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ABSTRACT 

MULTI-POPULATION-BASED DIFFERENTIAL EVOLUTION ALGORITHM 

FOR OPTIMIZATION PROBLEMS  

by 

Ishani Chatterjee 

A differential evolution (DE) algorithm is an evolutionary algorithm for optimization 

problems over a continuous domain. To solve high dimensional global optimization 

problems, this work investigates the performance of differential evolution algorithms under 

a multi-population strategy. The original DE algorithm generates an initial set of suitable 

solutions. The multi-population strategy divides the set into several subsets. These subsets 

evolve independently and connect with each other according to the DE algorithm. This 

helps in preserving the diversity of the initial set. Furthermore, a comparison of 

combination of different mutation techniques on several optimization algorithms is studied 

to verify their performance. Finally, the computational results on the arbitrarily generated 

experiments, reveal some interesting relationship between the number of subpopulations 

and performance of the DE.  

Centralized charging of electric vehicles (EVs) based on battery swapping is a 

promising strategy for their large-scale utilization in power systems. In this problem, the 

above algorithm is designed to minimize total charging cost, as well as to reduce power 

loss and voltage deviation of power networks. The resulting algorithm and several others 

are executed on an IEEE 30-bus test system, and the results suggest that the proposed 

algorithm is one of effective and promising methods for optimal EV centralized charging. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background 

Optimization is a procedure through which the best possible values of decision variables are 

obtained given a set of constraints and in terms of a selected optimization objective function. 

The most common optimization procedure applies to a design that minimizes the total cost 

or maximize the possible reliability or any other specific objective. Fields of science and 

engineering, business decision-making and industry are all rich in problems that require the 

implementation of optimization approaches.  

Since, most real world optimization problems seem to be both fundamentally and 

practically hard, research into better algorithms remains valuable and continues, such that, 

one can find the best solution by using an efficient and proper optimization algorithm. The 

path we choose to travel to work every day; the line we select to stand in for billing in the 

supermarket; the order we choose for our daily tasks; or even to organize a function are all 

examples of optimization problems present in our daily lives.  

Nowadays, there exist numerous optimization algorithms that work by using 

gradient-based and heuristic-based search techniques in deterministic and stochastic 

contexts. In order to widen the applicability of an optimization approach to various problem 

domains, natural and physical principles are mimicked to develop robust optimization 

algorithms. Simulated annealing, ant colony optimization, memetic algorithms, and particle 

swarm optimization are few examples of such algorithms. 
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Over the last decade, evolutionary algorithms were extensively used in various 

problem domains and succeeded in effectively finding the optimal or near-optimal solutions. 

The present thesis provides a detailed description of one such evolutionary algorithm, 

named as Differential Evolution (DE).  

DE has earned a reputation of a very effective global optimizer (Storn and Price, 

1995). It is a stochastic search method for solving optimization problems of multi-

dimensional real valued functions by repeatedly trying to improve the fit solutions. In 

general, the job is to optimize some features of a system by suitably selecting the system 

parameters. In recent years, DE has been widely used because of its stability, robustness, 

and ability for global search and determination of the optimal solution. Its effectiveness and 

efficiency have been established successfully in such fields as artificial intelligence, 

communication, and mechanical engineering. 

Electric Vehicles (EVs) are welcoming a rapid development along with progresses 

of relevant technologies in recent years. As an eco-friendly substitute for traditional vehicle, 

EV is seen as a promising solution to the ever devastating energy crisis and environmental 

pollution around the globe, thus drawing increasing attentions from the public, markets, 

decision-makers, industry and academia. Many countries and cities have proposed plans to 

promote EV usage or have been preparing to do so, providing a foreseeable vision that EVs 

will become the major vehicles of the private transportation sector in the near future. 

Limited battery capacity and long charging time, probably the most widely complained 

disadvantages, raise mileage anxiety and largely impair EV users’ driving experience. As a 

result, charging convenience has become a top concern affecting potential users’ choice 

between EV and traditional fuel-engine vehicle. Specialized EV charging stations, which 
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provide more than 10 times faster charging speed than domestic charging, are therefore 

critical to the successful promotion of EVs.  

However, uncoordinated EVs charging would exert a tremendous influence on the 

daily residential load curve if they are widely connected to the power grid for battery 

charging. Due to the uncertainty of their charging behaviours, uncoordinated random 

charging of a mass of EVs may lead to unforeseen effects on the normal operation of a 

power distribution system, i.e., voltage fluctuation, thereby aggravating the load peak and 

off-peak difference in the network. Without taking the spot pricing into consideration, EV 

owners may pay much higher cost for battery charging. 

 

1.2  Goal and Objectives 

This thesis analyses a DE algorithm with multi-population strategy, based on randomly 

generated subpopulation. It studies the effect of this strategy on the searching accuracy, 

optimization ability and convergence speed. It compares a combination of different 

mutation techniques on several optimization algorithms to verify their performance. An 

improved population-based heuristic algorithm, multi-population based differential 

evolution, is designed to find the optimal charging priority and location of EVs in a 

distribution network. 

In this thesis, a novel charging strategy of EVs based on optimal charging priority 

and charging station is proposed under a spot pricing-based electricity market environment 

is proposed by taking advantage of a centralized charging strategy. The proposed approach 

is evaluated via an IEEE 30-bus test system. 
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1.3  Organization of Thesis 

Chapter 2 explains the differential evolution algorithm, and introduces the electric vehicle 

problem. It also reflects the background and analyses the research work done on the 

algorithm. Chapter 3 illustrates the algorithm based on multi-population strategy. Results 

on the effect of multi-population strategy on differential evolution and number of 

subpopulation on execution time and mean value are discussed in Chapter 4. In Chapter 5 

an EV charging rule based on charging priority and locations is set forth and the problem of 

optimal EV charging priority and locations (bus index) is given. Its application to the IEEE 

30-bus system is discussed, and its results are compared with some existing methods. In 

Chapter 6 conclusion and future works are given.  
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CHAPTER 2 

LITERATURE REVIEW 

 

A differential evolution (DE) algorithm is a genetic population based algorithm, pioneered 

by Storn and Price in 1995 (Storn and Price, 1995; 1997). The benefit of the algorithm is its 

simple structure, robustness, speed, ease of use and few control variables. The algorithm is 

a chief genetictype algorithm for solving real valued problems. If a system is susceptive to 

being reasonably evaluated, DE provides the best possible performance from it. The 

algorithm uses mutation as a search technique and selection to direct the search towards a 

potential section in the feasible region. In general, the job is to optimize certain features of 

a system by suitably selecting the system parameters.  

In recent years, DE has been widely used due to its stability, robustness, ability for 

global search and several excellent performances. Its effectiveness and efficiency have been 

established successfully in such fields as artificial intelligence, communications systems, 

mechanical designs to name a few. 

 

2.1  An Introduction to Differential Evolution 

DE maintains a population of fit solutions by combining existing ones according to a simple 

formula and keeps the solution with best fitness given an optimization problem. The starting 

iteration of the algorithm consists of four sections – initialization, mutation, crossover, and 

selection of which only the last three sections repeat themselves into the following 

iterations. The iterations continue until the termination criterion is satisfied, such as the 
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maximum number of iterations, maximum number of function evaluations, and/ or 

maximum execution time. The flowchart of the algorithm is shown in Figure 2.1. 

 

 

Figure 2.1  Flowchart of a differential evolution algorithm. 
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2.1.1 Initialization 

Let S ⊆ Rd be a d-dimensional search space of the problem taken under consideration. A 

population of size NP d-dimensional random individual vectors, is generated where,            

𝑥𝑖
(𝑡)
= (𝑥𝑖,1

(𝑡), 𝑥𝑖,2
(𝑡), … , 𝑥𝑖,𝑑

(𝑡))  ∈ 𝑆 and i  {1,2,3…NP}. The major parameters including 

population size (NP), scaling factor (F), crossover rate (CR) and termination criterion (T) are 

initialized. After the population is generated each, individual is encoded as a floating-point 

vector number. The initial set covers the entire search space by randomly spreading 

individual vectors with uniform distribution between the upper bound (𝑥max,𝑗) and lower 

bound (𝑥min,𝑗). The initial vector is generated as follows:  

 

𝑥𝑖,𝑗
(0)
= 𝑥𝑚𝑖𝑛,𝑗 + 𝑅𝑖,𝑗[0,1] × (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) (𝑗 = 0, 1, 2,3, … , 𝑑) (2.1) 

 

 

 

2.1.2 Mutation 

Post initialization, a mutant vector (𝑣𝑖
(𝑡)
) is achieved through the process of mutation, with 

respect to each population member in the current iteration. The common mutation strategies 

are as follows: 

DE/rand/1: 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) (2.2) 

DE/best/1: 𝑣𝑖
(𝑡)
= 𝑥𝑏𝑒𝑠𝑡

(𝑡) + 𝐹 ∙ (𝑥
𝑟1
𝑖

(𝑡)
− 𝑥

𝑟2
𝑖

(𝑡)
) (2.3) 

DE/current to best/1: 𝑣𝑖
(𝑡)
= 𝑥𝑖

(𝑡) + 𝐹 ∙ (𝑥𝑏𝑒𝑠𝑡
(𝑡) − 𝑥𝑖

(𝑡)) + 𝐹 ∙ (𝑥
𝑟1
𝑖

(𝑡)
− 𝑥

𝑟2
𝑖

(𝑡)
) (2.4) 

DE/rand to best/1: 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥𝑏𝑒𝑠𝑡

(𝑡) − 𝑥
𝑟1
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) (2.5) 
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DE/best/2: 𝑣𝑖
(𝑡)
= 𝑥𝑏𝑒𝑠𝑡

(𝑡) + 𝐹 ∙ (𝑥
𝑟1
𝑖

(𝑡)
− 𝑥

𝑟2
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟3
𝑖

(𝑡)
− 𝑥

𝑟4
𝑖

(𝑡)
) (2.6) 

DE/rand/2: 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟4
𝑖

(𝑡)
− 𝑥

𝑟5
𝑖

(𝑡)
) (2.7) 

where, 𝑟1
𝑖 − 𝑟5

𝑖 are random integers produced from the set {1, 2, 3, …, Np}, which is not 

identical to the current mutant vector index i; weighting, or scaling, factor F is a user 

specified constant in the range between 0 and 2 (Gämperle, Sibylle and Petros, 2002); and 

𝑥𝑏𝑒𝑠𝑡
(𝑡)

 is the individual vector with best fitness value in the current population.  

 

2.1.3 Crossover 

To magnify the diversity of the population, crossover is performed. The initial vector is 

mixed with the mutant vector to create a trial vector 𝑢𝑖
(𝑡)

 

𝑢𝑖,𝑗
(𝑡)
= {
𝑣𝑖,𝑗
(𝑡)
  𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅)𝑜𝑟 (𝑗 =  𝑗𝑟𝑎𝑛𝑑),

𝑥𝑖,𝑗
(𝑡)

 otherwise,                                    
 

(2.8) 

where, j = 1, 2,…, d; randj  is a random number between 0 and 1; CR is user defined in the 

range [0, 1) and jrand ∈ (1, 2, …, d)  is the randomly picked index to ensure the trial and 

initial vector differ  from each other by at least one parameter.  

