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ABSTRACT

THE ANALYSIS AND THE THREE-DIMENSIONAL, FORWARD-FIT
MODELING OF THE HARD X-RAY AND THE MICROWAVE

EMISSIONS OF MAJOR SOLAR FLARES

by
Natsuha Kuroda

Solar flares are one of the most violent and energetic space weather events that are

known to cause various adverse effects on the Earth. One of the major problems that

must be solved to understand flares and to be able to predict their magnitudes is how

the particles in the solar atmosphere are accelerated after the magnetic reconnection.

One way to help solve this problem is to investigate the properties of the high energy

electrons produced during the flare impulsive phase, observed in the hard X-ray

(HXR) and microwave (MW). The two emissions are considered to be produced by a

“common population” of the electrons, but some studies have also reported temporal,

spatial, and energy discrepancies between them, challenging the widely-used notion.

In order to truly understand the relationship between the two emissions, high-cadence

observations must be made simultaneously in two wavelengths, both temporally and

spatially, and the spectral inversion must also be spatially-resolved and done in a

realistic magnetic field geometry.

In this dissertation, the properties of the high energy electrons produced in

two major solar flares, the 2011-02-15 X2.2 flare and the 2015-06-22 M6.5 flare, are

investigated, using the high-cadence HXR and MW observations, and the advanced

three-dimensional modeling tools. For the 2011-02-15 X2.2 flare, the time delays,

source locations, spectral indices, and their temporal evolution of the HXR and

the MW emissions during the impulsive phase are investigated using observations

made by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

and the Nobeyama Radio Observatory (NoRO). For the 2015-06-22 M6.5 flare,

the realistic three-dimensional, forward-fit modeling of the HXR and the MW



emission is conducted at one point in time during flare, using the Non-Linear Force

Free Field (NLFFF) model extrapolated from the observed photospheric magnetic

field, the three-dimensional multi-wavelength modeling tool GX Simulator, and the

observational constraints provided by the RHESSI and the new Expanded Owens

Valley Solar Array (EOVSA).

The major results in the 2011-02-15 M2.2 flare study are: (1) the multiple peaks

simultaneously observed in the HXR and the MW during the impulsive phase came

predominantly from two locations that suggest two separate episodes of magnetic

reconnection, which can be interpreted in terms of tether-cutting flare scenario, (2)

the transition between these two episodes occur more slowly in MW, suggesting the

trapped nature of the MW-emitting electrons, and (3) the asymmetry in the HXR and

MW emission intensity is observed, which can be explained by the asymmetry in the

magnetic field strengths discussed in several previous studies. The major results in

the 2015-06-22 M6.5 flare study are: (1) the low frequency part of the observed MW

spectrum is modeled to be dominated by the emission from a “HXR invisible” source

containing a non-negligible number of nonthermal electrons in a large volume of weak

magnetic field, (2) the modeled electron populations in the “HXR visible” sources

fit the standard flare model, with the thermal population interpreted as the result of

chromospheric evaporation and the nonthermal population having an upward break

in its power-law energy spectrum, producing HXR and MW emission in different

energy range, and (3) the model can be successfully made with a post-reconnection

magnetic field configuration. The results from this work motivate further modeling

efforts, which have the potential to contribute to the prediction of the intensity of

flare soft X-ray (SXR) emission and the Solar Energetic Particles (SEPs).
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CHAPTER 1

INTRODUCTION

1.1 The Active Sun

For many centuries, the Sun was believed to be a constant, perfect celestial object

that provides the energy for the lives on the Earth endlessly and harmlessly. Some

scientists, however, knew about the existence of the “imperfect” sunspots as early

as seventeenth century (Usoskin 2017), and in 1843, the 11-year sunspot number

cycle was discovered by Samuel H. Schwabe. Not long after that, in 1859, Richard

Carrington made a first observation of the solar flare, one of the transient, eruptive

events that occur on the Sun. The observation was followed by an associated world-

wide disruption of the telegraph communication network, and thus the event became

the first known example of the Sun’s variability that can actually harm our livelihoods

on the Earth. Over the years that followed, it became apparent that the Sun actually

shows a variety of these eruptive activities, and that many of them can be quite

harmful to our society under certain conditions, especially in modern days when

we are increasingly dependent on space-borne assets such as GPS or communication

satellites. Today we call the study of such Solar variability and its effects on the Earth

“Space Weather”, and it is of a great interest to both the scientists who investigate

the physical mechanisms behind these phenomena, and the general public who need

the fore-warning and the mitigation in the case of adverse events (National Science

and Technology Council 2015).

1.1.1 Overview of Solar Flares

One of the most violent and energetic space weather events is the solar flare, which

is observationally defined as a brightening of any emission across the electromagnetic

spectrum occurring at a time scale of minutes to hours (Benz 2017). Operationally,

1
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although historically defined according to the appearance in Hα, it is more recently

defined in terms of a sudden brightening in X-rays, with the most widely-known scale

being the peak flux (W/m2) of the 1 - 8 Å channel of the Geostationary Operational

Environmental Satellite (GOES ) that is located near Earth. Table 1.1 shows the

classification of the flare magnitude in GOES scale.

Table 1.1 Flare Magnitude Classification According to the Peak Flux in
1-8 Å Channel of GOES Satellite.

Classification Peak flux range at GOES 1-8 Å [ W
m2 ]

A < 10−7

B 10−7 - 10−6

C 10−6 - 10−5

M 10−5 - 10−4

X > 10−4

Within each logarithmic class, the magnitude is measured in linear scale from 1 to

9. For example, an M4 flare (peak flux of 4 × 10−5 W/m2) is 2 times “larger” than

an M2 flare, and 10 times “larger” than a C4 flare. The largest flare ever recorded

since the regular recordings of this kind started in 1968 was the one observed on

November 4, 2003, with the estimated size of X25-45. The event took place during

the so-called “Halloween storm” of 2003, when a number of X-class flares and the

subsequent geomagnetic storms caused space weather hazards on the Earth (Schwenn

2006). The uncertainty was in fact due to the saturation of the detector caused by

the extreme amount of radiation (the detector limit was X17.4). The size of the flare
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recorded by Richard Carrington in 1859 is estimated to be X45 ±5 (Cliver & Dietrich

2013), arguably one of the largest flares ever recorded.

It is well known that larger flares occur less often than smaller flares because they

require more energy. According to the Space Weather scale issued by the National

Oceanic and Atmospheric Administration (NOAA), the events with the size above

X20 occur less than 1 per 11-year solar cycle, and for less intense events, the frequency

rises, such as 175 per cycle (140 days per cycle) for X1 events and 2000 per cycle (950

days per cycle) for M1 events (http://www.swpc.noaa.gov/noaa-scales-explanation).

Overall, the size distribution of flares (over a certain measure of flare size, such as flare

duration or peak flux in soft X-rays) are known to obey a power-law (Crosby et al.

1993), with the indices for the peak soft X-ray (SXR) flux distribution in the range

1.7-2.15 (Aschwanden et al. 1998; Wheatland 2005). Figure 1.1 shows the probability

density function for the peak flux of events recorded by the GOES 1-8 Å channel

in 1975-2003. The power-law index above a nominal threshold of 4 × 10−6 W/m2

(vertical line) was calculated to be ∼2.15 ±0.01.

The temporal evolution of a flare can be roughly divided into three phases:

precursor, impulsive, and gradual phases (Kane 1974), although the occurrence and

the duration of each phase greatly differ from event to event. Figure 1.2 shows the

schematic representation of these phases observed in different wavelengths across the

electromagnetic spectrum.

The precursor phase is generally recognized by the slow increase in the radiation,

especially in SXR and extreme ultra-violet (EUV), caused by the heating of the

coronal plasma. They indicate the possible occurrence of the explosive behavior

within the following tens of minutes. This phase is also often associated with the

emergence of magnetic field into the solar surface (flux emergence), which contributes

to the build-up of magnetic free energy within the solar atmosphere (Shibata &

Magara 2011). Sometimes, transient nonthermal emissions that can be observed in
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Figure 1.1 (top) Probability density function for the peak flux (1-8 Å) of GOES
events 1975-2003, together with the threshold S1 (vertical line) and the power law
model (thick line). (bottom) Cumulative distribution. Source: Wheatland (2005).

hard X-rays (HXRs) and microwaves (MWs) occur at locations different from later

phases (Wang et al. 2017). In the impulsive phase, magnetic reconnection occurs, in

some cases multiple times, and the development of this phase can be most closely

followed in HXRs and MWs, which show spiky time profiles. Most of the magnetic

energy stored in the flaring region is released during this phase, and the released

energy can go up to 1033 ergs. One type of radio burst, called “type III” radio burst

that drift rapidly across a few decades of radio frequencies, is also characteristic of

this phase. The gradual phase usually refers to the time after the impulsive phase

maximum, when the SXR (and the Hα) flux reaches their maxima more slowly and

then gradually subsides to pre-flare levels.

The geo-effectiveness of the flare is of great concern because their X-ray and

EUV radiation can ionize the Earth’s ionosphere and cause radio blackouts, and

furthermore, the EUV radiation can heat the outer atmosphere of the Earth and

increase the drag on low-orbiting satellites (Schwenn 2006). Solar flares are often
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Figure 1.2 A schematic representation of the different phases of a flare observed in
different wavelengths across the electromagnetic spectrum. Source: Kane (1974).
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associated with Coronal Mass Ejections (CMEs) and Solar Energetic Particles (SEPs),

which are both detrimental in terms of the effects on the Earth. CMEs are gigantic

clouds of plasma and magnetic fields ejected from the Sun into the interplanetary

space that may hit the Earth a few hours or days later (depending on their speed) and

initiate geomagnetic storms. Their measured front speeds can reach nearly 3000 km/s,

and the total energy (kinetic plus potential energy) can reach some 1033 erg (Schwenn

2006). Although not all flares are associated with CMEs, large flares tend to be

associated with them (Forbes 2000; Gopalswamy 2004), and the geomagnetic storms

triggered by the arrivals of CMEs cause significant consequences such as disruptions

in radio communications, surface charging and positioning errors of the satellites,

increased radiation dosage for the flight passengers at high altitudes, and possibly a

wide-spread power outage and pipeline corrosion (Schwenn 2006). SEPs are electrons

and ions that are accelerated near flare sites and from shock waves in the corona and

in the interplanetary space up to some GeVs, and they can endanger the space probes

and the lives of unprotected astronauts traveling outside the Earth’s magnetosphere

(Schwenn 2006).

Because of these potential effects on human activities, the understanding of flare

mechanisms and their roles in CME and SEP production are becoming increasingly

important. However, the research community has not yet reached a consensus

among competing theories about how flares are triggered, how their particles are

accelerated, and how various flare parameters are related to those of CMEs and SEPs.

This dissertation will be focusing on the high-energy electrons produced during the

flare impulsive phase, which will help us understand the flare’s particle acceleration

mechanism. Although ions are often energetically more important, they are much

harder to measure because of their lower efficiency in production of electromagnetic

emission, hence the electrons must serve as a proxy.
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1.1.2 The Standard Flare Model

The widely accepted model for a solar flare is the Standard magnetic reconnection

model, referred to as the Carmichael, Sturrock, Hirayama, Kopp and Pneuman, or

“CSHKP” model (Carmichael 1964; Sturrock 1966; Hirayama 1974; Kopp & Pneuman

1976). This model assumes that magnetic reconnection in the solar corona is the

initiator of magnetic energy release during solar flares. Magnetic reconnection occurs

when the magnetic fields of the active region become increasingly twisted over time,

and oppositely directed field lines interact with each other.

Figure 1.3 shows the two-dimensional picture of the standard flare model (Lin

& Forbes 2000). In the upper panel, magnetic reconnection occurs in the current

sheet, and the plasma outflow is ejected to both upward and downward direction.

The upward outflow and the reconnected magnetic fields become part of a launching

CME. In the lower panel, the downward flow impacts the lower coronal loop and

can produce HXR loop-top emission via bremsstrahlung. At this acceleration site,

electrons can be accelerated to mildly-relativistic speed (with non-thermal energy),

and those that have access to open field lines escape to the interplanetary space

and produce type-III radio bursts. Others travel further down along the field lines

until they are stopped by the dense, cooler chromosphere, where they give rise to

footpoint HXR emissions and Hα emission (flare ribbon). The downward-traveling

electrons with larger pitch angles can get trapped due to the effect of the magnetic

mirroring at the ends of the loop, and they emit radiation in MW range. Meanwhile,

some of the energy released in the corona is transported to the chromosphere via

thermal particles behind magneto-acoustic shocks. Reacting to the bombardment

of nonthermal particles and the heat conduction from corona, the temperature in

the chromosphere increases and the chromospheric plasma expands. The expanded

plasma “evaporates” along the magnetic field lines and fills the lower loops, thus

giving rise to somewhat delayed EUV and SXR emission.
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Figure 1.3 The two-dimensional schematic picture of the standard flare model.
Source: Lin & Forbes (2000).
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The HXR and MW part of this model has been inspired by both the temporal

and the spatial observations of the two emissions. As suggested in Figure 1.2, the

intensity profiles of the two emissions are commonly known to show a high level of

correlation during the first 5-10 minutes of the flare (see also Figure 2.1). Furthermore,

it has been observed that their time integral roughly agrees with the SXR time

profile (Neupert effect ; Neupert 1968) for some flares. These observations support

the idea that the HXRs and MWs are recording the time scale of the energy release

and the resultant particle acceleration processes while the SXRs are recording the

accumulating total energy deposited by such processes. In the next two sections, the

emission mechanisms for the two emissions will be given, and the examples of their

spatial and spectral obvservations, which are used to probe the properties of the flare

accelearted electrons, will be provided.

1.2 Flare HXR Emission

1.2.1 Emission Mechanisms

Bremsstrahlung The most common source of flare radiation is produced by

bremsstrahlung, when the free electrons in solar plasma interact with the ions and

emit photons as they change their paths due to the Coulomb force. This is also called

free-free emission since the interacting electron enters and leaves the interaction as a

free electron. If the interacting electron gets captured by ion, it is called free-bound

emission. The dominant contribution in HXRs (deka-keV range) is free-free emission,

and the emitted photons constitute continuum emission.

HXR emission can result only from close binary collisions. In these cases the

differential cross-section σB(ε, E,Ω), which is a cross-section that depends on incident

electron energy E, outgoing photon energy ε, and outgoing photon direction Ω,

become important. A convenient formula is the direction-integrated, non-relativistic,

Bethe-Heitler cross-section (Tandberg-Hanssen & Emslie 2009):



10

QB(ε, E) =
7.9× 10−25Z2

εE
ln

1 + (1− ε/E)1/2

1− (1− ε/E)1/2
(1.1)

where Z, the atomic number of the scattering ions (hydrogen and others), must be

considered for the solar atmosphere. The factor Z2, the abundance-weighted value of

Z2, is approximately 1.4 for solar conditions (Allen 1973; Emslie et al. 1986).

To make a use of the observed HXR photon emission as a diagnostic tool for

probing the high-energy electrons in flares, one must make an assumption of the

energy distribution of these electron populations. One is a “thermal population”,

where the electron population has a Maxwellian distribution of the velocities

corresponding to the temperature T . Another one is a “nonthermal population”,

where the electron population has a non-Maxwellian distribution of the velocities.

Nonthermal Bremsstrahlung The nonthermal population in flares refers to the

electrons with a non-Maxwellian energy distribution, accelerated by the energy

released in magnetic reconnection. The expression for the photon flux I(ε) (photons

cm−2 s−1 keV−1) observed at the Earth, resulting from the injection of nonthermal

electrons with flux density spectrum F (E,~r) electrons cm−2 s−1 keV−1, at position ~r

where the plasma ion density is n(~r) ions cm−3 is (Holman et al. 2011):

I(ε) =
1

4πR2

∫
V

∫ ∞
ε

n(~r)F (E,~r)QB(ε, E)dEdV , (1.2)

where R = 1AU and V is the emitting source volume.

As the plasma density of the target increases, Coulomb energy loss (scattering)

between electrons and electrons increases as well, and this must be taken into the

account for the energy spectrum of electrons injected into the source (in solar plasma,

the energy transfer between electrons is much faster than between electrons and ions).

The loss rate is expressed by (Holman et al. 2011):
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dE

dt
= −(K/E)ne(~r)v(E), (1.3)

where K ∼ 3.00 × 10−18(Λee/23) keV2 cm2, Λee is the Coulomb logarithm (∼23 for

the solar corona) for electron-electron collisions, ne(~r) is the plasma electron number

density, and v(E) is the speed of the fast electron. This expression can be further

simplified with the relation vdt = dz, to give

∫
EdE = −KNe(z) (1.4)

Ne(z) =

∫
LOS

ne(z)dz cm−2. (1.5)

where Ne(z) is called plasma electron column density. The evolution of an electron’s

energy over a certain column density is then E2 = E2
0 − 2KNe, which leaves, for

instance, a 10 keV electron to lose all of its energy over a column density of 1.7×1019

cm−2, and 50 keV electron to lose all of its energy over a column density of 4.2× 1020

cm−2.

If these Coulomb energy losses are not significant within a spatially unresolved

X-ray source region, the emission is called thin-target, while if the beam of nonthermal

electrons lose all their suprathermal energy within the spatially unresolved source and

become thermalized during the observational integration time, the emission is called

thick-target. For the thin-target case, Equation. 1.2 can be inverted to obtain the

instantaneous effective electron flux density spectrum present in the X-ray emitting

region, in electrons per cm2 per second per keV. For the thick-target case, the photon

spectrum observed at the Earth is (Holman et al. 2011):
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Ithick(ε) =
1

4πR2

∫ ∞
ε

F0(E0)ν(ε, E0)dE0 (1.6)

ν(ε, E0) =

∫ ε

E0

n(~r)v(E)QB(ε, E)dE

dE/dt
,

where F0(E0) is the electron beam flux distribution in electrons per second per keV,

and ν is the number of photons produced by a single electron of energy E0. Assuming

that an electron is thermalized within the observational integration time, inverting

this equation gives us the flux spectrum of the electrons injected to the X-ray emitting

region, in electrons per second per keV.

