

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DECISION TREE RULE-BASED FEATURE SELECTION FOR
IMBALANCED DATA

by
Haoyue Liu

 A class imbalance problem appears in many real world applications, e.g., fault diagnosis,

text categorization and fraud detection. When dealing with an imbalanced dataset, feature

selection becomes an important issue. To address it, this work proposes a feature

selection method that is based on a decision tree rule and weighted Gini index. The

effectiveness of the proposed methods is verified by classifying a dataset from Santander

Bank and two datasets from UCI machine learning repository. The results show that our

methods can achieve higher Area Under the Curve (AUC) and F-measure. We also

compare them with filter-based feature selection approaches, i.e., Chi-Square and

F-statistic. The results show that they outperform them but need slightly more

computational efforts.

DECISION TREE RULE-BASED FEATURE SELECTION FOR
IMBALANCED DATA

by
Haoyue Liu

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Helen and John C. Hartmann
Department of Electrical and Computer Engineering

May 2017

APPROVAL PAGE

DECISION TREE RULE-BASED FEATURE SELECTION FOR
IMBALANCED DATA

Haoyue Liu

Dr. Mengchu Zhou, Thesis Advisor Date
Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr. Osvaldo Simeone, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Yunqing Shi, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Haoyue Liu

Degree: 	 Master of Science

Date: 	 May, 2017

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2017

• Bachelor of Science in Automation,
Kunming University of Science and Technology, Kunming, P. R. China, 2014

Major: 	 Computer Engineering

Presentations and Publications:

Liu, H.Y., and Zhou, M.C., “Decision tree rule-based feature selection for large-scale
imbalanced data,” The 27th Wireless and Optical Communication Conference
(WOCC), New Jersey, USA, April 2017.

iv

 v

Dedicated to my family, all inclusive, known and unknown –for giving birth to

me at the first place and supporting me spiritually throughout my life.

 vi

ACKNOWLEDGMENT

Foremost, I would like to express my deepest gratitude to my advisor,

Dr.Mengchu Zhou, for excellent guidance and patience. Professor Zhou served as my

research advisor, but he was very influential in the academic path choice I have made and

gave me many excellent suggestions.

I would also like to thank Dr. Osvaldo Simeone for sharing with me his deep

knowledge of machine leaning and Dr. Yunqing Shi for his advice on my research.

My sincere thanks also go to my group members, Xiaoyu Lu and Liang Qi, and

my good friends, Yanfei Gao and Keyuan Wu, for giving me many excellent suggestions

and assisting me in completing this thesis work.

 vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……………………………………………………………. 1

 1.1 High-dimensional Data…...……………………..……………………… 1

 1.2 Class Imbalance………………..……………………………………….. 2

 1.3 Methods for Class Imbalance Problem………………………………… 3

 1.3.1 Sampling Methods………………………………..…………….. 3

 1.3.2 Feature Selection……….…….………………………………… 4

 1.3.3 Cost-sensitive Learning……....………………………………… 5

2 REVIEW OF LITERATURES..……………………………………….……... 6

 2.1 Feature Selection…………………………………...…………………... 6

 2.1.1 Filter Methods…………………………………………………... 10

 2.1.2 Wrapper Methods……...………………….……………………. 11

 2.1.3 Embedded Methods………...…………………………………... 12

 2.2 Decision Tree…………………………………………………..………. 12

 2.3 Evaluation Methods…………………………………………………….. 15

 2.3.1 Confusion Matrix…….…………………………………………. 15

 2.3.2 Accuracy……………...………………………………………… 16

 2.3.3 F-Measure………………………………………………………. 18

 3.3.4 ROC AUC..………..……………………………………………. 19

3 METHDOLOGY……………………………………………………………... 20

 3.1 Filter-based Feature Selection………..……...…………………………. 20

 viii

TABLE OF CONTENTS
(Continued)

Chapter Page

 3.1.1 Chi-square………………………………………..……………... 20

 3.1.2 F-statistic……………….…….………………………………… 23

 3.2 Decision Tree Rule-based Feature Selection Method……………..….... 24

 3.2.1 Splitting Criteria…………………...………………………….... 25

 3.2.2 CART…………...……...………………….……………………. 27

 3.2.3 Weighted Gini Index for CART………………………………... 30

 3.3 Classification……….…………………………………………..………. 37

4 Experimental Results…...…………………………………………………….. 38

 4.1 Datasets………………………………………………………………… 38

 4.2 Experimental Design………………...…………………………………. 39

 4.3 Case Study 1: Santander Bank Dataset………………………...………. 40

 4.4 Case Study 2: Letter Recognition Dataset………..…………....………. 47

 4.5 Case Study 3: Statlog Dataset……………………...…………………... 60

 4.5 Summary……………………………………………………………….. 53

5 CONCLUSION AND FUTURE WORK……...……………………………... 61

 5.1 Summary of Contribution of This Thesis……………………..………... 61

 5.2 Limitations and Future work…………………………………………… 62

REFERENCES……………………………………………………………………. 64

 ix

LIST OF TABLES

Table Page

2.1 Confusion Matrixes for Binary Classification…...…………………………. 15

2.2 Confusion Matrixes for Two Models……….………………………………. 17

3.1 Chi-square Computation Example..………………………………………… 21

3.2 Count for Node A……………………………………………………………. 26

3.3 Matrix for One Splitting Node…………………………………...…………. 30

3.4 Splitting Results for Node 1…………………………………...……………. 31

3.5 Splitting Results for Node 2…………………………...……………………. 32

3.6 Splitting Results for Node 3………………………...………………………. 33

4.1 Summary of Benchmark Datasets…………………………...……………… 38

4.2 Non-feature Selection Versus Top Ranked Features Chosen Based on the
DT-FS……………………………..…………………………………………

45

4.3 Random Feature Selection Versus Top Ranked Features Chosen based on
the DT-FS …………………………….……………………………………..

46

4.4 Comparison among Chi-Square, F-statistic and DT-FS ……………………. 47

4.5 Performance of Five Feature Selection Methods in terms of F-measure
(selecting 20% features).………………………………………………..…..

50

4.6 Performance of Five Feature Selection Methods in terms of ROC AUC
(selecting 20% features)….………………………………………………….

50

4.7 Performance of Five Feature Selection Methods in terms of F-measure
(selecting 20% features) .…………………………………………..……….

56

4.8 Performance of Five Feature Selection Methods in terms of ROC AUC
(selecting 20% features) .…………………………………………..……….

57

 x

LIST OF FIGURES

Figure Page

2.1 A graphical view of how the filter, wrapper and embedded methods work
on a dataset…………………………………………………………………

9

2.2 An example of a decision tree…….………………….……………………. 13

2.3 ROC curve……………………………………………………..…………... 19

4.1 Score of features based on DT-FS…….………………………...………… 41

4.2 Performance of three feature selection methods in terms of ROC
AUC…….……………………….…………………………………………

42

4.3 Number of needed features among three feature selection
methods……………………………………………………………………

43

4.4 Performance of three feature selection methods in terms of ROC AUC
(number of sequential trees = 110)..…….………………………………..

44

4.5 Performance of three feature selection methods in terms of ROC AUC
(number of sequential trees = 170) ..…….…………………….………….

44

4.6 Performance of five feature selection methods in terms of F-measure
(Letter dataset)...…….…………………………………………………...

48

4.7 Performance of five feature selection methods in terms of ROC AUC
(Letter dataset) ...…….…………………………………………………..

49

4.8 Boxplot for F-measure and ROC AUC (Letter
dataset)…………………….……………………………………………….

51

4.9 Performance of F-measure vs. feature ranking (Letter
dataset)………………………………………………………………….….

52

4.10 Performance of ROC AUC vs. feature ranking (Letter dataset) ………….. 53

4.11 Performance of five feature selection methods in terms of F-measure
(Statlog dataset) ...…….……………………………………………………

54

 xii

LIST OF FIGURES
(Continued)

Figure Page

4.12 Performance of five feature selection methods in terms of ROC AUC
(Statlog dataset) ...…….……………………………………………………

55

4.13 Boxplot for F-measure and ROC AUC (Statlog
dataset)..

58

4.14 Performance of F-measure vs. feature ranking (Statlog dataset)………….. 59

4.15 Performance of ROC AUC vs. feature ranking (Statlog
dataset) ………………………………………………………………..…..

59

1

CHAPTER 1

INTRODUCTION

1.1 High-dimensional Data

As the rapid development of technology and science in the recent decades, the size of

data grows explosively, which has brought some unprecedented challenges to machine

learning researches. One of challenges is relevant to high-dimensional data, which makes

a learning task more complex and time-consuming. The characteristic of

high-dimensional data is the number of features is very high, e.g., Microarray dataset has

26,000 features.

 The problem of high-dimensional data has influenced a broad range of areas such

as imaging processing, DNA microarray data analysis, cancer detection, bioinformatics

and text data mining.

 In order to deal with high-dimensional data, machine learning methods are

confronted with the so-called “curse of dimensionality” problem [Donoho, 2000]. This

problem can easily arise if the number of features is higher than the number of instances.

In these cases, when the instances are scarce, it makes even more difficult for machine

learning algorithms to obtain acceptable performance in their tasks. Besides the

well-known problems as caused by the curse of dimensionality, another common issue is

the computational cost. Most of existing machine learning algorithms require

prohibitively many computing resources and/or huge data memory, thereby making their

use infeasible.

 2

 Except previous two frequent issues that happen, when high-dimensional data is

processed, another problematic issue is the presence of irrelevant or redundant features. If

all the irrelevant or redundant features are used in machine learning algorithms, harmful

consequences in terms of performance and computational cost can result. Moreover, huge

memory or storage space is needed to handle a high-dimensional dataset.

1.2 Class Imbalance

Another challenge for recent machine learning researchers is a class imbalance problem.

It arises when the numbers of observations among classes are significantly different.