Thus, the trial vector is the outcome of two parent vectors, an initial vector and the 

mutant vector against which it competes in this step. The CR represents that the trial vector 

inherits the parameter values from the mutant vector. For instance, when CR = 1, every trial 

vector parameter is certain to come from a mutant vector. On the contrary, if  CR = 0, all but 

one trial vector parameter comes from the initial vector. To ensure a difference between the 

trial and the initial vectors by at least one parameter, the final trial vector parameter always 

comes from the mutant vector even when CR = 0. 
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2.1.4 Selection 

The selection process regulates if the initial or trial vector consistently adheres to the next 

iteration, i.e., at 𝑡 + 1. The “greedy” selection strategy is applied if and only if a trial vector 

yields a better fitness value compared to the initial vectors. The trial vector is the initial 

vector for the next iteration; otherwise the initial vector remains the same for the next 

iteration. The selection operation is as follows: 

x𝑖
(𝑡+1)

= {
  u(𝑡) if 𝑓(u(𝑡)) ≤ 𝑓(x𝑖

(𝑡)),

x𝑖
(𝑡)
 otherwise,              

 

(2.9) 

 

 

 

2.2 Advances in Differential Evolution 

 

The classical DE includes a set of basic mutation strategies along with three possible 

crossover schemes namely binomial, exponential and arithmetic ones. Considering a vast 

range of studies on DE, Neri and Tirronen (2009) reviewed various DE-variants for single 

objective optimization problems and produced an experimental comparison of these 

variants on a set of standard benchmark functions. The first comprehensive survey on almost 

all aspects of the DE algorithm was published in 2011 by Das and Suganthan (2011). Dragoi 

and Dafinescu (2015) surveyed two aspects of DE algorithms, i.e., the self-adaptive and 

adaptive parameter control approach in DE and the hybridization of DE with diverse 

algorithms. A recent article in 2016 by Das, Mullick and Suganthan (2016) explained a more 

comprehensive account of the recent advances in DE including its basic concepts, various 

structures, and variants for solving constraints, multi-objective, dynamic, and large-scale 
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optimization problems along with applications of DE variants to a variety of practical 

optimization problems. 

DE is a simple, heuristic optimization algorithm with control parameters and 

learning strategies, which depends on the problem under consideration. To improve the 

original algorithm, many researchers have made useful efforts for improving its search 

accuracy, convergence speed, etc. In 2005, Quin and Suganthan (2005) proposed a self-

adaptive DE algorithm, which can automatically modify its learning strategies and related 

parameters during an evolution process. There has been a growing trend of selecting the 

generation strategies from a pool (Spears, 1995) to DE with Ensemble of Parameters and 

mutation Strategies (EPSDE) (Mallipeddi et al., 2011). Gong et al. (2011a) proposed an 

adaptive DE algorithm where four mutation strategies are used to create a pool.                            

Yu et al. (2014a) introduced an individual dependent control parameter adaptation 

mechanism by using a two-step process. Wu et al. (2015a) presented a multi-population 

based framework to realize an adaptive ensemble of three mutation strategies into a novel 

DE variant named MPEDE in which MPE represents multi-population ensemble. 

Song and Hou (2015) presented an improved DE with a multi-population strategy 

for solving high dimensional optimization problems. Tang et al. (2014) studied practical 

dynamic scheduling in a steelmaking continuous casting (SCC) problem by proposing and 

using an improved DE with a real-coded matrix representation for each individual of the 

population, a two-step method for generating the initial population, and a new mutation 

strategy. To further improve the efficiency and effectiveness of the solution process for 

dynamic use, an incremental mechanism is used to generate a new initial population for the 



 11 

DE whenever a real-time event arises, based on the final population in the last DE solution 

process.  

Baatar et al. (2013) proposed a DE algorithm adopting a -best mutation strategy 

for optimization of electromagnetic devices. Gämperli et al. (2002) assessed the selection 

of strategy parameters for DE over a set of test problems. Huang (2016) suggested a chaotic 

optimization algorithm with a multi-population strategy and adaptive crossover probability 

strategy for function optimization problems. 

 

2.2.1 Prominent DE Variants for Bound-constrained Single-objective Global 

Optimization 

 

DE has been most frequently applied to the global optimization problems involving a single 

objective function and bound constraints on the decision variables.                                              

Melo and Delbem (2012) recommended a Smart Sampling (SS) method to identify 

promising regions of the search space where an optimum may lie. Firstly, a high number 

of random solutions are generated covering the search space. Based on the fitness value 

this initial population is filtered and only better solutions are kept. A collection of new 

solutions is generated by moving one of the population members towards one of the better 

solutions, with a random noise. A classifier is trained to distinguish the promising solutions 

from the non-promising ones which is used to identify the good solutions from the newly 

introduced collection. The good individuals are added to the population, and the increased 

population is reduced to maintain a fixed cardinality by deleting the worse members. This 

process is repeated until a convergence criterion is met. A rule-based classifier is used on 

the final population to identify the promising region. 
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Li and Zhang (2011) proposed a DE based on subpopulation by a clustering 

technique. The clustering technique (agglomerative hierarchical) is simple to implement, 

can create dynamic subpopulations, and is adaptive to the change of the population 

although, the raw clusters may not be suitable for evolution (for example they may be too 

small). To overcome this, they suggested that all the clusters with a single element were 

combined (called as SPEX). If the current best is not a member of this cluster, then it can 

be used to maintain the diversity of the population and the explorative capability of the 

algorithm. For each of the clusters, which has more than one member but does not have 

enough members to perform mutation, the algorithm maintains a pool of solutions. The pool 

is updated after every generation and helps a cluster by supplying required members to 

perform a mutation. 

Poikolainen et al. (2015) came up with a cluster-based population initialization 

technique for DE. The initialization is performed as a three-stage process. In the first stage, 

two local searches are performed on a random collection of uniformly selected points over 

the search space. The second searcher is the Rosenbrock algorithm (Rosenbrock, 1960), 

which has been shown to converge towards a local optimum. In the second phase, k-means 

clustering is applied to the resultant population of the first phase. The third stage is used to 

generate additional individuals to form the initial population of DE. In the third stage the 

best fit individuals are collected (forming a set Q) from each of the cluster. A probability 

is assigned to each of these better individuals based on their fitness values.  

Understanding and utilizing surrounding and directional information is vital for a 

DE population to search efficiently. Cai and Wang (2013) suggested an improved mutation 

strategy in DE by introducing the guidance of surrounding and directional information. 
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They first defined a Neighbourhood Guided Selection (NGS) scheme for selecting 

the base and difference vectors for mutation. For generating the donor of the ith target, NGS 

first assigns a probability to each vector of the population. The probability for any vector 

with index j is calculated as:  

𝑝𝑗 = 1 −
𝑑(𝑥𝑖 , 𝑥𝑗)

∑ 𝑑(𝑥𝑖 , 𝑥𝑗)
𝑁𝑝
𝑗=1

 (2.10) 

where, d(𝑥𝑖 , 𝑥𝑗) is the Euclidean distance between vectors xi and xj. The algorithm uses a 

roulette wheel method to select three vectors in proportion to their probabilities from the 

population. 

 A bi-criteria mutation scheme is recommended by Wang et al. (2014) considering 

both the fitness value and the population diversity to achieve a proper balance between 

exploitation and exploration. The algorithm uses two objective functions, one is the actual 

function to be minimized and the other is the summation of the pair-wise Euclidian distance 

between the individuals of the population. In each generation, the solutions are subjected to 

a non-dominated sorting defined by Deb et al. (2002). This type of sorting generates a set 

of mutually non-dominated (in Pareto sense) solutions, called the Pareto optimal front. 

Thus, to successfully rank each individual of the population, another round of sorting is 

required within each front. This second sorting can be done based on a randomly picked 

objective function. A simple roulette wheel model is proposed by using the generated 

probabilities to select the parents for mutation. 

To enhance the process of the generation of new population, Cai et al. (2011) 

proposed to use a one-step k-means operation alongside the DE trial vector strategy.                 

Liu et al. (2012) further modified the proposed algorithm by introducing two multi-parent 



 14 

crossovers over the one-step k-means to generate trial vectors. They also introduced a small 

alteration in the DE/rand/1 scheme by imposing the condition that the base vector, selected 

from the current population, must be fitter than the target vector.  

Zhong et al. (2013) presented a dual-population DE (DP-DE) to control exploitation 

and exploration capabilities of DE. The two populations are used to serve different purposes 

in the search process. One population (GP) uses an explorative strategy and maintains 

diversity while the other (LP) performs an exploitative search over the neighbourhoods. A 

new migration strategy was proposed after a regular selection operator to facilitate an 

interaction between the two populations. In DP-DE, different mutation strategies are applied 

to the populations based on the irrespective purposes.  

Yang et al. (2015) constructed an automatic population enhancement scheme that 

would check each dimension to identify a convergence and diversify that dimension to a 

satisfactory level, thereby aiding DE to escape from a local minimum and stagnation. To 

quantify diversity, mean and standard deviation for each of the dimensions is calculated for 

the population. A lower standard deviation in a direction indicates lower diversity, so for 

each dimension, a threshold is maintained, if the standard deviation is found to be below the 

threshold, the dimension is called converged. 

 

2.2.2 DE in Complex Optimization Scenarios 

There has been a significant advance in research to adopt DE for optimization in complex 

environments that include optimization with nonlinear constraints, multiple objectives, 

dynamic and noisy fitness landscapes and very high dimensionality of the search space. 

Mohamed and Sabry (2012) proposed a modified DE to handle constraint optimization 

problems. This variant of DE comes with a mutation scheme, a strategy for choosing the 
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parameters and a constraint handling policy. A new type of mutation is proposed where the 

base vector is added with the scaled difference of the global best and worst vector. The 

selection process is modified to select a trial based on any of the following three criteria 

(1) if it is fitter than the target (when both are feasible), (2) if it has less penalty for 

constraint violation than the target (when both are infeasible), or (3) if it is feasible while 

the target is infeasible. The problem of constrained optimization demands not only to 

optimize a function but also to respect the constraints imposed upon its dimensions. A way 

to tackle this kind of problems is to quantify the overall constraint violation of a solution 

and try to minimize it alongside optimizing the function.  

Zhong and Zhang (2011) presented an adaptive multi-objective DE with stochastic 

coding strategy (AS-MODE) where each individual in the DE population is represented by 

a multivariate Gaussian with a diagonal covariance matrix. A simple DE/rand/1/bin 

strategy is used for generating trial vectors. However, the vectors participating in the 

mutation process are chosen by using a tournament selection instead of picking them at 

random. The selection process involves a non-dominated sorting followed by the crowding 

distance based operation to rank the solutions of the set, from where top Np solutions are 

picked for the next generation. The algorithm, however, introduces six new parameters 

apart from the three usual parameters (F, Cr, and Np) of DE.  

