

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

VIEWABILITY PREDICTION FOR DISPLAY ADVERTISING

by
Chong Wang

As a massive industry, display advertising delivers advertisers’ marketing messages

to attract customers through graphic banners on webpages. Display advertising is

also the most essential revenue source of online publishers. Currently, advertisers

are charged by user response or ad serving. However, recent studies show that users

barely click or convert display ads. Moreover, about half of the ads are actually never

seen by users. In this case, advertisers cannot enhance their brand awareness and

increase return on investment. Publishers also lose much revenue. Therefore, the

ad pricing standards are shifting to a new model: ad impressions are paid if they

are viewable, not just being responded to or served. The Media Ratings Council’s

standard for a viewable display impression is a minimum of 50% of pixels in view for

a minimum of one second. To implement viewable impressions as pricing currency,

ad viewability should be accurately predicted. Ad viewability prediction can improve

the performance of guaranteed ad delivery, real-time bidding, as well as recommender

systems.

This research is the first to address this important problem of ad viewability

prediction. Inspired by the standard definition of viewability, this study proposes

to solve the problem from two angles: 1) scrolling behavior and 2) dwell time. In

the first phase, ad viewability is predicted by estimating the probability that a user

will scroll to the page depth where an ad is located in a specific page view. Two

novel probabilistic latent class models (PLC) are proposed. The first PLC model

computes constant use and page memberships offline, while the second PLC model

computes dynamic memberships in real-time. In the second phase, ad viewability

is predicted by estimating the probability that the page depth will be in-view for

certain seconds. Machine learning models based on Factorization Machines (FM)

and Recurrent Neural Network (RNN) with Long Short Term Memory (LSTM) are

proposed to predict the viewability of any given page depth in a specific page view.

The experiments show that the proposed algorithms significantly outperform the

comparison systems.

VIEWABILITY PREDICTION FOR DISPLAY ADVERTISING

by
Chong Wang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Information Systems

Department of Information Systems

May 2017

Copyright c© 2017 by Chong Wang

ALL RIGHTS RESERVED

APPROVAL PAGE

VIEWABILITY PREDICTION FOR DISPLAY ADVERTISING

Chong Wang

Dr. Yi Chen, Dissertation Advisor Date
Associate Professor of Management, New Jersey Institute of Technology

Dr. Cristian Borcea, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Vincent Oria, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Ellen Thomas, Committee Member Date
Associate Professor of Management, New Jersey Institute of Technology

Dr. Nitish Korula, Committee Member Date
Staff Research Scientist, Google Inc.

BIOGRAPHICAL SKETCH

Author: 	 Chong Wang

Degree: 	 Doctor of Philosophy

Date: 	 May 2017

Undergraduate and Graduate Education:

• Doctor of Philosophy in Information Systems,

New Jersey Institute of Technology, Newark, NJ, 2017

• Bachelor of Management in Management Information Systems,
Nanjing University of Posts & Telecommunications, Nanjing, P.R. China, 2009

Major: 	 Information Systems

Presentations and Publications:

Wang, C., Kalra, A, Zhou, L., Borcea, C., Chen, Y. “Predictive Models and
Analysis For Webpage Depth-level Dwell Time”. Journal of the Association for
Information Science and Technology (JASIST) (Under Second Round Review)

Wang, C., Kalra, A, Borcea, C., and Chen, Y. “Probabilistic Models For Ad
Viewability Prediction On The Web”. IEEE Transactions on Knowledge and
Data Engineering (TKDE) (Under Third Round Review)

Ackerman, B., Wang, C., and Chen, Y. “A Session-Specific Opportunity Cost
Model for Rank-Oriented Recommendation”. Journal of the Association for
Information Science and Technology (JASIST) (Under First Round Review)

Zhao, S., Wang, C., Kalra, A, Vaks, L., Borcea, C., and Chen, Y. “Ad Blocking and
Counter-Ad Blocking: Analysis of Online Ad Blocker Users”. Proceedings of
the 23th Americas Conference on Information Systems. 2017

Liu, Z., Wang, C., and Chen, Y. “Keyword Search on Temporal Graphs”. IEEE
Transactions on Knowledge and Data Engineering (TKDE) (To Appear)

Wang, C., Kalra, A., Borcea, C., and Chen, Y. “Webpage Depth-level Dwell
Time Prediction.” Proceedings of the 25th ACM International Conference on
Information and Knowledge Management. 2016.

iv

Wang, C., Kalra, A., Borcea, C., and Chen, Y. “Revenue-Optimized Webpage
Recommendation”. Proceedings of IEEE International Conference on Data
Mining Workshop (ICDMW). 2015.

