following test problem. Assume the metal-air

interface is flat and the solution is independent with respect to the x-direction.

Hence, the temperature for the 2D problem satisfies the 1D heat equation at any

fixed position x, and the 1D analytical solution, presented in Section 5.4.2, holds.

We compare the temperature solution obtained from the complete model, to the 1D

analytical solution, where we average the temperature over the film height.
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Figure 5.22 The convergence of the average temperature in the metal film using
the numerical solution of the complete model with increasing α for the film height (a)
h0 = 10 nm (b) h0 = 20 nm. The units of α in the legend are in W m−2K−1.

Figure 5.22 shows the temperature solution of the complete model for a flat

film geometry compared to the analytical solution, with temperature averaged over

the film height and for increasing values of α. The largest relative difference in

the temperature between α = 50W m−2K−1 and α = 70W m−2K−1 is 0.7% for a

h0 = 10 nm, and 0.6% for a h0 = 20 nm. Numerically, larger α decreases the required

time-step, thus, in the simulations presented below, we use α = 50W m−2K−1.

Figure 5.23 shows the convergence of the solution of the complete model for the

averaged temperature for increasing substrate size, b. The largest relative difference

in the temperature between b = 400 nm and b = 600 nm is 0.12% for a h0 = 10 nm,

and 0.08% for a h0 = 20 nm. Hence, in the simulation presented below, to save

computational time we use b = 400 nm.
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Figure 5.23 The convergence of the average temperature in the metal film using
the solution of the complete model with increasing substrate size, b, for film height
(a) h0 = 10 nm (b) h0 = 20 nm.

We showed that the solution to the complete model described in this section

converges with the increased heat transfer coefficient, α, and the substrate thickness,

b, to the analytical solution with continuity of temperature boundary condition at the

fluid-substrate interface. Finally, Figure 5.24 shows the comparison of the average

temperature in the metal film from the reduced model given in Section 5.4.1, the

analytical solution outlined in Section 5.4.2, and the complete model described in

this section. The average temperature of a flat metal film in both the reduced and

the complete model agrees with the analytical solution. Hence, we are confident in

the numerical implementation of the temperature models in our Navier-Stokes solver.

5.4.4 Linear Stability Analysis (LSA) of a Thin Film in Two Dimensions

First, to gain basic insight, we present the results of the LSA carried out within the

long wave model for thin films. While the LSA is carried in a setting which differs

from the one considered computationally in Section 5.4.5, it is expected that it will

still provide a useful insight. The LSA yields the dispersion relation that enables

us to predict the stable and unstable perturbation modes. We will see that the

reduced model overestimates the thermocapillary effect, and the particular reason for
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Table 5.1 The Values of the Material Parameters Used in Simulations

Description Notation Value/Expression

Density of the metal ρm 7900 kg/m3

Density of the substrate ρs 2200 kg/m3

Room temperature T0 300K

Melting temperature of the metal TM 1728K

Viscosity of the metal at TM µm 4.61× 10−3 Pa s

Surface tension coefficient σ(T ) σ0 + σT (T − TM)

Reference surface tension coefficient σ0 1.778N/m

Change of σ with respect to temperature σT −3.3× 10−4N/mK

Conductivity of the metal km 90W/mK

Conductivity of the substrate ks 1.4W/mK

Heat capacity of the metal (Cp)m 0.44× 103 J/kgK

Heat capacity of the substrate (Cp)s 0.712× 103 J/kgK

Laser fluence E0 2500 J/m2

Laser pulse width tp 18× 10−9 s

Absorption length αm 0.11688× 10−9m−1

Fit parameter for reflectance r0 0.459363

Fit parameter for reflectance ar (8.0× 10−9m)−1

Equilibrium contact angle of metal with substrate θeq 70◦

Exponents in in the disjoining pressure model (n,m) (2, 3)

Precursor film height h∗ 1.5× 10−9m
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Figure 5.24 Comparison of the average temperature of a flat film for the reduced,
the analytical, and the complete model – labeled as “DNS” in the legend. The film
height is (a) h0 = 10 nm (b) h0 = 20 nm, substrate thickness is b = 400 nm, and the
heat transfer coefficient is α = 50W m−2K−1.

this is the omission of in-plane heat conduction. We will also see that the temporal

temperature variations lead to a change in the surface tension coefficient, which can

in turn affect the stability of the perturbed interface during the evolution.

