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ABSTRACT 

THE USE OF AUDIO STIMULATION 
TO AFFECT SENSORIMOTOR LEARNING 

 
by 

Gregory Nicholas Ranky 

Sensorimotor learning for the hand and fingers can be conducted using both hardware 

and software components, but the training regime is also important.  Using repetitive 

sequence tapping allows measurement of defined metrics in a controlled, safe 

environment, and therefore statistical indications for subject improvement. 

 The process of entrainment, when a subject’s own movements synchronize to an 

external signal, has been tested in prior studies for memorization and recognition, but has 

not been investigated for correlation with sensorimotor learning. 

 This is tested with selected custom isochronic audio tones, combined with 

sequential finger tapping on a standard computer keyboard. 

 Whilst there were no significant differences between specific frequencies, testing 

blocks done during tone conditions show subject improvement in reduced mean sequence 

times compared to pre-stimulation, with no significant change in subsequent post-

stimulation blocks. 
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It is difficult to predict the end result of focused, exploratory research, regardless of the 

subject, and I’ve found that’s true for life as well.  For in the words of the late, great Isaac 

Asimov:  ‘The most exciting phrase to hear in science, the one that heralds new 

discoveries, is not 'Eureka!' (I've found it!), but 'That's funny’. 

 I expected when first going into this dissertation that I would make a grand 

discovery, one that would change my field and inspire future work, and through the 

course of this dissertation, I found both results that I had hoped for, and results that 

surprised me and made me think. 

 Having just finished this and looking back at this moment, I can’t say right now 

how beneficial my efforts were, as despite all my work I don’t know the full effects of 

what I’ve done, and whether the results are significant enough for anyone to take notice 

in the future, or to build on it further.  But in all honesty, I’ve come to conclude that 

every researcher, student or not, academic or not, has the belief that their work will be 

grand at some point, and that it’s fine to believe in that possibility. 

 Over the past four years, I’ve spent not just time and money, but I’ve invested 

much of my peace of mind and self-worth too; when this dissertation is over and done 

with I want some of it back, as much as possible in fact.  And whatever I won’t be able to 

get back, I want to leave this work knowing that what I’ve traded for it is worthwhile.  

But once again, it’s difficult to tell right now exactly what the end result will be. 

 What I can say however, is that I’ve experienced the key elements of research, 

stepping forward with one foot into the unknown, testing out what you expect to see if it 

is true outside of your own mind, and trying to convince others, many of whom you’ve 

never met, that your efforts were worthwhile.  Research has taught me that learning is 
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indeed life-long, far beyond the confines of the classroom, and that the answers we end 

up having are rarely multiple choice, or simple enough to boil down into one pithy 

sentence, like the ones I’m trying to include here. 

 For anyone who’s reading this dissertation, I advise you to think carefully about 

what you’re planning to do with the degree you’ll earn from this, because work on this 

scale will take space, time and peace of mind to accomplish.  And if you do decide to 

follow through, don’t be afraid to ask for help, because as insurmountable as it seems day 

after day, it is possible to finish, even if you don’t find the results that you expected to. 

 In the end, your work can enrich the lives and understanding of those beyond you, 

and if this work that you’re reading just now can do that for you, then I will consider my 

efforts have been worthwhile. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this dissertation is to investigate the effects of isochronic audio tones on 

upper extremity sensorimotor learning and activity, specifically to determine whether 

these are primarily assistive, restrictive or negligible.  This was tested using 

neurologically healthy typical subjects with normal or corrected to normal vision and 

hearing, and no history of head trauma, seizures, or injuries or surgeries to the fingers, 

hands or arms. 

This was first tested using four evenly spaced audio tones based on prior art, 

combined with the 9-Hole Peg Test, testing both the dominant and non-dominant hands. 

Next, the same four tones were tested in combination with Thin Force sensors to 

measure both mean tapping speed and a preset finger sequence with subjects’ non-

dominant hand. 

Finally, two of the four tones were tested using a preset keyboard sequence with 

subjects’ non-dominant hands. 

 

1.2 Problem Statement 

The goal of this study is to utilize isochronic audio frequencies to determine their effects 

on upper extremity sensorimotor performance and learning.  This was tested in adult 

subjects without physical or neurological impairments by using established cognitive 

tests and physiological measurements. 
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Despite the relative dearth of prior art in this testing of combinations of isochronic 

audio tones and upper extremity sensorimotor activity, there are real-world and clinical 

applications for the resulting work.  Specifically, any activity with repetitive upper 

extremity movement may be assisted or hindered by external sounds, whether intended or 

not, such as noise or vibration from surroundings.  This can assist by allowing 

synchronization of movements, or hinder by distracting or interfering in a person’s 

optimal rhythm.  This has potential applications in both ergonomics and rehabilitation; 

the full extent of which is not fully known. 

 

1.3 Background Information 

Because human working memory is limited, multiple cultures across the world have 

independently developed physical and behavioral tools to aid in memorization.  Amongst 

the oldest and most widespread of these is the use of music and rhythm to encode 

information for future use. As both music and dance contain repeating sound and motion 

patterns, learning to play or keep time with music requires the practitioner to maintain 

rhythms by using internal synchronization and body movements, whether in dance or 

playing instruments. 

A specific example of this involves the synchronization of brain activity to 

external rhythmic stimuli, known as entrainment.  Historical examples of using 

entrainment extend beyond the personal scale, such as the Hypogeum of Hal-Saflieni, a 

subterranean structure on the island of Malta.  Within one of the side chambers, known as 

the Oracle Room, where reverberations could be induced, and chanting at a 110Hz 

frequency has been found to induce a trance-like state in the speaker.  As an aside, the 
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reverberations have been found only to occur at the frequency range of 95-120Hz, which 

could only be produced by a male voice. 

Whilst prior work has found that using entrainment in combination with 

additional tasks has led to changes in recognition and memorization, the use of specific 

patterns, tones and frequencies and their effects on brain activity and sensorimotor 

learning however have had comparatively little study.  In order to discuss entrainment, it 

is necessary to distinguish it from the similar concepts of Flow and Cognitive Load 

Theory. 

 

 
1.3.1  Consciousness and Attention Optimization 

The idea of a specific state of consciousness that optimizes learning and application was 

also explored by Professor Mihaly Csikszentmihalyi.  He used the term Flow to refer to a 

state where a person's abilities and skills are comparable to meeting the challenges of 

presented tasks, with both greater than the levels of baseline daily activities.  This is 

found in both genders, multiple ages, professions and nationalities.  All instances of Flow 

that he discovered had common elements:  feedback was immediate, goals were clear, 

and the perception of time was less relevant (though there were exceptions with this last 

element, such as in sprinting, where minimizing time spent was a goal). 

 

 
1.3.2  Cognitive Load Theory 

Cognitive Load Theory (CLT) was developed in the 1950s from the work of G.A. Miller, 
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then elaborated on in the 1980s by John Sweller; and posits that human working memory 

is limited, and therefore requires organizing input in order to make full use of it. 

CLT provides an estimate of the maximum units of information that humans can 

process in a given amount of time at seven 'chunks' of information, with a gap of 1/18th 

of a second, giving 126 bits per second per person max, though this can be affected by 

distractors or fatigue (Sweller and Van Merrienboer, 2009).  The concept of Flow agrees 

with CLT, in that human working memory is limited, and is subdivided into three types 

of load:  task complexity, task presentation, task learning process.  Given these 

conditions, there exists the possibility of a methodology or set of quantified elements that 

can achieve this state in order to thoroughly and consistently develop specific skills, even 

within the limits of human working memory. 

The reason for this has been proposed to be a function of the brain’s memory 

processing (Lisman, 2013).  In this hypothesis, short-term memories are continuously 

refreshed to maintain their presence, at a rate of 30-100Hz, whilst long-term memories 

are refreshed at approximately 4-7Hz.  Given these constraints, a short-term memory can 

cycle approximately seven times for each long-term refresh cycle.  Whilst this has 

similarities to Flow, the primary difference is that CLT is used to analyze and optimize 

learning at an intellectual level, whilst Flow concerns itself with application and the 

overall state of participant consciousness.  Both of these have an overlap with the use of 

rhythm to present information. 

 

 
1.3.3  Neurofeedback and Audiovisual Entrainment 

Entrainment is the matching of brain activity frequencies to external rhythms.  This can 
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occur through sensory means using audio, visual or tactile input, or applied means such 

as tACS (transcranial alternating current stimulation). 

Whilst prior work has found that using entrainment in combination with 

additional tasks has led to changes in recognition and memorization, the use of specific 

patterns, tones and frequencies and their effects on brain activity and sensorimotor 

learning however have had comparatively little study.  A list of related work via PubMed 

is summarized below in Table 1.1. 

