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ABSTRACT 
 

INVESTIGATION OF NH3 AND NO ADSORPTION OVER Cu/SAPO-34 AND 
Cu/Al2O3 CATALYSTS FOR NH3–SCR SYSTEM 

 
by Basil Rawah 

 
In this study, Copper supported on SAPO-34 molecular sieves or alumina is prepared via 

an incipient wetness impregnation method for ammonia selective catalytic reduction 

(NH3-SCR). These NH3-SCR catalysts are characterized by pulse chemisorption, 

temperature-programmed reduction (TPR), and temperature-programmed desorption 

(TPD) with three different conditions (NH3, NO, combined NH3-NO) to evaluate the 

adsorption of ammonia and nitric oxide. Cu/SAPO-34 catalyst has shown higher 

ammonia adsorption capacity compared to Cu/Al2O3 catalyst. The Cu/SAPO-34 

adsorption is enhanced due to the strong acidity and high surface area of SAPO-34 

molecular sieves. NO adsorption peaks over both catalysts are small (for NO-TPD) and 

these peaks become broader when a combined NH3-NO is introduced to the system.  

 However, Cu/SAPO-34 & Cu/Al2O3 surface area and acidity are decreased 

dramatically comparing to SAPO-34 and Al2O3 supports. These observations are verified 

by TPR and CO chemisorption. The formation of bulk copper aluminate over (Cu/Al2O3) 

surface and CuO over (Cu/SAPO-34) surface may block the acid sites. Moreover, the 

metal dispersion over both catalysts is below 10%. 

 Based on the comparison, various factors could influence the adsorption of NH3 

and NO over the catalyst surface. The high specific surface area could provide abundant 

adsorption sites, which increase the adsorption capacity. Also, the multiple locations of 

acid spots along a wide temperature range, which are seen over Cu/SAPO-34, could 

continuously maintain the adsorption of NH3 and NO even at elevated temperature.
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CHAPTER 1 

INTRODUCTION 

Growth in the world population brings along with it more modern life demands like 

energy, transportation, public services and chemical production.  According to a recent 

estimate of worldwide car production, in 2015, around 32 million more cars were 

produced comparing to car production statistics in 2000. It is about 70% increase in auto 

manufacturing only within 15 years period [1]. Consequently, this dramatic growth in 

development can lead to harmful emissions discharged from car exhausts or factory 

chimneys. These emissions might badly pollute air and the environment. A recent study 

was conducted by the Organization for Economic Co-operation and Development 

(OECD) to estimate global energy-related carbon dioxide (CO2) emissions. Although the 

current serious efforts to moderate worldwide CO2 emissions have been implemented, the 

growth in global CO2 emissions is projected to increase by one-third from 2012 to 2040 

[2]. Therefore, current pace of global development is not sustainable and it is highly 

urgent to keep up with this rapid growth with new environmental catalytic materials or 

techniques.  

 The environmental catalysis can be defined as catalytic processes used to abate 

pollution and provide clean energy [3]. Emissions from car exhausts and stationary 

sources like refineries are composed of NOx, CO and hydrocarbons. Converting these 

toxic emissions to less harmful emissions like CO2, N2 and H2O is very challenging [4]. 

 Nitrogen oxide (NOx) is considered a major air pollutant due to its harmful impact 

on both human health and the environment. NOx, which is mostly referred to nitrogen 

monoxide NO and nitrogen dioxide NO2, contributes to the formation of ground-level or 



	  2 

“bad” ozone, which is very polluting [5]. It is critical to note that the ozone that should be 

reduced is tropospheric ozone. It is the ozone in the ambient air that we all breathe. 

Breathing this ozone tends to trigger several health issues like coughing, chest pain, and 

asthma, the repetitive exposure to this ozone could harm lung functioning or permanently 

scar its tissues [5, 6]. In addition to issues associated with ozone, sulfur oxides (SOx) and 

NOx in the atmosphere react with moisture and oxygen to form sulfuric and nitric acid. 

Acid rains along with dry deposition harshly affect the ecosystem, which might cause a 

negative impact to our economy. Acid rains remove minerals and nutrients from soil 

where trees and plants need to grow. Moreover, acid rain can leach aluminum from the 

soil and that aluminum is generally harmful and poisonous to fish and the wildlife [4]. 

 In recent years, there has been an increasing interest in understanding and 

developing catalytic NOx abatement. Numerous reviews concerning various aspects of 

NOx reduction have been published; some details are discussed in the following sections.  

 

1.1    Nitrogen Oxides (NOX) 

About 80% of the air we breathe is an inert gas, nitrogen (N2). In this form, it is neutral 

but the single atom of nitrogen (N) can be reactive and has an ionization level from plus 

one to plus five [7]. Hence, this nitrogen has the ability to form several oxides. Selected 

nitrogen oxides, i.e., (N2O, NO, NO2, N2O3, N2O4, N2O2, and N2O5.) are represented in 

Table 1.1.  
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Table 1.1 Properties of Selected Nitrogen Oxides  

Formula Name Color State of Matter 
@(ambient 

temperature) 
N2O Nitrous Oxide Colorless  Gas 

NO Nitric Oxide Colorless  Gas 
 

NO2 Nitrogen Dioxide Red-Brown  Gas 

N2O3 Dinitrogen Trioxide Black  Liquid  

N2O4 Dinitrogen 
Tetroxide 

Transparent Liquid 

N2O2 Dinitrogen Dioxide Colorless  Gas 

N2O5 Dinitrogen 
Pentoxide 

White  Solid 

Source: Clean Air Technology Center, U.S.E.P., Nitrogen Oxides (NOx), Why and How They Are 
Controlled, E. 456/F-99-006R, Editor. 1999. 

 

 Dissolving any of these oxides in water forms nitrous acid (HNO2) or nitric acid 

(HNO3). When nitric acid is neutralized, it forms nitrate salts while nitrous acid forms 

nitrite salts [7].Therefore, NOx and its different derivatives can react in different form. It 

can react as gases in the atmosphere, as acids in water droplets or as salts. In fact, all 

these forms have major contributions to pollution like acid rain. 

 The three most dominant nitrogen oxides in air are N2O, NO and NO2. Nitrous 

oxide (N2O), also known as laughing gas, is produced by both natural and human 

sources. About 95% of the natural source comes from soils under natural vegetation and 

oceans. Human source of nitrous oxide is mainly emitted from agriculture activity like 

emissions of N2O from fertilized agricultural soils and livestock manure [8]. It is an 

odorless and colorless gas that is used as an anesthetic and analgesic [6]. Nitrous oxide 
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contributes to ozone destruction in the stratosphere. Also, it is a greenhouse gas that 

contributes to global warming by holding heat radiating from earth. 

 NOx emissions from combustions are mainly in the form of NO. The formation of 

NO from combustion is governed by Zeldovich equations. According to these equations, 

at a high temperature of 1300 oC, the generation of NO is limited by oxygen amount in 

the air. However, at low temperature below 760 oC, the amount of generated NO is much 

lower or even the reaction could not happen. In fact, NO generation is a function of air to 

fuel ratio and it is more prominent on the fuel–lean side of the stoichiometric ratio [7]. The 

Zeldovich equations are: 

 

𝑁! + 𝑂   ↔ 𝑁𝑂 + 𝑁 (1.1) 

  𝑁 + 𝑂!   ↔ 𝑁𝑂 + 𝑂 (1.2) 

𝑁 + 𝑂𝐻   ↔ 𝑁𝑂 + 𝐻 (1.3) 

 

Around 90% of NO emissions are generated by human activity (anthropogenic). Natural 

emission of NO from soils; lightning and natural fires account for only 10% of total NO 

emissions [7]. 

 Nitrogen dioxide (NO2), one of air pollutions gases, is generated as a result of 

road traffic and other fossil fuel combustion processes. Its presence in air contributes to 

the formation of additional secondary air pollutants like particulate matter. Also, it plays 

a major role in the formation of acid rain [9].  

 Dinitrogen trioxide (N2O3) and dinitrogen tetroxide (N2O4) concentration in the 

atmosphere are so minimal, which is why their effects are usually ignored. Moreover, 
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The NO2 concentration limits the formation of N2O4. Two molecules of NO2 form a 

single molecule of N2O4.   

 Dinitrogen pentoxide (N
2
O

5
) is a dangerous oxidizer, very reactive and unstable. 

The decomposition of N
2
O

5 generates nitric acid (HNO
3
).  The N

2
O

5 concentration in air 

is very low. Otherwise, it can be generated from a specific designed process from NO 

production facility [7]. 