The long wave approximation [77] for a Newtonian film with Marangoni effect

and the fluid-substrate interaction in the form of the disjoining pressure [89] leads to

the following 4th order nonlinear partial differential equation

3µ
∂h

∂t
+∇ ·

[

σ0h
3∇∇2h+

3

2
h2∇σ(T ) +Kπh

2∇
(

hn
∗

hn
− hm

∗

hm

)]

= 0, (5.33)

where Kπ is given in Equation (5.8). We assume the film height is perturbed around

the equilibrium height, h0, as h(x, t) = h0 + εh0e
βt+ikx, where ε is a small parameter,

β is the growth rate of the perturbation and k is the wavenumber. Note that

temperature is not an independent variable here, it is a function of h. An alternative

approach is to consider both h and T as independent variables, and perturb each of

them separately, however, we are not doing this here for simplicity. Keeping only the
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Figure 5.25 The average temperature, T ∗

m, and ∂T
∗

m/∂h of a metal film with height
(a) 10 nm and (b) 20 nm as a function of time using the reduced model. The blue and
orange dashed lines indicate the meting temperature, TM , and the line ∂T ∗

m/∂h = 0,
respectively.

leading order terms in ε we obtain the dispersion relation:

β = −h
2
0 k

2

3µ

[

σ0h0k
2 − 3

2
σT
∂T

∂h
−Kπ

(

n
hn
∗

hn0
−m

hm
∗

hm0

)]

. (5.34)

To illustrate the expected influence of Marangoni effect on stability, in Figure 5.25,

we plot the temperature gradient, ∂T ∗

m/∂h, for a fixed film height computed using the

reduced model (see Equation (5.25)). The temperature of the film, T ∗

m (see Equation

(5.24)), is plotted to show the melting time of the film. The value of the gradient

changes as a function of time, and in order to compute the stability of a perturbed

film using Equation (5.34), we approximate ∂T/∂h by the largest absolute value of

∂T ∗

m/∂h, during the time the film is melted. Hence, the dispersion curve provides the

upper bound on the influence of the thermocapillary force.

Figure 5.26 shows the dispersion curve for films with h0 = 10 nm and h0 = 20 nm.

For the 10 nm thick film, Figure 5.26(a), the thermocapillary force is stabilizing, since

∂T/∂h > 0, for all times while the film is melted. Conversely, for the 20 nm film,

Figure 5.26(b), the thermocapillary force is destabilizing for early times after the

melting time, since ∂T/∂h < 0.

86



0 0.01 0.02 0.03 0.04 0.05 0.06

k[nm
-1

]

-40

-30

-20

-10

0

10

20

30

[n
s

-1
]

(a)

0 0.01 0.02 0.03

k[nm
-1

]

-40

-30

-20

-10

0

10

20

30

[n
s

-1
]

(b)

Figure 5.26 The growth rate of a perturbed film with equilibrium film height (a)
h0 = 10 nm, ∂T/∂h = 76.7K nm−1 and (b) h0 = 20 nm, ∂T/∂h = −33.9K nm−1,
with (blue) and without (orange) thermocapillary force.

5.4.5 Evolution of a Thin Film Interface in Two Dimensions

In this section, we examine the stability of the films by solving the Navier-Stokes

equations including the thermal effects. We also include the fluid-structure interaction

in the form of a disjoining pressure (see Equation (5.6)). We compare the influence

of thermal effects on the film breakup using the temperature solution from the

reduced model and from the complete model, described in Sections 5.4.1 and 5.4.3,

respectively.

The initial geometry of the film in the simulations is a cosine perturbation

around the height h0 with the amplitude ε = 0.1. At the beginning of the laser pulse

the metal is in the solid state. For the simulations using the reduced temperature

model, we simulate only the times after the film is melted. For the simulations with

the complete temperature model, we keep the velocity field stationary until the film

is melted.

Figure 5.27 shows the evolution of the interface for a 10 nm film. The wavelength

of the perturbation, λ = 100 nm, is stable and slightly smaller than the critical

wavelength, λc = 114 nm found from the LSA in Section 5.4.4. Hence, we expect
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Figure 5.27 The comparison of the evolution of the interface using the film
temperature solution from (a) the reduced model and (b) the complete model, for
film height h0 = 10 nm, and the wavelength of the perturbation λ = 100 nm. Note
different height scales in (a) and (b).

the perturbation to be stable. Figure 5.27(a) shows the evolution of the interface

with temperature solution from the reduced model. The perturbation of the interface

decays. Figure 5.27(b) shows the evolution of the interface with the temperature

solution from the complete model, where initially (see t = 20 ns) the perturbation

decays, then grows for all following times, and the film eventually breaks into drops.

Hence, the two temperature models, which agree for a flat film, produce different

evolution for a perturbed interface.

In order to examine the source of the difference in the evolution between the two

models, we now consider the influence of the temperature on the normal component

of the surface force, and ignore the tangential (thermocapillary) component. Figure

5.28 shows the evolution of the interface where the surface tension coefficient is (a)

constant, σ = σ0, and (b) temperature dependent, σ = σ(T ), but the Marangoni

effect is not included; the complete model is used for temperature calculations. In

the simulation with the constant surface tension coefficient the perturbation is stable,

as expected from the dispersion relation in Equation 5.34. However, when the surface

tension coefficient depends on the temperature, the perturbation initially decays
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Figure 5.28 The comparison of the evolution of the interface ignoring the
thermocapillary force, with the surface tension coefficient (a) fixed to σ = σ0 and
(b) σ = σ(T ), with the temperature solution from the complete model for the film
height h0 = 10 nm, and the wavelength of the perturbation λ = 100 nm.