 

Table 1.1  Background on Entrainment via PubMed 

Category # Papers Reviewed Prior to Testing 
EEG and fNIRS 35 
Rhythm – Audio – Mu and Theta 46 
Neurofeedback and Brainwave entrainment 30 
Ghilardi metrics 9 
9-Hole Peg Test 22 
Fitt’s Law 27 
Entrainment and Stimulation 46 
CLT Comparisons 18 
FOT and FTT 20 
 

 

 

 

 

 

 

Whilst the brain has multiple frequency ranges depending on the activity, it is 

necessary to evaluate prior entrainment work.  A list of prior studies and their stimulation 
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frequencies is summarized below in Table 1.2. 

 

Table 1.2  Prior Entrainment Frequencies and Modality 

Researchers Modality Frequency Range Study Results 
Fox and Raichle 
(1984) 

Visual 0-7.8Hz Positive correlation with cerebral 
blood flow (CBF) in the striate 
cortex from 0 to 7.8Hz 

Gomex-Ramirez 
et al. (2011) 

Visual 0.67Hz Entrainment occurred at 1.33Hz, 
reflected in FFT-spectrum, alpha 
amplitude increased in auditory 
cortex when vision attended 

Lane (1998) Audio 1.5,4,16,24Hz Beta frequency gave more correct 
target detection than theta/delta 
beats 

Mentis et al. 
(1997) 

Visual 0,1,4,7,14Hz Frequencies of 0,1,4,7, and 14Hz, 
results showed increase in striate 
cortex activity at 7Hz, with a 
decline at 14Hz 

Padmanabhan 
(2005) 

Audio 0-4Hz Acute anxiety was ~50% less after 
30min 

Thomas & Siever 
(1989) 

Visual 10Hz Produced masseter relaxation in 
subjects with chronic 
temporomandibular joint disorder 

Wach (2012) tACS 10,20Hz 10Hz tACS increased movement 
variability over 30min post-
stimulation, 20Hz tACS caused 
movement slowing directly after 
stimulation 

Williams (2006) Visual 9.5-11Hz Optimal visual frequencies to 
improve word recognition from 
9.5-11Hz, with peak power at 
10.2Hz 

 

The brain itself has the ability to change its active wave frequencies to match 

external audio, visual or tactile rhythms and is defined as entrainment (Siever, 2003).  

And it has been found that audiovisual entrainment in humans has a correspondence with 

the stimulation frequency. One example of this is the presence of entrainment at 2x the 

stimulation rate (Gomez-Ramirez et al., 2011), with entrainment occurring at 1.33Hz as 
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measured via Electroencephalography (EEG), when stimulation was presented in the sub-

delta band at 0.67Hz.  Another study (Fox, 1984) varied light flash frequencies, and 

found a positive correlation with cerebral blood flow (CBF) in the striate cortex from 0 to 

7.8Hz, with a decrease in CBF above this frequency and a 20-30% increase in CBF at a 

7.8Hz frequency of stimulation. 

In addition to audio and visual stimulation, transcranial alternating current 

stimulation (tACS) has been utilized in recent work, on the M1 region of the brains of 15 

right-handed subjects (Wach, 2012).  It was discovered that 10Hz stimulation increased 

movement variability over 30 minutes post-stimulation, and 20Hz stimulation caused 

movement slowing directly after stimulation.  The conclusion drawn from this was that a 

10Hz neural oscillation interferes with inhibitory circuits, therefore increasing movement 

variability, an undesired result which would decrease subjects’ precision. 

Most significantly, regional cerebral blood flow has been measured using positron 

emission tomography (PET) during a pattern-flash visual stimulation at frequencies of 

0,1,4,7, and 14Hz, (Mentis, 1997).  The results showed increase in striate cortex activity 

at 7Hz, with a decline at 14Hz.  Likewise, a study centered on a word recognition 

memory task with elderly participants (Williams, 2006), discovered optimal visual 

frequencies from 9.5-11Hz for increased word recognition, with optimal recognition 

close to 10.2Hz.  Whilst these results point to the effects of optimal frequencies using 

visual entrainment, there has been no verification for the use of audio only at these same 

frequencies. 

The frequency of 7.8Hz may have physiological significance aside from CBF, as 

it lies adjacent to both the Theta (4-7Hz) and Alpha (8-12Hz) bands within 
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Electroencephalography (EEG), which correspond to response inhibition with possible 

links to learning and memory and wakeful relaxation respectively.  In addition, a subset 

of the Alpha band called the Mu wave (8-12Hz) is located over the sensorimotor cortex, 

which is reduced during actual or intended body movements (Ogoshi, 2013). 

 

 
1.3.4  Optimal Frequencies for Movement 

The presence of optimal or default frequencies for body movements as well as brain 

activity has also been investigated historically.  This has led to discoveries such as a 

resonance for human walking at approximately 120 beats per minute, or 2Hz, though the 

discoverers concluded that the biomechanics of the arm and hand may give different 

frequencies (Van Noorden, 1999).  Other work has found an optimal tapping frequency 

for single finger tapping of ~600ms or 1.667Hz; as this has not been examined for 

sequences, there may be additional correlations with multiples of this frequency (Keele, 

1987).  However, there is a difficulty here due to this being a repeating decimal, and it is 

unknown if there will be effects on tone creation due to rounding errors. 

As the possible frequencies for optimal repetitive upper extremity and finger 

motion may not necessarily be identical to those for walking, they may span a range of 

values, or be a multiple of existing optimal frequencies.  The discovery and use of 

optimal frequencies for repetitive movements has implications for such fields as sports 

medicine, workplace ergonomics and rehabilitation. Movements conducted at an optimal 

frequency would lead to greater efficiency of movement, fewer repetitive strain injuries, 

and reduced fatigue. 
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It is important to note that the frequencies that proved most effective in assisting 

recognition and memorization may not be optimal for upper extremity sensorimotor 

activity.  Nevertheless, it is important to prioritize subject safety, and focus on finding as 

direct a correlation as possible between audio tones and upper extremity sensorimotor 

activity. 

 

 
1.3.5  Workplace Safety and Ergonomics 

In addition to potential effects on human performance, there is also the issue of safety and 

comfort, whether the workplace is an office, a mine or a factory floor. 

Workplace noise has been found to be an explanatory factor in fatal industrial 

accidents between 1990 and 2005 (Deshaies, 2015), especially if worker communication 

was involved.  In a less obvious example, worker performance and comfort can suffer 

with the presence of disruptive or unwanted noise; a survey conducted within eight 

European nations with 7441 participants revealed ‘noise’ as the variable with the highest 

association with occupants’ comfort (Sakellaris, 2016).  Finally, noise has been found to 

affect recognition memory, which can lead to diminished performance or accidents by 

diminishing vigilance (Molesworth, 2015). 

 

 
1.3.6  Significance 

Whether there exists a correlation-positive or negative-between audio tones and upper 

extremity activity, the result is significant in either case.  We are surrounded by a 

multitude of sounds-both repetitive and random, and if there are any effects on our 
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behavior or physiology, then it is necessary to determine what these are.  It is also 

possible that there are related effects with other subject factors, such as handedness, 

gender or formal musical training. 

In the event of a positive correlation, then the presence of isochronic tones may 

enhance concentration, improve sensorimotor activity or learning, or reduce fatigue, 

whilst a negative correlation may do the reverse. 

If there is no correlation, then the results are significant nonetheless, as it permits 

the presence of a range of ambient sound frequencies in our working environment.  Many 

of these may be unavoidable or costly to reduce, and so their presence would not detract 

from the quality of work or living by those in the proximity. 
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CHAPTER 2 

9-HOLE PEG TEST 

 

2.1 Chapter Introduction 

As the ultimate objective of this work is to determine the effects of isochronic tones on 

sensorimotor activity, it is necessary to begin with an accepted, standardized test with 

which to combine audio tones.  This allows minimization of variables in order to 

determine possible causality. 

The test administered required a short setup time to minimize subject fatigue, be 

accepted by clinicians as valid, and be sufficiently challenging in order to demonstrate 

subject progression.  Existing tests that matched these criteria include:  the Jebsen Hand 

Function Test, the Perdue Pegboard Test, and the 9-Hole Peg Test.  Also, as it is 

necessary to assess changes in neurotypical subjects before the possibility of requesting 

post-stroke subjects, the tests must not be too familiar to daily life.  If these prove to be 

insufficient in some way, then a more localized test may be needed. 