Rakshit et al. (2014) developed a modified version of a popular multi-objective DE 

algorithm known as DEM (Robič and Filipič, 2005), which can address MOPs in a noisy 

environment. The major problem of such type of environment is that the fitness value of 

an individual changes over sampling. To tackle this issue, the authors proposed a simple 

alteration of the initialization and selection step of DEMO to apply three strategies. First, 
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an adaptive sample size is suggested to measure the fitness of any individual in a noisy 

environment. Next, the significance of using of the expected value and variance of fitness 

rather than simple averaging is established, and lastly, a comparison technique is used to 

deeply investigate the chance of a slightly worse trial to be placed in the Pareto optimal 

front. 

Several optimization problems in the real world are dynamic in nature.                                      

Mukherjee et al. (2014) proposed a new dynamic DE algorithm, using clustering to 

generate sub-population, a crowding-based technique to maintain the diversity and local 

information, and a new crowding based archive to help the algorithm adapt to a 

dynamically changing environment. Das et al. (2014) suggested a dynamic DE algorithm 

where they used the popular multi-population approach accompanied with two special 

types of individuals in each subpopulation to maintain the diversity known as Quantum or 

Brownian individuals and do not follow the DE rules. The algorithm also employs a 

neighbourhood-driven double mutation strategy to control the perturbation and thereby 

prevents the population from converging too quickly with the hope to avoid premature 

convergence. In addition, an exclusion rule is used to spread the subpopulations over a 

larger portion of the search space as this enhances the optima tracking ability of the 

algorithm. Furthermore, an aging mechanism is incorporated to prevent the algorithm from 

stagnating at any local optimum. 

Zhao et al. (2009) introduced a hybrid DE algorithm (HtDE) based on the concept 

of the transform functions and proved the convergence of the same under some restrictive 

assumptions. He et al. (2010) used the so-called Differential Operator (DO) to obtain a 

random mapping from the decision variable space to the Cartesian product of the former 
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and subsequently investigated the asymptotic convergence of DE by using the random 

contraction mapping theorem.  

Hu et al. (2014) derived two sufficient conditions that can assure the convergence 

of DE in the usual sense. The DE-variants can guarantee convergence to a globally optimal 

point, provided the probability of generating an actual optimum (or optima) by the 

reproduction operators in each generation in a certain sub-sequence of the population 

remains greater than a small positive number. The fundamental problem with this approach 

is that they consider the distribution of the population in each iteration to be independent 

of each other, which is generally not the case, as any population in an iteration is completely 

determined by the previous iteration. Hence, even intuitively it is not acceptable that the 

probability distribution of the population in each iteration would be independent of the 

distributions in earlier iterations. 

Wang et al. (2013) proposed a parallel DE scheme by using an adaptive parameter 

control and Generalized Opposition Based Learning (GOBL) (Wang et al., 2011), which 

is useful for high dimensional optimization problems. This variant can also be implemented 

in a parallel processing environment, for instance in a graphical processing unit (GPU), 

which can provide a massively large and fast computational power. GOBL for every 

solution creates an opposite solution and it retains a dynamic range of the dimensions of 

the population, such that the knowledge of the shrinking search space with generations can 

be kept in record. The proposed algorithm either applies GOBL or classical DE with a 

probability. In GOBL, after updating the dynamic range of a solution, opposite solutions 

are generated to form another population. The Np best individuals are selected from the 

union of the current and the opposite population, to form the population for the next 
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generation. While the above algorithm is for executing in CPU, the authors also presented 

an implementation scheme, by defining the kernel functions, to execute it in a GPU. 

 

2.2.3 Applications of DE to Engineering Optimization Problems 

With the growing popularity of DE amongst the practitioners, parallel to the core 

algorithmic research in DE, the application-specific research on and with DE also spiked 

over the last 5 years. Multi-objective DE (Basu, 2011) and ECHT-DE                          

(Mallipeddi et al., 2011) have been proposed and used to solve economic dispatch 

problems. Power distribution reconfiguration is determined by applying discrete DE            

(Prado et al., 2014). In artificial neural network, self-adaptive DE (Dragoi et al., 2013) is 

considered for an optimal network topology problem. Liao et al. (2012) proposed two 

hybrid DE variants for transport sequencing in cross docking systems. Real time object 

tracking is done by DE with modified mutation and crossover (Nyirarugira and Kim, 2013). 

There has been a vast application of DE on engineering optimization problems. In 

pattern recognition, adaptive DE with multiple strategies (Dong et al., 2014) is used for 

clustering while hybrid of self-adaptive PSO and DE (Zhai and Jiang, 2015) is applied to 

classification problems and MOEA/D-DE by Paul and Das (2015) is employed to feature 

selection problems. MOEA/D-DE (Sengupta et al., 2012) is also implemented for sleep-

scheduling in wireless sensor networks.  

In the fields of robotics and expert systems, Vasile et al. (2011) proposed a variant 

of DE known as inflationary DE and applied it to space trajectory optimization.                    

Chen et al. (2015), a variant of multi-objective DE is used in satellite orbit reconfiguration. 

Moving object detection is solved by a distributed DE with neighbourhood based mutation 
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(Ghosh et al., 2014). For Hypoglycaemia detection, multi-objective DE, with double 

wavelet mutation (Lai et al., 2013) is used.  

 

2.3 Electric Vehicle Charging Problem 

Electric Vehicles (EVs) are welcoming a rapid development along with progresses of 

relevant technologies in recent years. As an eco-friendly substitute for traditional fuel-

engine vehicle, EV is a promising solution to the ever-devastating energy crisis and 

environmental pollution around the globe, and thus has drawn increasing attentions from 

the public, markets, decision-makers, and academia. Their large-scale utilization has the 

potential to reduce greenhouse gas emission, save fuel costs for EV drivers, and increase 

the use of renewable energy (Zhao et al., 2011). 

While the EV charging station location problem is a very new topic area, some 

important strides are made in the past few years. Morrow et al. (2008) show how an EV-

based transport system’s overall cost can be reduced by providing more charging 

infrastructure instead of investing in bigger batteries (with greater range). They estimated 

that the marginal cost of increasing a car’s all-electric range (AER) from 10 miles to 40 

miles is $8,268, and the cost of installing an additional level-2 commercial charging station 

(including administrative and circuit installation costs, assuming 10 charge cords per 

facility) is $18,520.  

Wang et al. (2010) created a numerical method for the layout of charging stations 

using a multi-objective planning model. Accounting for charging station attributes, 

distribution of gas-station demands (rather than parking decisions, as a proxy for charging 

demands), and power grid infrastructure, among other variables, they tested and verified 
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their model using data from Chengdu, China. Sweda and Klabjan (2011) used an agent-

based decision support system to identify patterns of residential EV ownership and driving 

activities to determine strategic locations for new charging infrastructure, with the Chicago 

region as a case study. Most station location problems are based on existing optimization 

routines/heuristics.  

Worley et al. (2012) formulated the problem of locating stations and optimal EV 

routings as a discrete integer programming problem, based on the classic Vehicle Routing 

Problem (VRP). Ge et al. (2011) proposed a method based on grid partition using genetic 

algorithms. Their routine focuses on minimizing users' loss or cost to access charging 

stations after zoning the planning area with a grid partition method by choosing the best 

location within each partition, to reflect traffic density and station capacity constraints 

(which include charging power, efficiency, and number of chargers per station).  

Knezović and Marinelli (2016) proposed a voltage-dependent EV reactive power 

control for grid support to raise the minimum phase-to-neutral voltage magnitudes and to 

improve voltage dispersion. However, it needs local voltage measurements. Another local 

control technique is also proposed by Richardson et al. (2013) whereby individual electric 

vehicle charging units attempt to maximize their own charging rate along with the 

information about the instantaneous voltage of their own point and loading of the service 

cable. 

Li et al. (2011) also used genetic algorithms to identify top locations for charging 

infrastructure. Their method is based on the conservation theory of regional traffic flows, 

taking EVs within each district as fixed load points for charging stations. The number and 
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distribution of EVs are forecasted, and the cost-minimizing charging station problem is 

(heuristically) solved using genetic algorithms.  

Frade et al. (2011) used Lisbon, Portugal as a case study, for application of a 

maximal covering location model to maximize the EV charging demand served by an 

acceptable level of service. They determined not just the locations, but also the capacity of 

stations to be installed at each location. Finally, Kameda and Mukai (2011) developed an 

optimization routine for locating charging stations, relying on taxi data and focusing on 

stations for Japan. 

Locment et al. (2015) presented an evaluation on PV micro-grid power architecture 

for efficient charging of plug-in EVs from the aspects of theoretical and numerical. Aziz 

et al. (2015) studies showed that the application of EVs and used EV batteries in supporting 

certain small-scale energy management systems is feasible. Liu et al. (2015) established 

multi-objective economic dispatch models of a microgrid with EVs charging under the 

autonomous charging mode. 

Honarmand et al. (2014) proposed a method to solve this problem by considering 

practical constraints, renewable power forecasting errors, spinning reserve requirements, 

and EV owner satisfaction. The modeling results indicate that EV owners can profit by 

either discharging the batteries of their vehicles or providing the reserve capacity during 

departure time. Zakariazadeh et al. (2014) proposed a multi-objective operational 

scheduling method for EV charging in a smart distribution system. V2G capability and 

actual driver patterns are considered in this method. The findings show that the proposed 

method can lower both operation cost and air pollutant emissions. 
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Wong et al. (2010) proposed a muti-objective planning model for the placement of 

EV charging stations in Chengdu, China, with a solution based on demand and usage of 

existing gas stations. Chen et al. (2013) particularly considered EV users’ costs for 

accessing charging stations, and minimizing the costs and penalizing unmet demand. 

Moreover, He et al. (2013) took a broader view and emphasized the impact on overall 

efficiency of a transportation system when optimizing the placement. 

Most of the existing researches have focused on developing plug-in charging 

strategies, which could be divided into two classes, i.e., centralized and decentralized ones. 

The former determines at when and where and what rate every vehicle should be charged 

such that they use less expensive electricity and EV load is shifted to off-peak hours. All 

decisions in this class of strategies could be made based on the system-level concerns such 

as mitigating total losses and feeder congestion.  

Zou et al. (2011) propose a centralized charging strategy of PHEVs by employing 

a dynamic estimation interpolation (DEI) based algorithm. It considers the valley-filling 

effect of the supply side and minimizes the users’ cost by developing a price discount 

scheme. Besides, some algorithms have been developed to coordinate a practical number 

of EVs in a power system with different concentrations. However, the challenge is its 

difficulty to implement the centralized charging control under the plug-in mode by 

considering the stochastic charging behaviour of EV users. 
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CHAPTER 3 

DE ALGORITHM WITH MULTI-POPULATION STRATEGY 

 

A DE algorithm is a population-based algorithm like genetic algorithms by using the 

similar operations; crossover, mutation and selection. The main difference in constructing 

better solutions is that genetic algorithms rely on crossover while DE relies on mutation 

operation. This main operation is based on the differences of randomly sampled pairs of 

solutions in the population. 

A basic idea behind DE is generating trial vectors by adding weighted difference 

vector between two population members to a third member. If the resulting vector yields a 

better objective function value than an initial vector, the trial vector replaces the vector 

with which it is compared. In addition, the best parameter vector is evaluated for every 

iteration to keep track of the progress that is made during the optimization process. 