The high-energy part of the observed HXR photon spectra that show a power-

law shape (see Figure 1.5 right, above ∼30 keV) can be usually fitted with a single

or a double power-law, and for a single power-law, the photon spectrum from the

electron flux distribution of the form F (E) = AE−δ is also well approximated by the

power-law form I(ε) = I0ε
−γ. The relationship between these two spectral indices

for thin- and thick-target model are γthin = δ + 1 and γthick = δ − 1. However,

these δ stand for different distribution spaces, flux density spectrum (F (~r, E)) for

thin-target and flux spectrum (F (E)) for thick-target. It is sometimes convenient to

transform these into electron number density spectrum, f(~r, E), through the relations

F (~r, E) = f(~r, E)v(E) for the former and F (E) = f(~r, E)Av(E) for the latter, where

A is the area of the emitting source that must be obtained from the observation. If we

assume that f(~r, E) ∝ E−δ
′
, then the spectral index relation become γthin = δ′ + 0.5

and γthick = δ′ − 1.5.

Thermal Bremsstahlung Bremsstrahlung emission from a thermal population is

called thermal bremsstrahlung, and for HXRs it typically refers to the population

having a sufficiently large temperature, ∼ 108K (kT ≈ ε ≈10 keV). The low energy
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part of the HXR spectrum (below ∼ 10 keV in Figure 1.5 right, for example) is

usually attributed to this emission. If we assume a population of ne hot electrons

with a Maxwellian distribution corresponding to a tempearture T in a volume V ,

then its energy distribution function is (Tandberg-Hanssen & Emslie 2009):

fE(E) =
2ne

π1/2(kT )3/2
E1/2 exp(−E/kT ) electrons cm−3erg−1 (1.7)

The bremsstrahlung produced by the collisions between these electrons with

ambient protons (of the same density, ne) is (Tandberg-Hanssen & Emslie 2009):

I(ε) = neV

∫ ∞
ε

fE(E)v(E)σB(ε, E)dE

= D
Q

εT 1/2
exp(−ε/kT ) (1.8)

where D = 5.7 × 10−12Z2cm−3s−1K1/2, and Q =
∫
nedV is a quantity called the

emission measure (EM) of the source. In many cases, it is useful to use differential

emission measure (DEM), which is applicable to non-isothermal sources (Tandberg-

Hanssen & Emslie 2009),

Q(T ) = n2
edV/dT (1.9)

The photon spectral shape of thermal bremsstrahlung emission is also known to

depend on the shape of this DEM spectrum. For instance, for the photon spectrum

with a power-law shape I(ε) = aε−γ, the source DEM spectrum has the form Q(T ) ∝

T 1/2−γ.
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1.2.2 Observational Examples

Flare HXR emission above ∼12 keV from nonthermal bremsstrahlung is almost

always observed from the footpoints of the flaring loop (Guo et al. 2012; Jeffrey

& Kontar 2013; Masuda et al. 1994; Ishikawa et al. 2011; Torre et al. 2012). Since

it is produced in the chromosphere where the plasma density is high, the emission

is treated with the thick-target model. HXR emission can also be observed above

the flaring loop, although rarely, as the so-called “above-the-loop-top” (ALT) source.

The most celebrated example of an ALT source is the one introduced in Masuda et al.

(1994), shown in Figure 1.4.

Figure 1.4 HXR (top row) and SXR (bottom row) images of the limb flare on 1992,
Jan. 13 observed by Yohkoh satellite. Source: Masuda et al. (1994).
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In this study, the authors studied a limb flare, and observed a HXR source

located well above the apex of the SXR loop, together with the usual footpoint source

(top middle panel). The authors interpret this region as the acceleration region, and

the calculation of the electron density in this source and the injected electron rate

from the thick-target emission at the footpoint revealed that almost all electrons must

be accelerated in the coronal source and stream down to the chromosphere, which

requires a highly efficient mechanism for particle acceleration.

Another example of the flare HXR emission is shown in Figure 1.5, taken from

Krucker & Battaglia (2014).

Figure 1.5 Left: HXR (contours) and EUV (background) observation of the limb
flare of 2012, July 19. HXR observation was made by the Reuven Ramaty High
Energy Solar Spectroscopic Imager (RHESSI ) and EUV observation was made by
the Solar Dynamic Observatory (SDO). Right: Spatially-resolved (between coronal
and chromospheric HXR source) HXR photon spectra are obtained from RHESSI
imaging spectroscopy. Source: Krucker & Battaglia (2014).

In this study, the emission in the 6-8 keV image is interpreted due to thermal

bremsstrahlung, and the corresponding temperature and the emission measure is

derived. The 30-80 keV HXR ALT source is interpreted as thin-target nonthermal

bremsstrahlung since the column density is assumed to be relatively small in the
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higher corona. The instantaneous nonthermal electron density from this source is

derived based on the spatially-resolved spectrum obtained from imaging spectroscopy

(Figure 1.5, right), and the result also indicated that a bulk acceleration process

energizes all electrons in the source.

1.3 Flare MW Emission

1.3.1 Radiative Transfer

An important concept in radio astronomy (which includes MW analysis in its high-

frequency end) is the radiative transfer, which can be conceptually understood that

the observer on the Earth measures the radiation intensity in terms of the interplay

between the emissivity and the absorption coefficient of the source (either by the

emitting volume itself or by the volume located closer to the observer), accumulated

along the line of sight.

Consider the geometry shown in Figure 1.6, where the radiation from a volume

element dV has an associated emissivity ην and the absorption coefficient κν , which

is the fraction of intensity I absorbed per unit length.

Figure 1.6 The geometry of the radiative transfer equation. Source: Radio
Astronomy Lecture Series, New Jersey Institute of Technology, Physics 728 by Dr.
Dale E. Gary (https://web.njit.edu/ gary/728/).

The incremental intensity dI over dl is then expressed as dI = ηνdl − κνIdl.

Rearranging this, one gets the radiative transfer equation
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dI

dl
+ κνI = ην (1.10)

The solution of this differential equation, assuming ην and κν are both constant over

the path, is

I = I0e
−

∫ L
0 κνdl′ +

ην
κν

(1− e−
∫ L
0 κνdl′) = I0e

−τν +
ην
κν

(1− e−τν ) (1.11)

where τν =
∫ L
0
κνdl

′ is called the optical depth or opacity, integrated from the

observer, and is the measure of how many e-foldings of intensity reduction the emission

from a certain source (layer) goes through before reaching to the observer.

For a thermal source in radio frequencies, the ratio of ην and κν in the second

term is conveniently described by the Rayleigh-Jeans limit of the Planck function

(hν << kT ), that is

ην
κν

=
2kT

c2
ν2 (1.12)

where k is the Boltzmann constant, c is the speed of light, ν is the observing frequency,

and T is the quantity we call the brightness temperature from now on. Inserting Tb

to all the equivalent intensity term in the Equation. (1.11) gives

Tb,obs = Tb0e
−τν + Tb,source(1− e−τν ) (1.13)

The observed brightness temperature is the sum of the attenuated “external” emission

(the first term) and the internal emission and the absorption of the volume element

closer to the observer. The radio emission source is called either optically-thick or

optically-thin, distinguished by the conditions of τν : τν >> 1 for the former and

τν << 1 for the latter. For each regime, the above equation reduces to
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Tb,obs = Tb,source (optically-thick regime) (1.14)

Tb,obs = Tb0(1− τν) + Tb,sourceτν (optically thin regime) (1.15)

Note that Tb,source is the physical temperature of the source if the thermal source

is in the optically-thick regime. On the other hand, for a nonthermal source it is an

effective temperature, Teff = 〈E〉/k, where 〈E〉 is the mean energy of the electrons

and does not depend on the physical temperature of the source. That is

Tb,obs = T (thermal source in optically-thick regime) (1.16)

Tb,obs = Teff (nonthermal source in optically-thick regime) (1.17)

Tb,obs = Tb0(1− τν) + Teffτν (nonthermal source in optically-thin regime) (1.18)

The opacity is a function of the observing frequency ν, and the expression of κν

(and the corresponding ην which can be obtained by the Equation. 1.12) is different for

each radio emission mechanism and for thermal and nonthermal energy distribution.

Each emission mechanism has its own characteristic brightness temperature spectral

shape for both thermal and nonthermal electron energy distributions that shift in

certain directions responding to the changes in various relevant physical parameters

(see Figure 1.7). This is useful to deduce unknown physical parameters of the emission

region from the observed spectrum, when one can assume that the observation is

dominated by one emission mechanism and some parameters are known or estimated
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from other observations. However, the above derivation assumes that both ην and

κν are constant along L (a homogeneous source). In many cases, a source will be

inhomogeneous over the entire LOS composed of multiple such layers, so the observed

spectrum may be complicated and cannot be attributed to one set of parameters

(and sometimes not to a single emission mechanism). In this case, one must solve

the radiative transfer equation (Equation. 1.10) exactly along the LOS using the

expressions for ην and κν for all possible emission mechanism. Other effects of the

medium, such as Razin suppression (Ginzburg & Syrovatskii 1969) and mode coupling

(Melrose 1980) should also be taken into account during this integration.

Figure 1.7 The characteristic brightness temperature spectrum for thermal (left)
and nonthermal (right) gyrosynchrotron emission, which usually dominates the flare
MW emission. The solid and dashed continuum curves correspond to x-mode and
o-mode emission, respectively, which usually correspond to right-circular-polarization
(RCP) and left-circular- polarization (LCP). Source: Gary & Keller (2004).
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Lastly, the measured intensity can also be expressed in flux density, which is

just Equation. 1.12 integrated over the solid angle dΩ,

Sν =

∫
ην
κν

=
2kν2

c2

∫
Tb,obsdΩ (1.19)

where limits of integration differ between the observation of a point (unresolved)

source and of a extended source. In the former case, the emission is integrated

over the entire source (i.e., total flux density from the source). In the latter case,

the emission is integrated only over the beam, of which the size is determined by the

observing frequency (wavelength) and the extent of the instrument. Two fundamental

quantities used by the radio/MW telescope are Jansky (1 Jy = 10−26 W m−2 Hz−1)

and Solar Flux Unit (sfu, 1 sfu = 10−22 W m−2 Hz−1 = 10,000 Jy).

1.3.2 Emission Mechanisms

Gyroresonance and Gyrosynchrotron radiation The electrons in a magnetized

plasma feel the Lorentz force when interacting with the ambient magnetic fields, and

emit radiation as they gyrate around the magnetic field lines due to the centripetal

acceleration. The fundamental gyrofrequency of an electron, ωB, depends on the

magnetic field B:

ωB =
eB

2πmec
= 2.8× 106B Hz (1.20)

As the energy of the gyrating electron increases, the relativistic effect comes in and

the emission starts to beam strongly in the direction of v (velocity of the electron).

This asymmetry causes the radiated power to start appearing at harmonics of ωB,

sωB, where s is a harmonic number, in the frequency spectrum. For low number

of s, the emission is called gyroresonance emission, and is more related to thermal

population due to the low energy of the electrons. The characteristic Tb spectrum
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for thermal gyroresonance emission for 106 K corona (plus 104 K chromosphere,

a “background” optically-thick emission) is shown in Figure 1.8, with the arrows

indicating the direction of the shift of the spectrum corresponding to the changes in

its relevant physical parameters.

Figure 1.8 The characteristic brightness temperature spectrum for thermal gyrores-
onance emission. Note that the continuum is the emission from the entire LOS
over which the magnetic field strength vary smoothly while discrete lines are the
emission from isogauss layer with B = 500 G. The solid and dashed continuum
curves correspond to x-mode and o-mode emission, respectively. Source: Gary &
Keller (2004).

For high harmonic numbers (s = 10 − 100), at which the electrons are mildly

relativistic and thus most likely have a nonthermal distribution (with energies of

100-300 keV), the emission is called gyrosynchrotron (GS) emission. GS emission from
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a nonthermal power-law electron distribution usually dominates the flare spectrum,

and the widely-used, simplified empirical expressions for Teff , ην , and κν that are

valid over the range 2 . δ . 7, θ (viewing angle) & 20o, 10 . s . 100, and for

isotropic pitch-angle distribution are (Dulk 1985):

Teff ≈ 2.2× 10910−0.31δ(sinθ)−0.36−0.06δs0.05+0.085δ (1.21)

ην
BN

≈ 3.3× 10−2410−0.52δ(sinθ)−0.43+0.65δs1.22−0.90δ (1.22)

κνB

N
≈ 1.4× 10−910−0.22δ(sinθ)−0.09+0.72δs−1.30−0.98δ (1.23)

where N is the number density of the electrons with energy E. The characteristic

spectral shapes for Tb and the corresponding Sν are shown in Figure 1.9 (second row),

along with those for other emission mechanisms.

As can be seen, the optically-thin part of the spectrum can be used to infer δ,

using Equation. 1.22. Also, the GS emissivity is sensitive to the polarization of the

radiation, such that the degree of circular polarization (right-circular-polarization,

RCP, or left-circular-polarization, LCP) can give the information about the angle

of the magnetic field line to the LOS. This property is useful in the analysis of

the loop morphology in the flaring active regions. However, the anisotropy of the

pitch-angle distribution has been found to affect the intensity, local spectral index

value, and polarization of optically-thin GS emission (Fleishman & Melnikov 2003).

It is also important to note that these expressions are only valid in the medium where

thermal particle density is low. If the medium has high thermal particle density, the

refractive index becomes less than 1, and thus the GS radiation is supressed within

the medium (Razin suppression, Ginzburg & Syrovatskii 1969) and the low-frequency
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Figure 1.9 Schematic spectra of brightness temperature and flux density for
bremsstr-ahlung (bottom) and gyrosynchrotron (top three) radiation. The typical
spectral shape for flare emission is the gyrosynchrotron radiation from electrons
with power-law spectrum (second from the top). Dashed and solid curve in the
optically-thin regime (falling part) correspond to the different spectral index (δ) for
the emitting electron spectrum. Source: Dulk (1985).

part of the GS spectrum steepens. Therefore, in many cases where flare morphology

and electron energy distribution become complex, these simplified spectral analyses

are generally not suitable for detailed quantitative analysis. In the past, use of

these simplified approximate expressions was necessitated by the complexity and

computational difficulty of using the exact theory. However, recent advances in

fast GS codes (Fleishman & Kuznetsov 2010), together with realistic 3D modeling

tools (Section 3.3) have superseded use of the approximate expressions except for

qualitative understanding.

Thermal Bremsstrahlung Bremsstrahlung from distant collisions between thermal

electrons and ions can give rise to MW emission (as opposed to the close-binary

collisions for HXRs), although it is in most cases overcome by the stronger GS emission

during flares. The emissivity of thermal bremsstrahlung is:
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ην = (
26πe6

3mec3
)(

2π

3mekT
)1/2neniZ

2Gff (T, ν) (1.24)

where Gff (T, ν) is called the Gaunt factor, related to the Coulomb logarithm

introduced when discussing HXR (Equation. 1.3), and is given by

Gff (T, ν) = (31/2/π) ln[
π(kT )3/2

21/2Ze2m
1/2
e ν

]. (1.25)

The absorption coefficient of thermal bremsstrahlung is:

κν ∼ 9.78× 10−3
ne

ν2T 3/2

∑
i

Z2
i ni (1.26)

×{

18.2 + lnT 3/2 − ln ν (T < 2× 105 K)

24.5 + lnT − ln ν (T > 2× 105 K)

.

The characteristic spectral shapes for Tb and Sν are shown in Figure 1.9.

1.3.3 Observational Examples

A schematic model of nonthermal GS emission (Bastian et al. 1998; Gary et al. 2013)

reveals that, at lower frequencies (optically thick regime), the magnetically weak,

loop-top source has higher brightness temperature than the magnetically stronger

footpoint sources. However, because the loop-top source has a lower peak frequency

(the frequency at which τν = 1) than footpoint sources due to the strength of

the magnetic field, the footpoint sources outshine the loop-top source at higher

frequencies. In case of an asymmetric loop, the magnetically weaker footpoint reaches

its optically thin regime at lower frequency than the magnetically stronger footpoint

does, thus the magnetically strong footpoint dominates at higher frequencies.
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An example of an observation that matches this picture is shown in Figure

1.10, taken from Lee & Gary (2000). In this figure, the 5 GHz source is the optically-

thick GS source and 17 GHz source is the optically-thin GS source. Furthermore,

the authors found a strong asymmetry in the magnetic field strengths between two

footpoint source locations, which correspond to the asymmetry in the observed MW

intensity from the footpoints.

An example of the observation that exploits the power of polarization dependence

of the optically-thin nonthermal GS emission is shown in Figure 1.11. In this

study, the authors found a gradient in the degree of polarization over one, not fully

resolved GS footpoint source. They interpreted this signature as the result of an

unresolved magnetic loop rooted in a bipolar magnetic structure, which agreed with

the magnetogram observation. The unresolved loop was interpreted as the emerging

flux loop that triggered the magnetic reconnection for this flare.

1.4 Scientific Goal and Dissertation Outline

Because of the temporal correlation of the HXR and MW emission and the theoretical

background that supports the idea that the electrons with nonthermal energy can give

rise to these emission through different mechanisms, there is a common notion in the

solar physics research community that a “commmon population” of flare-accelerated

electrons produce both HXR and MW emission. However, this idea has to be closely

examined since there have been some studies that suggest slight discrepancies between

the two observations. The first is the delay between their impulsive peak times; it

has been observed that MW peaks often lag HXR peaks (Cornell et al. 1984; Gary

& Tang 1985; Silva et al. 2000). The time scale of this delay varies from subsecond

to sometimes more than ten seconds. The second is the discrepancies between the

HXR-inferred and the MW-inferred electron energy spectral indices (δ); the indices

are different generally by ∼2 (Kundu et al. 1994; Silva et al. 2000). The third is
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Figure 1.10 MW observation of 1993 June 3 flare from the Owens Valley Solar
Array. Top: MW 5 GHz and 17 GHz contours on top of the SXR image from Yohkoh
satellite. Bottom: Spatially-integrated total flux spectra taken at different times of
the observation. Source: Lee & Gary (2000).
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Figure 1.11 Images of C4.1 flare on 1993 June 7. (a-b) Images of the intensity
and the degree of polarization (Tb,(RCP−LCP )/Tb,(RCP+LCP )) at 17 GHz from the
Nobeyama Radioheliograph; black to LCP and white for RCP. (c-d) SXR images
taken from Yohkoh during the peak and the decay phase of the flare. White
contours show the total intensity image and black contours show the HXR image
from Yohkoh. (e)Magnetogram taken from Mees Observatory. (f) Schematic drawing
of the magnetic field configuration of this flare. Source: Hanaoka (1997).
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the energy range of the HXR-emitting electrons and the MW-emitting electrons;

it has been suggested that the former is lower than the latter, and this may be

related to the inferred δ discrepancy (Nitta & Kosugi 1986; Takakura 1972; Kundu

et al. 1994). And lastly, the source locations and their interpretations between two

emissions are slightly different. The MW source variously appears as a loop-top

source or a whole-loop structure with enhanced loop-top (Asai et al. 2013; Kushwaha

et al. 2014; Kuznetsov & Kontar 2015) at low frequencies, as well as single or double

footpoint sources at higher frequencies (Kundu et al. 1982; Asai et al. 2013). These

observations are interpreted as the signature of nonthermal electrons trapped within

the magnetic flux tube, as opposed to the HXR-emitting electrons which are thought

to pass though the magnetic mirror point immediately and then precipitate to the

chromosphere in much shorter time scale.