(see t = 20 ns), but grows for all later times. Note in particular that the results

shown in Figures 5.27(b) and 5.28(b) are almost identical, suggesting further that

the Marangoni effect is essentially irrelevant in the present context. Therefore, the

stability change is not due to the thermocapillary force (spatial variations of σ), but

due to the change in the normal component of the surface tension force (temporal

change of σ).

Figure 5.29(a) shows the average temperature of the film in the reduced and

complete models from the results in Figure 5.27. According to both models, from

the melting time at t = 11.4 ns, the temperature of the film increases to T & 4000K,

which corresponds to the decrease in the surface tension coefficient from σ(TM) =

17.78N m−1 to σ(Tmax) = 10.15N m−1. Figure 5.29(b) shows the dispersion curve

computed using Equation (5.34), with σ0 = σ(TM ) and σ0 = σ(Tmax), and ∂T/∂h = 0.

The change in σ0 shifts the critical wavenumber, kc, and the stable perturbation

(λ = 100 nm which corresponds to k ≈ 0.0628 nm−1) becomes unstable. As a result,

the stable mode in simulations in Figures 5.27(b) and 5.28(b) becomes unstable as

the film temperature increases, eventually leading to the film breakup.
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Figure 5.29 (a) The average temperature of the metal film from Figure 5.27. (b)
Growth rate given in Equation (5.34), for h0 = 10 nm, ∂T/∂h = 0, and σ0 at the
melting temperature, TM , and the maximum temperature predicted by the reduced
model, Tmax.

In contrast to the simulations with the complete temperature model, in Figures

5.27(b) and 5.28(b), the simulation with the temperature from the reduced model

in Figure 5.27(a) remains stable, despite the fact that the average temperature of

the film increases similarly as in the complete model, as shown in Figure 5.29(a). To

gain better understanding of this result, we examine the difference in the temperature

solutions along the liquid-air interface for a perturbed stationary film (the motivation

for considering stationary film is due to the source term dependence on the film height,

and the film evolution would affect the source term). We consider a film with the same

geometry as the initial condition in the simulations in Figures 5.27 and 5.28. Figure

5.30(a) shows the difference of the temperature along the interface from the average

temperature at different times. The temperature at the interface varies significantly

more in the reduced model compared to the complete model. Thus, the temperature

gradients at the liquid-air interface are larger in the reduced model compared to the

complete model and the stabilizing thermocapillary force prevents the interface in

Figure 5.27(a) from becoming unstable with the change in the temperature. This

finding explains the different film evolution between the two models.
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Figure 5.30 The difference between temperature and average temperature, ∆T , at
the interface of a static perturbed film for a subset of times. The dashed line shows the
temperature solution of the reduced model, and the full line shows the temperature
solution of the complete model, for (a) h0 = 10 nm and λ = 100 nm, (b) h0 = 20 nm
and λ = 250 nm.

Next, we examine the influence of the thermocapillary force on the film of

height h0 = 20 nm. Similarly as for h0 = 10 nm, we impose a perturbation of the film

height with a wavelength, λ = 250 nm, which is stable when thermocapillary effects

are ignored, based on the dispersion relation, Equation (5.34). Figure 5.31 shows

the comparison of the evolution of the interface using the reduced and complete

temperature models. Using the reduced model, in Figure 5.31(a), the interface

is unstable, and the perturbation grows until the film breaks into drops. This is

not surprising since the reduced temperature model predicts ∂T ∗

m/∂h < 0 which

destabilizes the film (see Figure 5.26(b)). In the simulation with the temperature from

the complete model, in Figure 5.31(b), the stability of the film changes multiple times:

at t = 20 ns the perturbation decays; at t = 30 ns and t = 40 ns the perturbation

grows; and at t = 50 ns the perturbation decays again. Similarly as for h0 = 10 nm,

to explain these dynamics, we examine the simulations without the thermocapillary

force, and investigate the influence of the temperature on the normal component of

the surface force.
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Figure 5.31 The comparison of the evolution of the interface using the film
temperature solution from (a) the reduced, (b) the complete model for the film height
h0 = 20 nm, and the wavelength of perturbation λ = 250 nm.

Figure 5.32 shows the evolution of the interface where the surface tension

coefficient is (a) constant, σ = σ0, and (b) temperature dependent, σ = σ(T ),

where we ignore the thermocapillary effect. In the simulation with the constant

surface tension, the perturbation is stable, as expected from the LSA. However, the

simulation with temperature dependent surface tension shows the same dynamics as

the simulation in Figure 5.31(b). Thus, we see again that the thermocapillary force

is negligible and the changes in the stability in the complete model are due to the

temporal changes of the surface tension, as we show next.