 Some experts in this field have different views about which one of these nitrogen 

oxides should be regulated and have the most attention. Some experts believe that 

controlling NOx can be done by reducing NO2 only due to the rapid conversion of NO to 

NO2 and N2O, N2O has a long life, is not highly reactive. Others feel that, both NO and 

NO2 should be regulated due to their major contribution to ozone formation. Another 

group believe that all nitrogen oxides should be regulated even less reactive N2O. Human 

activities mainly produce NO and NO2 while the other nitrogen oxides like N2O is 

generated naturally. Therefore, both NO and NO2 should have a priority for controlling 

[7]. 

1.2    NOx Sources 

According to the Environmental Protection Agency (EPA), about 50% of NOx emissions 

are generated from automobiles and other mobile source. Nearly 40% of the generated 

NOx from stationary sources is emitted from electric power plant boilers. NOx emissions 

from other anthropogenic sources are incinerators, industrial boilers, reciprocating spark 

gas turbines, diesel engines and ignition in stationary sources, and petroleum refineries 

[10]. Natural sources (biogenic) of NOx, such as forest fires, lightning, grass fires, bushes, 

trees, yeasts and grasses, produce different amounts of NOx. The following graph,  
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Mobile	  
Sources,	  50%	  

Electric	  
Power	  
Plants,	  
20%	  

Other	  sources	  ,	  
30%	  

Figure 1.1 shows the amount NOx produced from anthropogenic sources. 

 

 

 

 

 

Figure 1.1 Amount NOx produces from anthropogenic sources. 
Source: Clean Air Technology Center, U.S.E.P., Nitrogen Oxides (NOx), Why and How They Are 
Controlled, E. 456/F-99-006R, Editor. 1999. 
 

 From the NOx emission graph (Figure 1.1), the two categories for mobile and 

stationary sources are about 70% of total emissions and should be reduced. However, 

these two categories cannot be reduced to zero. We do not expect cars, buses and other 

core essential transportations to disappear. Zero-emission cars are still in development 

and we expect that it is too soon to be in the marketplace. Moreover, the idea of shifting 

from the fossil fuel engine to electric engine cars takes time. The community has to be 

familiar and knowledgeable about the new technology before starting use it.   

 According to Bosch and Janssen [7] NOx formed during the combustion process 

can be categorized into three types. Moreover, NOx from engine exhaust typically 

consists of a mixture of 95% NO and 5% NO2. The first category is called thermal NOx. 

In this type, NOx is formed due to the oxidation of N2 at high temperature. The 

combustion temperature (above 1300 °C) and the molar concentrations of both nitrogen 
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and oxygen control the concentration of thermal NOx. 

 

𝑁! +   𝑂!   ↔ 2𝑁𝑂,            Δ𝐻!"#! = 180.6  𝑘𝐽/𝑚𝑜𝑙 (1.4) 

 

Fuel NOx is the second category. The oxidation of nitrogen in fuel such as coals or heavy 

oils creates fuel NOx. Unlike thermal NOx, the formation of NOx is independent of the 

combustion temperature [4]. The third category is called prompt NOx. In this category, 

several steps rule nitrogen oxides generation. First, the atmospheric nitrogen reacts with 

hydrocarbon fragments to produce HCN and H2CN, which can be oxidized to form NO. 

Then, further oxidation of NO generates both NO2 and N2O as shown below.  

 

𝑁𝑂 + 1/2𝑂! ↔ 𝑁𝑂!,          Δ𝐻!"#! = −113  𝑘𝐽/𝑚𝑜𝑙 (1.5) 

2𝑁𝑂 ↔ 𝑁!𝑂 + 1/2𝑂!,          Δ𝐻!"#! = −99  𝑘𝐽/𝑚𝑜𝑙 (1.6) 

	    

The formation of prompt NOx is proportional to the amount of carbon atoms existing per 

unit volume. Also, it can be formed in an acceptable amount even at low temperature, 

fuel-rich conditions and at short residence time. 

1.3    NOX Emissions in Mobile Diesel Cars  

As seen in Figure 1.1, approximately 50% of NOx emissions from human activities is 

generated from the automobile sector. Moreover, mobile applications commonly are 

based on either gasoline engines or diesel engines. Because of the difference in concept 

and technology between these two engines, the tail pipe emissions are also varied in 
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composition. According to Table 1.2, the overall NOX emission rates for diesel cars are 

much bigger than gasoline cars. In fact, Euro 3 diesel vehicles showed 5.5 times higher 

NOx average emission than Euro 3 gasoline vehicles. Moreover, Euro 4 mobile diesel 

engines demonstrated 12.5 times higher NOx average emission than Euro 4 mobile 

gasoline engines at the same operating conditions.   

 Our study is focused on reducing NOX from diesel engines only because these 

engines produce more NOX than the gasoline engines. Understanding how the diesel 

engine works and identifying and quantify the released emissions would help to design a 

suitable technology to reduce the undesirable products. 

 
Table 1.2 NOx Emissions From Gasoline and Diesel Vehicles 

No. Engine 
type 

 Technology  NOX emission rates (g/km) 
 

1 Gasoline  Euro 3  0.015−0.27 
 

0.013−0.1 
 

0.45−1.1 
 

0.31-1.1 
 

2 Gasoline 
 

 Euro 4  

3 Diesel  Euro 3  

4 Diesel  Euro 4  

Source: Adapted from Table 1, Figures 6, 10 and 11 of Lozhkina et al. 

 

1.3.1 Diesel Engine (Heavy-Duty Vehicle) 

Diesel engines have remarkable features that make them the most preferred engines for 

heavy-duty vehicles. The diesel engine is reliable, efficient and durable, and it has a low 

operating cost. Thus, this engine has numerous applications compared to gasoline 

engines. It is the main power source for the commercial transportation buses, trains, and 

ships and even off-road industrial vehicles such as mining machines. Alternatively, this 
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combustion engine, using hydrocarbons, has a major contribution to some environmental 

issues. High amounts of particulate matter (PM) and NOx are emitted from diesel exhaust 

gas. These two severely affected the environment as well as caused health problems. 

Health experts have discovered certain effects of diesel engine emissions, such as causing 

lung damage and respiratory problems. Also, some experts think that there is a 

correlation between cancer and diesel emissions. Furthermore, acid rains, ground-level 

ozone or reducing visibility are also caused by these emissions too [10]. 

1.3.2 Operation and Emissions of Heavy Duty Diesel Engines 

The mixture of fuel and air is auto-ignited inside the engine. The high compressed air 

inside the combustion chamber generates a high temperature that helps injected diesel 

fuel inside the cylinder to ignite spontaneously. As a result of this combustion, a chemical 

energy in a form of heat is released and then converted to a mechanical force.  

 Since diesel fuels are extracted from fossils, diesel fuel consists of carbon and 

hydrogen.  Theoretically, the complete combustion of diesel fuels generates only CO2 and 

H2O. However, in reality, the complete combustion does not happen. Several reasons, 

such as the air to diesel ratio, combustion temperature and ignition inhibit the complete 

combustion. The major issues that are produced from the incomplete combustion are 

NOx, CO, PM and HC [10]. 

1.3.3 Heavy-Duty Diesel Engine Legislation and Regulations 

Due to the harmful impact of NOx emissions on the environment and other related health 

issues, regulations and restrictions have been proposed to reduce NOx emissions. These 

regulations might vary from one country to another in terms of types or levels, but the 

main purpose is to reduce NOx to an acceptable level. 
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 In the United States, EPA has introduced the first federal emission limits to 

control CO, HC and NOX in ~1974. Due to the rapid growth of automobile production, 

this emission standard has gradually tightened up during the following decades. From 

Table 1.3, the mandatory amount of NOx emissions was 4 g/bhp.hr in 1998, which is 

about 60% less than the limited amount in the previous years. Nowadays, the NOx 

emission has become even more restricted. The emitted NOx should be equal or below 

0.2 g/bhp.hr [11].  