The DE algorithm also uses a non-uniform crossover that can take child vector 

parameters from one parent more often than it does from others. By using the components 

of the existing population members to construct trial vectors, the recombination (crossover) 

operator efficiently shuffles information about successful combinations, enabling the 

search for a better solution space. 

An optimization task consisting of D parameters can be represented by a                        

D-dimensional vector. In DE, a population of NP solution vectors is randomly created at 

the start. This population is successfully improved by applying mutation, crossover and 

selection operators. The main steps of a DE algorithm are given below: 

 



 24 

Initialization 

Evaluation 

Repeat 

Mutation 

Recombination 

Evaluation 

Selection 

Until (termination criteria are met) 

DE maintains two arrays, the primary array holds the current vector population, 

while the secondary array accumulates vectors that are selected for the next generation. 

Every pair of vectors (Xa, Xb) defines a vector differential: (Xa - Xb). When Xa and Xb are 

chosen randomly, their weighted differential is used to perturb another randomly chosen 

vector Xc. This process can be mathematically expressed as: 

𝑋𝑐
′ = 𝑋𝑐 + 𝐹 ∙ (𝑋𝑎 − 𝑋𝑏 (3.1) 

The weighting, or scaling, factor F is a user supplied constant in the optimal range 

between 0.5 and 1.0 (Evan et al., 2008). In every generation, each primary array vector Xi 

is targeted for crossover with a vector like 𝑋𝑐
′  to produce a trial vector Xt. Thus, the trial 

vector is the child of two parents, a noisy random vector and the target vector against which 

it must compete.  

Uniform crossover is used with a crossover constant (CR), in the optimal range of 0.5 

to 1.0, which represents the probability that the child vector inherits the parameter values 

from the noisy random vector. When CR = 1, for example, every trial vector parameter 
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certainly comes from 𝑋𝑐
′ . On the other hand, if CR = 0, all but one trial vector parameter 

comes from the target vector.  

To ensure that Xt differs from Xi by at least one parameter, the final trial vector 

parameter always comes from the noisy random vector even when CR = 0. Then the 

objective function corresponding to the trial vector is compared with that of the target 

vector, and the vector that has the better objective function value of the two would survives 

into the next generation. This process is continued until a termination criterion is met and 

difference in objective function values between two consecutive generations reaches a 

small value. Figure 3.1 shows how a DE algorithm works. 

Price & Storn (1997) gave the working principle of DE with a single strategy. Later, 

they suggested ten different strategies for DE. These strategies can be adopted in a DE 

algorithm depending upon the type of problems to which DE is applied. The strategies can 

vary based on the vector to be perturbed, number of difference vectors considered for 

perturbation, and finally the type of crossover used. The ten different working strategies 

are given in Table 3.1. 
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Figure 3.1  Schematic of a differential evolution algorithm. 
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Table 3.1  Mutation Strategies with expression  

Mutation Strategy Name Expression 

DE/best/1/exp 𝑣𝑖
(𝑡)
= 𝑥𝑏𝑒𝑠𝑡

(𝑡) + 𝐹 ∙ (𝑥
𝑟1
𝑖

(𝑡)
− 𝑥

𝑟2
𝑖

(𝑡)
) 

DE/rand/1/exp 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) 

DE/rand-to-best/1/exp 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥𝑏𝑒𝑠𝑡

(𝑡) − 𝑥
𝑟1
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) 

DE/best/2/exp 𝑣𝑖
(𝑡)
= 𝑥𝑏𝑒𝑠𝑡

(𝑡) + 𝐹 ∙ (𝑥
𝑟1
𝑖

(𝑡)
− 𝑥

𝑟2
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟3
𝑖

(𝑡)
− 𝑥

𝑟4
𝑖

(𝑡)
 

DE/rand/2/exp 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟4
𝑖

(𝑡)
− 𝑥

𝑟5
𝑖

(𝑡)
 

DE/best/1/bin 𝑣𝑖
(𝑡)
= 𝑥𝑏𝑒𝑠𝑡

(𝑡) + 𝐹 ∙ (𝑥
𝑟1
𝑖

(𝑡)
− 𝑥

𝑟2
𝑖

(𝑡)
) 

DE/rand/1/bin 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) 

DE/rand-to-best/1/bin 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥𝑏𝑒𝑠𝑡

(𝑡) − 𝑥
𝑟1
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) 

DE/best/2/bin 𝑣𝑖
(𝑡)
= 𝑥𝑏𝑒𝑠𝑡

(𝑡) + 𝐹 ∙ (𝑥
𝑟1
𝑖

(𝑡)
− 𝑥

𝑟2
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟3
𝑖

(𝑡)
− 𝑥

𝑟4
𝑖

(𝑡)
 

DE/rand/2/bin 𝑣𝑖
(𝑡)
= 𝑥

𝑟1
𝑖

(𝑡)
+ 𝐹 ∙ (𝑥

𝑟2
𝑖

(𝑡)
− 𝑥

𝑟3
𝑖

(𝑡)
) + 𝐹 ∙ (𝑥

𝑟4
𝑖

(𝑡)
− 𝑥

𝑟5
𝑖

(𝑡)
 

 

 

The general convention used above is DE/x/y/z. DE stands for Differential Evolution, 

x represents a string denoting the vector to be perturbed, y is the number of different vectors 

considered for perturbation of x, and z stands for the type of crossover being used (exp: 

exponential; bin: binomial). Hence, the perturbation can be either in the best vector of the 

previous generation or in any randomly chosen vector. Similarly, either single or two vector 

differences can be used for perturbation. Through perturbation with a single vector 
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difference, the weighted vector differential of any two vectors out of the three distinct 

randomly chosen vectors, is added to the third one. Through five distinct vectors, other 

than the target vector are chosen randomly from the current population. Out of these, the 

weighted vector difference of each pair of any four vectors is added to the fifth one for 

perturbation.  

Exponential crossover, is performed on D variables in one loop until it is within the 

CR bound. The first time a randomly picked number between 0 and 1 goes beyond the CR 

value, no crossover is performed and the remaining D variables are left intact. Binomial 

crossover, is performed on each of the D variables whenever a randomly picked number 

between 0 and 1 is within the CR value. So for high values of CR, the exponential and 

binomial crossover methods yield similar results.  

A strategy that works out to be the best for a given problem may not work well when 

applied to a different problem. Also, the strategy and key parameters to be adopted for a 

problem are to be determined by trial and error. However, strategy-7 (DE/rand/1/bin) 

appears to be the most successful and the most widely used strategy.  

All solutions in the population have the same chance of being selected as parents 

without dependence of their fitness value. The child produced after the mutation and 

crossover operations is evaluated. Then, the performance of the child vector and its parent 

is compared and the better one is selected. If the parent is still better, it is retained in the 

population. 
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3.1  Idea behind Multi-population Strategy 

In a multi-population approach, the entire population is divided into a predefined number 

of sub-populations. The size and population members of these sub-populations are kept 

unchanged during the algorithm’s execution. Each sub-population can exchange 

information with any other sub-population.  

In most of the multi-population evolutionary algorithms, migration is used as a 

means of communication between sub-populations. Different from these algorithms, sub-

populations in our multi-population approach exchange information via the mutation 

operation. Various multi-population approaches for DE have been designed to solve 

different kinds of optimization problems. Most of these approaches maintain population 

diversity via information exchange among different sub-populations. Tasoulis et al. (2004) 

parallelized DE in a virtual parallel environment so as to improve its computing 

performance. In order to promote information sharing, the best individuals from each sub-

population are allowed to migrate to other sub-populations based on a ring topology. 

Another migration scheme for multi-population was proposed by Kozlov et al. (2006). The 

authors suggested substituting the oldest individual of the target sub-population instead of 

a randomly chosen one. 

Song and Hou (2015) proposed a multi-population multi-strategy improved 

differential evolution (MPMSIDE) algorithm in which, the population is divided into three 

different subpopulations according to the fitness value, standard deviation of fitness and 

distance between two individuals, which are best population with the better fitness of 

individuals, worst population with the poor fitness of individuals and general population 

with the rest individuals. The best population is responsible for local search and improves 
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the convergence speed and precision. The worst population is responsible for global search, 

jumps out the local optimum and avoids premature convergence. The general population 

is responsible for balancing the global search ability and local search ability.      

The local optimization strategy is used to avoid the local extreme point and improve 

the local hill-climbing ability in the local search. The self-adaptive update strategy 

determines the similarity between the best individual and the general individual according 

to the individual similarity coefficient for reducing the adverse effects of the linear 

adjusting scaling factors and making the parameter sensitivity of a DE algorithm and 

improving the stability and robustness.  

Yu and Zhang (2011) suggested a multi-population approach for the DE variant 

known as DE/best/1, which uses the best solution information to guide the search.  The 

DE/best/1 strategy has a fast convergence rate but easily suffers from premature 

convergence due to early loss of population diversity. The entire population is divided into 

multiple sub-populations, which evolve on their own. The size and number of the sub-

populations are predefined and kept unchanged after initialization. During the evolutionary 

process, each sub-population can exchange information with any other sub-population.  

Most of the multi-population EAs use migration as a means of communication 

among different sub-populations. However, their performance is sensitive to the choice of 

control parameters such as migration size and rate. Instead of using migration, the sub-

populations can communicate with each other by means of a novel mutation operation, 

which involves a best vector and a difference vector. The former is selected from the 

corresponding sub-population instead of the entire population, which can balance the fast 

convergence and population diversity.  
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On the other hand, the difference vector generated by two vectors is selected from 

the entire population. Therefore, it may contain information from two different sub-

populations and can be used as a medium of information exchange.  

 

3.2  Multi-population Strategy Applied to DE 

Due to the weak global search ability, the stability and time consumption of optimization 

algorithms in solving a high dimensional optimization problem, an improved differential 

evolution (DE) algorithm with multi-population strategy for solving high dimensional 

optimization problems is proposed. 

The aim of this work is to analyse a parallel implementation of the differential 

evolution based on a multi-population model. The reasons of choosing a multi-population 

model are: (i) it is inspired from the spatial structure of natural populations; and (ii) its ability 

of preserving the population diversity through the migration process. 

The multi-population strategy implemented in the former paper                                      

(Song and Hou, 2015) illustrates the generation of three subpopulations based on the fitness 

value of the individual vectors in the initial set. The three mutation techniques applied are 

best/1 to the subpopulations with the higher fitness values, rand/1 to the lower fitness values 

and current to best to the subset with average fitness value.  

This thesis examines a DE-based on multi-population strategy for solving high 

dimensional optimization problems. Following the initialization operation, the initial 

population is randomly divided into multiple subpopulations. In each iteration, the mutation, 

crossover and selection component are sequentially executed until the algorithm fulfils its 

termination criterion.  
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The mutation is the key operation of a DE algorithm; the selected mutation strategy 

determines population direction in the process of evolution. The multiple-mutation strategy 

is introduced to avoid possible stagnation in a local minimum value for dealing with 

complex functions with high dimension multimodal optimization problems, and the 

premature loss of population diversity. 