Figure 5.33(a) shows the average temperature of the film using the reduced and

complete models from the results in Figure 5.31. From the melting time, at t = 11.8 ns,

the temperature rises to reach T & 4000K, which corresponds to the decrease in the

surface tension coefficient from σ(TM) = 17.78N m−1 to σ(Tmax) = 10.05N m−1.

Figure 5.33(b) shows the dispersion curve computed using Equation (5.34), with

σ0 = σ(TM) and σ0 = σ(Tmax), and ∂T/∂h = 0. The change in σ0 shifts the critical

wavenumber, kc, and the stable perturbation (λ = 250 nm which corresponds to

k ≈ 0.02512 nm−1) becomes unstable, as we see in Figures 5.31(b) and 5.32(b) after
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Figure 5.32 The comparison of the evolution of the interface ignoring the
thermocapillary force, with the surface tension coefficient (a) fixed to σ = σ0 and
(b) σ = σ(T ), with the temperature solution from the complete model for film height
h0 = 20 nm, the wavelength of the perturbation λ = 250 nm.

t = 20 ns. After t = 40 ns, the temperature decreases again to T ≈ 3000K, hence,

the perturbation becomes stable again. In summary, similar to the h0 = 10 nm film,

the stability of the interface using the complete model is governed by the temporal

variations of σ.

Similarly as for the h0 = 10 nm film, the temporal changes of the surface tension

do not explain the film instability for the temperature from the reduced model

in Figure 5.31(a). Therefore, we compare again the temperature at the liquid-air

interface of a stationary film using the reduced and complete models. Figure 5.30(b)

shows the difference in the temperature from the average temperature at the interface

of a stationary film with the same initial condition as in the simulations shown

in Figure 5.31. We see once again that the effect of the thermocapillary force is

augmented by the reduced model.
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Figure 5.33 (a) The average temperature of the metal film from Figure 5.27. (b)
Growth rate given by Equation (5.34), for h0 = 20 nm, ∂T/∂h = 0, and σ at the
melting temperature, TM , at the maximum temperature predicted by the reduced
model, Tmax, and at the intermediate value of 3000K.

5.4.6 The Influence of the Temperature Dependent Viscosity on the

Breakup of 2D Films

Here we study the influence of the viscosity variations with temperature of the metal

film on the stability and breakup dynamics. During the metal heating and melting

process, the viscosity of the metal changes several orders of magnitude [92]. The

viscosity of most metals can be modeled by an exponential as

µ (T ) = µ0 exp

(

E

RT

)

(5.35)

where µ0 = 0.1663mN s m−2 and E = 50.2 kJ mol−1 are constants dependent on the

material, and R = 8.3144 J K−1mol−1 is the gas constant [92]. Figure 5.34 shows the

viscosity of Nickel as a function of temperature.

The influence of the temperature dependent viscosity on the film breakup can

be examined from the dispersion relation in Equation (5.34): the stability of the

film and the critical wave number, kc, do not depend on the viscosity. However, the

growth rate, β, is inversely proportional to µ. Figure 5.35 shows the comparison of the
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Figure 5.34 Viscosity of Nickel as a function of temperature given in Equation
(5.35), for temperature range starting from (a) room temperature and (b) melting
temperature of Nickel.

dispersion curves for µ at the melting temperature and at the maximum temperature.

The maximum temperature is approximated by the temperature solution of a flat film

obtained by the reduced model (see Section 5.4.1).

Next we study the influence of the variable viscosity on the breakup dynamics.

We use the same initial geometry as in Section 5.4.5, and we implement the complete

model described in Section 5.4.3. Figure 5.36 shows the evolution of the film interface

with temperature dependent viscosity compared to the evolution for constant viscosity,

µ = µ(TM). For the 10 nm film, the same evolution dynamics are present in both cases:

perturbations initially decay, but start growing as the film temperature rises (see the

discussion related to Figure 5.27(b) and Figure 5.28(b) above). As we expected from

the LSA, the stability of the perturbations is not affected by the variable viscosity,

but their growth rate is faster, and therefore the breakup time occurs ≈ 5 ns faster

with variable viscosity compared to the constant viscosity case (see Section 5.4.5). For

the 20 nm film, again, the decay and the growth of the perturbations for the variable

viscosity follows the same direction as the constant viscosity in Figures 5.31(b) and

5.32(b). During the time of the perturbation growth, as in t = 20 ns to t = 40 ns in the
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Figure 5.35 Growth rate of a perturbed film from Equation (5.34), with ∂T/∂h = 0,
and film height (a) h0 = 10 nm and (b) h0 = 20 nm.

