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ABSTRACT

MOBILE CLOUD COMPUTING AND NETWORK FUNCTION
VIRTUALIZATION FOR 5G SYSTEMS

by
Ali Al-Shuwaili

The recent growth of the number of smart mobile devices and the emergence of

complex multimedia mobile applications have brought new challenges to the design of

wireless mobile networks. The envisioned Fifth-Generation (5G) systems are equipped

with different technical solutions that can accommodate the increasing demands for

high date rate, latency-limited, energy-efficient and reliable mobile communication

networks.

Mobile Cloud Computing (MCC) is a key technology in 5G systems that enables

the offloading of computationally heavy applications, such as for augmented or virtual

reality, object recognition, or gaming from mobile devices to cloudlet or cloud servers,

which are connected to wireless access points, either directly or through finite-capacity

backhaul links. Given the battery-limited nature of mobile devices, mobile cloud

computing is deemed to be an important enabler for the provision of such advanced

applications. However, computational tasks offloading, and due to the variability of

the communication network through which the cloud or cloudlet is accessed, may

incur unpredictable energy expenditure or intolerable delay for the communications

between mobile devices and the cloud or cloudlet servers. Therefore, the design of a

mobile cloud computing system is investigated by jointly optimizing the allocation of

radio, computational resources and backhaul resources in both uplink and downlink

directions. Moreover, the users selected for cloud offloading need to have an energy

consumption that is smaller than the amount required for local computing, which is

achieved by means of user scheduling.



Motivated by the application-centric drift of 5G systems and the advances

in smart devices manufacturing technologies, new brand of mobile applications are

developed that are immersive, ubiquitous and highly-collaborative in nature. For

example, Augmented Reality (AR) mobile applications have inherent collaborative

properties in terms of data collection in the uplink, computing at the cloud, and data

delivery in the downlink. Therefore, the optimization of the shared computing and

communication resources in MCC not only benefit from the joint allocation of both

resources, but also can be more efficiently enhanced by sharing the offloaded data

and computations among multiple users. As a result, a resource allocation approach

whereby transmitted, received and processed data are shared partially among the

users leads to more efficient utilization of the communication and computational

resources.

As a suggested architecture in 5G systems, MCC decouples the computing

functionality from the platform location through the use of software virtualization

to allow flexible provisioning of the provided services. Another virtualization-based

technology in 5G systems is Network Function Virtualization (NFV) which prescribes

the instantiation of network functions on general-purpose network devices, such as

servers and switches. While yielding a more flexible and cost-effective network

architecture, NFV is potentially limited by the fact that commercial off-the-shelf

hardware is less reliable than the dedicated network elements used in conventional

cellular deployments. The typical solution for this problem is to duplicate network

functions across geographically distributed hardware in order to ensure diversity. For

that reason, the development of fault-tolerant virtualization strategies for MCC and

NFV is necessary to ensure reliability of the provided services.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Computing Solutions for 5G Systems

The recent advances in mobile hardware capability have increased the demand for

the deployment of fully interactive and highly complex multimedia applications on

mobile devices. Unlike the massive expansions in storage and processing power, the

mobile devices still have inherited resource limitations in terms of battery capacity

which prohibit the deployment of such applications [3–7]. Future Fifth-Generation

(5G) systems will be based on different information and communication technologies

to meet the high processing power and stringent latency requirements for these

applications [8–11].

Mobile Cloud Computing (MCC) is an emerging infrastructures in 5G systems

that augment the hardware capability of the mobile devices by migrating the

execution of the computational intensive tasks from the mobile devices to the cloud

infrastructures. However, computational tasks offloading, and due to the variability

of the communication network through which the cloud is accessed, may incur

unpredictable energy expenditure or intolerable delay for the communications between

mobile devices and the cloud [4, 6, 12].

Driven by the virtualization of computational and storage resources of the

cloud infrastructures, mobile cloud computing in 5G systems enables on-demand

provisioning of these resources for the offloaded tasks through the utilization of a

shared pool of general-purpose and programmable hardware. Also envisioned in 5G

architecture, Network Function Virtualization (NFV) is another virtualization-based

technology that prescribes the instantiation of network functions on general-purpose

network devices, such as servers and switches [10, 13–15]. However, such implemen-
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tations of MCC and NFV raise a reliability concern since the dynamic deployment

of the general-purpose hardware is usually less reliable than the dedicated network

appliances [16–18]. More details about MCC and NFV are given next, while the

motivation behind the work of the dissertation is discussed in the next section.

1.1.1 Mobile Cloud Computing (MCC)

Mobile cloud computing enables the offloading of computationally heavy applications,

such as for gaming, object recognition or video processing, from mobile users (MUs) to

cloudlet or cloud servers, which are connected to wireless access points, either directly

or through finite-capacity backhaul links [3–7]. Given the battery-limited nature of

mobile devices, mobile cloud computing makes it possible to provide services, such as

augmented reality, that may otherwise not be available to mobile users. Offloading

may take place to remote servers in the “cloud”, which is accessed by the wireless

access points via backhaul links, or to “cloudlet” servers that are directly connected

to an access point [7]. In the latter case, the approach is also known as mobile

edge computing, which is currently seen as a key enabler of the so called tactile

internet [19] and is subject to standardization efforts [9]. However, computational

tasks offloading, and due to the variability of the communication network through

which the cloud or cloudlet is accessed, may incur unpredictable energy expenditure

or intolerable delay for the communications between mobile devices and the cloud or

cloudlet servers [4, 6, 12]. Offloading to peer mobile devices is also being considered

[20]. Examples of architectures that are based on mobile cloud/cloudlet computation

offloading include MAUI [21], ThinkAir [22], and MobiCoRE [23], while examples

of commercial application based on mobile cloud computing include Apple iCloud,

Shazam, and Google Goggles [24, 25].
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1.1.2 Network Function Virtualization (NFV)

Network Function Virtualization (NFV) is a novel architectural paradigm for cellular

wireless networks that has been put forth within the European Telecommunications

Standards Institute (ETSI) with the goal of simplifying network management, update

and operation [15]. NFV decouples the Network Functions (NFs), such as baseband

processing at the base stations and firewalling or routing at the core network, from

the physical network equipment on which they run. This is done by leveraging

virtualization technology in order to map NFs into Virtual Network Functions (VNFs)

that are instantiated on Commercial Off-The-Shelf (COTS) hardware resources, such

as servers, storage devices and switches [13, 14]. NFV enables an adaptive “slicing”

of the available network physical resources so as to accommodate different network

services, e.g., mobile broadband, machine-type or ultra-reliable communications [10].

While yielding a more flexible and cost-effective network architecture, NFV is

potentially limited by the fact that commercial off-the-shelf hardware is less reliable

than the dedicated network elements used in conventional cellular deployments.

1.2 Motivation of the Dissertation

The main motivation of the dissertation is to study mobile cloud computing systems

with the focus on the design of energy-efficient and reliable solutions for computational

tasks offloading. The motivations are mentioned in details in this section, while the

related work and contributions are discussed in the next two sections, respectively.

The design of a mobile cloud computing system for multiple MUs transmitting

over a shared wireless medium across multiple cells requires: (i) the management

of interference for the uplink, through which MUs offload the data needed for

computation in the cloud; (ii) the management of interference for the downlink,

through which the outcome of the cloud computations are fed back to the MUs;

(iii) the allocation of backhaul resources for communication between wireless edge
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and cloud; and (iv) the allocation of computing resources at the cloud. This joint

allocation is mostly motivated by the increasing importance of backhaul capacity

limitations, which are well understood to be often the bottleneck in modern dense

network deployments (see, e.g., [8, 26]) as well as the fact that the downlink

transmission for the outcome of cloud computing is of considerable amount in most

cases, e.g., for rich multimedia applications in heterogenous networks [2, 27]. To this

end, joint optimization over radio, computational resources and backhaul resources

and in both uplink and downlink directions is the main theme of this dissertation.

If the number of users simultaneously choose to offload their computational

tasks is high, the resulting interference on the wireless channel may require an energy

consumption at the mobile for wireless transmission that exceeds the energy that

would be needed for local computing at some MUs. Moreover, the backhaul and

computing delays may make the latency requirements for the applications impossible

to satisfy, and thus the offloading infeasible. Therefore, user selection, or scheduling

mechanisms need to be considered with the aim of maximizing the number of users

that perform offloading while guaranteeing that the selected MUs can satisfy their

latency constraints and, at the same time, consume less energy than with local

computing.

A recent line of work has demonstrated that it is possible to design an energy-

efficient mobile cloud computing systems under latency constraints by performing a

joint optimization of the allocation of communication and computational resources

[28–31]. These investigations apply to generic applications run independently by

different users. However, as discussed previously, the important class of AR

applications have the unique property that the applications of different users share

part of the computational tasks and of the input and output data [2, 32]. Therefore,

it is suggested to leverage this property to reduce communication and computation

overhead via the joint optimization of communication and computational resources.
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By leveraging virtualization technology, MCC and NFV enable the instantiation

of computational task or network function on general-purpose hardware [10, 11, 33].

One of the key challenges for such deployment is the fact that general-purpose

hardware is significantly less reliable than the dedicated network devices used in

conventional network deployments [14, Section VI]. Hardware outages may in fact

be caused by random failures, intentional attacks, software malfunction or disasters.

This problem is motivating an emerging line of work on developing fault-tolerant

virtualization strategies for NFV [16–18]. The typical solution, as summarized in [17],

is to adapt to NFV well established policies introduced in the context of virtualization

for data centers. These strategies are based on overprovisioning and diversity :

NFs are split into multiple constituents VNFs, which are then mapped on Virtual

Machines (VMs) instantiated on multiple distributed servers in order to minimize the

probability of a disruptive failure as well as the mean time to recovery from a failure.

This motivate us to propose a novel principle for the design of fault-tolerant NFV

that moves from diversity-based solutions to coded solutions.

The previous work related to the dissertation is summarized in Section 1.3,

while the contributions of this work is specified in Section 1.4.

5



1.3 State of the Art

In relation to the focus of the dissertation, previous studies in the literature can

be grouped to the following three categories and the contribution of each work is

summarized next.

1.3.1 Joint Users Scheduling and Resource Allocation for Mobile Cloud
Computing

The design of a mobile cloud computing system, when optimized solely at the

application layer, entails decision of whether a mobile can decrease its energy

expenditure by offloading the execution of the entire application [3, 4, 34–36] or of

some selected subtasks (see, e.g., [37,38]). Given that offloading requires transmission

and reception on the wireless interface, a more systematic approach involves the

joint optimization of offloading decisions and communication parameters, such as

uplink power allocation [38,39], link and subcarrier selection [40,41], and uplink data

rate [30, 42].

The joint optimization of the set of subtasks to be offloaded and of the uplink

transmission powers was studied in [38,39] under static channel condition. A related

dynamic computation offloading approach was presented in [34, 42] that determines

which application subtasks are to be executed remotely given the available wireless

network connectivity. Assuming a simplified execution model, in which input data can

be arbitrary partitioned for separate processing, references [30,43] study the fraction

of the mobile data to be offloaded to the cloud, with the rest being executed locally

at the mobile device. A framework that integrates wireless energy transfer and cloud

mobile computing was put forth in [44].

The works summarized thus far focus on the operation of a single MU. In

contrast to the single-MU problem formulation, in a scenario with multiple MUs

transmitting over a shared wireless medium across multiple cells, the design of a

mobile cloud computing system requires: (i) the management of interference for the
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uplink, through which MUs offload the data needed for computation in the cloud;

(ii) the management of interference for the downlink, through which the outcome

of the cloud computations are fed back to the MUs; (iii) the allocation of backhaul

resources for communication between wireless edge and cloud; and (iv) the allocation

of computing resources at the cloud. Furthermore, the optimization should include

user selection, or scheduling mechanisms whereby the offloading users are guaranteed

an energy consumption that is smaller than the amount required for local computing

at the device.

The limited literature on resource allocation and offloading decisions for the

multiuser case includes papers [31, 45–52]. The problem of decentralized user

scheduling when modeling the aspect (i) of uplink interference is considered in [45,46]

for single-antenna elements within a game-theoretic framework. The joint allocation

of radio and computational resources is considered in [47] by accounting for the

elements (i) and (iv), in the presence of multiple clouds, with the aim of maximizing

network operator revenue via resource pool sharing. A problem formulation including

elements (i) and (iv) was studied in [48] with MIMO transceivers and for a fixed

set of scheduled users. Scheduling in a single-cell was considered in [49] with the

goal of minimizing the weighted sum mobile energy consumption; it was shown

that the optimal scheduling and cloud resource allocation policy (element (iv)) have

a threshold-based structure. Another scheduling strategy for multiuser offloading

systems in a small-cell set-up is presented in [31], where the resources are allocated

under the objective of minimizing the average latency experienced by the worst-case

user by accounting for element (iv) with the inclusion of uplink and downlink tasks

schedulers. A scheme that jointly optimizes the computation offloading decisions and

the radio resource allocation in heterogeneous networks by accounting for element

(i) so as to minimize the mobile energy expenditure under latency constraints

was proposed in [50]. An energy-efficient resource allocation for interference-free
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multi-users scenario was discussed in [51] with the aim of optimizing uplink and

downlink transmissions duration while considering element (iv). Finally, the problem

of scheduling tasks between cloud and edge processors was studied in [52] without

modeling the physical layer.

1.3.2 Energy-efficient Resource Allocation and Cloudlet Offloading for
Augmented Reality Mobile Applications

Augmented Reality (AR) applications have emerged as a way for enriching human

perception by combining physical reality with artificial data [53–55], which have

various practical purposes, e.g., in navigation [56, 57], touring [58, 59], entertainment

[60–62] and personal assistance [63, 64]. The envisioned 5G architecture holds the

promise of allowing such immersive mobile applications to be efficiently deployed on

the resource-constrained mobile devices over wireless networks. Just recently, the

concept of deploying AR applications over mobile wireless networks have gained an

increasing attention [53,54,65].

AR applications are computational-intensive and delay-sensitive, and their

execution on mobile devices is generally prohibitive when satisfying users’ expec-

tations in terms of battery lifetime [2, 12, 66]. To address this problem, it has been

proposed to leverage mobile cloud computing [27,67–69] and mobile edge, or cloudlet

computing [2, 27, 32, 70]. Accordingly, users can offload the execution of the most

time- and energy-consuming computations of AR applications to cloud servers via

wireless access points and backhaul links or to cloudlet servers directly. The use of

local cloudlet servers is instrumental in providing the required real-time experience,

as it forgoes the use of backhaul network to access a distant cloud server [2, 12,70].

Nevertheless, the stringent delay requirements pose significant challenges to

the offloading of AR application via mobile edge computing [2, 70–72]. A recent

line of work has demonstrated that it is possible to significantly reduce mobile

energy consumption under latency constraints by performing a joint optimization
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of the allocation of communication and computational resources [28–31]. These

investigations apply to generic applications run independently by different users.

However, AR applications have the unique property that the applications of different

users share part of the computational tasks and of the input and output data [2,32].

Most of the work related to AR applications, e.g., [2, 71, 73, 74], focus only on

implementation aspects at the application layer without benefiting from the shared

data and computations in a cross-layers optimization design.

1.3.3 Coded Network Function Virtualization: Fault Tolerance via In-
Network Coding

The adaptive NFV-based deployment of the virtualized resources enhances user

experience by allowing dynamic service provisioning of network functions as well as

increases reliability by implementing fault tolerance mechanisms [13,18,33]. Practical

platforms that implement NFV based on cloud computing include CloudNFV [75],

THE REAL-TIME CLOUD [33] and CLOUDBAND [76].

Generally, NFV decouples the Network Functions (NFs), such as baseband

processing at the base stations and firewalling or routing at the core network, from

the physical network equipment on which they run. This is done by leveraging

virtualization technology in order to map NFs into Virtual Network Functions (VNFs)

that are instantiated on Commercial Off-The-Shelf (COTS) hardware resources, such

as servers, storage devices and switches [13,14,33]. NFV enables an adaptive “slicing”

of the available network physical resources so as to accommodate different network

services, e.g., mobile broadband, machine-type or ultra-reliable communications [10].

Most research activity on NFV focuses on the design of mapping rules between

VNFs and hardware resources via the solution of mixed integer problems (see,

e.g., [77]). One of the key challenges for the adoption and deployment of NFV

is the fact that COTS hardware is significantly less reliable than the dedicated

network devices used in conventional network deployments [14, Section VI]. Hardware
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outages may in fact be caused by random failures, intentional attacks, software

malfunction or disasters. This problem is motivating an emerging line of work

on developing fault-tolerant virtualization strategies for NFV [16–18]. The typical

solution, as summarized in [17], is to adapt to NFV well established policies introduced

in the context of virtualization for data centers. These strategies are based on

overprovisioning and diversity : NFs are split into multiple constituents VNFs, which

are then mapped on VMs instantiated on multiple distributed servers in order to

minimize the probability of a disruptive failure as well as the mean time to recovery

from a failure.