One way to investigate the sources of these discrepancies is to use the high-

cadence observation simultaneously made in HXRs and MWs, both temporally and

spatially. The problems of the difference in the energy range and spectral index can

be investigated by inverting the entire electron energy spectrum from the observations

simultaneously made in both HXRs and MWs. However, this has been difficult. One

reason for the difficulty is that flares that enable us to invert the observed X-ray

photon spectrum to the electron energy spectrum extending above few hundreds of

keV are relatively large (e.g., high M- or X-class flares), and large flares complicate the

X-ray spectrum inversion because the thermal part of the X-ray spectrum dominates

the nonthermal part at lower energies, sometimes up to 30 keV or higher. Another

reason is that, for MW, inverting the electron energy spectrum from the observed

MW spectrum is oversimplified for quantitative analysis.

The aim of this work, presented in the following two chapters, is to find

the relationship between HXR-emitting and MW-emitting electron population in

finer details through multi-wavelength analysis enabled by the combination of high-
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resolving space-borne and ground-based observatories, and offer the possible solutions

to those discrepancy problems. Chapter 2 is an observational study that explores

the time delays, source locations, spectral indices, and their temporal evolution of

the HXR and MW emissions during the impulsive phase of the well-observed X2.2

flare of 2011, Feb. 15. Chapter 3 is a simulation study that addresses some of

the discrepancies mentioned above through realistic, three-dimensional, forward-fit

modeling of the HXR and MW emission at one time just after the impulsive phase

of the well-observed 2015, Jun. 22 M.5 flare. The constraint of the MW part of the

model is provided by the prototype data from the observatory that is designed to

emphasize imaging spectroscopic capability in the 1-18 GHz MW range, the Extended

Owens Valley Solar Array (EOVSA, currently being commissioned). Chapter 4 gives

the conclusions and discussions from this study, as well as some ideas for future work.

1.5 Instruments and Research Tools

In this section, we will briefly introduce the high-resolution instruments and realistic

modeling tool that were essential in carrying this work.

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI ):

RHESSI (Lin et al. 2002) is the space telescope designed to perform imaging and

spectral observations of solar flares from SXR (∼ few keV) to gamma-rays (up to

∼ 20 MeV), with angular resolutions as fine as 2 arcseconds, a spectral resolution

of ∼1 keV, and a temporal cadence of typically 4 s (the spacecraft rotation period).

Finer temporal resolution can be obtained through the use of demodulation code

hsi demodulator.pro of the SSW software (Arzner 2004; Qiu et al. 2012). Images can

be reconstructed by CLEAN, Maximum Entropy Methods (MEM), Forward-Fitting,

or PIXON methods, choosing time, energy range, and a combination of collimators

(1 to 9). The spectral analysis can be done by using the Object Spectral Executive

(OSPEX) software (Schwartz et al. 2002), which can perform the deconvolution of
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the observed photon-count spectrum with known response function to deduce the

true photon spectrum from the Sun, and the spectral-fitting using many pre-defined

functions that represent emission from various particle energy distribution.

The Nobeyama Radio Polarimeters (NoRP) and The Nobeyama

Radioheliograph (NoRH ): Nobeyama Radio Observatory (NoRO; Nakajima et al.

1985, 1994) is the solar-dedicated radio-telescope located in Japan, continuously

observing the Sun for about eight hours (22:30 - 6:30 UT) everyday. NoRP records

the total incoming flux from the Sun in 1, 2, 3.75, 9.4, 17, 35, and 80 GHz with the

temporal cadence of 0.1 s. NoRH produces the full-disk images of the Sun in 17 and 34

GHz total flux intensity (Stokes I) with a cell size of 10 arcsec/pixel and 5 arcsec/pixel,

respectively. The 17 GHz observation is also made in circular-polarization (Stokes

V). The time cadence is 1 s for normal mode and 0.1 s for event mode.

The Expanded Owens Valley Solar Array (EOVSA): EOVSA (Nita

et al. 2016) is the newly expanded and upgraded solar-dedicated radio array (formerly

known as OVSA, (Owens Valley Solar Array ; Gary & Hurford 1990) that is currently

being commissioned to have the unprecedented imaging spectroscopic capability in

MW (2.5-18 GHz) at more than 300 frequency channels with the spatial resolution

of 60 arcsec/GHz (finest ∼3.3 arcsec at 18 GHz), 1-s time cadence, and four

polarizations. EOVSA has been taking total flux density measurements since October

2014, and the cross-correlated amplitude measurements, which can be used to

calculate the relative visibility of the source, since June 2015.

The Solar Dynamic Observatory (SDO): The SDO (Pesnell et al. 2012)

is a space-borne solar telescope with three onboard instruments: The Atmospheric

Imaging Assembly (AIA; Lemen et al. 2012), the Helioseismic and Magnetic Imager

(HMI ; Schou et al. 2012), and the Extreme Ultraviolet Variability Experiment (EVE ;

Woods et al. 2012). The AIA observes the full-disk solar atmosphere in 10 different

energy channels from white-light continuum (photosphere) to Fe VIII line (coronal
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flaring regions). Its temporal cadence is 10 to 12 seconds and the spatial resolution is

1 arcsec. The HMI provides the line-of-sight component and the vector magnetogram

of the photosphere every 45 seconds (LOS) and 720 seconds (vector magnetogram).

The spatial resolution is 1 arcsec/pixel. The EVE obtains EUV spectra of the full-disk

Sun at a spectral resolution of ∼ 1Å and a cadence of 10 s.

GX Simulator : The GX Simulator (Nita et al. 2015) is an IDL-based, three-

dimensional graphical-user-interface (GUI) platform that allows its users to (1) import

a photospheric magnetic field map and extrapolate it to generate a 3D magnetic

field model, or alternately import an externally-defined 3D magnetic field model,

(2) investigate the magnetic field topology of the 3D model and create a desired

magnetic flux tube on which the user will be performing the multi-wavelength (HXR,

MW, and EUV as of this writing) emission calculation, (3) populate the magnetic flux

tube with thermal and nonthermal populations of electrons with spectral parameters

defined by the user, (4) generate 2D images and spectra through calculations using

the internal codes, and (5) compare simulated images and spectra with the observed

images and spectra. The details of its internal codes in HXR and MW range are

discussed in Section 3.3.

Non-Linear Force Free Field (NLFFF) Extrapolation : NLFFF extrap-

olation is one kind of realistic coronal field extrapolation assuming the low plasma β

(the ratio of the plasma pressure to the magnetic pressure) for the upper chromosphere

and lower corona. In this case, the Lorentz force vanishes (~j × ~B = 0), and the

force-free magnetic field is characterized by the condition where the electric currents

are parallel to the magnetic field lines, i.e.,

5× ~B = α~B (1.27)
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5 · ~B = 0 (1.28)

The NLFF case is where we treat the parameter α not constant for all field lines, as

opposed to the LFF case where α is constant. The case where α = 0 (current-free)

corresponds to the potential field extrapolation. The NLFFF extrapolation model

is shown to agree with measured fields in a newly developed active region better

than the LFF or potential field extrapolation model (Wiegelmann et al. 2005). The

extrapolation from the measured photospheric data requires pre-processings (since

the photosphere is not truly force-free), which is briefly described in Section 3.2.1.



CHAPTER 2

OBSERVATION OF THE 2011-02-15 X2.2 FLARE IN THE HARD

X-RAY AND MICROWAVE

Previous studies have shown that the energy release mechanism of some solar flares

follow the Standard magnetic-reconnection model, but the detailed properties of high-

energy electrons produced in the flare are still not well understood. We conducted

a unique, multi-wavelength study 1 that discloses the spatial, temporal and energy

distributions of the accelerated electrons in the X2.2 solar flare on 2011 February

15. We studied the source locations of seven distinct temporal peaks observed in

HXR and MW light curves using the RHESSI in 50-75 keV channels and Nobeyama

Radioheliograph in 34 GHz, respectively. In addition, we studied the polarization

properties of MW sources, and time delay between HXR and MW.

2.1 Introduction

In the study of solar flares, a widely accepted model of the physical mechanism of

flares is the Standard magnetic reconnection, referred to as the ”CSHKP” model,

which assumes magnetic reconnection as the principle mechanism responsible for

accelerating flare particles (Hudson 2011). In this model, magnetic reconnection

occurs somewhere above the magnetic loop structure of the active region. The

form of this magnetic reconnection mechanism is currently not fully understood,

although hypotheses such as a large-scale or a collection of small-scale DC electric

fields (Dreicer fields) have been suggested (Litvinenko 1996). Magnetic reconnection

gives considerable energy to the particles that are present at the reconnection site, in

some cases accelerating them to the relativistic regime.

1This chapter is based on the following paper: Kuroda, N., Wang, H., & Gary, D. E.,
“Observation of the 2011-02-15 X2.2 Flare in the Hard X-Ray and Microwave”, The
Astrophysical Journal, vol. 807, pp. 124, 2015.
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The dynamics of these accelerated particles after leaving the reconnection site

is still not well understood. However, one key observation is that, among the many

wavelengths at which flare energy is emitted, HXR and MW emissions show time

profiles that are very well-correlated during the impulsive phase of the flare (e.g.,

Kundu et al. 1982; Cornell et al. 1984; Asai et al. 2013). This observational fact

has led many to the conclusion that the same population of electrons is responsible

for producing HXR and MW emission, and many studies have been done on various

aspects of this behavior. Kundu et al. (1982) analyzed the dynamics of 1980 Jun 25

flare using MW time profile, MW images, and HXR time profile. Cornell et al. (1984)

investigated the causes of the time delay between corresponding HXR and MW peaks,

and Asai et al. (2013) studied several flares that had corresponding HXR and MW

time profiles in terms of electron spectral indices.

One of the interesting topics related to this correlation, and which will be

discussed in this chapter, is the delay between their peak times. It has been observed

that MW peaks often lag HXR peaks. The time scale of this delay varies from

subsecond to sometimes more than ten seconds. Cornell et al. (1984) discussed

that the delay observed in their study (an average of 0.2 s) can be explained by

the existence of two components of energetic electrons: a prompt component that

immediately escapes from the acceleration region, and a delayed component that

first undergoes pitch-angle scattering and thus is less impulsive. They discussed that

the first component would be the population which produces HXR and the second

component would be the population which produces MW, and therefore MW peaks

lag HXR peaks. Gary & Tang (1985) studied a single-peaked event in HXR and MW,

and found that the delay they found can be explained simply by the difference in decay

time of HXR and MW emission (Gary & Tang 1985). They claimed that the two

emission processes share the same acceleration profile, but not necessarily the same

population; MW-emitting electrons are those that are trapped within the magnetic
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fields (because of magnetic mirroring), where the HXR-emitting electrons are those

that directly hit the chromosphere. The MW emission has longer decay time than

HXR emission because of prolonged trapping, which accounts for the observed delay

in the MW peak. Silva et al. (2000) conducted a statistical study of 57 simultaneous

peaks of HXR and MW, and found that most probable delay time to be 2 – 4 seconds,

and that the delay time decreased as the HXR energy increased, which supports

the hypothesis that the MW-emitting electrons are the higher-energy counterpart

of the HXR-emitting electrons. However, they also found that the electron energy

spectral index for MW is harder than that for HXR by 0.5 – 2.0 on average for

75% of the bursts, which was interpreted as due to an upward break in the energy

spectrum of the accelerated electrons responsible for HXR and MW emission. They

give three hypotheses that could account for their results, (1) HXR- and MW-emitting

electrons are different populations that are accelerated by different means at different

sites, (2) MW-emitting electrons are accelerated by second-step acceleration, or (3)

accelerated electrons follow so-called ”trap-plus-precipitation” model, which explains

that some of the accelerated particles that get trapped, and give off MW emission,

eventually ”precipitate out” due to Coulomb collisions, and become those that hit

the chromosphere and give off delayed HXR emission (Melrose & Brown 1976). This

same model was used by Aschwanden et al. (1995) to study two different components

of HXR emission.

In terms of the relative locations of HXR and MW emission, HXR emission

can come from loop-top (above-the-loop) and/or footpoint sources, and for MW

it can come from either a combination of loop-top and loop-legs or from footpoint

sources, depending on the MW frequency. For HXR energies above ∼ 12 keV, the

emission comes from loop-top and/or footpoint sources (Guo et al. 2012; Jeffrey &

Kontar 2013; Masuda et al. 1994; Ishikawa et al. 2011; Torre et al. 2012). Loop-top

sources observed at this energy range have been considered as evidence for the particle
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acceleration region. They can sometimes be observed simultaneously with footpoint

sources (Ishikawa et al. 2011; Kuznetsov & Kontar 2015). For example, Kuznetsov &

Kontar (2015) analyzed the spatial properties of the 2004, May 21 flare, and found a

loop-top source in 12 – 25 keV range, a loop-top source with footpoint sources in 25

– 50 keV range, and only footpoint sources in 50 – 100 keV range. Above ∼ 50 keV,

footpoint sources start to clearly dominate. For MW in the range 3 GHz ∼ 30 GHz,

the dominant emission mechanism in a flare is gyrosynchrotron radiation produced

by electrons with mildly relativistic energy distribution. A schematic model of such

emission (Bastian et al. 1998; Gary et al. 2013) reveals that, at lower frequencies

(optically thick regime), the magnetically weak, loop-top source has higher brightness

temperature than the magnetically stronger footpoint sources. However, because the

loop-top source has a lower peak frequency than footpoint sources and the brightness

temperature of the loop-top source falls off more steeply than that of footpoint sources

in the optically thin regime, the footpoint sources have higher brightness temperature

than the loop-top source at higher frequencies. In case of an asymmetric loop, the

magnetically weaker footpoint reaches its optically thin regime at lower frequency

than the magnetically stronger footpoint does, thus the magnetically strong footpoint

dominates at higher frequencies. Such is indeed observed: the MW source variously

appears as a loop-top source or a whole-loop structure with enhanced loop-top (Asai

et al. 2013; Kushwaha et al. 2014; Kuznetsov & Kontar 2015) at low frequencies,

as well as single or double footpoint sources at higher frequencies (Kundu et al.

1982; Asai et al. 2013). MW footpoint sources usually match or tend to be spatially

very close to HXR footpoint sources in near-disk-center flares. However, this is

not the case for near-limb flares, since MW and HXR emissions are produced at

different heights (MW emission is produced at the magnetic mirroring point, which

is above chromosphere). Also, Sakao et al. (1996) found that, in double footpoint

configuration with asymmetrical magnetic strength, stronger HXR emission tends
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to originate from the weaker magnetic footpoint (Sakao et al. 1996). They argue

that the magnetically stronger side of the loop has stronger magnetic mirroring,

thus allowing fewer energetic particles to penetrate, producing weaker HXR emission.

Since stronger MW footpoint emission comes from magnetically stronger footpoint as

mentioned before, this may result in the discrepancy between HXR and MW emission

source location in some cases.

In this study, we analyzed the impulsive phase of the X2.2 solar flare that

occurred on 2011, February 15, which showed correlated HXR and MW time profiles.

This event has received considerable attention in the literature (Zharkov et al. 2013;

Kerr & Fletcher 2014; Milligan et al. 2014; Inoue et al. 2014; Wang et al. 2014)

because it was the first X-class flare of the current Solar cycle and was successfully

covered by many different instruments. Summarizing these studies, Zharkov et al.

(2013) analyzed the seismic/sunquake response, Kerr & Fletcher (2014) analyzed the

white-light emission, Milligan et al. (2014) calculated the total energy radiated by

the lower solar atmosphere (optical, ultra-violet, and extreme ultra-violet wavelength)

and that of the non-thermal electrons derived from HXR. Wang et al. (2014) analyzed

flow motion and sunspot rotation of the active region during the impulsive phase.

Inoue et al. (2014) performed a magnetohydrodynamic simulation based on non-linear

force-free field for the active region responsible for this flare. This paper focuses on

the study of flare accelerated electrons, and we do so by observing the flare in HXR

and MW in high-temporal (sub-second) and spatial (one to few arcsec) resolutions.

To our knowledge, this is the first time the high-resolution comparison between HXR

and MW emission of this flare was drawn. We observed that this flare consisted of

several temporally distinct peaks in HXR and MW, and we spatially resolved them

to see if they were coming from the same or different sources.

In Section 2.2 we list the sources of data we used for the study. In Section 2.3

we describe the analysis in terms of energy/frequency-dependent time profiles and
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images. We give the results of the analysis in Section 2.4, and conclude in Section

2.5.

2.2 Data

The X2.2 flare occurred on Feb. 15, 2011, starting from approximately 0130 UT and

ending at about 0700 UT, from the active region 11158 located at about S21W28.

We used data from the RHESSI for HXR observation and NoRP and NoRH for MW

observation. The instrument uses the solar disk for determining absolute position and

brightness scale, assuming that the solar disk has a uniform brightness temperature

of 104 K at 17 GHz. However, during bright solar flares such as this one, the solar

disk may be relatively too weak for a precise determination of absolute position, and

the source positions can display a jitter of roughly 5 arcsec. We discuss this further

in Section 2.4.2. The temporal cadence we used is 0.1 second and 1 second for NoRP

and NoRH, respectively. We also used data from the AIA on board the SDO for

extreme ultraviolet observation, and magnetogram data obtained from the HMI on

board the SDO.

2.3 Analysis

To investigate the properties of flare accelerated electrons, we analyzed the temporal

and spatial profiles of the impulsive phase of the flare using instruments listed above.

As will be shown, the impulsive phase of this flare (about 10 minutes) consisted of

several temporally distinct peaks in HXR and MW. Each peak, according to the

standard magnetic reconnection model, comes from a temporally distinct magnetic

reconnection event which produces highly accelerated electrons. The aim of this study

is to spatially resolve these temporal peaks, in both HXR and MW, to find if they

were coming from different or the same source locations. We also compare their

locations against extreme ultraviolet and magnetogram images. We investigate time
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delays between HXR and MW peaks, and examine their relationship to the spatial

and temporal analysis results.