 

2.2 Established Upper Extremity Tests 

The Jebsen Hand Function Test con consists of seven subtests to assess unimanual hand 

functions for activities of daily living (ADLs), such as stacking checkers, card turning 

and picking and placing small common objects such as paper clips.  Each subtest has a 

maximum of 120 seconds allotted, with a total testing time of at least 14 minutes and a 

lower time score corresponding to a greater function.  Whilst this test does cover multiple 

unilateral hand functions, it only measures subject speed, not the quality of their 



 

 12 

43 

performance, therefore limiting its value.  Also, as all the activities are performed by 

neurotypical subjects, it is unlikely to present a sufficient challenge for evaluation. 

The Purdue Pegboard test consists of a rectangular board with two columns of 25 

holes and four concave cups at the top.  Subjects are asked to place small metal pegs from 

the cups on the testing side into the holes on the same side.  Scores are determined by the 

number of pegs placed in 30 seconds, with a total of 5 minutes for the test. 

The 9-Hole Peg Test consists of a rectangular plastic board with a concave cup at 

one end and nine evenly spaced holes at the other end arranged in a square.  A sample 

image is shown below in Figure 2.1. 

 

 

Figure 2.1  The 9-hole peg test. 
Source: http://www.euromedical.co.uk/section25/product328/9-hole-peg-test.html (accessed 12/12/2016). 

 

The board is placed at the subject’s midline with the container holding the pegs on 

the same side as the hand being tested.  Scoring is measured either by the time taken to 
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place all the pegs in their slots and remove them, or the total number of pegs placed in 50 

or 100 seconds; the time taken is given from when the subject touches the first peg to 

when the last peg hits the container. 

As all of these tests utilize completion time as their metric, they are limited in 

their ability to assess changes; however, the 9-Hole Peg Test has the advantage of 

compact size and shorter completion time over the other tests, thereby allowing a greater 

number of subjects to be tested in the same amount of time. 

 

2.3 Modified 9-Hole Peg Test 

Whilst the 9-Hole Peg Test appeared to be the most promising candidate to assess the 

effects of isochronic audio tones, the standard test required additional modifications to 

increase the challenge for neurotypical subjects. 

The main difference in the Modified Test was the inclusion of a sequence order; 

the standard 9-Hole Peg Test only measures time to place the pegs in their slots, the 

Modified Test included a placement order where the subject added pegs row by row, 

bottom row first with the starting side opposite to the hand being used, and then removed 

them in the same order.  The board was still placed at the subject’s midline, but the 

concave dish was directly in front of the user in order to decrease peg placement distance 

and therefore decrease fatigue.  Subjects wore earphones during this procedure, which 

were disinfected after each test session. 

In terms of sound, there were a total of four conditions combined for the different 

protocols, each for 5min blocks:  silence, a 5Hz isochronic tone, a 10Hz isochronic tone, 

white noise.  An isochronic tone is listed by its isochronic frequency, here as either 5 or 
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10Hz, which is the rate at which the tone is turned on and off.  However, each also has a 

carrier frequency, which is significantly higher due to the average human hearing range 

extending from 20Hz to 20kHz.  The white noise was obtained from simplynoise.com, 

and the tones used were commercial tones from Goodvibras.com, each with a carrier 

frequency of 44.1kHz.  The sound volume during testing met OSHA safety levels using 

the TooLoud smartphone app.  The Protocol specifics are listed below in Table 2.1.  All 

subjects were tested for both hands.  In Protocol 3, hand order and tone order were 

determined for each subject using the random number generator function in Microsoft 

Excel. 

Two-Way ANOVA was performed on Completion Time with the repeated 

measures of Stimulation and Hand Used (Left, Right).  For Protocol 1, Stimulation had 

three levels (10Hz, 5Hz, 0Hz), for Protocol 2, Stimulation had two levels (White Noise, 

None), and for Protocol 3, Stimulation had three levels (10Hz, 5Hz, 0Hz). 

Each subject was recruited from the NJIT student population, all had normal or 

corrected-to-normal vision and hearing.  Before testing, each answered a questionnaire to 

determine their age in years (rounded up), their gender, and handedness as well as formal 

musical training (if applicable), and if they still continued to the present time.  As 

described above, scoring was determined by the total time to place all nine pegs and then 

remove all of them once, with placement beginning in the top row on the opposite to the 

hand used, and removal done in the reverse order to placement.  Each subject performed 

each combination (left/right hand, tone/no-tone) three successive times, and the means 

were extracted.  Combinations are listed below in Table 2.1. 
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Table 2.1  Modified 9-Hole Peg Test Protocols 

 Hand Order Tone Conditions # Subjects 
Protocol 1 Alternating, non-

dominant first 
Fixed Tone Order; 
Non-dominant:  None, 5Hz, 10Hz 
Dominant:  None, 10Hz, 5Hz 
 

7 

Protocol 2 Alternating, non-
dominant first 

No Tones; White Noise, White 
Noise 

6 

Protocol 3 Random Hand Order Random Tone Order; None, 5Hz, 
10Hz 

6 

 

2.4 Results 

The significant results for each of the three Protocols are shown in Figures 2.2 to 2.6 

 

 

Figure 2.2  Protocol 1: main effects plot - completion time (s) vs. hand used. 
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Figure 2.3  Protocol 1:  interaction plot - completion time (s) vs. stimulus(hz)*hand used. 
 

With Protocol 1, alternating hand order and fixed tone order, there is a significant 

effect on Completion Time both for Hand Used and for the combination of Hand Used 

and Stimulus (see Figure 2.2).  For Hand Used [F(1,6) = 65.05, p < 0.001],  When 

examining the mean (STD), Subjects gave shorter completion times with the Right Hand 

at 19.124 (1.794) seconds than the Left Hand at 21.368 (2.652) seconds, and with less 

variation shown by the smaller STD.  In terms of the combined effects of Tone 

Frequency and Hand Used [F(2,6) = 3.91, p = 0.023], Right Hand Completion Times 

were shorter than those for the Left Hand across all frequencies (see Figure 2.3), with 

19.467 (1.840) vs. 21.057 (2.734) seconds for 10Hz, 19.086 (1.626 vs. 20.890 (2.645) 

seconds for 5Hz, and 18.819 (1.929) vs. 22.157 (2.517) seconds for 0Hz/No-Tone.  In 

addition, the Right Hand results had smaller STDs for each frequency, and all Right Hand 
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STDs were smaller than those from the Left Hand. 

 

 

Figure 2.4  Protocol 2:  main effects plot - completion time (s) vs. stimulus (hz). 
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Figure 2.5  Protocol 2:  main effects plot - completion time (s) vs. hand used. 

 

With Protocol 2, alternating hand order and fixed white noise order there is a 

significant effect on Completion Time both for Stimulus and for Hand Used.  For 

Stimulus [F(1,5) = 39.88, p < 0.001], White Noise gave shorter completion times and a 

smaller STD, 19.151 (1.762) vs. 20.575 (2.078) seconds.  For Hand Used [F(1,5) = 

78.60, p < 0.001].  The Right Hand gave shorter completion times and a smaller STD, at 

18.689 (1.334) seconds vs. 20.563 (2.088) seconds. 
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Figure 2.6  Protocol 3:  Main effects plot - completion time (s) vs. hand used. 

 

With Protocol 3, random hand and tone order, order there is a significant effect on 

Completion Time for Hand Used, [F(1,5) = 17.66, p < 0.001], where the Right Hand gave 

shorter Completion Times at 18.394 (2.288) seconds vs. 19.848 (2.297) seconds, and had 

a smaller STD. 

Collectively, there exist consistent outcomes across the three Protocols, most 

apparent is that Subjects achieve shorter Completion Times with the Right hand.  This is 

to be expected, as Subjects use the dominant hand for activities that require greater 

dexterity.  Because of this, it is more difficult to gauge progress in activities, whilst using 

the non-dominant hand provides a greater challenge and therefore allows a clearer 

progression in testing.  Within this testing there were no significant differences in 

Completion Time between multiple tone frequencies in those Protocols that had more 
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than one No-Tone condition, specifically Protocols 1 and 3.  However, in Protocol 2 there 

were significant differences between White Noise and No-Tone, specifically that 

improved Completion Time and reduced the standard deviation.  This shows the potential 

for the use of audio stimulation on upper extremity motor activity, even if the audio is not 

directly tied to the activity itself. 

To summarize, whilst there exist differences in completion times between Tone 

vs. No-Tone, and between different isochronic tone frequencies, the 9-Hole Peg Test is 

not the ideal test to determine the specifics of this.  Furthermore, the distribution shape of 

completion times vs. tone frequency remaining unclear, whether the relationship is linear, 

parabolic, plateauing, or another shape, or possibly random. 

 

2.5 Discussion 

Whilst the 9-Hole Peg Test is an established test for clinical use, it has disadvantages that 

are not immediately obvious; specifically that extended use causes the pegs to become 

slippery from contact with subjects’ hands, and the emphasis on speed causes subjects to 

slip, and unintentionally drop them.  This not only causes delays and requires subjects to 

repeat testing blocks, and therefore reduces the possible effects of entrainment if the 

testing block needs to be repeated. 