Real-world applications, such as fraud detection, software prediction, diagnosis of

cancers and oil spill detection, can inherently result in class imbalancing issues [Wang et

al., 2017]

 The major issue about the imbalanced data learning problem is how to choose a

significantly compromised method to handle the bias-to-majority problem from which

most traditional machine learning algorithms suffer, when dealing with imbalanced data.

Because traditional leaning algorithms commonly assume that class distributions are

balanced and/or misclassification costs are equal among different classes. Such

assumptions cause the classification ability of learning algorithms towards the majority

classes, because algorithms try to optimize overall accuracy, which is overwhelmed by

majority classes while ignoring minority classes. The difficulty of dealing with

imbalanced problems comes from its imbalance rate, i.e., the imbalance ratio that is equal

to the number of instances in the majority class divided by the number of instances in the

minority class.

 3

 The drawback of using a conventional learning algorithm to classify an

imbalanced dataset has met many thorny issues in many existing applications. For

instances, in the cancer diagnosis field, this issue is particularly crucial. The minority

class presents patients who have cancer and the majority class presents patients who do

not. In the reality of this filed, the size of minority data is very much smaller than the size

of majority data. However, the purpose of this application is to discover useful

knowledge to make important decisions about which patients have cancer. At that time, if

learning algorithms bias toward the majority class, it can be extremely costly to

misclassify a minority instance.

1.3 Methods for Class Imbalance Problem

The methods proposed for dealing with imbalanced data include two aspects: data

preprocessing and learning algorithms.

1.3.1 Sampling Methods

For the imbalanced data, one easy solution is to resample the data, i.e., by changing

original class frequencies at a preprocessing step to balance the class distribution of

training data [Chen & Wasikowski, 2008]. It can use under-sampling, over-sampling, or

both.

 Under-sampling is an efficient method for balancing data. Its main idea is to

remove a subset of the majority observations from the training dataset to achieve the

balance between imbalanced classes. One simplest way in the under-sampling is to

randomly eliminate samples from the majority class until the data set gets balanced. In

order to avoid any useful data eliminated during random under-sampling preprocessing

 4

progress, some algorithms can guide one in selecting a subset of training data. They

include clustering [Yen & Lee, 2009], and EasyEnsemble [Liu, 2009][Kang, et al, 2016].

When the volume of a dataset is extremely large, under-sampling methods can reduce

computational time. However, in another aspect, if the volume of dataset is extremely

small, each of instances is precious for learning algorithms. At that time, even eliminating

one instance is highly risky.

 Over-sampling is another sampling method to balance data by replicating or

synthesizing the instances of minority class. Over-sampling is divided into two types:

random over-sampling and algorithm over-sampling. The former is randomly replicating

the minority class. The latter is based on some algorithms, such as Borderline-SMOTE

[Han, et al., 2005]. The advantage of over-sampling is that it avoids losing any useful

information in training data. The disadvantage of this method is it may lead to

over-fitting and cause additional computational cost.

1.3.2 Feature Selection

A dataset is characterized by the numbers of instances and features. Sampling methods

change the data distribution in terms of instance counts. Feature selection can be

considered as another method to solve an imbalanced class problem. When machine

learning algorithms facing an imbalanced dataset, most of time they bias toward into the

majority class. However, if a subset of features that are more related to minority class

information is selected for training data, classification result may bias toward the

minority class [Chawla, et al., 2004]. For instance, when a learning algorithm is used to

solve an oil spill detection problem, it is more important to select a subset of features that

can more accurately detect which oil is spilled. One advantage of using feature selection

 5

is, when an imbalanced data has high dimensionality, reducing the size of features can

drastically help reduce the computational time.

1.3.3 Cost-sensitive Learning

In the algorithmic aspect, cost-sensitive learning assigns different weights to different

classes based on their importantance. One popular example for cost-sensitive learning is

support vector machine (SVM) [Fumera & Roli, 2002]. Assume that a dataset is

represented by a set of data points ! = { !! ,!! }!!!! where !! ,!! ∈ !!!! , l and n

represent the numbers of instances and features, respectively. !! ∈ +1,−1 represents

the positive and negative classes. In the cost-sensitive SVM, the costs for two classes are

represented with C+ minority and C- majority. The formulation of separating a

hyper-plane for the weighted SVM is given as follow:

min 12 | ! |! + !! !! +
!!

!|!!!!!
!! !!

!!

{!|!!!!!}
 (1.1)

!. !.!! !!! !! + ! ≥ 1− !! ! = 1,… , ! (1.2)

 !! ≥ 0 ! = 1,… , ! (1.3)

where w is a vector, n+ is the number of majority data, n- is the number of minority data,

!! is the lack variable, yi means the target label and ϕ(xi) is the kernel function. Clearly

C+ > C- since correct identification of an instance in a minority class is more important

than that in a majority class. C+ and C- are selected based on imbalanced ratio.

6

CHAPTER 2

REVIEW OF LITERATURES

2.1 Feature Selection

As the real-world data turns to be more complicated and diverse, data pre-processing

plays a crucial role in machine learning and data mining. Feature selection is one of

important topics in data pre-processing. It especially aims at improving the quality of data

by riding noisy, irrelevant and redundant information for its further use. Kohavi and John

[1997] classified features into three disjoint categories, strongly relevant, weakly relevant

and irrelevant features. In their definition, relevance should be defined in terms of an

optimal Bayes classifier. A strongly relevant feature X means that its removed results in

performance deterioration of an optimal Bayes classifier. A weakly relevant feature X

means that it is not strongly relevant and thus may or may not impact the classifier’s

performance in any significant way. A feature is irrelevant if it is neither strongly nor

weakly relevant. Its use intends to worsen a classifier’s performance. Feature redundancy

is evaluated by calculating features’ correlation. When two features’ values are highly

correlated, they are redundant to each other. However, it is hardly to determine if a

feature is redundant if is correlated with a set of other features.

A common idea of reducing the dimensionality of data to be analyzed is to reduce

the number of features to a more manageable number while not reducing the

effectiveness of its study. Feature selection consists of reducing the features to an optimal

or sub-optimal subset of them, which can be used to produce equal or better results than

the original set. The main reasons to use feature selection are as follows:

 7

1) Reduced computational time

As the data size dramatically increases in a big data era, many popular machine

learning algorithms become time-consuming in the presence of a huge number of features.

Reducing the feature set scales down the dimensionality of the data, which in turn

reduces the training time required in many algorithms and thus computational cost.

Especially for the situation of a learning algorithm combined with a genetic algorithm,

using a “small” number of features, which are selected by using a feature selection

method, reduces its computational load without degrading its performance [Cuadra, et al.,

2008].

2) Improved accuracy

In many applications, feature selection can enhance prediction accuracy by reducing

noise features or selecting a subset of relevant features. Even some state-of-art and

sophisticated learning algorithms cannot achieve high prediction without getting rid of

the irrelevant or weakly related features. However, once a good subset of features is

selected, some relatively simple learning algorithms may produce desired prediction

performance. Also, reducing the irrelevant features makes the data mining results easier

to understand and more applicable [Guyon & Elisseeff, 2003]. While reducing the feature

set may improve the performance of most classification algorithms, it may lower the

accuracy of classifier based on decision trees [Li, et al., 2004]. Since decision trees have

the capability of reducing the original feature set in a tree building process, beginning the

process with fewer features may affect the final algorithm performance.

Feature selection is different from feature extraction (or feature transformation),

which creates new features by combining the original features: Principal component

 8

analysis (PCA) [Jolliffe, 1986], linear discriminant analysis (LDA) [Martinez & Kak,

2001], and locally linear embedding (LLE) [Roweis & Saul, 2000] are the examples of

feature transformation techniques. On the other hand, feature selection maintains the

original meanings of the selected features, which is highly desirable in many domains.

The approaches to feature selection fall into three categories: filter, wrapper and

embedded approaches. Figure 2.1 shows graphically how these methods work on the a

dataset to select a desired subset of features.

 9

(a) Filter Methods

(b) Wrapper Methods

(c) Embedded Methods

Figure 2.1 A graphical view of how filter, wrapper and embedded methods work on a
dataset.

n x d
matrix

n x m
matrix

Filter
d > m

Dataset with
All Features

Reduced
Dataset

Subset
Selection
Procedure

Learning
Algorithms

Wrapper

 d > m Reduced
Dataset

Dataset with
All Features

Evaluation

Learning
Algorithm with

Constraint
Dataset with
All Features

Reduced
Dataset

Optimization
Procedure

 10

2.1.1 Filter Methods

The filter methods for feature selection reduce the number of features by using the

performance evaluation metric directly from the data, without feedback from predictors

[John, et al., 1994]. A suitable ranking criterion, such as the Pearson correlation

coefficient and Chi Square, and a proper threshold of removing features are both

important in this method. Zhang and Chen [2008] propose a filter method based on

pairwise constraints, which does not have to access the whole training data and can save

the computational time for large-size data sets. A correlation based feature selection

method is proposed by [Hall, 2000]. The Laplacian score is used to reflect each feature’s

locality preserving power [He, et al., 2005].

The advantage for using filter methods in a data preprocessing step not only helps

improve the performance of classification algorithms, but also reduces the amount of the

computer processing time. The second advantage is that filter methods do not incorporate

the final learning algorithm in their process [Ladha & Deepa, 2011]. The last but not lest

benefit of a filter method is that the same features may be used in different learning

algorithms for comparative analysis. According to [Hall & Smith, 1998], some filter

methods, e.g., Correlation-based Feature Selection (CFS), may produce results that are

similar to or better than wrapper methods in several domains. Yu and Liu [2003] propose

a new correlation-based feature selection method. Their study shows the efficiency and

effectiveness of such methods when dealing with high-dimension data sets. However,

Saeys et al. [2007] note that filter methods have the disadvantage of not interacting with

the classifier algorithm eventually used. Another disadvantage is that most filter methods

are univariate in nature, meaning that they do not take into consideration the values of

 11

other attributes. Their study is conducted on a high-dimension bioinformatics data set

[Saeys et al., 2007].