µ = µ(TM) case, the perturbation in the µ = µ(T ) case grows fast enough that the film

breaks. Recall that in the µ = µ(TM) case, the stability changes after t = 40 ns, and

the film stabilizes due to the decrease of the film temperature. Therefore, inclusion

of temperature dependent viscosity can strongly influence the film evolution.
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Figure 5.36 The comparison of the evolution of the film interface with constant
(full line) and temperature dependent viscosity (dashed line) using the complete
temperature model, for (a) h0 = 10 nm and (b) h0 = 20 nm.
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5.4.7 Breakup of Liquid Metal Filaments

Previously, we showed that the breakup of liquid metal filaments can be directed via

the surface tension variations along the filament (see Section 5.2). Here we examine

the influence of the temperature gradients on the breakup of the filaments. We

consider a similar initial geometry as in Section 5.2. However, here we focus on the

perturbation wavelengths close to the critical ones, similarly as in Section 5.4.5.

The simulation setup is as follows: the initial geometry is a flat filament with

rectangular perturbations (see Section 5.2). The filament height is h0 = 8nm, the

perturbation height is ∆h = 8nm and the width of the filament is w = 185 nm. Since

we know from Section 5.4.5 that the temperature gradients are small in the metal

film, we increase the height of the rectangular perturbations compared to Section 5.2

in an attempt to increase the temperature gradients. However, the average filament

height is kept at 12 nm as the filament height in Section 5.2. We simulate one half

of the perturbation wavelength and half of the filament width, and impose symmetry

boundary conditions at all in-plane directions. The fluid is stationary until the melting

time of the filament (see Section 5.4.5).

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

h = 8 nm

h = 12 nm

Figure 5.37 Growth rate as a function of the wavelength for filament width w =
185 nm. Since the perturbation is large, the growth rate is computed both with
h0 = 8nm and h0 = 12 nm (average height).
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The stability of a cylindrical filament on a substrate is governed by the

Rayleigh-Plateau (RP) type of instability, where the growth rate of the perturbations

can be predicted based on Equation (5.3). Figure 5.37 shows the growth rate for

a filament where we consider both the filament height without the perturbation,

h0 = 8nm and the average filament height including the perturbations, h0 = 12 nm

(see Equation (5.4)). The RP stability curve gives us an approximation for the critical

wavelength, λc ∼ 236 nm using h0 = 12 nm. In our simulations we pick a range of

wavelengths in the interval which includes the critical wavelength for the both heights

h0. Below we show results for two filaments: one with a stable and one with an

unstable perturbation. Note that both results have perturbation wavelength larger

than λc predicted by the RP theory. However, the RP theory is developed for a free

standing jet, and the presence of the substrate slightly modifies λc [93]. We compare

the results for simulations with and without the thermal effects. The temperature is

governed by the complete model described in Section 5.4.3.

Figure 5.38 shows the evolution of a stable filament, with the wavelength of

the perturbations close to the critical one. The results are similar, independently of

whether the surface tension is treated as a constant or temperature dependent. First,

the thermocapillary force is weak: the variations of the temperature at the filament

surface are small. Second, unlike in the flat film case (see Section 5.4.4), the decrease

of the surface tension does not change the stability of the filament; it only decreases

the growth rate. Hence, the thermal variations of the surface tension do not change

the qualitative behavior.

Figure 5.39 shows the evolution of an unstable filament. Again, the thermocap-

illary force does not change the qualitative breakup dynamics. However, the breakup

with temperature dependent surface tension happens about 10 ns slower compared to

the constant surface tension. This is expected, since the increase in the temperature
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Figure 5.38 Evolution of a stable filament with wavelength λ = 240 nm, (a) surface
tension dependent on the temperature and (b) surface tension fixed at σ0. The color
in part (a) represents the temperature at the interface in degrees Kelvin.
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Figure 5.39 Evolution of an unstable filament with wavelength λ = 250 nm, (a)
surface tension dependent on the temperature and (b) surface tension fixed at σ0.The
color in part (a) represents the temperature at the interface in degrees Kelvin.
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leads to a decrease in the surface tension, which in turn leads to a decrease of the

growth rate.

5.4.8 Conclusions

In this section we have studied the influence of the thermal effects on the evolution

of thin metal films and filaments. For the films, we have shown that the

dynamics of the evolution can change due to the surface tension dependence on

temperature. Surprisingly, the influence of the temperature is not manifested through

the thermocapillary force, but through the capillary force. More precisely, the thermal

effects influence the interface evolution due to the time-dependent changes of the

surface tension during a laser pulse.

We have also shown two different models for computing the film temperature.

The reduced 1D temperature model (Section 5.4.1) overestimates the temperature

gradients along the interface, due to the lack of the in-plane heat conduction. The

complete model, based on the numerical computation of the temperature (Section

5.4.3) shows that the temperature gradients along the interface are in fact not strong

enough to influence the breakup of the films. The changes in the viscosity during

the metal film heating can accelerate the growth of the perturbations, leading to a

breakup of films that would not break if a constant value of viscosity at the melting

temperature was used.