Another disadvantage is the metrics available from the test.  An optimal test is 

able to supply several metrics for analysis, which is especially necessary when examining 

potential effects of isochronic tones, as changes may be present in one metric, but not in 

others.  Whilst the 9-Hole Peg Test allows the measurement of testing times, it does not 

directly supply accuracy or time for placement alone if performing peg placement and 
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removal with a single timer. 

In terms of tones used, the optimal tones for upper extremity sensorimotor activity 

may not be the same as those found to be useful in prior literature.  Nevertheless, future 

testing should include at least two tone variations in addition to a silence/no-tone 

condition, in order to determine if isochronic frequency has any significant effect on 

subject metrics. 

Whilst it is possible to use additional equipment to record subject hand and finger 

position and joint angles, such as the CyberGlove®, this increases setup time and reduces 

subject dexterity.  Also, the majority of upper extremity motions in daily life are 

performed without gloves, and therefore additional layering on a subject’s hands may 

negate or obscure potential changes, especially if the starting pool consists entirely of 

neurotypical subjects.  For similar reasons, the use of motion tracking equipment such as 

the OptiTrack would cause interference with subjects’ finger motions due to the need for 

marker placement, and their unfamiliarity with the system.  Future use is not completely 

discounted, but for the above reasons, successive testing will need minimization of 

variables. 

A final mention is needed for subject handedness; all of the subjects in these 

Protocols were right-handed.  Whilst all subjects had both hands tested, and the totality of 

the protocols-specifically Protocol 3-included cases where either the dominant or the 

non-dominant hand was tested first, there may be asymmetrical effects depending on 

subject handedness.  Future testing may include a number of left-handed subjects, and 

any effects this may have on protocol metrics remains unclear at this time. 

With these results in mind, it is necessary to use a testing method that 
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compensates for the difficulties experienced thus far, allowing a greater number of 

metrics with shortened setup time and ease of use. 
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CHAPTER 3 

SEQUENTIAL FINGER TAPPING WITH FOUR TONES 

 

3.1 Chapter Introduction 

In order to determine possible correlation or causality between upper extremity activities 

and audio tones, it is necessary to use a testing protocol with high repeatability and 

clearly defined metrics.  Therefore, the protocol utilized for the next stage was sequential 

finger tapping, combined with customized audio tones. 

Whilst single-, and sequential-finger tapping is an accepted testing method in the 

biomedical community, the abundance of literature means that innovating using this 

method is subsequently more difficult.  Nevertheless, it is possible to use finger tapping 

to bridge accepted testing with the experimental work performed in this dissertation. 

 

3.2 Tone Customization 

Although isochronic tones are available from commercial sources, being able to 

customize characteristics of each tone such as duration, waveform shape and internal 

frequencies entails creating specific audio files for testing purposes.  The availability of 

software and online tutorials for this purpose allows for ease of use. 

The tones used in this experiment were made specifically for this dissertation 

using Audacity® software, this allowed the creation of tones where not only the 

isochronic frequency, but the carrier frequency, duration, and overall shape can be 

customized; online tutorials also exist for the creation of specific waveforms.  The carrier 

frequency was chosen to be 256Hz, which represents the note of middle C in Scientific 
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pitch.  This differs from middle C at 261.62Hz as used by concert orchestras, as 256Hz is 

a whole number in the binary system, and allows all the octaves of C (an octave is 50% 

or 200% of a note’s frequency) to remain whole numbers in both binary and decimals 

down to 1Hz.  Middle C was also chosen because it exists within the average human 

hearing range, and can also be sung.  Unlike the commercially available tone used 

previously, the resulting custom tone did not have tapering in volume at the beginning or 

end of the block.  However, even though it is possible to include tapering in custom 

tones, it introduces additional variables to adjust, such as the time from silent to full 

volume, and the shape of the volume increase.  As this is experimental, it is prudent to 

minimize testing variables until a clearer model can be established. 

As an aside, Scientific pitch was first proposed in 1713 by French physicist 

Joseph Sauveur, and was promoted by the Italian composer Giuseppe Verdi; during its 

advocacy by the Schiller Institute, opera singer Stefan Zucker claimed that the Institute 

offered a bill in Italy for confiscation of all other tuning forks for state-sponsored 

musicians. 

With the carrier frequency chosen as a constant, the next step was to determine a 

selection of isochronic frequencies to vary.  As stated in Chapter 1, prior art gives a 

number of choices for frequencies to use, and for this round of testing, having frequencies 

with even spacing between them will allow the recording of changes in a more even 

distribution.  Therefore, the frequencies tested here were 4, 8 and 12Hz; 10Hz was also 

included, as it has been used as a visual frequency in prior art, and falls within the 

specified frequency range.  In order to ensure subject safety, it is necessary to exclude 

potential subjects who have a history of seizures, but also to minimize this risk within the 
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testing procedure itself; this is one of the primary reasons why the tones are presented in 

audio as opposed to visual.  The key frequency to avoid is 15Hz, which is given in prior 

art as the frequency with the greatest risk of seizures, with the risk decreasing linearly on 

either side.  Further seizure risks not covered in this dissertation include the color red, 

stripes, and alternating light and dark patterns (Fisher, 2005).  Although this has been 

primarily reported in visual stimulation only so far, it is important not to undergo 

unnecessary risks in experimental work.  Specifically, reflex epilepsy can be trigger by 

environmental stimuli, not only visual, or photosensitive epilepsy, but also audio from 

music or human voices. 

 

3.3 Finger Tapping for Evaluation 

Finger tapping has several advantages that allow for repeatability, which include but are 

not limited to:  limited fatigue due to reduced body movement, a high degree of 

conscious control, and customization in movement patterns. 

Finger tapping is a method to investigate upper extremity motor planning and 

execution, and has the advantage of having metrics in both behavioral changes and 

neuroimaging.  This has been utilized to investigate procedural learning, such as work by 

Squire (1986), who investigated connections in human memory functions, and accepted 

motor tests such as the Halstead-Reitan Neuropsychological Battery are used to assess the 

observable physical effects of neurological damage. 

 

3.4 Equipment and Metrics 

In order to test a fixed unimanual sequence with force input, it is necessary to utilize a 
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pressure sensor to convert finger taps into a measurable, recordable signal for later 

software analysis. 

The testing apparatus for the subjects was a Phidget Thin Force Sensor, which is 

listed as being able to measure forces from 1-100N or up to 2kg.  This was connected to a 

Phidget Interface Kit, which sent the measured forces to a PC via a USB port.  The 

default sampling rate for each sensor is 100Hz, and can go up to 500Hz.  This is more 

than sufficient to satisfy the Nyquist Theorem, which states that a signal composed of 

sinusoidal waves must be sampled at least twice the rate of the highest frequency to 

accurately record it.  The interface for the sensor functions via MATLAB, and input force 

data can be saved and processed for other software formats.  The sensor itself was 

attached to a table in front of the seated subjects via double-sided Scotch® Heavy Duty 

Mounting Tape, to prevent the pad from slipping during repeated tapping.  The sensor is 

shown below in Figure 3.1. 

 

 
Figure 3.1  Phidget thin force sensor interface with usb port. 
Source: http://www.robotshop.com/media/files/images/phidgets-thin-force-sensor-large.jpg (accessed 
12/12/2016). 
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Commercial headphones were used to transmit white noise and Isochronic tones 

to the subjects whilst minimizing background noise.  These were inserted and removed 

by the subjects themselves to minimize discomfort.  The headphone wires were looped 

around the subjects’ head and around the non-dominant hand to avoid interference with 

finger tapping motion. 

The loudness of the audio administered through the headphones conformed to 

OSHA standards to remain below 85dB, using the TooLoud iPhone app.  For reference, 

90dB is the approximate level of a hair dryer or lawnmower, over 8 hours of which per 

day is considered harmful.  As the tests themselves will take an estimate of 1-2 hours per 

subject with a week between sessions, this minimizes risks to hearing. 

 

3.5 Procedure 

Volunteers for this stage of testing came from the student population of NJIT.  The 

subjects were seated in a non-swiveling chair in an upright position, and performed the 

Edinburgh handedness inventory.  Once they were seated comfortably, they were 

presented with 5 minutes of white noise at an OSHA-safe audio level to achieve a relaxed 

state.  After this, they performed a Crossover Study, in which they had to tap to maintain 

a steady rhythm as fast as they can using the index finger on their dominant hand.  First 

they tapped for 6 minutes without a tone, then for 6 minutes to one of four randomized 

custom Isochronic tones presented equally to both ears, then for 6 minutes without the 

tone. 