2.1.2 Wrapper Methods

Unlike filter methods, wrapper methods use a preselected learning algorithm as a part of

the feature selection process. They can be categorized into Sequential Selection and

Heuristic Search Algorithms. The former only evaluates one feature each step, such as,

Forward Sequential Selection (FSS) and Backward Sequential Selection (BSS). The latter

evaluates different subsets to obtain the optimal evaluation results. As features are added

or subtracted from a feature set, the final results are ranked in terms of effectiveness of

the selection. Since the learning algorithm itself is used in the evaluation phase of the

selection process, wrapper methods tend to score better results than filter methods.

Kohavi and John [1997] compare the wrapper methods for feature subset selection

against filter methods. They conclude that the relevancy of features contributes greatly to

the performance of the learning algorithms when using a wrapper method as their feature

selection method. However, wrapper methods have some limitations. The computational

time of evaluating features in wrapper methods is far greater than in that of filter methods.

Another disadvantage of wrapper methods is the likelihood of over-fitting the data.

Instead of using a single wrapper method such as sequential forward selection, Gheyas

and Smith [2010] propose a new method, called simulated annealing generic algorithm

(SAGA), which incorporate the existing wrapper methods into a single solution. The

results show that the combined methods can reduce the weaknesses each has inherently

when used individually. Maldonado and Weber, [2009] propose a wrapper method based

on the Support Vector Machine (SVM) classification. Their study concludes that using

 12

such method can avoid over-fitting the data because of its capability of splitting the data.

It also allows the use of different Kernel functions to provide better results. One

drawback is that their proposed algorithm has used the backward elimination feature,

which is computationally expensive when working with high-dimension data sets.

2.1.3 Embedded Methods

The main idea of an embedded method is to incorporate the feature selection as a part of

a training process, which means that it relies on the classification. Therefore, the search

for an optimal subset of features is built into the classifier construction and can be seen as

a search in the combined space of feature subsets and hypotheses. For instance, Guyon, et

al. [2002] present a recursive feature elimination method based on SVM. They achieve

feature selection by iteratively training an SVM classifier with the current set of features

and removing the least important feature indicated by the weights in the SVM solution.

[Oh, et al., 2002] introduce a Particle Swarm Optimization (PSO) and KNN embedded

method for diagnosis of mammographic where PSO stands. According to [Yang, et al.,

2013] the basic architecture of an embedded method consists of: (1) a search component,

(2) a feature evaluation criterion, and (3) a learning algorithm. The advantage of

embedded methods is their lower computational cost than wrapper methods. The

disadvantage is that their feature selection performance highly depend on learning

algorithms.

2.2 Decision Tree

A decision tree is one of the most commonly used learning algorithms in classification

and regression. It has been widely used in the text classification [Apté, et al.,

 13

1994][Forman, 2003], spam detection [Castillo, et al., 2007] and categorical loan data

[Koh, 2004]. In a classification problem, a decision tree represents a classification’s

process that is based on features. Also, it can be viewed as a combination of a set of

if-then rules.

Figure 2.2 An example of a decision tree.

 A decision tree consists of nodes and directed edges. A node can be an: internal or

leaf node. Each internal node represents a feature and a leaf node represents a class. A

tree begins at the root node. An example of a decision tree is shown in Figure 2.2. The

root is “Age>40”. “Education”, “House” and “Income>1000” are internal nodes.

 A decision tree is contrasted in a top-down fashion, by choosing a feature that

best splits a dataset at each step. Different algorithms are based on different splitting

criteria for measuring the “best” feature. [Quinlan, 1986] proposes a decision tree

algorithm whose split is made by impurity measures called Iterative Dichotomiser 3

(ID3). This algorithm, howevr, does not support continuous attributes. Only categorical

values are supported. Then [Quinlan, 1993] introduce C4.5 which can handle continuous

 14

attributes. The splitting criterion in C4.5 uses the concept of information entropy. Chen,

et al. [2011] use two commonly splitting criteria: information gain and Gini index during

tree construction. Their method can test a node of both discrete and continuous data types.

By default the tree tries to cover all possible outcomes in its structure. This feature leads

the tree to over-fit the data into its solution.

 To avoid over-fitting, optional pruning is required, where a further distinction can

be made between pre-pruning and post-pruning [Esposito, et al., 1993]. Pre-pruning is a

process that allows the construction of a tree to stop before all training data are correctly

classified. It can easily reduce the complexity of the tree. Post-pruning is a process

allowing the full construction of a tree, and then removing branches that are not

considered to represent general properties of the learning.

 There are several advantages to use decision trees. The algorithms are

computationally fast and easy to understand. They can handle both continuous and

discrete data types. Also, the missing values are well handled in a classification and

regression tree (CART). Observing the internal nodes can allow onte to easily identify the

important features. However, there are some disadvantages as well. Variations in data

may produce different looking trees [Rokach & Maimon, 2005][Otero & Johnson, 2012],

which are not good at predicting continuous attributes, because irrelevant attributes and

noisy data may affect the tree structure. When using decision trees in imbalanced datasets,

the minority class can lead to several problems. Because minority and majority classes

are not evenly distribute in an imbalanced dataset. As a consequence, to detect minority

instances from majority ones, the tree needs grow to be very complex. After applying the

 15

pruning step, such specific branches that increase the accuracy of minority class may be

removed. Then the resulting tree is probably biased to the majority class.

2.3 Evaluation Methods

In this section, we describe the measures that are used to evaluate the performance of the

proposed methods in our experimental section. Evaluation methods are used to determine

the effectiveness of classification algorithms. Commonly used measurements include

accuracy, receiver operating characteristic (ROC) curves and area under the curve (AUC)

and F-Measure.

2.3.1 Confusion Matrix

A confusion matrix is a table that is often used to describe the performance of a

classification model. This table consists of two rows and two columns that introduce the

numbers of true positive, false negative, false positive and true negative instances, as

show in Table 2.1.

Table 2.1 Confusion Matrixes for Binary Classification

Confusion Matrix
Predicted condition

Positive Negative

Actual

condition

Positive True Positive (Tp) False Negative (Fn)

Negative False Positive (Fp) True Negative (Tn)

 In binary classification, a confusion matrix has four outcomes only:

 True positive (Tp): positive instances correctly classified as positive.

 16

 False negative (Fn): positive instances classified as negative.

 False positive (Fp): negative instances classified as positive.

 True negative (Tn): negative instances correctly classified as negative.

 Based on the values contained in a confusion matrix, several evaluation measures

can be defined as follows:

True positive rate (TPR) = !"
!" + !" (2.1)

True negative rate (TNR) = !"
!" + !" (2.2)

False positive rate (FPR) = !"
!" + !" (2.3)

False negative rate FPR = !"
!" + !" (2.4)

2.3.2 Accuracy

The classification accuracy represents the accuracy of a model as the number of correct

predictions from all predictions made. Accuracy is one of the most common performance

measures.

 For binary classification, we have:

!""#$%"& = !"+ !"
!" + !" + !" + !" (2.5)

 17

 However, this performance measure can be deceiving when facing an imbalanced

dataset [He & Garcia, 2009]. In the following part, we give a simple example in Table 2.2

to illustrate the drawback of using accuracy measure for imbalanced classification.

Table 2.2 Confusion Matrixes for Two Models

Model 1
Predicted Class

Positive Negative

Actual Class
Positive 3 7

Negative 10 9990

Model 2
Predicted Class

Positive Negative

Actual Class
Positive 8 2

Negative 100 9900

 The accuracy for Model 1 is (3+9990)/(3+7+10+9990) = 0.998. The accuracy for

Model 2 is (8+9900)/(8+2+10+9900) = 0.990. If we select a model based on the accuracy

only, Model 1 has better performance. However, the most important part for learning an

imbalanced dataset is correctly identify the minority instances correctly. The true positive

rate for Model 1 is 3/(3+7)=0.3. The true positive rate for Model 2 is 8/(8+2)=0.8. Model

2 clearly has much better prediction performance on the minority class.

 18

2.3.3 F-Measure

F-Measure [Lewis & Gale, 1994] is one of the popular performance metrics. It is

computed based on precision and recall.

!"#$%&%'(= !"
!" + !" (2.6)

!"#$%% = !"
!" + !" (2.7)

 Unlike the accuracy measure, these two measures avoid using true positive, which

can be extremely high when dealing with the classification for an imbalanced dataset.

 The meaning of the precision is to compare the correctly classified positive

instances to the total number of instances that have been classified as positive. A larger

value of precision corresponds to a higher number of correct positive predictions. The

recall presents the percentage of correctly classified positive instances. Another name for

recall is true positive rate.

 Ideally, a classifier has both high recall and high precision, meaning the superb

performance of correctly classifying a minority class. High recall represents that positive

instances are mostly classified as positive and high precision illustrates the instances

classified as positive mostly belong to the positive class. F-Measure contains the trade-off

between precision and recall, which is defined as:

! = (1+ !!) ∙ !"#$%&%'(∙ !"#$%%
!! ∙ !"#$%&%'(+ !"#$%% (2.8)

 19

where ! ∈ (0,+∞) corresponds to the relative importance of recall over precision. When

!=1, both are of the same importance [Rijsbergen, 1979].

2.3.4 ROC AUC

ROC analysis has received increasing attention in the recent data mining and machine

learning literature [Fawcett, 2006][Chawla, 2005]. This curve models the trade-off

between TPR and FPR. It is constructed in a two-dimensional space, plotting TPR and

FPR on the x-axis and y-axis, respectively, as shown in Figure 2.3.

Figure 2.3 ROC curve.

 The ROC AUC means that the area under the curve of receiver operation

characteristic. The larger ROC AUC, the better prediction performance. The diagonal

dashed line is the ROC curve of a random predicton. It has an ROC AUC of 0.5. The

random predictor is commonly used as a baseline to see whether a model is useful.