2.3.1 HXR and MW Time Profile

RHESSI successfully covered the entire period of the impulsive phase of this flare,

which is from about 0148 UT to 0158 UT. We plot the HXR lightcurve during this

period in 50 – 75 keV energy channels. The time profile is shown as a black curve

in Figure 2.1. In order to accomplish the highest temporal resolution, we utilize

demodulating code as described in Qiu et al. (2012), and reduced its default cadence

to 0.2 – 0.3 seconds.

The NoRP and NoRH successfully observed the entire period of this flare. The

time profiles in these frequencies are plotted in Figure 2.2. In this flare, the MW time

profiles for 9.4 GHz and 17 GHz showed the best correlation with the 50 – 75 keV

HXR time profile. The time profiles for MW at 9.4 GHz and 17 GHz during impulsive

phase are shown as the red and blue curve, respectively, in Figure 2.1. Note that 17

GHz flux is artificially increased by 500 SFU, to be on the same plotting window as

the 9.4 GHz curve.

We chose HXR peaks that were sufficiently distinct and had correlating MW

peaks, and calculated the peak times. Those peaks are marked with short grey, red,

and blue lines for HXR, MW 9.4 GHz, and MW 17 GHz, respectively, in Figure 2.1. To

calculate the peak time, we fitted a third-degree polynomial over a certain data range

that includes a visually distinguishable spike in the target peak, and chose several

other ranges to obtain several peak times, from which their median was taken as the

peak time and their standard deviation was taken as the peak time uncertainties.

The peak times and their uncertainties for each frequency are summarized in Table

2.1.
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Figure 2.1 HXR 50 – 75 keV, MW 9.4 GHz, and MW 17 GHz time profile from
01:48:00 to 01:58:00. HXR cadence is 0.2 to 0.3 second and MW cadence is 0.1 second.
Grey, red, and blue short lines indicate the HXR, MW 9.4 GHz, and MW 17 GHz
peaks, respectively, which we identified and calculated the peak times. Note that
we only chose combinations of peaks that were distinct enough to calculate the peak
times, and MW 17 GHz flux is artificially increased by 500 SFU in order for it to be
on the same plotting window as the 9.4 GHz curve.



41

Figure 2.2 NoRP time profiles from 01:48:00 to 01:58:00 in 1, 2, 3.75, 9.4, 17, and
35 GHz frequencies. All are background subtracted. Note that the Y-axis’ scale for
1 GHz is different from the Y-axis’ scale for 2, 3.75, 9.4, 17, and 35 GHz.
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Table 2.1 HXR Peak Times and MW Delay Times (and Their
Uncertainties). The Unit is Second.

Peak number HXR 50-75
keV

MW 9.4 GHz
delay time

MW 17 GHz
delay time

1 01:49:22.3
(0.127)

2.4 (0.48) 2.5 (0.53)

2 01:52:41.1
(0.210)

N/A (N/A) 4.8 (0.25)

3 01:53:11.5
(0.177)

1.9 (0.80) 2.1 (0.90)

4 01:53:39.9
(0.357

2.1 (0.72) 1.6 (0.69)

5 01:54:00.3
(0.196)

0.6 (0.55) 0.9 (0.53)

6 01:54:08.3
(0.638)

N/A (N/A) 0.7 (0.91)

7 01:55:15.9
(0.247)

3.0 (0.73) 2.0 (0.66)
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2.3.2 HXR and MW Imaging

We next analyzed the spatial locations of these peak emissions. For HXR, we

utilized RHESSI OSPEX software prepared by the RHESSI team. We used the

PIXON algorithm in the 50 – 75 keV energy range, with 1 arcsec resolution, using

the front segments of detectors 1 and 3 – 8 with 7 – 36 seconds integration time.

We determined appropriate integration times for each peak based on the shape of

the lightcurve; we chose intervals during which lightcurves showed single and clear

rise-and-fall behaviors. We also identified MW emission sources, obtaining images

from NoRH in 17 GHz and 34 GHz, in stokes I, at peak times in the 17 GHz time

profile. The images in 34 GHz were synthesized by the readily available Hanaoka

program (Hanaoka et al. 1994) from the Nobeyama Observatory. We overplotted

HXR and MW energy contours for each peak separately on the HMI continuum

image at 01:47UT, and they are shown in Figures 2.3 and 2.4. We also overplotted

HXR and MW 34 GHz contours on the EUV images from AIA HeII 304 channel,

which usually show flare ribbons, and they are shown in Figure 2.5. Note that AIA

images for peak 3 and 4, and peak 5 and 6 are identical because we chose minimally

saturated images at the time closest to HXR peak time, and images between these

peaks were much more saturated.

2.4 Observational Results

2.4.1 HXR Emission Sources

In HXR, most emission sources were identified to be footpoint sources. The energy

range that we used, 50 – 75 keV, is well within the non-thermal electron energy range

that is known to show footpoint sources in the thick-target model (Saint-Hilaire et al.

2010). In Figure 2.3, they can all be seen as double sources over the polarity inversion

line as well. Their locations all coincide with flare ribbons seen in AIA He 304 in

Figure 2.5, which further supports that they are the footpoints of magnetic loops.

For peak 1, the type of the source is uncertain. Since it is a single source, it could be
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Figure 2.3 RHESSI PIXON image intensity contours in 50 – 75 keV for peaks 1-7.
One frame is additionally shown between peak 1 and 2, at 01:51:22 UT (40 seconds
integration) to show the flare development during this long interval (see Figure 2.1).
Contour levels are 30 – 90 percent of the maximum. White and black contours indicate
the positive and negative sides of the polarity inversion lines, respectively.



45

Figure 2.4 NoRH images’ intensity contours in 17 GHz (red) and 34 GHz (blue) at
peak times for peak 1-7 in 17 GHz time profile shown in Figure 2.1. One frame
is additionally shown between peak 1 and 2, at 01:51:22 UT to show the flare
development during this long interval (see Figure 2.1). Contour levels are 30 –
90 percent of the maximum. The dotted red and blue circles show the beam sizes
(contour of half power beam width) at each time for 17 GHz and 34 GHz, respectively.
White and black contours indicate the magnetic polarity inversion lines, as in Figure
2.3.
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Figure 2.5 MW 34 GHz intensity contours (cyan) overlapped with HXR 50 – 75
keV energy contours (magenta) on top of AIA HeII 304Å images with the polarity
inversion line, for peak 1-7. The dotted cyan circles show the beam size (contour of
half power beam width) at each time for 34 GHz. One frame is additionally shown
between peak 1 and 2, at 01:51:22 UT to show the flare development during this long
interval (see Figure 2.3).
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a loop-top source or a single footpoint source. For peak 2, there is a single elongated

source to the west of double-footpoint sources. We confirmed that this is the same

source as the single remote western source observed at peak 3. The single remote

source in peak 3 is one of the footpoint sources expected in a quadrupolar loop

configuration, and this is also observed by Wang et al. (2012). Interestingly, the

location of this source coincides with one of the seismic/sunquake sources observed

by Zharkov et al. (2013). For peak 4, the somewhat elongated shape of the source

was likely caused by the reappearance of western footpoint source observed at peak

2, since the elogation is directed along the flare ribbon, shown in Figure 2.5. For the

rather spatially complex peak 7, analysis with shorter integration time revealed that

the weakest, north-western source appeared only at the end of the integration time

of peak 7, and therefore most of the emissions come from the pair of north-eastern

and southern footpoint sources.

It is clear from the observation of the entire period that there are two distinct

double-footpoint sources involved; the one best exemplified by the HXR image at peak

2, and another one responsible for the emission during the later peaks, 3 to 7. This

suggests that there are at least two distinct magnetic reconnection sites for this flare.

In order to make our results more quantitative, we conducted the following analysis.

First, we identified source kernel pixels by taking image pixels that are above 80

percent of the maximum intensity of the image at peaks 2 and 3. The image of these

kernel pixels are shown in Figure 2.6. We produced a running average movie of HXR

images in 50 – 75 keV with 4 seconds between and 40 seconds over each frame, and

used this movie to plot the time profiles of the mean value of identified kernel pixels

(movie provided as the online supplemental material). The result is shown in Figure

2.7. The black curve indicates the ”total intensity” HXR curve, which is the same

curve as the black curve in Figure 2.1, but with a 4 s resolution. The red curve is the

time profile of the mean kernel intensity of the source observed at peak 2 (western



48

source), and the green curve is the time profile of the mean kernel intensity of the

source observed at peak 3 (eastern source). The red and green vertical line marks the

peak time for peak 2 and 3, respectively. The plot clearly shows the aforementioned

change of double-footpoint sources; the sharp rise in intensity of the western source

and the low intensity of the eastern source at peak 2 confirm that the emission was

purely from the western source for peak 2. The rest of the peaks, peak 3 to 7, come

mainly from the eastern source.

Figure 2.6 Identified HXR kernel pixels at peak 2 and 3, with threshold of 80
percent of the maximum intensity of the entire image.

Finding two spatially distinct HXR sources, we attempted to investigate if

they have different spectral properties by conducting imaging spectroscopy analysis,

obtaining images from 30 keV to 100 keV with 5 keV intervals. However, both sources

become unrecognizable above 50 keV, preventing us from calculating meaningful

spectral indices for them.

2.4.2 MW Emission Sources

For MW, Figure 2.4 shows the 17 GHz and 34 GHz images at the peak times of

the 17 GHz time profile. As mentioned in the introduction, MW sources can be

either a combination of loop-top and loop-legs or footpoint sources, depending on
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Figure 2.7 HXR total intensity vs. mean kernel intensity time profile. The black
curve is the original HXR lightcurve that was shown solely in Figure 2.1, presented
with the same resolution as other two colored curves (4 seconds). The red curve is
the time profile for the western source, and the green curve is the time profile for the
eastern source. The red vertical line marks 01:52:41.1, the peak time at peak 2, and
the green vertical line marks 01:53:11.5, the peak time at peak 3.
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the MW frequency. Since this flare shows sources that are spatially close in both

frequencies, we assume that the source type is the same for both frequencies. We first

analyze the case of footpoint sources. We know that in this flare, the peak frequency

of MW emission during the impulsive phase is between 9.4 GHz and 17 GHz or

higher based on the NoRP total power data (see Figure 2.2), so the 17 GHz and 34

GHz emissions are clearly in the optically thin regime. If the observed sources are

footpoint sources, then this fits the scenario for the schematic model mentioned in the

introduction; the emission is produced by gyrosynchrotron radiation from electrons

with non-thermal energy distribution, which is dominated by footpoint sources as one

reaches to optically-thin frequency range. However, in this scenario the MW sources

should appear as double-footpoint sources straddling the neutral line, whereas, in

Figure 2.4, the MW sources in peaks 1 and 2 are single sources, and in later peaks,

when the MW sources are double sources, the pair are oriented along and well south

of the neutral line. Because of the limited NoRH spatial resolution, together with the

positional uncertainty mentioned in Section 2.2, we consider it likely that the sources

in all cases should be shifted north by at least 5-10 arcsec (although we did not do

so in Figure 2.4), and are in reality filled-loop or unresolved double-footpoint sources

oriented across the neutral line. We also note that the projection effect may be taking

place as well, since the active region is located in the southern hemisphere and the

MW emission should be generated at some height above the photosphere even for

footpoint sources (as mentioned in the Introduction); such a projection would shift

the sources south relative to the surface. Support for this interpretation is provided by

the NoRH circular polarization maps shown in Figure 2.8 (available only at 17 GHz,

since NoRH measures the 34 GHz emission in total intensity only). Hanaoka (1996)

and Nishio et al. (1997) showed that, if there are two unresolved MW sources with

opposite polarities, they can appear as a single source with a gradient of the degree of

polarization. Such is indeed observed in our case, where Figure 2.8 shows that peaks
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3–7 to all have a N-S gradient in degree of polarization. In contrast, peak 2 has mainly

E-W-oriented gradient, but from a location where the orientation of the neutral line

turns more N-S. Peak 1 source may be different from all other sources, like in the case

of HXR discussed in previous section. This therefore suggests that, at least for peak

2–7, our MW sources could be optically-thin, unresolved double-footpoint sources.

Moreover, Figure 2.8 shows that the source with left-circular polarization (north side)

has higher degree of polarization, suggesting that the magnetic field is stronger on the

negative side of the polarity inversion line as observed. At the same time, Figure 2.3

shows that the HXR sources are typically stronger on the opposite, positive polarity

side of the polarity inversion line, so that this interpretation also agrees with the

findings of Sakao et al. (1996), who found that HXR and MW sources in loops of

asymmetric magnetic strength are strongest on opposite sides of the polarity inversion

line.

Although the above discussion mentions the idea that each MW source

is unresolved double-footpoint sources, recent NoRH observations of larger loops

(Reznikova et al. 2009, 2010), where the morphology evolution is more easily seen,

indicate that the MW loops tend to start out dominated by footpoint sources but

then quickly evolve to loop-leg or even loop-top dominated sources, and this is likely

the case also in our event. This is the result of the accumulation of mildly relativistic

electrons due to trapping in the loop, and can also explain why the sudden jump

in location from western to eastern source, seen in HXR between peaks 2 and 3, is

delayed and evolves more slowly in MW. To investigate this more quantitatively, we

repeated the kernel light-curve analysis done for HXR, in Figures 2.6 and 2.7, for

MW. It is clear from Figure 2.4 that there are three distinct MW emission sources;

the one for peak 1, another one for peak 2, and the one that appears at peak 3 and

continues to dominate for the rest of the peaks. Comparing to the HXR sources that



52

Figure 2.8 NoRH degree of polarization map (17 GHz) for peak 1 – 7. Red contours
are the degrees of right-circular polarization and blue contours are the degrees of
left-circular polarization, both in the scale of 5, 10, 20, 40, 60, and 80 percent. MW
34 GHz intensity contours are overlapped in cyan, with the dotted circles showing the
beam size (contour of half power beam width) at each time. One frame is additionally
shown between peak 1 and 2, at 01:51:22 UT to show the flare development during
this long interval (see Figure 2.1).
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were discussed in previous section, it is striking to note the similarity in which the

sources change.

To identify the source kernel pixels, we chose 34 GHz images and used intensity

thresholds of 90 percent for peak 2 source and 60 percent for peak 3 (we decreased the

threshold for peak 3 because it was weaker than the peak 2 source at that time and

we could not collect kernel pixels when setting the threshold above 70 percent of the

maximum intensity). The kernel pixel locations are shown in Figure 2.9. We plotted

time profiles for the two sources against the spatially integrated 34 GHz NoRH signal.

The result is shown in Figure 2.10, with the same color scheme as for the HXR curves

in Figure 2.7. The red curve is the time profile for the western source, and the green

curve is the time profile for the eastern source. The red and green vertical lines mark

the peak time for peaks 2 and 3, respectively. Just as in HXR, it is seen that the

peak 2 emission was purely from western source, and the eastern source first appears

at peak 3. However, peak 3 does not become dominant in MW until a time between

peaks 3 and 4, due to the longevity of trapped particles in the western source. By the

time of peak 4, it is clear that the eastern source was the only source responsible for

all peaks. In summary, we observed the exact same source change behavior in MW

as was seen in HXR. It is also clear from Figure 2.5 that MW sources are all located

very close to HXR sources. Therefore, the observations show evidence that there are

two different magnetic reconnection sites—one responsible for emission in both HXR

and MW at peak 2, and another for peaks 3 to 7.

We note that the peak brightness temperatures at 17 GHz in this event are

40-70 MK, and, since the emission is optically thin, the kinetic temperature must

exceed 100 MK, so the emission is undoubtedly due to nonthermal electrons. We

therefore calculate the electron energy spectral index (δ) using the equation α =

log(F35/F17)/log(35 GHz/17 GHz), where F35 and F17 indicates the flux at 35 GHz

and 17 GHz, respectively, and the approximation for gyrosynchrotron emission from
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Figure 2.9 Identified MW kernel pixels at peak 2, with threshold of 90 percent
of the maximum intensity of the entire image, and at peak 3, with threshold of 60
percent of the maximum intensity of the entire image.

Figure 2.10 Spatially integrated 34 GHz NoRH signal vs. mean kernel intensity
time profile. The black curve is the spatially integrated signal from 34 GHz NoRH
images. The red curve is the time profile for the western source, and the green curve
is the time profile for the eastern source. The red vertical line marks 01:52:45.9, the
peak time at MW 17 GHz peak 2, and the green vertical line marks 01:53:13.6, the
time of peak 3 at MW 17 GHz peak 3.
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nonthermal electron energy distribution derived by Dulk (1985), δ = (1.22 - α)/0.9.

The result is shown in Figure 2.11. We also show δ derived from HXR, which were

calculated by Milligan et al. (2014), assuming a collisional thick-target model with a

power-law electron spectrum at higher energies (Milligan et al. 2014). Blue vertical

lines indicate HXR peak times. We see that the δ for HXR is around 5 ∼ 7, and δ

for MW is around 2 ∼ 3. The difference between them is about 3 ∼ 4, which is much

larger than the result found by the statistical study of Silva et al. (2000) (0.5 – 2).

Their study also shows that the mean value of δ for HXR is 5.8 ± 0.8, and that for

MW is 4.8 ± 1.0. Therefore, this seems to indicate that the MW indices we found

may be harder than usual by 1 ∼ 2 in this scenario.

Figure 2.11 Time profile of electron spectral indices inferred from the MW
observations. The electron power indices inferred from the HXR observations,
calculated by Milligan et al. (2014), are also plotted. Blue vertical lines indicate
time of identified HXR peaks.
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2.4.3 Time Delays Between HXR Peaks and MW Peaks

As mentioned in the Introduction, in addition to the correlation between MW and

HXR time profiles, it has been observed that MW peaks sometimes lag HXR peaks.

We conducted an analysis on this aspect as well. Table 2.1 summarizes the delay

time of MW 9.4 GHz and 17 GHz peaks respect to the corresponding HXR peaks.

Note that, for peaks 5 and 6, we conclude that there are virtually no delays between

HXR and either MW frequency, since delays are smaller than 2σ. We would also omit

analysis for peak 2 since HXR signal for this peak involves two visually distinguishable

spikes, which poses a problem in our method of determining the peak time and its

uncertainty (see Section 2.3.1).