This study had 3 trials per frequency-before, during and after a tone adding up to 

12 trials for single finger tapping using the index finger of the dominant hand.  The order 
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of the testing frequencies was randomized in both sessions for each subject to minimize 

the effects of motor learning, fatigue and data contamination, and breaks of 5-10 minutes 

were provided if the subject felt fatigued. 

Two-Way ANOVA was performed on Mean Tapping Frequency with the 

repeated measure of Stimulation (Tone, No Tone). 

 

3.6 Results 

A total of four subjects were recruited from the NJIT student population and tested for 

this procedure. 

The Two-way ANOVA performed here did not reveal any significant effects of 

either Tone vs No Tone [F(1,3 = 2.22, p = 0.145)]. A Main Effects plot for Stimulation is 

shown below in Figure 3.2, and whilst this does show an overall decrease in Mean 

Tapping Frequency during Tone conditions, it is not large enough to be significant. 
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Figure 3.2 Main effects plot for mean tapping frequency (hz) vs. stimulation, n and t 
denote the no-tone and tone testing blocks, respectively. 
 

Whilst useful in terms of testing using custom isochronic tones, the remainder of 

this procedure has too much variability to be used for further testing. 

Firstly, the mean human tapping frequency is given to be approximately 1.667 Hz 

(Keele, 1987), and therefore the majority of given means is above this.  As the force 

sensor used here has a range of values instead of a clear binary state, this is not the most 

appropriate choice to measure finger tapping accurately. 

It was also discovered post-testing that subjects 3 and 4 may have had caffeine 

prior to their testing session.  Whilst it is unlikely that this affected the mean frequency 

ranges in this procedure given the 5x greater than 1.667Hz frequency means, it will be 

necessary to confirm with recruited subjects ahead of time to abstain from caffeine for at 

least two hours as a prior study from the University of Barcelona has found that the 
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effects have that duration (Adan, 2008). 

Although these limited results can be partially justified due to a dataset from only 

four subjects, if further testing with a greater number of subjects will be undertaken, it is 

important to determine the likelihood of significant results to avoid misspent time and 

effort. 

 

3.7 Discussion 

Although self-paced unimanual finger tapping is useful overall, having examined 

preliminary testing, a number of changes need to be implemented in order to improve 

accuracy in results. 

Although a Force Sensor allows for a greater number of metrics than completion 

speed alone-and in this particular case, the measurement of rhythm/frequency-the 

measured instances to press each sensor gave too much uncertainty.  Therefore, using 

keystrokes to measure sequences is far less ambiguous, as the resulting action is binary-

either yes or no.  This does not discount the possibility of using force sensors for future 

studies, but when working to test new hypotheses it is necessary to reduce ambiguity in 

testing metrics with appropriate choice of hardware and metrics, as it is difficult to 

extract a relationship between tone frequency and finger tapping performance. 

Furthermore, subjects using the dominant hand may not be providing a significant 

challenge, as each has had a lifetime to practice and improve skills on this hand.  

Therefore, the next step is for subjects to perform a unimanual sequence using their non-

dominant hand to provide a significant challenge for a previously unknown sequence. 
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CHAPTER 4 

SEQUENTIAL FINGER TAPPING WITH 2 TONES AND A FIXED SEQUENCE 

 

4.1 Chapter Introduction 

With the difficulties encountered thus far in testing, it is necessary to reduce testing 

session time and the accompanying subject fatigue, as well as focus on more clearly 

defined metrics. 

As mentioned in the discussion of Chapter 2, using four tones per session likely 

causes fatigue effects that overshadow smaller, more subtle changes in subject behavior.  

Therefore, it is necessary to change to two tones per session, thereby reducing fatigue 

effects.  This will also reduce testing time by approximately 50%, allowing a greater 

number of subjects to be tested.  In addition, comparing metrics obtained from the first 

and last testing blocks will allow evaluation of potential fatigue effects. 

The decision was made to use 10Hz as one of the two frequencies due to being 

close to a multiple of 6x the listed maximum for human finger tapping, or 10.002Hz.  Out 

of the four prior frequencies, this has the least deviation from a multiple of 1.667Hz.  

Using 4Hz as the other frequency was done due to its use in prior art as an audio 

stimulation frequency, and to give the largest possible frequency difference out of the 

prior four testing frequencies. 

Also worth noting is the position of 10Hz in the Mu band for EEG frequencies, 

which as stated previously in Chapter 1 is reduced during actual or intended body 

movements, and lies within the frequency range for optimal visual entrainment.  

Although audio and visual signals do pass into the thalamus via different pathways, 
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because entrainment can occur in either case, it is necessary to have a point of 

comparison before moving further.  In order to maximize the difference between 

frequencies, it is necessary to choose the 2nd frequency as being as far as possible from 

10Hz, the choice here being 4Hz.  Furthermore, 4Hz is near to the maximum human 

finger tapping frequency of approximately 600ms or 1.667Hz (Keele, 1987), and may 

therefore have a more pronounced effect. 

For this modified procedure, testing metrics were wholly keyboard-based in order 

to minimize ambiguity in measurement, as a keystroke is a digital event-either yes or no-

and can be more easily recorded and analyzed. 

 

4.2 Procedure 

A total of 30 subjects were tested for this specific procedure, and each was compensated 

$20 for their time. All subjects were college students with no history of neurological 

disorders and were right-hand dominant. Out of the 14 subjects who answered ‘Yes’ to 

Formal Musical Training, two replied that their training was vocal only.  The remaining 

12 had either a mixture of instruments and vocal training or instruments only. All the 

instruments listed required the use of the fingers of both hands. 

Each subject performed a sequence of 3 blocks of continuous typing of the ‘[a f s 

d a d f]’ sequence with their non-dominant, left hand. During the second block, auditory 

stimulation of either 4 Hz or 10 Hz was provided.  Then the sequence of three blocks was 

repeated, and the auditory stimulation was once again provided during the second block, 

with a frequency of either 10 Hz or 4 Hz. The presentation order for the two stimulation 

frequencies were randomized across subjects. Each 370 s testing block had two recorded 
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files - the keystroke sequence and corresponding time codes - from which MATLAB 

extracted several metrics:  the % Accuracy, defined as the total number of correctly 

performed sequences divided by the total number of performed sequences, then 

multiplied by 100; the Mean Sequence Time, defined as the time in seconds to perform a 

correct sequence; the Total # of Error States, a unitless value where each Error State is 

defined from the beginning point of an incorrect sequence to the beginning of the next 

correct sequence. 

In order to gain familiarity with the testing sequence, subjects performed a single 

testing block prior to recording any of the metrics.  Subjects were allowed to see the 

typing sequence to perform before and after this practice block, but at no point after this. 

They were also instructed to prioritize accuracy before speed. 

The key sequence utilized involved all four fingers of the subjects’ non-dominant 

hand, instead of the index finger of the dominant hand, and involved a fixed, repeated 

sequence instead of a single-finger self-paced rhythm. 

In order to reduce visual distractions, subjects also used their non-dominant hand 

both to increase challenge, and provide a more easily observed change in performance 

before and after testing. 

Prior art for unimanual sequential finger tapping focuses on five-digit sequences 

using the four fingers of the left hand:  the left index finger corresponds to ‘1’, the left 

middle finger to ‘2’, the left ring finger to ‘3’ and the left pinky to ‘4’.  This gives the 

most common sequence found as ‘[4-1-3-2-4]’.  This sequence has the advantage of 

providing challenge by avoiding more than two adjoining keys in a sequence, and 

difficulty can be increased further to a 7-digit sequence.  In order to avoid two adjoining 
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keys once again both in sequence and for successive sequences, the modified sequence is 

[4-1-3-2-4-2-1].  To use this on a standard keyboard, and as the majority of subjects are 

right-handed, the keys used for the non-dominant/left hand were the ‘a s d f’ location, 

which is taught as the starting position for the left hand when typing. The resulting 

sequence, when translated to these keys is ‘[a f s d a d f]’, and the two tones (4 Hz and 10 

Hz) were randomized across the subjects using Microsoft Excel’s RAND function. 

The tones used in this experiment were made using Audacity® software, this 

allowed the creation of tones where not only the isochronic frequency, but the carrier 

frequency, duration, and overall shape can be customized for this study.  The carrier 

frequency was chosen to be 256Hz, which represents the note of middle C in Scientific 

pitch.  This differs from middle C at 261.62Hz as used by concert orchestras, as 256Hz is 

a whole number in the binary system, and allows all the octaves of C (an octave is 50% 

or 200% of a note’s frequency) to remain whole numbers in both binary and decimals 

down to 1Hz.  Middle C was also chosen because it exists within the average human 

hearing range, and can also be sung. Unlike the commercially available tone used 

previously, the resulting custom tone did not have tapering in volume at the beginning or 

end of the block.  Whilst it is possible to include tapering in custom tones, it introduces 

additional variables to adjust, such as the time from silent to full volume, and the shape of 

the volume increase.  As this is experimental, it is prudent to minimize testing variables 

until a clearer model can be established. 