 In Europe, a similar regulation has been tightly used since 1992. As shown in 

Table 1.3, the first EU Emission Standards for heavy-duty diesel engines (Euro I) aimed 

to reduce NOx emission to 8 g/kWh. In fact, every 2 to 4 years period, EU introduces 

new updated emission standards like Euro II, Euro V and Euro IV to meet or exceed the 

quality requirements of the surrounding air. For instance, the new emission standard 

(Euro VI), limiting NOx reduction to 0.4 g/kWh for every heavy-duty diesel engine, has 

been employed after 2013.  The goal of these firm restrictions is to sustainably adapt with 

the huge growth in diesel engine applications [11] 

 

 

 

 

 

 

 

 



	  11 

Table 1.3 Emission Standards for Heavy-Duty Engines in The U.S and Europe  

US EPA & California Emission Standards for Heavy-Duty CI Engines, g/bhp·hr 

Year CO HC NOX PM 
 

1974 
 

1998 
 

2015 

 
40 

 
15.5 

 
15.5 

   
  − 
 
1.3 
 

0.14 

− 
 

4.0 
 

0.02 

         − 
 
        0.1 
 
       0.01 

EU Emission Standards for Heavy-Duty Diesel Engines: Steady-State Testing, g/kWh 

Stage Date CO HC NOX PM 
 

Euro I 
 

Euro III 
 

Euro VI 
 

 
1992 

 
2000 

 
2013 

 
4.5 

 
2.1 

 
1.5 

 
1.1 

 
.66 

 
0.13 

 
8.0 

 
5.0 

 
0.4 

 
0.612 

 
0.10 

 
0.01 

Source: Adapted from Table 1, US EPA & California Emission Standards for Heavy-Duty CI Engines and  
Table.1 from EU Emission Standards for Heavy-Duty Diesel Engines: Steady-State Testing, 
www.dieselnet.com/standards.   

 

1.4    NOX Abatement for Diesel Cars 

The worldwide NOx emission regulations and legislations have pushed scientists to 

design various emission control technologies. For instance, three-way-catalyst (TWC) 

technology for gasoline engines is a robust emission control technique due to its 

immediate removal of CO, CxHy and NOx while its main reaction is the reduction of NO 

by CO [12]. Moreover, TWC is very effective way to remove 95% of gasoline engine 

emissions [4].   

 Since TWC requires fuel-rich conditions to remove NOx, integrating TWC into 

diesel cars is ineffective [13].  As explained before, diesel engine operation requires a high 

amount of oxygen in the fuel gas to effectively perform the combustion. Thus, TWC does 

not reduce NOX in diesel engine cars.  In the last decade, various alternative post-
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combustion methods were introduced to reduce NOX under lean-burn conditions. Among 

these aftertreatment technologies, selective catalytic reduction (SCR) technology 

demonstrates remarkable deNOX efficiency and can meet with the new emission 

regulations, which makes SCR technology the dominant lean NOx aftertreatment 

compared to other technologies [14]. 

 

1.4.1 Selective Catalytic Reduction (SCR) 

The SCR process is a reliable technology for reducing NOX emissions [15]. The process 

requires a reducing agent and an active catalyst. The reducing agent is added to the gas 

flue containing NOX while the catalyst promotes the NOX reduction by the reducing agent 

[16]. The SCR technology has a great deNOx efficiency with high selectivity toward N2
 

[16]. In addition to these advantages, the SCR has a durable performance with wide 

operating temperature, affordable cost and available infrastructure [17, 18].  

 Alongside the different reducing agents, ammonia (NH3) is a strong reductant for 

NOX and it has been integrated into various stationary and mobile diesel engine 

applications in the last 20 years [19]. Basically, NH3 is chemisorbed onto the active sites of 

the catalyst surface where the reaction of NH3 with the adsorbed NOX from the flue gas 

occurs. NH3 has different sources depending on applications. It can be in a form of 

ammonium carbamate, dissolved urea in water, solid urea or liquefied ammonia [16]. 

 
1.4.2 Urea-Selective Catalytic Reduction (NH3-SCR) Chemistry  

As both safety and toxicity are concerned, urea has been selected as a reducing agent for 

mobile SCR diesel engines. Understanding the urea mechanism as a reducing agent and 

its role to reduce NOX, profoundly helps optimizing the SCR operation conditions.  In 
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mobile applications, urea is generally stored as an aqueous solution that is sprayed into 

the hot exhaust gas stream. As a result, it is decomposed into ammonia (NH3) through 

three steps: evaporation, thermal decomposition and HNCO hydrolysis.  The following 

reactions illustrate the above steps in details [20]. 

First Step:  non-catalytic evaporating of water from urea droplets changes the urea phase 

to a melted one (molten urea). 

 

𝑁𝐻! − 𝐶𝑂 − 𝑁𝐻!   !" →   𝑁𝐻! − 𝐶𝑂 − 𝑁𝐻!   ! + 𝐻!𝑂(!) (1.7) 

 
Second Step: thermal decomposition of molten urea; this solid urea is thermally 

decomposed (without catalyst) to ammonia (NH3) and isocyanic acid (HNCO). 

 

𝑁𝐻! − 𝐶𝑂 − 𝑁𝐻!   ! →   𝑁𝐻!   ! + 𝐻𝑁𝐶𝑂(!) (1.8) 

 

Isocyanic acid is converted to NH3 and CO2 gases through a hydrolysis using water vapor 

formed from the combustion process. 

Third Step: hydrolysis of Isocyanic acid to form NH3 and CO2. 

 

𝐻𝑁𝐶𝑂 ! +   𝐻!𝑂(!) →   2𝑁𝐻!   ! +   𝐶𝑂!  (!) (1.9) 

 

The overall reaction of urea decomposition to ammonia and carbon dioxide is presented 

in the following reaction. 
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𝐶𝑂 𝑁𝐻2 2  +   𝐻!𝑂 →   2𝑁𝐻! +   𝐶𝑂!   (1.10) 

 

According to reaction (1.10), every mole of urea produces 2 moles of ammonia. From the 

standard SCR reaction, the stoichiometric molar ratio of NH3: NO is 1:1. Thus, from the 

stoichiometric balance, the urea: NO stoichiometric molar ratio is 1:2. 

 Due to the fact that more than 90% of NOx emissions from diesel exhaust are in a 

form of NO, the main SCR reaction will be written as the following. 

 

4𝑁𝐻! +   4𝑁𝑂 + 𝑂!   → 4𝑁! + 6𝐻!𝑂 (1.11) 

 

Equimolar amounts of NH3 and NO with the presence of oxygen are needed to convert 

NO to N2 and H2O. In fact, the absence of oxygen makes the SCR reaction much slower 

as seen in reaction [1.12] and it does not occur in lean combustion gases. 

 

4𝑁𝐻! +   6𝑁𝑂   → 5𝑁! + 6𝐻!𝑂 (1.12) 

 

However, the presence of NO2 with NO and ammonia makes the reaction rate much faster 

than the main SCR reaction. 

 

4𝑁𝐻! +   2𝑁𝑂 + 2𝑁𝑂!   → 4𝑁! + 6𝐻!𝑂 (1.13) 

 

If NOx emissions are in a form of NO2 only, the reaction will be much slower than 

reaction [1.11] and [1.13]. 
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8𝑁𝐻! + 6𝑁𝑂!   → 7𝑁! + 12𝐻!𝑂 (1.14) 

 

Regarding the undesired or side reactions, as the temperature rises beyond 400 °C, the 

nitrous oxide (N2O) could be formed according to the following reaction. 

 

4𝑁𝐻! + 4𝑁𝑂 + 3𝑂!   → 4𝑁!𝑂 + 6𝐻!𝑂 (1.15) 

 

If the temperature increases above 500 °C, NH3 oxidizes to NO. This undesirable 

oxidation limits the maximum conversion of NOx. 

 

4𝑁𝐻! + 5𝑂!   → 𝑁𝑂 + 6𝐻!𝑂 (1.16) 

 

The ammonia oxidation sets the upper temperature limit for the SCR reaction. However, 

the formation of ammonium nitrate (NH4NO3) at temperature below 200 °C sets the 

lower temperature limit for the reaction. Ammonium nitrate is generated from the 

reaction of NH3 with NO2 as seen below. 

 

2𝑁𝐻! + 2𝑁𝑂!   → 𝑁𝐻!𝑁𝑂! + 𝑁! +   𝐻!𝑂 (1.17) 
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1.5   NH3-SCR Catalysts and Deactivation Issues 

1.5.1 Common Active Catalysts for NH3-SCR 

The Catalyst is a significant part of the process and many recent studies have focused on 

the enhancement of the catalytic activity. Basically, NH3-SCR catalysts can be either 

metal or metal oxides supported onto different materials like alumina, zeolite, TiO2 and 

SiO2. For instance, Cu/Al2O3 is one of the SCR catalysts. This type of catalyst has a very 

limited practical application due to its moderate NO conversion and narrow operating 

temperature window. Generally, Cu/Al2O3 catalysts have large to medium pore size 

featured by low specific surface area and broad pore size distribution, which contributes 

to the poor catalyst performance [21]. Thus, operating temperature, deNOx efficiency, 

selectivity and sustainability are important to make catalysts efficient for broad 

applications [22].   

