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ABSTRACT 

PROTEIN ENGINEERING OF COTA LACCASE 

BY USING BACILLUS SUBTILIS SPORE DISPLAY 

by 

Silu Sheng 

 

Spore display offers advantages over more commonly utilized microbe cell-surface 

display systems. For instance, protein-folding problems associated with the expressed 

recombinant polypeptide crossing membranes are avoided. Hence, a different region of 

protein space can be explored that previously was not accessible. In addition, spores 

tolerate many physical/chemical extremes. The aim is to improve pH stability using spore 

display. The maximum activity of CotA is between pH 4 and 5 for the substrate ABTS 

(ABTS = diammonium 2, 2’–azino-bis(3-ethylbenzothiazoline-6-sulfonate)). However, 

the activity dramatically decreases at pH 4. The activity is not significantly altered at pH 

5. CotA is used as a model to prove that enzymes could be improved for pH resistance by 

using Bacillus subtilis spore display. First, CotA is evolved for increased half-life (t1/2) at 

pH 4. Next, a double mutant is constructed. This variant combines the amino acid 

substitutions from the improved t1/2 variant (E498G) and organic solvent tolerant mutant 

(T480A). The t1/2 and kinetic parameters are evaluated for the double mutant. 

Consequently, T480A/E498G-CotA is constructed and the t1/2 is 62.1 times greater than 

wt-CotA. Finally, T480A/E498G-CotA yields 5.3-fold more product than does wt-CotA 

after recycling the biocatalyst seven times over 42 h. Also, the mutant and wild-type are 

overexpressed in E. coli and purified. The enzymes immobilized in the spore coat are 

compared with the purified free protein. The t1/2 and catalytic efficiency follow the same 
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trends for spore or E. coli expressed wt-CotA and E498G-CotA, although the kinetic 

parameters are different. 

 In a previous investigation, a laccase (CotA), which is found on the spore coat of 

Bacillus subtilis, was engineered by directed evolution for improved activity in organic 

solvents. A CotA variant was identified with a Thr480Ala (T480A-CotA) amino acid 

substitution after only one round of evolution. The screen was performed at 60 % DMSO 

and it was 2.38-fold more active than the wild-type CotA (wt-CotA) with substrate ABTS. 

T480A-CotA was more active from a range of 0 – 70 % DMSO. In addition, the variant 

was more active in ethanol, methanol and acetonitrile. In this study, the catalysis of 

T480A-CotA and wt-CotA in the spore coat is determined with natural phenolic 

compounds, such as (+)-catechin, (-)-epicatechin and sinapic acid in aqueous-organic 

media. In general, the catalytic efficiency (Vmax/Km (A/OD580)/mM) of T480A-CotA is 

higher than wt-CotA for all the substrates. Then, the Vmax for T480A-CotA is greater than 

the wt-CotA in all organic solvents used in this study. The Vmax for T480A-CotA is up to 

3.4-fold, 7.9-fold and 6.4-fold greater than wt-CotA for substrate (+)-catechin, (-)-

epicatechin and sinapic acid, respectively. In addition, the catalyst can be easily removed 

from the reaction solution and reused. This allows for simpler recovery of the product 

from the enzyme. This investigation indicates that enzymes expressed on the spore coat 

can be utilized for industrial applications. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Evolution in Nature 

Evolution is the process by which organisms have descended from ancient ancestors. 

Time is not the main factor in evolution, but it is genetic inheritance [1]. In Darwin’s 

theory, all organisms share common ancestors [2]. Species change over time and space. 

Species living today are different from those in the past. This evolutionary change can be 

gradual and slow (Figure 1.1) [3].  

 

Figure 1.1  The evolutionary tree of life. Natural biological evolution is modification 

through genetic inheritance that passing on from parents to offspring. 

Source: https://bethbuddenteacher.wordpress.com/2015/01/02/teaching-evolution/ (accessed on April 18, 

2017) 

https://bethbuddenteacher.wordpress.com/2015/01/02/teaching-evolution/
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The primary mechanism of evolutionary change is natural selection. Charles 

Darwin introduced this concept in 1859 [4]. Variation exists within all populations of 

organisms and occurs partly because random mutations that take place in the genome of 

an individual organism. These mutations can be passed on from parent to offspring, 

therefore, such changes are heritable [5]. The struggle for resources will favor individuals 

with some variations over others from one generation to the next, and thereby change the 

frequency of traits within the population (Figure 1.2) [6]. For example, there may have a 

population of red beetles in ancient times. A mutation occurred in the DNA which caused 

the parents with genes for red coloration to have offspring with a gene for green 

coloration. This species lives on the tree; therefore, red beetles are easier for birds to 

identify and eat. Green beetles are a little more likely to survive to produce offspring. 

They pass their genes for green coloration on to their offspring because they blend into 

the background. As time goes, this species will evolve from red to green under natural 

selection. 
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Figure 1.2  Evolution of red beetles. Evolution in nature happens over time based on 

differential survival of offspring. 

 

Evolution can also occur on the single molecule level, such as proteins. For 

example, myoglobin is an oxygen-binding protein found in the muscle tissue in almost all 

mammals. Myoglobin from human and whale contain 153 and 154 amino acids, 

respectively. There are 25 amino acid differences by comparing the sequences of both 

myoglobins (Figure 1.3) [7]. Thus, the proteins had a common ancestor and the number 

of amino acid substitutions in two related proteins is roughly proportional to the 

evolutionary time. These proteins have evolved in the context of the organism in order to 

survive. In essence, a whale myoglobin may not function properly in a human. 
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Figure 1.3  Myoglobin evolution. Evolution can also occur on the single molecule level 

such as proteins. 

 

1.2 Directed Evolution 

Enzymes are potentially catalysts and can be used in industrial processes. They can be 

used as “green” catalyst because they operate at room temperature and aqueous solutions. 

Furthermore, they have high substrate specificity and can produce chiral products with 

high enantiomeric excess [8]. However, these advantages can also be shortcomings when 

used in industrial conditions, because they have evolved for millions of years and adopted 

specific properties. In industry, extreme conditions are used such as high salt 

concentration, temperature, and organic solvents. These conditions often inactive 

enzymes [9]. As a result, an efficient method must be used to engineer and optimize the 

enzymes.  

The two extremes of protein engineering are rational design and evolutionary 
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(irrational) methods. Rational design requires in-depth knowledge of the protein structure, 

and its catalytic mechanism [10]. Amino acid substitutions are guided by the structure of 

the protein. However, it is still extremely difficult to predict the effect of an individual 

amino acid mutation even with a known structure. Therefore, this method is not always 

reliable for protein engineering and optimization. On the other hand, evolutionary 

methods do not require a structure or details of the mechanism of the desired activity [11]. 

The only requirement is the gene of interest. This method uncovers amino acid 

substitutions than one can never predict. For example, amino acid substitutions that 

improved catalytic activity can be far from the active site [12]. As a result, evolutionary 

strategies, also known as directed or laboratory evolution, have become the methods of 

choice. It opens a way to overcome some of the barriers to implement proteins for 

application in industry, biotechnology, and pharmaceuticals [13].  

Directed evolution is a protein engineering method that mimics natural evolution. 

The main goal of this engineering strategy is to obtain proteins with improved or 

optimized properties, for example resistance to unusual pH, temperature, organic solvent, 

etc. Furthermore, amino acid substitutions uncovered that optimize a protein can be used 

to study structure/function relationships [14].  

Directed evolution is an iterative process and there are four general steps: (1) 

diversification: generate gene library of the target protein (2) expression of protein library 

(3) screen the library under a specific condition for desired functions and (4) amplify the 

selected “winner” (a member in the library) (Figure 1.4). 
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Figure 1.4  An illustration of directed evolution. Directed evolution is a protein 

engineering method that mimics natural evolutions.  

 

The size of DNA library needs to be addressed. The mutation rate needs to be 

controlled to make the library size manageable because libraries may have to be 

exhaustedly screened to discover a winner. It is physically impossible to screen extremely 

large libraries. The number of variants V of a protein of amino acid length L that differ by 

a mutation number of H is given by the Equation 1.1 [15]: 

 

 

(1.1) 

 

For example, a protein of L = 300, the number of variants with a mutation number H = 1 

there are 5700 variants. If there are two amino acid substitutions (H = 2) then the number 

 
!

=19
! !

H L
V

H L H
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of variants V is 1.610
7
. Finally, the number of variants (V) with a mutation number H = 

3 is 310
10 

(Table 1.1). It becomes physically impossible to effectively screen library 

sizes with a mutation rate greater than 2. As a result, the mutation rate should be 

approximately 2 per gene.  

 

Table 1.1  Number of Amino Acid Changes versus Number of Variants. 

Number of Amino Acid Changes Number of Variants 

0 1 

1 5700 

2 1.6*10
7 

3 3.0*10
10 

4 4.3*10
13 

5 4.8*10
16 

Note: The number of variants of a 300 amino acid long protein. 

 

Many powerful technologies were developed to create a sizable library and 

generally can be divided into three categories: 1) saturation mutagenesis, which is a 

method to simultaneously introduce the other 19 amino acid at a specific site [16];  

2) random mutagenesis, which mimics asexual reproduction [17]; 3) DNA recombination, 

also known as DNA shuffling, which mimics sexual reproduction [18].  

Saturation mutagenesis is a technique that generate all possible (or as close to as 

possible) mutations at a specific site or a narrow region of a gene. It involves the 
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randomization of one codon of a gene using synthetic oligonucleotides possessing a 

randomized codon flanked by wild-type sequences. Several codons may also be 

randomized, simultaneously, though this results in large libraries. This technology is 

limited because it requires knowledge of functional important regions of the enzyme, and 

relies heavily on structural insights for site specific targeting in proteins.  

Random mutagenesis and DNA recombination are more commonly evolutionary 

strategies used in the laboratory [19]. Random mutagenesis mimics asexual reproduction 

and introduces random mutations in the gene of interest by a thermal stable DNA 

polymerase [20]. The reaction condition of the polymerase chain reaction (PCR), which 

amplifies DNA, is altered in order to introduce random mutations in the gene [21]. This is 

called error prone PCR (ep-PCR). Ep-PCR has several steps (Figure 1.5): (1) The gene is 

selected; (2) the target gene is amplified; (3) the PCR products are inserted into a carrier 

plasmid; (4) the plasmids containing the target gene are translated to proteins. 
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Figure 1.5  Scheme of random mutagenesis. Random mutagenesis mimics asexual 

reproduction and is commonly done by epPCR. 

 

The second type is recombination of genes that mimics sexual reproduction: DNA 

shuffling [22,23]. Generally, DNA shuffling can be divided into several steps (Figure 1.6). 

(1) The gene fragments are first created by DNAse digestion. Each fragment may contain 

mutations. The different colors along the genes in Figure 1.6 represent different mutations. 

For example, yellow may denote blond hair, and blue may represent blue eyes. (2) The 

full-length of DNA is generated PCR. (3) After amplification, the target DNA is inserted 

in a carrier plasmid. (4) Proteins are expressed like in random mutagenesis.  
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Figure 1.6  Scheme for DNA shuffling. DNA shuffling was developed to mimic sexual 

reproduction. 

 

1.3 Protein Display 

The principle of protein display technologies is the ability to physically link phenotypes 

of polypeptides displayed in a certain system to their corresponding genotype, which was 

first shown for phage display [24]. This connection must remain intact for a successful 

evolution experiment. These technologies could be divided into two major categories, in 

vivo and in vitro. In vitro includes phage and cell surface display, while in vivo consists of 

ribosome, RNA and DNA display (Figure 1.7) [25]. 
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Figure 1.7  Scheme of available display technologies. All display platforms are based 

on the ability to physically link the polypeptide produced by a library clone to its 

corresponding genotype. This allows one to recover the DNA encoding the clone selected 

based on the desired polypeptide phenotype, such as binding to the target [25]. 

 

1.3.1 In vitro Protein Display 

The major potential advantage of in vitro protein display over in vivo methods is the size 

of the libraries that can be displayed and therefore the diversity subject to selection, 

because in cell-free assays there is no transformation step and no limit for library 

diversity [26]. However, in vitro methods have limitations. For example, mRNA display 

is not suitable for displaying membrane-bound proteins due to the difficulty in expressing 

such proteins using in vitro translation systems [27]. Also, screening conditions that may 

break the genotype/phenotype connection should not be applied. These technologies were 
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usually used to screen for specific high-affinity target-binding molecules including 

peptides, antibody fragments, and whole functional proteins presented by various 

scaffolds [28,29]. 