With the carrier frequency chosen as a constant, the next step was to determine a 

selection of isochronic frequencies to vary.  As shown earlier, prior art gives a number of 

choices for frequencies to use, and for this round of testing, having frequencies with even 
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spacing between them will allow the recording of changes in a more even distribution.  

Therefore, the frequencies tested here were 4, 8 and 12Hz; 10Hz was also included, as it 

has been used as a visual frequency in prior art, and falls within the specified frequency 

range.  In addition, this is close to a multiple of six times the listed maximum for human 

finger tapping, or 10.002Hz. 

In order to ensure subject safety, it is necessary to exclude potential subjects who 

have a history of seizures, but also to minimize this risk within the testing procedure 

itself; this is one of the primary reasons why the tones are presented in audio as opposed 

to visual.  The key frequency to avoid is 15Hz, which is given in prior art as the 

frequency with the greatest risk of seizures, with the risk decreasing linearly on either 

side.  Further seizure risks not covered in this study include the color red, stripes, and 

alternating light and dark patterns (Fisher, 2005).  Whilst this has been primarily reported 

in visual stimulation only so far, it is important not to undergo unnecessary risks in 

experimental work.  Specifically, reflex epilepsy can be trigger by environmental stimuli, 

not only visual, or photosensitive epilepsy, but also audio from music or human voices. 

Separate four-way ANOVA was performed on each of the three outcome 

measures (% Accuracy, Mean Sequence Times, Total # of Error States) with two between 

factors Gender (Male, Female) and Formal Musical Education (Training, No Training), 

and two repeated measures factors Repetition (First, Second) and Block (Pre, 

Stimulation, Post).   

Subsequently, to investigate the effects of different frequencies of stimulation, 

data from the conditions where auditory stimulation was present were analyzed. Separate 

three way repeated measures ANOVAs were performed on each of the three Responses 
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(% Accuracy, Mean Sequence Times, Total # of Error States), with two between factors 

of Gender (Male, Female) and Formal Musical Education (Training, No Training) and the 

repeated measure factor of Tone Frequency (4Hz, 10Hz). 

All variance analyses performed on the data used p<0.05 as the probability level 

to accept statistical significance.  Post hoc comparisons used Bonferroni correction for 

multiple comparisons. For % Accuracy and Mean Sequence Times, n=30, for Total # of 

Error States, n=27, as three subjects had to be excluded due to technical reasons. 

 

4.3 Results 

Three separate ANOVAs with two repeated measures (Time (Pre, Stimulation, Post) and 

Repetition (1, 2)) were used to investigate the effects of auditory stimulation and motor 

learning on three outcome measures:  Mean Sequence Time, Accuracy and Number of 

Error States. 

Both main effects of Time and Repetition on Mean Sequence Time were 

significant (F(2,52)=37.94, p<.0001 and F(1,26)=54.83, p<.0001, respectively). Speed of 

typing increased during the second half of the experiment, with the mean (SD) Sequence 

Time reduced from 2.51 (.08) sec during the first three blocks (Repetition 1) to 2.19 (.66) 

sec during the last three blocks of trials (Repetition 2). 

For the factor Time, post hoc comparisons showed that Mean Sequence Time 

averaged across the two repetitions was significantly shorter in the two Stimulation 

blocks of trials with auditory stimulation (mean (SD) of 2.27 (.72) sec) than during the 

preceding Pre blocks of trials without the stimulation (mean (SD) of 2.53 (.74) sec). 
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However, Mean Sequence Time was not different in the Post trial blocks (2.25 (.67) 

when compared to the Stimulation blocks (see Figure 4.1). 

 

Table 4.1  Means Table for Sequence Time Effect: Repetition 

 

 

Table 4.2  Means Table for Sequence Time Effect: Time 

 

 

Table 4.3  Means Table for Sequence Time Effect: Repetition*Time 
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Figure 4.1  Interaction plot for mean sequence time 

 

 

Figure 4.2  Bonferroni comparison plot for mean sequence time 

 

Finally, there was a significant Repetition by Time interaction (F(2,52)=6.66, 

p=.003). Post hoc comparisons show that the decrease in sequence time in the 

Stimulation block (when compared to the Pre block) was more pronounced during the 

first Repetition than during the second Repetition. 

Post hoc analysis using the Bonferroni multiple comparison procedure 

demonstrated that Mean Sequence Time was shorter in both blocks of trials where 
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auditory stimulation was present when compared to the preceding blocks with no 

auditory stimulation (blocks 1 and 4, respectively.  At the same time, Mean Sequence 

Time was not different between these two blocks with stimulation and the two 

subsequent blocks, as shown in Figure 4.1, where there is not a significant difference 

between Stimulation and Post blocks. 

There were no significant main or interaction effects on Accuracy except for the 

Gender by Musical Education interaction effect (F(1,26)=5.43, P=.03). 

 

Table 4.4  Means Table for Accuracy Effect:  Gender * Music 

 

 

The effect of Time on Number of Error States was significant (F(2,46)=5.71, 

p=.006). Post hoc comparisons revealed that the number of error states was not different 

between the Pre and the Stimulation blocks of trials. The same was true for the 

Stimulation versus Post comparison. However, the difference between the Pre and the 

Post blocks reached significance, probably because of the overall increased number of 

typing sequences due to faster typing at the end of the experiment. 
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Table 4.5  Means Table for Error States Effect:  Time 

 

 

 

Figure 4.3  Bonferroni comparison plot for total error states 

 

In a subsequent analysis of only the trials where auditory stimulation was present, 

we investigated the potential differential effects of stimulation frequency (4Hz versus 

10Hz) on the three main responses. The three-way ANOVA with factors Stimulation 

Frequency, Gender and Formal Musical Training did not reveal any significant main or 

interaction effects of frequency stimulation. 

 

4.4 Discussion 

Although the use of isochronic tones on upper extremity sensorimotor learning and 

activity were not as pronounced as expected, the results were nonetheless significant. 
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Whilst Tone Frequency did not have any significant effects on the three metrics 

chosen for this protocol, Tone vs. Pre-stimulation conditions displayed a positive effect 

for Mean Sequence Times, giving shorter times regardless of gender or Formal Musical 

Training.  The lack of significant increase or decrease in this metric for both Post-

stimulation conditions indicates a degree of retention of the effects of applied Tones.  

Also, whilst there was an overall decrease in Mean Sequence Times from the first to the 

last block for each subject, the Tone block effects were more pronounced during the first 

Tone block, regardless of frequency.  As for an explanation for the reduction in sequence 

time during Tone blocks, the cause is unlikely due to the Tone being a distraction, as 

Post-Tone blocks are not significantly lower or higher than the immediately preceding 

Tone blocks, and the overall decrease of Mean Sequence Time from Block 1 to Block 6 

for each Subject occurs regardless.  This supports the explanation that the presence of a 

Tone enhances a process that is already present in each Subject.  A likely explanation is 

that Tones affect or enhance Subject vigilance, and keep them alert to allow them to 

acclimate faster to performing a repetitive upper extremity unimanual task. 

Despite the lack of significant effects on Accuracy due to Tones, the interaction 

effect of Formal Musical Training and Gender did reveal within each gender, higher 

Accuracy and a smaller Standard Deviation for Female Subjects without training, whilst 

Male Subjects demonstrated lower Accuracy, and a larger Standard Deviation.  Though 

this result alone cannot universally support the assertion that Formal Musical Training 

assists with repeating sequences and doing so with reduced variation, there is room in 

possible future studies to examine this further. 

The metric of Total Error States was not affected significantly by Tone vs. No-



 

 42 

43 

Tone conditions.  The only noteworthy finding here is that it is significantly affected by 

fatigue, with Post-testing blocks on average giving more Error States than Pre-testing, 

though whether the length or distribution of these Error States within each block is 

significantly affected is a topic for future research.  Furthermore, whilst all the tones in 

this experiment utilized sine waves as components, it may be the case that square or 

triangular waves have different effects on subject metrics if all other tone parameters 

remain unchanged. 

Finally, in examining Tone testing blocks only, the lack of significant effects on 

any of the three metrics shows that the frequencies chosen for this study are not 

significantly different, though this does not preclude other frequencies from being 

significantly different, especially those closer to the maximum human tapping rate. 