Wang, C., Kalra, A., Borcea, C., and Chen, Y. “Viewability Prediction for Online
Display Ads”. Proceedings of the 24th ACM International Conference on
Information and Knowledge Management. 2015.

Watrous-deVersterre, L., Wang, C. and Song, M., “Concept chaining utilizing
meronyms in text characterization”. Proceedings of the 12th ACM/IEEE-CS
joint conference on Digital Libraries. 2012.

v

I dedicate my dissertation work to my family and friends.
I especially appreciate my parents, Ke Wang and Li An,
who raise me up. I also would like to thank my wife,
Yaoyu Zhong. She always stands by my side no matter
what happens.
Finally, I would like to give special thanks to the
eternal light that ignites my bones and guides me to the
distance...

vi

ACKNOWLEDGMENT

I would like to thank my advisor Dr. Yi Chen for the guidance and support

throughout these years. I would also like to thank Dr. Cristian Borcea, Dr. Vincent

Oria, Dr. Ellen Thomas, and Dr. Nitish Korula for taking time to serve on my

dissertation committee. I would also like to thank Achir Kalra and my labmates,

Shuai Zhao, Jinhe Shi, and Mingda Li, for cooperation. I also would like to thank my

family and friends, who always give me support especially when I was at the lowest

point of my life.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Overview of the Research . 6

1.3 Organization of the Dissertation . 9

2 LITERATURE REVIEW . 10

2.1 Computational Display Advertising 10

2.2 Scrolling Behavior Analysis . 13

2.3 Dwell Time Prediction . 14

3 SCROLLING BEHAVIOR PREDICTION 17

3.1 Problem Definition . 17

3.2 Probabilistic Latent Class Model with Constant Memberships 18

3.2.1 The Real-Life Dataset . 18

3.2.2 Features Impacting the Max Scroll Depth 19

3.2.3 PLC const: Prediction Model with Constant Memberships . . 23

3.2.4 Viewability Prediction for a Target Scroll Depth 28

3.2.5 Evaluation . 28

3.3 Probabilistic Latent Class Model with Dynamic Memberships 40

3.3.1 PLC dyn: Prediction Model with Dynamic Memberships . . . 40

3.3.2 Evaluation . 46

3.4 Chapter Conclusions . 62

4 DWELL TIME PREDICTION . 63

4.1 Problem Definition . 63

4.2 Factorization Machines (FM) Model 63

4.2.1 The Real-Life Dataset . 63

4.2.2 The Proposed FM Model . 64

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.2.3 Evaluation . 70

4.2.4 Feature Analysis . 80

4.3 Deep Sequential Neural Networks . 87

4.3.1 Introduction . 87

4.3.2 The Real-Life Dataset . 89

4.3.3 Background of LSTM RNN . 92

4.3.4 The Proposed LSTM RNN Models 94

4.3.5 Evaluation . 105

4.4 Chapter Conclusion . 116

5 CONCLUSIONS AND FUTURE WORK 118

BIBLIOGRAPHY . 121

ix

LIST OF TABLES

Table Page

3.1 Example of User Log . 20

3.2 Training and Test Data Partitioning . 29

3.3 RMSDs of Different Parameter Pairs . 32

3.4 Dataset Partitions with Different Sizes 38

3.5 Training and Test Data Partitioning . 47

3.6 Dataset Partitions with Different Sizes 60

4.1 A Simplified Example of The User Log 64

4.2 The RMSD Comparison by Adding One More Additional Feature 73

4.3 The Comparison by Adding More Additional Features to FM (doc2vec 150) 76

4.4 Depth Dwell Time Prediction Comparison 77

4.5 Viewability Prediction. Threshold = 1s 109

4.6 Viewability Prediction. Threshold = 5s 110

4.7 Viewability Prediction. Threshold = 10s 110

x

LIST OF FIGURES

Figure Page

1.1 An example of a display ad. 2

3.1 An example of a scroll depth. 19

3.2 Distribution of max scroll depth. 20

3.3 Distribution of max scroll depth across devices. 21

3.4 Average max scroll depth as a function of user geo-location. 21

3.5 Distribution of max scroll depth for week days. 22

3.6 Distribution of max scroll depth of different hours of the day. 23

3.7 RMSD performance. 33

3.8 Classification performance comparison. 35

3.9 Runtime comparison. 37

3.10 Performance comparison of different training data sizes. 39

3.11 RMSD Performance . 49

3.12 Log-loss Performance . 49

3.13 Classification performance comparison. 53

3.14 AUC comparison. 55

3.15 RMSD comparison by considering only latent user classes or latent page
classes. 56

3.16 The mean RMSDs with different gaps across target scroll depths. 57

3.17 The RMSDs with 0-day and 20-day gaps. 58

3.18 The average RMSDs with different training sizes across all target scroll
depths. 60

3.19 RMSDs with 1-day and 20-day training sizes. 61

3.20 Memory comparison of training. 61

3.21 Memory comparison of testing. 62

4.1 Depth dwell time prediction comparison (buckets). 78

4.2 Viewability prediction comparison. 79

xi

LIST OF FIGURES
(Continued)