FPR

TPR

0

1.0

1.0

 20

CHAPTER 3

METHDOLOGY

3.1 Filter-based Feature Selection

Several feature selection methods have been introduced in the machine learning field [Liu

& Motoda, 2012][Chandrashekar & Sahin, 2014]. Their main purpose is to remove either

irrelevant or redundant features from the dataset. A filter-based feature selection method

uses different statistical tests to determine the subset of features with the highest

predictive power. For this method, different statistical metrics are chosen to calculate a

score for each feature. Then, those features are ranked by scores and the feature columns

with the highest scores are used to build the model, while others are kept in the dataset

but not used for analysis. This method is independent of any particular classifier, and

motivated by the properties of the data distribution itself. Two filter-based feature

selection methods, i.e., Chi-square and F-statistic, are introduced for the comparison

purpose in this thesis.

3.1.1 Chi-square

Chi-square [Rachburee & Punlumjeak, 2015], χ2, test is used to test whether the given

feature is related with the distribution of the class or not. The two-way Chi-squared test is

a statistical method that measures the distance between expected values and actual

results. The method assumes that variables are random and drawn from an adequate

 21

sample of independent variables. For a given dataset about one of the features and the

class, the observed instance count from the class is O and the expected instance count

from the feature is E. Chi-square measures how much E and O derivate from each other.

When the feature and the class are dependent, it means that this feature has relationship

with the class and can be used to predict it. Thus, this method aims to select the feature

that is highly dependent on the class.

 The null hypothesis is that there is no relationship between the given feature and

the class. The high value of χ2 score indicates that the null hypothesis is incorrect. In

other words, the higher value of χ2 score, the greater relationship between the feature and

the class is. Consequently, this given feature should be selected for model training.

 The following example in Table 3.1 is used to present how to calculate χ2 score

between feature X and the class. In this example, X is a categorical feature.

Xi is the ith feature, and Xi = {xij}.

Table 3.1 Chi-square Computation Example

 Positive class Negative class Total

Value xij occurs A B A+B

Value xij not occurs C D C+D

Total A+C B+D N

 A: The number of positive instances that contain xij;

 B: The number of negative instances that contain xij;

 22

 C: The number of positive instances that not contain xij;

 D: The number of negative instances that not contain xij;

 N: The total number of instances;

 A+C: The total number of positive instances; and

 A+B: The number of instances that contain xij.

 The equation of expected value EA is calculated based on the null hypothesis

given as follows:

!! = ! + ! ! + !
! (3.1)

 Similarly, we can calculate EB, EC and ED.

 The χ2 score between a feature and its target is computed as follows:

!! = (!!" − !!!)!
!!"

!

!!!

!

!!!
 (3.2)

where r is the number of different values of feature Xi, c is the number of classes, Oij is

the number of instances with value i in class j, and Eij represents the expected number of

instances with values i and j.

 Based on the value of EA, EB, EC and ED, Equation (3.2) is extended to:

 23

!! = ! − !! !

!!
+ ! − !! !

!!
+ ! − !! !

!!
+ ! − !! !

!!
 (3.3)

 Based on (3.1), !! is updated as:

!! = ! !" − !" !

! + ! ! + ! ! + ! ! + ! (3.4)

3.1.2 F-statistic

F-statistic [Ding & Peng, 2005] is also called one-way analysis of variance (ANOVA)

F-test, which can determine the importance of a feature in discriminant analysis [Hosseini

& Mahdavi, 2015]. The F-test value of a given feature is computed as follows:

! =
!! !! − !

!/(! − 1)!
!!!

!! (3.5)

where J is the number of classes, Nj is the number of instances in the jth class, !! is the

mean of instances X in class j, ! shows the mean value for all the instances, and δ2 is the

pooled variance computed as follows:

 24

!! = !! − 1 !!!/(! − 1)
!

!!!
 (3.6)

3.2 Decision Tree Rule-based Feature Selection Method

The decision tree method is one of popular algorithms used in machine learning. A

standard tree consists of a number of branches, one root, and a number of nodes and

leaves. One branch is a chain of nodes from the root to a leaf; and each node involves one

feature. The occurrence of a feature in a tree provides the information about the

importance of the associated feature. The high occurrence of a feature means that this

feature is highly relevant with a target. A decision tree can be built by using Algorithm

3.1:

Algorithm 3.1 Decision tree

Input: a dataset D
1: Tree = {}
2: if D is “pure” OR other stopping criteria are met then
3: terminate
4: end if
5: for all feature f do
6: Compute splitting criteria if we split on f
7: end for
8: fbest = Best feature according to the above computed criteria
9: Tree = Create a decision node that tests fbest in the root
10: DV = Induced sub-datasets from D based on fbest
11: for all DV do
12: TreeV = Decision tree (DV)
13: Attach TreeV to the corresponding branch of Tree
14: end for
15: return Tree

 25

 A decision tree rule-based feature selection method discovers the frequency of

each node. One node corresponds to one feature. Choosing which feature can be

constructed as a new node is answered by using different splitting criteria in different

decision tree algorithms. Our proposed feature selection method does not calculate the

frequency of features after the tree is built. Instead we calculate it as along as we evaluate

features based on a splitting criterion. Because in some cases, several features have the

same highest splitting value, then only one of features is selected as a node. At that time,

these features that are not selected are not computed, even though it is as important as the

selected feature. It means that we these features’ information. However, if we calculate

the frequency of features as along as the splitting criterion is used, this kind of loss is

reduced.

3.2.1 Splitting Criteria

There are many metrics that can be used to determine the best way to split the dataset. In

this section, a binary classification is used as an example. Let p(i|j) denotes the relative

frequency of class i at node j. The developed metrics for selecting the best splitting are

often based on the degree of impurity of child nodes. The node contains a higher impurity

means that it has a higher probability to be chosen. Examples of impurity metrics include:

!"#$%&' ! = − ! ! ! log (! ! !)
!

 (3.7)

 26

!""#" ! = 1−max
!
! !|! (3.8)

!"#" ! = 1− ! !|! !

!
 (3.9)

 We next provide one example of calculating different splitting criteria, as

illustrated in Table 3.2.

Table 3.2 Count for Nodes A and B

 Node A count Node B count

Positive class 1 2

Negative class 5 4

!"#$%&' ! = − 16 log!
1
6−

5
6 log!

5
6 = 0.65

!""#" ! = 1−max 1
6 ,
5
6 = 0.167

!"#" ! = 1− 1
6

!
− 5

6
!
= 0.278

 Similarly, we can compute B as follows:

!"#$%&' ! = − 26 log!
2
6−

4
6 log!

4
6 = 0.92

 27

!""#" ! = 1−max 2
6 ,
4
6 = 0.333

!"#" ! = 1− 2
6

!
− 4

6
!
= 0.444

 Clearly we choose A since its impurity metric is better performance than B’s.

3.2.2 CART

Different splitting criteria lead to different decision trees. ID3 and C4.5 algorithms select

nodes based on an information gain that relies on the concept of entropy. The CART

algorithm selects a Gini index as a metric to test the node impurity. In our proposed

feature selection method, we select the CART algorithm.

 CART is a binary decision tree that is constructed by splitting data into two parts

with maximum homogeneity. Breiman et al. (1984) presented this algorithm in 1980s.

The advantages for using this algorithm are as follows:

 (1) CART results are invariant to monotone transformations of its independent

variables.

 Changing one or several variables to its logarithm or square root does not change

the structure of the tree. Only the splitting values are different.

 (2) CART can easily handle outliers.

 Outliers can negatively affect the results of some learning algorithms. However,

the splitting criterion for CART can easily handle them. It isolates them in a separate

 28

node.

 (3) Features can repeatedly be used in CART.

 When using a decision tree algorithm for feature selection, we need to calculate

how often one feature is selected as a node in a tree. In the CART tree, it is easy to

observe this frequency. Higher frequency of occurrence of a feature means that it has a

higher chance to be selected in the feature selection method.

 (4) CART can easily handle both continuous and categorical features

 CART is a binary tree. For a continuous feature, the Gini index splitting criterion

can traverse all possible values, and then calculate each node impurity corresponding to

each value. Finally select the value that contains highest node impurity as this feature

splitting value.

 Building a CART tree consists of the following three steps:

 (a) Constructing a maximum size of a tree, which is built by using recursive

splitting of nodes. The best splitting nodes are chosen by searching all possible variables

and all possible values. The splitting criterion for the CART algorithm is called Gini

index. The Gini index is formally described as follows:

Let I be a set of classes, j∈{1,2,…,M} be a node, and P(i|j) be the relative frequency

of class i at node j. The Gini index at node j is defined as:

!"#" ! = 1− ! !|! !

!
 (3.10)

 29

 The Gini index used for different splitting nodes can be computed as:

!"#"!"#$% =
!!
!

!

!!!
!"#"(!) (3.11)

where n is the number of instances at node j. Therefore, the objective of choosing a

splitting node is shown as:

argmin!"#"!"#$%(!) (3.12)

 (b) Performing the “pruning” step of a tree. The CART algorithm uses a

“cost-complexity” pruning method in this step. It relies on complexity parameter !,

which represents the amount of additional accuracy for one splitting that must add to the

entire tree to reduce complexity.

 (c) Optimizing the tree to avoid overfitting. A cross-validation procedure is used

in this step to find a proper ! to balance the size of the tree and reduce the

misclassification error. A cost-complexity function is described as:

!! ! = ! ! + !(!) (3.13)

 30

where R(T) is the misclassification error of a tree T. ! ! is the complexity of the tree !,

which is the number of nodes in the tree.

3.2.3 Weighted Gini Index for CART

Table 3.3 shows the parent node splitting result after chosing a feature as a child node.

Table 3.3 Matrix for One Splitting Node

Child nodes

Positive (D1) Negative (D2)

Parent Node
Positive True Positive (Tp) False Negative (Fn)

Negative False Positive (Fp) True Negative (Tn)

 The Gini index based on Table 3.3 is described as follows:

!"#" ! = 1− !" + !"
!

!
− !" + !"

!
!
 (3.14)

!"#" !! = 1− !"
!" + !"

!
− !"