 One reliable and robust catalysts for SCR reaction is titanium dioxide (TiO2) 

supported vanadium oxide (V2O5) catalyst, so called V-SCR. Due to the excellent 

performance as well as affordable price, this catalyst has been used widely for stationary 

and mobile sources [23]. The commercial V-SCR catalyst (V2O5–WO3/TiO2) has 

demonstrated high NOX reduction activity at a moderate temperature range (300 – 450 

°C) with a remarkable sulfur poisoning resistance. A recent study was focused on 

enhancing V-SCR low temperature catalytic activity [24]. The modified V-SCR catalyst 

with cerium (Ce) and antimony (Sb) exhibited a decent low temperature NH3-SCR 

activity with 90% NO conversion in the temperature range between 210 to 400 °C. For 

these reasons, V-SCR catalysts might rule the SCR catalyst market in the sense that ultra-

low sulfur diesel is still not spread globally. 
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 However, the major drawback of vanadium, which poses threats to human health, 

is the release of toxic vanadium compounds at high temperature above 600 °C. In fact, 

the exposure to vanadium pentoxide (V2O5) could possibly cause cancer as it is listed as a 

carcinogen by the International Agency of Research on Cancer (IARC) [25]. Also, the 

narrow operating temperature window (300 – 450 °C) could be a serious problem, when 

the SCR unit is attached as a source of high heat.  

 Therefore, new eco-friendly catalysts with high SCR performance and wide 

operating temperature are required especially for mobile application. Amongst new 

emerging SCR catalysts for mobile applications, metal supported zeolites draw much 

attention due to their durability, high deNOx activity and a broad operating temperature 

window [26]. From a wide list of active catalysts, copper zeolites seem to be specifically 

interesting and have been widely studied.   

 In fact, the properties of both support (zeolite) and the active metal (Cu) in a 

copper zeolite SCR catalyst have a significant influence on the SCR reactions [27].  

Zeolite is one of the molecular sieve materials, which has a uniform porous structure. 

This type of structure provides a large surface area allowing low concentrated NOX and 

NH3 to adsorb on its surface. Another important feature is that Brønsted acid sites 

generated from the tetrahedral aluminum centers in zeolite can trigger the formation of 

NH4+ ions from the adsorbed NH3 which is assumed to be a key step in the reaction 

mechanism of SCR [28]. Also, the tetrahedral aluminum centers are able to hold Cu 

cations, allowing these cations to atomically disperse inside the zeolite pores.  It is 

believed that the highly dispersed Cu ions can trigger NO oxidation via a redox cycle. In 

fact, the feasible NO oxidization and the generation of NOX adsorption surface centers on 
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the catalyst is another key step in the reaction mechanism of SCR [27, 29, 30]. Both Cu sites 

and the Brønsted acid sites in a copper zeolite catalyst permit the reaction between the 

adsorbed NOX and NH4
+ to generate N2 with a remarkable selectivity [27, 28].  Thus, the 

Cu/zeolites are bi-functional catalysts offering redox and acidic functions for SCR 

reactions, which are important for optimizing the SCR activity.    

 Cu/ZSM-5 (medium pore support with MFI structure) is one of the best 

Cu/zeolites NH3-SCR catalysts that has been studied extensively. It has a superior deNOx 

activity and selectivity of N2 at a moderate temperate window (200–400 °C) [31].  

However, the lack of hydrothermal stability limits its commercial application For 

instance, mobile diesel emission control requires a durable catalyst that can endure high 

temperature operation above 670 °C [32]. 

 Recently, other Cu/zeolite systems have been discovered to work as NH3-SCR 

catalysts with significant improvements. The (small pore support with CHA structure) 

catalysts, Cu/SSZ-13 and Cu/SAPO-34, show a remarkable high hydrothermal stability 

and activity of NH3-SCR reactions [33]. In a recent study, both Cu/SSZ-13 and Cu/SAPO-

34 are able to maintain the optimum deNOx activity about 90-100% at temperatures 

between (250–450
 
°C), even after hydrothermal aging at 800 °C with high NOX 

conversion [34, 35]. Both SAPO-34 and SSZ-13 have the same CHA structure but with 

different chemical elements. Unlike SSZ-13, whose framework is built from 

aluminasilicate structures with Al and Si as the tetrahedrals, the SAPO-34 framework is 

created by the replacement of Si in the AlPO structure that was originally formed by P 

[36]. As a result, both reaction and deactivation mechanism are different. The main focus 

in our study is on SAPO-34 because its mechanisms are still unclear.    
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1.5.2 Catalyst Deactivation and Issues 

The catalyst stability under rough conditions is so crucial especially for automobile 

applications due to the strict emission rules and regulations. For the NH3-SCR 

technology, the catalyst is deactivated either from thermal or chemical degradation 

mechanisms [37, 38].  High temperature operating conditions could deactivate the catalyst 

by sintering the metal active sites and reducing the catalyst support surface area. On the 

other hand, the strong chemisorption of impurities and poisons on catalyst active sites 

blocks the pores and this causes a loss of surface area leading to a deactivation issue [37, 

38]; thus, a huge decrease in deNOx efficiency along with the generation of undesired by 

products [39]. 

 The loss of catalyst activity due the thermal deactivation might be permanent 

making the hydrothermal stability so crucial in NH3-SCR catalyst design. In fact, the 

SCR catalyst materials could repeatedly be exposed to high temperature operation usually 

between 600 and 700 °C, since the diesel particulate filter (DPF) is often placed upstream 

close to the SCR [40].  

 The NH3-SCR catalyst is chemically deactivated either by oil or fuel derived 

impurities or some deposited components from the upstream units. In general, impurities 

like magnesium, zinc and calcium originate from different additives like detergent, 

corrosion inhibitors and antioxidant in the engine lubricating oil. These impurities can 

block the active sites by accumulating on the catalyst surface area causing a drop in 

catalytic activity [41, 42].  

 Catalyst poisoning via sulfur is one of the critical issues that can deactivate the 

SCR catalyst. This problem will remain since sulfur is still present in the burning fuels 

even at ultra low sulfur levels [16]. In fact, sulfate species are formed over the catalyst 



	  20 

active sites causing a reduction of NOx conversion [43]. In a typical SCR application 

process, the flue gas containing SO2 in the presence of NH3 causes formation of 

ammonium sulfate [44]. These species can block the catalyst support pores resulting a 

significant decrease in the surface area.  

 In this study, we will investigate the adsorption of NH3 and NO over copper 

supported on Al2O3 or SAPO-34 catalysts via temperature-programmed desorption 

(TPD), temperature-programmed reduction (TPR), CO chemisorption characterization 

experiments. Examining the effect of catalyst support on the adsorption process is 

important especially for the ammonia-SCR reaction where the ammonia is used as a 

reductant agent.   
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CHAPTER 2 

Cu/Al2O3 

 

2.1  Aluminum Oxide (Al2O3) 

Alumina (Al2O3), also called aluminum oxide, a white non-porous crystalline substance, 

serves as a support for the SCR catalyst [45]. There are different grades of alumina 

depending on the application. For catalytic purposes, the high purity (> 99.8) alumina is 

needed because it provides both strength and stability at high temperature application 

with a moderate specific surface area, usually as much as 130 m2/g [45]. 

 The crystal structure of Al2O3 is a corundum structure. It is consisted of close 

packed planes of large anions of oxygen with a radius of 0.14 nm that are set in the order 

as seen in Figure 2.1. The oxygen anions have (-2) valence while the aluminum cations 

with a shorter radius, 0.053 nm have valence of (+3). Ideally to maintain the neutral state, 

there is only a pair of Al+3 ions for every three O-2 ions. Consequently, two thirds of the 

octahedral sites of the basic array are occupied via cations [46]. 