Figure Page

4.3 Day of week vs. traffic and mean page-level dwell time (New York State;
0=Sunday). 80

4.4 Hour of day vs. traffic and mean page-level dwell time (New York State). 80

4.5 The comparison of mean depth-level dwell time on Wednesday and
Saturday (in seconds). 82

4.6 The comparison of mean depth-level dwell time on different hours of day
(in seconds). 83

4.7 The comparison of mean depth-level dwell time across channels (in seconds). 83

4.8 The comparison of mean depth-level dwell time across viewport categories
(in seconds). 85

4.9 The average dwell time of page depths. 90

4.10 The distribution of page views whose dwell times at the corresponding
page depths are at least 1s. 91

4.11 The cumulative distribution of page depth dwell time 92

4.12 The distribution of the number of user actions in a page view. 93

4.13 Modelling webpage depth viewability prediction. 97

4.14 The LSTM RNN model. 98

4.15 Example of propagation without interaction. 100

4.16 Example of propagation with interaction. 101

4.17 The LSTM RNN with embedding interaction model. 102

4.18 The bi-directional LSTM RNN with embedding interaction. 103

4.19 Log-loss performance of the proposed models 108

4.20 Performance of viewability prediction in buckets. 111

4.21 Effect of main parameters. 113

4.22 Performance of dwell time prediction. 116

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

While traditional advertising may be struggling to prove its effectiveness in the new

century, online display advertising is helping to revolutionize marketing. Display

advertising provides many benefits that other marketing channels do not, such as

faster brand building, effective targeting, and real time conversion measuring. Online

display advertising has emerged as one of the most popular forms of advertising.

Studies [44] show that display advertising is generating earning of over $63.2 billion

in 2015.

Online advertising involves a publisher, who integrates ads into its online web

pages, and an advertiser, who provides ads to be displayed. Display ads can be seen in

a wide range of different formats and contain items such as text, images, Flash, video,

and audio. A typical display ad is shown in Figure 1: an advertiser, e.g., Audi, pays

an online publisher, e.g., Forbes, for space on webpages to display a banner during

page views in order to attract visitors that are interested in the product. Typically,

a page view happens each time when a particular page on a website is requested by

a user and displays in a browser. Also, in display advertising, every occurrence of an

ad within the page is called an ad impression, which is the basic unit of ad delivery.

For instance, one page view is counted when the page in Figure 1 is shown on a user’s

browser. This page view has one ad impression. The same ad displayed in different

page views are considered as different impressions. A large publisher, e.g., Forbes,

usually serves billions of impressions in a day.

Advertisers pay for ad impressions with the expectation that their ads can be

viewed, clicked on, or even converted by users. One existing display ad compensation

1

2

Figure 1.1 An example of a display ad.
Source: https://www.bloomberg.com/news/articles/2013-09-11/laser-focused-ceos-multiply-with-
promises-from-ipads-to-macaroni
(accessed on 08/06/2014)

is based on user clicks (pay-by-click) and conversion (pay-by-action). In pay-by-click,

an advertiser has to pay for an impression once a user clicks the ad. In pay-by-

action, advertisers are charged when the impressions are clicked on or converted

(i.e., purchase). These two pricing models bring direct and measurable profits to the

advertisers. Thus, they have been widely adopted in sponsored search advertising

and display advertising. Much research has been done for predicting click rate and

conversion rate [18, 63], bid optimization [89, 16], real-time bidding auctions [15], and

user targeting [82, 80]. However, the click and conversion rates are often very low.

Users do not typically click this type of ads, rendering the traditional form of pricing

structure ineffective. Advertisers cannot achieve their marketing goals and thus lose

trust in publishers. Furthermore, pay-by-action is not suitable for certain advertisers,

e.g., banks, that do not expect users to immediately purchase their products and

service through ads. They just expect users to get familiar with their products and

recall them in the future. In addition, click fraud [35] may occur in page-per-click

3

advertising. An automated script or a computer program imitates a legitimate user

of a web browser, clicking on an ad for the purpose of generating a charge per click

without having actual interest in the target of the ad’s link. This largely hurts the

benefits of both publishers and advertisers.