1.4 Dissertation Outline and Contributions

The main contributions of the dissertation encompass the design and the optimization

of an energy-efficient and reliable resources scheduling in mobile cloud computing

networks. The joint scheduling of resources is considered first for generic mobile

application and without regards to the implementation aspects in Section 1.4.1. Then

the joint allocation scheme is optimized for the offloading of specific AR-type of

mobile applications in Section 1.4.2. Finally, the reliability of providing mobile cloud

computing via virtualization is addressed in Section 1.4.3.

1.4.1 Joint Users Scheduling and Resource Allocation for Mobile Cloud
Computing

Chapter 2 considers the problem of minimizing the mobile energy consumption for

offloading under latency constraints over uplink and downlink precoding, uplink and

downlink backhaul resource allocation, as well as cloud computing resource allocation

for general multi-antenna transceivers. Unlike previous work that consider joint

allocation of radio and computational resources, see Section 1.3.1, the problem formu-

lation in Section 2.2 explicitly models the optimization of downlink communication for

downloading the outcome of the optimization at the MUs as well as of the backhaul
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resource allocated to the active MUs in both uplink and downlink. The resulting

problem requires the development of a novel adaptation of the Successive Convex

Approximation (SCA) scheme [78, 79] that accounts for downlink and backhaul

transmissions as shown in Section 2.3.

In Section 2.4, the optimization of users scheduling is tackled jointly with

the operation of uplink/downlink, backhaul and computational resources under the

key constraint that each offloading MU should not consume more energy than that

required for local computation. The resulting mixed integer problem is tackled by a

means of SCA coupled with the smooth lp-norm approximation approach [80].

A hybrid cloud-edge computing set-up is studied in Section 2.5 in which, beside

a cloud server, “cloudlet” or “edge” servers are available locally at the wireless

access points. The cloudlet servers are able to execute offloaded applications without

incurring backhaul latency but with a generally smaller CPU frequency [7]. For the

first time, the investigations here have studied the optimal task allocation between

cloudlet and the cloud via SCA with regards to the uplink and downlink radio and

backhaul resources as well as the computing resources at the cloud.

The impact of cooperative downlink transmission via network MIMO [81] on the

achievable energy-latency trade-off by accounting for the backhaul overhead needed

to deliver user data to multiple access points for transmission to the MUs is studied

in Section 2.6. This has also not previously studied in the context of mobile cloud

computing with backhaul limitations. Comprehensive numerical results are finally

presented in Section 2.7.

The work in this chapter is based on:

• A. Al-Shuwaili, A. Bagheri and O. Simeone, “Joint uplink/downlink and
offloading optimization for mobile cloud computing with limited backhaul,” in
Proc. IEEE Annual Conference on Information Science and Systems (CISS),
Princeton, NJ, pp. 424-429, Mar. 2016.

• A. Al-Shuwaili, O. Simeone, A. Bagheri and G. Scutari, “Joint uplink/downlink
optimization for backhaul-limited mobile cloud computing with user scheduling,”
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IEEE Transactions on Signal and Information Processing over Networks, to
appear, 2017. [Online]: Available: http://ieeexplore.ieee.org/document/7850968/

1.4.2 Energy-efficient Resource Allocation and Cloudlet Offloading for
Augmented reality Mobile Applications

Chapter 3 studies the problem of resource allocation for augmented reality (AR)

applications that are implemented via mobile cloud/edge computing and leverages

the unique collaborative transmission and processing features of AR applications.

The resource allocation problem is formulated in Section 3.3 for minimizing the total

mobile energy expenditure for offloading under latency constraints over communi-

cation and computation parameters by explicitly accounting for the collaborative

nature of AR applications and tackled by means of a proposed Successive Convex

Approximation (SCA) [78, 79] solution in Section 3.4. The proposed offloading

solution optimizes the fraction of data transmitted by each user and thus potentially

limiting the transmission of redundant information in the uplink as well as utilizes

multicasting in the downlink. The gains that can be achieved by means of resource

allocation as a function of the fraction of the data and computations that can be

shared among users are quantified numerically in Section 3.5.

The work in this chapter is based on:

• A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for
mobile edge computing-based augmented reality applications,” IEEE Wireless
Communications Letters, to appear, 2017. [Online]: Available:
http://ieeexplore.ieee.org/document/7906521/,

1.4.3 Coded Network Function Virtualization: Fault Tolerance via In-
Network Coding

A novel principle for the design of fault-tolerant NFV that moves from diversity-

based solutions to coded solutions is proposed in Chapter 4. The proposed approach

addresses the NF of uplink data decoding in a Cloud Radio Access Network (C-RAN)

architecture, in which the baseband processing operations of the base station are

carried out remotely at the “cloud” [82]. The proposed coded NFV solution that
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leverages the algebraic structure of the transmitted coded data frames is introduced

in Section 4.3. The performance of the coded NFV is compared to the diversity-based

fault tolerance solution in Section 4.4.

The work in this chapter is based on:

• A. Al-Shuwaili, O. Simeone, J. Kliewer and P. Popovski, “Coded network
function virtualization: Fault tolerance via in-network coding,” IEEE Wireless
Communications Letters, vol. 5, no. 6, pp. 644-647, Dec. 2016.,
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CHAPTER 2

JOINT UPLINK/DOWNLINK OPTIMIZATION FOR
BACKHAUL-LIMITED MOBILE CLOUD COMPUTING WITH USER

SCHEDULING

2.1 Introduction

Mobile devices provide a limited processing capability to the local and battery-

powered computing environment due to the highly constrained battery capacity. This

shortcoming have prevented the deployment of computationally-demanding mobile

applications such as for gaming, object recognition or video processing on mobile

devices. Mobile cloud computing enables the offloading of the execution of such heavy

applications from mobile devices to cloudlet or cloud servers, which are connected to

wireless access points, either directly or through finite-capacity backhaul links. The

optimization of the operation of a mobile cloud computing system amounts to the

problem of minimizing the energy required for offloading across all users under latency

constraints at the application layer. Since multiple mobile users across multiple cells

are communicating over a shared wireless medium and also sharing the computational

resources at the cloud, this problem requires the management of interference for both

the uplink, through which users offload the data needed for computation in the cloud,

and for the downlink, through which the outcome of the cloud computation are fed

back to the users, as well as the allocation of backhaul resources for communication

between wireless edge and cloud and of computing resources at the cloud. In this

chapter, the basic system model and the adopted problem formulation is described

in Section 2.2. The basic model assumes fixed user scheduling, offloading to a

centralized cloud processor, and non-cooperative transmission at the wireless access

points. Generalizations that address user scheduling, local computing capabilities at

the access points and cooperative transmission will be treated later in Section 2.4,

Section 2.5 and Section 2.6, respectively.
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Figure 2.1 Basic system model: Mobile users (MUs) offload the execution of their
applications to a centralized cloud processor through a wireless access network and finite
capacity backhaul links.

2.2 General System Model and Problem Formulation

2.2.1 System Model

Consider a network composed of Nc cells of possibly different sizes such as micro-

or femto-cells. Each cell n = 1, . . . , Nc includes a base station, referred to as cloud-

enhanced e-Node B (ceNB) borrowing from LTE nomenclature, which is connected

to a common cloud server that provides computational resources. As shown in Figure

2.1, each cell contains K active mobile users (MUs) that have been scheduled for the

offloading of their local applications to the cloud processor. The K MUs in the same

cell transmit in orthogonal spectral resources, in the time or frequency domain. We

denote by in the MU in cell n that is scheduled on the i-th spectral resource, and

by I , {in : i = 1, . . . , K, n = 1, . . . , Nc} the set of all the active MUs in the system.

Each MU in and ceNB n is equipped with NTin
transmit and NRn receive antenna,

respectively. Note that MUs in different cells that are scheduled on the same spectral

resources interfere with each other.

Each MU in wishes to run an application within a given maximum latency Tin .

The application to be executed is characterized by the number Vin of CPU cycles

necessary to complete it, by the number BI
in of input bits, and by the number BO

in
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of output bits encoding the result of the computation. Table 2.1 summarizes the

notations and parameters used in the system model.

Table 2.1 System Parameters

Parameter Description

Fc, F
ceNB
n cloud and cloudlet computational capacity

Cul
n , C

dl
n uplink and downlink backhaul capacity of cell n

Hin , Gin uplink and downlink channel matrix for user in

P ul
in , P

dl
n uplink and downlink power budget constraint

W ul,W dl uplink and downlink bandwidth

N0 noise power spectral density

NTin
, NRn number of transmit and receive antenna

BI
in , B

O
in number of input and output bits for user in

Vin number of CPU cycles for user in

Tin latency constraint for user in

Nc, K number of cells and number of users in each cell

din reception energy constant for user in

κ mobile device switched capacitance

α, δ step size constant and termination accuracy

The energy and latency resulting from offloading of the applications of all active

MUs are derived next. The offloading latency consist of the time ∆ul
in needed for the

MU to transmit the input bits to its ceNB in the uplink; the time ∆exe
in necessary

for the cloud to execute the instructions; the round-trip time ∆bh
in for exchanging

information between ceNB and the cloud through the backhaul link; and the time

∆dl
in to send the result back to the MU in the downlink (see Figure 2.2). We can hence

write the total offloading latency for MU in as

∆in = ∆ul
in + ∆exe

in + ∆bh
in + ∆dl

in . (2.1)
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Figure 2.2 Timeline of offloading from an MU in. Note that the total two-way backhaul

latency is given as ∆bh
in

= ∆bh,ul
in

+ ∆bh,dl
in

.

The energy Ein of each MU in instead depends only on the power used for

transmission in the uplink and reception energy in the downlink. These latency and

energy terms are computed as a function of the radio and computational resources as

detailed next.

1) Uplink transmission: The optimization variables at the physical layer for the

uplink are the users’ transmit covariance matrices Qul ,
(
Qul
in

)
in∈I

, where Qul
in =

E[xulinxul
H

in ] with xulin ∼ CN (0,Qul
in) being the signal transmitted by the user in. These

matrices are subject to power budget constraints

Qulin ,
{

Qul
in ∈ CNTin

×NTin : Qul
in � 0, tr(Qul

in) ≤ P ul
in

}
, (2.2)

where P ul
in is the maximum allowed transmit energy per symbol of MU in. For

any given profile Qul, the achievable transmission rate, in bits per symbol, which

corresponds to the mutual information evaluated on the MIMO Gaussian channel

(see, e.g., [83]) of MU in when multi-user interference is treated as additive Gaussian

noise, is

rulin(Q) = log2 det
(
I + HH

inRul
n (Qul

−in)−1HinQul
in

)
, (2.3)

where

Rul
n (Qul

−in) , N0I +
∑

jm∈I,m 6=n

HjmnQ
ul
jmHH

jmn (2.4)

is the covariance matrix of the sum of the noise and of the inter-cell interference

affecting reception at the n-th ceNB in the i-th spectral resources; Qul
−in ,
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((
Qul
jm

)K
j=1

)Nc

n6=m=1
; N0 is the noise power spectral density; and Hin is the uplink

channel matrix for MU in to the ceNB in the cell n, whereas Hjmn is the cross

channel matrix between the interfering MU jm in the cell m and the ceNB in cell

n. The channel matrices account for path loss, slow and fast fading. The time, in

seconds, necessary for user i in cell n to transmit the input bits BI
in to its ceNB in

the uplink is then

∆ul
in

(
Qul
)

=
BI
in

W ulrulin (Qul)
, (2.5)

where W ul is the uplink channel bandwidth allocated to each one of the orthogonal

spectral resources. The corresponding energy consumption due to uplink transmission

is then

Eul
in

(
Qul
)

= BI
in

tr
(
Qul
in

)
rulin (Qul)

, (2.6)

since around BI
in/r

ul
in

(
Qul
)

channel uses are needed in order to transmit reliably in

the uplink.

2) Downlink transmission: The optimization variables for the downlink are the

ceNBs’ transmit covariance matrices
(
Qdl
in

)K
i=1

, which are subject to per-ceNB power

constraints P dl
n :

Qdln ,

{(
Qdl
in

)K
i=1
∈ CNTin

×NTin : Qdl
in � 0,

K∑
i=1

tr(Qdl
in) ≤ P dl

n

}
. (2.7)

Similar to the uplink, one can write the achievable rate in bits per symbol for each

MU in the downlink as

rdlin(Qdl) = log2 det
(
I + GH

inRdl
n (Qdl

−in)−1GinQdl
in

)
, (2.8)

with

Rdl
n (Qdl

−in) , N0I +
∑

jm∈I,m 6=n

GjmnQ
dl
jmGH

jmn; (2.9)
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the corresponding required transmission time reads

∆dl
in

(
Qdl
)

=
BO
in

W dlrdlin (Qdl)
, (2.10)

where Gin is the downlink channel matrix between the ceNB in cell n and the

MU in; Gjmn is the cross channel matrix between the interfering MU jm in the

cell m and the ceNB in cell n; W dl is the downlink channel bandwidth; and

Qdl
−in ,

((
Qdl
jm

)K
j=1

)Nc

n6=m=1
. The downlink energy consumption is given by

Edl
in

(
Qdl
)

= BO
in

din
rdlin (Qdl)

, (2.11)

where din is parameter that indicates the receiver energy expenditure for each symbol

interval. Note that (2.7)-(2.8) implicitly assume that the downlink spectral resources

are allocated to the MUs in the same way as for the uplink, so that MUs in for n =

1, . . . , Nc are mutually interfering in both uplink and downlink. This assumption can

be easily alleviated at the cost of introducing additional notation.

3) Cloud processing: Let Fc be the capacity in terms of number of CPU cycles

per second of the cloud; and let fin ≥ 0 be the fraction of the processing power Fc

assigned to user in, so that
∑

in∈I fin ≤ 1. The time needed to run Vin CPU cycles

for user in remotely is then

∆exe
in (fin) =

Vin
finFc

. (2.12)

Define f , (fin)in∈I .

4) Backhaul transmission: Let us denote by Cul
n the capacity in bits per second

of the backhaul connecting the ceNB in cell n with the cloud, and by Cdl
n the capacity

in bits per second of the backhaul connecting the cloud with the ceNB in cell n.

Let culin , c
dl
in ≥ 0 be the fraction of the backhaul capacities Cul

n and Cdl
n , respectively,

allocated to MU i in cell n. We then have the constraint
∑K

i=1 c
ul
in ≤ 1 and

∑K
i=1 c

dl
in ≤ 1

for all n. Moreover, the time delay due to the backhaul transfer between ceNB n and
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the cloud in both directions is given by

∆bh
in (culin , c

dl
in) =

BI
in

culinC
ul
n

+
BO
in

cdlinC
dl
n

, (2.13)

where the first term represents the latency in the uplink direction, denoted as ∆bh,ul
in

(cf. Figure 2.2), and the second term represents the latency in the downlink direction,

denoted as ∆bh,dl
in

in the same figure. The uplink/downlink backhaul allocation vectors

are defined as cul , (culin)in∈I and cdl , (cdlin)in∈I , respectively.

2.2.2 Problem Formulation

The total energy consumption due to the offloading of user in data, i.e., transmitting

BI
in bits and receiving BO

in bits, is then given by

Ein
(
Qul,Qdl

)
= Eul

in

(
Qul
)

+ Edl
in

(
Qdl
)

= BI
in

tr
(
Qul
in

)
rulin (Qul)

+BO
in

din
rdlin (Qdl)

.
(2.14)

The optimal offloading problem can be stated as the minimization of the sum of the

energy spent by all MUs to run their applications remotely, subject to individual

latency and power constraints. Stated in mathematical terms, the problem reads

min
Qul,Qdl,f ,cul,cdl

E
(
Qul,Qdl

)
,
∑
in∈I

Ein
(
Qul,Qdl

)
=
∑
in∈I

BI
in

tr(Qul
in)

rulin(Qul)
+BO

in
din

rdlin(Qdl)

s.t. C.1
BI

in

Wulrulin(Qul)
+

BI
in

culinC
ul
n

+ Vin
finFc

+
BO

in

cdlinC
dl
n

+
BO

in

W dlrdlin(Qdl)
≤ Tin ,∀in ∈ I,

C.2 fin ≥ 0,∀in ∈ I,
∑
in∈I

fin ≤ 1,

C.3 culin , c
dl
in ≥ 0,∀in ∈ I,

K∑
i=1

culin ≤ 1,
K∑
i=1

cdlin ≤ 1,∀n = 1, . . . , Nc,

C.4 Qul
in ∈ Q

ul
in ,∀in ∈ I,

(
Qdl
in

)K
i=1
∈ Qdln ,∀n = 1, . . . , Nc.