The multiple-mutation strategy is initiated to increase the global optimization ability 

of a greedy algorithm.  The selected techniques used for mutation are “DE/rand/1” and 

“DE/rand to best/1”. The individuals from both subpopulations are compared to obtain 

optimal individual as the result. The flowchart of the proposed 2-subpopulation DE 

algorithm is shown in Figure 3.2. The multi-population strategy helps in maintaining the 

evolution of the best individual and enhances the local hill-climbing ability in the local 

search. It contributes to avoiding the local extreme points and premature convergence in an 

optimization process. 
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Figure 3.2  Flowchart of 2-subpopulation differential evolution algorithm. 

 

The process is executed to keep the best individuals to achieve the dynamic 

exchange information. The multi-population strategy keeps the evolutionary stability of the 

best individuals while avoiding the premature convergence in the evolutionary process. 

  



 34 

CHAPTER 4 

EXPERIMENTAL RESULTS 

 

4.1  Testing Functions and Algorithms 

Eleven benchmark functions are chosen to verify the performance of the proposed 

algorithm. The classic functions from the benchmark testing set include Ackley function, 

Rastrigin function, Whitley function, Schaffer function, Rosenbrock’s function, Modified 

double sum, Sphere function, Ridge function, Schwefel 2.21 function, Lunacek’s                       

bi-Rastrigin function and Levy function. These particular function expressions along with 

their global minimum value (opt.) and range are shown in Table 4.1. 

 

Table 4.1  Benchmark Testing Functions 

Index Function Expression Opt. Range 

f1 Ackley 
𝑓(𝑥) = −𝑎 𝑒𝑥𝑝

(

 −𝑏√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 − 

𝑒𝑥𝑝 (
1

𝑑
∑𝑐𝑜𝑠(𝑐𝑥𝑖)

𝑑

𝑖=1

) + 𝑎 + exp (1) 

0 
[-32.768, 

32.768] 

f2 Rastrigin 𝑓(𝑥) = 10𝑛 +∑(𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝑛

𝑖=1

 0 
[-5.12, 

5.12] 

f3 Whitley 

𝑓(𝑥)

=∑∑(
(100(𝑥𝑖

2 − 𝑥𝑗)
2
+ (1 − 𝑥𝑗)

2
)
2

4000

𝑛

𝑗=1

𝑛

𝑖=1

− cos (100(𝑥𝑖
2 − 𝑥𝑗)

2
+ (1 − 𝑥𝑗)

2
) + 1) 

0 
[-10.24, 

10.24] 
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f4 Schaffer 𝑓(𝑥) = 0.5 +
𝑠𝑖𝑛2(𝑥1

2 − 𝑥2
2) − 0.5

[1 + 0.001(𝑥1
2 + 𝑥2

2)]2
 -1 [-100, 100] 

f5 Rosenbrock’s 𝑓(𝑥) =∑(
100(𝑥𝑖 − 𝑥𝑖−1

2 )2 +

(𝑥𝑖−1 − 1)
2 )

𝑛

𝑖=1

 0 [-30, 30] 

f6 
Modified 

double sum 𝑓(𝑥) =∑(∑(𝑥𝑗 − 𝑗)
2

𝑖

𝑗=1

)

𝑛

𝑖=1

 0 
[-10.24, 

10.24] 

f7 Sphere 𝑓(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 0 
[-5.12, 

5.12] 

f8 Ridge 𝑓(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝑛

𝑖=1

 0 [-64, 64] 

f9 
Schwefel 

2.21 
𝑓(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 0 [-30, 30] 

f10 
Lunacek’s  

bi-Rastrigin 

𝑓(𝑥) = 𝑚𝑖𝑛

(

 
 
 

{∑(𝑥𝑖 − 2.5)
2

𝑛

𝑖

} ,

{𝑑. 𝑛 + 𝑠.∑(𝑥𝑖 − 𝜇2)
2

𝑛

𝑖

}
)

 
 
 

 

+10∑(1 − 𝑐𝑜𝑠2𝜋(𝑥𝑖 − 2.5))

𝑛

𝑖

 

𝑤ℎ𝑒𝑟𝑒, 𝜇2 = −√
𝜇1
2 − 𝑑

𝑠
 

0 
[-5.12, 

5.12] 

f11 Levy 

𝑓(𝑥) = 𝑠𝑖𝑛2(𝜋𝜔1) 

+∑(𝜔𝑖 − 1)
2[1 + 10𝑠𝑖𝑛2(𝜋𝜔𝑖 + 1)]

𝑑−1

𝑖=1

+ (𝜔𝑑 − 1)
2[1

+ 𝑠𝑖𝑛2(2𝜋𝜔𝑑)]  

𝑤ℎ𝑒𝑟𝑒, 𝜔𝑖 = 1 +
𝑥𝑖 − 1

4
 

1 [-10, 10] 
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The initial population is divided into various subpopulations and several mutation 

strategies are applied to each subpopulation. These different multi-population strategies 

along with number of subpopulations and mutation strategies applied are shown in             

Table 4.2. 

 

Table 4.2  Multi-population Strategies Used 

Index 
Number of 

subpopulations 
Mutation Strategies 

a1 2 rand/1, rand to best 

a2 2 rand/1, best/1 

a3 3 rand/1, best/1, rand to best 

a4 4 rand/1, best/1, rand to best, current to best 

a5 5 rand/1, best/1, rand to best, current to best, rand/2 

a6 6 rand/1, best/1, rand to best, current to best, rand/2, best/2 

 

 

4.2  Experimental Results and Analysis 

The experimental parameters used for all the multi-population strategy differential 

evolution algorithms are given as follows: population size NP = 500, functional       

dimension = 30, crossover probability factor CR = 0.6, and scaling factor (F) = 0.6. Each 

algorithm terminates when the number of iterations reaches not more than 580. Each 

algorithm is run independently 30 times for all the eleven functions.  
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4.2.1 Experimental Results 

The experimental results of all algorithms in Table 4.2 along with the multi-population 

strategy implemented in the former paper (old), applied to the functions mentioned in  

Table 4.1 with their maximum value, minimum value, mean value and standard deviation 

are shown in Table B1.  

Eleven benchmark functions are optimized with the multi-population strategy 

algorithms mentioned in Table 4.2. The obtained maximum value, mean, minimum value 

and standard deviation are chosen to analyse the performance.  From Table B1 it can be 

observed that a1 has the most optimal mean value for the functions f1 - f5, f7 - f8 and f10 - f11. 

Hence the multi-population strategy of dividing the population into two subpopulations and 

performing rand/1 and rand to best with the individual subpopulations achieves a better 

global convergence ability in solving high dimensional optimization problems for nine out 

of eleven benchmark functions. 

 

4.2.2 Effect of Number of Subpopulations on Execution Time and Mean Value 

The execution time and mean for the multi-population DE are mapped in a graph where 

the population size (NP) is 2000 and the initial population is divided from 2 to 40 

subpopulations with different mutation strategies applied to each subpopulation in each 

experiment. Figures 4.1-4.11 show the normalized execution time and normalized mean 

values plotted against the number of subpopulations (Ns) for f1 - f11 functions respectively. 
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Figure 4.1  Execution time and mean against Ns for Sphere function. 

 

 

Figure 4.2  Execution time and mean against Ns for Levy function. 

 

 

Figure 4.3  Execution time and mean against Ns for Modified double sum function. 
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Figure 4.4  Execution time and mean against Ns for Rosenbroc’s function. 

 

 

Figure 4.5  Execution time and mean against Ns for Ackley function. 

 

 

Figure 4.6  Execution time and mean against Ns for Rastrigin function. 
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Figure 4.7  Execution time and mean against Ns for Schaffer function. 

 

 

Figure 4.8  Execution time and mean against Ns for Ridge function. 

 

 

Figure 4.9  Execution time and mean against Ns for Lunacek’s bi-Rastrigin function. 
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Figure 4.10  Execution time and mean against Ns for Whitley function. 

 

 

Figure 4.11  Execution time and mean against Ns for Schwefel 2.21 function. 

 

 

Figures 4.1-4.11 exhibit that the execution time reduces drastically when Ns is less 

than or equal to 8; otherwise the reduction is nominal. Figures 4.1-4.5 show that the 

optimization result degrades negligibly until Ns = 6, and thereafter the result drops 

noticeably. Furthermore, Figures 4.6–4.10 indicate substantial improvement in optimization 

results when Ns changes from 1 to 2 and then the result decreases distinctly. Figure 4.11 

reflects an exception to both the above cases by producing the optimum value when there is 

no multi-population strategy applied, on the contrary weakening the performance as Ns 

increases.
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CHAPTER 5 

ELECTRIC VEHICLE CHARGING PROBLEM 

 

Electric vehicles (EVs) have emerged as one of the most interesting and promising solutions 

to reduce the levels of greenhouse gas emissions. With rapid development of high-capacity 

Li-ion batteries, high-efficiency motor drives, and power electronics, and integrated EV 

control and management, EVs have entered the large-scale commercialization stage               

(Liu et al., 2014). To support a large number of EVs, high-capacity and high-efficiency 

charging infrastructures are mandatory to sustain the growing charging demands and to 

improve pure electric driving mileages and operational economy of EVs                                

(Alonso et al., 2014). 

According to Zhang et al. (2011), EVs parking at home account for more than 75% 

of the daily parking time, and the average parking duration at night is more than 10. Delayed 

charging is better than immediate charging at home, and non-home charging increases peak 

grid loads. A simulation model is presented in (Zhang et al., 2013) to analyse economic and 

environmental performance of EVs operating under different conditions, including 

electricity generation mix, smart charging control strategies, and real-time pricing 

mechanisms. Its results show that 100 kWh excess electricity can be reduced annually per 

vehicle when the smart charging method is employed to replace the off-peak charging 

method.  

At present, EV charging strategies can be mainly classified into centralized and 

distributed control. A common feature of a centralized control system is that it directionally 

communicates with all EVs and manages charging time and power to optimize certain 
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objective functions, such as minimizing carbon dioxide emissions, power loss, cost, or and 

achieving desired “valley-filling”, by using EV data (the connection time to the grid, charge 

demand, rated voltage, and charger power) (Abdelaziz et al., 2014). Such control strategies 

require extensive real-time bi-directional communications, with increased cost on 

communications equipment and resources and, consequently, they are not desirable to 

charging service providers. Commonly used algorithms in centralized control, including 

linear programming, quadratic programming, dynamic programming, stochastic 

programing, robust optimization, and model predictive control, are summarized and 

presented by Hu et al. (2016). 

In distributed methods, a central control system broadcasts a common electricity 

price or a reference power signal to all EVs. Then each EV decides individually, and locally, 

its charging power and time, based on its own parameters and associated optimization 

criteria (Soares et al., 2017). Katarina and Mattia (2016) propose a voltage-dependent EV 

reactive power controller for grid support to raise the minimum phase-to-neutral voltage 

magnitude and to improve voltage dispersion. However, it needs local voltage 

measurements. A local control technique is proposed (Richardson et al., 2013) whereby 

individual EV charging units attempt to maximize its own charging rate along with the 

information about the instantaneous voltage of its own point and loading of the service 

cable. 

From these existing centralized control strategies or distributed control strategies, 

we can see that they usually need a central unit to control EV charging or broadcast a 

common reference signal such as electricity price, loading of the service cable, and network 
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constraints, or at least it needs voltage or other local variable measurements for local control 

strategies. 