Summarizing other peaks (1, 3, 4, and 7), we found that the MW peaks are

delayed relative to the corresponding HXR peaks by 1.9 to 3.0 s, with uncertainties

less than 1 s. We interpret this result in light of the results on the spatial analysis

we conducted in previous sections. In previous sections, we showed that, in both

HXR and MW, there were two different emission sources. Since HXR and MW

source locations were observed to be close to each other, we concluded that there

were two different magnetic reconnection sites responsible for emission in both HXR

and MW. Although peak 1 shows MW and HXR sources that are not spatially

coincident (Figure 2.5), their close similarity of time profile suggests that MW and

HXR emissions are closely connected, so we include it in the analysis. Thus, we

compared delays among peaks 1, 3, 4, and 7. As seen in Table 2.1, since each

delay is within the error bars of the others, it is hard to draw conclusions about

any correlations between delays and other parameters such as MW energies, the peak

X-ray or MW flux, or their ratio. Note, however, that at 9.4 GHz, the delay for peaks

in the second source (peaks 3, 4 and 7) seems to increase toward later peaks. This

corresponds to the general flux increase toward later peaks, seen most prominently

at 9.4 GHz, and also seen in 17 GHz and 35 GHz (see Figure 2.2 peak 7 is the
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strongest peak observed at ∼ 01:55). This correlation is explicable in terms of the

idea introduced by Gary & Tang (1985), that the delay time of MW respect to HXR

can be a result of the longer trapping time of MW producing electrons compared

to that of HXR signal. To test this, we calculated the decay times of the 17 GHz

MW signal at peak 3, 4, and 7 (by fitting each curve to simple exponentially decay

function for few seconds after the peak) to be 6.05±1.29, 8.49±1.22, and 27.5±3.55

s, respectively, which increases toward later peaks, but the decay time of peak 7

is clearly strongly influenced by blended temporal peaks, and so is unreliable. To

summarize, our investigation of delay times shows MW delayed with respect to HXR,

but relative delay and decay times do not show a clear pattern in this event, due

primarily to the breadth of the peaks, which produces relatively large uncertainties.

2.5 Discussion and Conclusion

The comprehensive observations of the 2011 February 15 X2.2 flare provide an unique

opportunity to investigate the properties of accelerated flare electrons. Besides

coordinated coverage in both MW and HXR imaging spectroscopy that are not often

available, this event has multiple emission peaks, allowing us to investigate possible

different magnetic reconnection and particle acceleration processes associated with

the individual peaks. We obtained two major results in this study.

(1) We investigated time delays of MW peaks in respect to HXR peaks.

Although this delay was found in several previous studies (e.g., Cornell et al. 1984;

Gary & Tang 1985; Silva et al. 2000), our study allows a closer examination of such

delay in the multiple peaks of a single event. We found that the MW lags HXR (50

– 75 keV) by 1.9 to 3.0 seconds, with an uncertainty below 1 second. We also found

that this delay is not related to other parameters: the delay is similar for different

MW frequencies, such as in 9.4 and 17 GHz; the delay does not depend on the peak

flux or power index of the HXR and MW emissions; there is no difference in the
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delay for the two flare stages that will be discussed in our second result below. Our

study does not provide additional information beyond the existing explanation of the

delays such as the concept of trap-plus-precipitation, and differences in the energy

range of electrons that produces MW and HXR, as we discussed in the Introduction

Silva et al. (2000).

(2) Applying image de-convolution techniques, we identified source locations

of each peak in both HXR and MW. HXR and MW basically evolve with similar

patterns. We found two distinct phases of the emissions, the first stage with one

emission peak, and the second stage containing 5 remaining peaks. The source

morphology and location change substantially between these two stages. Therefore,

we postulate that, in this flare, there are two distinct magnetic reconnection sites

that produced HXR and MW emissions. For HXR, we found that there is a sharp

transition in a time duration as short as 30 seconds between the two stages. For

MW, it is interesting to note that the first source does not immediately disappear. In

fact, it remains at a site of MW emission until the last, strongest peak starts. This

may be related to the result (1) concerning the trapping of electron that delays MW

emissions.

It is important to understand the physical mechanisms of the two stages of

emission. It is clear that they are associated with energy release in two different

sites. Within each stage, the sub-peaks seem to be at the same sites. Therefore,

there must be two different groups of magnetic fields that are reconnected at the two

stages. Wang et al. (2012) showed that the development of this flare can be explained

by the tether cutting scenario originally proposed by Moore et al. (2001). Inoue

et al. (2014) has performed a data-driven MHD simulation for this specific event, and

they identified two clear stages of magnetic reconnection, consistent with the tether

cutting scenario as well. Our observation also seems to support the tether-cutting

scenario, perhaps with with some variation, as explained in the following. In the
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tether cutting scenario, a flare occurs in two stages, starting from the quadrupolar

loop configuration. In the first stage, two J-shaped loops reconnect to form a set

of two new loops, one small loop falling down toward the surface and another large

loop erupting away from the surface. In the second stage, the erupting large loop

cuts through the arcade fields as it rises, reconnecting as it meets new, larger loops.

Wang et al. (2012) observed four HXR footpoints that can create two J-shaped loops,

and their conjugate ends correspond to the peak 3 HXR double-footpoint sources we

observed. They observed an increase in horizontal magnetic field strength in the area

between these double-footpoint sources, which was interpreted as the evidence for the

first stage of the tether cutting (a collapsing small loop was formed between these

double-footpoint, increasing the horizontal magnetic field strength). Our observation

seems to indicate that this ”first stage” occurred at peak 2 as well. The schematic

pictures explaining our version of the tether cutting scenario are shown in Figure 2.12.

In Figure 2.12, the red circles indicate the HXR double-footpoint sources observed

at peak 2 and the green circles indicate the HXR double-footpoint sources observed

at peak 3. The yellow circles indicate the two remote footpoint sources that were

observed by Wang et al. (2012) (we observed one of them as well, see Figure 2.3 or

2.5). The purple lines indicate the suggested flaring loops. The AIA 94 image taken at

pre-flare time, 01:47:14 UT, is shown in (d) for comparison. The blue stars in (a) and

(b) indicate the two different reconnection sites. We propose the following scenario

for the development of this flare. First, a reconnection occurs between loop 1 and loop

2, leaving a small loop between red circles and a large loop between northern green

circle and western yellow circle. This corresponds to peak 2, where HXR is emitted

from the locations corresponding to two red circles and western yellow circle, and

MW is emitted from the small loop formed between two red circles. Next, a second

reconnection occurs between the large loop formed in the first reconnectoin and loop

3. This leaves a second small loop between two green circles and also a second large
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loop between two yellow circles. This corresponds to peak 3, where HXR is emitted

from the locations corresponding to two green circles and western yellow circle, and

MW is emitted from the second small loop between two green circles. After peak 3,

MW emission continues from the second small loop (and the first small loop). For

HXR, the second large loop formed in peak 3 rises and cuts through the arcade fields,

leaving the footpoint emissions through peak 4 to 7. This interpretation is based on

the fact that we see the eastern HXR double-footpoint sources move around - along

and away from the flare ribbon - as the flare progresses beyond peak 3 (see Figure

2.5). On the other hands, MW sources after peak 3 show almost no movements, which

suggests to us that the emission was coming from relatively stable loop. Our scenario

basically follows what was already proposed by Wang et al. (2012), but has a slightly

new detail because of the additional sources that were observed simultaneously in

HXR and MW at peak 2, before the first stage claimed by Wang et al. (2012). It

suggests to us that, at least for this flare, the first stage of the tether cutting may

have been temporally and spatially distributed.

We also estimated the sizes of flaring loops based on the HXR and MW

observation. From HXR observation, the height of the loop at peak 3 is about 4,300

km (semi-circular loop shape assumption). For the same peak, MW emission is

generated at the height of approximately 10,000 to 20,000 km (assuming that the

projection effect is displacing the true source location 5 – 10 arcseconds). According

to the simulation results by Inoue et al. (2014), the height of the top of the ascending

loop at the time equivalent to right after the peak 3 in our study is approximately

21,600 km. These approximation roughly fits to our proposed scenario, that (at peak

3) the small loop left behind after the first stages of the tether cutting became the

source of HXR emission at its footpoints, and the large loop that was newly formed

started to erupt. Meanwhile, MW was emitted from the height between the small

loop and the erupting loop - possibly from the top of the small loop.
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Figure 2.12 The schematic pictures demonstrating the suggested geometry of the
flaring loops based on the analysis of HXR and MW sources. (a) and (b): The
scenarios for peak 2 and 3, respectively. The red circles correspond to the western
HXR double-footpoint sources at peak 2, the green circles correspond to the eastern
HXR double-footpoint sources at peak 3, the purple lines correspond to the suggested
flaring loops, and the yellow circles correspond to two of the footpoint sources that
were observed by Wang et al. (2012), which were expected in their quadrupolar loop
configuration. The blue stars indicate possible reconnection sites. (c): Top view of
the suggested loop configuration. (d): AIA 94 image taken at pre-flare time, 01:47:14
UT. See texts for details.
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Finally, our observations address the asymmetry between MW and HXR sources

that was discussed by Sakao et al. (1996) and Wang et al. (1995). Those authors found

that high-frequency MW sources tend to be located in strong magnetic field regions,

while HXR are weaker there due to reflection of precipitating electrons by converging

fields. Instead, HXR sources are stronger at weaker field regions, where MW are

not as efficiently produced at high frequencies. Analyzing the magnetic structure of

the AR, we found that all MW sources exhibit a gradient in degree of polarization,

with the greater degree of polarization on the negative polarity side of the source.

Since the NoRH maps show the sources to be located entirely on the positive-polarity

side of the PIL, we believe that the true location of the radio sources should be

5-10 arcseconds north of where they appear, but are shifted southward due to the

uncertainty in NoRH position calibration and/or by the projection effects. Since we

found the stronger HXR sources to be on the positive-polarity side of the PIL, shifting

the MW sources north would also result in consistency with the Sakao et al. (1996)

and Wang et al. (1995) results. Our study would further motivate the modeling in two

areas: the modeling of both HXR and MW emission based on the input accelerated

electron distribution, and the modeling of the acceleration process of electrons during

the magnetic reconnection.



CHAPTER 3

THREE-DIMENSIONAL FORWARD-FIT MODELING OF THE

HARD X-RAY AND THE MICROWAVE EMISSIONS OF THE

2015-06-22 M6.5 FLARE

In this study 2, we conduct the simultaneous modeling of HXR and MW emission

motivated by the first study introduced above. We closely examine the well-

established notion of a “common population” of the accelerated electrons simulta-

neously producing the HXR and the MW emission during the flare impulsive phase,

which has been challenged by some studies reporting the discrepancies between

the two observations, as introduced in Chapter 1. The traditional methods of

their spectral inversion have some problems that can be mainly attributed to the

unrealistic and the oversimplified treatment of the flare emission. To properly

address this problem, we use a Non-linear Force Free Field model extrapolated

from an observed photospheric magnetogram as input to the three-dimensional,

multi-wavelength modeling platform GX Simulator, and create a unified electron

population model that can simultaneously reproduce the observed HXR and MW

observations. We model the end of the impulsive phase of the 2015-06-22 M6.5 flare,

and constrain the modeled electron spatial and energy parameters using observations

made by the highest-resolving instruments currently available in two wavelengths, the

RHESSI for HXR and the EOVSA for MW.

3.1 Introduction

It has been recognized that MW emission and HXR emission observed during

impulsive phases of solar flares show very similar temporal behaviors (White et al.

2This chapter is based on the following paper: Kuroda, N., Gary, D. E., Wang, H.,
Fleishman, G. D., Nita, G. M., & Jing, Ju., “Three-dimensional forward-fit modeling of the
hard X-ray and the microwave emissions of the 2015-06-22 M6.5 flare”, The Astrophysical
Journal, under preparation
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2011, and references therein). This signature in general suggests that these two

emissions, although observed in very different spectral windows, are produced by a

common population of particles under a process of energization during the impulsive

phase of solar flares. The dominant emission mechanism in the two wavelengths is

likely to be different; the HXR emission is produced by bremsstrahlung and the

MW emission is mostly produced by gyrosynchrotron radiation. The former is

produced when high-speed electrons lose energy by collisions with more-stationary

targets within the ambient plasma, producing photons with HXR energies. Thus

the HXR emission is mostly dependent on and tells us about the ambient plasma

density at flare site and the energy of accelerated electrons that collide with them.

The latter is produced when moving electrons are deflected by the Lorentz force in

the magnetized plasma. Thus the MW emission is mostly dependent on the energy of

mildly relativistic electrons, and the strength of magnetic fields around which these

electrons gyrate; i.e., the magnetic field strength at the flare site.

Considering the two emission mechanisms, one may assume that the two

observations should converge to the same energy spectrum for the accelerated

electrons, and in some simple (single-loop) flares, this is the case (e.g., Fleishman et al.

2016b). However, there is a record of observations that seems to suggest otherwise;

the indices of nonthermal electron energy spectra inferred from HXR and MW

observations are different (Kundu et al. 1994; Silva et al. 2000). Generally, the studies

that found a difference between the HXR-inferred electron energy spectral index and

the MW-inferred electron energy spectral index found that the latter is harder than

the former by ∼2 (Kundu et al. 1994; Silva et al. 2000). Some suggest that considering

two different electron energy distributions residing in different energy range (i.e., there

is a break in the spectrum) could solve this problem, since MW-emitting electrons are

thought to have higher energy than those emitting in HXR (Takakura 1972; Kundu

et al. 1994). There are some difficulties with inferring the electron energy spectrum
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from the observed HXR and MW spectrum, however. On the observational side, flares

that enable us to invert the observed HXR photon spectrum to the electron energy

spectrum extending above a few hundreds of keV are relatively large (e.g., high M-

or X-class flares), and large flares complicate the HXR spectral inversion because the

thermal part of the HXR spectrum dominates the nonthermal part at lower energies,

sometimes up to 30 keV or higher. There have been some observations of giant

flares showing the HXR photon spectrum extending to several hundreds of keV, but

the results are mixed regarding the possible break in electron energy spectrum from

event to event; the 1980 June 4 event introduced in Dennis (1988) showed a hardening

break of ∼2 at ∼300 keV in the HXR photon spectrum spanning from ∼20 keV to

∼20 MeV, while 2002 July 23 event observed by the Reuven Ramaty High Energy

Solar Spectroscopic Imager (RHESSI) from 250 keV to 8.5 MeV did not show such

a break (White et al. 2003; Smith et al. 2003). For MW, the frequency resolution

of most of the instruments that record the total solar radio intensity spectrum has

been limited, and it has been sometimes difficult to determine an accurate turnover

frequency, resulting in uncertainties in the spectral index of the optically thin part of

the MW spectrum that is used to determine the nonthermal electron energy spectral

index (Kundu et al. 1994; White et al. 2003; Kundu et al. 2009). The difference in

the source locations of HXR and MW emissions (footpoint and/or above-the-loop-top

for the former, whole-loop and/or footpoint for the latter) further complicates the

simultaneous analysis. On the modeling side, for MW, inverting the electron energy

spectrum from the observed MW spectrum has in the past been oversimplified for

quantitative analysis. Therefore, the shape of the energy spectrum of the common

population of electrons producing HXR and MW could be different from event to

event, and whether or not it has a break at some energy remains inconclusive.

In this study, we create one unified multi-loop electron population model that

can simultaneously reproduce the observed HXR and MW images and spectra at one
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point in time during a flare. Unlike many previous studies, we use a realistic three-

dimensional magnetic field cube based on magnetic field measurements, positioned at

the actual location of the active region at the time of the observation. We constrain

the model by using observations from the highest-resolving instruments available in

both HXR and MW wavelengths. In Section 3.2, we introduce these instruments and

the HXR and the MW observations obtained from them. In Section 3.3, we introduce

the modeling platform and the work flow of our simulation for the flare. In Section

3.4, we present the results of the simulation, with quantitative parameters of the

electrons. In Section 3.5, we discuss what the results suggest in terms of the spatial

and the energy distributions of high energy electrons in the flare.

3.2 Data

3.2.1 Instruments

In this study, we use four observational data sources to constrain the HXR and

MW emission model: HXR images, HXR spatially integrated spectrum, MW image,

and MW spatially integrated spectrum. We also employ an observation-based

three-dimensional magnetic field model. For X-ray images and HXR spatially

integrated spectrum, the data from RHESSI are used. For this study, the collimators

2 and 4 were excluded due to their insensitivity to below ∼20 keV and the lack

of segmentation, respectively, and the sensitivities of all the other collimators were

lowered to as low as 76 % of the launch value (the lowest being the collimator

1). The MW data are taken from the newly expanded solar-dedicated radio array

the Expanded Owens Valley Solar Array (EOVSA). Formerly known as OVSA

(Owens Valley Solar Array), EOVSA is currently being commissioned to have the

unprecedented imaging spectroscopic capability in frequency range of 2.5-18 GHz at

more than 300 frequency channels, with the spatial resolution of ∼60 arcsec/νGHz

(finest 3.3 arcsec at 18 GHz), 1-s time cadence, and four polarizations. At the time

of the event used for this study, EOVSA was recording total radio flux intensity and
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cross-correlated amplitudes from nine baselines from seven antennas. We used the

total intensity MW spectrum (spatially integrated spectrum at 171 frequency channels

within 2.5-18 GHz), and the relative visibilities calculated from the cross-correlated

amplitudes as a spatial constraint replacement for images, which were not available

yet.

The cross-correlated amplitudes from a baseline can be converted into one-

dimensional relative visibility spatial information to determine the characteristic

source size in the direction of the baseline orientation, assuming a simple Gaussian

source shape. We use the following relationship (see Appendix for derivation):

ln(VRel) = ln(
aij√
aiiajj

) = −8.393× 10−11B2
λd

2 = −9.325× 10−14B2
cmd

2f 2
GHz (3.1)

where aij is the cross-correlation amplitudes from the baseline consisting of antenna

i and j, aii and ajj are the auto-correlation total power amplitudes from antenna i

and j, respectively, Bλ is the projected baseline length in number of wavelength, d

is the one-dimensional characteristic source size in arcseconds, Bcm is the projected

baseline length in cm, and fGHz is the observing frequency in GHz. Note that,

with this definition, VRel is independent of calibration because antenna-based gains

cancel within
aij√
aiiajj

. This shows that if the plot of ln(
aij√
aiiajj

) vs. B2
λ shows a linear

dependence with a negative slope, then the one-dimensional characteristic source size

can be estimated by a simple relationship. The steeper the slope, the larger the

source size in the direction of that baseline’s orientation. In reality, the source could

be elongated more in one direction than another. Such size variance will be projected

onto the baselines with different orientation angle; the relative visibility plots from

different baselines with different orientations can reveal the characteristic source size

in different directions. At the time of the event for this study, the prototype correlator

was not producing valid auto-correlations. Therefore, we used the cross-correlated
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amplitudes from the shortest baseline as a proxy for auto-correlated total power

amplitudes for each baseline (i.e.,
√
aiiajj ∼ a12 where antenna 1 and antenna 2

constituted the shortest baseline within the array). The length of this baseline at

the time of the observation was Bλ ∼508 at the highest frequency (18 GHz), which

yields the minimum fringe spacing of ∼400 arcseconds. This is confirmed to be well

above the size of the target active region, which means that this baseline should

not be resolving any flaring sources. Therefore, the cross-correlated amplitude from

this baseline can be used as a good approximation for the total power from each

antenna, although this approximation now has the disadvantage that VRel is no longer

independent of calibration.