The connection between the genotype and phenotype is achieved by different 

strategies in these in vitro technologies (Figure 1.7). In ribosome display, linkage between 

the gene and the encoded polypeptide is achieved by stabilization of complexes between 

the ribosome, mRNA and the encoded polypeptide upon termination of elongation with a 

permissive marker, such as chloramphenicol or low temperature [30]. In mRNA display, 

linkage between the gene and the encoded polypeptide is achieved by a puromycin 

molecule covalently bonding the mRNA 3’-end and the translated polypeptide upon the 

ribosome stalling at the junction of mRNA and an engineered single-stranded DNA linker 

[28]. In covalent DNA display, linkage between the gene and the encoded polypeptide is 

achieved by covalent bond that forms between the DNA-binding protein P2A (produced 

as a fusion with polypeptide) with the DNA encoding the fusion [28].  

 

1.3.2 In vivo Protein Display 

Generally the screening can be performed under in vivo conditions [31]. This means 

proteins translated from DNA libraries can be transported to the microorganism. 

“Traditional” methods such as phage display [32], bacterial display [33,34] and yeast 

display [35,36] are suitable when the evolved protein is to be used in living organisms 

(Figure 1.8).  
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Figure 1.8  “Traditional” methods of protein display. Protein can be displayed with (A) 

phage, (B) yeast or (C) Escherichia coli (E. coli). 

 

In general, there are two screening strategies. The first one is expressing protein 

libraries inside the host, for example, in the cytoplasm of E. coli (Figure 1.9A). The other 

way is first expressing protein libraries inside the host, and then transporting the protein 

to the surface to be displayed outside the host cells (Figure 1.9B). This strategy is called 

cell surface display. The protein displayed on the cell surface is often fused to a carrier 

protein. The carrier protein is usually a natural occurring protein found on the surface or 

outer membrane, which is represented as a green circle in Figure 1.9B. 

 



14 

 

 

Figure 1.9  Two strategies of screening. (A) Proteins are expressed inside the host. Red 

structure represents proteins, grey structure represents DNA, and in blue is the cell 

surface; (B) Protein displayed outside the host cell. Green circle represents carrier 

proteins. 

 

Displaying proteins libraries on the cell surface has advantages over expressing 

libraries inside the cells. If the protein is displayed inside, then the cells must be lysed to 

gain access to the protein for the assay (Figure 1.10). Therefore, the connection between 

genotype and phenotype will be lost (Figure 1.11). In other words, the improved protein 

and the gene that codes for it is separated and must be retrieved from another plate 

(Figure 1.10). In addition, the assay is hindered because of multiply liquid handling steps. 

For example, the cell lysates require centrifugation in order to pellet the cell debris and 

the supernatant may be pipetted into another reaction vessel for the assay (Figure 1.10). 

Finally, the assay solution is complicated furthermore by the soluble contents of the cell, 

which may include DNA, RNA, proteins, etc… 
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Figure 1.10  Screening protein libraries in the cell. 1) Library is transformed into cells. 

2) Single colonies are picked into microtiter plate and grown. 3) A duplicate plate is made 

and the original plate is stored to retrieve the gene of the improved protein variant. This 

gene is used a parent for the next rounds of evolution. 

 

Cell surface display may overcome issues discussed above. First, the 

genotype/phenotype connection remains intact. Next, substrates or protein targets are 

freely accessible. Furthermore, liquid handling is minimal. In addition, there is more 

control of the assay conditions because it is not complicated by addition of the soluble 

contents of the cell. Finally, the reaction solution can be easily exchanged by 

centrifugation.  

 



16 

 

 

Figure 1.11  Genotype/phenotype connection for proteins expressed inside the cell. Cell 

lysis is necessary to gain access to the protein. As a result, the genotype-phenotype 

connection will be lost. 

 

Many strategies are developed for directed evolution by using cell surface display. 

Figure 1.12 shows steps of an example of evolving a protein to bind a specific target:  

(1) Gene libraries are transformed into cells. (2) The library is expressed on the cell 

surface and each cell contains a unique member of the gene library. (3) The library is 

screened for binding a target. (4) The proteins that bind nonspecifically are eliminated by 

a wash step. (5) The improved protein is released from the target. (6) The cells are 

cultured and the gene is isolated for another round of evolution. 
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Figure 1.12  An example of directed evolution by cell surface display. A library is 

screened by using affinity binding assay. 

 

Traditional cell surface display methods are powerful and many proteins were 

evolved for improved properties or functions [37]. This technology has transformed 

protein discovery in industry and academia. For example, E. coli is considered an 

attractive host because of the availability of various genetic tools and mutant strains and 

the high transformation efficiency for screening of a large peptide or protein library after 

surface display [38]. Screening displayed proteins with extreme properties has many 

advantages in designing pharmaceuticals and industrial catalyst. Although protein display 

seems ideal, there are some severe limitations, which are cell viability and protein 

folding. 
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Cell viability is a major issue. For example, industrial reaction conditions may 

require elevated temperatures or organic solvents to dissolve hydrophobic substrates.  

However, screening with harsh assay conditions will lyse the cells and the 

genotype/phenotype connection will be lost (Figure 1.12, step 3; Figure 1.13). 

Furthermore, screening under extreme conditions or toxic substrates, the cell will not 

remain viable. As a result, the cells cannot be cultured and the gene cannot be isolated 

(Figure 1.12, step 5 & 6).  

 

Figure 1.13  Problems in traditional cell surface protein display. The connection of 

genotype and phenotype will be gone if the cell is lysed under harsh condition. 

 

Also, there are protein folding issues. In E. coli for instance, disulfide bonds 

cannot properly form because the proteins are expressed in the cytoplasm, which is a 

reducing environment [39]. Also, the target proteins must travel through several 

membranes to reach cell surface. First, the protein travels through the inner membrane, 

and then passes across the peptidoglycan layer, and finally the protein travels to the outer 
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membrane (Figure 1.14). This causes misfolded and nonfunctional proteins. Taken 

together, these technologies limit the numbers of proteins that can be displayed [40,41].  

 

Figure 1.14  Cell membrane structure of E. coli. Proteines are first expressed in 

cytoplasm. They may misfold when travelling across membranes to the surface. 

 

1.3.3 E. coli Cell Surface Display 

Among Gram negative bacteria, E. coli has been extensively investigated in cell surface 

engineering. It is an attractive host for cell surface display because of the availability of 

various genetic tools and mutant strains and the high transformation efficiency for 

screening of a large peptide or protein library. To display heterologous proteins onto the 

surface of E. coli, different strategies were used. These include the insertion of the target 

sequences into the surface exposed outer membrane proteins; insertion of target 

sequences into a protein forming part of a cell surface structure such as a flagellum; or 
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the fusion of target sequences to the N-terminus of lipoproteins (Figure 1.15).  

The major problem is the target proteins need to cross two bacterial membranes to 

reach the extracellular surface. This may cause protein misfolding and disfunction. Also, 

the fragility of outer membrane caused by the display of proteins can be a problem. In 

addition, this method cannot be used to evolve proteins with extreme properties, which is 

due to viability issues as mentioned above. 

 

 

Figure 1.15  Different strategies to display passenger proteins (green circles) on the 

surface of E. coli. 

Source: [38] 
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1.3.4 Yeast Cell Surface Display 

Yeast surface display involves the expression of protein of interest on the yeast cell wall 

by using N-terminal fusion or C-terminal fusion and it can be used for post-translational 

modification found in eukaryotic organisms (Figure 1.16) [35]. Using -galactosidase as 

a target protein, it was demonstrated that a number of cell wall proteins (Cwp1p, Cwp2p, 

Ag1p, Tip1p, Flo1p, Sed1p, YCR89w, and Tir1) could be used as N-terminal fusion 

[42]. For C-terminal fusion, the most widely used anchor is Aga2. The cell wall protein 

a-agglutinin consists of two subunits, Aga1p and Aga2p. Aga1p is incorporated into the 

cell wall, whereas Aga2p fused with a target protein is conjugated to Aga1p via a 

disulfide bond. 

Glycosylated proteins have been successfully displayed on yeast. However, 

differential glycosylation may interfere with the function of the displayed protein [43]. A 

potential disadvantage of yeast display is that the library size is limited to 10
6
-10

7
 

because of low transformation efficiency. In addition, this method also suffers from 

viability concerns when screen under extreme conditions. 
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Figure 1.16  Schematic illustration of a yeast cell surface display. 

    

1.4 Spore Display 

Spores may overcome the problems associated with traditional protein display. A brief 

overview of sporulation needs to be discussed for the gram-positive organism Bacillus 

subtilis. Bacterial spores are formed in response to starvation. The best studied 

spore-forming bacteria is B. subtilis, which is found to have no safety concerns for 

labotory use. Sporulation of B. subtilis (Figure 1.17) proceeds through a well-defined 

series of morphological and biosynthetic steps: (1) an asymmetric division of the 

sporulating cell creates a sporangium composed of two compartments: the mother cell 

and the forespore. The mother cell nurtures the forespore and the proteins that make up 

the coat are synthesized. (2) The mother cell engulfs the forespore as the spore coat is 

formed. Coat assembly begins just after the initiation of engulfment and continues 
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throughout sporulation. (3) The spore is formed. (4) The cells are lysed. (5) The spores 

are released. 

 

 

Figure 1.17  B. subtilis sporulation process. 

  

Spores are the most resistant form of life on earth and remain viable under 

extreme chemical and physical conditions and they do not lyse. As a result, proteins can 

be evolved to possess extreme properties. For example, displayed proteins can be evolved 

to remain active in organic solvents [44]. Screening under these conditions would lyse the 

cell in traditional protein display, which would separate the gene from the improved 

protein (Figure 1.18A). In short, spore display maintains the genotype/phenotype 

connection intact (Figure 1.18B). In addition, protein folding problems associated with 

the target protein traveling through cell membranes is eliminated, which is due to the 

natural sporulation process [45]. Furthermore, the mother cell contains ATP-dependent 

chaperone proteins, which assist in folding proteins. 
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Figure 1.18  Illustration of traditional display and spore display. (A) The connection of 

genotype and phenotype is lost under harsh conditions in traditional display methods. (B) 

The connection of genotype and phenotype remain intact under harsh conditions in spore 

display. 

 

Spore displayed proteins is convenient and has economic advantages in industrial 

application. For example, enzymes are immobilized on the inert surface of spore coat and 

become more stable. Next, spores can be easily removed from the reaction mixture to 

ease in product purification. 

 

1.4.1 Composition of the B. subtilis Endospore 

The B. subtilis spores are encased in a well protecitve coat consisting of an inner coat and 

outer coat that make the spores can withstand extremes of heat, desiccation, and 
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chemicals (Figure 1.19). The coat outside the spores are composed of >70 different 

proteins (Figure 1.20). The layer beneath the inner coat is called cortex, separated from 

the coat by a outer membrane. The cortex is composed predominantly of peptidoglycan 

with a structure similar to that of peptidoglycan in growing cells. The cortex is essential 

for the attainment and maintenance of the dehydrated state of the spore core, for spore 

mineralization and for dormancy [45]. The central part of the spore is the core, separated 

from the cortex by a inner membrane. It contains one copy of the bacterial chromosome 

and plasmid copies if present in the vegetative cell. The DNA molecules in the core are 

complexed with small acid-soluble proteins (SASPs), making up as much as 20 % of the 

total spore protein [46]. 

 

Figure 1.19  Structure of B. subtilis spore under transmission electron microscopy 

(TEM). 
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1.4.2 Protein Displayed by B. subtilis Spores 

As descirbed above, the proteins on the spore coat are synthesized inside the sporulating 

mother cells and deposited on the spore surface as prespores emerge (Figure 1.17). Thus, 

proteins can be displayed on the spore surface by fusing with coat proteins (Figure 1.20). 

Up to now, B. subtilis spore display has been used for a range of biotechnological 

applications, such as vaccine development [38,47-49] and whole-cell biocatalysts [50]. 

Our group first demonstrated that the spore display system could be used for directed 

evolution [51]. 

The spore-display system is based on the construction of gene fusions between 

heterologous DNA and a B. subtilis gene coding for a spore coat protein that located on 

the spore surface. The outer surface proteins CotG, CotB, and CotC were demonstrated to 

be able to display enzymes and heterologous antigens. All three proteins are tyrosine-rich 

and present as multimers within the spore coat [52]. CotG has a central region formed by 

nine tandem repeats of a lysine-, serine-, and arginine-rich motif [53]. CotB is a 46-kDa 

polypeptide which is posttranslationally converted into a form of about 66 kDa [54]. 