Electric vehicles (EVs) have an enormous consequence on the daily residential load 

curve if they are widely connected to the power grid for battery charging (Zou et al., 2011). 

Due to the uncertainty of their charging behaviours, uncoordinated random charging of a 

mass of EVs may lead to an unanticipated effect on the normal operation of a power 

distribution system, i.e., voltage fluctuation, thereby increasing the load peak and off-peak 

difference in the network. Without taking the spot pricing into consideration, EV owners 

may pay much higher cost for battery charging. The appropriate dispatching of EVs in a 

distribution system for their charging represents a challenging demand side management 

problem (Masoum et al., 2011). 

A unique charging strategy of EVs based on optimal charging priority and charging 

station is suggested under a spot pricing-based electricity market environment                     

(Kang et al., 2016). It is an improved population-based heuristic algorithm which is 

designed to find the optimal charging priority and location of EVs in a distribution network. 

It inherits a hybrid algorithm of PSO and GA. 

 

5.1  Model Formulation 

Under a spot pricing-based electricity market environment, uncoordinated charging of many 

EVs may cause sincere impacts on the security and economy of power system operations, 

such as increasing power losses, overload, voltage fluctuation and charging cost.  

To reduce such impacts, various locations and time slots for EV charging may have 

different influences on power quality. To ensure high power quality, i.e., low voltage 
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fluctuation and power loss, applicable locations and time slots should be found. To subside 

the vacancy of electric power, EVs should be scheduled for charging during the off-peak 

time zone. The charging cost should be as low as possible by considering spot electric price 

and maximum power consumption should be set for every time slot to prevent an overload 

condition from EV charging. Shao et al. (2011) have suggested that a new peak demand 

may emerge if all EV owners have a preference for the exact time when the electricity price 

is the lowest. Thus, when the charging load of EVs reach a given limit, other EVs should be 

enabled to connect to the distribution system.  

To explain the problem more specifically and clearly, some assumptions and 

explanations are made similar to Kang et al. (2016). EVs are divided into several groups. 

Each group is scheduled as a whole, and thus treated as an EV set, simply named as “EVS” 

(basic unit of scheduling). To facilitate the simulation, each EVS has the same number of 

EVs, and the same type of vehicles. However, if each EVS has different number of various 

types of EVs, the strategy still works. 

In order to determine the number of time slots for EVS charging, a statistical 

distribution of power demand of EVS charging load is established during a dispatch cycle. 

Power demand of an EV after one day’s travel exhibits a good deal of randomness, but it is 

largely determined by the distance in miles driven by an EV, irrespective of some secondary 

factors, such as road condition, climate and battery age. 

EV aggregator is a communication and control agent between the grid and EVs, it is 

employed to solve plug-in storming problems. The implementation of centralized charging 

strategy is performed by EV aggregator. All information of EVs and control signals 

generated by aggregators can be delivered immediately between EVs and aggregators          
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(Lan et al., 2013). Aggregator owners are known as price takers, which mean that the total 

power consumption of EVs do not have a large share to affect the electricity price. 

This thesis intends to address an EV centralized charging problem on spot pricing 

under a battery swapping scenario. The charging locations and time slots in a distribution 

network are viewed as decision variables of a charging strategy. It can be considered as a 

multi-objective optimization problem to minimize charging cost, power loss, and voltage 

deviation. 

 
5.1.1 Charging Rule 

The maximum demand level is considered as the maximal value of residential load during 

a scheduling period. The power for EV charging is expressed as: 

𝑃𝑡 ≤ 𝑃𝑡
𝑙𝑖𝑚, 𝑡 ∈ NT = {1, 2, … , T} (5.1) 

𝑃𝑡
𝑙𝑖𝑚 = 𝑃𝑚𝑎𝑥 − 𝑃𝑡

𝑙𝑜𝑎𝑑 (5.2) 

All vehicles under the centralized charging strategy are fully charged once their 

charging starts: 

∑𝑃𝑡 = 𝑃𝑡𝑜𝑡

T

𝑡=1

 (5.3) 

The easiest strategy to handle constraints in population-based heuristic approaches 

is to assign infeasible individuals an arbitrarily low fitness. A better way to deal with such 

constraints is to map the search space so as to decrease the number of infeasible individuals 

or design some strategies/rules to avoid infeasible ones (Fonseca et al., 1998). 

The load scheduling is transformed into an EV charging rule, if EV charging priority 

and locations are known. The basic concept is to charge each vehicle at a time slot where 

the lowest electricity price occurs and power consumption satisfies equation (5.1). The main 
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idea of the EV charging rule states that the time slots are ranked according to their price 

from the lowest to highest. EVs with high priority have privilege to choose their charging 

time slot from the lowest to the highest until no empty time slot is left. 𝑃𝑡
𝑙𝑖𝑚 is set as the 

maximum acceptable power consumption for EV charging at a time slot. If the total power 

demand at a time slot does not exceed 𝑃𝑡
𝑙𝑖𝑚, the slot can be chosen for EV charging. Hence, 

the peak load can be avoided and the charging cost is reduced to a large extent. Then, the 

amount of power at per time slot and each charging location can be obtained.  

 
5.1.2 Power Flow 

It is important for planning future expansion of power systems as well as in determining the 

best operation of the existing systems. The power flow calculation is necessary to obtain the 

variation of power and voltage distributions when EVs are connected to a distribution 

system. The traditional formulation of power flow can be denoted as power balance 

equation 𝑔(𝑥) = 0, which is split into its active and reactive components as follows: 

{
𝑔𝑃(𝜃, 𝑉𝑚, 𝑃𝑔) = 𝑃𝑙𝑜𝑠 + 𝑃𝑑 + 𝑃𝑔 = 0

𝑔𝑄(𝜃, 𝑉𝑚, 𝑄𝑔) = 𝑄𝑙𝑜𝑠 + 𝑄𝑑 + 𝑄𝑔 = 0
 (5.4) 

where, θ is a voltage angle, Vm is the voltage magnitude, Pg and Qg are generator injections, 

Pd and Qd are load injections and assumed to be constant, Plos and Qlos are the active power 

loss and reactive power loss, respectively (Kang et al., 2013). This work uses a Newton 

method to calculate power flow. 

 

5.1.3 Objectives 

The objectives include the minimization of charging cost, power loss, and voltage 

deviations. Therefore, the following objective function is obtained: 
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𝑓 = min (𝑃𝑙𝑜𝑠 + 𝜎. 𝑉𝑑𝑒𝑣 + 𝛾. Cost) (5.5) 

where, Plos is active power loss, Vdev denotes load bus voltage deviation from 1.0 p.u., and 

Cost is the total electricity cost; σ and γ are the non-negative weighting factors.  

Plos can be obtained with power flow calculation and is represented as                         

𝑃𝑙𝑜𝑠 = ∑ ∑ |𝐼𝑙𝑡|
2𝑅𝑙

𝐿
𝑙=1

𝑇
𝑡=1  where T is the number of time slots, L is the number of lines in the 

power system, Ilt is the current of the lth line at the tth time slot, and Rl is the resistance of the 

lth line. 

Vdev can be denoted as 𝑉dev = ∑ ∑ |𝑉𝑏𝑡 − 1.0|(p. u. )
N
𝑏=1

T
𝑡=1  where T plays the same 

role as that in Plos, N is the number of buses in a power system, and Vbt is node voltage (p.u) 

of the bth bus at the tth time slot (Kang et al., 2012). 

Cost is denoted as Cost = ∑ 𝑃𝑡 ∙ 𝛿 ∙ 𝜑𝑡
T
𝑡=1 , where Pt is the power consumption of 

EVs at the tth time slot, φt is the electricity price at the tth time slot, and δ is time span of a 

time slot. 

 

5.2 Simulations and Result 

5.2.1 Parameter Scheduling 

The IEEE 30-bus system is used which has 6 generator buses 1, 2, 13, 22, 23 and 27. 

Besides, 20 load buses at buses 2, 3, 4, 7, 8, 10, 12, 14-21, 23, 24, 26, 29, and 30. The buses 

can be divided into PV buses (at buses 2, 13, 22, 23, and 27, the range of bus voltage from 

0.95 to 1.1 p.u.), balance bus (at bus 1, the range of bus voltage from 0.95 to 1.05 p.u.) and 

PQ buses (at the rest of buses, the range of buses voltage from 0.95 to 1.05 p.u.). 
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In this thesis, 10 buses, i.e., buses 3–12, are chosen as EV charging nodes. These 

nodes are the locations where EVs are arranged to be charged and the place of battery 

swapping stations are located. According to the EV charging rule, the charging priority and 

locations of EV are coded in a particle. The objective here is to optimize the charging cost, 

power loss and voltage deviation. The Differential Evolution (DE) based on multi-

population strategy is used as a solver of this optimization problem of charging priority. The 

following equations are used for calculating active power loss, voltage deviation and 

charging cost: 

𝑃𝑙𝑜𝑠 =∑ ∑ |𝐼𝑙𝑡|
2𝑅𝑙

L

𝑙=1

T

𝑡=1
 (5.6) 

𝑉dev =∑ ∑ |𝑉𝑏𝑡 − 1.0|(p. u. )
N

𝑏=1

T

𝑡=1
 (5.7) 

Cost =∑ 𝑃𝑡 ∙ 𝛿 ∙ 𝜑𝑡
T

𝑡=1
, (5.8) 

 

The active power loss (Plos,) is expressed in equation (5.6), where T is the number of time 

slots, L is the number of lines in the power system, Ilt is the current of the lth line at the tth 

time slot, and Rl is the resistance of the lth line. The value range for current I is 0A – 300A 

and resistance R is 0.025 – 0.75. Random values are generated for current and resistance 

for D sets of EVs and a muli-population strategy-based DE is used as a solver for optimizing 

all the three functions. 

Voltage deviation (𝑉dev) is indicated in equation (5.7), where T plays the same role 

in Plos, N is the number of buses in a power system, and Vbt is node voltage (p.u) of the bth 
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bus at the tth time slot. Voltage is V = I ∙ R. So, Vdev is calculated for D set of EVs using the 

same value range mentioned above. 

Equation (5.8) demonstrates the charging cost, where T plays the same role in Plos, Pt is the 

power consumption of EVs at the tth time slot, which ranges from 10kW to 20kW, t is the 

electricity price at the tth time, which slot spans from $50/MW - $75/MW, and δ is time span 

of a time slot, which varies from 5min  – 10min time slot.  

 

5.2.2 Experimental Outcome 

All algorithms in Table 4.2 and PSO-GA+ that is a heuristic algorithm proposed by             

Kang et al. (2016), are applied to the problem to minimize active power loss, voltage 

deviation and charging cost. By running the algorithms for 30 times independently, the 

statistical results obtained are shown in Tables 5.1-5.4. 

 

 

Table 5.1  Experimental Result of Plos, (MW) 

Multi-

population 

strategy 

Optimum 

Value 
Mean Worst Value 

Standard 

Deviation 

PSO-GA+ 1398.7 1429.1 1513.5 42.68 

a1 1018 1247 1552 83 

a2 1041 1415 1834 114 

a3 1709 1890 1945 90 

a4 1465 1504 1531 14 

a5 1241 1670 2711 266 

a6 1279 1352 1635 75 
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Table 5.2  Experimental Result of Vdev (p.u.) 