 

 

 

 

 

 

 
Figure 2.1 Corundum structure of Al2O3 
Source: Shirai, T., et al., Structural properties and surface characteristics on aluminum oxide powders. 
2010. 
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2.2  Cu/Al2O3 

Concerning reducing NOX via a SCR system, Cu supported on an alumina catalyst has 

shown a reliable activity in practical applications [47]. Previous studies have proven 

Cu/Al2O3 had catalytic activity for NH3-SCR at a temperature window between 250 to 

400 °C. [48] Other studies related to another SCR system, hydrocarbon selective catalytic 

reduction (HC-SCR), have investigated NO removal on the same catalyst. This study 

showed that the Cu/Al2O3 catalyst has shown a better hydrothermal stability and NOX 

conversion for a wide temperature range [49]. Thus, understanding the nature and 

reactivity of the adsorption phases on the Cu/Al2O3 surface is crucial. Moreover, the 

catalyst synthesis method, copper content, and alumina source significantly affect the 

catalyst activity. In our study, all the parameters regarding catalyst synthesis and the 

related characterization tests are explained in the following subsection. 

 

2.3  Preparation of Cu/Al2O3 

A total of 4.2 wt% of Cu loading was impregnated onto the Al2O3 support (Aerosol, 

Evonik) via an incipient wetness impregnation method. More specifically, 1.06 g of Cu 

(NO3) 2 ·2.5H2O was dissolved in 4.5 mL (which is equal to the impregnating volume of 

alumina) of deionized water to prepare the Cu (NO3) 2 solution. Then, the solution was 

added to 4.8 g of the support (Al2O3) drop by drop until the impregnating volume was 

reached. The resulting mixture was dried in the oven at 110 °C for 30 min to avoid the 

diffusion of Cu inside the alumina pores. The sample was placed in a muffler oven at 110 

°C for 12h and then calcined at 550 °C for 5 h. The calcined sample was ground and 

sieved to 40–80 mesh. The 4.2 wt.% Cu/Al2O3 was labelled as Cu-Alu. On the other 
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hand, the reference sample (labelled as Ref-Alu) was prepared using the same procedure 

but without adding the copper. 

 

2.4  Catalyst Characterization 

2.4.1 Temperature-Programmed Reduction with Hydrogen (H2-TPR)  

H2-TPR experiments were carried out with an Autochem II 2920 (Micromeritics, USA). 

Various effluents including H2, H2O and O2 were measured using a mass spectrometer 

(Stanford Research Systems, Inc., QMS series gas analyzers). 150 mg of catalyst sample 

was loaded into a U-type quartz tube reactor. This sample was pre-treated in helium with 

a flow rate of 50 mL/min at 120 °C for 30 min to purge the residual gases and remove 

moisture. After the catalyst was cooled down to room temperature, H2-TPR was 

performed in a 10 vol.% H2/Ar gas flow at 50 mL/min with a heating rate of 10 °C/ min 

to 550 °C. 

2.4.2 Temperature-Programmed Desorption for NH3, NO and Combined NH3-NO  

NH3-TPD and NO-TPD experiments were performed in the same instrument as H2- TPR, 

equipped with a mass spectrometer (QMS series gas analyzers) to record the species 

signals. Prior to TPD experiments, 150 mg of samples were pre-treated in dry helium at a 

flow rate of 50 mL/min at 120 °C for 30min, and then cooled down to room temperature 

(23 °C). Then a H2-TPR experiment was performed in a 10 vol.% H2/Ar gas flow of 50 

mL/min at a heating rate of 10 °C/ min to 400 °C to reduce the sample. Then, after the 

sample was cooled down again to room temperature, the catalyst was exposed to 10% 

NH3/He or 10% NO/He at a rate of 50 mL/min for 20 min, respectively, and then purged 

with dry He at a flow rate of 50 mL/min for 30 min to remove physically adsorbed 



	  24 

ammonia or adsorbed nitric oxides. Desorption was performed in a He flow with a rate of 

10 °C/min to 600 °C for both NH3-TPD and NO-TPD. 

 An NH3-NO-TPD experiment followed the exact steps for NH3-TPD except for 

the gas exposure part. After the sample was reduced and then cooled down to room 

temperature, the sample was first exposed to 10% NH3/He for 10 min followed by an 

exposure to 10% NO/He for 10 min.  

 

2.4.3 Pulse Experiment 

CO pulse experiments were carried out with the Autochem II 2920 (Micromeritics, 

USA). About 150 mg of catalyst was loaded into a U-type quartz tube reactor. Prior to 

pulse CO, the sample was reduced with 10 vol.% H2/Ar gas flow of 50 mL/min at a 

heating rate of 10 °C/ min at 500 °C for 30 min. The catalyst was subsequently flushed 

with pure He at a flow rate of 50 mL/min for 30 min. After that, a pulse of 10 vol.% 

CO/He was introduced into a flow of pure He (20 doses or less) at room temperature. The 

active particle diameter and the metal dispersion percentage were calculated from the 

chemisorption result.  
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2.5  Results and Discussion 

2.5.1 Catalyst Dispersion (CO Pulse Experiments) 

The catalyst dispersion was measured via a CO chemisorption method. Table 2.1 

provides the metal dispersion and crystallite size of a sample Cu-Alu. The metal 

dispersion was about 8% for the sample Cu-Alu, low metal dispersion. This observation 

indicates that not all Cu species are in a form of fine crystallites. Agglomerated or bulk 

Cu on the surface could happen too. The average active particle diameter further 

reinforces the above observation. Cu-Alu is found to contain moderate size of copper 

particles of 12.68 nm. In fact, as the catalyst particle size increases, more and more 

copper species could come together thus forming bulk aluminate or oxide species (CuO).  

Table 2.1 Details of Cu Dispersion, Cu Particle Size 

Sample Metal dispersion (%) Active Particle Diameter (nm) 
     Cu-Alu                       8                   12.68 

 
 
 
 

2.5.2 H2-TPR Analysis 

In order to explain the nature of copper species in our Cu/Al2O3 catalyst, the H2 -TPR 

experiment was conducted. The reduction profile of the catalyst prepared via incipient 

wetness impregnating method is shown in Figure 2.2. The single reduction peak was 

observed between 170–230 °C, with a maximum sharp peak centered at 209 °C. 
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Figure 2.2 Temperature-Programmed Reduction (TPR) for Cu-Alu catalyst. 

 

 Different studies [50] reported three different copper species that can be formed on 

alumina. These are isolated Cu2+ ions, a copper aluminate surface phase and crystalline 

CuO. The first two, isolated Cu2+ ions and a copper aluminate surface phase (CuAl2O4) 

have the same chemical bonds and are different from the crystalline CuO bonds [50]. It 

should be mentioned that the surface copper aluminate phase is different from bulk 

CuAl2O4. Comparing to the bulk, a surface copper aluminate phase is well dispersed and 

more active because the main part of Cu2+ ions are octahedrally coordinated which is 

more (energetically) favorable to form six bonds [51]. On the other hand, in the bulk 

CuAl2O4 about 60% of the copper ions are in tetrahedral coordination (four bonds) and 

40% in octahedral coordination (six bonds) and that is less active than the surface copper 

aluminate phase [51].  

 Another study [52] assigned the single peak at low temperature to the reduction of 

the surface copper aluminate phase in the sense that the isolated Cu2+ ions are not active 

over the alumina and no studies have ever noticed their activity over the Al2O3 surface. 

Others [53] concluded that the low temperature reduction peak was related to CuO. CuO 
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needs a high temperature at around 270 °C or above to be reduced. Thus, in our case, the 

TPR results are consistent with these findings in which the reduction peak could be 

corresponding to the surface copper aluminate phase. However, it might not be uniformly 

dispersed and the bulk copper aluminate could exist according to the CO pulse results.  

2.5.3 NH3-TPD Surface Acidity  

NH3-TPD profiles are shown in Figure 2.3 and Table 2.2 shows ammonia peak area for 

both samples.  

 There is a NH3 desorption peak between 60 and 350 °C with a peak area of 0.52 

on Al2O3, indicating that the support (Al2O3) has a moderate surface acidity and it was 

able to adsorb NH3. This finding is in agreement with various studies with pure or 

modified alumina as a catalyst support [54-56].   

 

 

 

 

 

 

Figure 2.3 Ammonia Temperature-Programmed Desorption (NH3-TPD) profiles of both 
Cu-Alu and Ref-Alu samples. 
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Table 2.2 The Calculated Peak Area of Cu-Alu and Ref-Alu Samples 

Catalyst Type Peak Area (105)  
                        Cu-Alu                                    0.31 
                        Ref-Alu                                    0.52 

  

 
 On the other hand, the Cu-Alu sample has a smaller ammonia desorption peak at 

the same range between 60 and 350 °C with a peak area of 0.31. This indicates that 

copper covered a portion of the support surface area and acid sites. The results from the 

CO-pulse reinforced this observation. The possible formation of bulk copper aluminate 

with an average active diameter of 12.68 nm affected the NH3 desorption. However the 

overall profile of ammonia desorption looks broader than the profile of the Ref-Alu 

sample. This suggests that some of the copper species worked as adsorption sites. In fact, 

this could increase the NH3 adsorption capacity of the Cu/Alu catalyst and this is 

important since the NH3-SCR reaction is mainly based on the adsorption of ammonia. 