(P.1)
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Constraint C.1 enforces that the latency for any MU in to be less than or equal to

the maximum tolerable delay of Tin seconds; C.2 imposes the mentioned limit on

the cloud computational resources; C.3 enforces the limited backhaul capacities in

uplink and downlink; and C.4 guarantee that power budget constraint on the radio

interface of both uplink and downlink is satisfied. Note that problem (P.1) depends

only on the ratios BI
in/W

ul, BI
in/C

ul
n , Vin/Fc, B

O
in/W

dl and BO
in/C

dl
n . We denote by

Z ,
(
Qul,Qdl, f , cul, cdl

)
the set of all optimization variables, and by Z the feasible

set of (P.1). Note that (P.1) is non-convex, due to the non-convexity of the objective

function and of the constraint C.1.

Remark 1. As discussed, the expression in C.1 for the latency of each user assumes

that the communication and processing steps, including uplink transmission, edge-to-

cloud backhaul transmission, cloud processing, cloud-to-edge backhaul transmission

and downlink transmission take place one after the other for each user, as illustrated

in Figure 2.2. Given that the uplink, backhaul, execution and downlink latencies

may be different across the users, the communication steps of different users may not

be aligned. While this fact may be exploited by a sophisticated receiver that tracks

the variation of the interference power within a communication block, the resulting

achievable rates are extremely difficult to characterize and optimize. In contrast, the

expression of the uplink and downlink rates (2.3) and (2.8), in which interference

is assumed to be caused by all users, are achievable by means of standard decoders

(see, e.g., [84]) and can be efficiently computed and optimized, as it will be shown in

Section 2.3.

Feasibility. Problem (P.1) has a non-empty feasible set if there exist matrices Qul

and Qdl such that the following inequalities hold

a) Tin >
BI

in

Wulrulin(Qul)
+

BO
in

W dlrdlin(Qdl)
, ∀in ∈ I;

b)
∑
in∈I

Vin/Fc

Tin −
BI

in

Wulrulin(Qul)
+

BO
in

W dlrdlin(Qdl)

≤ α1;
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c)
K∑
i=1

BI
in/C

ul
n

Tin −
BI

in

Wulrulin(Qul)
+

BO
in

W dlrdlin(Qdl)

≤ α2, ∀n = 1, . . . , Nc;

d)
K∑
i=1

BO
in/C

dl
n

Tin −
BI

in

Wulrulin(Qul)
+

BO
in

W dlrdlin(Qdl)

≤ α3, ∀n = 1, . . . , Nc;

for some α1, α2, α3 ≥ 0 with α1 + α2 + α3 = 1. In fact, if above conditions are

met, one can always choose fin = α−1
1 (Vin/Fc)

(
Tin −

BI
in

Wulrulin(Qul)
− BO

in

W dlrdlin(Qdl)

)−1

,

and similarly for culin and cdlin , so that conditions b), c) and d) are satisfied with

equality.

Remark 2. When the goal is identifying the achievable trade-off curve between

energy consumption and latency, assuming for simplicity that all MUs have the same

latency constraint T , e.g., Tin = T , the following problem may also be considered

min
Qul,Qdl,f ,cul,cdl,T

E
(
Qul,Qdl

)
+ λT

s.t. C.1
BI

in

Wulrulin(Qul)
+

BI
in

culinC
ul
n

+ Vin
finFc

+
BO

in

cdlinC
dl
n

+
BO

in

W dlrdlin(Qdl)
≤ T ,∀in ∈ I,

C.2−C.4 of (P.1),

(P.2)

where λ > 0 is a parameter identifying the desired relative weight between energy

and latency minimization.

Remark 3. The problem formulation (P.1) can be easily extended to account for a

more general backhaul topology in which the ceNBs are connected to the cloud via

a multi-hop network with predefined routes between ceNBs and cloud. We do not

further elaborate on this model here, because of the space limitation.

Remark 4. Problem (P.1) was tacked in [48] for the special case where the

joint optimization was over radio and computational resources and only in the

uplink direction. Problem (P.1), instead, considers a general setup in which joint

optimization carried over backhaul capacities in both uplink and downlink, as well
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as the optimization over the downlink radio transmission from the ceNB to the MU.

This generalization entails different formulations for the objective function and for

the latency constraint from that in [48] and thus calls for novel SCA-based solution

methods.

2.3 Successive Convex Approximation Optimization

Problem (P.1) is non-convex due to the non-convexity of the objective function and of

the constraint C.1. To address this issue, one can leverage the SCA method proposed

in [78, 79] for general non-convex problems. The SCA algorithm in [78, 79] is proved

to converge to a stationary solution of the (NP-hard) non-convex problem by solving

a sequence of convex sub-problems, each one of which can be solved in polynomial

time, e.g., by interior-point methods [85]. To do so, one needs to identify convex

approximants for the objective function and for the non-convex constraints C.1 that

satisfy the conditions specified in [78,79] as discussed next.

2.3.1 Convex Surrogate for the Objective Function

Define as K ⊇ Z any compact convex set containing the feasible set Z such

that all functions in (P.1) are well defined on it. Note that such a set always

exists. This set exists by the same arguments used in [48, Section IV-B]. Let

Z (v) ,
(
Qul (v) ,Qdl (v), f (v) , cul (v), cdl (v)

)
, with v being the current iterate index

of the SCA algorithm. According to [78, 79], in order to be used within the SCA

scheme, a convex approximant Ẽ (Z; Z (v)) of the objective function E
(
Qul,Qdl

)
around the current feasible iterate Z (v) ∈ Z must satisfy the following properties

([78, Section II]):

A1: Ẽ (•; Z (v)) is uniformly strongly convex on K;

A2: ∇Qul∗ Ẽ (Z (v) ; Z (v)) = ∇Qul∗E
(
Qul (v) ,Qdl (v)

)
and

∇Qdl∗ Ẽ (Z (v) ; Z (v)) = ∇Qdl∗E
(
Qul (v) ,Qdl (v)

)
, for all Z (v) ∈ Z;
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A3: ∇Z∗Ẽ (•; •) is Lipschitz continuous on K ×Z;

where ∇x∗f(x; y) denotes the conjugate gradient of the function f(x; y) with respect

to its first argument x. It is noted that, besides the convexity and smoothness

conditions A1 and A3, A2 enforces that the first-order behavior of the approximant

be the same as for the original function. In what follows, an approximant for the

objective function (2.14) satisfying A1-A3 above is derived. Let us write

Ẽ (Z; Z (v)) ,
∑
in∈I

Ẽin (Zin ; Z (v)) + Ē (Z; Z (v))

=
∑
in∈I

(
Ẽul
in

(
Qul; Qul(v)

)
+ Ẽdl

in

(
Qdl; Qdl(v)

) )
+ Ē (Z; Z (v)) ,

(2.15)

where Zin ,
(
Qul
in ,Q

dl
in , fin , c

ul
in , c

dl
in

)
being the vector of the optimization variables with

the function Ē (Z; Z (v)) ,
γ
qul

2

∑
in∈I

∥∥Qul −Qul (v)
∥∥2

+
γ
qdl

2

∑
in∈I

∥∥Qdl −Qdl (v)
∥∥2

+

γf
2
‖f − f (v)‖2 +

γ
cul

2

∥∥cul − cul (v)
∥∥2

+
γ
cdl

2

∥∥cdl − cdl (v)
∥∥2

is added to make the

approximant objective function (2.15) strongly convex onK, with γqul , γqdl , γf , γcul and

γcdl being arbitrary positive constants (see [78, 79]).The functions Ẽul
in

(
Qul; Qul(v)

)
and Ẽdl

in

(
Qdl; Qdl(v)

)
are the convex approximants for the uplink and downlink energy

terms, respectively, as derived next.

1) Convex approximant for Eul
in

(
Qul
)
: It is not difficult to check that an

approximant that utilize the “partial” convexity of the uplink energy function (2.6)

can be obtained as (cf. [48, Section IV-B])

Ẽul
in

(
Qul; Qul(v)

)
= tr

(
Qul
in (v)

) BI
in

rulin
(
Qul
in
,Qul
−in (v)

)
+ tr

(
Qul
in

) BI
in

rulin
(
Qul
in

(v) ,Qul
−in (v)

)
+

∑
jm∈I,m6=n

〈
∇Qul

in

∗Ejm
(
Qul (v)

)
,Qul

in −Qul
in (v)

〉
,

(2.16)

24



where 〈A,B〉 , Re
{

tr
(
AHB

)}
, and the conjugate gradient ∇Qul

in

∗Ejm
(
Qul (v)

)
is

given by [48, eq. (18)]

∇Qul
in

∗Ejm
(
Qul (v)

)
=

tr
(
Qul
jm (v)

)
∆ul
jm

(
Qul (v)

)
log (2) ruljm (Qul (v))

· [HH
inm(Rul

m

(
Qul
−jm (v)

)−1 − (Rul
m

(
Qul
−jm (v)

)
+ HjmQul

jm (v) HH
jm)−1)Hinm].

(2.17)

2) Convex approximant for Edl
in

(
Qdl
)
: To obtain the desired convex approximant

of downlink energy in (2.11), one needs to construct the convex surrogate for the

downlink rate function, i.e., r̃dlin
(
Qdl; Qdl (v)

)
. To obtain such an approximant, we

exploit first the concave-convex structure of the rate functions rdlin
(
Qdl
)

rdlin
(
Qdl
)

= log2 det
(
Rdl
n

(
Qdl
−in

)
+ HH

inHinQdl
in

)︸ ︷︷ ︸
rdlin

+(Qdl)

− log2 det
(
Rdl
n

(
Qdl
−in

))︸ ︷︷ ︸
rdlin

−(Qdl
−in)

,
(2.18)

where rdlin
+ (

Qdl
)

and rdlin
− (

Qdl
−in

)
are concave functions. The convex approximant is

then obtained as

r̃dlin
(
Qdl; Qdl (v)

)
= rdl+in

(
Qdl
)
− rdl−in

(
Qdl
−in (v)

)
−
∑
jm∈I

〈
∇Qul

jm

∗rdlin
− (

Qdl
−in (v)

)
,Qdl

jm −Qdl
jm (v)

〉
,

(2.19)

with

∇Qdl
jm

∗rdl−in
(
Qdl
−in (v)

)
= HH

jmnR
dl
n

(
Qdl
−in (v)

)−1
Hjmn. (2.20)

Then, we can simply obtain the convex approximant for Edl
in

(
Qdl
)

as

Ẽdl
in

(
Qdl; Qdl (v)

)
= BO

in

din
r̃dlin (Qdl; Qdl (v))

. (2.21)

Remark 5. The key advantage of SCA [78, 79] as compared to more conventional

approaches such as Difference-of-Convex (DC) programming [86] is that the convex
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surrogate Ẽ (Z; Z (v)) need not be a global upper bound on the function E(Qul,Qdl)

– a condition that appears to be difficult to ensure for the objective function of (P.1).

2.3.2 Inner Convexification of the Constraints

Next, let us consider the latency constraint C.1. Note that this constraint differs

from the corresponding latency constraint in [48] by virtue of the contributions due

to downlink and backhaul transmissions. Let us define the non-convex part of the

left-hand side of C.1 as

gin
(
Qul,Qdl

)
,

BI
in

W ulrulin (Qul)
+

BO
in

W dlrdlin (Qdl)
. (2.22)

To apply SCA, one needs to obtain an approximant g̃in
(
Qul,Qdl; Z(v)

)
at the current

iterate Z (v)) ∈ Z that satisfies the following properties ([78, Section II]):

B1: g̃in
(
•,Z(v)

)
is uniformly convex on K;

B2: ∇Z∗ g̃in
(
Qul (v) ,Qdl (v) ; Z(v)

)
= ∇Z∗gin

(
Qul (v) ,Qdl (v)

)
, for all Z(v) ∈ Z;

B3: ∇Z∗ g̃in(•; •) is continuous on K ×Z;

B4: g̃in
(
Qul,Qdl; Z(v)

)
≥ gin

(
Qul,Qdl

)
, for all

(
Qul,Qdl

)
∈ K and Z(v) ∈ Z;

B5: g̃in
(
Qul (v) ,Qdl (v) ; Z(v)

)
= gin

(
Qul (v) ,Qdl (v)

)
, for all Z(v) ∈ Z;

B6: g̃in(•; •) is Lipschitz continuous on K ×Z.

Besides the first-order behavior and smoothness conditions B2, B3 and B6, the

key assumptions B1, B4 and B5 enforce that the approximant g̃in
(
Qul,Qdl; Z(v)

)
be a locally tight (condition B5) convex (condition B1) upper bound (condition

B4) on the original constraint gin
(
Qul,Qdl

)
. The desired surrogate approximation

g̃in
(
Qul,Qdl; Z(v)

)
is then obtained from (2.19) as

g̃in
(
Qul,Qdl; Z(v)

)
,

BI
in

W ulr̃ulin (Qul; Qul (v))
+

BO
in

W dlr̃dlin (Qdl; Qdl (v))
, (2.23)

The proposed approximant (2.23) is an upper bound (condition B4) and is a

convex function of Qul and Qdl (condition B1). This is because both terms in (2.23)
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are the reciprocal of a concave and positive function, and the sum of the two convex

functions is convex. Furthermore, it is easy to show that the original constraint (2.22)

and its convex approximant (2.23) have the same first-order behavior (condition B2)

by evaluating the gradient of both functions at the current iterate. The remaining

properties B3-B6 can also be checked in a similar manner to [48, Section IV-B]. For

instance, since the approximant functions (2.16) and (2.19) are twice continuously

differentiable over the compact convex set K ⊇ Z, the Lipschitz continuity of their

conjugate gradients follows readily.

2.3.3 SCA Algorithm

The SCA algorithm operates by iteratively solving the following problem around the

current iterate Z (v) ∈ Z,

Ẑ (Z (v)) , argmin
Qul,Qdl,f ,cul,cdl

Ẽ (Z; Z (v))

s.t.

C.1 g̃in
(
Qul,Qdl; Z(v)

)
+

BI
in

culinC
ul
n

+
BO
in

cdlinC
dl
n

+
Vin
finFc

≤ Tin ,∀in ∈ I,

C.2−C.4 of (P.1). (P.3)

The unique solution of the strongly convex optimization problem (P.3) is denoted

Ẑ
(
Z (v)

)
,
(
Q̂ul, Q̂dl, f̂ , ĉul, ĉdl

)
. Note that Ẽ (Z; Z (v)) is a function of Z, given the

current iterate Z (v).

The SCA scheme is summarized in Algorithm 1. In step 1, the termination

criterion is
∣∣E (Qul (v + 1),Qdl (v + 1)

)
− E

(
Qul (v),Qdl (v)

)∣∣ ≤ δ, where δ > 0 is

the desired accuracy. The step size rule we used is γ (v) = γ (v − 1) (1− αγ (v − 1))

with γ (0) ∈ (0, 1] and α ∈ (0, 1/γ (0)) (other step size rules can also be adopted,

see [78,79]). Algorithm 1 converges to a stationary point of the problem (P.1) in the

sense of [48, Theorem 2].

27



Remark 6. The SCA scheme can also be easily adapted to tackle the weighted

sum problem (P.2) discussed in Remark 2. This alternative formulation has

the key advantage that the identification of an initial feasible point Z (0) ,(
Qul (0) ,Qdl (0) , f (0) , cul (0) , cdl (0) , T (0)

)
for the SCA is a trivial task. This is

because one can always select a value of T (0) that satisfies the constraint C.1 in (P.2)

for given values of the other variables.

Remark 7. Each instance of the optimization problem (P.3) tackled by SCA can be

solved with complexity O(max{n3, n2m}) using interior-points methods [87, Ch. 1],

where n is the size of the optimization variables, namely
(

2N2
Tin

+ 3
)
KNc, and m is

the number of constraints, namely m = 7KNc + 3Nc + 1. Note that the complexity

scales polynomially with the number K of users and with all system parameters.

While here we have focused on a centralized implementation, the complexity could

be further reduced by developing distributed solutions as described in [78, Section IV].

Finally, we would also like to mention that, in practice, rather than solving problem

(P.3) using SCA at each time slot for the given realization of the channels, it would be

possible to solve the problem for a number of representative channels so as to build

a sufficiently dense look-up table. More interestingly, as recently explored in [88]

for power allocation in an interference channel, one could use such representative

channels to train a neural network, or another learning machine, to “interpolate” the

solution to other channel realizations. These aspects are left for future investigations.