!" + !"
!
 (3.15)

!"#" !! = 1− !"
!" + !"

!
− !"

!" + !"
!
 (3.16)

 31

!"#"! ! = !!
! !"#" !! + !!

! !"#" !!

= !" + !"
! !"#" !! + !" + !"! !"#"(!!)

(3.17)

∆!"#" ! = !"#" ! − !"#"!(!) (3.18)

	 	

where D is a parent node, D1 and D2 are two child nodes, and N is the total number of

parent nodes, which is equal to the sum of Tp, Fp, Fn and Tn. R is the splitting value for

node D. !"#" ! is the impurity value for node D. If all instances belong to a same class,

this value equals 0. ∆!"#" ! denotes the decrement in impurity. The node is chosen if it

is maximized or the Gini index is minimized.

	 However,	 when	 the	 dataset	 is	 highly	 imbalanced,	 the	 Gini	 index	 splitting	

criterion	 is	 biased	 to	 the	 majority	 class.	 An	 example	 is	 given	 to	 illustrate	 this	

problem	as	shown	in	Table	3.4-3.6.	

Table 3.4 Splitting Results for Node 1

Node 1
Child nodes

Positive (D1) Negative (D2)

Parent Node
Positive 3 7

Negative 10 9990

	

 32

!"#" ! = 1− 3+ 7
10010

!
− 10+ 9990

10010
!
= 1.996 ∗ 10!!

!"#" !! = 1− 3
3+ 10

!
− 10

3+ 10
!
= 0.355

!"#" !! = 1− 7
7+ 9990

!
− 9990

7+ 9990
!
= 1.399 ∗ 10!!

!"#"! ! = 3+ 10
10010 !"#" !! + 7+ 999010010 !"#" !! = 1.858 ∗ 10!!

∆!"#" ! = 1.996 ∗ 10!! − 1.858 ∗ 10!! = 0.138 ∗ 10!!

Table 3.5 Splitting Results for Node 2

Node 2
Child nodes

Positive (D1) Negative (D2)

Parent Node
Positive 8 2

Negative 100 9900

	

!"#" ! = 1− 8+ 2
10010

!
− 100+ 9900

10010
!
= 1.996 ∗ 10!!

!"#" !! = 1− 8
8+ 100

!
− 100

8+ 100
!
= 0.137

!"#" !! = 1− 2
2+ 9900

!
− 9900

2+ 9900
!
= 0.404 ∗ 10!!

 33

!"#"! ! = 8+ 100
10010 !"#" !! + 2+ 990010010 !"#" !! = 1.878 ∗ 10!!

∆!"#" ! = 1.996 ∗ 10!! − 1.878 ∗ 10!! = 0.118 ∗ 10!!

Table 3.6 Splitting Results for Node 3

Node 3
Child nodes

Positive (D1) Negative (D2)

Parent Node
Positive 8 2

Negative 10 9990

	

!"#" ! = 1− 8+ 2
10010

!
− 10+ 9990

10010
!
= 1.996 ∗ 10!!

!"#" !! = 1− 8
8+ 10

!
− 10

8+ 10
!
= 0.494

!"#" !! = 1− 2
2+ 9990

!
− 9990

2+ 9990
!
= 0.400 ∗ 10!!

!"#"! ! = 8+ 10
10010 !"#" !! + 2+ 999010010 !"#" !! = 1.287 ∗ 10!!

∆!"#" ! = 1.996 ∗ 10!! − 1.287 ∗ 10!! = 0.709 ∗ 10!!

 Based on the value of the decrement in impurity for three nodes, we conclude that

Node 3 contains the highest decrement value and is thus chosen. Also, comparing Node 3

 34

with other two nodes, it has higher result on TPR and TNR than the other two. So, it is

reasonable to choose this one first. However, when we compare Node 1 with Node 2,

Node 1 has its priority to be selected since it has higher value on ∆!"#" ! . For the

imbalanced data, the minority class is the one to which we pay more attention than the

majority one. That means TPR is more important than TNR. At this time, node 2 clearly

has higher result on TPR than Node 1.

	 For this imbalanced class problem, we propose a weighted Gini index to increase

the chance for us to choose the features more bias to minority class.

!"#" ! = 1− ! !|! !

!
= 1− !! ∗ !

!! ∗ ! + !!

!
− !!

!! ∗ ! + !!

!
 (3.19)

!"#" ! = 1− !" + !" ∗ !
!∗

!
− !" + !"

!∗

!
 (3.20)

!"#" !! = 1− !" ∗ !
!" ∗ ! + !"

!
− !"

!" ∗ ! + !"
!
 (3.21)

!"#" !! = 1− !" ∗ !
!" ∗ ! + !"

!
− !"

!" ∗ ! + !"
!
 (3.22)

 35

!"#"! ! = !!
! !"#" !! + !!

! !"#" !!

= !" + !" ∗ !
!∗ !"#" !! + !" + !"!∗ !"#"(!!)

(3.23)

!∗ = !" + !" ∗ ! + (!" + !") (3.24)

Where w is the newly introduced weight.

 According to Equations (3.19)-(3.23), the value of decrement in impurity of

previous three nodes is calculated as follows where in this example, we select ! = !!
!! =

!""""
!" = 1000 is selected:

Node 1:	

!"#" ! = 1− 3+ 7 ∗ 1000
10 ∗ 1000+ 10000

!
− 10+ 9990

10 ∗ 1000+ 10000
!
= 0.5

!"#" !! = 1− 3 ∗ 1000
3 ∗ 1000+ 10

!
− 10

3 ∗ 1000+ 10
!
= 6.622 ∗ 10!!

!"#" !! = 1− 7 ∗ 1000
7 ∗ 1000+ 9990

!
− 9990

7 ∗ 1000+ 9990
!
= 0.484

!"#"! ! = 3 ∗ 1000+ 10
10 ∗ 1000+ 10000!"#" !! + 7 ∗ 1000+ 9990

10 ∗ 1000+ 10000!"#" !! = 0.412

∆!"#" ! = 0.5− 0.412 = 0.088

 36

Node	2:	

!"#" ! = 1− 8+ 2 ∗ 1000
10 ∗ 1000+ 10000

!
− 100+ 9900

10 ∗ 1000+ 10000
!
= 0.5

!"#" !! = 1− 8 ∗ 1000
8 ∗ 1000+ 100

!
− 100

8 ∗ 1000+ 100
!
= 0.024

!"#" !! = 1− 2 ∗ 1000
2 ∗ 1000+ 9900

!
− 9900

2 ∗ 1000+ 9900
!
= 0.280

!"#"! ! = 8 ∗ 1000+ 100
10 ∗ 1000+ 10000!"#" !! + 2 ∗ 1000+ 9900

10 ∗ 1000+ 10000!"#" !! = 0.176

∆!"#" ! = 0.5− 0.176 = 0.324

Node	3:	

!"#" ! = 1− 8+ 2 ∗ 1000
10 ∗ 1000+ 10000

!
− 10+ 9990

10 ∗ 1000+ 10000
!
= 0.5

!"#" !! = 1− 8 ∗ 1000
8 ∗ 1000+ 10

!
− 10

8 ∗ 1000+ 10
!
= 2.494 ∗ 10!!

!"#" !! = 1− 2 ∗ 1000
2 ∗ 1000+ 9990

!
− 9990

2 ∗ 1000+ 9990
!
= 0.278

!"#"! ! = 8 ∗ 1000+ 10
10 ∗ 1000+ 10000!"#" !! + 2 ∗ 1000+ 9990

10 ∗ 1000+ 10000!"#" !! = 0.167

∆!"#" ! = 0.5− 0.167 = 0.333

 37

 Comparing ∆!"#" ! for these three notes, node 3 has the highest score, then

node 2, and the last one is node 1. It means that the weighted Gini index splitting

criterion contains better performance on TPR. 	

3.3 Classification

In order to verify the performance of the proposed feature selection approach, we test our

new subset of features on eXtreme Gradient Boosting (Xgboost) classifier [Chen & He,

2015]. It is an efficient and faster implementation of gradient boosting machines [Chen &

Guestrin, 2016]. Xgboost is an ensemble algorithm where new models are added to

correct the errors made by the existing models. Models are added until no further

performance improvement can be gained. This algorithm can support both regression and

classification work.

38

CHAPTER 4

Experimental Results

4.1 Datasets

In order to test the performance of our proposed method, three datasets are collected and

used. One of them is from Santander Bank and posted on the Kaggle competition

[https://www.kaggle.com/c/santander-customer-satisfaction]. The other two datasets, i.e.,

the letter recognition dataset and statlog (ladsat satellite) dataset, are from UCI machine

learning repository. Table 4.1 summarizes the number of instances and features and the

class ratios of the datasets.

Table 4.1 Summary of Benchmark Datasets

Dataset Instances Features
Ratio

(Majority/Minority)

Bank 76,020 371 24

Letter 20,000 16 24.3

Statlog 6,435 36 9.3

 Originally, the Santander Bank dataset is used to predict whether a customer is

satisfied or not with their banking experience. The number of instances is 76,020, and the

number of features is 371. The imbalanced ratio is 24, which means that the number of

negative instances is 24 times larger than the number of positive ones. Then, we

randomly split the dataset into training and testing ones with a ratio of 6:4, i.e., 60% data

for training and the remaining for test.

 39

 The letter recognition dataset consists of 20,000 instances and 16 features. All the

features are of integer values. The objective is to identify the 26 capital letters in the

English alphabet based on the 16 features from images. The character images are based

on 20 different fonts and each letter within these 20 fonts is randomly distorted to

produce a file of 20,000 unique stimuli. Each stimulus is converted into 16 primitive

numerical features which are then scaled to fit into a range of integer values from 0 to 15.

For this dataset, we use 16,000 instances for training and the remaining 4,000 instances

for testing. The original dataset contains 26 classes and correspond to 26 English letters

from A to Z. For this dataset, we assume the class A as the minority class and the rest as

majority class. Our target is to distinguish class A from the rest classes. In other words,

we convert the dataset to exhibit a binary classification problem.