The other display ad compensation is pay-by-impression, in which advertisers

pay once an impression is sent to the user side, i.e. served. It is highly suitable for

advertisers who have growing interest in utilizing online display ads to raise brand

awareness and promoting the visibility of the companies and their products. Indeed,

users like to purchase products from brands that they recognize and trust. Display

ads can create emotional experience that gets users excited about a brand and builds

trust. However, a recent study [27] shows that more than half of the ads served were

actually not seen by users. One of the main reasons is that users did not scroll down

a page enough in order to display an ad, i.e., in-view, although technically the ad

did load and an impression is served. These invisible impressions are considered to

be low-quality in advertisers’ eyes because they cannot deliver marketing messages,

and thus they hardly enhance return on investment. Thus, low viewability leads to

insufficient ad inventory quality and ineffective brand promotion.

Therefore, a new pricing model is emerging: pricing impressions by the number

of impressions that can be viewed by a user, instead of just being served [46].

Practically speaking, it means that for brand advertising, advertisers can and will

expect guarantees on viewable display impressions. This avoids the frustration of

advertisers who are concerned about paying for ads that were served but not seen

by users. Thus, it was determined by the Iterative Advertising Bureau (IAB) that

the most important need is shifting currency from served impressions to viewable

impressions.

Modern online publishers avoid using sticky ads, the positions of which do not

scroll with the screen. Although this can almost guarantee 100% viewability, it largely

4

hurts user experience. Not surprisingly, ads placed at different page depths have

different likelihoods of being viewed by a user [26]. Hence, to implement viewable

impressions as pricing currency, impression viewability should be accurately predicted.

The industry standard of viewable impressions, as developed by the Media Rating

Council (MRC), calls for display ads to be viewable if 50% of their pixels are in-view

for a minimum of one consecutive second. Therefore, it is important to predict the

probability that half of an ad at a given page depth can be in-view for at least one

consecutive second.

This study develops machine learning models to predict the viewability of an

ad impression placed at any page depth. Ad viewability prediction is important for

many applications:

Guaranteed impression delivery. One of the main ad selling methods

is guaranteed delivery, in which advertisers contract publishers to buy guaranteed

advertising opportunities. It is called “guaranteed” because the contracts may fix the

number of impressions, targeting criteria, price, etc. The advertising messages are

guaranteed to be served in the page views generating by the targeted audience. The

publishers must fulfill the contracts in order to avoid any penalties. As the industry

moves toward transacting on viewable impressions, advertisers may propose contracts

that specify the number of impressions that will be viewed. Predicting ad viewability

helps publishers to fulfill such contracts by placing the ads in the right impressions.

Real-time impression bidding. Advertisers can also buy impressions

through real-time bidding (or non-guaranteed delivery). Publishers may also sell

remnant ad inventory in real-time when a page view just occurs. The inventory is

sold on ad exchanges via real-time bidding. Given from ad exchanges the impression

context, including the user, the page, and the ad position, advertisers desire to know

the probability that the ad will be in-view. Based on the viewability, advertisers can

adjust the bidding price for an impression and improve ad investment effectiveness.

5

Specifically, they can bid higher for impressions with high predicted viewability. In

addition, publishers can also benefit from ad viewability prediction by adjusting the

minimum prices for impressions which are offered for bidding.

Webpage layout selection. With the ad pricing standard shifting to ad

viewability, viewability will become a crucial factor in page layout design, which may

impact ad revenue [20]. Simply put, placing all ads at the top of a webpage can

increase total viewability. However, this will largely hurt user experience and thus

decrease long-term revenue. But placing all ads at the bottom will definitely reduce

total viewability. Therefore, publishers are exploring personalized page layouts that

can balance ad viewability and user experience. For example, if a user will not scroll

deep, the ad slot at the bottom may be moved higher, while considering the impact

on user experience.

Recommender Systems. User behaviors, such as dwell time (i.e., the time a

user spends on a page), have been regarded as significant indicators of user interest.

Combining dwell time prediction and scroll depth prediction, viewability prediction

can be employed as a critical metric of user interest [75].

This research studies the problem of predicting the viewability of any page depth

where an ad may be placed in a page view. Ad viewability prediction tailored for

individual page views is challenging. First, most users visit only several webpages on a

website. Also, most webpages are visited by only a small number of users. Therefore,

it is challenging to detect user interests and webpage characteristics based on such a

sparse history of user-page interaction. Second, since ads may be placed at many page

depths on a webpage, the viewability prediction model should be able to accept any

input page depth. Training a model for each page depth generates 100 models for a

page view. In contrast, the proposed prediction model should return the forecasts in

real-time by being efficiently trained offline. Third, the optimal viewability prediction

should not provide binary output, (in-view or not in-view). Instead, we would ask how

6

likely it is an ad at 60% page depth will be in-view for at least one consecutive second

in a given page view? Such probabilistic output will be very useful in optimization

applications. Fourth, to the best of our knowledge, there is no existing work trying

to define and predict ad viewability.