2.4 Users Scheduling

In the previous section, it was assumed that a given number of active users, namely

K per cell, was scheduled for transmission. The premise of this section, is that,

if too many MUs simultaneously choose to offload their computational tasks, the

resulting interference on the wireless channel may require an energy consumption at

the mobile for wireless transmission that exceeds the energy that would be needed for
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Algorithm 1: SCA Solution for (P.3)

Input: Parameters from Table 2.1; Z (0) ∈ Z; v = 0; {γ (v)}v ∈ (0, 1];

γqul , γqdl , γf , γcul , γcdl > 0.

1: If Z (v) satisfies the termination criterion, stop.

2: Compute Ẑ (Z (v)) from (P.3).

3: Set Z (v + 1) = Z (v) + γ (v)
(
Ẑ (Z (v))− Z (v)

)
.

4: v ← v + 1, and return to step 1.

Output: Z =
(
Qul,Qdl, f , cul, cdl

)
.

local computing at some MUs. Moreover, the backhaul and computing delays may

make the latency constraint in problem (P.1) impossible to satisfy, and thus problem

(P.1) infeasible. For theses reasons, in this section, we consider user selection with

the aim of maximizing the number of MUs that perform offloading while guaranteeing

that the selected MUs can satisfy their latency constraints and, at the same time,

consume less energy than with local computing. In the rest of this section, the local

computation energy model is first elaborated on and then the user scheduling problem

is formulated and tackled by integrating SCA with smooth lp-norm approximation

methods.

2.4.1 Local Computation Energy

When the application is executed at the mobile device, the energy consumption EM
in

is determined by the number of CPU cycles required by the application, Vin , and by

the clock frequency of the device chip, which is denoted here as Fin . In particular, for

CMOS circuits, the energy per operation is proportional to the square of the supply

voltage to the chip, and when the supply voltage is low, the clock frequency of the

chip is a linear function of the voltage supply [89]. As a result, the mobile energy for
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computing can be expressed as

EM
in = κVinF

2
in , (2.24)

where κ is the effective switched capacitance, which depends on the MU processor

architecture, and the clock frequency is selected so as to meet the latency constraint,

yielding

Fin =
Vin
Tin

. (2.25)

By plugging this into (2.24), the total consumption energy for mobile execution is

obtained as

EM
in = κ

V 3
in

T 2
in

. (2.26)

For each MU in, offloading is advantageous when the energy for local mobile

computing is higher than the energy required for offloading, i.e.,

EM
in ≥ Eul

in

(
Qul
)
, (2.27)

where Eul
in

(
Qul
)

is given in (2.6). Note that here for brevity only the uplink energy

contribution in (2.14) is considered.

2.4.2 User Scheduling

To proceed, let us introduce the auxiliary slack variables (xin , yin) for each MU

in measuring the violation of the latency constraint C.1 in (P.1) and the energy

constraint (2.27), respectively. Our system design becomes maximizing the number

of MUs that can perform offloading, while satisfying the latency constraints and

guaranteeing energy savings with respect to local computation when offloading is

performed. This amounts to maximizing the number of MUs in with no violation

of the mentioned constraints, i.e., with xin = 0 and yin = 0. This is done here by
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minimizing the `0-norm

‖x‖0 + ‖y‖0 =
∑
in∈X

I(xin > 0) +
∑
in∈X

I(yin > 0), (2.28)

where I is an indicator function that returns 1 for xin , yin > 0 and 0 otherwise, also

define x , [xin ]in∈X and y , [yin ]in∈X . The sum of the l0-norms of the slack vectors

x and y in (2.28) counts the number of constraints C.1 and C.2 that are violated by

the users. Therefore, minimizing this sum enforces the selection of users that satisfy

the largest number of constraints. Accordingly, the problem, defined for generality

over any arbitrary subset of users X ⊆ I, reads

min
Qul,Qdl,f ,cul,cdl,x,y

‖x‖0 + ‖y‖0

s.t. C.1
BI

in

Wulrulin(Qul)
+

BI
in

culinC
ul
n

+ Vin
finFc

+
BO

in

cdlinC
dl
n

+
BO

in

W dlrdlin(Qdl)
− Tin ≤ xin ,∀in ∈ X ,

C.2 Eul
in

(
Qul
)
− EM

in ≤ yin ,∀in ∈ X ,

C.3 xin ≥ 0, yin ≥ 0,∀in ∈ X ,

C.2−C.4 of (P.1),∀in ∈ X .

(P.4)

Define Z ,
(
Qul,Qdl, f , cul, cdl,x,y

)
.

The scheduling algorithm is described in Algorithm 2. The algorithm maximizes

the number of scheduled MUs by progressively removing the MUs in that have the

largest entries in the vector w , x/
∑

in∈X xin + y/
∑

in∈X yin , which measures the

relative amount, with respect to all users in X , by which a user violates the two

constraints. Note that the normalizations by
∑

in∈X xin and
∑

in∈X yin ensure that the

two constraints are considered on an equal footing. The outlined iterative procedure

is repeated until a subset of users X ∗ is found for which problem (P.4) returns vector

w that is close to zero, signifying feasibility of offloading under constraints C.1-C.4

of (P.1) as well as (2.27). It is observed that, unlike the admission control scheme

in [80, Algorithm 2], the proposed algorithm requires two set of auxiliary variables in
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order to account for the constraints C.1 and C.2.

Algorithm 2: User Scheduling

Input: Parameters used by Algorithm 3.

1: Solve problem (P.4) using Algorithm 3 for X = I to obtain

w ,
x∑

in∈I xin
+

y∑
in∈I yin

and sort the MUs in ascending order of the value of

w as wπ1 ≤ wπ2 ≤ . . . ≤ wπKNc
, where π is a permutation of I.

2: Set: Klow = 0, Kup = KNc.

3: Repeat

4: Set s← bKlow+Kup

2
c.

5: Perform the feasibility test by solving (P.4) using Algorithm 3 for

X = X [s] , {π1, . . . , πs}: if it is feasible, set Klow = s; otherwise, set Kup = s.

6: Until Kup −Klow = 1.

7: Set s∗ = Klow and X ∗ = {π1, . . . , πs∗}.

Output: Number of scheduled MUs s∗.

Algorithm 2 returns the solution s∗, from which the set of MUs scheduled for

offloading is obtained as X ∗ , {π1, . . . , πs∗}. In more details, upon obtaining the

solution of (P.4), the set of MUs is ordered according to the respective values of

the entries of vector w. Then, the subset X ∗ of scheduled users is computed by

bisection. In particular, bisection searches for the minimum number of users in the

interval [0, KNc], where KNc is the total number of users, that should be removed,

so that the rest of the users can be scheduled for offloading while satisfying the

desired constraints. Specifically, as described in Algorithm 2, set X ∗ is defined as

X ∗ , {π1, . . . , πs∗}, where the value of s∗ ∈ [0, KNc] is found by successively searching

within the interval [Klow, Kup], which is initialized as [0, KNc]. At each step, first, the

search interval is halved using the midpoint s. Then, a feasibility test is performed

to check whether the constraints C.1-C.4 of (P.1) can be met if the subset of MUs
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X [s] , {π1, . . . , πs} is scheduled and the limits [Klow, Kup] is updated accordingly.

The feasibility test is carried out by solving an instance of problem (P.4) over the

subset of MUs X [s]. The feasibility status is determined by the value of the resulting

auxiliary variables, i.e., the problem is considered to be feasible if the slack variables

are smaller than a positive value η close to zero.

Let us now discuss how to solve problem (P.4). Problem (P.4) is non-convex due

to the non-convexity of the objective and of the constraints C.1 and C.2. Based on

the limit ‖x‖0 = limp→0 ‖x‖p
p = limp→0

∑
in∈X |xin|

p, the objective function of (P.4)

can be approximated by a higher-order norm to make the problem mathematically

tractable. In particular, in a manner similar to [80], the following smooth objective

is adopted

f(x,y) ,
∑
in∈X

(x2
in + ε2)p/2 +

∑
in∈X

(y2
in + ε2)p/2, (2.29)

where ε > 0 is a small fixed regularization parameter. Substituting (2.29) as the

objective in (P.4), one can now apply the SCA approach to obtain a local optimal

solution of the resulting problem.

To this end, a convex upper bound satisfying conditions A1-A3 described in

Section 2.3.1 for the smoothed `p-norm objective function (2.29) can be obtained

from the result in [80, Proposition 1] and is given by

f̃ (Z; Z (v)) ,
∑
in∈X

ω′inx
2
in +

∑
in∈X

ω′′iny
2
in + f̄ (Z; Z (v)) , (2.30)

where Z (v) ,
(
Qul (v) ,Qdl (v), f (v) , cul (v), cdl (v),x (v),y (v)

)
; ω′in = p

2

[
(xin(v))2 + ε2

]p
2
−1

and ω′′in = p
2

[
(yin(v))2 + ε2

]p
2
−1

; the function f̄ (Z; Z (v)) ,
γ
qul

2

∑
in∈I

∥∥Qul −Qul (v)
∥∥2

+

γ
qdl

2

∑
in∈I

∥∥Qdl −Qdl (v)
∥∥2

+
γf
2
‖f − f (v)‖2+

γ
cul

2

∥∥cul − cul (v)
∥∥2

+
γ
cdl

2

∥∥cdl − cdl (v)
∥∥2

+

γx
2
‖x− x (v)‖2 + γy

2
‖y − y (v)‖2 is added to realize the strong convexity of (2.30) with

γx, γy > 0.
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The convexification of constraint C.1 is done as in (2.23). Lastly, to obtain an

inner convexification for the energy constraint C.2 that satisfies the conditions B1-B6

in Section 2.3.2, one can utilize the concave-convex structure of the rate function

rulin
(
Qul
)

as in (2.18), to rewrite constraint C.2 as

tr
(
Qul
in

)
−
EM
in

BI
in

rulin
+ (

Qul
)
−
EM
in

BI
in

rulin
− (

Qul
−in

)
≤ yin , (2.31)

where rulin
+ (

Qul
)

and rulin
− (

Qul
−in

)
are given in (2.18). Using the linearization (2.19),

the desired upper bound on C.2 is then obtained as

tr
(
Qul
in

)
−
EM
in

BI
in

r̃ulin
(
Qul; Qul (v)

)
≤ yin . (2.32)

Given a feasible point Z (v), let us define the following strongly convex problem

Ẑ (Z (v)) , argmin
Qul,Qdl,f ,cul,cdl,x,y

f̃ (Z; Z (v))

s.t.

C.1 g̃in
(
Qul,Qdl; Z (v)

)
+

BI
in

culinC
ul
n

+
BO
in

cdlinC
dl
n

+
Vin
finFc

− Tin ≤ xin , ∀in ∈ X ,

C.2 tr
(
Qul
in

)
−
EM
in

BI
in

r̃ulin
(
Qul; Qul (v)

)
≤ yin , ∀in ∈ X ,

C.3 xin ≥ 0, yin ≥ 0,∀in ∈ X ,

C.2−C.4 of (P.1), ∀in ∈ X , (P.5)

where Ẑ (Z) , (Q̂ul, Q̂dl, f̂ , ĉul, ĉdl, x̂, ŷ) denote the unique solution of (P.5). The

SCA scheme for solving (P.5) is described in Algorithm 3. As a technical note, we

observe that here, since the approximant (2.30) of the objective function (2.29) is

an upper bound on (2.29), convergence of Algorithm 3 is guaranteed also by setting

γ(v) = 1 [78, Section III-A].

34



Algorithm 3: SCA Solution for (P.5)

Input: Parameters from Table 2.1; p = 0.5; v = 0; Z (0) ∈ Z; {γ (v)}v ∈ (0, 1];

γqul , γqdl , γf , γcul , γcdl , γx, γy, ε > 0; ω′in(0) = ω′′in(0) = 1.

1: If
∣∣∣̃f (Z; Z (v + 1))− f̃ (Z; Z (v))

∣∣∣ ≤ δ, stop.

2: Compute Ẑ (Z (v)) from (P.5).

3: Set Z (v + 1) = Z (v) + γ (v)
(
Ẑ (Z (v))− Z (v)

)
.

4: Update

ω′in(v + 1) =
p

2

[
(xin(v + 1))2 + ε2

]p
2
−1

,

ω′′in(v + 1) =
p

2

[
(yin(v + 1))2 + ε2

]p
2
−1

.

5: v ← v + 1, and return to step 1.

Output:
(
Qul,Qdl, f , cul, cdl,x,y

)
.

2.5 Hybrid Edge and Cloud Computing

In the previous sections, the considered scenario assumes that MUs can offload

applications to a cloud server. In this section, besides the cloud server, the analysis

is extended to a more general set-up in which the ceNBs are directly connected to

local computing servers, also known as cloudlets [7], which may run some of the MUs’

applications. Specifically, each ceNB can either execute the computation task on the

behalf of the MU or offload it to the cloud. Let F ceNB
n be the computation capability

in CPU cycles per second of ceNB n, and let f ceNB
in ≥ 0 be the fraction of the ceNB’s

computing power assigned to user in, so that
∑
i

f
ceNB]
in

≤ 1. If implemented at the

ceNB, the execution time of the task of MU in is then given as

∆
exe|ceNB
in

=
Vin

f ceNB
in

F ceNB
n

. (2.33)

In the same way, if the cloud processes the task of user in, the execution time

∆
exe|cloud
in

is given by the right-hand side of (2.12). The overall latency ∆in experienced
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by each MU in can be expressed as

∆in = ∆ul
in + (1− uin) ∆

exe|ceNB
in

+ uin∆
exe|cloud
in

+ uin∆bh
in + ∆dl

in , (2.34)

where ∆ul
in ,∆

bh
in and ∆dl

in have the same definition as in (2.5), (2.13) and (2.10),

respectively; uin is a binary variable that indicates whether if the task of MU in

is processed on the ceNB (uin = 0) or on the cloud (uin = 1).

To proceed, one can relax the binary variable uin to be defined in the interval

[0, 1]. This relaxation not only provides a lower bound on the minimum energy

expenditure that can be obtained with a hard choice between cloudlet and cloud

offloading, perhaps more importantly, it also captures a system in which the input

data to the application of the MU in can be split into two parts, of sizes 1− uin and

uin , that can be processed separately at the ceNB and cloud, respectively. In the

following, we will adopt this latter justification of the model.

As in Section 2.2.2, the problem targets the minimization of the total energy

consumed by the MUs to execute their tasks remotely under latency and power

constraints. The problem is given by

min
Qul,Qdl,u,fceNB,f ,cul,cdl

Eul
(
Qul
)

=
∑
in∈I

Eul
in

(
Qul
in ,Q

ul
−in

)
=
∑
in∈I

BI
in

tr(Qul
in)

rulin(Qul)

s.t.

C.1
BI

in

Wulrulin(Qul)
+ (1−uin )Vin

fceNB
in

F ceNB
n

+
uinB

I
in

culinC
ul
n

+ uinVin
finFc

+
uinB

O
in

cdlinC
dl
n

+
BO

in

W dlrdlin(Qdl)
≤ Tin ,∀in ∈ I,

C.2 0 ≤ uin ≤ 1,∀in ∈ I,

C.3 f ceNB
in , fin ≥ 0, ∀in ∈ I,

∑
in∈I

fin ≤ 1,
K∑
i=1

f ceNB
in ≤ 1,∀n = 1, . . . , Nc,

C.4 culin , c
dl
in ≥ 0,∀in ∈ I,

K∑
i=1

culin ≤ 1,
K∑
i=1

cdlin ≤ 1,∀n = 1, . . . , Nc,

C.5 Qul
in ∈ Q

ul
in ,∀in ∈ I,

(
Qdl
in

)K
i=1
∈ Qdln ,∀n = 1, . . . , Nc.

(P.6)
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Note that, unlike (P.1), here we have the additional optimization variables u ,

(uin)in∈I and f ceNB ,
(
f ceNB
in

)
in∈I

.

It can be observed that (P.6) is non-convex due to the non-convexity of the

objective function and constraint C.1. The problem is tackled by means of the SCA

method convexifying the objective function as done in Section 2.3.1. Furthermore,

one needs to calculate a convex upper bound for the C.1 constraint in (P.6) that

satisfies conditions B1-B6 in Section 2.3.2. Let us write the left-hand side of C.1 by

gin
(
Qul,Qdl,u, f ceNB, f , cul, cdl

)
,

BI
in

W ulrulin (Qul)
+

BO
in

W dlrdlin (Qdl)

+
(1− uin)Vin
f ceNB
in

F ceNB
n

+
uinVin
finFc

+
uinB

I
in

culinC
ul
n

+
uinB

O
in

cdlinC
dl
n

.