For the magnetic field model, we used the Non-Linear Force Free Field (NLFFF)

model extrapolated from the SHARP Active Region Patches Cylindrical Equal Area

(CEA) photospheric vector magnetogram from Helioseismic and Magnetic Imager

(HMI; Schou et al. 2012) on board the Solar Dynamic Observatory (SDO; Pesnell

et al. 2012) (available every 12 minutes). The net force and torque in the observed

photospheric field are first minimized by a preprocessing procedure in order to obtain

the chromosphere-like data that meets the force-free condition (Wiegelmann et al.

2006); for advantages in disadvantages of this approach, see Fleishman et al. (2017).

The weighted optimization method (Wheatland et al. 2000; Wiegelmann 2004) is

then applied to the preprocessed photospheric boundary to perform the NLFFF

extrapolation within a box of 256× 180× 200 uniform grid points, corresponding to

∼ 230×160×180 Mm3. The performance of the extrapolation was verified by visually

comparing the model field lines with the 171Å channel images from Atmospheric

Imaging Assembly (AIA; Lemen et al. 2012) on board the SDO.
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3.2.2 Observations

In this study, we analyze a well-observed M6.5 flare that occurred on 2015 June 22

(Jing et al. 2016; Liu et al. 2016; Wang et al. 2017). The flare started around 17:50

UT, and reached the Soft X-ray (SXR) peak (1.0-8.0 Å channel of Geostationary

Operational Environment Satellite (GOES) X-ray monitor) at around 18:23 UT, and

subsided to background level at around 02:00 UT on the next day. Figure 3.1 shows

the lightcurves from GOES, RHESSI, and EOVSA for this flare from 17:36 UT to

18:43 UT. There were two precursors at around 17:24 UT and 17:42 UT (only the

latter is shown in Figure 3.1) (Wang et al. 2017). The parent active region 12371 was

located at N13W06 at the time of the flare.

Figure 3.1 Lightcurves from GOES (top), RHESSI (middle), and EOVSA (bottom)
for 2015-06-22 X6.5 flare. RHESSI’s data gap is due to its passage through the South
Atlantic Anomaly. The vertical red line indicates 18:05:32 UT, the time at which the
simultaneous modeling of HXR and MW observations was conducted. The drop in
the RHESSI lightcurve at ∼18:27 UT is due to the spacecraft’s night time.
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As seen in Figure 3.1, RHESSI missed most of the impulsive phase of the flare

due to its passage through the South Atlantic Anomaly (SAA). However, EOVSA

coverage during this period shows multiple sharp peaks leading to GOES SXR

maximum. In this study, we must choose a time covered by both RHESSI and EOVSA

for the model, and since HXR images are crucial in this modeling, as will be shown

in the later section, we chose the earliest time at which RHESSI’s HXR 25-50 keV

lightcurve showed the peaky behavior after the spacecraft came out of SAA. This was

18:05:32 UT, which is indicated by the red vertical line in Figure 3.1.

Figure 3.2(a) shows RHESSI image contours (50, 70, 90 %) in 6-12, 20-35, and

50-75 keV obtained at 18:05:32 UT, integrated over 2 minutes, reconstructed with

the CLEAN algorithm, overplotted onto the HMI line-of-sight (LOS) magnetogram

taken at 18:04:26 UT. The image shows clear double footpoint emissions in 50-75

keV rooted at regions of opposite magnetic field polarity. The region joining these

footpoints is filled by a 6-12 keV source, presumably coming from the loop filled with

heated chromospheric plasma, although it cannot be determined if this loop is footed

exactly at the 50-75 keV sources. The intermediate-energy 20-35 keV image shows an

interesting morphology; two of the sources are nearly co-spatial with the 50-75 keV

footpoint sources, but one is located between them, giving the appearance of three

sources tracing out one loop that connects them. The centroid of this middle 20-35

keV source and the centroid of 6-12 keV source (the center of its northwestern bulge)

seems to be slightly shifted, and since there seems to be no region of strong magnetic

field corresponding to the location of the middle 20-35 keV source (in contrast to the

case of 50-75 keV source), we interpret this source as the so-called above-the-loop-top

(ALT) HXR source (e.g., Masuda et al. 1994). We estimated the difference between

the centroid of this source and the centroid of the 6-12 keV source based on the

field line geometry of the NLFFF extrapolation model, and found that it is about

20,000 km. This is in agreement with past studies that measured the size of the
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current sheet formed between coronal HXR source and thermal looptop source in

the flare of similar magnitude (M1.2, 17,500 - 33,000 km; Sui & Holman 2003).

It is possible that this source is a thermal source, and we will briefly discuss the

variation in the model corresponding to this interpretation in later section (Section

3.4.3). Figure 3.2 (right) shows the background-subtracted (background time range

was 17:11 - 17:18 UT) RHESSI HXR photon spectrum created by the Object Spectral

Executive (OSPEX; Schwartz et al. 2002) software, integrated over 8 seconds centered

at 18:05:32 UT. The spectral fit was done using OSPEX, with a single-temperature

thermal bremsstrahlung radiation function (“vth”) and the instantaneous nonthermal

bremsstrahlung with an isotropic pitch-angle distribution (“thin2 ”). The fitted

parameters and goodness-of-fit value are listed in Table 3.1.
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Figure 3.2 (a) RHESSI CLEAN image contours (integrated over 2 minutes) at
18:05:32 UT, overplotted onto the HMI LOS magnetogram taken at 18:04:26 UT. (b)
RHESSI HXR photon spectrum taken at 18:05:32 UT, accumulated over 8 seconds
using the front-end of collimators 3, 5, 7, and 8. The background was taken from 17:11
UT to 17:18 UT. The spectral fit was done combining vth and thin2 functions in 12-76
keV (dashed lines), to obtain the instantaneous electron flux density distribution. The
goodness-of-fit value was 1.81, with the normalized residuals plotted at the bottom.
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Table 3.1 The Summary of the OSPEX Fitted Parameters for the Photon
Spectrum Taken At 18:05:32 UT, With vth + thin2

Parameter Values

Emission Measure (vth) 1.3× 1049 cm−5

KT (vth) 2.0 × 107 K

Normalized flux density 2.4× 1055 cm −2 s −1

Ecutoff 22.1 keV

δ1 3.6

Ebk 291.1 keV

δ2 6.5

Emax 32,000 keV

χ2 1.81

Figure 3.3 (bottom) shows the background-subtracted (background’s time range

was 17:47:43 UT - 17:48:33 UT) MW total intensity spectrum taken from EOVSA at

18:05:32 UT. Figure 3.3 (top left) shows ln(VRel) vs. B2
λ plot from the longest baseline,

which is able to resolve the smallest feature among all baselines, and the top right

shows one of the shorter baselines with different orientation angle. As introduced in

the previous section, if this plot shows a linear dependence, then from the slope we

can estimate the one-dimensional characteristic source size in the direction determined

by the baseline orientation; -53 degrees for the former and 71 degrees for the latter,

clockwise from the Heliocentric-Cartesian x-axis. Note that y values above zero (at

the low B2
λ end) are not considered in the analysis for both baselines, since the
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numerator of
aij√
aiiajj

should not be larger than the denominator in general. We believe

that they are coming from the effect of dissimilar calibration at those frequencies

among four antennas involved. The longer baseline shows a linear dependence in

107 < B2
λ < 7 × 108 (corresponding to 6 < fGHz < 15, as Bλ has a one-to-one

correspondence with frequency as shown in Equation. 3.1), whose slope indicates a

size of ∼16 arcsec (the least-square fit to the range determined by eye). There seems

to be a steeper slope in lower B2
λ range, although it is difficult to determine the exact

source size because of the scatter in the data points (estimates vary between ∼20 to

∼35 arcsec depending on the fit). The plot above B2
λ ∼ 7 × 108 looks rather flat

or even increasing, which would indicate that there is a new source with competing

intensity but different characteristic size appearing above this frequency. Since such

judgment is not possible unless we extend the plot beyond the high frequency limit

of the instrument, we will not use this part of the relative visibility plot for the

observational constraint for our model. The shorter baseline also shows a relatively

straight slope in 400, 000 < B2
λ < 1, 500, 000 (8 < fGHz < 15), which is calculated

to have the size of ∼27 arcsec. In summary, these two plots tell us that our target

source has a simple east-west elongated shape from ∼8 to ∼15 GHz, and perhaps

slightly larger size in . 6 GHz in -53 degree direction.

3.3 Simulation Platform and Workflow

As mentioned in the Introduction, in this study we create a sophisticated 3D

model that places within a realistic three-dimensional magnetic field data cube a

set of electron populations that reproduce observed HXR and MW emissions. The

simulation platform we use is the GX Simulator (Nita et al. 2015). It is an IDL-based,

graphical-user-interface (GUI) platform which has a highly diverse functionality of

which we employ here the following.
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Figure 3.3 Top: EOVSA’s ln(VRel) vs. B2
λ plot calculated from the cross-correlated

amplitudes taken from the longest baseline (left) and one of the shorter baselines
(right) that were available on 2015, Jun. 22. The straight negative slope can be used
to calculate the characteristic source size in the direction of the baseline orientation (θ,
clockwise from the Heliocentric-Cartesian x-axis). Note that y values above zero are
not considered in the analysis (see Section 3.2.2). The red lines are the least-squared
fits to the ranges of B2

λ determined by eye (each corresponding to 6 < fGHz <
15 and 8 < fGHz < 15, respectively, as Bλ has a one-to-one correspondence with
frequency). d is the one-dimensional characteristic source size calculated from those
fitted slopes. Bottom: EOVSA background-subtracted total intensity spectrum plot
taken at 18:05:32 UT.
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First, we import an externally-defined NLFFF magnetic field model into the

simulator. Then, we investigate the magnetic field topology and create magnetic

flux tubes using the observed HXR images for guidance. This flux tube construction

process is an iterative process, and we try to find the magnetic field model that

contains the field lines that best connect the observed HXR sources. After several

trial-and-error iterations, we selected the model cube extrapolated at 18:24 UT. The

models at other times, for example, the one at 18:00 UT, had too much shear in the

overall field line geometry, and we could not obtain the desired source connectivity.

Since 18:24 UT is later than our modeling time (18:05:32 UT), this cube must

contain more post-reconnection loops, which should be more suitable for modeling

MW emissions that presumably come from trapped electron populations. The flux

tubes are developed using these central guiding field lines.

Next, we populate the flux tube with thermal and nonthermal populations of

electrons, defined to have the required spatial and energy distribution functions.

Here, the spatial distributions of the electrons are assigned based on the observed

HXR images in Figure 3.2(a), and the energy distribution functions are assigned

guided by the OSPEX’s spectral fit to the observed HXR spectrum in Figure

3.2(b). The simulator allows users to define the electron spatial distribution functions

independently for thermal and nonthermal electron populations. For particle energy

distribution, the simulator provides a predefined list of well-known functions such as

thermal-plus-single-power-law, thermal-plus-double-power-law, Kappa, and others, as

well as the choices of pitch-angle distribution such as isotropic, exponential loss-cone,

Gaussian loss-cone, Gaussian, and a generalized Gaussian (full list provided in

Fleishman & Kuznetsov 2010; Nita et al. 2015). The simulator also has an ability to

define chromospheric layers with parameters such as plasma density, temperature,

and depth. For this study, the energy distribution for each of the electron

populations were taken from the RHESSI spectral fit that was introduced in Section
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3.2.2, which is a thermal-plus-double-power-law consisting of single-tempearture

thermal bremsstrahlung and the instantaneous nonthermal bremsstrahlung radiation

functions. The thermal and nonthermal parts were appropriately assigned based on

our interpretation of the nature of the observed sources.

Then, we generate 2D HXR and MW images and spectra through calculations

using internal codes. The simulator’s HXR code calculates the observable flux of

HXR photons at 1AU by summing the combination of thermal and nonthermal

bremsstrahlung radiations from each voxel. The thermal part of the X-ray code

calculates the total bremsstrahlung power radiated from the plasma with a single

temperature T , taking into account collisions with hydrogen and other atoms, free-free

and free-bound transitions, and various line emissions (Schwartz et al. 2002). The

nonthermal code uses the instantaneous bremsstrahlung expression for each voxel of

the volume:

I(ε, ~r) =
np(~r)V

4πR2

∫ ∞
ε

Q(E, ε)F (E,~r)dE (3.2)

where R is 1AU distance, V is the volume of the voxel, ε is photon energy, F (E,~r)

is the electron flux density distribution over energy in the given voxel, and Q(E, ε) is

the angle-averaged bremsstrahlung cross-section introduced by Haug (1997). Then,

provided that the HXR emission is optically thin, the individual contributions are

added up along the LOS to form a set of HXR images at various energies. The emission

can then be integrated over the image to yield the total power HXR spectrum for

comparison with Figure 3.2(b). Currently, the HXR code only calculates electron-ion

bremsstrahlung and does not account for Compton scattering or photoelectric

absorption of HXRs in the solar atmosphere, with the latter known to produce

a broad hump on the photon spectrum around 30-50 keV (Bai & Ramaty 1978).

Also, since the nonthermal code calculates the instantaneous bremsstrahlung (i.e.,
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thin-target model), it cannot self-consistently model the injection spectrum of the

energetic electrons predicted by the thick-target flux model. We note, however, that

the nature of the simulator allows us to model each type of the observed HXR sources

separately, while in the observation and the subsequent spectral forward-fitting, we

are not spatially resolving the sources. Therefore, we expect that the final model

consists of a mixture of the thin- and the thick-target bremsstrahlung, and only

for the case where we are modeling the source solely produced by the thick-target

bremsstrahlung, we will give the proper modification to that modeled electron spectral

index accordingly.

The simulator’s radio emission code is based on the fast gyrosynchrotron

(GS) algorithm developed by Fleishman & Kuznetsov (2010), which accounts for

GS and free-free radio emission and absorption in a thermal plasma (e.g., Razin

effect is included) within the modeled cube (vacuum outside). The fast GS code

is a generalization of a numerical Petrosian-Klein (PK) approximation of the exact

GS equations, which is more precise than that approximation and also valid for an

anisotropic pitch-angle distribution. It can reproduce discrete harmonic structures

at low frequency if requested by the user, or averages over them otherwise. The 2D

image at a given frequency is calculated by solving the radiative transfer equation

along the LOS, and it includes frequency-dependent mode coupling in addition to

emissivity and absorption.

Lastly, we compare simulated HXR and MW images and spectra with the

observed images and spectra. The simulator has an ability to convolve the pixelated

2D model image with a user-defined point-spread-function/beam, which enables the

user to directly compare the model images to the observed images that go through

instrumental responses. For HXR, the model images are convolved with a Gaussian

point-spread-function with FWHM of 6.79 arcseconds, according to the nominal

FWHM resolution of the finest resolving collimator that was used to reconstruct the
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observed RHESSI image (collimator 3). For MW, the model visibility was obtained

by convolving the visibility of the pixelated model image from the simulator with

the sampling function of the EOVSA array at the modeling time. We fine-tune the

model in HXR first, and then in MW. The HXR model images and spectra are first

created and tested against the observed HXR emission spectra and images. After

fine-tuning this HXR-constrained model, we use it to produce the model MW images

and spectra, which are later tested against the observed MW images and spectra.

This MW-constraining step requires another fine-tuning in MW, which alters the

match obtained in the HXR fine-tuning, so another HXR fine-tuning is run again,

and so on. We iterate these fine-tunings several times to converge to the unified

model that can simultaneously reproduce the observed HXR and MW images and

spectra. During the fine-tuning process, most of the initial parameters (both spatial

and energetic) can be modified to obtain the best match with the observations, but

emission measure is constrained by comparing the emission measure calculated by the

simulator (the square of thermal particle density integrated over the model volume)

with the emission measure calculated from the OSPEX “vth” function. This workflow,

which is based on the framework introduced by Gary et al. (2013), is illustrated in

Figure 3.4.

3.4 Model Construction

3.4.1 Constraining in HXR

As the first step in this modeling workflow, we created three flux tubes to reproduce

HXR emission in three different energy channels, guided by the RHESSI HXR images.

We could not reproduce all observed sources with a one or two-loop model because

the field line rooted in the 50-75 keV footpoint source locations did not trace out the

6-12 keV source nor cross the 20-35 keV ALT source.

Figure 3.5 shows each flux tube and their respective thermal and nonthermal

populations. Note that we will be representing the non-ALT 20-35 keV source by the
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Figure 3.4 The diagram illustating the workflow of the simulation in this study,
based on the framework introduced by Gary et al. (2013).
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footpoint emissions from the flux tube representing 50-75 keV sources, since they are

spatially close to 50-75 keV footpoint sources in RHESSI image and creating another

loop footed at the non-ALT 20-35 keV sources will overcomplicate the model. The

first flux tube, in Figure 3.5 (a), is the one representing the 6-12 keV source, lying

low in the corona with the apex height of ∼8,200 km from photosphere, filled with

the thermal population slightly concentrated at the looptop. We note that it was

necessary for us to choose such a low-lying structure based on the observed 6-12 keV

image; any field lines higher than the selected field line resulted in the misorientation

of the model source compared to the observed source. We call this loop “Thermal-only

loop”. For the thermal population, we kept the temperature predicted by OSPEX

(20 MK), but altered the density distribution to match the observed source shape,

adding one Gaussian function centered slightly off from the looptop to the uniform

distribution. Then, we fine-tune the density so that the emission measure calculated

from the simulator becomes equal to the one predicted from OSPEX. As a result, we

found that the thermal population has a density of 1.1 ×1011 cm−3 at the bottom

and 1.6 ×1011 cm−3 at the top of the loop. We assign this flux tube zero nonthermal

particle, assuming that this loop is dominated by thermal plasma from chromospheric

evaporation - an expected outcome from earlier episodes of particle acceleration.