CotC forms multimeric species with itself [55].  

Until now, CotG has been used to display -galactosidase (-Gal) [50]. 

-Galactosidase is a very large protein (116 kDa per monomer), and active only as a 

tetramer and known to be toxic to the host cell. The successful display of this protein 

functionally on spore coat demonstrated the advantage of spore display. Also, solvent 
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stability of surface expressed -galactosidase in organic solvents was significantly 

increased as compared to the free form of soluble -galactosidase. CotB and CotC was 

used to display the amyQ-encoded -amylase and GFPuv [56]. Enzymes displayed on 

spores behave like immobilized enzymes, showing correct function, and enhanced 

stability toward heat and solvents. They can be used as spore-immobilized biocatalysts. 

Two heterologous antigens, tetanus toxin fragment C (TTFC) from Clostridium tetani, 

and a heat-labile toxin of E. coli (LTB), are displayed on the spore surface with CotC, and 

could be used to create a combination vaccine. 

Highly expressed proteins may also be adsorbed to the spore surface via 

hydrophobic or electrostatic protein–protein interactions, other than fusing to a carrier 

protein on spore coat [57]. This method broadened the application of spore display for 

protein engineering, because the fusion protein hinders the correct conformation, and 

some proteins are not amenable to N-terminal or C-terminal fusion. However, the 

absorbed enzyme may diffuse from the surface. This would complicate product isolation 

in a reaction solution because the enzyme is in mixture. 

There are several ways to improve spore display. First, the majority of spore 

display examples often rely on stable integration of an expression construct into the 

chromosome of B. subtilis. However, this approach presents several limitations, such as 

low expression level and complex operation. Utilizing a high copy number E. coli–B. 

subtilis shuttle vector can help to overcome these problems [56,58]. Also, B. subtilis cells 
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produce a variety of intra- and extracellular proteases. Target proteins anchored on the 

spore surface are first exposed to intracellular proteases and, after lysis of the mother 

cells, to extracellular proteases. To prevent the degradation of target proteins, the 

eight-fold protease-deficient strain B. subtilis was used [59]. Finally, the spore surface 

could be re-engineered to enhance molecular display. The spores are covered with coat 

and spore crust proteins, therefore, evolved coat proteins may further improve the 

efficiency of display. 

 

Figure 1.20  Model for spore coat assembly. 

Source: [60] 
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1.5 Laccase 

Laccases are members of multicopper oxidase family enzymes. It was first found in the 

sap of the Japanese lacquer tree Rhus vernicifera [61]. Hence, the name of the enzyme is 

laccase. They have diverse physiological roles such as lignin synthesis [62], lignin 

degradation [63], pathogenesis [64] and morphogenesis [65]. They catalyze many 

substrates. In laccase-catalyzed one-electron oxidation processes, four molecules of 

substrate are oxidised in order to reduce a dioxygen molecule to two waters molecules. 

Substrate oxidation occurs at the mononuclear T1 centre and then the electrons are 

shuttled, along a T1 coordinating cysteine, to the two histidines that are coordinating the 

T3 coppers of the trinuclear centre, where reduction of dioxygen occurs (Figure 1.21). 

Laccases have applications in the textile industry, paper bleaching, chemical synthesis, 

biofuel cells, and bioremediation [66]. 

 

Figure 1.21 Reaction of catalysis of laccase.  
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CotA, a laccase, is an endospore coat protein in B. subtilis (Figure 1.22). The 

physiological role of CotA in B. subtilis has not been determined. Spores have a 

characteristic brown color. If CotA is knocked out of the genome, the spores lose this 

color. The color protects the spores from UV light and peroxide [67]. In addition, it 

assists with melanin biosynthesis and cross-link coat protein structure components. 

 

Figure 1.22  Ribbon diagram of the ABTS–CotA complex. ABTS is shown as colored 

spheres. The model of ABTS-CotA complex was generated by UCSF Chimera (Resource 

for Biocomputing, Visualization, and Informatics (RBVI), UCSF). 

Source: http://www.rcsb.org/pdb/explore/explore.do?structureId=3ZDW (accessed on April 18, 2017) 

 

Spore display was first applied to directed evolution in our laboratory and 

increasing substrate specificity was the goal. A library of cotA were expressed on spore 

coat and screened for activity toward ABTS [diammonium 

http://www.rcsb.org/pdb/explore/explore.do?structureId=3ZDW
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2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate)] over SGZ 

(4-hydroxy-3,5-dimethoxy-benzaldehyde azine) [51]. A library of approximately 3000 

clones was screened in one round of evolution. A threonine to leucine substitution at 

position 260 was uncovered and it was 120-fold more specific for ABTS (Figure 1.23). 

 

Figure 1.23  Ribbon diagram of Thr260Leu-CotA. The model of Thr260Leu-CotA was 

generated by UCSF Chimera (Resource for Biocomputing, Visualization, and Informatics 

(RBVI), UCSF). 

 

We wanted to take advantage of the inert properties of the spore coat and evolve a 

protein with extreme properties. CotA was evolved for improved activity under 

conditions of high organic solvent concentrations [44]. A cotA library was expressed on 

spore coat and approximately 3000 clones were screened at 60 % dimethyl sulfoxide 

(DMSO) in one round of evolution. A threonine to alanine amino acid substitution at 
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position 480 variant (Figure 1.24) was identified that was 2.38 fold more active than the 

wild-type CotA. In addition, Thr480Ala-CotA was more active with varying 

concentrations of DMSO ranging from 0 – 70 %. The mutant was also found to be more 

active compared to wild-type CotA in different concentrations of methanol, ethanol and 

acetonitrile.  

 

Figure 1.24  Ribbon diagram of Thr480Ala-CotA. The model of Thr480Ala-CotA was 

generated by UCSF Chimera (Resource for Biocomputing, Visualization, and Informatics 

(RBVI), UCSF). 
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CHAPTER 2 

DIRECTED EVOLUTION OF COTA LACCASE FOR ACIDIC PH 

STABILITY BY USING BACILLUS SUBTILIS SPORE DISPLAY 

 

Bacillus subtilis spores can be used for protein display to engineer and optimize protein 

properties. This method overcomes viability and protein folding concerns associated with 

traditional protein display methods. Spores remain viable under extreme conditions and 

the genotype/phenotype connection remains intact. In addition, the natural sporulation 

process eliminates protein-folding concerns that are coupled to the target protein 

travelling through cell membranes. Furthermore, ATP-dependent chaparones are present 

to assist in protein-folding. In general, proteins that are immobilized have advantages in 

biocatalysis. For example, the protein can be easily removed from the reaction and it is 

more stable.  

We recently showed that spores could be utilized for directed evolution. The 

laccase CotA, which is a B. subtilis spore coat protein, was the target. A library of cotA 

genes was expressed on the spore coat, and it was evolved for improved substrate 

specificity [51]. Next, spores are able to remain viable under extreme conditions, and 

CotA was evolved for improved activity in high concentrations of organic solvents [44]. 

E. coli or yeast protein display methods are not compatible with screening with high 

concentrations of organic solvent because the cell would lyse and the connection between 

the gene and the improved protein is lost. The next goal was to optimize CotA as a whole 

cell biocatalyst immobilized in an inert matrix of the spore coat for improved pH stability 
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using spore display. 

In general, pH has an effect on enzyme activity. Each enzyme has its own 

optimum pH to undergo catalysis. It is because pH can change the state of ionization of 

acidic or basic amino acid, therefore change the structure of the enzyme. Enzymes will be 

inactive because the 3-dimensional structure will be altered (Figure 2.1) [68]. Also, pH 

may change ionization state of substrates. As a result, the substrate may not bind to the 

enzyme. In industry, extreme low or high pH may be applied. Most enzymes will be 

inactive under these conditions. In this case, enzymes that can resist extreme pH are 

desired. For example, α-amylase was engineered to improve the stability at low pH to 

meet the starch industry environment [69]. Corn starch is converted to fructose/glucose 

syrup by α-amylase, and this process also includes steam injection to reduce the viscosity.  

The reaction occurs at pH 6, but a low pH is desired to prevent unwanted byproducts. 

Acid resistant enzymes have applications in degradation of polymeric or oligomeric 

carbon sources, biofuel production, textile industry, and fruit juice production [70].  

 

Figure 2.1  pH effect on enzyme activity. 
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The maximum activity of the laccase CotA with the substrate ABTS is between 

pH 4 and 5. However, it was found that the activity dramatically decreases at pH 4. The 

activity is not significantly altered at pH 5. We used CotA as a model to prove that 

enzymes could be improved for pH resistance by using Bacillus subtilis spore display. 

First, CotA was evolved for increased half-life (t1/2) at pH 4. Next, a double mutant was 

constructed. This variant combined the amino acid substitutions from the improved t1/2 

variant and organic solvent tolerant mutant. The t1/2 and kinetic parameters were 

evaluated for the double mutant. 

 

2.1 Materials 

Chemicals used were analytical grade or higher. 

2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), citric acid, disodium 

phosphate, copper(II) chloride were purchased from Sigma Aldrich (St.Louis, MO). 

Ampicillin, spectinomycin, chloramphenicol was purchased from Fisher Scientific 

(Pittsburgh, PA). DNA purifications kits were purchased from Qiagen (Valencia, CA). 

Primers were purchased from Fisher Scientific (Pittsburgh, PA). Enzymes were purchased 

from Invitrogen (Carlsbad, CA) and Agilent Technologies (La Jolla, CA). 
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2.1.1 Library Construction 

The plasmid, pDG1730CotA, was previously constructed, which contains the CotA gene 

under control of its natural promoter. Libraries were constructed with help from Dr. Han 

Jia (Figure 2.2). Random mutagenesis libraries were created by error prone PCR (ep-PCR) 

using GeneMorph II Random Mutagenesis (Agilent Technologies, La Jolla, CA.). A 

typical 50 μL GeneMorph reaction contained pDG1730CotA (3000 μg,), primers 

BacsubF (125 ng; 5’-GCGCGCAAGCTTGTGTCCATGGCGTT-3’) and Psg1729 (125 

ng; 5’GCGCGGATCCTTATTTATGGGGATCA-3’), dNTP mix (40 nmol, 10 nm each), 

and Mutazyme II DNA polymerase (2.5 U) and 5 μL buffer. The PCR program consisted 

of 30 cycles at 95 °C for 30 s, 56.3 °C for 30 s and 72 °C for 4 m. 

Libraries were also made using taq polymerase. A typical 100 μL ep-PCR reaction 

contained pDG1730CotA (100 ng), dGTP (20 nmol), dATP (20 nmol), dCTP (100 nmol), 

dTTP (100 nmol), primers BacsubF and Psg1729 (500 ng each), MgCl2 (0.7 mM), 

Platinum Taq DNA Polymerase (5 U, Invitrogen, Grand Island, NY) and reaction buffer 

(10 μL). The PCR program consisted of 30 cycles at 95 °C for 30 s, 56.3 °C for 30 s and 

72 °C for 4 m. 
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Figure 2.2  CotA was amplified with error prone PCR and transformed into E.coli. 

 

For each library, the PCR product was digested with HindIII and BamHI and was 

cloned into the same sites in the plasmid pDG1730. The resulting plasmids were 

transformed into E.coli DH5α and plated on LB plates containing ampicillin (100 μg/mL). 

The transformants were collected together and the plasmids were isolated. The library 

was integrated into the amyE locus into B. subtilis strain 1S101 (Ohio State University, 

Bacillus Genetic Stock Center, Columbus Ohio) (Figure 2.3).  
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Figure 2.3  CotA library was transformed into Bacillus subtilis and displayed on cell 

surface. 

 

This transformation was achieved by double cross-over recombination. This strain 

is a cotA knockout strain (Figure 2.4). 