(2.35)

To build the desired bound on gin , it is observed that the first two terms can be

handled as in Section 2.3.2, while for the last four terms, they are all seen to be ratios

of linear functions, it is easy to show that the relationship

x

y
=

1

2

(
x+

1

y

)2

− 1

2

(
x2 +

1

y2

)
, (2.36)

holds, where the right-hand side is the difference of two convex functions if x ≥ 0 and

y > 0. Therefore, a locally tight convex upper bound on the left-hand side of (2.36)

can be obtained by linearizing the concave part as

x

y
≤1

2

(
x+

1

y

)2

− 1

2

(
(xv)2 +

1

(yv)2

)
− xv (x− xv) +

1

(yv)3 (y − yv) , (2.37)

where superscript v identifies the point (xv, yv) at which the upper bound is tight.

Using (2.37) to the last four terms in (2.35), the desired approximants is then defined

by substituting for x and y in (2.37) the numerator and denominator, respectively,

of each of the last four terms in (2.35). This yields the SCA procedure in Algorithm

1 with the difference that we defined Z ,
(
Qul,Qdl,u, f ceNB, f , cul, cdl

)
and Z (v) ,(

Qul (v) ,Qdl (v) ,u (v) , f ceNB (v) , f (v) , cul (v) , cdl (v)
)
.
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Ẑ (Z (v)) , argmin
Qul,Qdl,u,fceNB,f ,cul,cdl

Ẽul (Z; Z (v))

s.t.

C.1 g̃in (Z; Z (v)) ≤ Tin ,∀in ∈ I,

C.2−C.5 of (P.6), (P.7)

where Ẑ (Z (v)) , (Q̂ul, Q̂dl, û, f̂ ceNB, f̂ , ĉul, ĉdl) denotes the unique solution of the

strongly convex optimization problem (P.7); the objective function Ẽul (Z; Z (v)) ,∑
in∈I

(
Ẽul
in

(
Qul; Qul(v)

)
+ Ēin (Zin ; Zin (v))

)
where Ẽul

in

(
Qul; Qul(v)

)
is given as in

(2.16) and we define Ē (Zin ; Zin (v)) ,
γ
qul

2

∥∥Qul
in −Qul

in (v)
∥∥2

+
γ
qdl

2

∥∥Qdl
in −Qdl

in (v)
∥∥2

+

γu
2
‖uin − uin (v)‖2 +

γ
fceNB

2
‖f ceNB

in - f ceNB
in (v) ‖2 +

γf
2
‖fin − fin (v)‖2+

γ
cul

2

∥∥culin − culin (v)
∥∥2

+

γ
cdl

2

∥∥cdlin − cdlin (v)
∥∥2

with γu, γfceNB > 0; and g̃in (Z; Z (v)) is the locally convex upper

bound defined above.

2.6 Enhanced Downlink via Network MIMO

In the considered system model so far, the assumption was that each ceNB n serves

the users {in : i = 1, . . . , K} in its cell, hence interfering with other ceNBs. In this

section, instead, a more enhanced downlink transmission based on network MIMO

is considered. Specifically, assume that each MU can receive the result of the cloud

execution in the downlink not only from ceNB in the same cell, but also from other

ceNBs that cooperatively transmit to the MU. Cooperation among ceNBs is enabled

by the transmission on the backhaul links of the outcome of the cloud execution

for a given MU to multiple ceNBs. The extreme case of full ceNB cooperation is

considered in this section, so that all the ceNBs transmit cooperatively to each MU.

The extension to a more general model with clustered cooperation is straightforward

and will not be pursued further.
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To express the achievable downlink rate with network MIMO, it is convenient

to define user-centric transmit covariance matrices Qdl
j ∈ CNT×NT for every MU j ∈

I, where we have defined NT ,
∑Nc

n=1NTn , such that the n-th NTn × NTn block

on the main diagonal, denoted by [Qdl
j ]n, represents the contribution of ceNB n to

the transmission to MU j. Note that the out-of-diagonal blocks in Qdl
j describe

the correlation among signals sent by different ceNBs, which designates cooperative

transmission at the ceNBs. The set of downlink covariance matrices, Qdl =
{
Qdl
j

}
j∈I

is

Qdl ,
{
Qdl
j ∈ CNT×NT , j ∈ I :

∑
j∈I

tr
(
[Qdl

j ]n
)
≤ P dl

n ,∀n
}
, (2.38)

so that the per-ceNB power constraints are satisfied. Also, it is convenient to

define the channel matrix from all the ceNBs to MU j as G̃j ∈ CNRj
×NT , where

G̃j , [Gj1,Gj2, . . . ,GjNc ] and we have set Gj,n = Gj. With these definitions, the

achievable downlink rate is given by

rdlin(Qdl) = log2 det
(
I + G̃H

inR̃dl
in(Qdl

−in)−1G̃inQdl
in

)
, (2.39)

with

R̃dl
in(Qdl

−in) , N0I +
∑

im∈I\{in}

G̃inQdl
imG̃H

in , (2.40)

and Qdl
−in , (Qdl

jm)jm 6=in .

In order to enable network MIMO, one needs to ensure that downlink

transmissions from all ceNBs take place at the same time. To this end, there is a

necessity to impose that uplink transmission, computing and backhaul transmissions

for all MUs are constrained to be completed by a given time T1. At time T1, then, the

downlink transmission is initiated and takes a given time T2. Accordingly, following

the weighted sum approach discussed in Remark 2, the optimization problem is
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formulated as

min
Qul,Qdl,f ,cul,cdl,T1,T2

∑
in∈I

BI
in

tr(Qul
in)

rulin(Qul)
+ λ(T1 + T2)

s.t. C.1
BI

in

Wulrulin(Qul)
+

BI
in

culinC
ul
n

+ Vin
finFc

+
BO

in

Cdl
mc

dl
in,m
≤ T1,∀in ∈ I,

C.2
BO

in

W dlrdlin(Qdl)
≤ T2,∀in ∈ I,

C.3 fin ≥ 0,∀in ∈ I,
∑
in∈I

fin ≤ 1

C.4 culin , c
dl
in,m ≥ 0,∀in ∈ I,

K∑
i=1

culin ≤ 1,∀n = 1, . . . , Nc,
∑
j∈I

cdlj,m ≤ 1,

C.5 Qul
in ∈ Q

ul
in , ∀in ∈ I,Q

dl ∈ Qdl,
(P.8)

where cdl ,
(
cdlin,m

)
in∈I,m

, with cdlin,m being the fraction of the backhaul capacity to

ceNB m allocated to transmit the output bits intended for MU in; and λ > 0 is a

parameter defining the relative weight of energy and latency.

Problem (P.8) is non-convex due to the non-convexity of the objective function

and constraints C.1 and C.2. One can tackle this problem using SCA in a way similar

to that used for (P.1), i.e., to obtain a convex approximants for the objective functions

using (2.16) and for the latency constraints using (2.23). The problem is then solved

using the SCA procedure described in Algorithm 1.

2.7 Numerical Results

In this section, numerical results are presented to validate the model and algorithms

discussed in the previous sections. Throughout, we consider a network composed of

three cells with five users in each cell, i.e., Nc = 3 and K = 5. All transceivers

are equipped with NTin
= NRn = 2 antennas. The channel matrices are generated

with independent and identically distributed complex Gaussian entries having zero

mean and variance equal to the path loss, which is assumed to be identical for uplink

and downlink. The path loss is given by 170 dBm between an MU and the ceNB

in the same small cell and 180 dBm between an MU and the ceNB in the other

small cell. The values 170 dBm and 180 dBm can be justified by considering the
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Walfish-Ikegami model [1] with distances of 500 meters between MU and ceNB in the

same cell and 700 meters for MU and ceNB in different cells. The other parameters of

the Walfish-Ikegami model are selected so as to simulate a small-cell environment in

a typical urban setting as listed in Table 2.2. Targeting a small-cell scenarios, we will

explore values of the backhaul capacities as low as few Mbits/s [8, 26]. Finally, note

that setting N0 = −170 dBm/Hz [1], yields an average signal-to-noise ratio (SNR) on

the direct link of 40 dBm per receive antenna and 30 dBm on the interference link

for a signal transmitted at 0.01 Joule per symbol from a single antenna in the uplink

and downlink. Furthermore, unless stated otherwise, each number of input bits BI
in

and output bits BO
in is selected uniformly at random in the interval [0.1 − 1] Mbits

and we set the number of CPU cycles as Vin = 2640×BI
in CPU cycles. These choices

reflect computational-intensive applications, as demonstrated by the measurements

in [35,90]. The cloud capacity is Fc = 1011 CPU cycles/s, which is, e.g., obtained by

a four-core server with Intel Xeon processor with 3.3 GHz that is commercially used

by Amazon elastic compute cloud (EC2) [36, 91]. Other system parameters are set

to W ul = W dl = 10 MHz, Cul
n = Cdl

n = 100 Mbits/s, din = 10−5 J/symbol [92], and

Tin = 0.1 seconds. Throughout, averages are intended with respect to the channel

realizations.

Let us start by illustrating the typical convergence properties of the SCA

algorithm by plotting in Figure 2.3 the average minimal mobile energy consumption

E
(
Qul,Qdl

)
versus the iteration index v. Besides the joint optimization across

uplink, downlink, backhaul and computing resources, studied in Section 2.2.2, let

us consider the following more conventional solutions: (i) Equal backhaul and cloud

allocation: the computing and backhaul resources are equally allocated to all MUs,

that is, fin = 1/(NcK) and culin = cdlin = 1/K for all in ∈ I, while the covariance

transmit and receive matrices at the physical layer are optimized using SCA [48];

(ii) Equal cloud allocation: computing resources at the cloud are equally allocated
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Table 2.2 Parameters in the Walfish-Ikegami Path Loss Model [1].

parameter value description

f 1800 frequency (MHz)

θ 45◦ road orientation angle (degree)

hTx 3 height of transmitter (meters)

hRx 1 height of receiver (meters)

hRoof 5.5 mean value of buildings height (meters)

sRoof 8 mean value of buildings separation (meters)

str wid 5 mean value of street width (meters)

ka 54 path loss penalty when ceNB below rooftop

kd 5 correlation adjustment constant

1 3 5 7 9 11 13 15 17

Iteration index (v)
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Figure 2.3 Minimum average mobile sum-energy consumption versus iteration index
(Tin = 0.12 seconds, Nc = 3,K = 5, W ul = W dl = 100 MHz, BI

in
and BO

in
∼ U{0.1, 1}

Mbits, Vin = 2640 × BI
in

CPU cycles, Culn = Cdln = 100 Mbits/s, and Fc = 1011 CPU
cycles/s).
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among the MUs, while the rest of the parameters are jointly optimized using SCA;

(iii) Equal backhaul allocation: the backhaul resources are equally allocated among

the MUs, while the rest of the parameters are jointly optimized using SCA. It

is observed that SCA has fast convergence, which requires around 17 iterations

to obtain results close to convergence (at iteration 17 the termination criterion∣∣E (Qul (v + 1),Qdl (v + 1)
)
− E

(
Qul (v),Qdl (v)

)∣∣ ≤ δ is satisfied with δ = 10−3

for α = 10−5). Furthermore, it can be seen that the proposed joint optimization

method shows a considerable gain compared to the equal allocation of computational

and backhaul resources.

The gains that can be accrued by means of joint optimization are further

investigated in Figure 2.4 (obtained in the same setting of Figure 2.3), which depicts

the minimum average mobile energy as a function of the latency constraints Tin ,

which are assumed to be the same for all MUs. The energy saving due to joint

optimization can be seen to be particularly pronounced in the regime in which the

latency constraint is more stringent. For instance, at Tin = 0.12 seconds, which is the

smallest latency for which all schemes are feasible, joint optimization saves 66% in

terms of sum-energy as compared to equal allocation of backhaul and cloud resources,

48% as compared to equal cloud allocation, and 32% as compared to equal backhaul

allocation.

To account for the case in which the network may operate under asymmetrical

bandwidth allocation for uplink and downlink, it is helpful to compare the mobile

sum-energy consumption of the schemes considered above in the same set-up of

Figures 2.3 and 2.4, with the caveat that to set W dl = 10 MHz and to vary the

uplink/downlink bandwidth ratio W ul/W dl, in Figure 2.5. It is observed that joint

optimization is especially advantageous in term of mobile energy consumption when

the uplink bandwidth is more constrained than the downlink bandwidth. This is

because, in this regime, it is particularly useful to allocate more computing and
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Figure 2.4 Minimum average mobile sum-energy consumption versus the latency
constraint Tin , assumed to be the same for all MUs (Nc = 3,K = 5, W ul = W dl = 100
MHz, BI

in
and BO

in
∼ U{0.1, 1} Mbits, Vin = 2640 × BI

in
CPU cycles, Culn = Cdln = 100

Mbits/s, and Fc = 1011 CPU cycles/s).

backhaul resources to users with worse channel condition in order to meet the latency

requirements with minimal energy expenditure. For example, when W ul is five times

smaller than the downlink bandwidth, the joint optimization scheme is 50% more

energy efficient than the fixed allocation of backhaul and cloud resources.

While the previous results assume that all MUs perform computation offloading,

we next turn to the study of user selection that is presented in Section 2.4. To

account for mobile energy consumption, the effective switched capacitance of the

mobile is set to κ = 10−26 so that the mobile energy consumption is consistent with

the measurements made in [35] for a Nokia N900 mobile device operating at frequency

500 MHz. To this end, it is plotted in Figure 2.6, the average number of selected MUs

as a function of the latency constraint Tin , assumed to be the same for all MUs, for

different values of backhaul. The figure shows the results obtained by means of the

efficient algorithm proposed in Section 2.4 with η = 10−5, as well as by an exhaustive
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Figure 2.5 Minimum average mobile sum-energy consumption versus bandwidth
allocation ratio W ul/W dl (W dl = 10 MHz, Nc = 2,K = 2, Tin = 0.09 s, BI

in
and

BO
in
∼ U{0.1, 1} Mbits, Vin = 2640 × BI

in
CPU cycles, Culn = Cdln = 100 Mbits/s, and

Fc = 1011 CPU cycles/s).

search strategy in which, for every subset of users, a joint optimization problem is

solved as per Section 2.2.2 using SCA (Algorithm 1) and then the subset of users which

yields the minimal energy consumption is selected. The figure demonstrates how a

less restrictive latency constraint and/or a larger backhaul increases the number of

users that should be allowed to offload. For instance, for Tin ≤ 0.07 seconds, there is

no MU on average offloads its applications since offloading is more energy demanding.

Instead, for Tin > 0.2 seconds, as long as the backhaul capacity is larger than 500

Mbits/s, all MUs tend to offload. It is also observed that the proposed scheme selects

a number of users close to that chosen by exhaustive search.

The corresponding overall energy consumption for the example of Figure 2.6

with backhaul capacity Cul
n = Cdl

n = 100 Mbits/s is shown in Figure 2.7. Note

that the overall energy consumption is the sum of the mobile computing energy for

the MUs that perform local computing, namely (2.26), and of the energy used for
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Figure 2.6 Average number of selected MUs versus latency constraint Tin for both the
proposed efficient scheme in Section 2.4 and exhaustive search (Nc = 2,K = 2, BI

in
= BO

in
=

1 Mbits, Vin = 109 CPU cycles, Fc = 1011 CPU cycles/s, and Cdln = Culn ).

transmission, namely (2.6), for the MUs that offload. For reference, it is also shown

the energy required when all MUs perform their tasks locally. The proposed user

selection scheme is seen to achieve a near-optimal energy performance compared to

the exhaustive search method. As an example, when the latency constraint Tin = 0.17

seconds, around 83% energy saving can be obtained with the proposed user offloading

selection scheme as compared to local computing.

In the previous results, central cloud processing was assumed. It is time now

to investigate the optimal allocation of computing tasks between the edge and the

cloud in the set-up studied in Section 2.5. To this end, in Figure 2.8, we plotted the

fractions (ûin)in∈I of the application of each MU in to be performed at the cloud as

a function of the backhaul capacity when the computing capability of the cloudlet is

given by F ceNB
n = 0.1Fc. To highlight the impact of asymmetries in the offloading

requirements, It is assumed here that in the first cell the two users have BI
11

= BO
11

= 1

Mbits, V11 = 109 CPU cycles, and BI
21

= BO
21

= 0.7 Mbits, V21 = 0.7V11 CPU
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Figure 2.7 Minimum average mobile sum-energy consumption versus the latency
constraint Tin (Nc = 2,K = 2, BI

in
= BO

in
= 1 Mbits, Vin = 109 CPU cycles,

Culn = Cdln = 100 Mbits/s, and Fc = 1011 CPU cycles/s).

cycles, while the users in the second cell have smaller offloading requirements for data

transfer and computing, normally BI
12

= BO
12

= 0.5 Mbits, V12 = 0.5V11 CPU cycles,

and BI
22

= BO
22

= 0.1 Mbits, V22 = 0.1V11 CPU cycles. It is observed that, when the

backhaul capacity is limited, tasks tends to be performed at the edge, especially for

users with more stringent data transfer and computing requirements, for example, at

Cul
n = Cdl

n = 3 Mbits/s, the two users in the first cell execute 50% and 80% percent of

their offloaded tasks at the cloud, while the users in the second cell have a complete

tasks execution at the cloud due to the moderate number of input/output bits. As

the backhaul capacity is increased, more tasks are executed at the cloud, benefiting

from the improved connection between ceNBs and the cloud.