 The statlog (ladsat satellite) dataset consists of the multi-spectral values of pixels

in 3×3 neighborhoods in a satellite image, and the classification is associated with the

central pixel in each neighborhood. The aim is to predict this classification by using the

given multi-spectral values. This dataset contains 6,435 instances with 36 features. The

features are numerical and their values range from 0 to 255. This is 6-class classification

problem. For this multi-class dataset, we select the least frequent class label as the

minority and the rest as the majority. Consequently, class 4 is treated as the minority

class and the rest of classes are combined into one class as the majority class.

4.2 Experimental Design

In our experiments, two filter based feature selection methods, Chi-square and F-statistic,

are used and compared with our proposed methods, i.e., decision tree rule-based feature

 40

selection (DT-FS) and weighted Gini index feature selection (WGI-FS). In order to

evaluate the performance among these feature selection methods, we adopt xgboost as

our classification model. Note that 5-fold cross validation is used to avoid an overfitting

issue. Finally, the metric ROC AUC and F-measure are computed to evaluate the

performance among three feature selection methods.

4.3 Case Study 1: Santander Bank Dataset

In this section, we show the results of comparisons among DT-FS, Chi-square and

F-statistic.

Figure 4.1 Score of features based on DT-FS

41

42

Figure 4.2 Performance of three feature selection methods in terms of ROC AUC.

 Figure 4.1 shows the features’ scores based on our proposed approach in

descending order. If a feature receives a higher score, it represents that it is more relevant

with the prediction. Figure 4.2 demonstrates the comparisons of highest testing ROC

AUC results among the three feature selection methods with a different number of

sequential trees for xgboost. Note that the horizontal axis represents the number of

sequential trees which is a parameter for xgboost. This parameter means that the number

of trees is used for boosting on xgboost. According to the result, we conclude that the

ROC AUC results from three feature selection methods are slightly different, except

when the number of sequential trees equals 50.

0.795	

0.8	

0.805	

0.81	

0.815	

0.82	

0.825	

0.83	

0.835	

50	 70	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180	 190	 200	

Te
st

in
g

A
U

C
�

Number of sequential trees�

DT-FS

Chi-Square

F-statistic

 43

Figure 4.3 Number of needed features among three feature selection methods.

 Figure 4.3 gives the numbers of needed features for different feature selection

methods when they reach the highest testing ROC AUC under the same number of

sequential trees. For example, when 100 sequential trees are chosen, both DT-FS and

Chi-square achieve the same 0.828 ROC AUC result, with F-statistic being 0.829. We

compare the number of needed features that are selected based on DT-FS and Chi-square.

DT-FS needs fewer features than Chi-square to obtain same ROC AUC result. F-statistic

needs more features than DT-FS, but fewer than Chi-square to obtain the slightly higher

ROC AUC result.

 It is observed that our proposed algorithm needs more features in order to get the

same testing ROC AUC, when a small number of sequential trees is chosen. As the

number of sequential trees increases, the Chi-square feature selection approach needs the

0	

50	

100	

150	

200	

250	

300	

350	

50	 70	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180	 190	 200	

N
um

be
r o

f F
ea

tu
re

s�

Number of sequential trees�

DT-FS
Chi-Square
F-statistic

 44

largest number of features, and F-statistic needs the smallest number of features.

However, the highest testing ROC AUC is around 0.83, and only floats in a small range.

Figure 4.4 Performance of three feature selection methods in terms of ROC AUC
(number of sequential trees = 110).

Figure 4.5 Performance of three feature selection methods in terms of ROC AUC
(number of sequential trees = 170).

 45

 As shown in Figures 4.4-4.5, we compare the tendency of ROC AUC among the

three different feature selection methods based on the number of sequential trees, i.e., 110

and 170. We select the number of features from 4 to 371. Note that 371 is the dimension

of our dataset. We observe that the subset of features, which our proposed algorithm

selects, has the better ROC AUC than F-statistic and Chi-Square in Part I of Figures

4.4-4.5. It shows that the proposed method can find the most relevant features quickly. In

Part II of these two figures, the tendency of ROC AUC of these three different

approaches tend to coincide. Thus, the proposed method obtains the best performance

among the three methods while dealing with fewer features are the similar results after

the number of features is over a certain number, e.g., 94 in Figure 4.4.

Table 4.2 Full features Versus Top Ranked Features Chosen Based on The DT-FS

 Feature
size

Testing
ROC AUC

Training
ROC AUC

Computational
time

Full features 371 0.822 0.865 95.90

Top rank (DT-FS)
31 0.824 0.858 39.26

16 0.824 0.854 30.96

 This part of experiment intends to perform the comparisons using the selected

from the proposed method features and all features for classification. In Table 4.2, we

choose the number of features as 31 and 16 to show results. The baseline of testing AUC,

training AUC and computational time for the whole 371 features is 0.8221 and 0.8647,

95.90 seconds, respectively. We compare these results with the ones when our proposed

feature selection method is used. We conclude that our proposed feature selection method

exhibits a good performance, even though over 90% percent of features are reduced. Also,

 46

its use drastically reduce the classification time as expected. It shows that our proposed

feature selection approach can successfully work for features selection in the large-scale

imbalanced dataset.

Table 4.3 Random Feature Selection Versus Top Ranked Features Chosen Based on The
DT-FS

Feature

size

Testing

AUC

Training

AUC

Computational

time

Random feature chosen
31 0.7495 0.7900 41.04

16 0.6883 0.7003 35.87

Top rank (DT-FS)
31 0.8239 0.8581 39.26

16 0.8236 0.8543 30.96

 May a randomly selected subset of features perform well? We compare our

proposed method’s results with the random features selection method’s results in Table

4.3. We randomly choose the number of features as 31 and 16 from the 371 features, and

then present testing AUC, training AUC and computational time for these features, which

are 0.7495, 0.7900 and 41.04, respectively. Based on the results that are produced with

the random feature selection, we conclude that many features are irrelevant with the

prediction. Our proposed feature selection method achieves higher testing AUC and

training AUC with less computational time.

 47

Table 4.4 Comparison Among Chi-Square, F-statistic and DT-FS

 Feature size Testing AUC Training AUC
Computational

time

Chi-square
31 0.8230 0.8439 32.43

16 0.8156 0.8307 26.96

F-statistic
31 0.8167 0.8368 30.89

16 0.8036 0.8213 28.30

DT-FS
31 0.8239 0.8581 39.26

16 0.8236 0.8543 30.96

 From Table 4.4, we conclude that our proposed method is better than its two peers,

Chi-square and F-statistic. The best testing AUC, training AUC and computational time

are given in bold. In this table, in order to compare the results in detail, only the numbers

of features being 16 and 31 are taken into consideration. For other numbers of features,

part I of Figure 4.4 shows the same tendency as the use of 16 and 31 features has. The

highest testing and training AUCs are achieved by using the subset of features that are

selected by our proposed method. However, in both cases, 16 and 31 features, the

proposed method is slightly slower than its two peers.

4.4 Case Study 2: Letter Recognition Dataset

In this section, the letter recognition dataset is used and we show the results of

comparisons among DT-FS, chi-square, F-statistic and WGI-FS. For the WGI-FS method,

the two different weights are selected which are equal to imbalanced ratio (ρ) and 1.5ρ,

respectively.

 48

Figure 4.6 Performance of five feature selection methods in terms of F-measure (Letter
dataset).

 In Figure 4.6, we show the tendency of F-measure among the five different

feature selection methods based on the number of sequential trees that equals 110. The

results show the mean of 6-fold results. The number of features is selected from a range

from 3 to 16. It is observed that when its weight w=1.5ρ, WGI-FS gets the highest

F-measure among all the tested five methods. As the number of selected features

increases, the performance of DT-FS also achieves a better result than the other two

methods.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

F-
m

ea
su

re
�

Number of Features�

WGI-FS(W=ρ)	
WGI-FS(W=1.5ρ)	
DT-FS	
Chi-square	
F-staCsCc	

 49

Figure 4.7 Performance of five feature selection methods in terms of ROC AUC (Letter
dataset).

 In Figure 4.7, the performance of ROC AUC is shown. According to the result,

we can observe that WGI-FS(W=1.5ρ) and Chi-square obtain the highest score no matter

how many features are chosen. As the size of selected features increases, DT-FS and

WGI-FS(W=ρ) reach the same performance as WGI-FS(W=1.5ρ) and Chi-square.

However, F-statistic gives the worst performance.

0.78	

0.83	

0.88	

0.93	

0.98	

3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

RO
C	
AU

C�

Number of Features�

WGI-FS(W=ρ)	

WGI-FS(W=1.5ρ)	

DT-FS	

Chi2	

F-staCstc	

 50

Table 4.5 Performance of Five Feature Selection Methods in Terms of F-measure
(selecting 20% features)

F-measure
WGI-FS

(W=ρ)

WGI-FS

(W=1.5ρ)
DT-FS Chi-square F-statistic

1 0.642 0.811 0.768 0.753 0.263

2 0.262 0.804 0.751 0.757 0.262

3 0.240 0.821 0.757 0.787 0.240

4 0.235 0.823 0.766 0.756 0.235

5 0.237 0.809 0.747 0.761 0.237

6 0.233 0.804 0.736 0.763 0.233

Mean 0.308 0.812 0.754 0.763 0.245

Table 4.6 Performance of Five Feature Selection Methods in Terms of ROC AUC
(selecting 20% features)

ROC AUC
WGI-FS

(W=ρ)

WGI-FS

(W=1.5ρ)
DT-FS Chi-square F-statistic

1 0.984 0.997 0.998 0.996 0.895

2 0.893 0.997 0.996 0.998 0.893

3 0.887 0.999 0.998 0.998 0.887

4 0.887 0.999 0.998 0.997 0.887

5 0.883 0.995 0.990 0.992 0.883

6 0.874 0.988 0.988 0.987 0.874

Mean 0.901 0.996 0.995 0.995 0.886

 51

 The performance of F-measure and ROC AUC are shown in Tables 4.5-4.6. In

these two tables, 20% of features are selected based on the five feature selection methods.