 

Figure 2.4  CotA was integrated into the genome of Bacillus subtilis by double-cross 

recombination. 
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2.2 Methods 

 

2.2.1 Spore Screening for Acid-stability 

Expression of the library in 96-deep-well plates was previously described [71]. After 

expression, the plates were centrifuged and the media discarded. The spores were 

resuspended in 200 μL spore control solution [sterile water containing CuCl2 (0.25 mM)] 

and incubated at room temperature for 30 min. Next, two assay plates were constructed 

for screening. One plate had 40 μL spore control solution in each well as control plate, 

and the other had 40 μL spore control solution with 100 μL citrate phosphate buffer (100 

mM, pH 4) containing CuCl2 (0.25 mM) as assay plate. Both plates were at room 

temperature for two hours. After incubation, 100 μL citrate phosphate buffer (100 mM, 

pH 4) containing CuCl2 (0.25 mM) was added into each well of the control plate. ABTS 

(1.0 mM, pH 4) was added into each well for both plates to initiate the reaction, and 

allowed to react for 20 minutes. The plates were centrifuged and the supernatants were 

transferred to another microtiter plate. The endpoint was measured at 420 nm (ε = 36,000 

M
-1

 cm
-1

). Next, the ratio of AbspH 4 at 420 nm : Abscontrol at 420 nm was determined. Positive 

clones were selected that showed at least 1.5 the mean value of wild-type ratio of AbspH 4 

at 420 nm : Abscontrol at 420 nm. A rescreen was carried out to eliminate false positives. The 

assay was similar to above, but multiple colonies from a single clone were picked into a 

column of a 96-deep well plate. A wild-type control column was also included. 
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2.2.2 Acid Inactivation 

Large-scale sporulation was initiated by media exhaustion, and the spores were purified 

using published procedures [72]. The half-life of acid inactivation (t1/2) of spores was 

determined. Purified spores were incubated in aqueous CuCl2 (0.25 mM) for 1 hour at 37 

o
C. Then, the spores were centrifuged and resuspended in citrate-phosphate buffer (100 

mM, pH 4, 0.25 mM CuCl2) and incubate in 37 
o
C. The resulting solution had an OD580 

between 0.1 – 0.3. A 200 μL reaction was initiated by adding ABTS (10 mM) into the 

spore solution. The measurements were performed every 3 to 10 minutes at 420 nm until 

the activity decreased to 20 % of the initial activity. The data was recorded in triplicate. 

 

2.2.3 Kinetics Measurements of CotA and CotA Variants 

All measurements were done in triplicate with at three different batches of purified spores. 

The kinetic parameters of spores were determined at 37 
o
C by using ABTS (1 – 8000 μM) 

in citrate phosphate buffer (100 mM, pH 4). The spores were first suspended in aqueous 

CuCl2 (0.25 mM) solution for 60 minutes. Then the reactions were initiated by adding 50 

μL spore solution into wells of each concentration of ABTS. The final OD580 of spores 

was between 0.2 – 0.3. The initial rates were acquired from the linear portion of the 

reaction curve. Kinetic parameters were obtained by curve fitting (SigmaPlot 12.0, Systat 

Software Inc., San Jose, CA). 
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2.2.4 Product Yield of CotA and Its Variants 

CotA recycling was investigated and the total product yield was determined over 42-hour 

period. The spores were resuspended in aqueous CuCl2 (0.25 mM) solution for 60 

minutes at 37 °C. Next, the spores were centrifuged and the supernatant was discarded. 

The spores were resuspended in citrate phosphate buffer (100 mM, pH 4) at 37 °C with a 

final OD580 of 0.15. The spores were incubated for two hours and then the spores 

centrifuged and the supernatant was discarded. The reaction was initiated by 

resuspending the spore with 1 mL ABTS (20 mM) in citrate phosphate buffer (100 mM, 

pH 4) at 37 °C. The absorbance was taken at 420 nm after 15 minutes to determine the 

product yield. This cycle was repeated seven times over 42-hours. 

 

2.2.5 Cell Viability 

Purified spore were incubated in aqueous CuCl2 (0.25 mM) for one hour. Next, the spore 

solution was added to citrate phosphate buffer (100 mM, pH = 4, 0.25 mM CuCl2) and 

incubated for 4 hours. Then, the solutions were diluted and plated on LB plates 

containing spectinomycin (100 μg/ml) and chloramphenicol (5 μg/mL). 

 

2.2.6 Overproduction in Escherichia coli and Purificaiton of CotA and Its Variants 

A 5.0 mL of the overnight culture was used to inoculate LB media (1 L) containing 

ampicillin (100 μg/mL). The cells were shaken at 250 rpm at 37
o
C. The cells were then 

induced by adding arabinose (0.2 %) and CuCl2 (0.25 mM) when OD600 = 0.6. After 4 
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hours, the cells were harvested by centrifugation at 9,000 g and 4 
o
C and the cell pellets 

were stored at -20
o
C until purification.  

CotA was purified using two chromatographic steps. The cell pellets were 

resuspended in 20 ml Tris-HCl (20 mM, pH 7.6) buffer containing DNaseI (10 μg/mL), 

MgCl2 (5 mM), and protease inhibitors (CompleteTM, mini EDTA-free protease inhibitor 

mixture tables, Roche Molecular Biochemicals). Cells were disrupted by sonication (4 x 

30 sec; output power 20 watts; Sonicator, Sonic Dismembrator Model 100, Fisher 

Scientific). The lysate was centrifuged at 15,000 g and 4 
o
C for 20 minutes. The 

supernatant was filtered using 0.45 μm filter (Millex-HV, Millipore) and then diluted to 

50 mL with Tris-HCl buffer. The solution was loaded onto an ion exhange SP-Sepharose 

column (bed volume 25 mL) that was equilibrated with Tris-HCl (20 mM, pH 7.6). The 

sample was loaded and eluted using a two-step linear NaCl gradient (0 – 0.5 and 0.5 – 1 

M) in the same buffer. Fractions displaying laccase activity were pooled, concentrated by 

ultrafiltration with a cutoff of 30 kDa, and equilibrated to 20 mM Tris-HCl (pH 7.6).The 

sample was then loaded onto MonoS 5/50 column, and eluted using a two-step linear 

NaCl gradient (0 – 0.5 and 0.5 – 1 M). Fractions with laccase activity were pooled, 

desalted, and concentrated. A single band was shown by SDS-PAGE (12.5 %) at 100 kDa 

after boiling for 10 min in loading dye.  
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2.2.7 Acid Inactivation and Kinetics Measurement of Purified CotA 

0.5 µg purified enzyme was used for acid inactivation assay. Dilute the protein with 

aqueous CuCl2 (0.25 mM) and incubate at 37 
o
C for 30 min. Then, on a 96-well 

microplate, each well contains 100 µl citrate phosphate buffer (100 mM, pH 4, 0.25 mM 

CuCl2) with 0.5 µg treated protein and incubate under 37 
o
C. The reaction was initiated 

every 10 minutes by adding 10 µl ABTS (1 mM) into one well on the 96-well microplate. 

The initial rates were acquired from the linear portion of the reaction curve.  

Purified enzyme was diluted in aqueous CuCl2 (0.25 mM) and incubated at 37 
o
C 

for 30 min. The kinetic parameters were then determined at 37 
o
C by using ABTS (1 – 10 

mM) in citrate phosphate buffer (100 mM, pH 4, 0.25 mM CuCl2). The reactions were 

initiated by adding 0.5 µg enzyme. The initial rates were acquired from the linear portion 

of the reaction curve. Kinetic parameters were obtained by curve fitting. 

 

2.3 Results and Discussion 

Many strategies have been developed for directed evolution. They are either in vivo or in 

vitro. Taking advantage of the inert properties of spores, we demonstrate that proteins can 

be evolved under harsh condions by using a system based on spores of B. subtilis. In this 

system, the protein of interest is “preimmobilized” on the spore coat and screened as 

whole cell. Therefore, the connection between phenotype and genotype is intact. CotA is 

a laccase, which is a B. subtilis spore coat protein. The optimal enzymatic activity of 

CotA laccase was found at pH 4.0 – 5.0 for substrate ABTS oxidation. However, the 
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activity dramatically decreases at pH 4 (Figure 2.5). The activity is not significantly 

altered at pH 5. 

 

Figure 2.5  Optimal enzymatic activity was found at pH 4.0 – 5.0 for ABTS. However it 

also has the relatively lowest stability at pH 4.  

 

CotA laccase was evolved for higher stability at low pH = 4 by using B. subtilis 

spores. Liraries of CotA were first created by random mutagenesis wild-type B. subtilis as 

template. They were then inserted into vector pDG1730 and transformed into B. subilis 

genome with double crossover recombination. The B. subtilis strain had the endogenous 

cotA gene knocked out. Next, the B. subtilis cells were sporulated in 96-deep-well plates. 

A screen need to be validated to reduce the probability of selecting false positives. In 

order to validate the screen, only wild-type CotA is arrayed in the 96-deep well plates. A 

low coefficienct of variance (CV) in needed. There are many factors to obtain a low CV, 

such as incubation time and temperture, inductution time and temperture, shaker speed, 
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eliminate evaporation, etc…A suitable CV is approximately 20 %. Therefore, CotA 

activity with ABTS was measured before and after incubating the spores in citrate 

phspate buffer (100 mM, pH 4) for 60 min. The average of the coefficient of variance 

(CV) was 15.7 % for 3 microtiter plates (Figure 2.6).  

 

 

Figure 2.6  An example of one microtiter plate of coefficient of variance (CV). The 

clones were ranked from highest to lowest activity. CV is defined as the ratio of the 

standard deviation to the mean. 

 

Positive clones were selected that showed at least 1.5 the mean value of wild-type 

ratio of AbspH 4 at 420 nm : Abscontrol at 420 nm. A rescreen was carried out to eliminate false 

positives. The assay was similar to above, but multiple colonies from a single clone were 

picked into a column of a 96-deep well plate. A wild-type control column was also 

included. Approximately 3000 mutants were screened and a mutant, Y19, was identified 

with a t1/2 5.9 times greater than wt-CotA (Table 2.1).  
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Table 2.1  Kinetic Parameters and Half-life of Wild-type CotA and CotA Variants 

Mutation Vmax
[a]

 Km (μM) Vmax/Km t1/2
[b]

 

E29V 29.4 ± 1.4 67.2 ± 9.2 0.44 60.4 ± 3.7 

L343S 14.7 ± 0.5 58.2 ± 6.4 0.25 33.4 ± 2.3 

E498G 41.8 ± 3.7 857.6 ± 125.9 0.05 1264.1 ± 78.0 

E29V/L343S/E498G 18.5 ± 0.5 358.6 ± 29.4 0.05 302.6 ± 23.8 

T480A 120.6 ± 2.5 112.3 ± 6.9 1.07 56.1 ± 1.1 

T480A/E498G 45.5 ± 3.0 585.1 ± 76.4 0.08 3166 ± 431.1 

Wt-CotA 33.3 ± 1.1 58.8 ± 7.2 0.57 50.9 ± 1.8 

Kinetic parameter and half-life of inactivation at pH 4 for WT-CotA and CotA variants. [a] μM/min/OD580 

nm. [b] Half-life (minutes) at pH 4. 

 

The sequence of Y19 was determined from isolated genomic DNA and three 

amino acid substitutions [E29V (GAA to GTA), L343S (TTG to TCG), E498G (GAA to 

GGA)] were found (Appendix B). Val29 and Ser343 are on the surface, while Gly498 is 

close to the T1 copper center (Figure 2.7). 
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Figure 2.7  Molecular model of ABTS-Y19. Molecular model of the ABTS-Y19 

complex was generated using Maestro software from Schrodinger (Schrodinger, Maestro 

v9.2, Portland, 2011). Copper, ABTS, and the amino acids are rendered as CPK models. 

 

The CotA variants that carry only one mutation were also constructed to 

determine the contribution the amino acid substitution had on pH stability and catalytic 

efficiency (Figure 2.8, Table 2.1, Figure 2.9). The t1/2 of E498G variant was 1213.2 

minutes longer than wt-CotA, which was 24.8 times greater. The E498G substitution is 

the only amino acid required for the increased t1/2 (vide infra). The The Vmax/Km for 

E498G was 8.8 % compared to wt-CotA. A lowering of Vmax/Km is not unusual because 

this property was not included in the pH stability screen (Table 2.1). The change in 
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Vmax/Km for the variant was mainly due to 14.6 fold increase in Km, which was partially 

compensated with a 1.3 fold increase in Vmax. 