 However, The NH3-TPD alone cannot distinguish between Lewis and Brønsted 

acid sites. In fact, the TPD temperature peak is used as a rough measure of the acid 

strength of the adsorption sites; it can distinguish sites by adsorption strength only, but 

not Lewis from Brønsted sites. It is like an overall measurement of the acid strength.  

 

2.5.4 Temperature-Programmed Desorption Analysis of (NH3, NO and Combined 
NH3-NO) 

 
This subsection provides a study of selected species N2, NO, NH3 and N2O from three 

different TPD tests with NH3, NO and NH3/NO. The aim of this study was to evaluate 

Cu-Alu catalytic activity under three different conditions. It is important to understand 

how the above species behave when the catalyst is exposed to ammonia only, nitric oxide 



	  29 

only and combined NH3-NO gas. This analysis might predict and estimate the generated 

products from an actual SCR reaction. All the data were recorded via the mass 

spectrometer and the peak area of different species are shown in Table 2.3. 

 

Table 2.3 The Calculated Peak Area of Different Species Over The Cu/Alu Catalyst 

                 Species 
Test  

 NH3  
(105) 

NO 
(105) 

N2O 
(105) 

N2 
(105) 

NH3-TPD       0.31        0.16      0.05    0.26 
NO-TPD       0.00        0.04      0.03    0.00 

NH3-NO-TPD       0.28        0.14      0.00    0.18 

 

 

  

 

 

 

 

 

 

 

Figure 2.4 Temperature-Programmed Desorption (NH3-TPD, NO-TPD and NH3-NO-
TPD) of the Cu-Alu catalyst, (a) NH3 intensity signal, (b) N2O intensity signal, (c) N2 
intensity signal, (d) NO2/NO intensity signal.       
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 In Fig. 2.4d, the NH3-TPD results show a moderate amount of desorbed NO 

molecules from the catalyst surface with a peak area of 0.16. NO could be formed when 

NH3 reacted with oxygen (reaction 2.1) during the ammonia saturation step prior to the 

TPD test.  

4𝑁𝐻! +   5𝑂!   → 4𝑁𝑂 +   6𝐻!𝑂 (2.1) 

 

 The NO-TPD and NH3-NO-TPD results show obvious NO desorption peaks. The 

sharp NO peak from the NO-TPD test has a peak area of 0.04. On the other hand, the NO 

desorption peak area from the NH3-NO-TPD test was 0.14. It was much broader and 

larger than the peak from the NO-TPD. In fact, the NH3 dose might enhance NO 

adsorption on the catalyst surface.  

 In the case of the N2 species, Fig. 2.3c exhibits the nitrogen desorption curves of 

three TPD tests. The desorbed nitrogen from both NH3-TPD and NH3-NO-TPD tests 

could be produced via the oxidation of NH3 (reaction 2.2). These desorption profiles 

appeared to be broad and wide. It is believed that reduced copper created more active 

sites and this enhanced the adsorption.  However, there was no nitrogen desorption peak 

from NO-TPD. This implies that the catalyst needs a reducing agent to convert NO to N2.	  

	  

4𝑁𝐻! +   3𝑂!   → 2𝑁! +   6𝐻!𝑂 (2.2) 

 

 The MS signals of nitrous oxide are represented in Fig. 2.3b. No N2O 

desorption peaks were observed for both NO-TPD and NH3-NO-TPD tests. In the 

absence of ammonia, the catalyst is inactive and N2O could not be generated as seen from 
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the NO-TPD tests. For NH3-NO-TPD, in the presence of a small amount of oxygen and 

ammonia, the reaction tended to produce more N2 and H2O according to reaction 2.3. 

However, N2O peak from the NH3-TPD test is much more obvious than the others. The 

oxidation of NH3 to N2O (reaction 2.4) could occur due to the existence of O2 and NH3. 

 

4𝑁𝐻! +   4𝑁𝑂 + 𝑂!   → 4𝑁! +   6𝐻!𝑂 (2.3) 

 

          2𝑁𝐻! +   2𝑂!   → 𝑁!𝑂 +   3𝐻!𝑂	  
 

(2.4) 

	  
	   NH3 desorption peaks from TPD tests are shown in Fig. 2.4a. The peak area of 

ammonia from the NH3-TPD test was the largest, 0.31, due to the fact that NH3 was the 

only injected gas and it covered most of active sites. However, the ammonia peak area 

from NH3-NO-TPD results was 0.28, small comparing to the NH3-TPD results. The 

results indicate that the competitive adsorption of two different gases happened on the 

catalyst surface.  

 On the other hand, no NH3 peak was shown from the NO-TPD results. It appears 

that during the TPR experiment, all the ammonia might be removed.  

 Overall, the Cu-Alu catalyst was able to adsorb different species. More 

importantly, it was able to adsorb both NH3 and NO on its surface. These two are the 

main reactants during the SCR reactions. Moreover, the adsorption peak temperature 

ranges of most species were wide (about 50-400 °C). This indicates that the interaction 

strength of active sites with reactants on the Cu-Alu catalyst has a wide range and this is 

beneficial for the catalyst to have a  wide operating temperature range.  
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CHAPTER 3 

 
Cu/SAPO-34 

3.1  Silicoaluminophosphate Molecular Sieve (SAPO-34) 

SAPO-34 has a zeolite structure. Its framework combines Si, Al and P as tetrahedral 

atoms linked together with oxygen atoms in between (Fig. 3.1). SAPO-34 is a crystalline, 

microporous zeotype that shares topology with the mineral chabazite (CHA), where 

micropores are smaller than 2 nm [57]. SAPO-34 is known as a small-pore zeolite. Like 

other zeolites, it is three-dimensional (Fig. 3.1). As other microspore materials are 

designated with large specific surface areas, SAPO-34 has a pronounced specific surface 

area up to 550 m2/g [57]. It has the chabazite structure where twisted hexagonal prisms are 

linked together by four-member rings resulting in large, elliptical cavities, which are 

known as cages. Furthermore, each cage makes a group of 7 cages linked by the 8-

member oxygen rings [58, 59]. The dimensions of a single cage are 0.75 nm in diameter and 

0.82 nm high, whereas, the 8-member oxygen rings have 0.38 in diameter and 0.43 nm in 

size [60, 61]. 

 

 

 

 

 

 

 

 



	  33 

 

 

 

 

 

 

 

Figure 3.1 SAPO-34 framework structures. 
Source: Sørli, G., Effect of Porosity on the Hydrothermal Stability of Cu/SAPO-34 for the deNOx Process. 
2016: NTNU. p. 115. 

 

3.2  SAPO-34 Supported Copper Catalyst (Cu/SAPO-34) 

SAPO-34 has been attracting much attention in different catalytic applications due to its 

small-pore feature. The pores of SAPO-34, created via the 4-member rings, 6-member-

rings and the 8-member rings, can function as molecular sieves [57]. SAPO-34 is 

extensively studied in the catalytic reaction of converting methanol to olefin (MTO) [60, 

61]. In this case, SAPO-34 worked as a catalyst for the (MTO) reaction and it was shown 

to be a robust catalyst for the conversion, particularly to lighter olefins due to its 

selectivity. Moreover, SAPO-34 could be used as a support due to its medium acidic 

strength. For the NH3-SCR reaction, the SAPO-34 supported copper provides acidic sites 

for NH3 adsorption and activation to further react with NOX species [62]. 

 In a recent study, Cu/SAPO-34 was able to maintain the optimum deNOx activity 

of about 90 -100% at temperature between (250–450 °C) and even after hydrothermal 

aging 



	  34 

at 800 °C with high NOX conversion [34, 35]. Another study [63]  found that SAPO-34 

(small-pore zeotype) supported copper catalyst had better SCR activity and more 

hydrothermal stability than Cu/ZSM-5 catalyst (medium pore zeolite). 