Multi-

population 

strategy 

Optimum 

Value 
Mean Worst Value 

Standard 

Deviation 

PSO-GA+ 37.92 37.86 39.85 1 

a1 40 52 78 4 

a2 37 59 80 3 

a3 38 54 59 3 

a4 34 53 57 3 

a5 40 51 54 3 

a6 36 51 54 3 

 

Table 5.3  Experimental Result of Cost ($) 

Multi-

population 

strategy 

Optimum 

Value 
Mean Worst Value 

Standard 

Deviation 

PSO-GA+ 130592.5 130623.5 130663.9 23.59 

a1 135134 130545 135160 5 

a2 135134 135158 135196 10 

a3 138126 139849 144945 822 

a4 136930 137045 137189 42 

a5 136290 136520 136640 79 

a6 137420 137620 137780 65 
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Table 5.4  Experimental Result of  f 

Multi-

population 

strategy 

Optimum 

Value 
Mean Worst Value 

Standard 

Deviation 

PSO-GA+ 133504.7 133570.0 133733.9 84.61 

a1 137752 138472 139832 248 

a2 137655 138933 140230 244 

a3 141355 143899 149250 1032 

a4 139755 140669 141000 176 

a5 139131 140230 141511 465 

a6 140139 141012 141575 260 

 

 

The results show that PSO-GA+ outperforms all the other six algorithms in terms 

of Vdev, and f. The multi-population strategy a1 surpasses all the other algorithms in terms 

of Plos and Cost, but its optimization capability is worse than PSO-GA+. In this case, we 

can argue reason that the operations in the algorithm, such as crossover and mutation 

operation, may play a significant role in solving this problem.  

Based on the statistic results, PSO-GA+ is the best in convergence rate and 

precision for this problem. Furthermore, in case of differential evolution with multi-

population strategy, a1 has better global search ability than the other DE algorithms. In 

addition, a1 has lower computational complexity. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1  Conclusion 

This thesis investigates a multi-population DE that divides the initial population into two 

different subpopulations and executes rand/1 and rand to best/1t on each. The construction 

and use of battery swapping technology-based facilities for EVs, especially battery 

swapping stations, offers great opportunities to promote the deployment of EVs. This thesis 

focuses on a centralized EVs charging strategy with battery swapping under a spot pricing-

based market environment. The thesis has made the following contribution: 

(1) A literature review is conducted on the DE algorithm and EV charging 

problem. It is observed that DE is widely implemented due to its stability, robustness, 

ability for global search and several excellent performances. It is also verified that the 

construction and use of battery swapping technology-based facilities for EVs, especially 

battery swapping stations, offers great opportunities to promote the deployment of EVs. 

(2) A multi-population strategy based DE algorithm is proposed. It is observed from 

the previous study that the multi-population strategy helps in maintaining the evolution of 

the best individual and enhances the local hill-climbing ability in the local search. It 

contributes to avoiding the local optima and premature convergence in an optimization 

process. 

(3) A comparative study is performed with various numbers of subpopulations 

and several combinations of mutation strategies. The results demonstrate that the execution 

time of a multi-population algorithm is inversely proportional to the number of its 

subpopulations. This multi-population strategy affects its optimization performance either 



 54 

by improving its solution with increase in the number of subpopulations or by producing 

the best solution when the population is divided into 2-subpopulations followed by 

decrease in the optimization accuracy. Hence, the trade-off range for the algorithm to 

achieve better accuracy and accelerated speed is when the number of subpopulations lies 

between 2 and 8 inclusive. 

(4) The performance of differential evolution algorithm based on a multi-population 

strategy is studied to optimally determine the EVs charging priority and locations in a 

distribution network, by minimizing the total charging cost, power loss and voltage 

deviation for the first time. Its effectiveness has been verified via an IEEE 30-bus test 

system. The results show that the existing PSO-GA+ algorithm outperforms the proposed 

algorithms in terms of the weighted optimization objective and voltage deviation while the 

2-subpopulation DE performs better in power loss and cost than PSO-GA+ algorithm and 

the other multi-population DEs.  

Finally, it can be summarized that, 2-subpopulation DE, the DE that divides the 

initial population into two different subpopulations and executes rand/1 and rand to best 

on each has a higher searching accuracy and faster convergence speed in solving high 

dimensional optimization problems. 

 

 

6.2  Future Work 

Although during the last two decades, research on and with DE reached an impressive state, 

there are still some interesting open problems and new application areas that are continually 

emerging for the algorithm. Recently, population size adaptation has been demonstrated to 

yield improved performance. Naturally, a larger population is required to perform 
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exploration of the search space at the early stage of the search while a smaller population 

is necessary to conduct fine search near the best regions at the end of the search process. 

Further research is needed in the population size adaptation in multiple objective and other 

optimization scenarios. 

Even before the advent of population-based EAs, the concept of convergence was 

prevalent for single point (only one candidate solution) based search methods. If the single 

point does not converge, there will be no solution. However, in the context of population 

based algorithms, the best scenario is that even after one population member discovers the 

global solution, the other members are well distributed in the search space. Hence, in the 

context of population-based search methods, the focus of theoretical research can be 

controlling diversity and convergence behaviours while avoiding chaotic search behaviour.  

With the increasing use of uncontrollable distributed generators based on such 

renewable energy sources as wind and solar power, the complex system constraints caused 

by the high uncertainty in power outputs should be taken into account when solving the 

EV charging problems. The future work is required to be oriented to dispatching EVs for 

charging in a grid with distributed generations using renewable energy by using various 

intelligent optimization and mathematical programming methods.  

More benchmark studies should be created and more evolutionary algorithms 

should be compared. The sufficiency issues related to how many samples are required for 

such algorithms should be addressed. Besides, we need to model energy requirements more 

accurately according to the vehicle travel behaviour. Hence, it is apparent that there are 

numerous issues to be investigated in the context of differential evolution and electric 

vehicle charging problems.   
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APPENDIX A 

BENCHMARK OPTIMIZATION FUNCTIONS 

 

The functions listed below are some of the common test functions and datasets used for 

testing optimization algorithms with the aim of giving an idea about the different situations 

that optimization algorithms have to face when coping with these kinds of problems.  

 

Ackley Function 

 

Figure A.1  Ackley function. 

Source: "Ackley function," in Virtual Library of Simulation Experiments: Test Functions and Datasets. 

[Online]. Available: https://www.sfu.ca/~ssurjano/rastr.html. Accessed: Mar. 1, 2017. 

 

𝑓(𝑥) = −𝑎 𝑒𝑥𝑝

(

 −𝑏√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 −  𝑒𝑥𝑝(
1

𝑑
∑𝑐𝑜𝑠(𝑐𝑥𝑖)

𝑑

𝑖=1

) + 𝑎 + exp (1) (A.1) 

Description:  

Dimensions:d d  

The Ackley function is widely used for testing optimization algorithms. In its two-
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dimensional form, as shown in the plot above, it is characterized by a nearly flat outer 

region, and a large hole at the centre. The function poses a risk for optimization algorithms, 

particularly hillclimbing algorithms, to be trapped in one of its many local minima.  

Recommended variable values are: a = 20, b = 0.2 and c = 2π. 

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-32.768, 32.768], for all i = 

1,…,d, although it may also be restricted to a smaller domain.  

Global Minimum: 

f(x∗) = 0, at x∗ = (0,… ,0) 
 

 

Rastrigin Function 

 

Figure A.2  Rastrigin function. 

Source: "Rastrigin function," in Virtual Library of Simulation Experiments: Test Functions and Datasets. 

[Online]. Available: https://www.sfu.ca/~ssurjano/rastr.html. Accessed: Mar. 1, 2017. 

 



 58 

𝑓(𝑥) = 10𝑑 +∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 (A.2) 

 

Description: 

Dimensions:d d                                                                                                                                                                                                                         

The Rastrigin function has several local minima. It is highly multimodal, but locations of 

the minima are regularly distributed. It is shown in the plot above in its two-dimensional 

form.  

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-5.12, 5.12], for all i = 1,…,d.  

Global Minimum: 

f(x∗) = 0, at x∗ = (0,… ,0) 

 

 

Whitley Function 

 

Figure A.3  Whitley function. 

Source: "N-D Test Functions W — AMPGO 0.1.0 documentation", Infinity77.net, 2017. [Online]. 

Available: http://infinity77.net/global_optimization/test_functions_nd_W.html. [Accessed: 23- Mar- 2017]. 
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𝑓(𝑥) =∑∑(
(100(𝑥𝑖

2 − 𝑥𝑗)
2
+ (1 − 𝑥𝑗)

2
)
2

4000

𝑑

𝑗=1

𝑑

𝑖=1

− 𝑐𝑜𝑠 (100(𝑥𝑖
2 − 𝑥𝑗)

2
+ (1 − 𝑥𝑗)

2
) + 1) 

(A.3) 

Description: 

Dimensions:d d              

This class defines the Whitley global optimization problem. This is a multimodal 

minimization problem.                                                                               .                                      

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-10.24, 10.24], for all i = 1,…,d.  

Global Minimum: 

f(x∗) = 0, at x∗ = (1,… ,1) 

 

 

Schaffer Function N.2 

 

Figure A.4  Schaffer function N.2. 

Source: "Schaffer Function N. 2", Sfu.ca, 2017. [Online]. Available: 

https://www.sfu.ca/~ssurjano/schaffer2.html. [Accessed: 25- Mar- 2017]. 
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𝑓(𝑥) = 0.5 +
𝑠𝑖𝑛2(𝑥1

2 − 𝑥2
2) − 0.5

[1 + 0.001(𝑥1
2 + 𝑥2

2)]2
 (A.4) 

 

Description: 

Dimensions: 2  

Input Domain: 

The function is usually evaluated on the square xi ∈ [-100, 100], for all i = 1, 2.  

Global Minimum: 

f(x∗) = −1, at x∗ = (0,0) 

 

 

Rosenbrock’s Function 

 

Figure A.5  Rosenbrock’s function. 

Source: "Rosenbrock Function", Sfu.ca, 2017. [Online]. Available: 

https://www.sfu.ca/~ssurjano/rosen.html. [Accessed: 25- Mar- 2017]. 
 

𝑓(𝑥) =∑(100(𝑥𝑖 − 𝑥𝑖−1
2 )2 + (𝑥𝑖−1 − 1)

2)

𝑛

𝑖=1

 (A.5) 
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Description: 

Dimensions: d  

The Rosenbrock function, also referred to as the Valley or Banana function, is a popular 

test problem for gradient-based optimization algorithms. It is shown in the plot above in 

its two-dimensional form. The function is unimodal, and the global minimum lies in a 

narrow, parabolic valley.  

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-5, 10], for all i = 1, …, d, 

although it may be restricted to the hypercube xi ∈ [-2.048, 2.048], for all i = 1, …, d.  

Global Minimum: 

f(x∗) = 0, at x∗ = (1,… ,1) 

 

 

Modified double sum 

 

Figure A.6  Modified double sum function. 