1.2 Overview of the Research

This research proposes machine learning models to predict ad viewability in real-time.

Note that the proposed methods can be used to predict the viewability of any item

on a web page, such as ads, text, and video.

In order to build machine learning models to predict ad viewability in real-time,

a real-life dataset is collected from a large online publisher. The datasets record user

visiting information, including the geo location of a user, the time that the user read

a page, and the behavior that the user performed on the page. A dataset of article

metadata is also used in order to get the detailed attributes of page articles.

With the standard definition of viewability suggested by MRC, ad viewability

can be predicted from two perspectives:

The first angle is to estimate ad viewability by predicting scrolling behavior. A

viewable ad must be shown on a user’s screen. Intuitively, whether an ad at a page

depth can be in-view is determined by the user’s scrolling behavior, i.e., the user must

scroll to the page depth where the ad is located before leaving the page. Therefore,

the viewability of an ad impression can be estimated by predicting the user’s scrolling

behavior. In particular, given a page view (a pair of a user and a page), ad viewability

can be considered as the probability that the user will scroll to the page depth where

the ad is located.

A probabilistic latent class model (PLC) with constant memberships (PLC const)

is developed to predict the viewability of any given page depth for a page view. In

particular, from training data, it learns the user and page memberships, i.e., the

7

probability that a user/webpage pair belongs to each latent user/webpage class. The

memberships are used to predict the viewability of a page depth. Furthermore, taking

into account webpage features, another probabilistic latent class model, powered by

dynamic memberships (PLC dyn), is proposed. PLC dyn can better adapt to changes

in user and webpage characteristics, such as user interest and webpage attractiveness.

“Dynamic” means the final memberships of a user/webpage pair are not directly

calculated from training data, but they are determined in real-time based on the

feature values. Specifically, unlike PLC const, PLC dyn uses two softmax functions

powered by linear functions to calculate the final memberships in the real-time.

PLC dyn learns the weights in the linear functions from the training data, instead of

the final memberships of each user/page pair. Both PLC const and PLC dyn utilize

latent user and webpage classes as well as an observed scroll depth distribution to

overcome the data sparsity issue. PLC const directly learns the probability that a

user/webpage belongs to a latent user/webpage class from the training data, while

PLC dyn learns sets of parameters to compute the membership probabilities in

real-time. The output of the models is the probability that a given page depth is

in-view. Compared with a binary decision, i.e., in-view or not, a probabilistic output

is very useful in optimization problems, e.g., page layout selection. The empirical

experiments show that the proposed PLC models outperform the comparison systems,

including logistic regression, SVD, and Cox regression.

According to the standard definition of viewability, a viewable ad must be shown

on screen for at least one consecutive second. This minimum dwell time can also be

specified by advertisers based on the types and sizes of their ads. However, predicting

ad viewability by scrolling behavior does not take dwell time into account. In addition,

not only measuring how long a user stays at a page depth in a page view, the dwell

time of the page depth can reflect whether the user scrolls to the page depth as well.

If a user does not scroll to a page depth, the dwell time of the page depth must be

8

zero. The second stage proposes to predict ad viewability by predicting how likely it

is that a user will stay at a page depth for at least a certain amount of seconds. This

minimum dwell time threshold can be specified by advertisers and publishers.

Thus, in the second phase of this research, a machine learning model is first

proposed to predict the viewability of a page depth where an ad is placed. The

proposed method can also be applied to predict the dwell time of any items on a

page. Specifically, a Factorization Machines (FM) model is adopted because it is

able to capture the interaction between input features, overcome the data sparsity

issue, and provide flexibility to add auxiliary information. The FM models consider

the basic factors (i.e., user, page, and page depth) and auxiliary information. It

is determined through experiments that viewport (i.e., the visible area of a user

browser), channel (i.e., the topic of the entire article), and Doc2Vec vector (which

models the content in the viewport) are the most important auxiliary features.

The FM model is evaluated using real-life data from a large web publisher. The

experimental results demonstrate that the FM model outperforms deterministic and

regression-based comparison models.

In order to discover and leverage the deep patterns among input variables,

three deep sequential neural networks are then proposed to predict how likely it is

that a given page depth will be viewed by a user for at least a certain dwell time.