It is also useful to note that in prior work by Mentis et al. in 1997, the use of audio 

tones was presented for longer durations than the 6min used in this study, such as 10min 

or 30min; therefore, it may be necessary to have a longer stimulation duration to achieve 

more statistically significant effects.  The difficulty here is that including the before, 

during and after conditions for each additional specific frequency adds time spent on a 

session, and to avoid subject fatigue or acclimation to the sequence it is necessary to 

avoid a total testing time longer than approximately an hour.  Having a subject test on 

successive days to try different sequences is a possibility, but the effects of acclimation 

are greater, as is the difficulty of fitting testing sessions to conform to subjects’ 

schedules.  There may be combinations of varying the durations of each of the a-b-c 

conditions such as maintaining the b/during condition for 6min and reducing the a/before 

and c/after each to under 6min, but at this stage it is unclear which combinations to aim 
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for. 

Also, as mentioned previously, given the maximum human finger tapping speed 

of 1.667Hz, none of the audio frequencies used thus far overlap directly with this tapping 

range. It may be that for repetitive motor actions, audio frequencies that overlap with 

motion range have a significantly more pronounced effect on successive motions than on 

frequency ranges for brain activity. 

As stated in earlier chapters, the use of neurotypical subjects may not display 

significant effects in all metrics, and instead those with deficits, such as chronic post-

stroke subjects, may display greater changes. 

Future work may also need to include an isochronic tone closer to the measured 

optimal human finger tapping rate of 1.667Hz as determined by Keele et al., to determine 

if entrainment effects occur at a lower frequency range for the fingers than what has been 

used thus far.  Alternatively, using tones with each of the isochronic frequencies chosen 

from multiples of 1.667Hz may have noticeable effects. 

Though not as strenuous as walking, typing requires integrating audio, visual and 

tactile information.  As this was a self-paced activity, subjects’ attention was split 

between perception of external stimuli and internal rhythm generation (Hao, 2015). 

It has been found in prior work that closed-loop auditory feedback on walking 

with Parkinson’s subjects, results in improved walking speed and stride length; and 

compared to open-loop it has residual effects-suggesting that it could be integrated into 

existing therapy programs (Baram, 2016).  In contrast, because the activity performed in 

this study gave tactile feedback in a closed-loop fashion, whilst the auditory Tone 

stimulation was open-loop, it is plausible that their sequence tapping negated a portion of 
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the effects due to the Tones. 

Using custom isochronic tones allows precision over the testing materials in not 

only frequency but in duration and waveform shape.  Combining this with keyboard-

derived unimanual sequential finger tapping metrics allows the measurement of 

significant changes across subjects. 



 

 45 

43 

CHAPTER 5 

CONCLUSION 

Although the use of isochronic tones on upper extremity sensorimotor learning and 

activity were not as pronounced as expected, the results were nonetheless significant. 

The 9-Hole Peg Test was useful as preliminary testing, and demonstrated that 

audio stimulation can have an effect on the completion time of an upper extremity 

unimanual task, and that overall performance is more pronounced in subjects’ non-

dominant hand.  Although the specific effects of each frequency were not significant 

across protocols, this was addressed in subsequent testing using additional metrics and 

the use of finger tapping instead. 

Using custom isochronic tones allows greater precision over the testing materials 

in not only frequency but in duration and waveform shape.  Combining this with multiple 

force sensors allowed measurement of additional metrics to sequence completion times, 

such as tapping frequency, but also introduced uncertainty in recording precise waveform 

shape, and revealed no significant changes.  Therefore, a more clearly-defined test 

needed to be implemented for finger motion. 

The further procedure change from using four tones to two allowed for shorter 

testing session time and reduced subject fatigue, and whilst there were no statistically 

significant effects of Tone frequency on % Accuracy, Mean Sequence Time or Total 

Error States, Tone conditions did result in shorter Mean Sequence Times compared to 

Pre-Stimulation conditions. 

In summary, it is highly unlikely that there is entrainment occurring during audio 

tones with isochronic frequencies above the maximum human finger tapping speed, as 
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the pace is simply too fast for the human hand to match and stay in time to.  However, if 

testing is performed in 6-minute blocks accompanied by isochronic frequencies above the 

maximum human finger tapping speed, a self-paced unimanual task will not be affected 

by tone frequency, but the use of audio tones will result in improved Mean Sequence 

Time. 

Potential future studies can include using one or more isochronic tones below that 

of maximum human finger tapping rates, or combining these with more complicated 

upper extremity sensorimotor tasks.  In addition, whilst retention was not tested directly 

during this study, it remains a potential attribute to test for future work.  Ultimately, if 

there exist larger effects under more specific circumstances, then it is necessary to clarify 

and study these for potential benefits to workplace activity; and the results found here can 

provide a foundation for future work. 
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APPENDIX A 

SEQUENTIAL FINGER TAPPING WITH 4 TONES 
AND A FIXED SEQUENCE UNDER EEG 

 

Electroencephalography (EEG) allows the recording of brain activity by monitoring 

voltage changes in clusters of neurons using scalp electrodes.  Its high temporal 

resolution and non-invasive monitoring allow for real-time monitoring of brain activity. 

EEG activity is distinguished by multiple frequency ranges, each corresponding to 

different states of mind and internal activity, with lower frequencies correspond to 

reduced states of consciousness.  The frequency ranges most relevant to this work are 

generally defined as follows:  Delta (<4Hz), Theta (4-7Hz), Alpha (8-15Hz) and Mu (8-

12Hz).  In order to evaluate the possible use of EEG to gauge changes in brain activity 

during repetitive upper extremity activity, the wireless Emotiv EPOCTM headset by 

Emotiv Systems, Inc was tested in the Summer of 2014 during sequential unimanual 

finger tapping. 

 

 

Figure A.1  The emotiv epoctm eeg headset. 
Source: https://emotiv.com/epoc.php (accessed 12/12/2016). 
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Subjects, each performed a fixed sequence ‘[a f s d a d f]’, using their non-

dominant hand for each of four tone frequencies, 4,8,10 and 12Hz, the order randomized 

for each subject using Microsoft Excel’s RAND function.  Each tone had a before-

during-after block, with each block 6 minutes long, giving a total of 72 minutes per 

subject.  EEG signal processing and analysis were performed using EEGLAB, an open 

source MATLAB toolbox, and subjects were monitored for changes in brain activity by 

using the Emotiv EPOCTM headset, sampling at 128Hz.  Saline solution was applied to 

the scalp electrodes to improve conduction, but no adhesive tape or invasive attachment 

was needed.  Subjects were asked to abstain from caffeine for at least 2 hours prior to 

testing, as prior art from the University of Barcelona has found that the effects have that 

duration. 

The metrics from this experiment came from two sources:  the EEG headset and 

the keyboard, which gave the total number of Error States.  The initial metric give by the 

headset was Global Mean Field Power (GMFP), first introduced in 1979 to describe 

global EEG activity without requiring a specific reference electrode (Lehmann, 1979).  

An equation for calculating it is show below in Figure A.2, (Esser, 2006). 

 

 

Figure A.2  The gmfp equation. 
Source: http://www.fieldtriptoolbox.org/tutorial/tms-eeg#global_mean_field_power (accessed 12/12/2016). 

 

A total of five subjects were recorded during this experimental setup, and each 
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was compensated $15 for their participation. 

Subjects were examined for % changes in activity in one of four frequency bands 

for each of the four tones, both in no-tone/pre-stimulation to tone/stimulation, and 

tone/stimulation to no-tone/post-stimulation.  These can each be represented by a 

topoplot, an example of which is given below in Figure A.3 and was obtained via 

EEGLAB, a toolbox for MATLAB. 

 

 

Figure A.3  Example of a topoplot. 
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A topoplot is a scalp map of an EEG for a combination of a specific frequency 

range such as alpha or theta, and a given condition; in this case, the condition is one of 

the four chosen isochronic tones.  The map shows a top-down view with the subject’s 

face at the top, and the right and left sides on the body matching the right and left sides of 

the map.  Here, each of the electrodes has a scalar value, and the remaining color changes 

are interpolated from these values.  The color bar here represents % changes in power, 

with green being 0% change, and each end representing in an increase of +10% for red, 

and -10% for blue, respectively. 

After examining the EEG GMFP across five subjects shows that whilst there are 

subtle differences from No-Tone to Tone, and Tone to No-Tone, the differences are not 

significant enough in the measured frequency bands.  The majority of GFP values have 

an absolute value change less than 1 per tone condition, which is not statistically 

significant.  Examination of the Total Error States for each subject also did not show any 

statistical significance. 