3.3  Preparation of Copper-Silicoaluminophosphate Catalyst (Cu/SAPO-34) 

Both Cu/Al2O3 and Cu/SAPO-34 catalysts were prepared with the same preparation 

procedure that was discussed in subsection (2.1.3) except for one additional step. Prior to 

adding Cu (NO3) 2 solution into the support of H-SAPO-34, H-SAPO-34 was exposed to 

10 vol.% NH3/He at 120 °C for 2 h to convert H-SAPO-34 to NH4-SAPO-34. This 

stabilizing step is crucial due to the fact that SAPO-34 materials can become unstable 

when these materials are exposed to moisture or humid environments below 100 °C [64]. 

This leads to a huge decreasing in the available surface area. The 3.5 wt.% Cu/SAPO-34 

was donated as Cu-SAP. 

 
3.4  Catalyst Characterization 

All TPD, TRP and the CO pulse tests were performed according to the methods 

explained in subsections (2.1.4.1, 2.1.4.2 and 2.1.4.3). 
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3.5  Results and Discussions 

3.5.1 Catalyst Dispersion (CO Pulse Experiments) 

Table 3.1 shows Cu-SAP results from CO-pulse test. The metal dispersion of this catalyst 

was 9.7%. This percentage remains low and the presence of agglomerated Cu species on 

the surface is possible.  

 On the other hand, the active phase diameter (10.67nm) further confirms the low 

metal dispersion. This indicates that the impregnated Cu species on the surface could be 

as crystallites, CuO or other large size Cu species.  

 

Table 3.1 Details of Cu Dispersion, Cu Particle Size 

Sample Metal dispersion (%) Active Particle Diameter (nm) 
     Cu-SAP                       9.7                   10.67 

 

3.5.2 H2-TPR Analysis 

An overall idea of the copper species can be identified from the TPR experiment. Fig. 3.2 

shows a single reduction peak of Cu-SAP from 210 to 280 °C with a peak maxima at 230 

°C. In fact, there is unfortunately no real agreement regarding the identification of this 

peak. For instance, a previous study [65] observed a similar H2 consumption peak on an 

ion- exchanged Cu-SAPO-34 catalyst. The low temperature peak was assigned to be 

either isolated Cu2+ or CuO. However, another study [66], used a similar catalyst, Cu 

exchanged SAPO-34,  and reported that the low temperature H2 consumption was 

assigned to the reduction of CuO clusters on the external surface of SAPO-34. In fact, 

assigning H2 consumption peaks to various Cu species is based on different factors, but 

generally speaking, the low-temperature peaks were assigned to the reduction of isolated 
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Cu2+ to Cu+ ions and CuO to Cu0 [67].   

 Regarding our data, the Cu-SAP could have both isolated Cu+ and CuO species. 

And, this is in agreement with a recent study [68] where a Cu-SAPO-34 catalyst prepared 

by an impregnation method consisted of the two species: isolated Cu+ and CuO. 

Furthermore, the CO chemisorption results show a Cu species with a large diameter 

around 10.67 nm. Therefore, the TRP peak could be assigned to the two species but 

further experiments are needed to confirm this conclusion. 

 

 

 

 

 

 

 

Figure 3.2 Temperature-Programmed Reduction (TPR) for Cu-SAP catalyst. 

 

3.5.3 NH3-TPD Surface Acidity 

It is known that the catalyst surface acidity influences the SCR activity [69]. In this study, 

the acid properties of both Cu-SAP and Ref-SAP were studied via NH3-TPD 

experiments. Also, NH3 has been recognized as an efficient probe molecule to 

characterize zeotype structure acidity [70]. Fig. 3.4 displays the NH3 desorption profiles 

for both samples. In fact, three NH3 desorption peaks were evident in the NH3-TPD 
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results. The Ref-SAP sample has a low temperature (LT) peak at 91.29 °C, a high 

temperature peak (HT) at 451.59 °C and a medium temperature peak (MT) at 175.62 °C, 

whereas the Cu-SAP has LT, HT and MT peaks at 95.12,183.28 and 424.76 °C, 

respectively. In fact, these NH3 desorption peaks were formed from the adsorption of 

NH3 on the catalyst surface that has different acid strengths [36, 66]. However, the 

assessment of these features is not straightforward and could not be identified with the 

TPD test only, but it can be noticed that these samples have acidic sites with a broad 

temperature range. This can increase the ammonia adsorption process.  

 The Cu-SAP profile (shown in Fig. 3.3) is similar to the Ref-SAP profile but with 

a weaker intensity. Comparing Ref-SAP with Cu-SAP (Table 3.2), the peak area for Ref-

SAP sample (4.74) was greater than that from Cu-SAP (1.67). It has more acid sites. This 

major decrease in acid sites after Cu loading is possibly due to the fact that Cu loading 

covered some acid adsorption sites and SAPO-34 structure collapsed during the 

synthesis. This also indicates that the surface acidity of Cu/SAPO-34 comes mainly from 

the SAPO-34 support [66].  Looking at the (MT) region in Fig. 3.4 for both samples, the 

Cu-SAP has a little broader profile compared to the Ref-SAP sample. This suggests that 

Cu species created adsorption sites for ammonia. It is believed that the center of the 

active metal functions as an acidic surface adsorbing more NH3 species and this 

observation is consistent with the other study [71].    

 

Table 3.2 The Calculated Peak Area for Both Cu-SAP and Ref-SAP Samples 

Catalyst Type Peak Area (105) 
                        Cu-SAP                                    1.67 
                        Ref-SAP                                    4.74 
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Figure 3.3 NH3-TPD for Cu-SAP and Ref-Alu samples. 

 

  

 

 

  

 

 

Figure 3.4 NH3-TPD for Cu-SAP and Ref-Alu represents LT and MT and HT peaks. 

 

3.5.4 Temperature-Programmed Desorption Analysis of NH3, NO and Combined 
NH3-NO 

 
Fig. 3.5a, displays the NH3 desorption profiles of the three tests. The desorbed ammonia 

profiles for NH3-TPD, and NH3-NO-TPD experiments show pronounced peaks with peak 

areas of 1.67 and 1.62, respectively. These two areas are almost equal and also have the 
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same profile. This indicates that the Cu-SAP catalyst could adsorb ammonia when the 

catalyst was exposed to NH3 and NO. 

 In Fig. 3.5c, no intense N2O signals are shown from these experiments. Only a 

very small low intensity N2O peak with an area of 0.32 is noticed when the two gases 

flowed simultaneously. This could be formed from the reaction 3.1 prior to the TPD test. 

And, the reduction in oxygen intensity (shown in Fig. 3.5b) and the increase in H2O 

intensity (shown in Fig. 3.5f) reinforce this conclusion.  

 

          2𝑁𝐻! +   2𝑂!   → 𝑁!𝑂 +   3𝐻!𝑂	  
 

(3.1) 

 

Table 3.3 The Calculated Peak Area of Different Species Over the Cu/SAP Catalyst 

                 Species 
Test  

 NH3  
(105) 

H2O 
(105) 

NO 
(105) 

NH3-TPD            1.67    1.58      0.31 
NO-TPD            0.00    0.00      0.10 

NH3-NO-TPD            1.62    0.78      0.30 
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Figure 3.5 Temperature-Programmed Desorption (NH3-TPD, NO-TPD and NH3-NO-
TPD) of Cu-SAP Catalyst, (a) NH3 intensity signal, (b) O2 intensity signal,  
(c) N2O intensity signal, (d) N2 intensity signal, (e) NO2/NO intensity signal,  
(f) H2O intensity signal.   

  

 Similarly, there is a weak N2 signal from both NH3-TPD and NH3-NO-TPD 

experiments, N2 is produced from the reaction 3.2. The increase in H2O and the decrease 

in O2 intensity signals (Fig. 3.5f and Fig. 3.5b respectively) further support this 

observation.  

4𝑁𝐻! +   3𝑂!   → 2𝑁! +   6𝐻!𝑂 (3.2) 
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 From Fig. 3.5e, the NH3-TPD profile shows a desorbed NO peak with an area of 

0.31. This amount of NO might be produced from the reaction 3.3.  

 

4𝑁𝐻! +   5𝑂!   → 4𝑁𝑂 +   6𝐻!𝑂 (3.3) 

 

 For the NO-TPD test, a single sharp NO peak with an area of 0.10 is observed. It 

indicates that the adsorption sites for NO are similar. For the NH3-NO-TPD test, the NO 

peak (with area of 0.30) is much broader and larger compared to the NO-TPD result. It 

implies that NH3 might enhance NO adsorption on the catalyst surface.  
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CHAPTER 4  

Cu-SAP vs. Cu-Alu 

4.1  Comparison Between Cu-SAP vs. Cu-Alu 

4.1.1 Catalyst Dispersion (CO Pulse Experiments) 

From Table 4.1, it is clearly seen that both Cu dispersion and Cu particle size for the two 

catalysts are quite similar. The copper species over both surfaces were not well dispersed. 