 

 

Figure 2.8  The t1/2 at pH 4 of wt-CotA and CotA variants. The t1/2 is determined from 

first order kinetic of deactivation. Wt-CotA (closed circles), E29V (open circle), L343S 

(closed triangles), E498G (open triangle), and Y19 (closed square) residual activity at pH 

4 is plotted against time. 
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A 

 

B 

 

Figure 2.9  Kinetic parameters of wt-CotA and CotA variants on Bacillus subtilis spore 

coat. (A) Kinetic parameters of Y19 (E29V/L343S/E498G). Km = 358.6 ± 29.4µM; Vmax = 

18.5 ± 0.5 mM/min/OD580nm. (B) Kinetic parameters of E498G. 
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C 

 

D 

 

Figure 2.9 (continued)  Kinetic parameters of wt-CotA and CotA variants on Bacillus 

subtilis spore coat. (C) Kinetic parameters of E29V. Km = 67.2 ± 9.2 µM; Vmax = 29.4 ± 

1.4 mM/min/OD580nm. (D) Kinetic parameters of L343S. Km = 58.2 ± 6.4 µM; Vmax = 14.7 

± 0.5 mM/min/OD580nm. 
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E 

 

Figure 2.9 (continued)  Kinetic parameters of wt-CotA and CotA variants on Bacillus 

subtilis spore coat. (E) Kinetic parameters of wt-CotA. Km = 58.8 ± 7.2 µM; Vmax = 33.3 ± 

1.1 mM/min/OD580nm. 

 

In a previous investigation, Glu
498

 was mutated to aspartate, threonine and leucine, 

and it was suggested that these amino acid substitutions near His
497

 resulted in minor 

changes in substrate binding and electron transfer to the T1 site [73,74]. Substrate 

oxidation at the T1 site has been proposed to be the rate-limiting step in the reaction 

[75,76]. The mutagenesis investigations also proposed that Glu
498

 was necessary for 

proton assisted reductive cleavage of the O-O bond at the trinuclear copper center. The 

E498G variant does not have a side chain that can facilitate the cleavage. However, the 

amino acid substitution is also expected to alter substrate binding and electron transfer. 

Glycine is known to have greater conformational flexibility because the side chain is 

hydrogen. The mutation may have altered the position ABTS for efficient electron 
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transfer and the Vmax was increased. On the other hand, this was at a cost to substrate 

binding which resulted in a higher Km. In addition, the glycine substitution is adjacent to 

the His497, which coordinates to Cu
2+

 in the T1 site. Hence, the Cu
2+

 coordination 

geometry may also be affected such that metal binding has increased, and the protonation 

of the histidine ligands is hindered. Protonation of the histidine would result in release of 

Cu
2+

 from the T1 site and loss of enzymatic activity. The enzyme is imbedded in the 

spore coat and the structure of the mutant has not been solved. Hence, it is difficult to 

extract conclusions based on the structure of ABTS bound to CotA. The structure of the 

soluble CotA may not be identical to the enzyme that is embedded and restrained in the 

spore coat.  

Wt-CotA was evolved for increased activity in high concentrations of organic 

solvents previously [44]. An assay was performed at 60 % dimethyl sulfoxide (DMSO) 

and a variant was identified to be 2.4-fold more active after screening 3000 clones after 

one round of evolution. The clone was found to have a threonine to alanine amino 

substitution at position 480 (T480A-CotA). T480A-CotA was also more active with 

different concentrations of DMSO ranging from 0 to 70 %. The mutant was also found to 

be more active compared with the wild-type CotA in different concentrations of methanol, 

ethanol, and acetonitrile [44]. The amino acid substitution in T480A-CotA was introduced 

into the E498G-CotA to create T480A/E498G-CotA. The t1/2 for the T480A/E498G-CotA 

at pH 4 was found to be 3165.6 ± 431.1 minutes, which was 62.1-fold greater than 

wt-CotA (Table 2.1). When compared to wt-CotA, the Vmax for T480A/E498G-CotA was 
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slightly increased by 1.4-fold; whereas, the Km increased 10-fold. The Vmax in the double 

mutant was due to the T480A amino acid substitution and the E498G mutation was 

mainly responsible for the increase in Km (Table 2.1). The crystal structure has not been 

determined for T480A-CotA, E498G-CotA and T480A/E498G-CotA. As a result, it is 

difficult to conclude the effect that the T480A mutation has towards improved pH 

stability of T480A/E498G-CotA.  

The activity of wt-CotA, T480A-CotA, E498G-CotA and T480A/E498G-CotA 

was determined in different organic solvent (DMSO, methanol, ethanol and acetonitrile).  

The variants did not show greater activity than the wt-CotA (Figure 2.10). In short, the 

T480A/E498G-CotA and E498G-CotA have comparable similar kinetic properties, but 

now T480A/E498G-CotA has greater t1/2 compared to the wt-CotA. 
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A 

 
B 

 

Figure 2.10  Vmax (M/min/OD580nm) of wt-CotA (light shaded bars), 

T480A/E498G-CotA (dark shaded bars) and E498G-CotA (white bars) in 0 – 70 % 

organic solvents: (A) DMSO, (B) methanol, (C) ethanol, and (D) acetonitrile. 
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C 

 
D 

 
Figure 2.10 (continued)  Vmax (M/min/OD580nm) of wt-CotA (light shaded bars), 

T480A/E498G-CotA (dark shaded bars) and E498G-CotA (white bars) in 0 – 70 % 

organic solvents: (A) DMSO, (B) methanol, (C) ethanol, and (D) acetonitrile. 
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An important feature of a biocatalyst is that it can be reused for several cycles. 

E498G and T480A/E498G have a larger Km compared to the wt-CotA, which resulted in 

a lower Vmax/Km (Table 2.1). However, the variants had a higher product yield compared 

to the wt-CotA, which was due to the longer t1/2 (Table 2.1). The spores were recycled 7 

times over 42 h (Table 2.2, Figure 2.11). Wt-CotA, E498G-CotA and 

T480A/E498G-CotA had a total yield of 24.8, 92.9, and 131.3 mmole, respectively. 

E498G-CotA and T480A/E498G-CotA yielded 3.7- and 5.3-fold more product than the 

wt-CotA. This also demonstrates that the biocatalysts can be recycled. T480A/E498G 

was the most stable biocatalyst and retained 42 % of its activity after the 42 h period. 

Table 2.2  Product Yields of Wild-type CotA and CotA Variants 

Time (hour) Wt-CotA E498G T480A/E498G 

0 11.1 ± 0.1 20.2 ± 0.3 19.8 ± 0.2 

2 3.3 ± 0.5 19.6 ± 0.2 19.4 ± 0.2 

4 2.8 ± 0.6 15.4 ± 0.9 18.9 ± 0.9 

8 1.9 ± 0.7 12.4 ± 1.6 18.0 ± 1.6 

18 1.6 ± 0.2 9.1 ± 0.2 15.9 ± 0.2 

25 1.8 ± 0.4 7.6 ± 1.2 14.4 ± 1.2 

30 1.3 ± 0.2 5.3 ± 0.9 13.4 ± 0.9 

42 1.0 ± 0.3 3.3 ± 0.3 11.5 ± 0.3 

Total 24.8 92.9 131.3 

Product yield (mmole) of ABTS
+
 over 42 h with wt-CotA, E498G, and T480A/E498G. 
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Figure 2.11  Product yields of ABTS
+
 of wt-CotA and its variants over 42 h. The spores 

were recycled and measured for 7 cycles over 42 h. 

 

The surface amino acid substitutions, E29V and L343S variants, do not 

significantly contribute to the pH stability to Y19 (Table 2.1). E29V mutant has a slight 

decrease in Vmax/Km (0.77-fold) and a modest increase in t1/2 (1.2-fold) compared to 

wt-CotA. Next, the L343S mutant had a decreased Vmax/Km and a decrease in t1/2 

compared to wt-CotA of 0.44- and 0.66-fold, respectively. It appears that the E29V and 

L343V amino acid substitutions have a deleterious effect.  

The spore coat proteins were extracted and the amount of wt-CotA and the 

mutants were comparable as assessed by SDS-PAGE gels (Figure 2.12). The band 

intensity in lanes 4 – 8 were quantified using ImageJ (https://imagej.nih.gov/ij/). The 

https://imagej.nih.gov/ij/)
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values for lane 4 – 8 were 7045, 6798, 7716, 7171, and 7012, respectively. The average 

of the intensities was 7151  344. The amount of protein present in the spore coat are 

similar between the samples. 

 

 

Figure 2.12  Extraction of spore coat proteins. Lane 1: Marker; Lane 2: CotA standard 

purified from E. coli; Lane 3: CotA knockout; Lane 4: Wildtype CotA; Lane 5: 

E29V-CotA; Lane 6: L343S-CotA Lane 7: E498G-CotA; Lane 8: T480A/E498G-CotA. 

Spores (A580 = 100) were resuspended in 50 µl of sodium dodecyl sulfate (SDS) loading 

dye (SDS (4 %), 2-mercaptoethanol (10 %), dithiothreitol (1 mM), Tris-HCl (0.125 M, 

pH 6.8), glycerol (10 %) bromophenol blue (0.05 %). The samples were heated at 100 
o
C 

for 10 minutes. Next, the samples were centrifuged, and 25 µl of the supernatant were 

resolved with 15 % SDS-PAGE gels. Gels were stained with Coomassie brilliant blue 

R-250 and destained.  

 

Cell viability was determined in citrate phosphate buffer (100 mM, pH 4). The 

result showed the viability was intact in this screen condion (Figure 2.13). 
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Figure 2.13  Viability assay of spores in citrate phosphate buffer (100 mM, pH 4). 

 

Enzymes embedded in the spore coat may have different activity compared to the 

protein that is free in solution. Hence, wt-CotA and E498G-CotA was overproduced and 

purified from E. coli. However, T480A/E498G-CotA was expressed as inclusion bodies 

(Figure 2.14) and it could not be recovered. This is not unusual. In previous publication, 

wt-CotA was expressed in E. coli for molecular and biochemical characterization and 

only 10 % of the CotA was soluble and the rest were inclusion bodies [77]. Efforts were 

made to solublize and refold the protein were not successful. In our case, we see similar 

results. Wt-CotA and E498G-CotA have both a soluble and inclusion body fraction and 
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the these enzymes were purified. T480A/E498G-CotA expressed as an inclusion body 

and could not obtain enough soluble protein to purify and characterize. 

A 

 

Figure 2.14  SDS-PAGE analysis of CotA overproduction in E. coli. (A) Lane 1: 

Marker; Lane 2: CotA standard purified from E. coli; Lane 3: supernatant of a crude 

extract of an arabinose-induced E. coli culture of wt-CotA; Lane 4: insoluble fraction of a 

crude extract of an arabinose-induced E. coli culture of wt-CotA; Lane 5: supernatant of a 

crude extract of an arabinose-induced E. coli culture of E498G-CotA; Lane 6: insoluble 

fraction of a crude extract of an arabinose-induced E. coli culture of E498G-CotA; Lane 

7: supernatant of a crude extract of an arabinose-induced E. coli culture of 

T480A/E498G-CotA; Lane 8: insoluble fraction of a crude extract of an 

arabinose-induced E. coli culture of T480A/E498G-CotA. 
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B             1      2      3     4       5     6      7 

 

Figure 2.14 (continued)  SDS-PAGE analysis of CotA overproduction in E. coli. (B) 

Lane 1: Marker; Lane 2: purified wt-CotA from E.coli without boiling; Lane 3: purified 

wt-CotA from E.coli boiled for 5 min; Lane 4: purified wt-CotA from E.coli boiled for 10 

min; Lane 5: purified E498G-CotA from E.coli without boiling; Lane 6: purified 

E498G-CotA from E.coli boiled for 5 min; Lane 7: purified E498G-CotA from E.coli 

boiled for 10 min. 

 

The t1/2 (Figure 2.15) and catalytic efficiency follow the same trends for spore or 

E. coli expressed wt-CotA and E498G-CotA, although the kinetic parameters (Table 2.3) 

are different (Figure 2.16). The catalytic efficiency of purified or spore expressed 

wt-CotA is greater than E498G-CotA. It is clear that the purified enzyme and spore 

displayed enzyme have different catalytic efficiencies. There are many complex 

interactions with the spore coat proteins.  

 

Table 2.3  Kinetics Parameters of Purified Wild-type CotA and E498G-CotA 

 Km (µM) Vmax (µM/s) Kcat (s
-1

) Kcat/Km 

Wildtype 156.3±23.7 0.512±0.03 23.2±1.3 0.15 

E498G 432.7±34.5 0.103±0.002 3.7±0.1 0.01 
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Figure 2.15  The t1/2 at pH 4 of wt-CotA and E498G-CotA. The t1/2 is determined from 

first order kinetic of deactivation. Wt-CotA (closed circles) and E498G-CotA (open circle) 

residual activity at pH 4 is plotted against time. The t1/2 of wt-CotA was determined as 11 

min. For E498G, there is a “stable period” around 60 min when the activity of the protein 

does not change relatively according to time. A half-life of inactivation of 274 min was 

determined; if the initial 60-min “stable period” is considered, a t1/2 of 334 min can be 

estimated for E498G. 
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Figure 2.16  Kinetic parameters of purified wt-CotA and E498G-CotA from E.coli. A. 