To obtain further insights, Figure 2.9. shows the mobile sum-energy consumption

versus the backhaul capacity for cloud mobile computing, whereby all users offload

to the cloud, and edge mobile computing, whereby all users offload to the local

cloudlet, for Nc = 2, K = 2, and F ceNB
n = 1010 CPU cycles/s. It is also
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Figure 2.8 Offloading cloud vs. cloudlet indicator versus the backhaul capacity (Nc =
2,K = 2, Tin = 0.9 seconds, BI

11
= BO

11
= 1 Mbits, BI

21
= BO

21
= 0.7 Mbits, BI

12
= BO

12
= 0.5

Mbits, BI
22

= BO
22

= 0.1 Mbits; V11 = 109 CPU cycles, V21 = 0.7V11 , V12 = 0.5V11 and

V22 = 0.1V11 , Culn = Cdln = 100 Mbits/s, F ceNB
n = 1010 CPU cycles/s, and Fc = 1011 CPU

cycles/s).

included, the performance of the solution introduced in Section 2.5, which allows for

hybrid edge-cloud offloading. For cloud offloading, different values for computational

capacity Fc of the cloud have been considered. It is seen that when the backhaul

capacity constraint is stringent, edge offloading is more energy efficient as compared

to cloud offloading, e.g., by about 44% for cloud computational capacity Fc = 1010

CPU cycles/s and backhaul capacity Cul
n = Cdl

n = 2.4 Mbits/s. Furthermore,

larger values of cloud capacity Fc can compensate for limited backhaul resources,

making cloud computing preferable to edge computing. It is also observed that the

hybrid edge-cloud offloading scheme can significantly outperform edge computing

when backhaul capacity is limited.

Finally, we turn to the performance of the downlink network MIMO scheme

presented in Section 2.6. Figure 2.10 plots the average mobile sum-energy with and

without cooperative transmission in the downlink. The performance of cooperative
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Figure 2.9 Minimum average mobile sum-energy consumption for cloud and edge
offloading, along with the proposed hybrid edge-cloud offloading scheme, versus backhaul
capacity Culn = Cdln (Nc = 2,K = 2, Tin = 0.1 s, W ul = W dl = 10 MHz, BI

in
and

BO
in
∼ U{0.1, 1} Mbits, Vin = 2640×BI

in
CPU cycles, and F ceNB

n = 1010 CPU cycles/s).

scheme is obtained from the solution of (P.8), while the performance of non-

cooperative scheme is obtained from the solution of (P.1) under the indicated values

of backhaul capacity. The users offloading requirements are identical to that used

in Figure 2.6. The key observation here is that the performance of the downlink

cooperative transmission is strongly limited by the backhaul capacity. For instance,

one can see that, with backhaul Cul
n = Cdl

n = 10 Mbits/s, the cooperative scheme

is about 85% more energy-consuming as compared to the non-cooperative scheme

at latency 0.5 seconds. The energy performance gap between the two schemes is

diminished as the backhaul increases as observed with Cul
n = Cdl

n = 100 Mbits/s.

With this value of backhaul capacity, the cooperative scheme is less energy efficient

by 45% around Tin = 0.3 seconds. However, with backhaul Cul
n = Cdl

n = 10 Gbits/s,

as for a standard fiber optic channel, the cooperative scheme starts to have noticeable
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Figure 2.10 Minimum average mobile sum-energy consumption versus the latency
constraint Tin , assumed to be the same for all MUs (Nc = 2,K = 2, BI

in
= BO

in
= 1

Mbits, Vin = 109 CPU cycles, Fc = 1011 CPU cycles/s, and Cdln = Culn ).

energy gains. At latency 0.08 seconds, for example, the cooperative scheme attains

57% energy saving as compared to the non-cooperative scheme.

2.8 Concluding Remarks

In this chapter, we investigated the design of cloud mobile computing systems over

MIMO cellular networks as a joint optimization problem over radio, computational

resources and backhaul resources in both uplink and downlink directions. An iterative

algorithm based on successive convex approximations was presented for solving the

resulting non-convex problems under latency and power constraints. Numerical

results show that the proposed joint optimization yields significant energy saving

compared to the conventional solutions based on separate allocations of computing

and/or backhaul resources. This saving is more pronounced in low latency regimes,

where, in our results, it leads to energy saving as high as 66%. The mentioned

baseline problem was further generalized in several directions. First, user selection
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with the aim of ensuring an energy savings for all users that perform offloading is

tackled. Then, a hybrid architecture that leverages both edge and cloud computing

was studied by addressing the optimal allocation between cloud and edge. It was seen

that the optimal allocation is significantly affected by the backhaul capacity. Finally,

joint downlink transmission based on network MIMO was considered, demonstrating

the critical importance of the backhaul for the viability of this technique.
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CHAPTER 3

ENERGY-EFFICIENT RESOURCE ALLOCATION FOR MOBILE
EDGE COMPUTING-BASED AUGMENTED REALITY

APPLICATIONS

3.1 Introduction

The mobile applications considered for offloading in the previous chapter are assumed

to be user-centric with each MU offloads its application independently. In this chapter,

Augmented Reality (AR) type of mobile applications is considered for joint offloading

by multiple MUs in an application-centric fashion as discussed next.

Augmented Reality (AR) mobile applications are gaining increasing attention

due to the their ability to combine computer-generated data with the physical reality.

AR applications are computational-intensive and delay-sensitive, and their execution

on mobile devices is generally prohibitive when satisfying users’ expectations in terms

of battery lifetime [2,12,66]. To address this problem, it has been proposed to leverage

mobile edge computing [2, 27, 32, 70]. Accordingly, users can offload the execution of

the most time- and energy-consuming computations of AR applications to cloudlet

servers via wireless access points. The use of local cloudlet servers is instrumental in

providing the required real-time experience, as it forgoes the use of backhaul network

to access a distant cloud server [2, 12,70].

Nevertheless, the stringent delay requirements pose significant challenges to the

offloading of AR application via mobile edge computing [2,70]. A recent line of work

has demonstrated that it is possible to significantly reduce mobile energy consumption

under latency constraints by performing a joint optimization of the allocation of

communication and computational resources [28–31]. These investigations apply to

generic applications run independently by different users. However, AR applications

have the unique property that the applications of different users share part of the

computational tasks and of the input and output data [2, 32]. Therefore, this
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Renderer
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Object 

recognizer

Figure 3.1 Example of a component-based model of an AR application [2]. The
application includes the Video source and Renderer components, which need to be executed
locally on the mobile device, and the three main components of Mapper, Tracker and Object
recognizer, which may be offloaded.

chapter proposes to leverage this property to reduce communication and computation

overhead via the joint optimization of communication and computational resources.

To illustrate the problem at hand, consider the class of AR applications that

superimpose artificial images into the real world through the screen of a mobile device

as described in [2, 32]. The block diagram of such applications shown in Figure 3.1

identifies the following components [2, 32]: (i) Video source, which obtain raw video

frames from the mobile camera; (ii) Tracker, which tracks the position of the user with

respect to the environment; (iii) Mapper, which builds a model of the environment;

(iv) Object recognizer, which identifies known objects in the environment; and (v)

Renderer, which prepares the processed frames for display. The Video source and

Renderer components must be executed locally at the mobile devices, while the most

computationally intensive Tracker, Mapper and Object recognizer components can be

offloaded. Moreover, the input and output data, as well as the computational tasks

of the offloaded components, can be partially shared among users. In fact, Mapper

and Object recognizer can collect inputs from all the users located in the same area,

potentially limiting the transmission of redundant information in the uplink. In a

similar manner, the outcome of the Mapper and Object recognizer components can

be multicast to all co-located users in the downlink.
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In this chapter, unlike prior papers [28–31], the problem of minimizing the

total mobile energy expenditure for offloading under latency constraints over commu-

nication and computation parameters by explicitly accounting for the discussed

collaborative nature of AR applications is tackled in Section 3.3. Section 3.4

introduces the proposed Successive Convex Approximation (SCA) [78, 79] solution.

Numerical results are finally provided in Section 3.5.

3.2 System Model

Consider the mobile edge computing system illustrated in Figure 3.2, in which K

users in a set K = {1, . . . , K} run a computation-intensive AR application on their

single-antenna mobile devices with the aid of a cloudlet server. The server is attached

to a single-antenna Base Station (BS), which serves all the users in the cell using

Time Division Duplex (TDD) over a frequency-flat fading channel. Following the

discussion in Section 3.1, it is assumed that the offloaded application has shared

inputs, outputs and computational tasks, which pertain to the Tracker, Mapper and

Object recognizer components. To elaborate, let us first review the more conventional

set-up, studied in, e.g., [28–31], in which users perform the offloading of separate and

independent applications. In this case, offloading for each user k would require:

(i) Uplink: transmitting a number BI
k input bits from each user k to the cloudlet

in the uplink; (ii) Cloudlet processing: processing the input by executing Vk CPU

cycles at the cloudlet; (iii) Downlink: transmitting BO
k bits from the cloudlet to

each user k in the downlink. In contrast, as discussed in Sec. 3.1, the collaborative

nature of the Tracker, Mapper and Object recognizer components (recall Figure 3.1)

can be leveraged to reduce mobile energy consumption and offloading latency, as

detailed next. One can note that the non-collaborative components can potentially

also be carried out locally if this reduces energy consumption (see, e.g., [28–31]). The

study of the optimization of this aspect is considered in future work. In contrast, as
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Cloudlet

User 1

BS

User 2

Figure 3.2 Offloading of an AR application to a cloudlet attached to the BS. Shared
data and computations are shaded.

illustrated in Figure 3.2, for AR applications, the following collaborative features can

be leveraged to reduce mobile energy consumption and offloading latency.

1) Shared uplink transmission: A given subset of BI
S ≤ mink{BI

k} input bits is

shared among the users in the sense that it can be sent by any of the users to the

cloudlet. For example, the input bits to the offloaded Object recognizer component

in Figure 3.1 can be sent by any of the users in the same area. As a result, each

user k transmits a fraction of BI
S,k bits of the BI

S shared bits, which can be optimized

under the constraint
∑

k B
I
S,k = BI

S, as well as ∆BI
k = BI

k −BI
S,k bits that need to be

uploaded exclusively by user k.

2) Shared cloudlet processing: Part of the computational effort of the cloudlet is

spent producing output bits of interest to all users. An example is the computational

task of updating the model of the environment carried out by the mobiles. Therefore,

we assume that VS ≤ mink{Vk} CPU cycles are shared, whereas ∆Vk = Vk−VS CPU

cycles are to be executed for each user k.

3) Multicast downlink transmission: Some of the output bits need to be delivered

to all users. For example, a co-located group of users may need the output bits from
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Shared Separate

Figure 3.3 Data frame structure for a system with K = 3 users. The preamble
containing training sequences is not shown.

the Mapper component for a map update. To model this, we assume that a subset

of BO
S ≤ mink{BO

k } output bits can be transmitted in multicast mode to all users in

the cell, while ∆BO
k = BO

k −BO
S bits need to be transmitted to each user in a unicast

manner.

The frame structure is detailed in Figure 3.3. Not shown are the training

sequences sent by the users prior to the start of the data transmission frame, which

enable the BS to estimate the uplink Channel State Information (CSI), and hence also

the downlink CSI due to reciprocity. The CSI is assumed to remain constant for the

frame duration. As seen in Figure 3.3, in the data frame, the shared communication

and computation tasks are carried out first, followed by the conventional separate

offloading tasks, as detailed next.

1) Uplink transmission: The achievable rate, in bits/s, for transmitting the

input bits of user k in the uplink is given by

Rul
k (P ul

k ) =
W ul

K
log2

(
1 +

γkP
ul
k

N0W ul/K

)
, (3.1)

where P ul
k is the transmit power of the mobile device of user k; the uplink bandwidth

W ul is equally divided among the K users, e.g., using OFDMA; γk is the uplink
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and downlink channel power gains of user k; and N0 is the noise power spectral

density at the receiver. Referring to Figure 3.3 for an illustration, the time,

in seconds, necessary to complete the shared uplink transmissions is defined as

T ulS = maxkB
I
S,k/R

ul
k (P ul

k ), whereas the time needed for user k to transmit the separate

∆BI
k bits is ∆BI

k/R
ul
k (P ul

k ). The corresponding mobile energy consumption due to

uplink transmission is

Eul
k (P ul

k , B
I
S,k) =

(
P ul
k

Rul
k (P ul

k )
+ lulk

)(
BI
S,k + ∆BI

k

)
, (3.2)

where lulk is a parameter that indicates the amount of energy spent by the mobile

device to extract each bit of offloaded data from the video source. In (3.2) and in

subsequent equations, it is made explicit the dependence on variables to be optimized.

2) Cloudlet processing: Let FC be the capacity of the cloudlet server in terms

of number of CPU cycles per second. Also, let fk ≥ 0 and fS ≥ 0 be the fractions,

to be optimized, of the processing power FC assigned to run the ∆Vk CPU cycles

exclusively for user k and the VS shared CPU cycles, respectively, so that
∑

k∈K fk ≤ 1

and fS ≤ 1. As shown in Figure 3.3, the execution time for the shared CPU cycles is

TCS = VS/(fSFC) and the time needed to execute ∆Vk CPU cycles of interest to user

k remotely is ∆Vk/(fkFC).

3) Downlink transmission: The common output bits BO
S are multicast to all

users. Let P dl
M be the transmit power for multicasting, which is subject to the

optimization. The resulting achievable downlink rate for user k is given by

Rdl
M,k(P

dl
M) = W dl log2

(
1 +

γkP
dl
M

N0W dl

)
, (3.3)

with Rdl
M(P dl

M) = minkR
dl
M,k(P

dl
M), with W dl being the downlink bandwidth. The

downlink transmission time to multicast BO
S bits can hence be computed as T dlS =

BO
S /R

dl
M(P dl

M) (see Figure 3.3). The ∆BO
k output bits intended exclusively for each

user k are sent in a unicast manner in downlink using an equal bandwidth allocation,
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with rate

Rdl
k (P dl

k ) =
W dl

K
log2

(
1 +

γkP
dl
k

N0W dl/K

)
, (3.4)

where P dl
k is the BS transmit power allocated to serve user k. The overall downlink

mobile energy consumption for user k is

Edl
k (P dl

k , P
dl
M) =

(
∆BO

k

Rdl
k (P dl

k )
+

BO
S

Rdl
M,k(P

dl
M)

)
ldlk , (3.5)

where ldlk is a parameter that captures the mobile receiving energy expenditure per

second in the downlink. Extensions that consider the optimization of the bandwidth

allocation across users for uplink and downlink are left for future work.

3.3 Energy-Efficient Resource Allocation

In this section, the resource allocation problem that considers the minimization of the

mobile sum-energy required for offloading across all users under latency and power

constraints is tackled. Stated in mathematical terms, one can consider the following

problem:

min
z

∑
k∈K

Eul
k (P ul

k , B
I
S,k) + Edl

k (P dl
k , P

dl
M)

s.t. C.1
∆BI

k

Rul
k (Pul

k )
+ ∆Vk

fkFC
+ VS

fSFC
+

∆BO
k

Rdl
k (P dl

k )
≤ Tmax − T ulS − T dlS ,∀k ∈ K,

C.2
BI

S,k

Rul
k (Pul

k )
≤ T ulS , ∀k ∈ K,

C.3
BO

S

Rdl
M,k(P dl

M )
≤ T dlS ,∀k ∈ K,

C.4
∑
k∈K

fk ≤ 1; 0 ≤ fS ≤ 1; fk ≥ 0,∀k ∈ K,

C.5
∑
k∈K

BI
S,k = BI

S,

C.6
∑
k∈K

P dl
k ≤ P dl

max;P dl
M ≤ P dl

max;P ul
k ≤ P ul

max,∀k ∈ K.