According to the results with the 6-fold cross validation, we can observe that

WGI-FS(W=1.5ρ) has the highest performance in these two evaluation measurements,

especially it achieves much better performance than F-statistic. In other words,

WGI-FS(W=1.5ρ) has better performance when identifying the minority class.

Figure 4.8 Boxplot for F-measure and ROC AUC (Letter dataset).

 Based on Tables 4.5-4.6, we draw Figure 4.8 to show the boxplot for F-measure

and ROC AUC. According to the figure, we observe that the subset of features selected

from WGI-FS(W=1.5ρ) obtains the highest performance in both F-measure and ROC

 52

AUC. DT-FS and Chi-square methods also achieve a comparable performance for this

dataset.

 From Figures 4.9 and 4.10, we can observe that WGI-FS(W=1.5ρ), DT-FS and

Chi-square methods, when their selected features are larger than 20% of features, can

achieve excellent performance on both F-measure and ROC AUC. If 20% of features is

adopted, the proposed WGI-FS(W=1.5ρ) obtains the superb result on F-measure. It

means that this method realizes a better result on recognizing the minority class at

anytime than other four methods.

Figure 4.9 Performance of F-measure vs. feature ranking (Letter dataset).

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

Top	20	 Top		40	 Top	60	 Top	80	

F-
m

ea
su

re
�

Percentage of features�

WGI-FS(W=ρ)	

WGI-FS(W=1.5ρ)	

DT-FS	

Chi2	

F-staCsCc	

 53

Figure 4.10 Performance of ROC AUC vs. feature ranking (Letter dataset).

4.5 Case Study 3: Statlog Dataset

In this section, the result of comparing WGI-FS(W=ρ), WGI-FS(W=1.5ρ), DT-FS,

Chi-square and F-statistic feature selection methods are given and discussed. This dataset

contains 6,435 instances with 36 features. 6-fold cross validation is applied in the

experiment as well.

0.860	

0.880	

0.900	

0.920	

0.940	

0.960	

0.980	

1.000	

Top	20	 Top		40	 Top	60	 Top	80	

R
O

C
 A

U
C
�

Percentage of features�

WGI-FS(W=ρ)	

WGI-FS(W=1.5ρ)	

DT-FS	

Chi2	

F-staCsCc	

 54

Figure 4.11 Performance of five feature selection methods in terms of F-measure
(Statlog dataset).

 As shown in Figure 4.11, we compare the tendency of F-measure among the five

different feature selection approaches based on the number of sequential trees that equals

170. The number of features is selected from 3 to 36. 36 is the dimension of the Statlog

dataset. We conclude that our proposed methods (WGI-FS and DT-FS) have the better

F-measure than Chi-square and F-statistic. Then we compare the performance of

F-measure among our proposed methods. The results show that WGI-FS(W=1.5ρ)

achieves the better result than the others.

0.3	

0.35	

0.4	

0.45	

0.5	

0.55	

0.6	

0.65	

0.7	

3	 4	 5	 6	 7	 8	 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	

F-
m

ea
su

re
�

Number of Features�

WGI-FS(W=ρ)	

WGI-FS(W=1.5ρ)	

DT-FS	

Chi-square	

F-staCsCc	

 55

Figure 4.12 Performance of five feature selection methods in terms of ROC AUC
(Statlog dataset).

 In Figure 4.12, we compare the tendency of ROC AUC among the five different

feature selection methods. It shows that WGI-FS(W=1.5ρ) achieves the best performance

among all five methods. Also, WGI-FS, DT-FS and Chi-square need almost same

number of features for reaching the maximum ROC AUC. It means that when the number

of selected features is larger than a certain number, there is no difference to use any

feature selection method among WGI-FS, DT-FS and Chi-square based on ROC AUC

measurement. If a small subset of feature is selected, WGI-FS is a better method than

others.

 In Tables 4.7 and 4.8, we choose 20 percent of features as an example, to show

the F-statistic and ROC AUC result for 6-fold cross validation. According to the results

from the tables, we conclude that WGI-FS(W=1.5ρ) achieves the best performance.

0.82	

0.84	

0.86	

0.88	

0.9	

0.92	

0.94	

0.96	

0.98	

3	 4	 5	 6	 7	 8	 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	

R
O

C
 A

U
C
�

Number of Features�

WGI-FS(W=ρ)	

WGI-FS(W=1.5ρ)	

DT-FS	

Chi-square	

F-staCsCc	

 56

However, some results exhibit only slight or no difference. So, we use boxplot to test

whether these results contain significant difference.

Table 4.7 Performance of Five Feature Selection Methods in Terms of F-measure
(selecting 20% features)

F-measure
WGI-FS

(W=ρ)

WGI-FS

(W=1.5ρ)
DT-FS Chi-square F-statistc

1 0.567 0.624 0.585 0.475 0.475

2 0.619 0.637 0.605 0.509 0.509

3 0.572 0.631 0.627 0.492 0.492

4 0.607 0.634 0.599 0.500 0.500

5 0.583 0.576 0.592 0.488 0.488

6 0.618 0.608 0.582 0.466 0.466

Mean 0.594 0.618 0.598 0.488 0.488

 57

Table 4.8 Performance of Five Feature Selection Methods in terms of ROC AUC
(selecting 20% features)

ROC AUC
WGI-FS

(W=ρ)

WGI-FS

(W=1.5ρ)
DT-FS Chi-square F-statistc

1 0.930 0.933 0.930 0.876 0.876

2 0.953 0.960 0.954 0.908 0.908

3 0.947 0.955 0.953 0.913 0.913

4 0.950 0.952 0.949 0.904 0.904

5 0.939 0.940 0.943 0.906 0.906

6 0.951 0.947 0.949 0.898 0.898

Mean 0.945 0.948 0.946 0.901 0.901

 58

Figure 4.13 Boxplot for F-measure and ROC AUC (Statlog dataset).

 Figure 4.13 demonstrate that the WGI-FS(W=1.5ρ) method performs better than

other four methods on F-measure. For ROC-AUC, WGI-FS(W=1.5ρ) and DT-FS obtain

the same performance, but significantly better than the other three methods.

WGI-FS(W=ρ) only gets slightly better result than Chi-square and F-statistic.

 In Figures 4.14-4.15, when the top 20% of features are selected, WGI-FS(W=1.5ρ)

and DT-FS achieve a better performance on both F-measure and ROC AUC than the

others. When we select the top 40% features, the result of F-measure is increased, but the

performance of ROC AUC is decreased. The same superb performance of ROC AUC is

realized, when top 60% features are selected based on these five methods. The only

 59

difference among these five methods is F-measure. Our purposed method

WGI-FS(W=1.5ρ) and DT-FS obtain the highest F-measure among all the five ones.

Figure 4.14 Performance of F-measure vs. feature ranking (Statlog dataset).

Figure 4.15 Performance of ROC AUC vs. feature ranking (Statlog dataset).

0.400	

0.450	

0.500	

0.550	

0.600	

0.650	

0.700	

TOP	20%	 TOP	40%	 TOP	60%	 TOP	80%	

F-
m

ea
su

re
�

Features�

WGI-FS(W=ρ)	

WGI-FS(W=1.5ρ)	

DT-FS	

Chi-square	

F-staCsCc	

0.860	

0.880	

0.900	

0.920	

0.940	

0.960	

0.980	

TOP	20%	 TOP	40%	 TOP	60%	 TOP	80%	

R
O

C
 A

U
C
�

Features�

WGI-FS(W=ρ)	

WGI-FS(W=1.5ρ)	

DT-FS	

Chi-square	

F-staCsCc	

 60

4.6 Summary

 In summary, our proposed methods WGI-FS(W=1.5ρ) and DT-FS, compared to

Chi-square and F-statistic feature selection methods, perform very well in terms of both

ROC AUC and F-measure. They outperform the other methods, when a small subset of

features is selected and used. As the number of selected features increases, Chi-square

can achieve the similarly good result. In addition, we can observe that the F-statistic

achieves the worst performance among all the five methods.

61

CHAPTER 5

 CONCLUSION AND FUTURE WORK

5.1 Summary of Contribution of This Thesis

This thesis proposes two feature selection methods that are based on a decision tree rule

feature selection (DT-FS) method and based on weighted Gini index feature slection

(WGI-FS) method. They can be used to deal with imblanced classification problems,

which are commonly encountered in the real world datasets are imbalanced. This thesis

makes the following contributions.

 (1) Making literature review about imbalanced data, decision tree and feature

selection.

 Imbalanced data is one type of datasets that are frequently found in real world

applications, i.e., fraud detection, cancer diagnosis and DNA microarray. For this type of

datasets, improving the accuracy to identify the minority class is a critically important

issue. Feature selection is one method to address this issue. An effective feature selection

method can choose a subset of features that favor in the accurate determination of the

minority class. A decision tree is a classifier that can be built up by using a different

splitting criterion. Its advantage is the ease of detecting which feature is used as a

splitting node. Thus, it is possible to use a decision tree splitting criterion as a feature

selection method.

 (2) Proposing two feature selection method: DT-FS and WGI-FS

 For DT-FS method, we contain well performance on ROC AUC as using full

features, when reducing 90% of features. For the WGI-FS method, we select a weight to

 62

revise the original Gini index, which is set to be the imbalanced ratio and 1.5 times of

that, respectively. As a result, we can effectively increase the minority classification

accuracy.

 (3) Conducting comparisons between the proposed methods and two filter-based

methods, i.e., Chi-square and F-statistic feature selection methods and analyzing

experimental results.

 DT-FS, Chi-square and F-statistic methods are tested through the Santander bank

dataset. According to the experimental results, DT-FS can select those highly relevant

features for a large-scale imbalanced dataset. The better ROC AUC can be achieved by

using those features chosen from DT-FS. DT-FS outperforms Chi-Square and F-statistic

at the expense of slightly more computation time.