Kinetics of wt-cotA. KM = 156.3 ± 23.7 µM; Kcat = 23.2 ± 1.3 s
-1

.
 
B. Kinetics of 

E498G-CotA. KM= 432.7 ± 34.5 µM; Kcat= 3.7 ± 0.1 s
-1

. 
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2.4 Conclusion 

In this study, a library of CotA laccase was constructed and transformed into Bacillus 

subtilis. An assay at acidic pH was then developed and a mutant was found with 

improved t1/2 in acidic pH than wildtype. Also, the viability of spores was proven to be 

intact in this condition. The spores were able to be recycled and the total amount of 

product formed after approximately 2 days was greater for the variants when compared to 

wt-CotA. Spore display was demonstrated to be able to evolve proteins for pH resistance.  
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CHAPTER 3 

OXIDATION OF PHENOLIC COMPOUNDS WITH COTA LACCASE AND ITS 

MUTANT ON BACILLUS SUBTILIS SPORE COAT IN ORGANIC MEDIA 

 

Enzymes are green and efficient catalysts because they operate at room temperature and 

aqueous solutions. Furthermore, they have high substrate specificity that can produce 

chiral products with high enantiomeric excess. Therefore, the application of enzymes in 

industry is continuously increasing. However, these desired characteristics may not be 

suited for industrial applications [78-80]. For example, enzymes may have low catalytic 

efficiency with non-natural substrates. Next, hydrophobic substrates are not soluble in 

aqueous solutions and an organic co-solvent must be added for the reaction to occur. In 

general, enzymes are not stable in organic solvents and they lose activity [81-83]. Protein 

structure is due to the balance of forming the hydrophobic core, Van der Waals forces, 

electrostatic interactions, and hydrogen bonding. Organic solvent disrupts the 

hydrophobic core and the protein will unfold. Furthermore, organic solvents can strip 

water from the protein surface, which is necessary for structure and function. Finally, the 

enzymatic activity will decrease in organic solvent due to thermodynamic reasons. In 

aqueous solution, the substrate is surrounded by water and oftentimes the active site is 

hydrophobic. It is energetically favorable for the substrate to be desolvated and partition 

into the hydrophobic active site. Hydrophobic substrates are thermodynamically 

stabilized in the organic solvent compared to water. 

 Enzyme immobilization has several advantages [84,85]. First, protein stability 
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can be increased. Next, they are more resistant to environment changes, which can 

enhance the lifetime in organic solvents. Furthermore, substrates are freely accessible to 

biocatalyst. Finally, the enzyme can be easily removed from reaction mixture for reuse 

[86]. Protein display on the surface of the microorganisms is one strategy to immobilize 

enzymes [87]. 

Traditional cell surface display systems, such as Escherichia coli and yeast, 

appear ideal; however, there are several issues [39]. Lysis may occur during the reaction 

and contents of the cells will enter into the solution. As a result, this will add additional 

contamination and separating the enzyme from the reaction solution may be required. 

Spores overcome these issues. Spores remain viable under extreme chemical and physical 

conditions [88,89]. As a result, enzymes displayed on its surface can tolerate extreme 

properties. They will not lyse and can be easily removed from the reaction solution. In 

addition, protein folding problems associated with the target protein crossing cell 

membranes is eliminated.  Furthermore, there is no need to overexpress, purify, and 

attach the protein to an inert surface. This is due to the natural sporulation process [90].  

In addition, the whole cell biocatalyst can be recycled and reused, which reduces the 

overall cost associated with product yield. 

Natural phenolic compounds have beneficial biological effects. They can act as 

antioxidants [91], antimutagens [92] and anticarcinogens [93]. For example, (+)-catechin 

(Figure 3.1A) and (-)-epicatechin (Figure 3.1B), are two phenolic isomers that can be 

found in green tea, and they are responsible for the potential health benefits [94]. 
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However, they affects the flavor and mouth-feel and these compounds can be removed by 

polymerization [95]. As a result, the sensory quality is enhanced [96]. Polycatechins can 

be utilized to prevent neurodegenerative and cardiovascular diseases [97,98]. Enzymes, 

such as laccase, have been used to polymerize phenolic compounds for a variety of 

applications [99,100] (Figure 3.2A). One limitation is that these polymers are insoluble 

and require organic co-solvents.  

 

           A                    B                         C 

Figure 3.1  Structure of phenolic substrates. (A) (+)-catechin; (B) (-)-epicatechin; and 

(C) sinapic acid. 

 

Next, rapeseed meal (RSM) is widely utilized to feed all classes of livestock. 

Sinapic acid (Figure 3.1C) and the choline ester of sinapic acid (sinapine) are the major 

phenolic compounds found in RSM [101,102]. These compounds or their derivatives 

lower the nutritional value of RSM. In addition, they render RSM to be bitter and 

astringent [103,104] . Biocatalysts can be used to eliminate these antinutrients [105]. The 

oxidation of sinapic acid by laccase is shown in Figure 3.2B. 

 



68 

 

A 

 

B 

 

Figure 3.2  Oxidation of phenols by laccase. (A) Two molecules of (+)-catechin are 

oxidized to polycatechin by laccase. (B) Sinapic acids are oxidized by laccase into 

dimers. 

    

In a previous investigation, a laccase (CotA), which is found on the spore coat of 

Bacillus subtilis, was engineered by directed evolution for improved activity in organic 
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solvents. A CotA variant was identified with a Thr480Ala (T480A-CotA) amino acid 

substitution [44] after only one round of evolution. The screen was performed at 60 % 

DMSO and it was 2.38-fold more active than the wild-type CotA (wt-CotA) with 

substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). T480A-CotA 

was more active from a range of 0 – 70 % DMSO. In addition, the variant was more 

active in ethanol, methanol and acetonitrile. In this study, the catalysis of T480A-CotA 

and wt-CotA in the spore coat was determined with natural phenolic compounds, such as 

(+)-catechin, (-)-epicatechin and sinapic acid in aqueous-organic media.  

 

3.1 Materials 

Wt-CotA and T480A-CotA was expressed and purified on B. subtilis spores by following 

published procedures [44]. One unit is defined as a A of 0.001 per min at 37 ◦C in a 300 

l reaction volume on a 96-well microplate at absorbance 433 nm (SpectraMax_M2) 

using (+)-catechin (433 nm), or absorbance 440 nm using (-)-epicatechin, or absorbance 

at 512nm using sinapic acid. Dimethyl sulfoxide (DMSO), acetonitrile, methanol, ethanol, 

acetonitrile, (+)-catechin, (−)-epicatechin, sinapic acid were procured from Sigma- 

Aldrich (St. Louis, MO).  
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3.2 Methods 

 

3.2.1 Wt-CotA and T480A-CotA Activity Versus pH 

Substrate stocks were prepared for (+)-catechin (200 mM), (−)-epicatechin (200 mM) and 

sinapic acid (200 mM) in methanol. Each stock solution was prepared fresh before use. 

The purified spore pellets of wt-CotA or T480A-CotA were resuspended in aqueous 

CuCl2 (0.25 mM) for 60 minutes. Next, spore suspension was diluted in citric phosphate 

buffer (100 mM, 0.25 mM CuCl2). 

The total volume of the reaction was 300 l. Substrate (30 l; 20 mM) was added 

to citrate phosphate buffer (250 l; 100 mM) and methanol (10% v/v) solution containing 

CuCl2 (0.25 mM). The reaction was initiated with the spore resuspension (20 l, OD580 = 

0.1 – 0.3). The pH was varied from 2 - 8 for the reactions. The absorbance 433 nm for 

(+)-catechin (433 nm), (−)-epicatechin (440 nm), or sinapic acid (512 nm) was measured 

every 5 min for 60 min at 37 ◦C. Each reaction was done in triplicate. Control 

experiments were done with spores that had the cotA gene knockout (strain1S101, 

Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA).  

 

3.2.2 Determination of Kinetic Parameters of Wt-CotA and T480A-CotA  

The total volume of the reaction was 300 l. Substrate (30 l; 0.05 – 6.0 mM) was added 

to citrate phosphate buffer (250 l; 100 mM; pH 7) and methanol (20% v/v) solution 

containing CuCl2 (0.25 mM). The reaction was initiated with the spore resuspension (20 
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l; OD580nm = 0.1 – 0.3). Km and Vmax was determined for wt-CotA and T480A-CotA. The 

absorbance 433 nm for (+)-catechin (433 nm), (−)-epicatechin (440 nm), or sinapic acid 

(512 nm) was measured every 5 min for 60 min at 37 ◦C. Each reaction was done in 

triplicate. Control experiments were done with spores that had the cotA gene knockout 

(strain1S101, Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, 

USA). 

 

3.2.3 Wt-CotA and T480A-CotA Activity in Organic Solvents 

The activity of wt-CotA and T480A-CotA was determined in DMSO, methanol, ethanol, 

and acetonitrile. The concentration of organic solvents used in the reaction media ranged 

from 0 – 70 % (v/v). The substrates used were (+)-catechin, (-)-epicatechin and sinapic 

acid and concentrations were 10 mM for each substrate. An OD580nm 0.1 – 0.3 was used 

for wt-CotA and T480A-CotA. Control experiments were done with spores that had the 

cotA gene knockout (strain1S101, Bacillus Genetic Stock Center, The Ohio State 

University, Columbus, OH, USA). The Vmax measurement is similar to section 3.2.2. 

 

3.2.4 Wt-CotA and T480A-CotA Recylcing in Organic Solvents 

CotA was recycled and the total product yield was determined over a 23-hour period. The 

spores were resuspended in aqueous CuCl2 (0.25 mM) solution for 60 minutes at 37 °C. 

Next, the spores were centrifuged and the supernatant was discarded. The spores were 

resuspended in citrate phosphate buffer (100 mM, pH 7) with organic solvents (60, 20, 40, 
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and 30 % (v/v) for DMSO, acetonitrile, methanol, and ethanol) at 37 °C with a final 

OD580 of 0.2. The spores were incubated for four hours and then the spores centrifuged 

and the supernatant was discarded. The reaction was initiated by resuspending the spore 

with 300 L (+)-catechin (10 mM) in citrate phosphate buffer (100 mM, pH 7) with 

organic solvents (60, 20, 40, and 30 % (v/v) for DMSO, acetonitrile, methanol, and 

ethanol) at 37 °C. The absorbance was taken at 433 nm after 60 minutes to determine the 

product yield (A433nm_product). This cycle was repeated seven times over 23-hours. 

Control experiments were done with spores that had the cotA gene knockout (strain1S101, 

Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA). 

 

3.3 Results and Discussion 

 

3.3.1 Wt-CotA and T480A-CotA Activity Versus pH 

The activity was measured for wt-CotA and T480A-CotA with (+)-catechin, 

(-)-epicatechin or sinapic acid under different pH (range from 2 to 8) (Figure 3.3). The 

activity trends were similar for wt-CotA and T480A-CotA towards (+)-catechin, 

(-)-epicatechin and sinapic acid. For example, wt-CotA and T480A-CotA have low 

activity at acidic pH and the activity rise to a maximum at approximately pH 7 for all the 

substrates. In addition, T480A-CotA always has greater activity than the wt-CotA. The 

amino acid substitution does not change the pH optimum for both enzymes; however, the 

T480A displays a higher Vmax [44]. A dramatic increase of laccase activity from pH 6 to 7 
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for the oxidation of (+)-catechin, (-)-epicatechin and sinapic acid was observed (Figure 

3.3A-C). At pH 7, wt-CotA activity increases 2.9, 1.8 and 2.6-fold for substrate 

(+)-catechin, (-)-epicatechin and sinapic acid in comparison to that at pH 6. For 

T480A-CotA, the activity at pH 7 increases 3.9, 2.5 and 2.3-fold for substrate 

(+)-catechin, (-)-epicatechin and sinapic acid comparing to that at pH 6. Also, the laccase 

activity dropped from pH 7 to 8. Therefore, the optimum pH values of wt-CotA and 

T480A-CotA for substrates (+)-catechin, (-)-epicatechin and sinapic acid were around pH 

7. Also, T480A-CotA shows 1.8, 4.4, 1.7-fold higher activity than wt-CotA in pH 7 for 

substrates (+)-catechin, (-)-epicatechin and sinapic acid, respectively. Therefore, 

T480A-CotA is more active than wt-CotA at their optimum pH for these substrates.  
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A 

 

B 

 

Figure 3.3  Effect of pH on laccase-catalyzed oxidation of (+)-catechin (A), 

(-)-epicatechin (B), and sinapic acid (C) is determined for wt-CotA (closed circles) and 

T480A-CotA (open circles). 
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C 

 

Figure 3.3 (continued)  Effect of pH on laccase-catalyzed oxidation of (+)-catechin (A), 

(-)-epicatechin (B), and sinapic acid (C) is determined for wt-CotA (closed circles) and 

T480A-CotA (open circles). 