Ad viewability prediction is considered a sequential labeling problem. The proposed

models utilize the information of the previous page depths to predict the viewability

of the current page depth. In particular, the models leverage Recurrent Neural

Network (RNN) using the Long Short-Term Memory (LSTM) to model sequential

dependency into predicting webpage depth viewability. In the first proposed model,

LSTM noInteract, every time step outputs one prediction outcome: the viewability

of a page depth. The input of each time step in the proposed LSTM RNN contains

information about the user, the page, the depth, and the context. Since user behavior

9

is determined by the interaction of user, page and depth, the second proposed

model considers the interactions by multiplying their embedding vectors before

sending the information to the LSTM layers. Furthermore, users often scroll-back

on pages. The time a user spent at lower page depths also may indicate the time

the user will spend at upper page depths. In addition, in single directional LSTM,

predictions made at upper page depths rely on few previous page depths. The third

model, Bi-LSTM Interact, upgrades LSTMs to bi-directional LSTMs, which can take

future information, i.e., lower page depths, into account. The experimental results

demonstrate that our models outperform the comparison models. The model with

the best performance is Bi-LSTM Interact, which is powered by bi-directional LSTMs

and considers embedding interaction.

The contribution of this research includes: 1) We are the first to define and

study the problem of viewability prediction, which is a significant problem in online

advertising. 2) We are also the first to predict user scrolling behavior in specific

page views. 3) We advance the state-of-the-art method to predict depth-level dwell

time by developing machines learning models. 4) The proposed models are evaluated

using real-life datasets. The experimental results show that our models significantly

outperform the comparison systems.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides a

review of the literature related to this study. Chapter 3 proposes solutions which

predict ad viewability by scrolling behavior. Two probabilistic latent class models

are developed to conduct such prediction. Chapter 4 presents the proposed methods

which predict ad viewability by dwell time. Machine learning models are developed

based on factorization machines and deep sequential neural networks. Chapter 5

concludes the thesis and introduces the future research plan.

CHAPTER 2

LITERATURE REVIEW

This chapter introduces the research landscape of online display advertising and the

related work on scrolling behavior analysis and dwell time prediction.

2.1 Computational Display Advertising

In display advertising, advertisers pay for showing graphical banners that express their

advertising messages in order to boost profits. There are two types of advertising by

objective: direct marketing and brand advertising. In direct advertising, through

showing graphical ads to website visitors, advertisers expect direct response from

potential customers, such as purchase, subscription, voting, and so on. In brand

advertising, advertisers create distinct favorable images about their products or

services. These display ads that are charged per impression can be used to improve

brand awareness. Advertisers have two main approaches to deliver online ads to

customers [85]: Guaranteed Delivery and Non-Guaranteed Delivery. In guaranteed

delivery, advertisers can directly approach publishers to display ads on their webpages,

and if accepted, the publisher will formalize a contract to guarantee the delivery of

the requested number of impressions to specific targeting audience. Alternatively, in

non-guaranteed delivery, by utilizing the service of an ad exchange, an advertiser can

bid ad impressions through real-time bidding (RTB) and has the opportunity to have

the ads displayed on the websites of many publishers.

Real-Time Bidding (RTB) is an important aspect of programmatic buying,

which is getting more and more popular in display advertising. A publisher sends a bid

request of an impression to an ad exchange via the supply side platform (SSP), then

to demand side platforms (DSP) to reach advertisers. The impression is sold via an

auction. If the advertiser wins the impression, her ad will be displayed to users. To bid

10

11

ad impressions, DSPs or advertisers usually determine their own bid prices based on

predicted click-through rate (CTR). Extensive research on CTR prediction has been

done. The proposed models include regression-based [47, 92, 28, 61], tree-based [49],

and neural networks models [23]. In addition, another most important research issue

on the advertiser side is the design of effective bidding algorithms. As a proxy of

advertisers in RTB markets,a DSP is faced with the task of selecting the appropriate

ad impressions and determining their optimal bid prices under budget constraints,

aiming at maximizing the ad performance (e.g., the number of ad impressions, clicks

or conversions) [88]. Different bidding strategies have been proposed to optimize

advertisers’ investment [25, 89, 6, 90, 56].

On the other side of the table, display advertising is the most important revenue

source. Publishers monetize the visit volume by selling ad impressions of page views.

Publishers can sell most of their ad opportunities in advance by guaranteed delivery

in which publishers and advertisers formalize advertising contracts. Publishers

guarantee to deliver ad campaign message to targeting visitors. The remnant ad

inventory is sold through ad exchanges [62] by RTB. Every time, when a user

clicks a page link, a page view is triggered. Publishers need to determine which

advertising channel (e.g., online channels of RTB, ad networks, and offline channels of

contract negotiation) each ad impression on the page goes to. Traditionally, premium

ad inventory is always sold via ad networks or offline negotiations, while remnant

inventory is left for RTB markets. With the effectiveness of RTB advertising is

widely recognized by practitioners, publishers are more inclined to sell premium ad

impressions via RTB platforms. As such, how to predict the ad prices and allocate ad

impressions among multiple channels accordingly has been intensively studied with

the aim to maximize the revenue of publishers [5, 72, 19, 50]. In addition, publishers

need to set the reserve price for each impression and submit it to Ad exchanges.