From the topoplots, the Group mean from No-Tone to Tone showed that the 

greatest changes overall were in the 4Hz and 10Hz conditions, and the greatest changes 

being in the Delta range over all the four tone frequencies-mostly decreases as indicated 

by the overall shifts to blue, and in the Theta range during 4Hz.  The group mean from 

Tone to No-Tone showed that the largest changes are in the Delta range over all the four 

tone frequencies, as decreases during 4Hz and 10Hz, and as increases during 8 and 12Hz.  

There were also significant increases in the 10Hz condition during 10Hz. 

Nonetheless, it is difficult to determine from these results whether entrainment is 

occurring in any of the subjects, as the EEG measurements here are primarily for changes 
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in global electrical activity.  The EEG frequency range that shows the greatest change-

Delta in this case-is associated with slow-wave sleep, and so a decrease in this would 

correlate with increased attention to one’s surroundings.  With a group sample size of 

only five subjects, it is difficult to draw further conclusions, but a less ambiguous series 

of metrics would be needed in order to determine the direction of further testing. 

It could be that entrainment is fundamentally difficult when combining isochronic 

audio tones with sequential finger tapping and the frequency ranges of mental activity.  

Specifically, because the maximum human finger tapping frequency is approximately 

1.667 Hz from prior art, and supported by prior work in this dissertation in Chapter 3, but 

the corresponding frequency range in brain activity is Delta at 0.1-3Hz, which 

corresponds to slow wave sleep, and the adjoining frequency range of Theta at 4-7Hz 

corresponds to drowsiness.  Therefore, asking subjects to concentrate on maintaining a 

steady rhythm may negate any entrainment effects unless they maintain a slower rhythm. 

In addition, due to testing subjects with four tones per session, the session is over 

an hour long, and effects due to fatigue may be too prominent.  Therefore it is necessary 

to use fewer tones per session in order to determine possible effects on upper extremity 

sensorimotor activity. 

Utilizing EEG allowed additional monitoring of subject responses to Tone vs. No-

Tone conditions, but due to the exploratory nature of this dissertation, the resulting 

effects are inconclusive, and are therefore best left for future work.  Also, because all of 

the subjects in this protocol would be considered neurotypical by their own admission, 

any visible effects may not be statistically significant with only five subjects.  EEG could 

be utilized in future testing or studies, but for simplicity and reduced setup time, it is 
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more practical to utilize it only if there are results first confirmed in more clearly defined 

metrics. 
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APPENDIX B 

MATLAB SOURCE CODE FOR DATA INPUT 
 

In the course of testing, it was necessary to record and extract data from subjects’ finger 

tapping, whether single or sequential.  And for this, MATLAB software was used. 

The following MATLAB file, ‘prasademgmodv1b.m’, recorded the input from a 

USB-connected force sensor, recorded the pressure exerted during self-paced dominant 

hand unimanual finger tapping, and then extract the mean tapping frequencies and 

displayed these as histograms. 

% data=load('gnrrightsingleandsequ481012hzabc.mat'); 
x = gnrrightsingle4hza; 
fs =500; 
lc = 30; 
  
N=30; 
alpha =.36; 
  
rawemg = x(:,1); 
[B,A] = butter(4,  lc/(fs/2)); 
fullEMG = filtfilt(B,A, rawemg); 
  
time = (1:length(fullEMG))/(lc*2); 
time2 = (1:length(rawemg))/fs; 
h = (ones(1, N)/N); 
Vt = conv(fullEMG, h, 'same'); 
Vt = expinv(1-alpha, Vt); 
g = Vt(1:end-1) <= fullEMG(2:end); 
  
g1 = [g' 0]; 
g2 = [0 g']; 
onsets = find( g1 == 1 & g2==0); 
times = time2(onsets); 
  
  
figure (1); 
plot(time2, rawemg) 
hold on; 
  
plot(time2(g), 20*ones(size(time(g))), '*r'); 
figure(2); 
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[n, x]=hist(1./diff(times), 100); 
hist(1./diff(times), 100); 
xlabel('frequencies in Hz'); 
ylabel('# of occurences'); 
m=(n*x')/sum(n); 
title(['mean= ' num2str(m)]) 
 

In order to determine the testing metrics of Accuracy, Mean Sequence Time and 

Total Number of Correct Sequences, it was necessary to record keyboard sequences by 

multiple subjects as well as corresponding timecodes, and then compare the recorded 

correct sequences to the total possible correct sequences in each block. 

The following MATLAB file, ‘keytest.m’ recorded the keystroke sequence and 

corresponding timecodes from a 370s testing block, 1 of 7 for each subject; once the 

block ended with three successive beeps, MATLAB then saved two separate files per 

block named ‘sequence’ and ‘times’, respectively.  These were then renamed between 

testing blocks with a prefix to denote the block order, with ‘fp’ as the practice block, and 

then fa through ff for the remaining blocks. 

global sequence 
global times 
sequence = []; 
times = [];  
 
a = figure; 
 
set(a, 'WindowKeyPressFcn', @onKeyPress); 
tic; 
 
%pattmod b = [a f s d a d f]; 
pause(370); 
display('Collection Stopped'); 
beep;pause(.25);beep;pause(.25);beep;pause(.25); 
close(a); 
 

The following MATLAB file, ‘findsequencesmodstd2.m’ extracted the Accuracy, 
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Mean Sequence Time and Total Number of Correct Sequences for a testing block, 1 of 7 

for each subject, with the correct key sequence as ‘afsdadf’.  If an error state is detected, 

the first full correct sequence after this error state occurs is considered to be the 

continuation of the correct sequences. 

close all; 
str='afsdadf'; 
 
fullstr=sequence; 
fullstr(fullstr=='z')='a'; 
timeseq = times; 
indices = []; 
sequencesfound = length(indices); 
 
nfullstr = fullstr; 
sequencesfound = 0; 
globalstart=0; 
while(~isempty(strfind(nfullstr,str))) 
    cindices = strfind(nfullstr, str); 
    nfullstr =  nfullstr((cindices(1)+length(str)):end); 
 
    indices(end+1) = globalstart + cindices(1); 
    globalstart = globalstart + cindices(1)+ length(str)-1;  
    sequencesfound = sequencesfound + 1; 
end 
 
idealnumsequences = floor(length(fullstr)/length(str)); 
 
accuracy = (sequencesfound/idealnumsequences)*100 
 
 
sequencetimes = []; 
for i=1:length(indices) 
    t1 = timeseq(indices(i)); 
    t2 = timeseq(indices(i)+length(str)-1); 
    sequencetimes(end+1) = t2-t1; 
end 
 
meanseqtime = mean(sequencetimes) 
 
keystroketimes = []; 
 
for i=1:length(indices) 
    for j = 1:(length(str)-1) 
        t1 = timeseq(indices(i)+j-1); 
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        t2 = timeseq(indices(i)+j); 
        keystroketimes(end+1) = t2-t1; 
    end 
end 
 
meankeystroketimes = mean(keystroketimes) 
 
% detection of error states 
init = indices(1) + length(str); 
state = zeros(size(fullstr)); 
state(init-5:init-1) = 1; 
 
currInd = init; 
inNormalState = true; 
templateIndex=1; 
while(currInd <= length(fullstr)) 
   currCharac = char(fullstr(currInd)); 
   desiredCharac = str(templateIndex); 
   if(currCharac == desiredCharac) 
      state(currInd) = 1; 
      templateIndex = templateIndex +1; 
      if(templateIndex > length(str)), templateIndex=1; end 
   else 
       I = find(indices > currInd); 
       if(isempty(I)), break; end 
       I = indices(I(1)) + length(str); 
       state(I-5:I-1) = 1; 
       templateIndex = 1; 
   end 
   currInd = currInd +1; 
end 
 
fstate = [-1, state]; 
bstate = [state, -1]; 
 
I=find((fstate == 1) & (bstate ==0))-1; 
I2=find((fstate == 0) & (bstate ==1))-1; %error ending time 
errortimes = timeseq(I); 
errorendingtimes = timeseq(I2); 
 
if(length(errortimes)> length(errorendingtimes)) 
    errorendingtimes(end+1) = 370; 
end 
if(length(errortimes)< length(errorendingtimes)) 
    errorendingtimes(1) = []; 
end 
 
errorlengths = errorendingtimes-errortimes; 
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totalerrors = 1:length(errortimes); 
normtotalerrors =totalerrors/max(totalerrors); 
% plot(errortimes, totalerrors, 'sq'); 
 
% [a,b,c] = createfit(errortimes, totalerrors) 
% title('Cumulative Error States over Time'); 
% xlabel('Time(s)'); 
% ylabel('Number of Error States'); 
 
figure; 
[an, bn] = createfitnorm(errortimes, normtotalerrors, 
timeseq, errorendingtimes); 
 
hold on 
numberoferrors = length(errortimes) 
disp('done') 
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