 

3.3.2 Determination of Kinetic Parameters 

Vmax and Km was determined for wt-CotA and T480A-Cot with (+)-catechin, 

(-)-epicatechin and sinapic acid (Figure 3.4, Table 3.1). T480A-CotA has a Km smaller for 

(+)-catechin, (-)-epicatechin than the wt-CotA. Wt-CotA has a Km 1.46-fold and 1.84-fold 

greater than T480A-CotA for (+)-catechin and (-)-epicatechin, respectively. On the other 

hand, T480A-CotA has a Km larger for sinapic acid. In all cases, T480A-CotA has a 

greater Vmax [44]. The Vmax/Km for T480A-CotA was 4.1-fold, 5.6-fold, and 1.4 greater 

than that of wt-CotA for (+)-catechin, (-)-epicatechin, and sinapic acid, respectively. 
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Figure 3.4  Kinetic parameters of wt-CotA and T480A-CotA on Bacillus subtilis spore 

coat for substrates (+)-catechin, (-)-epicatechin and sinapic acid. (A) Kinetics of wt-CotA 

and T480A-CotA for substrate (+)-catechin. Km = 1.15 ± 0.06 mM, Vmax = 23.7 ± 0.49 

A/OD580 nm for wt-CotA; Km = 0.79 ± 0.05 mM, Vmax = 67.2 ± 1.54 A/OD580 nm for 

T480A-CotA. (B) Kinetics of wt-CotA and T480A-CotA for substrate (-)-epicatechin. Km 

= 0.94 ± 0.1 mM, Vmax = 17.6 ± 0.69 A/OD580nm for wt-CotA; Km = 0.51 ± 0.03 mM, 

Vmax = 53.2 ± 0.99 A/OD580nm for T480A-CotA. 
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C 

  

Figure 3.4 (continued)  Kinetic parameters of wt-CotA and T480A-CotA on Bacillus 

subtilis spore coat for substrates (+)-catechin, (-)-epicatechin and sinapic acid. (C) 

Kinetics of wt-CotA and T480A-CotA for substrate sinapic acid. Km = 0.36 ± 0.02 mM, 

Vmax = 3.33 ± 0.04 A/OD580nm for wt-CotA; Km = 0.61 ± 0.05 mM, Vmax = 8.00 ± 0.18 

A/OD580nm for T480A-CotA. 

  

Table 3.1  Kinetics Parameters of Wt-CotA and T480A-CotA with Different Substrates 

Substrate Mutation Km 
[a] 

 Vmax
[b]

 Vmax / Km 

(+)-catechin Wildtype 1.15±0.06 23.7±0.49 20.6 

 T480A 0.79±0.05 67.2±1.54 85 

(-)-epicatechin Wildtype 0.94±0.1 17.6±0.69 18.7 

 T480A 0.51±0.03 53.2±0.99 104.3 

Sinapic acid Wildtype 0.36±0.02 3.33±0.04 9.3 

 T480A 0.61±0.05 8.00±0.18 13.1 

[a] = mM, [b] = A/OD580 
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3.3.3 Activity of Wt-CotA and T480A-CotA in Organic Solvent 

The activity of wt-CotA and T480A-CotA was measured at different concentrations of 

DMSO, acetonitrile, methanol and ethanol (Figure 3.4A-C, Table 3.2). In general, the 

Vmax for T480A-CotA was greater than the wt-CotA in all organic solvents. Wt-CotA and 

T480A-CotA showed slight activity over the background in buffer alone. It is clear that 

organic co-solvents are necessary to solubilize the substrate for enzymatic activity. For 

the substrates (+)-catechin and (-)-epicatechin, T480A-CotA has an optimum 

concentration of 60, 20, 40, and 30 % (v/v) for DMSO, acetonitrile, methanol, and 

ethanol (Figure 3.5A-B). For substrate (+)-catechin, T480A-CotA is 1.4 – 3.0, 1.1 – 3.0, 

1.7 – 3.4, and 1.2 – 2.4-fold more active than wt-CotA in DMSO, acetonitrile, methanol, 

and ethanol, respectively. For substrate (-)-epicatechin, T480A-CotA is 1.0 – 4.1, 1.0 – 

5.6, 1.1 – 7.9 and 1.3-6.2-fold more active in DMSO, acetonitrile, methanol, and ethanol, 

respectively. For substrate sinapic acid, T480A-CotA has an optimum concentration of 30, 

30, 30, and 20 % (v/v) for DMSO, acetonitrile, methanol, and ethanol (Figure 3.5C). 

T480A-CotA is 2.4 – 4.8, 1.4 – 2.3, 1.5 – 6.4 and 1.5 – 5.2-fold more active in DMSO, 

acetonitrile, methanol, and ethanol, respectively. 
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A 

 

B 

 

Figure 3.5  Vmax (A/OD580) of wt-CotA (black bars) and T480A-CotA (grey bars) in 0 

– 70 % organic solvents for substrate (+)-catechin (A), (-)-epicatechin (B), and sinapic 

acid (C). 
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C 

 

Figure 3.5 (continued)  Vmax (A/OD580) of wt-CotA (black bars) and T480A-CotA 

(grey bars) in 0 – 70 % organic solvents for substrate (+)-catechin (A), (-)-epicatechin (B), 

and sinapic acid (C). 

 

Table 3.2  Vmax (A/OD580) of Wt-CotA and T480A-CotA in 0 – 70 % Organic Solvents 

for Substrate (+)-Catechin (A), (-)-Epicatechin (B) and Sinapic Acid (C) 

A 

Conc. 

of 

solvents 

Vmax (A/OD580) 

DMSO Acetonitrile Methanol Ethanol 

wt T480A wt T480A wt T480A wt T480A 

0 % 2.3±0.1 3.5±0.2 1.6±0.1 2.5±0.1 1.32±0.2 2.01±0.1 0.9±0.0 1.33±0.1 

10 % 70.4±5.3 130.9±2.3 60.5±3.3 67.6±5.3 12.4±4.0 36.6±8.4 34.9±1.4 46.0±3.4 

20 % 93.5±0.2 165.7±1.7 98.7±6.9 122±1.6 20.3±5.8 50.9±5.4 47.4±7 54.6±1.0 

30 % 75.3±13.1 150.9±8.7 86.0±2.1 92.7±2.9 48.6±5.2 84.2±3.8 33.8±1.5 66.3±1.4 

40 % 49.1±10.5 133.6±4.3 57.7±0.3 68.2±0.9 28.1±7.5 96.1±3.9 26.1±4.3 52.7±1.7 

50 % 46.3±7.1 138.3±0.8 46.6±0.1 67.0±4.2 44.0±2.7 79.6±5.2 19.2±0.4 44.9±2.2 

60 % 69.7±15.6 172.2±8.0 43.3±1.2 60.6±2.6 41.8±0.9 77.9±4.0 33.2±1.0 38.9±3.7 

70 % 10.5±5.0 15.1±3.5 68.6±1.5 74.8±3.5 10.2±0.7 17.4±1.0 10.8±1.0 26.0±0.1 
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Table 3.2 (continued)  Vmax (A/OD580) of Wt-CotA and T480A-CotA in 0 – 70 % 

Organic Solvents for Substrate (+)-Catechin (A), (-)-Epicatechin (B) and Sinapic Acid 

(C) 

B 

Conc. 

of 

solvents 

Vmax (A/OD580) 

DMSO Acetonitrile Methanol Ethanol 

wt T480A wt T480A wt T480A Wt T480A 

0 % 2.9±0.1 4.4±0.2 1.7±0.1 2.7±0.1 1.6±0.1 2.4±0.1 1.0±0.0 1.5±0.1 

10 % 9.2±0.5 22.6±6.9 16.2±1.7 42.0±3.4 19.3±0.4 56.4±9.6 11.7±1.4 22.3±3.2 

20 % 31.0±2.7 126.6±1.6 96.8±1.1 133±1.9 25.4±4.2 63.6±3.8 22.2±2.8 29.0±1.0 

30 % 57.4±5.9 154.7±2.3 74.5±3.6 77.4±1.0 43.6±3.0 90.7±3.6 44.9±1.4 76.1±1.3 

40 % 67.8±11.1 119.6±7.8 15.6±0.1 67.8±0.6 14.4±4.4 95.1±9.9 19.4±2.9 71.5±1.6 

50 % 91.2±7.8 111.0±4.3 13.4±0.1 75.3±2.8 18.7±2.6 58.2±3.4 9.6±0.4 59.9±2.1 

60 % 213.6±7.5 220.4±2.0 63.5±0.6 83.7±1.7 15.4±3.6 60.9±3.5 20.1±1.0 39.3±3.5 

70 % 7.4±4.3 20.1±5.0 8.7±0.8 36.4±2.3 10.9±0.6 11.6±0.9 1.3±1.0 10.3±0.1 

 

C 

Conc. 

of 

solvents 

Vmax (A/OD580) 

DMSO Acetonitrile Methanol Ethanol 

wt T480A wt T480A wt T480A Wt T480A 

0 % 0.2±0.0 0.3±0.0 0.3±0.0 0.5±0.0 0.1±0.0 0.2±0.0 0.2±0.0 0.3±0.0 

10 % 2.5±0.4 9.6±0.2 6.2±0.6 12.3±1.0 3.3±0.4 9.6±1.0 4.4±0.0 15.6±0.9 

20 % 5.1±0.0 12.3±0.1 9.3±1.3 14.2±0.3 3.1±0.6 10.8±0.6 7.1±0.4 17.0±0.2 

30 % 5.1±1.0 13.5±0.7 13.0±0.4 23.9±0.6 1.8±0.6 11.1±0.4 3.0±0.4 15.3±0.4 

40 % 3.2±0.8 8.9±0.3 12.1±0.0 22.4±0.2 1.7±0.8 7.9±0.4 3.4±0.6 12.6±0.4 

50 % 1.8±0.5 8.7±0.0 8.7±0.0 19.7±0.8 0.4±0.3 0.6±0.1 2.8±0.1 6.7±0.6 

60 % 1.4±1.2 4.1±0.6 5.1±0.2 7.2±0.5 0.2±0.1 0.4±0.2 1.0±0.3 2.7±0.9 

70 % 1.0±0.4 3.4±0.3 0.7±0.3 1.2±0.7 0.1±0.1 0.2±0.1 0.3±0.3 0.5±0.0 

 

3.3.4 Wt-CotA and T480A-CotA Recycling in Organic Solvents 

Enzyme recycling improves overall product by reusing the catalysts for several batches. 

This reduces the cost associate with product yield. Typically, the enzyme is expressed 

purified and attached to an inert particle. This is avoided in spore display because the 

enzyme is attached to the inert surface of the spore coat. CotA recycling was investigated 
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and the total product yield was determined for (+)-catechin over 23-hour period (Figure 

3.6, Table 3.3). These percentages (v/v) were chosen at the maximum rates for the 

organic solvents, which were 60, 20, 40, and 30 % (v/v) for DMSO, acetonitrile, 

methanol and ethanol, respectively. The trend of total product is similar for wt-CotA and 

T480A-CotA. The total product yield diminishes after recycling. The product yield 

retains 60, 30, and 10 % from t = 0 to 23 hours in DMSO, acetonitrile, and ethanol, 

respectively (Figure 3.5). In methanol, wt-CotA and T480A-CotA also has lowered 

product over time, which is 10 and 30 %, respectively. The total product yields from 

T480A-CotA were 11.2, 7.1, 3.9 and 4.2 A433nm_product in DMSO, acetonitrile, methanol 

and ethanol, respectively. The optimum solvent was DMSO for the mutant. Next, the total 

product yields from wt-CotA were 3.6, 4.7, 1.4, and 2.4 A433nm_product in DMSO, 

acetonitrile, methanol, and ethanol, respectively. Wt-CotA catalyzes the most products in 

acetonitrile. In general, the biocatalysts have a greater yield in polar aprotic solvents. In 

addition, T480A-CotA out performs the wt-CotA in all organic solvents. 