The reserve price is the lowest price for publishers to sell the impression. Generally

12

speaking, a high reserve price may increase the risk that the impression cannot be

sold, while a low reserve price may decrease publishers’ revenue. As such, researchers

have proposed algorithms for optimizing ad reserve prices [53, 86, 58, 51, 38]. Also,

different ad sizes and positions have diverse advertising effect. Large ads tend to be

viewed, clicked, and even recalled by users. Likewise, ads at the top of pages are

more likely to be seen. Therefore, ad format and webpage layout influence bid prices

submitted by advertisers. The existing work [20, 69] has focused on selecting optimal

ad format for an impression and webpage layout for a page view in real-time.

Existing research has been done on both publisher and advertiser sides. One

example loosely related to the proposed research is behavioral targeting. Behavioral

targeting comprises a range of techniques used by online publishers and advertisers

aimed at increasing the effectiveness of advertising using user web-browsing behavior

information [14]. Advertisers can buy user behavior data from third party companies.

Although behavioral targeting tracks and analyzes user browsing behaviors, existing

research [17, 43, 54, 7, 3] mainly focuses on user-ad interaction (i.e., ad click or

conversion). These studies identify user characteristics to perform targeting based on

the ads that users clicked or converted in the past and/or search queries that users

submitted. However, none of the existing research in behavioral targeting performs

user targeting based on implicit user behaviors, e.g., scrolling and dwell time. In

contrast, the proposed research attempts to utilize implicit user behaviors to predict

ad viewability.

As introduced in the Chapter 1, current pricing model is based on pay-by-serving

or pay-by-click/action. Since very few impressions are clicked or converted and only

half of the impressions are view by users, the Media Rating Council (MRC) has

urged the entire industry to shift the paradigm towards pay-by-view and evaluate

advertising campaigns by user engagement, e.g., viewability. In this case, it will be

significant to develop a method to accurately predict the viewability of impressions

13

in real-time. Such research can help advertisers determine the bid prices in RTB and

also help publishers to decide the reserve prices of impressions, personalize webpage

layout, and so on. Currently, there is no any related research has been done. The

proposed research is the first trying to address ad viewability prediction problem.

The research activity proposed in this proposal, ad viewability prediction, can be

performed on both publisher and advertiser sides. Although the datasets used in this

proposal are collected from a large publishers, advertisers can buy similar data from

the third party and use the same methods to predict ad viewability as well.

According to IAB, an ad is viewable if half of the ad is in-view for at least one

consecutive second. Therefore, viewability prediction can be divided into two parts:

1) predicting the probability that a user will scroll to the page depth where 50% of

an ad so that the ad is in-view, i.e., in-view prediction; 2) predicting the probability

that the dwell time of the page depth is at least a certain time period given the page

depth will be in-view, i.e., dwell time prediction.

2.2 Scrolling Behavior Analysis

Researchers have investigated scrolling behavior and viewability for webpage usability

evaluation. In [78, 45, 26], the authors discover that users spend more time looking at

information on the upper half of the page than the lower half. Also, the distribution

of the percentage of content viewed by users follows a normal distribution. The

work in [2, 33] collects scrolling behavior and considers scrolling behavior as an

implicit indicator of user interests in order to measure the quality of webpage design

and content. However, in contrast to these analytic models of scrolling behaviors

studied in the past, this proposed research develops a predictive model of the scrolling

behavior for any user on any page based on historic information. The focus is to make

prediction before the user behavior occurs, rather than observation or measurement.

14

Several studies have attempted to predict other types of user browsing behavior,

including click [18, 73, 13, 1] and dwell time (which will be discussed later). For click

prediction, one important application is sponsored search, i.e., ads are selected based

on user queries submitted to the search engine and shown along with the search

results. Chen et al. [18] propose a factor model to predict if an ad shown together

with search results at a specific position will be clicked on. However, this prediction

is made for a given position and a query-ad pair, but does not consider the individual

user as a factor. In contrast, the proposed research makes predictions that are tailored

for individual users and pages. Wang et al. [73] learn user’s click behavior from server

logs in order to predict if a user will click an ad shown for the query. The authors use

features extracted from the queries to represent the user search intent. In the case of

the research in this proposal, search queries, which can explicitly reflect user interest,

are not available. Most of the existing work on click prediction [13, 1] is done on the

advertiser side, based on high-dimensional features about users (e.g., private profiles),

ad campaigns (e.g., ad content), and impression context. On the other hand, such

data is not accessible at the publisher side. Therefore, these existing techniques of

predicting click behavior cannot be readily used to predicting scrolling behavior at

the publisher side, which is the goal of this proposed study.