(P.9)

The optimization variables are collected in vector z ,
(
Pul,BI

S, f ,P
dl, P dl

M , T
ul
S , T

dl
S

)
,

where Pul , (P ul
k )k∈K, BI

S , (BI
S,k)k∈K, f , ((fk)k∈K, fS), Pdl , (P dl

k )k∈K, and
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we defined Z as the feasible set of problem (P.9). As illustrated in Figure 3.3,

constraints C.1-C.3 enforce that the execution time of the offloaded application to

be less than or equal to the maximum latency of Tmax seconds. Constraints C.4-C.5

impose the conservation of computational resources and shared input bits, and C.6

enforces transmit power constraints at BS and users.

Problem (P.9) is not convex because of the non-convexity of the energy

function Eul
k (P ul

k , B
I
S,k) and of the latency constraints C.2, which can be rewritten

as gk(P
ul
k , B

I
S,k) ≤ T ulS ,∀k ∈ K. This issue is addressed by developing an SCA

solution following [78,79] in the next section. Theorem 2 in [78] shows that the SCA

algorithm converges to a stationary point, and hence in practice to a local optimum,

of the (NP-hard) problem (P.9). Furthermore, such convergence requires a number

of iterations proportional to 1/ε, where ε measures the desired accuracy in terms of

the stationarity metric ‖F (z) ‖2
2 defined in [93, Eq. (6)].

3.4 The Proposed SCA Solution

In order to apply the SCA method, one needs to derive convex approximants for

the functions Eul
k (P ul

k , B
I
S,k) and gk(P

ul
k , B

I
S,k) that satisfy the conditions specified

previously in Section 2.3 and also in [78, Section II]. Using such approximants, the

SCA scheme detailed in Algorithm 4 is obtained. In the algorithm, at each iteration v,

the unique solution ẑ (z (v)) ,
(
P̂ul, B̂I

S, f̂ , P̂
dl, P̂ dl

M , T̂
ul
S , T̂

dl
S

)
of the following strongly

convex problem

ẑ (z (v)) , argmin
z

∑
k∈K

Ẽ (zk; zk (v))

s.t.

C.2 g̃k
(
P ul
k , B

I
S,k;P

ul
k (v), BI

S,k(v)
)
≤ T ulS ,∀k ∈ K,

C.1,C.3−C.6 of (P.9), (P.10)
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is obtained, where we have defined zk ,
(
P ul
k , B

I
S,k, fk, fS, P

dl
k , P

dl
M , T

ul
S , T

dl
S

)
as well as

Ẽk (zk; zk (v)) , Ẽul
k (zk; zk (v))+Edl

k (P dl
k , P

dl
M). The approximants functions Ẽul

k (•; •)

and g̃k (•; •) are discussed next.

The approximant Ẽul
k (zk; zk (v)) around the current feasible iterate zk(v) can

be obtained following [78, Section III, Example #8] as

Ẽul
k (zk; zk (v)) =

P ul
k (v)

(
BI
S,k(v) + ∆BI

k

)
Rul
k

(
P ul
k

) +
P ul
k (v)

(
BI
S,k + ∆BI

k

)
Rul
k

(
P ul
k (v)

)
+
P ul
k

(
BI
S,k(v) + ∆BI

k

)
Rul
k

(
P ul
k (v)

) + Ēul
k (zk; zk(v)) + lulk

(
BI
S,k + ∆BI

k

)
,

(3.6)

where Ēul
k (zk; zk(v)) , (zk − zk(v))T Ψ (zk − zk(v)), with Ψ being a diagonal matrix

with non-negative elements τPul , τBI
S
, τf , τfS , τP dl , τP dl

M
, τTul

S
and τT dl

S
. For the second

approximant, in light of the relation g(x1, x2) = x1x2 = 1/2(x1 + x2)2− 1/2(x2
1 + x2

2),

a convex upper bound is obtained as requested by SCA by linearizing the concave

part of gk(P
ul
k , B

I
S,k) [78, Section III, Example #4], which results in

g̃k
(
P ul
k , B

I
S,k;P

ul
k (v), BI

S,k(v)
)

=
1

2

((
BI
S,k +

1

Rul
k (P ul

k )

)2

−
(
BI
S,k(v)

)2−

(
1

Rul
k (P ul

k (v))2

))
−

(
(BI

S,k(v)
(
BI
S,k −BI

S,k(v)
)

−
Rul
k

(
P ul
k (v)

)(
1 +

γkP
ul
k (v)

N0Wul/K

)
Rul
k

(
P ul
k (v)

)4

(
1

Rul
k

(
P ul
k

) − 1

Rul
k

(
P ul
k (v)

))).
(3.7)

The convexity of (3.7) is established by noting that the second term in the right-hand

side is the reciprocal of the rate function (concave and positive) and the fourth power

(convex and non-decreasing) of a convex function is convex [87].
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Algorithm 4: SCA Solution for (P.10)

Input: z (0) ∈ Z; α = 10−5; ε = 10−5; v = 0;

τPul , τBI
S
, τf , τfS , τP dl , τP dl

M
, τTul

S
, τT dl

S
> 0.

1: Compute ẑ (z (v)) from (P.10).

2: Set z (v + 1) = z (v) + δ (v) (ẑ (z (v))− z (v)), with

δ (v) = δ (v − 1) (1− αδ (v − 1)).

3: If ‖F (z (v)) ‖2
2 ≤ ε, stop.

4: Otherwise, set v ← v + 1, and return to step 1.

Output: z ,
(
Pul,BI

S, f ,P
dl, P dl

M , T
ul
S , T

dl
S

)
3.5 Numerical Results

In this section, numerical examples are provided with the aim of illustrating the

advantages that can be accrued by leveraging the collaborative nature of AR

applications for mobile edge computing. We consider a scenario where eight users

are randomly deployed in a small cell. The radio channels are Rayleigh fading

and the path loss coefficient is obtained based on the small-cell model in [94] for

a carrier frequency of 2 GHz. The users’ distances to the BS are randomly uniformly

selected between 100 and 1000 meters and the results are averaged over multiple

independent drops of users’ location and of the fading channels. The noise power

spectral density is set to N0 = −147 dBm/Hz. The uplink and downlink bandwidth

is W ul = W dl = 10 MHz. The uplink and downlink power budgets are constrained to

the values P ul
max = 50 and P dl

max = 60 dBm, respectively. The cloudlet server processing

capacity is FC = 1010 CPU cycles/s [2]. We also set lulk = 1.78× 10−6 J/bit [95] and

ldlk = 0.625 J/s [92].

The size of the input data generally depends on the number and size of the

features of the video sources obtained by the mobiles that are to be processed at

the cloudlet. Here the selected value is BI
k = 1 Mbits, which may correspond to the
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transmission of 1024 × 768 images [27]. A fraction of the input bits BI
S = ηBI

k bits

can be transmitted cooperatively by all users for some parameter 0 ≤ η ≤ 1. The

required CPU cycles of the offloaded components is set to Vk = 2640×BI
k CPU cycles,

representing a computational intensive task [35]. The shared CPU cycles are assumed

to be VS = ηVk for the same sharing factor η. The output bits are assumed to equal

the amount of input bits BO
k = BI

k = 1 Mbits with shared fraction BO
S = ηBO

k .

Practical latency constraints for AR applications are of the order of 0.01 s [27, 32].

Throughout the experiments, we found that the accuracy ε = 10−5 was obtained

within no more than 25 iterations.

For reference, the performance of the proposed scheme, in which uplink

and downlink transmissions and cloudlet computations are shared as described, is

compared with the following offloading solutions: (i) Shared Cloudlet Processing and

Downlink Transmission: CPU cycles and output data are shared as described in

Section 3.2, while the input bits BI
k are transmitted by each user individually, i.e., set

BI
S,k = 0 and ∆BI

k = BI
k for all k ∈ K; and (ii) Shared Uplink Transmission: Only

the input bits are shared as discussed, while no sharing of computation and downlink

transmission takes place, i.e., ∆Vk = Vk and ∆BO
k = BO

k for all k ∈ K. We also

include for reference the result obtained by solving problem (P.9) using the global

optimization BARON software running on NEOS server with a global optimality

tolerance of 10−6 [96]. As shown in Figure 3.4, for Tmax = 0.05 s and η = 0.3,

the Shared Cloudlet Processing and Downlink Transmission scheme achieves energy

saving about 37% compared to separate offloading (which sets ∆BI
k = BI

k , ∆Vk = Vk

and ∆BO
k = BO

k for all k ∈ K). This gain can be attributed to the increased

time available for uplink transmission due to the shorter execution and downlink

transmission periods, which reduces the associated offloading energy. Under the

same conditions, the energy saving of around 50% with respect to separate offloading

brought by Shared Uplink Transmission is due to the ability of the system to adjust
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Figure 3.4 Average mobile sum-energy consumption versus the fraction η of shared data
in uplink and downlink and of shared CPU cycles executed at the cloudlet.

the fractions of shared data transmitted by each user in the uplink based on the

current channel conditions. These two gains combine to yield the energy saving of

the proposed shared data offloading scheme with respect to the conventional separate

offloading of around 63%. Both separate and shared offloading schemes have similar

energy performance for the relaxed delay requirement of Tmax = 0.15 s, which can be

met with minimal mobile energy expenditure even without sharing communication

and computation resources. The figure also shows that SCA yields a solution that is

close to the global optimum, for this example.

3.6 Concluding Remarks

Mobile edge computing enables the provision of computationally demanding AR

applications on mobile devices. AR mobile applications have inherent collaborative

properties in terms of data collection in the uplink, computing at the edge, and data

delivery in the downlink. In this chapter, a resource allocation approach is proposed

whereby transmitted, received and processed data are shared partially among the
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users to obtain an efficient utilization of the communication and computation

resources. The approach, implemented via Successive Convex Approximation (SCA),

is seen to yield considerable gains in mobile energy consumption as compared to the

conventional independent offloading across users.
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CHAPTER 4

CODED NETWORK FUNCTION VIRTUALIZATION: FAULT
TOLERANCE VIA IN-NETWORK CODING

4.1 Introduction

As discussed in Chapter 1, network functions in NFV and computing functionality in

MCC are both implemented via software virtualization techniques. Network Function

Virtualization (NFV) is a novel architectural paradigm for cellular wireless networks

that has been put forth within the European Telecommunications Standards Institute

(ETSI) with the goal of simplifying network management, update and operation [15].

NFV decouples the Network Functions (NFs), such as baseband processing at the

base stations and firewalling or routing at the core network, from the physical network

equipment on which they run. This is done by leveraging virtualization technology

in order to map NFs into Virtual Network Functions (VNFs) that are instantiated

on Commercial Off-The-Shelf (COTS) hardware resources, such as servers, storage

devices and switches [13, 14]. NFV enables an adaptive “slicing” of the available

network physical resources so as to accommodate different network services, e.g.,

mobile broadband, machine-type or ultra-reliable communications [10].

A simplified view of the NFV architecture is illustrated in Figure 4.1 [10,

13, 14, 16]. The top layer in this architecture describes the logical functionality of

the given network service as a so-called forwarding graph, which characterizes the

functional relationship among the VNFs that implement the network service. The

bottom layer contains the general-purpose hardware appliances that provide storage,

computation and networking capabilities. Finally, the intermediate virtualization

layer is responsible for mapping VNFs to physical resources. In the example of Figure

4.1, VNF1 and VNF2 are instantiated on Virtual Machines (VMs) running on Server

1, while VNF3 and VNF4 are instantiated on VMs running on Server 2 and Server 3,
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Figure 4.1 Simplified architectural view of NFV.

respectively. The combination of the last two layers constitutes the Network Function

Virtualization Infrastructure (NFVI), and the three planes are under the control of

a Network Functions Virtualization Management and Orchestration (NFV-MANO)

block (see [13–15] for details). Most research activity on NFV focuses on the design

of mapping rules between VNFs and hardware resources via the solution of mixed

integer problems (see, e.g., [77]).

One of the key challenges for the adoption and deployment of NFV is the fact

that COTS hardware is significantly less reliable than the dedicated network devices

used in conventional network deployments [14, Section VI]. Hardware outages may

in fact be caused by random failures, intentional attacks, software malfunction or

disasters. This problem is motivating an emerging line of work, also within ETSI,

on developing fault-tolerant virtualization strategies for NFV [16–18]. The typical

solution, as summarized in [17], is to adapt to NFV well established policies introduced

in the context of virtualization for data centers. These strategies are based on

overprovisioning and diversity : NFs are split into multiple constituents VNFs, which
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are then mapped on VMs instantiated on multiple distributed servers in order to

minimize the probability of a disruptive failure as well as the mean time to recovery

from a failure.

In this chapter, a novel principle for the design of fault-tolerant NFV that moves

from diversity-based solutions to coded solutions is proposed. The proposed approach

addresses the NF of uplink data decoding in a Cloud Radio Access Network (C-RAN)

architecture, in which the baseband processing operations of the base station are

carried out remotely at the “cloud” [82]. The focus on uplink channel decoding

is dictated by the fact that the latter is known to be among the most demanding

baseband functions in terms of computational complexity (see, e.g., [97, 98]).

The proposed coded NFV solution leverages the algebraic structure of the

transmitted coded data frames in order to enhance the robustness of channel decoding.

To elaborate, assume that there are a number of servers on which VMs carrying out

channel decoding can be instantiated, as illustrated in Figure 4.2. A conventional

diversity-based technique would duplicate the decoding task at multiple servers. In

this chapter, instead, a coded approach is proposed, whereby received data frames

are encoded prior to being processed by the VMs that implement decoding at the

distributed servers. This chapter elaborates on a simple embodiment of this idea,

which is illustrated in Figure 4.3 and introduced in Section 4.3 after a description of

the system model in Section 4.2. Numerical examples are provided in Section 4.4.

Extensions and more general applications of the principle of coded NFV are presented

in Section 4.5.

4.2 System Model

Consider a C-RAN system implemented by means of NFV, and focus on the

implementation of the NF of uplink channel decoding. In this system, as illustrated

in Figure 4.2, a Remote Radio Head (RRH) is connected to the cloud by means of a
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Figure 4.2 NFV set-up for the virtualization of the NF of uplink channel decoding.
Server 0 acts as controller and is assumed to be reliable, while servers 1, . . . , N can carry
out the computationally heavy NF of channel decoding but may be unavailable, due to
failures or overload, with probability q.

fronthaul link. The RRH forwards the received baseband packets to the cloud on the

fronthaul link in order to enable channel decoding. The overprovisioning of hardware

resources is assumed, such that N servers are available in the cloud, each of which

can run a VM performing the decoding of a single received frame in the allotted

time. More specifically, due to latency constraints, the decoding of K received data

frames should be carried out on the servers by allocating at most one frame to decode

to each of N ≥ K servers. As in conventional implementations (see, e.g., [17]), we

further assume that the VMs implementing channel decoding on Servers 1, . . . , N

are managed by a controller VM, which is characterized by lower computational

requirements and is instantiated at a server, marked as Server 0 in Figure 4.2, that

is connected with bidirectional links to Servers 1, . . . , N .

Servers 1, . . . , N are distributed strategically across multiple locations throughout

the service provider’s network, and are hence assumed to have independent avail-

abilities [17]. In particular, it is by assumption that each one of Servers 1, . . . , N fails

independently with probability q. It is emphasized that a failure here means that a

server is not available to perform the given task within an acceptable deadline due to

software or hardware issues (see Section 4.1).

The transmitted frames are encoded with the same (n, k) linear code with a

given rate k/n, such as convolutional, turbo or LDPC codes. Furthermore, in order
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to present the key ideas, we consider first a Binary Symmetric Channel (BSC) model

between the user under study and the RRH. As a result, for each transmitted frame

xi ∈ {0, 1}n, with i ∈ {1, . . . , K}, the transmitted signal can be written as xi = uiG,

where ui ∈ {0, 1}k represents the data encoded in the i-th frame and G is the k × n

generator matrix of the code. Furthermore, the signal received for the i-th frame is

given as yi = xi ⊕ zi where zi is a vector of independent Bernoulli variables with

probability p of being equal to 1. Generalizations of the system model are discussed

in Section 4.5.

Throughout, we take as the performance metric of interest the probability of

error, that is, the complement of the probability that decoding of all the K frames is

carried out successfully by the cloud. Note that, according to the introduced model,

a failure may occur due to either errors on the communication channel between user

and RRH or due to a failure of the servers.

4.3 Fault Tolerance via Coded NFV

In this section, the conventional diversity-based fault-tolerant approach as applied to

the problem at hand of uplink channel decoding in a C-RAN via NFV is first reviewed.

Then, the proposed coded NFV approach is presented. For both schemes, the focus

is on the case N = 3 and K = 2 and present a simple analysis of the probability of

error. The problem statement in the general case is treated in Section 4.5.