The second flux tube, Figure 3.5(b) and (e) (middle column), is the one repre-

senting the 50-75 keV double footpoint sources, thermal electrons and nonthermal

electrons uniformly distributed along the loop with the height of ∼21,000 km from

the photosphere. Note that the HXR emission from this loop will be dominated by

footpoints even though the nonthermal electrons are uniformly distributed along the

loop, due to a dense chromospheric layer within the magnetic field cube (defined

with np = 1013cm−3, T = 3,500K, and the depth of ∼2000 km, the default values

assigned by the simulator). We call this loop “Lower loop”, and assign its thermal

populations a density of 5.0× 109 cm−3, which is the default value of the simulator,
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Figure 3.5 The magnetic flux tubes and the corresponding thermal and nonthermal
electron populations placed within NLFFF extrapolation cube taken at 18:24 UT,
based on the RHESSI image from Figure 3.2. (a) Thermal population occupying the
flux tube representing the 6-12 keV source, slightly concentrated at the top of the
loop. (b), (c) Thermal population occupying the flux tube representing the 50-75 keV
double footpoint sources and 20-35 keV ALT source, respectively. (d) The central field
lines of three flux tubes shown together within the model. (e) Nonthermal population
occupying the flux tube representing the 50-75 keV double footpoint sources. The
footpoint will be enhanced in the model HXR image, since a dense chromosphere (not
shown) will be included in the final calculation. (f) Nonthermal population occupying
the flux tube representing the 20-35 keV ALT HXR source, highly concentrated at the
top of the loop. The nonthermal population for the flux tube (a) is not shown because
this loop is assigned with extremely low nonthermal electron density, assuming that
it is dominated by thermal electrons. Note that color hues are used only for visual
purpose and are scaled individually for each plot.
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about an order of magnitude lower than the value assigned for thermal-only loop.

For the temperature, we assign 20 MK, but this value is not strictly constrained since

the emission measure is solely constrained by the thermal-only loop. We therefore

consider the allowable range for the temperature later. Its nonthermal electron

spatial distribution was defined as a single Gaussian function slightly off-centered

from the loop-top, and was fine-tuned to have 1.9 ×106 cm−3 at the top and 1.3

- 1.4 ×106 cm−3 at the bottom of the loop (slightly higher for western FP). For

energy distribution, we kept the lower cutoff energy of 22.1 keV from OSPEX, and

used the single power-law spectrum with the spectral index of 3.1 extending up to 10

MeV, in order simultaneously reproduce the observed HXR photon spectrum and the

negative spectral slope in the high frequency part of the observed MW spectrum. This

modification should be well justified since the accuracy of δ2 predicted by OSPEX is

doubful, Ebk being well above the energy range of the spectral fitting (12-76 keV).

The third flux tube, Figure 3.5(c) and (f) (right column), is the one representing

the 20-35 keV ALT source, with thermal electrons uniformly distributed (Figure

3.5(c)) and nonthermal electrons highly concentrated near the highest point of the

loop (Figure 3.5(f)), which is ∼27,300 km above from the photosphere. We call

this loop “Higher loop”. We assign the thermal population of this loop the same

parameters as the lower loop (T = 20 MK and nthermal = 5.0× 109 cm−3). However,

the density of the nonthermal electrons concentrated at the loop-top is set to be much

higher than that of the lower loop, 6.5 ×108 cm−3. This high density is required to

make the ALT source intensity competitive to the footpoint emissions produced by

the lower loop, which are innately bright due to the interaction of their nonthermal

particles with the dense chromosphere. Furthermore, we found that this dense source

has to be concentrated energetically as well, since the ALT source does not appear

at all in 50-75 keV image. This required the nonthermal energy distribution to have

a double power-law with a softening break of +3.2 at 43 keV.
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Figure 3.6 shows the comparison between the observed and the modeled image

contours in three HXR photon energy ranges, resulting from the model of these three

loops. Figure 3.7 shows their contributions (pink, blue, and green), compared to the

observed HXR photon spectrum from RHESSI (black). It is evident that the HXR

model is complete with the combination of three loops.

Figure 3.6 The comparison between the observed and the modeled image contours
(50, 70, and 90 %) in three HXR photon energy ranges. The observed image contours
are the same as Figure 3.2. The model images are produced as pixelated images by the
simulator, so they are further convolved with a Gaussian point-spread-function with
the size according to the nominal FWHM resolution of the finest RHESSI collimator
used in image reconstruction (collimator 3; 6.79 arcseconds).

3.4.2 Constraining in MW

Next, we must test this HXR-constrained model in MW. Figure 3.8 shows the

contributions from the three HXR-producing loops in MW (pink, blue, and green),

compared to the observed MW total intensity spectrum from EOVSA (black). It is

clear that the total MW emission from these three loops does not completely fill the

spectrum, especially in the low frequency part. The total area of the HXR-constrained

model is too small to reproduce the observed MW emission intensity in this region.

Therefore, we considered the existence of another flux tube and its associated electron

population that emits mostly in the low frequency MW range, but is “HXR invisible”,
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Figure 3.7 The comparison between the observed and the modeled HXR photon
spectra, with the breakdown of the contributions from each of four loops in the final
model. Grey curves are the emission from the model comprising all four loops in one
volume. The slight excess of the HXR emission from the model lower loop compared
to the emission from all four loops combined (& 40 keV) is due to the simulator’s voxel
ownership implementation, which is confirmed to be negligible (see Section 3.4.2).
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i.e., does not emit significantly in HXR. This is the last ”overarching loop” that we

investigated. This source cannot be created by a thermal population since it would

require a high density that will violate the emission measure already constrained in the

HXR simulation. Therefore, this source must be created by nonthermal populations.

For the GS emission from nonthermal particles to fill the low frequency part of the

spectrum, first, the magnetic field strength has to be relatively weak to lower the peak

frequency. Second, the nonthermal particle density may be relatively low since it is not

detected in HXR. Consequently, third, the area of the source must be relatively large

in order to compensate the deficit created by such low particle density. Considering

all of these conditions, we created a flux tube that is located above the HXR emitting

loops and has ∼10-12 times larger volume than the two other nonthermal loops.

Figure 3.9 shows our final four-loop model that includes HXR-constrained three loops

and MW-constrained overarching loop. We initially assigned to the overarching loop

the identical thermal particle population as the other two loops (T = 20 MK and

nthermal = 5.0 × 109 cm−3). Fine-tuning this model loop requires the use of the

relative visibility plots from Figure 3.3, and after several iterations (including the

second fine-tuning in HXR, in both images and spectrum), we obtain a nonthermal

population that has the density of 5.7 ×106 cm−3 concentrated at the intermediate

height of the loop, where the magnetic field is weak. The concentrated density spatial

distribution was required by the characteristic source size constraint derived from the

observed relative visibilities. The relative location of this population within the flux

tube, which is close to the three HXR-emitting loops (Figure 7, right), suggests that

this population may have been part of the population occupying the HXR-emitting

loops but was transported and was accumulated in the region of weaker magnetic

field. Its nonthermal energy distribution is found to have a spectral index of 2.0, if

we assume a single power-law, and a cutoff energy of 22.1 keV like the other two

nonthermal loops. Figure 3.10 shows the comparison between the ln(VRel) vs. B2
λ
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plots from the EOVSA observation and that calculated from the model. It is evident

that the slopes of the model plots are in reasonable agreement with those of the

observation in both baselines with different orientation angles, validating that our

model is successfully reproducing the observed source size in two different directions.

A slight size difference between the model and the observation in the shorter baseline

(right plot) is calculated to be about 4 arcseconds.

Figure 3.8 The comparison between the observed and the modeled MW total
integrated flux density spectra, with the breakdown of the contributions from each of
four loops in the final model. Grey curves are the emission from the model comprising
all four loops in one volume.

The HXR emission contribution from this loop is evidently lower than the

other two loops (Figure 3.7, yellow), and it is so compared to the lower loop

because of the difference in the plasma density of the two source regions: 1013
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Figure 3.9 The visual representation of thermal (left) and nonthermal (right)
electron populations occupying four loops found in the final model. The base image
is the HMI photospheric magnetogram taken at 18:24 UT, and the red lines are the
central field lines of four loops. The color hues are not in actual density scale. The
detailed electron parameters for each named loop are shown in Table 3.2.
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Figure 3.10 The comparison between the ln(VRel) vs. B2
λ plots from the observation

(green) and from the model (blue). The model visibility was obtained by convolving
the visibility of the pixelated model image from the simulator with the sampling
function of the EOVSA array at the modeling time. The slope of the model plot is in
reasonable agreement with that of the observation. A slight size difference between
the model and the observation in the shorter baseline (right) is calculated to be about
4 arcseconds.
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cm−3, chromosphere, for the lower loop, and 5.0 ×109 cm−3, high corona, for the

overarching loop. Compared to the higher loop, on the other hand, the emission is

smaller in the overarching loop simply due to the lower nonthermal particle density;

both populations are concentrated within the coronal part of the loop, but the higher

loop has 108 cm−3 nonthermal electrons while the overarching loop has 106 cm−3

nonthermal electrons. The modeled emission intensity from the overarching loop is

lower than the observed emission intensity by an order of magnitude or more for most

of the statistically significant energy range (less than ∼76 keV), and this may be the

reason why this source is “invisible” in HXR, as the dynamic range of RHESSI is about

10 (Saint-Hilaire & Benz 2002; Hurford et al. 2002). We note that the total emission

from all four loops combined (grey curve) is slightly less than the sum of the emission

from individual loops (other colors). This is because the model comprising all four

loops is a complex system with several loops crossing with each other, and in such

cases the simulator is designed to calculate the emission with a physically reasonable

approximation that the voxels of higher nT pressure dominate the contribution in the

total emission. In this model, the thermal-only loop is partially intercepting one of the

footpoints of the lower loop, and since the former has higher emission measure (thus

higher nT ) than the latter and has virtually no nonthermal particles, the emission

from the lower loop in the combined model is slightly suppressed in the intercepted

footpoint. This effect is also confirmed to be negligible in MW.

3.4.3 Possible Ranges of The Modeled Parameters

We now discuss the possible ranges of some of the modeled electron parameters that

were not strictly constrained in the model construction process presented above. First,

the density and the temperature of the thermal population for the three nonthermal

loops (the higher, the lower, and the overarching loops) are not strictly constrained

since the emission measure of the entire model is solely constrained by the thermal-
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only loop. We obtain the ranges for the density and the temperature by fixing one

of the two parameters at the values assigned during the model construction and

varying the other (the target parameter) until the noticible changes start to appear

in the spatially integrated HXR model spectrum or images. We separately test the

overarching loop and the combination of the lower and the higher loops, since their

effective volumes are largely different. For the combination of the lower and the

higher loops, we find the upper limit of the temperature to be ∼50 MK, at which

the thermal bremsstrahlung starts to appear in the 20-35 keV image, violating the

observation. For density, we find the upper limit of ∼ 6 × 1010 cm−3, at which the

thermal bremsstrahlung from the two loops starts to appear in the 6-12 keV images,

violating the observation. For the overarching loop, these limits are more restricted

since the emitting volume is larger, and we find the upper limit of the temperature to

be ∼ 30 MK and of the density to be ∼ 1010 cm−3. We find virtually no lower limit

for the two parameters since any emission measure values below the observational

constraint is allowed for these loops.

For the nonthermal population, the density of the higher loop and the minimum

energy of the overarching loop are not strictly constrained. For the higher loop, we

must consider the lower limit for the nonthermal density corresponding to the upper

limit for the thermal density, to keep the same level of nonthermal bremsstrahlung

emission. We calculate the lower limit to be ∼ 5.2 × 107 cm−3. The upper limit

should be that of the thermal density, ∼ 6×1010 cm −3. For the overarching loop, the

electron spectrum was modeled only in the MW range, and since the effective energy

of the MW-emitting electrons is above several hundred keV, the spectrum below this

energy cannot be strictly constrained. We obtain the more strictly constrained energy

range and the number density by testing several different values of cutoff energy and

the corresponding normalized number density. As a result, we find that at least 4
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×104 cm−3 nonthermal electrons above Ecutoff ∼ 600 keV are needed to match the

low-frequency MW observations.

Table 3.2 summarizes the spatial and energetic parameters of each loop and

their thermal and nonthermal electron populations, with possible ranges for the

unconstrained parameters discussed above shown in red. We would also like to

mention that, since this simulation is a forward-fitting simulation, there could be

other “solutions” of flux tubes that can equally reproduce the observed HXR and

MW emissions (even more than four loops). In this respect, we consider our model

to be a “minimally optimized” flux tube model, and believe that our methodology,

which starts from the construction of the model based on the HXR observation, was

the best approach in obtaining a simultaneous fit to the observational constraints

that were available for this event. Also, we coincidentally found several remote

brightenings in an AIA 1600 Å channel image taken at the modeling time that

correspond to the western footpoints of the overarching loop in our model, as seen

in Figure 3.11 (yellow arrows). This correspondence could be interpreted as the

signature of the precipitation of the nonthermal particles in the overarching loop into

the chromosphere. The fact that the brightenings appear only at the western end of

the loop may be due to the large difference in the magnetic field strength (thus the

mirror ratio) at the two ends: they are ∼2,000 G and ∼1,000 G at the eastern

and western end, respectively, and only the magnetically weaker end is allowing

the particles to precipitate through. The fact that the locations of these remote

brightenings closely match with the furthest end of the model loop strongly supports

that the size and the extent of our overarching loop is correctly representing the

actual flaring loop. For the possible variation in the HXR-constrained model, we

briefly consider how our model may vary if we interpret that the 20-35 keV ALT

source is a thermal source, as mentioned in the introduction. We find that modeling

the 20-35 keV ALT source with nthermal ∼ 1010 cm−3 and T ∼ 60 MK can equally
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produce the observed HXR images and spectrum without violating observed emission

measure. However, we find that, in this model, the total number of electrons contained

in the volume of the overarching loop exceeds that contained in the total volume of

the HXR-emitting loops. This model therefore requires an additional source of the

nonthermal electrons into the overarching loop other than the HXR-emitting loops.

Thus, we believe that our model with the nonthermal interpretation of the HXR ALT

source is more self-consistent and allows more straightforward physical interpretation.

Figure 3.11 The top view of our four loop model overlayed on AIA 1600 Å image
taken at 18:05:28 UT. The blue lines are the central guiding field lines of the three
HXR-constrained loops, the red line is the central guiding field line of the overarching
loop, and the green lines are the enveloping field lines of the overarching loop. The
red thin ellipse in the middle is the top view of the circular cross section of the
overarching loop, defining the extent of green field lines. Only the field lines contained
in the overarching loop are shown. The western end of this loop seems to match the
locations of the remote brightenings indicated by the yellow arrows, which can be
interpreted as the precipitation of the nonthermal electrons into the chromosphere on
the magnetically weaker side of this loop.
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3.5 Discussion and Conclusions

Based on these results, we draw the following conclusions about the spatial and the

energetic distributions of the energetic electrons producing HXR and MW emissions

at the end of the impulsive phase of 2015-06-22 M6.5 flare.

First, based on the observed HXR emission sources, the magnetic field

configuration that best represents the flaring loop geometry in our study was found to

be the post-reconnection loop configuration. We compared the field line connectivity

of the NLFFF extrapolation cube created near the modeling time of 18:05:32 UT, and

found that field lines contained in the cube created at the earlier time did not have the

desired connectivity for our observed HXR sources due to its sheared overall field line

geometry. It is evident that our modeled peak has not started at 18:00 UT yet (see

Figure 3.1), so it is reasonable to think that the shear reduced due to the reconnection

event responsible for our modeled peak. The chosen cube at 18:24 UT should contain

more post-reconnection loops, and although the field model with finer time cadence

considering the dynamics of the flaring loop may still improve the accuracy of the

model, our results show that this post-reconnection cube can reproduce the relative

locations of the observed HXR sources and the characteristic size of the observed MW

source well.

Second, the low frequency part of the MW spectrum is dominated by the

emission from a “HXR invisible” source containing a non-negligible number of

nonthermal electrons in a relatively large volume with relatively weak magnetic field.

The nonthermal particle population in the overarching loop fills a volume ∼10-12

times larger than the other two nonthermal loops. As mentioned above, the primary

reason that this source is “HXR invisible” although it contains up to 5.7× 106 cm−3

nonthermal electrons is because this source resides in the high corona where np is

relatively low, and in HXR, the emission from this source is overcome by the bright

footpoint emission from the chromosphere with np = 1013 cm−3. This population
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has an interesting nonthermal energy spectrum with the spectral index of 2.0, the

hardest of all three nonthermal populations. We interpret this as a result of particle

accumulation and trapping at that location above the main loops, caused by some

transport process underway throughout the impulsive phase. Such an interpretation

is also reasonable if one notices that the low frequency part of the MW spectrum grew

over several minutes only toward the end of the impulsive phase, as evident in the

4.43 GHz lightcurve (red) in Figure 3.1. We also note that this result is essentially

insensitive to the possible variation in the model parameters of the lower loop, which

contributes to the high-frequency part of the spectrum, because the GS emission from

the lower loop cannot have much lower peak frequency due to the strong magnetic

field strength in the low corona (see Figure 3.8, blue). In other words, the deficit in

the low frequency part of the MW spectrum will be present as long as we confine the

main HXR loops at lower heights based on the observed HXR images.

Third, the overall geometry and the locations of the electron populations in the

three HXR emitting loops in our model fit well within the standard flare model. The

thermal-only loop can be interpreted as a result of chromospheric evaporation; dense

(1011 cm−3) thermal plasma concentrated toward the looptop. It is interesting that

this loop was found to lie relatively low, and this may be a result of our choice

of the NLFFF magnetic field model from a time (18:24 UT) that is later than

18:05:32 UT, which contains more post-reconnection loops. However, considering

that our modeling time is already near the end of the impulsive phase when most

of the loops reconnected and became low-lying post-reconnection loops, we consider

that our modeled geometry is correctly representing the actual geometry of the flare

loops. The spatial and energy distribution of the nonthermal electrons in the lower

and the higher loop fits the standard picture as well. The lower loop population

produces 50-75 keV HXR footpoint sources and MW high frequency emission, and

the higher loop population produces 20-35 keV HXR ALT source. For the lower loop
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population, we have to modify the modeled electron spectral index compared with

that obtained from the thin-target fit up to a certain energy since the HXR emission

from this population is only seen in the footpoint where thick-target model needs to

be employed. The modification is the following. The electron flux spectrum, electrons

s−1 keV−1, which is usually used in thick-target model, can be expressed in electron

number density spectrum, electrons cm−3 keV−1, which can then be compared to

the instantaneous, thin-target model (Brown 1971; Holman et al. 2011; White et al.