Also, these copper species were different in size. These findings suggest that the 

agglomerated species might cover the available sites and this could affect the adsorption 

of both NH3 and NO. The NH3-TPD results reinforced that observation. The adsorption 

peaks of Cu-SAP and Cu-Alu are much smaller than the Ref-SAP and Ref-Alu samples.    

 

Table 4.1 Cu Dispersion and Cu Particle Size Comparison 

Catalyst Metal dispersion (%) Active Particle Diameter (nm) 
     Cu-Alu                       8                   12.68 
     Cu-SAP                       9.7                   10.67 

 

 

4.1.2 H2-TPR Analysis 

Based on the H2-TPR analysis of Cu-Alu and Cu-SAP catalysts (subsections: 2.1.5.2 and 

3.1.5.2), the Cu-Alu surface could have two Cu species: a copper aluminate surface phase 

(CuAl2O4) and a bulk copper aluminate whereas, the isolated Cu+2 and CuO clusters 

species could be found on the Cu-SAP surface. Generally speaking, the large size Cu 

contents like bulk copper aluminate and CuO are not effective for the SCR reaction. For 

instance, during the low temperature operation, CuO does not contribute to the SCR 

activity and this species negatively impacts SCR activity at the high temperature ranges 
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due to NH3 over-oxidation [72].  Furthermore, increasing Cu loading promotes the 

formation of surface CuO clusters and CuO crystallites [73]. In our case, about 4.2 wt.% 

and 3.5 wt.% of Cu were used in the catalyst synthesis. One study used SAPO-34 with 

different Cu loading (1.5 to 3 wt.%) catalysts for the SCR system. They noticed that the 

increase in Cu loading led to an increase of CuO species [66].  

 

 

 

 

 

 

 

 

Figure 4.1 Temperature-Programmed Reduction (TPR) for Cu-SAP and Cu-Alu 
catalysts. 

 

4.1.3 NH3-TPD Surface Acidity 

Table 4.2 displays the peak area for Cu-SAP and Cu-Alu catalysts, 1.55 and 0.31 

respectively. The adsorption peak area of Cu-SAP is about 5 times the Cu-Alu peak area. 

Besides, the Cu providing adsorption sites, the high adsorption capacity of Cu-SAP could 

be associated to two reasons. The first reason is that the porous structure of SAPO 

generated a huge surface area that can adsorb more ammonia than alumina does. The 

other reason is that the SAPO structure is able to greatly adsorb ammonia at a wide 
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temperature range (three peaks of adsorption). Thus, Cu-SAP could be more effective 

than Cu-Alu for the SCR reaction.  

 
Table 4.2 The Calculated Peak Area for Both Cu-SAP and Ref-SAP Samples 

Catalyst Type Peak Area (105) 
                        Cu-SAP                                    1.67 
                        Cu-Alu                                    0.31 

 

 

  

 

 

 

 

 

 

Figure 4.2 NH3-TPD for Cu-SAP and Cu-Alu samples. 

 

4.1.4 Temperature-Programmed Desorption Analysis of NH3, NO and Combined 
NH3-NO 

 
Fig. 4.3.a displays the NO desorption peaks of the two catalysts from NO-TPD-. It is 

obvious that the peaks of the two catalysts are similar. Table 4.3 lists the peak areas. For 

the Cu-Alu peak, the area is 0.04 while the peak area of Cu-SAP is 0.10. It indicates that 

NO adsorption for both Cu-Alu and Cu-SAP catalysts are weak without ammonia being 

adsorbed first on the surface. However, once the ammonia is present on the surface (Fig. 

4.3.b), obvious NO desorption peaks are shown for Cu-Alu and Cu-SAP with increased 
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peak areas of 0.14 and 0.30, respectively. These findings suggest that both catalysts 

would be efficient for NH3-SCR due to their capability to adsorb NO in the presence of 

NH3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Desorbed species from (NH3-TPD, NO-TPD and NH3-NO-TPD) of Cu-Alu 
and Cu-SAP catalysts, (a) NO intensity signal from NO-TPD-Only,  
(b) NO intensity signal from NH3-NO-TPD, (c) NH3 intensity signal from NH3-TPD-
Only, (d) NH3 intensity signal from and NH3-NO-TPD. 

 

 For the adsorption of NH3 shown in Fig. 4.3.c and Fig. 4.3.d, the Cu-SAP catalyst 

shows pronounced NH3 peaks with very significant areas (1.67 for NH3-TPD & 1.62 for 

combined NH3-NO-TPD. On the other hand, the Cu-Alu capacity was way too small with 

an average peak area of 0.295. In fact, the influence of the support plays a major role in 
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case of ammonia adsorption. The SAPO is a porous material with a surface area up to 

550 m2/g, providing an enormous surface area. Furthermore, its zeotype structure 

provides a strong acidity along with wide temperature range. Thus, Cu supported on 

SAPO-34 could enhance the NH3-SCR reaction due to its significant ammonia adsorption 

capacity. 

 

Table 4.3 The Calculated Peak Area of Different Species Over The Cu/SAP Catalyst and 

Cu-Alu 

                 Species 
Catalyst 

NH3  NO  
NH3-TPD (105) NH3-NO-TPD (105) NO-TPD (105) NH3-NO-TPD (105) 

 Cu/SAP     1.67      1.62  0.10     0.30 
Cu-Alu     0.31      0.28  0.04     0.14 

 

 

4.2  Future Work 

Cu/SAPO-34 and, Cu/Al2O3 catalysts suffered from losing a huge surface area compared 

to the SAPO-34 and Al2O3 materials (confirmed via NH3-TPD).  Performing additional 

test such as a Brunauer–Emmett–Teller (BET) experiment would give important 

information about the available surface area before and after adding copper. And, this is 

crucial to find the actual surface area to determine whether the loss of surface is due to 

the formation of agglomerated copper species blocking the catalyst surface or other 

problems related to operating conditions and catalyst synthesis.  

 Another important characterization is X-Ray Diffraction (XRD). It is used to 

identify sample composition, species phase, and crystallite size. In our case, this could be 

used to see if the SAPO-34 or Al2O3 structures were collapsed after the impregnating of 

Cu. Furthermore, we can find the compositions and the phases of copper, verify whether 
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the formation of undesirable CuO or bulk Cu aluminate could block the acid sites on the 

surface.  

 Besides, finding the possible interpretation of the surface area problem via 

characterization tests and changing the catalyst synthesis method from incipient wetness 

impregnation to an ion-exchanged method could improve the catalyst properties. In fact a 

recent study reported that copper ion exchanged SAPO-34 had no CuO species compared 

to the incipient wetness impregnation method[68]. The ion-exchanged process prevents the 

formation of large size copper contents, which could facilitate the adsorption of NH3 and 

NO molecules on the active sites.      
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CHAPTER 5 

CONCLUSION 

 

In this present work, the influences of different NH3-SCR catalyst supports (Al2O3 and 

SAPO-34) were investigated for NO and NH3 adsorption. Both catalysts, Cu/Al2O3 and 

Cu/SAPO-34 were prepared by an incipient wetness impregnation method. Temperature 

programmed desorption experiments of NH3, NO and combined NH3-NO gases were 

examined to evaluate the adsorption of NO and NH3. Cu/SAPO-34 showed a very strong 

NH3 peak compared to the ammonia desorption peak of Cu/Al2O3. This improvement in 

ammonia adsorption capacity has a direct relation with the SAPO-34 surface area and its 

strong acidity for a wide temperature range. Furthermore, the NO adsorptions over 

Cu/Al2O3 and Cu/SAPO-34 were relatively similar. Both showed very small sharp 

desorption peak when only NO flowed over the catalysts, but the peaks became broader 

and pronounced once NO was combined with NH3 gas.  

 However, comparing the surface acidity between both (Cu/Al2O3 & Cu/SAPO-34) 

with their supports (Al2O3 & SAPO-34), there was a dramatic decrease in the surface area 

and its acidity. Both TPR results and CO pulse data confirmed the formation of bulk and 

clusters Cu species. These large species might cover or hide the acidic spots on the 

support.        
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