83 

 

 

Figure 3.6  The (+)-catechin products yields for wt-CotA (black bars), and T480A-CotA 

(white bars) were determined for 7 cycles over a 23 h period. 

 

 

 

Table 3.3  The (+)-catechin Products Yields for Wt-CotA and T480A-CotA Were 

Determined for 7 cycles Over A 23 h Period. 

Time 

(hours) 

Product yields (A433nm_product) 

DMSO Acetonitrile Methanol Ethanol 

wt T480A wt T480A wt T480A wt T480A 

0 0.59 2.01 1.02 1.49 0.37 0.89 0.57 1.12 

4 0.58 1.95 0.96 1.42 0.31 0.88 0.5 1.05 

8 0.57 1.79 0.87 1.25 0.26 0.76 0.43 0.87 

12 0.53 1.53 0.64 0.98 0.20 0.55 0.35 0.6 

16 0.51 1.36 0.51 0.81 0.14 0.44 0.28 0.43 

20 0.49 1.35 0.39 0.64 0.09 0.32 0.21 0.25 

23 0.35 1.20 0.29 0.48 0.03 0.24 0.06 0.12 
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3.4 Conclusion 

The kinetic parameters and the relative activity were determined with wt-CotA and 

T480A-CotA on B. subtilis spore coat for substrate (+)-catechin, (-)-epicatechin and 

sinapic acid in organic solvents. In general, the catalytic efficiency (Vmax/Km 

(A/OD580)/mM) of T480A-CotA is higher than wt-CotA for all the substrates. Then, the 

Vmax for T480A-CotA was greater than the wt-CotA in all organic solvents used in this 

study. The Vmax for T480A-CotA was up to 3.4-fold, 7.9-fold and 6.4-fold greater than 

wt-CotA for substrate (+)-catechin, (-)-epicatechin and sinapic acid, respectively. In 

addition, the catalyst can be easily removed from the reaction solution and reused. This 

allows for simpler recovery of the product from the enzyme. This investigation indicates 

that enzymes expressed on the spore coat can be utilized for industrial applications. 
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APPENDIX A 

ENZYME DISPLAY FOR ALKANE OXIDATION 

 

Cytochrome P450 monooxygenases (CYPs) belong to a superfamily of enzymes that 

contains heme as a cofactor. They are also known as hemoproteins. CYP enzymes have 

been widely found in animals, plants, and microorganisms. The most common reaction 

catalyzed by cytochromes P450 is a monooxygenase reaction. For example, one atom of 

oxygen is inserted into the aliphatic position of an organic substrate (RH) while the other 

oxygen atom is reduced to water (Equation A.1). Furthermore, P450s also catalyze a 

variety of reactions (Figure A.1). 

RH + O2 + NADPH + H+ ROH + H2O + NADP+
   Equation A.1 

 

Figure A.1  Additional P450 reactions. 
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In humans, CYPs are primarily membrane-associated proteins located either in 

the inner membrane of mitochondria or in the endoplasmic reticulum of cells. They 

metabolize thousands of endogenous and exogenous chemical [106,107]. CYPs are the 

major enzymes involved in drug metabolism, accounting for about 75% of the total 

metabolism [108]. Most drugs undergo deactivation by CYPs, either directly or by 

facilitated excretion from the body [108]. In biotechnology, their unique catalytic 

properties are attractive because they could catalyze difficult chemical reactions, as they 

even act on non-activated carbon–hydrogen bonds. Recent progress towards realizing the 

potential of using P450s towards difficult oxidations have included [109,110]:  

(1) eliminating the need for natural co-factors by replacing them with inexpensive 

peroxide containing molecules, (2) exploring the compatibility of p450s with organic 

solvents, and (3) the use of small, non-chiral auxiliaries to predictably direct P450 

oxidation. P450 systems can be used in a variety of applications (Figure A.2) 

 

Figure A.2  Function and potential applications of Cytochrome P450 systems. 
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Spore display will be used to synthesize carboxylic acids from alkanes (Figure 

A.3; see Chapter 1 for background of spore display). The first step is oxidizing the alkane 

to an alcohol by a cytochrome P450. Then, the alcohol will be converted to the aldehyde 

by an alcohol dehydrogenase. Finally, the aldehyde will be transformed to the acid by an 

aldehyde dehydrogenase. The final target is to enzymatically synthesize adipic acid (1, 

6-hexandioic acid). Adipic acid is widely used in industry. About 60% of the 2.5 billion 

kg of adipic acid produced annually is used as monomer for the production of nylon 

(textiles, carpets, and tire chords), polyurethanes, and plasticizers [111,112]. In medicine, 

adipic acid has been incorporated into controlled-release formulation matrix tablets to 

obtain pH-independent release for both weakly basic and weakly acidic drugs [113]. The 

synthesis of adipic acid is energy intensive, uses toxic, heavy metals, and nitric acid. The 

goal is to enzymatically synthesize hexanoic acid from hexane. A P450 will oxidize 

hexane to hexanol. Next, alcohol dehydrogenase will oxidize the alcohol to aldehyde.  

Finally, aldehyde dehydrogenase will oxidize the aldehyde to the acid. 

 

Figure A.3  Enzymatic synthesis of carboxylic acids from alkanes. (A) Cytochrome 

P450 catalysis of alkane to alcohol. (B) Alcohol dehydrogenase catalysis of alcohol to 

aldehyde. (C) Aldehyde dehydrogenase catalysis of aldehyde to carboxylic acid. 
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The Cytochrome P450 that will be used is CYP102A3. It is found in the Bacillus 

subtilis and has 76% similarity to the cytochrome P450 BM-3 from B. megaterium 

(CYP102A1). The structure has not been solved for CYP102A3, but it is known for CYP 

102A1 (Figure A.4). Cytochrome P450 CYP102A3 is a fusion protein that consists of a 

heme and a FAD/FMN-reductase domain. 

 

Figure A.4  Structure of CYP102A1 heme domain (PDB 2IJ2). The heme is shown as 

CPK spheres. 

 

These enzymes typically oxidize fatty acids at the and and not the 

terminal position. Wild-type CYP102A3 is most active with myristic acid 

(1-tetradecanoic acids). However, CYP102A3 S189Q/A330V mutant was found to 

oxidize octane at the terminal position and the specificity was 42%. In this study, we 

integrated CYP102A3 S189Q/A330V (P450) gene, fused with a green fluorescence 
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protein (GFP) as signaling label into the genome of B. subtilis. The first step is to display 

CYP102A3 on the spore coat. 

 

Materials 

All chemicals were of analytical reagent grade or higher quality and were purchased from 

Sigma-Aldrich (St. Louis, MO). Enzymes were purchased from Invitrogen (Carlsbad, CA) 

and New England Biolabs (Ipswich, MA). Primers were procured from Invitrogen 

(Carlsbad, CA). Plasmid pDG364_CotB_ HuPTH1r_GFP was previously constructed in 

our lab. CYP102A3 S189Q/A330V mutant was constructed and modified for Bacillus 

subtilis expression and inserted into plasmid pJ241 to construct pJ241_P450 by DNA2.0 

(Newark, California, U.S.).  

 

Methods 

Gibson Assembly 

Gibson Assembly was developed by Dr. Daniel Gibson and his colleagues at the J. Craig 

Venter Institute and licensed to NEB by Synthetic Genomics, Inc. This method efficiently 

joins multiple overlapping DNA fragments in a single-tube isothermal reaction. 

Oligonucleotides, DNA with varied overlaps (15–80 bp) and fragments hundreds of 

kilobases long have been successfully assembled by using Gibson Assembly. The 

overview of Gibson Assembly is shown below (Figure A.5): 
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Figure A.5  Overview of the Gibson Assembly Cloning Method. 

 

In Gibson Assembly, DNA fragments that need to be assembled are first amplified 

by PCR. Overalp was added by using overlapping primers. Next, these DNA fragments 

are mixed with a cocktail of three enzymes, along with other buffer components. The 

three required enzyme activities are: exonuclease, DNA polymerase, and DNA ligase. 

The exonuclease chews back DNA from the 5' end. The resulting single-stranded regions 

on adjacent DNA fragments can anneal. The DNA polymerase extends 3’ ends to fill in 

any gaps along the gene. The DNA ligase covalently joins the DNA of adjacent segments, 

thereby removing any nicks in the DNA. 
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DNA Construction 

Plasmid pDG364_CotB_P450_GFP was constructed from 

pDG364_CotB_HuPTH1r_GFP. First, pDG364_CotB_ HuPTH1r_GFP were digested 

with PmeI and BamH1 to create the vector. P450 gene was amplified from pJ241_P450. 

GFP was amplified from pDG364_CotB_ HuPTH1r_GFP. The overlapping primers for 

amplification are shown in Table A.1. Then, DNA fragments P450 and GFP were inserted 

into the vector by using Gibson Assembly (Figure A.6). The constructed plasmid was 

transformed into E.coli DH5 and plated on LB plates containing ampicillin (50 g/mL). 

Four colonies were randomly picked and the plasmids were isolated for DNA sequencing. 

The correct plasmid was integrated into the amyE locus into B. subtilis strain PY79 (Ohio 

State University, Bacillus Genetic Stock Center, Columbus Ohio).  

The insert includes CotB as carrier protein then is followed by a linker 

(-GlyPheLysLeu Gly4Ser-) that connects CYP102A3 S189Q/A330V. The P450 has a 

linker (-LeuGlu-) to GFP. 
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Figure A.6  Overview of the Gibson Assembly cloning method. 

 

Table A.1  Overlapping Primers Used in DNA Construction for Plasmid 

pDG364_CotB_P450_GFP. 

Name Primer Sequence 

P450-forward 5’-GGAAACGTAAATTTGGGTTTAAACTCGGAGGAGGAGGATC-3’ 

P450-reverse 5’-AGTTCTTCTCCTTTACTCATCTCGAGCATACCAGTCCAAA-3’ 

GFP-forward 5’-TATGCTCGAGATGAGTAAAGGAGAAGAACTTTTCACTGGA-3’ 

GFP-reverse 5’-GCGACCGGCGCTCAGGATCCTTATTTGTATAGTTCATCCA-3’ 

 

Results 

Four colonies were randomly collected after the transformation of Gilbson Assembly 

assembled plasmid into E.coli DH5a. The plasmids were insolated and double digested 

with PmeI and BamH1. The gel picture showed that one plasmid (at lane 4) has a 

~4000bp DNA fragment after double digestion, indicating the success of Gilbson 
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Assembly (Figure A.7). The sequence of this DNA fragment was investigated by using 

six primers (Figure A.8, Figure A.9). Next, the chromosome DNA was isolated from 

transformed B. subtilis and P450 region was amplified with P450-forward and 

P450-reverse. The sequence of the resulting PCR product was investigated. The 

sequencing data indicates the successful construction of pDG364_CotB_P450_GFP and 

successful integration into B.subtilis. 

 

Figure A.7  Agarose gel of isolated plasmids after PmeI and BamH1 double restrction digestion. 

Lane 1: Marker; Lane 2 - 5: isolated pladmids after double digestion; Lane 6: GFP PCR 

product. 
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Figure A.8  Sequence of CotB_P450_GFP was acquired by SnapGene (GSL Biotech 

LLC, Chicago, IL). CotB is labeled as blue. P450 is labeled as pink. GFP is labeled as 

green. 
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Figure A.9  Full sequence result of CotB_P450_GFP for P450. The sequence is 

analyzed by ApE-A plasmid Editor (by M. Wayne Davis). 
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APPENDIX B 

SEQUENCE DATA OF COTA VARIANTS 

 

Raw data of sequencing of Y19-CotA and other variants. 
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Figure B.1  Full sequence results of Y19-CotA. The sequence is analyzed by ApE-A 

plasmid Editor (by M. Wayne Davis). 
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Figure B.2  Sequence results of E498G-CotA near the subtitution site. The mutated sites 

is highlighted in grey bar. The sequence is analyzed by ApE-A plasmid Editor (by M. 

Wayne Davis). 
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Figure B.3  Sequence results of L343S-CotA near the subtitution site. The mutated sites 

is highlighted in grey bar. The sequence is analyzed by ApE-A plasmid Editor (by M. 

Wayne Davis). 
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