4.3.1 Fault Tolerance via Diversity

A conventional solution based on diversity is illustrated in Figure 4.3(a) for N = 3

servers and K = 2 frames. In this scheme, the controller VM instantiated at Server

0 duplicates one of the received frames, namely y2 in the figure, at the input of both

Server 2 and Server 3. Server 1, Server 2 and Server 3 each run a VM that performs

channel decoding as well as error detection (via a Cyclic Redundancy Check test) on
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the input frame. The outcome of the decoders is fed back to the VM in Server 0. It

is noted that, for general values of N and K with N > K, the scheme would just

duplicate one or more frames at the input of multiple servers.

Fronthaul

RRH

Server 0 Server 0

 K = 2

Server 1

Server 2

Server 3

Diversity
Fault Tol.

Diversity
Error Rec.

1y

2y

2y
q

q

q

Ch
Dec

Ch
Dec

Ch
Dec

1y 2y

�
2u

�
2u

�
1u

(a) Diversity-based scheme
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(b) Coded NFV scheme

Figure 4.3 Illustration of the idea of coded NFV for channel decoding in the case of
an overprovisioning factor of N/K = 3/2 (N = 3 servers for K = 2 received frames): (a)
Mapping of NF and servers for a conventional diversity-based scheme in which one of the
received frames is duplicated at the input of two servers; (b) Mapping of NF and servers for
the proposed coded NFV scheme in which the XOR of the two received frames y = y1 ⊕ y2

is the input to Server 3, whose output is û = û1 ⊕ û2.

The conventional diversity-based system succeeds in decoding both packets as

long as: (i) Server 1 decodes correctly data u1 and is available; and (ii) Server 2

and/or Server 3 decode correctly u2 and are available. As a consequence, the error

probability can be written as

Perr = 1−
∑

S⊆{1,2,3}:
|S|≥2,{1}∈S

Pr(S)(1− q)|S|, (4.1)
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where |S| is the cardinality of set S, which is a subset of the Servers 1, 2 and 3; Pr(S)

is the probability that only the decoders in S successfully decode the input frame,

while the rest of the servers decode incorrectly.

4.3.2 Fault Tolerance via Coded NFV

In the proposed coded NFV scheme, as illustrated in Figure 4.3(b), Server 0 pre-

processes the received frames by computing the linear combination y = y1⊕ y2 of the

received frames y1 and y2. Note that this operation is of much lower complexity as

compared to channel decoding. Server 0 then assigns frame y1 for decoding at Server

1, frame y2 to Server 2 and frame y to Server 3. A key observation is that Server 3

can decode over the same linear code as Server 1 and 2 since we have

y = y1 ⊕ y2 = (u1 ⊕ u2)G⊕ (z1 ⊕ z2). (4.2)

Hence, Server 3 can decode u = u1⊕ u2 over a BSC with parameter 2p(1− p), which

is the probability that the effective noise z1⊕ z2 equals 1. As a result, as long as any

two servers decode successfully and are available, Server 0, which receives the outputs

of all other servers as in the diversity-based scheme, can decode both data messages

u1 and u2.

Based on the description above, the proposed coded NFV scheme can be

interpreted as a form of concatenated code in which the outer linear code encodes

each frame, while the inner NFV code is applied on the noisy received signals in

order to obtain robustness with respect to infrastructure failures. The probability of

error for this scheme is given by

Perr = 1−
∑

S⊆{1,2,3}:
|S|≥2

Pr(S)(1− q)|S|, (4.3)

where Pr(S) is defined as in (4.1), with the key difference that Server 3 decodes based

on (4.2).
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We conclude this section by emphasizing that, beside the advantages in terms

of the error probability which will be further discussed in Section 4.4, the proposed

coded scheme increases the Minimum Failure Removal (MFR) [18]. The MFR is

the minimum number of servers whose removal leads to failure. In particular, with

the conventional diversity-based scheme, even the non availability of a single server,

namely Server 1, causes a failure, while the proposed scheme has a MFR of two.

4.4 Numerical Results

This section presents numerical experiments to compare the performance of the

conventional diversity-based scheme and the proposed coded NFV for the presented

example with N = 3 and K = 2. To this end, we consider a 1/2 feedforward

convolutional code, in which the constraint length is 7, the code generator polynomial

matrix is [171 133], with k = 70 and n = 140 and Viterbi decoders are implemented

at Servers 1, 2 and 3. The probabilities Pr(S) in (4.1) and (4.3) are evaluated via

Monte Carlo simulations.

The error probability as a function of the servers’ failure probability q is plotted

in Figure 4.4 for the indicated values of the BSC parameter p for both schemes. It is

seen that, in the regime in which hardware failures have similar or smaller probability

as compared to channel errors, coded NFV can provide significant gains. For instance,

to achieve Perr ≈ 2 × 10−3 with p = 0.05, the conventional diversity-based method

requires hardware with a server failure probability of q = 10−4, while the coded NFV

requires q ≈ 10−3, which is an order of magnitude larger.

4.5 Extensions

The robust coded NFV scheme was presented in Section 4.3.2 for N = 3, K = 2

and for a BSC channel between user and RRH. In this section, extensions are briefly

discussed.
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Figure 4.4 Error probability versus the server failure probability q for diversity-based
and coded NFV schemes (n = 140, k = 70, N = 3,K = 2).

1) Frames encoded with different rates : Different rates can be accommodated

by using rate-compatible codes obtained from the same master linear code for each

frame.

2) Additive Gaussian noise or fading channels : For such channels between user

and RRH, lattice codes can be used to encode the frames, instead of linear binary

codes. The input to Server 3 (see Figure 4.3(b)) is computed as the sum of the

received signals on the real field, or complex field for complex Gaussian or fading

channels. Server 3 then decodes the XOR of the two messages, namely u = u1 ⊕ u2,

by decoding over the lattice code using the technique of computation over a multiple

access channel (see [99] and references therein for an introduction).

3) Generalization to any values of the parameters N and K: For any values of

N and K, each one of the n bits input to Server j, with j = 1, . . . , N , is obtained

as a binary-field linear combination of the corresponding bits of the received frames

yi, with i = 1, . . . , K. The resulting NFV code can be then described by a K × N

generator matrix GNFV such that the input bits to the servers can be computed as
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yGNFV, with y ∈ {0, 1}K collecting one bit from every frame. Note that GNFV =(
1 0 1
0 1 1

)
in the discussed N = 3, K = 2 example.

Regarding the design of the generator matrix GNFV, one can note that an NFV

code benefits from a sparse structure of GNFV, as well as from a large minimum

distance — two conflicting requirements. For the former requirement, as seen in

Section 4.3.2, summing more received signals at the input of a server increases the

noise level. More formally, the NFV code operates over an erasure channel in which

the probability of error associated to each server k equals q + (1 − q)f(dk), where

dk is the number of ones in the kth column of matrix GNFV and f(d) represents

the probability of incorrect decoding when d received signals are summed (which is

an increasing function of d). This novel property of NFV codes sets an interesting

research challenge for code design.

4.6 Concluding Remarks

Software-based virtual network functions enabled by NFV are less reliable than those

provided via the traditional hardware-based platforms. To alleviate this shortcoming,

this chapter proposed to enhance traditional diversity-based solutions by means of

channel coding. The proposed solutions addresses the important network function of

uplink channel decoding at the base station and leverages the algebraic structure of

the received encoded data frames. Numerical results demonstrate the potential gains

obtained with the proposed scheme as compared to the conventional diversity-based

fault-tolerant scheme in terms of error probability.
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CHAPTER 5

CONCLUSIONS

While most of the previous work on mobile cloud computing have focused on joint

allocation of only uplink radio resources and cloud computational resources, the main

contribution of the dissertation has been the analysis and design of a joint allocation

scheme where radio and backhaul resources are optimized in both uplink and downlink

as well as the optimization of computing resources at the cloud. The dissertation

also introduced users scheduling scheme that guaranteed an energy-saving gains for

offloading users.

In particular, driven by the rapid shift towards pervasive mobile applications,

e.g., AR applications, the optimization design can also benefit from the shared

collaborative feature of such applications so as to obtain the optimal allocation of

the shared communication and computational resources. It is envisioned that mobile

cloud computing, along with NFV are two enabling technologies for the deployment of

such applications. Consequently, the dissertation considered the virtualization-based

implementation of these technologies and addressed the reliability concern by

proposing a coded NFV approach.

Overall, the dissertation shows that the proposed joint optimization schemes

have brought considerable gains for mobile devices in terms of energy consumption

and for both independent and collaborative computational tasks offloading to robust

cloud infrastructures.

Open research challenges for future work encompass the inclusion of higher-layer

aspects such as queuing in the definition of the latency for the design of mobile cloud

computing systems, the training of a neural network, or another learning machine, to

solve the joint resources allocation problem for a number of representative channels
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so as to build a sufficiently dense look-up table, the design of NFV codes and the

application of the principle of coded NFV to other network functions, such as routing,

the understanding of the trade-off between sparsity and large minimum distance in

the design of the generator matrix for coded NFV and finally the study of caching

strategies for higher-priority components of AR applications.
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[63] M. López-Nores, J. J. Pazos-Arias, Y. Blanco-Fernández, M. Ramos-Cabrer,
and A. Gil-Solla, “Delivering personalised m-commerce through cloud-
based augmented reality on billboards,” in Proc. IEEE International Conf.
Consumer Electronics (ICCE), Las Vegas, NV, USA, pp. 162–163, Jan. 2015.

[64] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards
wearable cognitive assistance,” in Proc. International Conf. Mobile Syst. App.
Serv., New Hampshire, USA, pp. 68–81, Jun. 2014.

[65] J. Bang, D. Lee, H. Lee, and W. Son, “Network assistance to localization and mapping
for outdoor augmented reality in cellular network,” in International Conf.
Platform Tech. Serv. (PlatCon), Jeju, Korea, pp. 1-4, Feb. 2016.

[66] D. Van Krevelen and R. Poelman, “A survey of augmented reality technologies,
applications and limitations,” International J. of Virtual Reality, vol. 9, no. 2,
pp. 1–20, Jan. 2010.

[67] P. Simoens, T. Verbelen, and B. Dhoedt, “Mobile ar in the outdoors: watch the
clouds,” in How to industrialize Wearable AR? Ghent University, Department
of Information Technology, 2012.

[68] B.-R. Huang, C. H. Lin, and C.-H. Lee, “Mobile augmented reality based on
cloud computing,” in Proc. International Conference on Anti-Counterfeiting,
Security and Identification (ASID), Taipei, Taiwan, pp. 1-5, Oct. 2012.

[69] M. Chen, C. Ling, and W. Zhang, “Analysis of augmented reality application based
on cloud computing,” in Proc. International Congress Image Sig. Process.
(CISP), Shanghai, China, pp. 569–572, Oct. 2011.

82



[70] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based
cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8, no. 4, pp.
14–23, Dec. 2009.

[71] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in
Proc. ACM International Symposium on Mixed and Augmented Reality, Nara,
Japan, pp. 225-234, Nov. 2007.

[72] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: Bringing the cloud
to the mobile user,” in Proc. ACM Workshop Mobile Cloud Comput. Serv.,
Lake District, UK, pp. 29–36, Jun. 2012.

[73] L. Yu, S.-K. Ong, and A. Y. Nee, “A tracking solution for mobile augmented
reality based on sensor-aided marker-less tracking and panoramic mapping,”
Multimedia Tools and Applications, vol. 75, no. 6, pp. 3199–3220, May 2016.

[74] C.-C. Wu, L.-P. Tung, C.-Y. Lin, B.-S. P. Lin, and Y.-C. Tseng, “On local
cache management strategies for mobile augmented reality,” in Proc. IEEE
International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Boston, MA, USA, pp. 1–3, Jun. 2014.

[75] “CloudNFV,” [Online]. Available: http://www.cloudnfv.com (accessed on: Jan.
2017).

[76] “Alcatel-CloudBand,” [Online]. Available: https://networks.nokia.com/solutions/
cloudband (accessed on: Jan. 2017).

[77] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal placement of virtual
network functions,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Kowloon, Hong Kong, pp. 1346-1354, Apr. 2015.

[78] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed methods
for constrained nonconvex optimization-part I: Theory,” IEEE Trans. Signal
Process., to appear, 2016. [Online]: Available: arXiv:1410.4754.

[79] G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and P. Song, “Parallel
and distributed methods for nonconvex optimization–part II: Applications
in communications and machine learning,” IEEE Trans. Signal Process., to
appear, 2016. [Online]: Available: arXiv:1601.04059.

[80] Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen, and K. B. Letaief, “Smoothed Lp-
minimization for green cloud-RAN with user admission control,” IEEE J. Sel.
Areas Commun., vol. 34, no. 4, Apr. 2016.

[81] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, “Multi-cell
MIMO cooperative networks: A new look at interference,” IEEE J. Sel. Areas
Commun., vol. 28, no. 9, pp. 1380–1408, Dec. 2010.

83



[82] O. Simeone, A. Maeder, M. Peng, O. Sahin, and W. Yu, “Cloud radio access network:
Virtualizing wireless access for dense heterogeneous systems,” J. Commun.
Netw., vol. 18, no. 2, pp. 135–149, Apr. 2016.

[83] D. Tse and P. Viswanath, Fundamentals of wireless communication. New York, NY,
USA: Cambridge University Press, 2005.

[84] A. Lapidoth, “Nearest neighbor decoding for additive non-Gaussian noise channels,”
IEEE Trans. Information Theory, vol. 42, no. 5, pp. 1520–1529, Sep. 1996.

[85] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex
programming. SIAM, 1994, vol. 13.

[86] T. Lipp and S. Boyd, “Variations and extension of the convex–concave procedure,”
Optimization and Engineering, pp. 1–25, Nov. 2015.

[87] S. Boyd and L. Vandenberghe, Convex optimization. New York, NY, USA:
Cambridge University Press, 2004.

[88] H. Sun, X. Chen, Q. Shi, M. Hong, and X. Fu, “Learning to optimize: Training deep
neural networks for wireless resource management,” submitted, Sep. 2016.

[89] T. D. Burd and R. W. Brodersen, “Processor design for portable systems,” J. VLSI
Signal Process. Syst., vol. 13, no. 2-3, pp. 203–221, Aug. 1996.

[90] E. Lagerspetz and S. Tarkoma, “Mobile search and the cloud: The benefits of
offloading,” in Proc. IEEE International Conf. Pervasive Comput. Commun.
(PerCom), St. Louis, MO, USA, pp. 117-122, Mar. 2011.

[91] A. LLC, “Amazon elastic compute cloud (EC2) website.” [Online]. Available:
https://aws.amazon.com/ec2/ (accessed on: Oct. 2016)

[92] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy
consumption in mobile phones: A measurement study and implications
for network applications,” in Proc. ACM SIGCOMM Internet Measurement
Conference, Chicago, IL, pp. 280–293, Nov. 2009.

[93] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous parallel
algorithms for nonconvex big-data optimization. part II: Complexity and
numerical results,” Mathematical Programming, submitted, Jan. 2017.

[94] 3GPP TR 36.814, “Technical specification group radio access network; Further
advancements for E-UTRA, physical layer aspects,” Mar. 2010.

[95] F. Renna, J. Doyle, V. Giotsas, and Y. Andreopoulos, “Query processing for
the internet-of-things: Coupling of device energy consumption and cloud
infrastructure billing,” in Proc. IEEE International Conf. Internet-of-Things
Design and Implementation (IoTDI), Berlin, Germany, pp. 83-94, Apr. 2016.

84



[96] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-and-cut approach to
global optimization,” Mathematical Programming, vol. 103, pp. 225–249, 2005.

[97] P. Rost, S. Talarico, and M. C. Valenti, “The complexity-rate tradeoff of centralized
radio access networks,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp.
6164–6176, Nov. 2015.

[98] A. Gatherer, “Revisiting cloud RAN from a computer architecture point of view,”
IEEE ComSoc Technology News (CTN), Jul. 2016.

[99] S. H. Lim, C. Feng, A. Pastore, B. Nazer, and M. Gastpar, “A joint typicality
approach to algebraic network information theory,” IEEE Trans. Information
Theory, submitted, jun. 2016. [Online]: Available: ArXiv:1606.09548.

85


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents  (1 of 3)
	Table of Contents  (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Joint Uplink/Downlink Optimization for Backhaul-Limited Mobile Cloud Computing with User Scheduling
	Chapter 3: Energy-Efficient Resource Allocation for Mobile Edge Computing-Based Augmented Reality Applications
	Chapter 4: Coded Network Function Virtualization: Fault Tolerance Via In-Network Coding
	Chapter 5: Conclusions
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)