Source: N. Holtschulte, "Modified Double Sum", Cs.unm.edu, 2017. [Online]. Available: 

http://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/modDouble.html. [Accessed: 25- Mar- 2017]. 
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𝑓(𝑥) =∑(∑(𝑥𝑗 − 𝑗)
2

𝑖

𝑗=1

)

𝑑

𝑖=1

 (A.6) 

 

Description: 

Dimensions:d d  

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-10.24, 10.24], for all i = 1,…,d.  

Global Minimum: 

f(x∗) = 0, at x∗ = (0,… ,0) 

 

 

Sphere Function 

 

Figure A.7  Sphere function. 

Source: "Sphere Function", Sfu.ca, 2017. [Online]. Available: https://www.sfu.ca/~ssurjano/spheref.html. 

[Accessed: 25- Mar- 2017]. 
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𝑓(𝑥) =∑𝑥𝑖
2

𝑑

𝑖=1

 (A.7)  

 

Description: 

Dimensions: d  

The Sphere function has d local minima except for the global one. It is continuous, 

convex and unimodal. The plot shows its two-dimensional form.  

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-5.12, 5.12], for all i = 1, …, d.  

Global Minimum: 

 f(x∗) = 0, at x∗ = (0,… ,0) 

 

 

Ridge Function 

 

Figure A.8  Ridge function. 

Source: W. LI, "OBSERVATION OF A RIDGE CORRELATION STRUCTURE IN HIGH 

MULTIPLICITY PROTON–PROTON COLLISIONS: A BRIEF REVIEW", 2017. . 
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𝑓(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝑑

𝑖=1

 (A.8) 

Description: 

Dimensions: d                                                                                                       d 

Ridge functions and ridge function approximation are studied in statistics. In general, linear 

combinations of ridge functions with fixed directions occur in the study of hyperbolic 

partial differential equations with constant coefficients. 

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-64, 64], for all i = 1, …, d.  

Global Minimum: 

 f(x∗) = 0, at x∗ = (0,… ,0)  

 

 

Schwefel 2.21 Function 

 

Figure A.9  Ridge function. 

Source: W. LI, "OBSERVATION OF A RIDGE CORRELATION STRUCTURE IN HIGH 

MULTIPLICITY PROTON–PROTON COLLISIONS: A BRIEF REVIEW", 2017. . 
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𝑓(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑} (A.9) 

 

Description: 

Dimensions: d  

The Schwefel 2.21 function is complex, with many local minima. The plot shows the 

two-dimensional form of the function.  

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-500, 500], for all i = 1, …, d.  

Global Minimum: 

𝑓(𝑥∗) = 0, 𝑎𝑡 𝑥∗ = (420.9687,… , 420.9687) 

 

 

Lunacek’s bi-Rastrigin Function 

 

Figure  A.10  Lunacek’s bi-Rastrigin function. 

Source: N. Holtschulte, "Lunacek", Cs.unm.edu, 2017. [Online]. Available: 

http://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/lunacek.html. [Accessed: 25- Mar- 2017]. 
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𝑓(𝑥) = 𝑚𝑖𝑛 ({∑(𝑥𝑖 − 2.5)
2

𝑛

𝑖

} , {𝑑. 𝑛 + 𝑠.∑(𝑥𝑖 − 𝜇2)
2

𝑛

𝑖

})
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𝑤ℎ𝑒𝑟𝑒, 𝜇2 = −√
𝜇1
2 − 𝑑

𝑠
 

(A.10) 

 

Description: 

Dimensions: d  

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-5.12, 5.12], for all i = 1, …, d.  

Global Minimum: 

𝑓(𝑥∗) = 0, 𝑎𝑡 𝑥∗ = (0,… , 0) 

 

 

Levy Function  

 

Figure  A.11  Levy function. 

Source: "Levy Function", Sfu.ca, 2017. [Online]. Available: https://www.sfu.ca/~ssurjano/levy.html. 

[Accessed: 26- Mar- 2017]. 
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𝑓(𝑥) = 𝑠𝑖𝑛2(𝜋𝜔1) 

+∑(𝜔𝑖 − 1)
2[1 + 10𝑠𝑖𝑛2(𝜋𝜔𝑖 + 1)] + (𝜔𝑑 − 1)

2[1 + 𝑠𝑖𝑛2(2𝜋𝜔𝑑)] 

𝑑−1

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒, 𝜔𝑖 = 1 +
𝑥𝑖 − 1

4
 

(A.11) 

 

Description: 

Dimensions: d  

Input Domain: 

The function is usually evaluated on the hypercube xi ∈ [-10, 10], for all i = 1, …, d.  

Global Minimum: 

f(x∗) = 0, at x∗ = (1,… ,1) 
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APPENDIX B 

EXPERIMENTAL RESULT 

 

Table B1 below shows the experimental results of all algorithms in Table 4.2 along with 

the multi-population strategy implemented in the former paper (old), applied to the 

functions mentioned in Table 4.1 with their maximum value, minimum value, mean value 

and standard deviation. 

 

 

Table B1  Experimental Results 

Function 
Multi-

population 
strategy 

Maximum 
Value 

Mean 
Minimum 

Value 
Standard 
Deviation 

f1 

a1 5.617E-12 2.953E-09 1.097E-09 1.394E-10 

old 3.703E-11 1.239E-07 4.294E-07 1.409E-08 

a2 1.286E-11 1.353E-07 3.581E-07 1.534E-08 

a3 3.174E-11 8.018E-08 3.297E-07 9.995E-09 

a4 2.477E-09 2.328E-01 9.313E-01 1.245E-08 

a5 2.840E-09 3.150E-01 1.475E+00 2.373E-03 

a6 2.839E-09 6.153E-01 2.532E+00 2.251E-02 

f2 

a1 4.723E+01 9.654E+01 1.863E+02 6.493E+00 

old 3.349E+01 1.083E+02 1.835E+02 1.006E+01 

a2 5.923E+01 1.080E+02 1.942E+02 7.965E+00 

a3 5.212E+01 1.154E+02 1.904E+02 9.872E+00 

a4 4.111E+01 1.271E+02 1.874E+02 1.144E+01 
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a5 8.292E+01 1.402E+02 2.192E+02 1.280E+01 

a6 8.711E+01 1.553E+02 2.393E+02 1.8334E+01 

f3 

 

a1 2.143E+02 3.552E+02 6.143E+02 2.075E+01 

old 4.165E+02 5.455E+02 6.823E+02 2.815E+01 

a2 3.117E+02 4.434E+02 6.698E+02 2.319E+01 

a3 3.191E+02 4.696E+02 6.668E+02 2.989E+01 

a4 3.084E+02 5.050E+02 7.157E+02 3.626E+01 

a5 3.728E+02 5.469E+02 9.025E+02 3.573E+01 

a6 3.876E+02 6.537E+02 9.979E+02 3.789E+01 

f4 

a1 1.020E-01 2.858E-01 8.233E-01 5.488E-02 

old 2.439E-01 5.240E-01 9.240E-01 8.665E-02 

a2 1.742E-01 3.479E-01 1.009E+00 6.526E-02 

a3 5.481E-02 4.095E-01 1.025E+00 9.001E-02 

a4 9.225E-02 4.076E-01 1.005E+00 8.769E-02 

a5 1.968E-01 5.121E-01 1.203E+00 1.024E-01 

a6 2.193E-01 5.350E-01 1.288E+00 1.132E-01 

f5 

a1  2.323E+01 2.534E-01 2.739E+01 2.804E-01 

old 2.353E+01 2.544E+01 2.906E+01 5.668E-01 

a2 1.742E-01 3.479E+01 1.009E+00 6.526E-02 

a3  2.352E+01 2.577E+01 2.729E+01 4.930E-01 

a4 1.931E+01 2.401E+01 2.692E+01 3.942E-01 

a5 2.341E+01 2.659E+01 3.121E+01 4.041E-01 
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a6 2.358E+01 4.030E+01 9.383E+01 9.199E-01 

f6 

a1 1.544E+04 1.544E+04 1.544E+04 3.705E-03 

old 1.544E+04 1.545E+04 1.545E+04 3.299E-01 

a2 3.152E-19 1.279E-13 4.541E-13 2.880E-14 

a3 1.544E+04 1.545E+04 1.546E+04 4.753E-01 

a4 1.344E+04 1.545E+04 1.546E+04 3.704E-01 

a5 1.544E+04 1.552E+04 1.589E+04 7.088E+00 

a6 1.544E+04 1.577E+04 1.731E+04 4.312E+01 

f7 

a1 4.036E-24 5.705E-20 1.919E-19 1.351E-20 

old 2.111E-23 4.322E-16 2.105E-15 9.784E-17 

a2 1.547E-22 1.997E-15 6.266E-15 4.352E-16 

a3 4.938E-23 1.017E-16 4.971E-16 2.175E-17 

a4 1.916E-19 1.484E-02 5.936E-02 2.693E-16 

a5 3.268E-19 1.105E-02 5.504E-02 7.732E-06 

a6 2.226E-19 3.406E-03 1.533E-02 1.768E-04 

f8 

a1 8.093E+02 3.341E+03 1.071E+04 8.153E+02 

old 1.432E+03 4.391E+03 1.898E+04 1.000E+03 

a2 4.466E+03 1.046E+04 3.226E+04 2.064E+03 

a3 2.679E+02 4.841E+03 1.651E+04 1.501E+03 

a4 1.467E+03 6.685E+03 2.309E+04 1.190E+03 

a5 2.165E+03 9.331E+03 2.839E+04 1.830E+03 

a6 1.643E+03 9.156E+03 2.729E+04 1.985E+03 
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f9 

a1 9.611E-05 6.515E+00 1.303E+01 1.030E-05 

old 1.387E-03 6.347E+00 1.902E+01 8.073E-04 

a2 1.613E-02 1.477E+01 2.952E+01 8.580E-04 

a3 1.678E-04 5.943E+00 1.782E+01 3.392E-04 

a4 2.054E-04 4.922E+00 1.967E+01 2.084E-04 

a5 1.656E-02 1.042E+01 3.638E+01 2.773E-01 

a6 3.503E-02 1.151E+01 3.177E+01 5.146E-01 

f10 

a1 8.799E+01 1.127E+02 2.090E+02 6.796E+00 

old 8.871E+01 1.529E+02 2.262E+02 9.964E+00 

a2 6.444E+01 1.305E+02 1.976E+02 8.024E+00 

a3 7.897E+01 1.456E+02 2.234E+02 1.012E+01 

a4 1.200E+01 1.594E+02 2.162E+02 1.126E+01 

a5 9.150E+01 1.701E+02 2.667E+02 1.280E+01 

a6 1.011E+02 1.904E+02 3.100E+02 1.312E+01 

f11 

a1 1.772E-23 9.532E-19 3.113E-18 2.223E-19 

old 8.018E-23 1.010E-03 5.032E-01 1.298E-02 

a2 7.821E-14 4.999E-02 9.998E-02 1.796E-14 

a3 4.617E-21 3.391E-14 1.683E-13 7.761E-15 

a4 1.061E-17 5.779E-01 2.311E+00 6.989E-15 

a5 3.001E-18 1.577E-01 7.655E-01 9.828E-03 

a6 8.100E-18 3.077E-01 1.348E+00 2.440E-02 
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