2011). After the conversion, the electron number density spectral index δ inferred

from the HXR photon spectrum with index γ differs by 2 between thin- and thick-

target model: δthin = γ − 0.5 and δthick = γ + 1.5. Thus, we have to soften the

modeled spectral index by ∼2. This means that the lower loop population has

the broken power-law with δ1 = 3.1 + 2 = 5.1 and δ2 = 3.1. What is interesting

here is that this δ1 = 5.1 is similar to the dominant spectral index of the ALT

source population, δ2 = 6.3 above 43 keV. Since thick-target model calculates the

spectral index of the injected electron population, we can combine the higher and

lower loop population into a unified picture as the following. First, the 20-35 keV

HXR ALT source is produced via thin-target bremsstrahlung by the population with

a soft spectrum, δ ∼ 6.3. This population keeps streams down in the loop-legs of

the lower loop, losing its low-energy end via collisional scattering into the loss-cone,

while its high-energy end gets trapped and produces GS emission in the MW high

frequency range. Here, this high-energy population must evolve to a much harder

spectrum, δ ∼ 3.1. The population’s low-energy end bombards the chromosphere,

and produces thick-target bremsstrahlung radiation that hardens the emitted HXR

photon spectrum from ∼ 6.3 to ∼ 3.1. The question here is where Ebreak is in

this broken power-law spectrum. We claim that this is around 300 keV, where the

normalized nonthermal electron density of the higher loop population and the lower

loop population coincides in the order of 104 cm−3 keV−1. We cannot test if the
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spectral hardening of -3.2 at 300 keV was already present coming out of the ALT

source, or because some of the lower energy population moved to the higher energy

population via second-stage acceleration that preferentially accelerates higher energy

electrons during the propagation and the trapping, or both.

In summary, our results show that our three-dimensional forward-fit modeling

of the flare HXR and MW emission can reveal the properties of the nonthermal

particles in the flare in much more quantitative detail than those obtained by

conventional means, both within and outside of the standard flare model. We would

like to emphasize the importance of our finding, the existence of the “HXR invisible”

nonthermal particles that can only be investigated through the properties of the MW

low frequency emission. This suggestion is not new (e.g., Lee et al. 1994; Fleishman

et al. 2016a), but has been largely neglected in the standard flare model because the

focus of the flare-accelerated electrons has been mainly in the HXR range (and their

counterpart in MW high frequency range) where the bulk of their energy is deposited.

Even though these low frequency MW-emitting electrons are still at the “tail” of the

electron number distribution, their high energy and the trapped condition may make

them an energetically important player in the overall flare energetic scenario, even

after the impulsive phase. For instance, these trapped high-energy electrons may

escape directly or be further accelerated by CME shocks and become Solar Energetic

Particles. Our modeling also stimulates the further investigation into the possible

spectral break in the population emitting in both HXR and MW range. Our model

for this particular flare seems to support the existence of the break, but other flares

may not show such a break. Running this type of modeling for many other flares

could lead to the findings of the properties of the flare that may or may not result

in a break. Such information should enable us to discriminate among the competing

models of flare particle acceleration.



CHAPTER 4

SUMMARY AND FUTURE PERSPECTIVES

The works presented in this dissertation are focused on the study of the high-energy

electrons produced during the impulsive phase of two major solar flares, 2011-02-15

X2.2 flare and 2015-06-22 M6.5 flare. We conducted the multi-wavelength analysis

and modeling enabled by the unique combinations of the state-of-the-art high-cadence

observations and the newly-developed realistic three-dimensional simulation platform.

Particularly, the results from the quantitative and spatially-resolved study of the HXR

and the MW emission were compared with the current picture of the standard flare

model. The major results of each study are the followings.

4.1 The 2011-02-15 X2.2 Flare

In this study, we examined the source locations of seven distinct temporal peaks

observed in HXR and MW impulsive phase using the RHESSI 50-75 keV channels

and NoRH 34 GHz channel, respectively. This was the first study of this well-observed

flare that used the high-cadence HXR and MW observations simultaneously.

1. The seven peaks came predominantly from two sources in both HXR

and MW, each with multiple temporal peaks, suggesting the two

separate locations of magnetic reconnection sites.

As shown in Figure 2.7 and Figure 2.10, HXR and MW emission sources

basically evolve with similar patterns, with the same multiple peaks for

each source observed in both wavelengths. The match in temporal and

spatial transition between two wavelengths fit to the current picture of the

standard flare model; a common population of the electrons accelerated in one

reconnection event produce both HXR and MW emission. However, for HXR

97
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the transition between two stages occur rather quickly within ∼30 s, and the

first source quickly decays. On the other hand, the MW emission from the first

source stays strong until much later and decays more slowly. This difference

can be interpreted as the result of the trapping of the MW-emitting electrons.

2. The MW peaks were found to lag the HXR peaks by 1.9-3.0 s with

an uncertainty below 1 s, although these values were found not to be

related or dependent on other parameters, thus providing us no clear

quantitative relationship between HXR-emitting and MW-emitting

components of the accelerated electrons.

As shown in Table 2.1, for this flare the meaningful peaks for delay analysis

(peak 1, 3, 4, and 7) showed that the MW emission consistently lags the

HXR emission by 1.9-3.0s. The delays for the peaks in the second source

(3, 4, and 7) were found to increase with the calculated decay times of the

MW 17 GHz emission, which is in line with the idea introduced by Gary

& Tang (1985), that the HXR-emitting and MW-emitting population share

the same acceleration profiles but MW-emitting population gets trapped and

thus decays more slowly, which results in the observed delay. However, the

decay time profiles become more blended and thus unreliable as the flare

progresses. Furthermore, no correlations were found between the delays and

such parameters as the MW energies, the peak X-ray or the MW flux or

their ratio, the power-law index, or two stages of reconnections. Therefore, no

clear quantitative conclusion can be drawn regarding the relationship between

the HXR-emitting and MW-emitting populations of the accelerated electrons

in this flare, although the trapped nature of the MW-emitting component is

qualitatively inferred from the above-mentioned difference in spatial transition

between two stages of reconnections.
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3. The two stages of magnetic reconnection can be interpreted as the

temporally and the spatially distributed tether-cutting reconnection

scenario (Moore et al. 2001).

Prior to this study, Wang et al. (2012) found a permanent enhancement of the

horizontal field strength at a certain area along the polarity inversion line of this

flare site, which was interpreted as the evidence of the collapsing magnetic fields

expected from the quadrupolar configuration within the tether-cutting scenario.

The location of this field enhancement corresponds to the second source that

we observed in this study. Based on the observation of the remote emission

source observed in HXR (both in this study and in Wang et al. (2012)), which

is also expected in the geometry of the tether-cutting scenario, we concluded

that our first source could also be interpreted as the earlier stage of a two-stage

tether-cutting scenario. This is an interesting discovery which was not revealed

in Wang et al. (2012), which was based on the available vector magnetogram

data. Its cadence of 12 minutes, a time-scale comparable to almost the entire

duration of the impulsive phase of this flare, was not sufficient to distinguish

two stages.

4. The electron power-law energy spectral indices inferred from the MW

observation seems to be harder than usual by 1 ∼ 2 for this flare.

The time profile of electron spectral indices inferred from the MW observation

of this flare is shown in Figure 2.11. The differences between these and the ones

inferred from the HXR observation (from Milligan et al. (2014)) is 3∼4, about

1∼2 larger than usual (∼2). However, since the values inferred from the HXR

observation is in the usual range, it seems that the MW-inferred indices are

unusually hard for this event. We did not investigate further into the reason

behind this unusual hardness.
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5. We observed the emission intensity asymmetry between the HXR

and the MW source that is attributed to the asymmetrical magnetic

field strengths of the loop, discussed by Sakao et al. (1996) and Wang

et al. (1995).

After correcting for the possible projection effect on the locations of the observed

MW sources and based on the observation of the polarization gradients over

the sources, we suggest that there is an asymmetry in the magnetic field

strength within the observed MW source, between the opposite sides of the

polarity inversion line. The HXR emission from the stronger side was evidently

less, which agrees with the idea that stronger mirroring effect impedes the

precipitation of the HXR-emitting electrons into the chromosphere.

4.2 The 2015-06-22 M6.5 flare

In this study, we created one unified multi-loop electron population model that can

simultaneously reproduce the observed HXR and MW images and spectra at the

end of the impulsive phase of the flare, using the three-dimensional multi-wavelength

simulation platform GX Simulator, a realistic NLFFF magnetic field model, and the

observational constraints from the RHESSI and the EOVSA.

1. The magnetic field configuration that best represents the observed

HXR emission sources was found to be the post-reconnection loop

configuration.

In this study, obtaining a realistic magnetic field model that represents the

flaring loop geometry was an important first step. We obtained such a model

cube by using the observed HXR images as a guide to locating the field lines

with the required connectivity in the NLFFF model extrapolated from the HMI

photospheric magnetogram data. As a result, the best cube was found to be

from the data taken after the time being analyzed, which was at the end of the
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impulsive phase when the flaring loops had already closed. Otherwise, the cube

does not contain post-reconnection loops corresponding to the flaring loops.

2. The low frequency part of the observed MW spectrum is dominated

by the emission from a “HXR invisible” source containing a non-

negligible number of nonthermal electrons in a relatively weak but

large magnetic field volume.

We found that the electron populations that sufficiently reproduce all of the

observed HXR sources and spectrum cannot sufficiently reproduce the observed

MW intensity level, especially in the low frequency part of the MW spectrum.

We found that a nonthermal electron population with the density up to 5.7×106

cm−3 contained in a large, weak magnetic loop “overarching” the HXR-emitting

loops is needed to explain this discrepancy, while not violating constraints

from the observed HXR images or spectrum. The volume of this large loop

is ∼10-12 times larger than the HXR-emitting nonthermal loops, and we found

remote EUV brightenings at the locations corresponding to the footpoints of

this large loop, which can be interpreted as the site of precipitation of its

nonthermal population into the chromosphere. The hardness of the modeled

energy spectrum suggests that this population was most likely transported

from elsewhere and became trapped, perhaps accumulating throughout the

time of the impulsive phase. Therefore, this population may originate in

the acceleration process assumed in the traditional standard flare model, but

may contain additional information about the transport, trapping and loss

mechanisms of the electrons with E > several hundred keV that have not yet

been widely recognized or discussed.

3. The overall geometry and the locations of the electron populations

in the “HXR visible” loops fit well in the standard flare model. The
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thermal population with T ∼ 20MK and ne ∼ 1011cm−3 can produce

the observed HXR 6-12 keV source, and the nonthermal population

having a broken-power law energy spectrum with Ebreak ∼ 300 keV can

produce the observed HXR ALT (20-35 keV) and FP (50-75 keV)

sources below Ebreak and the observed MW high frequency source

above Ebreak.

The modeled HXR 6-12 keV source can be interpreted as the dense thermal

source produced by plasma evaporated from the chromosphere, as several

episodes of reconnection caused the particle bombardments and the heat

conduction from the corona prior to this modeled peak. The 20-35 keV ALT

source can be explained by a dense nonthermal population with soft spectrum

in order to be consistent with the observed range of the energy. This population

streams down toward the chromosphere, and produce thick-target 50-75 keV FP

emission that hardens the observed photon spectrum by ∼2. Meanwhile, the

high-energy end of the same population must have a harder spectrum in order

to be consistent with the observed high frequency slope of the MW emission.

The low-energy end and the high-energy end coincides at E ∼ 300 keV in

the order of 104 cm−3 keV−1. Therefore, the “common population” of the

nonthermal electrons responsible for the HXR and MW emission, in the view of

the traditional picture of the standard flare model, must have an upward break

in its energy spectrum for this flare. We did not explore the reasons behind

the harder spectral index for the MW-emitting component of this population

in this study.

4.3 The Summary of The Dissertation

The main goal of this dissertation is to find the relationship between HXR-emitting

and MW-emitting electron population in finer details and offer possible solutions
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to some of the discrepancies that have been found between the observations made in

these two wavelengths. In response to this goal, the major findings of this dissertation

are the followings.

1. We found clear evidence of the correlated two stages of magnetic reconnection

in 2011-02-15 flare, which can be interpreted as tether-cutting flare scenario

that assumes the traditional picture of the HXR-emitting and the MW-emitting

electron population in the standard flare model; two populations are accelerated

by the energy released in the same magnetic reconnection event. (Chapter 2)

2. In this traditional picture of the two populations in the standard flare model,

however, the three-dimensional, spatially-resolved modeling reveals that the

broken power-law energy spectrum with different parts of the spectrum emitting

at two wavelengths at different parts of flare loop is required. (Chapter 3)

3. Furthermore, there may be a population of trapped nonthermal electrons that

has not been discussed in the standard flare model, and this population can

be studied through the analysis of MW low frequency emission and may be

observed using future HXR instrument with enough dynamic range. (Chapter

3)

4. Time delays in this study did not provide any new findings about the

relationship between two electron populations. For future studies of the same

kind, less complicated flare that allows more accurate calculation of the MW

decay time constant may be more appropriate. (Chapter 2)

4.4 Future Perspectives

We will introduce in below the possible directions of the future research, motivated

by the research in this dissertation.
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• The continuation and the expansion of the modeling research using the GX

simulator, much like the one introduced in Chapter 3, is promising. Particularly,

modeling at several different times during the flare will enable us to model the

temporal evolution of the energy and the evolving locations of the nonthermal

electrons. This will help us explore the particle transport process in realistic

three-dimensional nature. Also, one aspect of the modeling that can be

improved is the accuracy of the magnetic field model during the flare. Our

current use of 12-minutes cadence NLFFF model may not represent the

highly dynamic flaring morphology accurately enough. A magnetic field model

developed through MHD simulation (e.g., as performed by Inoue et al. (2014)

for our first event) is one approach that could be used for this purpose.

• The formation and the decay of the large “HXR invisible” population of

nonthermal electrons may be directly observed and modeled. The relationship

between this population and the SEPs can be explored; e.g., by estimating the

energy spectrum of SEP electrons from the modeled trapped electron spectrum

and the possible geometry of the observed CME shock.

• With the full operation of the EOVSA in our site, the study of the high-energy

end of the flare-accelerated electrons will be greatly advanced, with possible new

discoveries. The 1s-cadence images may be used to study the rapidly evolving

impulsive phase, and as the observational constraint to evaluate the performance

of the aforementioned MHD simulation.

• The nature and the physics behind the spectral break in the nonthermal electron

population, found in our modeling (Chapter 3), should be explored further, with

spatially resolved MW spectra from EOVSA. Kontar et al. (2007) found that the

break in the HXR photon spectrum can be explained by the contribution from

the electron-electron bremsstrahlung (thus the true electron energy spectrum
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does not require a break), which is not yet included in the X-ray code used

in the GX simulator. Although the difference in the spectral indices found in

our modeling is much larger than the one studied in Kontar et al. (2007) (∼3.2

and 0.5, respectively), it is interesting to look at this effect. The statistical

study using the same modeling scheme over many other flares may reveal some

relationship between the parameters of the modeled electron distribution (e.g.,

Ebreak, partition of the total number of nonthermal electrons) and the properties

of the flare site (e.g., magnetic field geometry) that can help us constrain the

particle acceleration mechanism.

The study of the flare-accelerated electrons will greatly contribute to the

advance of space weather research in many ways. Understanding of the particle

acceleration mechanism is one of the most important subjects in solar physics, as it

possibly leads to the prediction of the energy and the number of nonthermal particles

produced in flares. This information can further be used to model the response of

the chromospheric plasma that appears in the SXR range, which is the operational

measure of the flare intensity, as introduced in the beginning. The knowledge of the

particle acceleration mechanism may be applicable to the phenomena observed in

Earth’s magnetotail, where the magnetic reconnection and the particle acceleration

are also suspected to occur. Also, as stated above, the prediction of SEP electrons

(and possibly ions as well, if we could constrain the particle acceleration mechanism

in the event), directly contributes to the benefits of our society, as SEPs are known

to be hazardous. In summary, the works introduced in this dissertation are directly

applicable within the larger context of the space weather research, and motivate the

further exploration into the subject of flare-accelerated electrons.



APPENDIX

DERIVATION OF RELATIVE VISIBILITIES

Visibility on a particular baseline is defined as the Fourier transform of the sky

brightness distribution. Let us assume a simple Gaussian source flux function:

S(x) = ae
−(x−x0)

2

α2 (1)

where S(x) is the flux intensity as a function of spatial coordinate x, a is a unit

amplitude at x = x0, and α is the 1/e width of the unit amplitude (half power beam

width). Then the visibility as a function of spatial frequency s (x/λ) is

V (s) =

∫ ∞
−∞

S(x)e−2πisxdx = ae−x
2
0/α

2

e(
x0
α2
−πis)2α2

∫ ∞
−∞

e−[
x
α
−α( x0

α2
−πis)]2

= a
√
παe−π

2s2α2

e−2πix0s (2)

Relative visibility is defined as the visibility divided by the total power (s→ 0),

VRel =
V (s)

V (0)
= e−π

2s2α2

(3)

where VRel is a unit amplitude (x0 = 0). Plugging in the definition of spatial frequency

s and the conversion factor between α and the FWHM of the source, d,

s =
1

θ
rad−1 ∼ Bλrad

−1 =
BcmfGHz

30
rad−1

= −8.351× 10−11B2
λarcsec

−1 = 1.62× 10−7BcmfGHzarcsec
−1
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α ∼ 0.6d

(A3) becomes

VRel = e−8.351×10
−11B2

λd
2

= e−9.325×10
−14B2

cmd
2f2GHz (4)

where θ is the fringe spacing, Bλ is the projected baseline length in number of

wavelength, Bcm is the projected baseline length in cm, fGHz is the observing

frequency in GHz, and d is in arcsec. Note that VRel here is a unit amplitude (x0 = 0).

In practice, V (s) is the cross-correlated amplitude from a particualr baseline and V (0)

is the geometric mean of the total power from the two antennas on that baseline. That

is,

VRel =
aij√
aiiajj

(5)

where aij is the cross-correlated amplitudes from the baseline consisting of antenna i

and j, and aii and ajj are the auto-correlated total power amplitudes from antenna i

and j, respectively. Combining (A4) and (A5), we have

VRel =
aij√
aiiajj

= e−8.351×10
−11B2

λd
2

= e−9.325×10
−14B2

cmd
2f2GHz (6)

or

ln(VRel) = ln(
aij√
aiiajj

) = −8.393× 10−11B2
λd

2 = −9.325× 10−14B2
cmd

2f 2
GHz (7)
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