In summary, thermal effects can lead to the changes in the metal film stability

through the temporal change in the surface tension and viscosity.

In the case of filaments, the temperature dependence has little influence on the

qualitative behavior of the breakup of the liquid metal filaments. At least for the

parameters considered here, the stability of (single metal) filaments is not influenced

by the variation of the surface tension. This is in contrast to the two-metal filaments,
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considered in Section 5.2, where concentration dependence of surface tension is much

stronger and can qualitatively change the dynamics.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

We have developed a new numerical methodology for including variable surface tension

in a VoF based Navier-Stokes solver. The method handles both temperature or

concentration dependent surface tension variations. We employ a height function

inspired formulation to compute surface gradients and the resulting stresses at the

interface (Marangoni forces) in a more general numerical framework. We show the

accuracy of our developed method by studying the convergence of the computation

of the surface gradient for multiple geometries and the convergence of the terminal

velocity for the classical problem of the drop migration with an imposed constant

temperature gradient. The drop migration simulation results are in agreement with

the available theoretical and numerical results. We also show that our method

produces results consistent with experimental data in the case of concentration

dependent surface tension. Our numerical implementation extends to adaptively

refined meshes, which improves the computational efficiency for Marangoni induced

flows that require a high resolution around the interface.

The presented approach represents a first attempt for implementing a general

variable surface tension in the VoF method. As presented here, our method can

subsequently be used directly for surface tension dependence on the surfactant

concentration. This includes implementing the solution to the surfactant transport

equation for soluble and insoluble surfactants. Our methodology can provide tools for

developing more robust and accurate numerical simulations for two-phase flows with

surfactants. Surfactant flows have many applications, e.g., in the chemical industry,

pharmaceuticals and technology [94], and their understanding will have far reaching

effects in many areas.
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The numerical verifications and validations with available literature demon-

strate the efficiency and applicability of our methodology. Our numerical approach is

implemented in an adaptive mesh refinement framework, which now makes detailed

numerical simulations that incorporate the effects of tangential (Marangoni) stresses

feasible. This is particularly relevant for a number of flow problems where the

Marangoni effect may play a crucial role, such as the evolution of thin films on the

nanoscale, where Marangoni effects may result either from concentration gradients

(mixture of two fluids) or thermal gradients due to internal or external sources. Our

future research will continue in this direction.
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APPENDIX A

LASER SOURCE TERM

The absorption, reflectance and transmittance of a thin metal film can be computed

from Maxwell’s equations with appropriate boundary conditions. The equations

are greatly simplified when considering a single film layer on a transparent (non-

absorbing) substrate. The simplified expressions for computing reflectance and

transmittance given in [69] are

R1 =
t212 + u212
p212 + q212

, (A.1)

T1 =
n2

n0

((1 + g1)
2 + h21)((1 + g2)

2 + h22)

e2α1 + (g21 + h21)(g
2
2 + h22)e

−2α1 + C cos(2γ1) +D sin(2γ1)
(A.2)

where the terms in Equations (A.1) and (A.2) are defined as

α1 =
2πk1h

λl
, γ1 =

2πn1h

λl

g1 =
n2
0 − n2

1 − k21
(n0 + n1)2 + k21

, g2 =
n2
1 − n2

2 + k21
(n1 + n2)2 + k21

h1 =
2n0k1

(n0 + n1)2 + k21
, h2 =

−2n2k1
(n1 + n2)2 + k21

C = 2(g1g2 − h1h2), D = 2(g1h2 + g2h1)

p2 = eα1 cos(γ1), p12 = p2 + g1t2 − h1u2

q2 = eα1 sin(γ1), q12 = q2 + h1t2 + g1u2

t2 = e−α1(g2 cos(γ1) + h2 sin(γ1)), t12 = t2 + g1p2 − h1q2

u2 = e−α1(h2 cos(γ1)− g2 sin(γ1)), u12 = u2 + h1p2 + g1q2

and h is the metal film height, λl is the wavelength of the incident radiation, n0

is the refractive index of air, n1 and k1 are the metal refractive index and the

extinction coefficient respectively, and n2 is the refractive index of the substrate.
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Figure A.1 E0 is the intensity of the incident radiation. R(h) and T (h) are the
height dependent reflectance and transmittance of the metal.