 DT-FS, WGI-FS(W=ρ), WGI-FS(W=1.5ρ), Chi-square and F-statistic methods

are tested by using two UCI datasets. Based on the experimental results,

WGI-FS(W=1.5ρ) and DT-FS can well outperform the others in terms of ROC AUC and

F-measure especially when a small subset of features, e.g., 20% of all features, is selected

and utilized.

5.2 Limitations and Future Work

There are some limitations in our methods. A decision tree splitting criterion is a

sensitive method. It means that a splitting node is easily changed with some instances’

value. It makes the results of our feature selection methods change as we alter the value

of instances. Also, it is hard to distinguish which feature should be first handled or

selected, when multiple features achieve the same score. This work has just explored the

 63

cases when the weight of WGI-FS equals the imbalanced ratio or 1.5 times of that. Will

the other weights perform better? This question remains open.

 One of interesting future studies is to find a way to remove the redundant features.

Another direction is to detect the noise and remove them before the next stage of

classifier training. Determining the optimal weight in WGI-FS remains unsolved.

64

REFERENCES

Apté, C., Damerau, F., and Weiss M. S.. "Automated learning of decision rules for text
categorization." ACM Transactions on Information Systems (TOIS) 12, no. 3 (1994):
233-251.

Breiman, L., Friedman J., Charles J. S., and Richard A. O.. “Classification and regression
trees”. CRC press, 1984.

Chen, X.W. and Wasikowski, M.. "Fast: a roc-based feature selection metric for small
samples and imbalanced data classification problems." In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
124-132. ACM, 2008.

Chawla, N.V., Japkowicz, N., and Kotcz, A., "Editorial: special issue on learning from
imbalanced data sets." ACM Sigkdd Explorations Newsletter 6, no. 1 (2004): 1-6.

Cuadra, L., Alexandre, E., Alvarez, L., and Rosa-Zurera, M.. "Reducing the
computational cost for sound classification in hearing aids by selecting features via
genetic algorithms with restricted search." In Processing of International Conference on
Audio, Language and Image(ICALIP), 2008, pp. 1320-1327. IEEE, 2008.

Chen, X., Ba, Y., Ma L., Cai, X., Yin Y., Wang, K., Guo, J. et al. "Characterization of
microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other
diseases." Cell Research 18, no. 10 (2008): 997-1006.

Castillo, C., Donato, D., Gionis, A., Murdock, V., Silvestri, F. Know your neighbors:
Web spam detection using the web topology. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and Development in Information
Retrieval 2007 Jul 23 (pp. 423-430). ACM.

Chen, X., Wang, M., and Zhang, H.. "The use of classification trees for bioinformatics."
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1, no. 1 (2011):
55-63.

Chandrashekar, G., and Sahin F.. "A survey on feature selection methods." Computers &
Electrical Engineering 40, no. 1 (2014): 16-28.

Chen, T.Q., and He T.. "Xgboost: extreme gradient boosting." R Package Version
0.4-2 (2015).

Chen, T.Q., and Guestrin, C.. "Xgboost: A scalable tree boosting system." In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 785-794. ACM, 2016.

 65

Donoho, D.L.. "High-dimensional data analysis: The curses and blessings of
dimensionality." AMS Math Challenges Lecture 1, 32, 2000

Esposito, F., Malerba D., and Semeraro G.. "Decision tree pruning as a search in the state
space." In Machine Learning: ECML-93, pp. 165-184. Springer Berlin/Heidelberg, 1993.

Fumera, G. and Roli, F.. "Support vector machines with embedded reject option." Pattern
recognition with support vector machines. Springer Berlin Heidelberg, 2002. 68-82.

Fawcett, T.. "An introduction to ROC analysis." Pattern Recognition Letters 27, no. 8
(2006): 861-874.

Forman, G.. "An extensive empirical study of feature selection metrics for text
classification." Journal of Machine Learning Research, no. 3, Mar (2003): 1289-1305.

Guyon, I., and Elisseeff, A.. "An introduction to variable and feature selection." Journal
of Machine Learning Research, no. 3, Mar (2003): 1157-1182.

Gheyas, I. A., and Smith L. S.. "Feature subset selection in large dimensionality
domains." Pattern Recognition 43, no. 1 (2010): 5-13.

Guyon, I., and Elisseeff, A.. "An introduction to variable and feature selection." Journal
of Machine Learning Research , no. 3, Mar (2003): 1157-1182.

Han, H., Wang，W.Y., and Mao, B.H., "Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning." Advances in Intelligent Computing (2005):
878-887.

He, H.B., and Edwardo A. G.. "Learning from imbalanced data." IEEE Transactions on
Knowledge and Data Engineering 21, no. 9 (2009): 1263-1284.

He, X.F., Cai, D., and Niyogi, P.. "Laplacian score for feature selection." In Neural
Information Processing Systems, vol. 186, p. 189. 2005.

Jolliffe, I. T.. "Principal component analysis. 1986." Spring-verlag, New York (1986).

Kang, Q., Liu, S.Y., Zhou, M.C., and Li, S.S.. "A weight-incorporated similarity-based
clustering ensemble method based on swarm intelligence." Knowledge-Based Systems
104 (2016): 156-164.

Kohavi, R. and George H.J.. "Wrappers for feature subset selection."Artificial
intelligence 97, no. 1-2 (1997): 273-324.

Koh, H. C.e, Tan, W. C., and Peng, G. C.. "Credit scoring using data mining techniques."
Singapore Management Review 26, no. 2 (2004): 25.

 66

Kohavi, R., and George H. J.. "Wrappers for feature subset selection."Artificial
Intelligence 97, no. 1-2 (1997): 273-324.

Liu, X.Y., Wu, J., and Zhou, Z.H.. "Exploratory undersampling for class-imbalance
learning."IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39,
no. 2 (2009): 539-550.

Li, R., and Y. Hu. "A density–based method for reducing the amount of training data in
kNN text classification." Computer Research and Development 45, no. 4 (2004):
539-544.

Ladha, L., and Deepa, T.. "Feature selection methods and algorithms." International
journal on Computer Science and Engineering 3, no. 5 (2011): 1787-1797.

Lewis, D.D., and William A. G.. "A sequential algorithm for training text classifiers."
In Proceedings of the 17th annual international ACM SIGIR conference on Research and
Development in Information Retrieval, pp. 3-12. Springer-Verlag New York, Inc., 1994.

Liu, H., and Hiroshi M.. “Feature selection for knowledge discovery and data mining”.
Vol. 454. Springer Science & Business Media, 2012.

Maldonado, S., and Weber R.. "A wrapper method for feature selection using support
vector machines." Information Sciences 179, no. 13 (2009): 2208-2217.

Montgomery, J. C., and Bodznick, D.. "An adaptive filter that cancels self-induced noise
in the electrosensory and lateral line mechanosensory systems of fish." Neuroscience
letters 174, no. 2 (1994): 145-148.

Martínez, A. M., and Kak, A. C.. "Pca versus lda." IEEE Transactions on Pattern
Analysis and Machine Intelligence 23, no. 2 (2001): 228-233.

Oh, I. S., Lee, J.S., and Moon, B.R.. "Local search-embedded genetic algorithms for
feature selection." In Proceedings of 16th International Conference on Pattern
Recognition, 2002. vol. 2, pp. 148-151. IEEE, 2002.

Otero, F.E., Alex, A. F., and Colin, G. J.. "Inducing decision trees with an ant colony
optimization algorithm." Applied Soft Computing 12, no. 11 (2012): 3615-3626.

Punlumjeak, W., and Rachburee, N.. "A comparative study of feature selection
techniques for classify student performance." In Information Technology and Electrical
Engineering (ICITEE), 2015 7th International Conference on, pp. 425-429. IEEE, 2015.

Peng, H.C., Long F.H., and Ding C.. "Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy." IEEE Transactions on
Pattern Analysis and Machine Intelligence 27, no. 8 (2005): 1226-1238.

 67

Quinlan, J. R.. "Induction of decision trees." Machine Learning 1, no. 1 (1986): 81-106.

Quinlan, J. R.. "Constructing decision tree." C4.5 (1993): 17-26.

Rokach, L., and Maimon, O.. "Top-down induction of decision trees classifiers-a
survey."IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 35, no. 4 (2005): 476-487.

Roweis, S. T., and Saul, L.K.. "Nonlinear dimensionality reduction by locally linear
embedding." Science 290, no. 5500 (2000): 2323-2326.

Saeys, Y., Inza, I., and Larran ̃aga, P.. "A review of feature selection techniques in
bioinformatics." Bioinformatics 23, no. 19 (2007): 2507-2517.

Wilson, J.,Chawla, J., and Fisher M.. "Sensitivity and specificity of electrodiagnostic
criteria for CIDP using ROC curves: comparison to patients with diabetic and MGUS
associated neuropathies." Journal of the Neurological Sciences 231, no. 1 (2005): 19-28.

Wang, F., Xu, T., Tang, T., Zhou, M.C., and Wang, H.. “Belevel feature extraction-based
text mining for fault diagnosis of railway systems,” IEEE Trans. on Intelligent
Transportation Systems, 18(1), pp. 49-58, Jan. 2017.

Yang, Z., Hu, B., Zhang, Y., Luo, Q., and Gong, H.. "Development of a plastic
embedding method for large-volume and fluorescent-protein-expressing tissues." Public
Library of Science one 8, no. 4 (2013): e60877.

Yen, S.J., and Lee, Y.S.. "Cluster-based under-sampling approaches for imbalanced data
distributions." Expert Systems with Applications 36, no. 3 (2009): 5718-5727.

Yu, L., and Liu, H.. "Feature selection for high-dimensional data: A fast
correlation-based filter solution." In International Conference on Machine Learning, vol.
3, pp. 856-863. 2003.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Deducation
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Review of Literature
	Chapter 3: Methodology
	Chapter 4: Experimental Results
	Chapter 5: Conclusion and Future Work
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