Figure A.1 shows a schematic of the laser energy absorption. The incident energy E0

is perpendicular to the film surface. Part of the energy, R(h), is reflected at the film

surface, and the rest of the energy, denoted by E1, penetrates the surface. Then part

of the laser energy, denoted E2 is transmitted through the metal. Hence the energy

absorbed by the metal film is

A = E0 [1− T (h)] [1−R(h)] . (A.3)

The expressions for R and T given in Equations (A.1) and (A.2), can be approximated

by simpler functions, as it is done by Trice et al. [58]

T2(h) = e−αmh, R2(h) = r0
(

1− e−arh
)

, (A.4)

where αm = 4πk1
λ

, and r0 and ar can be found by fitting the simplified expressions to

the expressions in Equations (A.1) and (A.2). Figure A.2 shows the comparison of

the reflectance and transmittance given by Equations (A.1) and (A.2) and Equation

(A.4). The parameters used here are λl = 248 nm, n0 = 1, n1 = 1.7167, k1 = 2.3067,
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Figure A.2 The comparison of the reflectance and transmittance given by the
Equations (A.1) and (A.2) and Equation (A.4).

n2 = 1.59157, R0 = 0.4594, and a−1
r = 8nm. In Section 5.4 we use the simplified

expression for computing the absorption of the laser energy by a metal film.
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APPENDIX B

THE TEMPERATURE SOLUTION OF THE REDUCED MODEL IN

THE LIMIT OF SMALL FILM HEIGHT

The solution to the reduced temperature model given in Section 5.4.1, contains

integrals that pose numerical difficulties for small film heights. Here we give

expressions that can be used for computing the temperature of the metal film, T ∗

m, and

the gradient of the temperature with respect to the film height, ∂T ∗

m/∂h to alleviate

those difficulties. In the limit of small film height, T ∗

m and ∂T ∗

m/∂h, can be expanded

using asymptotic series as

T ∗

m (h→ 0, t) = T0 + S∗ e
−

t
2
p

2σ2
tp

∫ t

0

exp

(

−(t− u)2

2σ2
tp

+

tp
σ2
tp

(t− u)

)

[

h

CK

√
π u

− h3

2
√
π (CK

√
u)

3 + ...

]

du, (B.1)

∂T

∂h
(h→ 0, t) =

∂S∗

∂h
e
−

t
2
p

2σ2
tp

∫ t

0

exp

(

−(t− u)2

2σ2
tp

+
tp
σ2
tp

(t− u)

)[

h

CK

√
π u

− h3

2
√
π (CK

√
u)

3 + ...

]

du+

S∗ e
−

t2p

2σ2
tp

∫ t

0

exp

(

−(t− u)2

2σ2
tp

+
tp
σ2
tp

(t− u)

)[

1

CK

√
π u

− 3 h2

2
√
π (CK

√
u)

3 + ...

]

du,

(B.2)

where

S∗ (h→ 0, t) = αm

[

1−
(αm

2
+ arr0

)

h+

1

6

(

α2
m + 3αmarr0 + 3a2rr0

)

h2 + ...

]

, as h→ 0. (B.3)
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Hence, the integrals in Equations (5.24) and (5.25) are convergent as h → 0. In our

simulations, we use the expression given here for small film heights, since the direct

evaluation of the integrals in Equations (5.24) and (5.25) numerically is difficult.
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APPENDIX C

ANALYTICAL TEMPERATURE SOLUTION

In this appendix, we provide the details of the analytical temperature solution in the

fluid-substrate domain specified in Section 5.4.2. Note that we change the notation

here for the domain boundaries compared to Section 5.4, and we denote the bottom

of the substrate as y = 0, the fluid-substrate interface as y = a, and the fluid-air

interface as y = b. The temperature in the fluid, Tm, and the temperature in the

substrate, Ts, satisfy the diffusion equation

∂Ts
∂t

= αs
∂2Ts
∂y2

in 0 < y < a (C.1)

∂Tm
∂t

= αm
∂2Tm
∂y2

+ S (y, t) in a < y < b (C.2)

where

αs =
ks

ρsCeffs

, αm =
km

ρmCeffm

,

along with the boundary conditions

Ts = T0 at the bottom of the substrate y = 0, (C.3)

Ts = Tm at the fluid-substrate interface y = a, (C.4)

k1
∂Ts
∂y

= k2
∂Tm
∂y

at the fluid-substrate interface y = a, (C.5)

k2
∂Tm
∂y

= 0 at the fluid-air interface y = b. (C.6)

The source term, S(y, t) is given by Equation (5.17). The solution to the above

equations can be written compactly in terms of Green’s functions as given in
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Equations (5.27) and (5.28), where

Gi,j (y, t; ξ, τ) =
∞
∑

n=1

e−β2
n(t−τ) 1

Nn

kj
αj

ψi,n (y)ψj,n (ξ) , (C.7)

Nn =
k1
α1

∫ a

0

ψ2
1,ndξ +

k2
α2

∫ b

a

ψ2
2,ndξ, (C.8)

where ψi,n and βn are eigenfunctions and eigenvalues computed using separation of

variables, and

ψi,n = Ai,nΦi,n(y) +Bi,nΘi,n(y) in yi < y < yi+1, (C.9)

Φi,n(y) = sin

(

βn√
αi
y

)

, (C.10)

Θi,n = cos

(

βn√
αi

y

)

, (C.11)

where y0 = 0, y1 = a and y2 = b. In order to simplify the notation, let

γ =
aβn√
α1
, η =

bβn√
α2
, K =

k1
k2

√

α2

α1
. (C.12)

The eigenfunctions ψi,n satisfy the boundary conditions in Equations (C.3)-(C.6).

Hence, it follows

ψ1,n = 0 at y = 0 → B1,n = 0, A1,n = 1 without loss of generality,

(C.13)

ψ1,n = ψ2,n at y = a → sin γ = A2,n sin
(a

b
η
)

+B2,n cos
(a

b
η
)

, (C.14)

k1
k2

∂ψ1,n

∂y
=
∂ψ2,n

∂y
at y = a → K cos γ = A2,n cos

(a

b
η
)

− B2,n sin
(a

b
η
)

, (C.15)

∂ψ2

∂y
= 0 at y = b → A2,n cos η − B2,n sin η = 0. (C.16)

We can solve for the coefficients A2,n and B2,n using Equations (C.14) and (C.15)

A2,n =
1

∆

[

− sin γ sin
(a

b
η
)

−K cos γ cos
(a

b
η
)]

, (C.17)

B2,n =
1

∆

[

K cos γ sin
(a

b
η
)

− sin γ cos
(a

b
η
)]

, (C.18)
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where

∆ = − sin2
(a

b
η
)

− cos2
(a

b
η
)

= −1. (C.19)

In order to have a solution, we require the determinant of the system of Equations

(C.14)-(C.16) to be zero

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sin γ − sin
(

a
b
η
)

− cos
(

a
b
η
)

K cos γ − cos
(

a
b
η
)

− sin
(

a
b
η
)

0 − cos η − sin η

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

The equation above leads to the following equation for the eigenvalues, βn

tan
aβn√
α1

tan

(

βn√
α2

(b− a)

)

= K, (C.20)

which can be solved numerically.
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Figure C.1 Convergence of the analytical solution with increased substrate depth
for film thickness of (a) h0 = 10nm and (b) h0 = 20nm.

Figure C.1 shows the average temperature in the metal as a function of time

for different substrate sizes. We see that the solution converges as the substrate size

increases. Hence, for a large enough substrate size, the solution is equivalent to the

solution for a setup with semi-infinite substrate. This result is used in Section 5.4 to
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justify comparing the temperature obtained using the reduced model and semi-infinite

substrate, with the one obtained by using the complete model and fixed substrate size.

C.1 Newton’s Law of Cooling

Next, we show that replacing the continuity of temperature boundary condition at

the fluid-substrate interface with Newton’s law of cooling yields an equivalent solution

as long as the heat transfer coefficient is large enough.

We replace the boundary condition (C.4) with

− k1
∂Ts
∂y

= α (Ts − Tm) at fluid-substrate interface y = a. (C.21)

Then the eigenfunctions of the same form as given in Equation (C.9) satisfy the

boundary conditions (C.3), (C.5), (C.6) and (C.21). Hence, it follows

ψ1,n = 0 at y = 0 → B1,n = 1, A1,n = 1 without loss of generality, (C.22)

− k1
∂ψ1,n

∂y
= α (ψi,n − ψ2,n) at y = a

→ −k1 cos γ = α sin γ − αA2,n sin
(a

b
η
)

− αB2,n cos
(a

b
η
)

, (C.23)

k1
∂ψ1,n

∂y
= k2

∂ψ2,n

∂y
at y = a→ K cos γ = A2,n cos

(a

b
η
)

− B2,n sin
(a

b
η
)

, (C.24)

∂ψ2

∂y
= 0 at y = b → A2,n cos η − B2,n sin η = 0. (C.25)

From the Equations (C.23) and (C.24), we can solve for the coefficients A2,n and B2,n

A2,n =
1

∆

[

(−H cos γ − sin γ) sin
(a

b
η
)

−K cos γ cos
(a

b
η
)]

, (C.26)

B2,n =
1

∆

[

K cos γ sin
(a

b
η
)

+ (−H cos γ − sin γ) cos
(a

b
η
)]

, (C.27)

where

H =
k1βn
α
√
α1
. (C.28)
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The condition for existence of a solution is vanishing determinant as follows

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−H cos γ − sin γ − sin
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b
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b
η
)
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η
)

− sin
(
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b
η
)

0 − cos η − sin η
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∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

The equation satisfied by the eigenvalues βn is now

(

H + tan
aβn√
α1

)

tan

(

βn√
α2

(b− a)

)

= K, (C.29)

which can be solved numerically.
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Figure C.2 Convergence of the analytical solution with increased α for film
thickness of (a) h0 = 10nm and (b) h0 = 20nm.

Figure C.2 shows the average temperature in the metal as a function of time

for different α. We see that the solution with Newton’s cooling law converges to the

solution with continuity of temperature for large α. This result is used in Section 5.4

to justify comparing the reduced model that implements continuity of temperature

with the complete model that uses Newton’s law of cooling.
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