2.3 Dwell Time Prediction

Existing work models dwell time of a whole page as a Weibull distribution [42, 83]

or as Gamma distribution [36]. The authors use explicit features, e.g., page length,

context, and topics, to estimate the overall dwell time that a user will spend on

the whole page. In particular, Liu et al. investigate the feasibility of predicting

from page-level features the Weibull distribution of the time that a user spends on a

whole webpage. They use Multiple Additive Regression Trees (MART). The features

include the frequencies of HTML tags, webpage keywords, page size, the number of

15

secondary URLs, and so on. They find that page-level dwell time is highly related to

webpage length and topics. Yi et al. [83] view the average dwell time of a webpage

as one of the item’s inherent characteristic, which provides important average user

engagement information on how much time the user will spend on this item. The

authors present a machine learning method to predict dwell time of article stories

using simple features. The features they consider are content length, topical category

of the article (e.g., politics, finance, or science), and the context in which the article

would be shown (e.g., desktop, tablet or mobile). The authors use Support Vector

Regression (SVR) models to predict page-level dwell time. Kim et al. [36] present

regression method to estimate the parameters of the Gamma distributions of click

dwell time (i.e., the time that the user spends on a clicked result). The features

they adopt are similar to those used in Liu et al. In contrast, this proposed research

will predict dwell time at a specific depth in a page, which is still an open question.

Working at a finer granularity, depth-level dwell time prediction is more challenging

than page-level dwell time prediction. Yin et al. [84] run analysis of real data collected

from a joke sharing mobile application. The authors find that the dwell time may

satisfy a log-Gaussian distribution. They claim that viewing item is such a casual

behavior that people may terminate the viewing process at any time. The dwell time

varies a lot due to the factors from both items and persons: 1) Items may differ

not only in their form and volume (e.g., different length of articles, etc.); 2) They

are many subjective human factors to affect the dwell time. For example, different

people receive information at different speed and the time of consuming the same

item (e.g., reading an article) may differ from person to person. The authors develop

a View-Voting model, which can estimate how much a user likes the viewed item

according to the item-level dwell time.

In addition to statistical methods, Xu et al. [81] propose a personalized

webpage re-ranking algorithm through exploring a user’s dwell times in his/her

16

previous readings over individual documents. According to the cognitive neuroscience

phenomenon of semantic satiation, the authors assume that human brain has a fatigue

mechanism where the more times a stimulus is repeatedly received by our brain in

a short span of time, the less aroused our brain becomes. Then, the authors infer

concept word level user dwell times in order to understand a user’s personal interest.

According to the estimated concept word level user dwell times, the authors can

estimate a user’s potential dwell time over a new document. Although the proposed

algorithm technically can predict the dwell time of any given part of a web page,

it assumes that users always read documents carefully so that semantic satiation

occurs. However, the proposed algorithm may not be applicable in our application,

where users probably do not have patient to read every part of webpages.

In summary, there is no existing research attempt to predict the scrolling

behavior or dwell time of a user and webpage pair and to predict ad viewability.

In addition, existing methods for user behavior prediction cannot be easily adopted

to solve ad viewability problem.

CHAPTER 3

SCROLLING BEHAVIOR PREDICTION

In the first phase, ad viewability is estimated by predicting scrolling behavior. In

particular, the goal is to predict how likely it is that a user will scroll to the target

page depth so that an ad shown at the page depth will be shown on the screen.

This chapter describes the formal definition of viewability prediction by scrolling, the

proposed approaches, and evaluation.

3.1 Problem Definition

Before defining the problem, let us first introduce several important concepts to be

used in the problem definition: 1) The scroll depth is the percentage of a webpage

content vertically scrolled by a user. 2) The maximum scroll depth of a page view is

how far down the page the user has scrolled during that view. The maximum scroll

depth that a user u will scroll on a webpage a is denoted as xua. 3) The target scroll

depth, denoted as X, is the page depth whose viewability an advertiser or publisher

wants to predict. For instance, a publisher wants to predict the probability that an ad

is in-view in a page view. In this case, the target scroll depth can be the percentage

of the webpage that contains at least half of the ad. 1

Our problem is to estimate how likely a user will scroll down to a target scroll

depth of a webpage. Specifically, the prediction should be personalized to individual

users and webpages. The proposed approach is a supervised learning technique. The

inputs of the training module are historical user logs that contain the context of page

views. The output is our viewability prediction model. The inputs of the prediction

1This is in line with the definition suggested by the Interactive Advertising Bureau: a
viewable display ad impression requires that a minimum of 50% of pixels be in-view for a
minimum of one second. We do not consider the one second in-view duration.

17

18

model are a target page depth X and a given pair of user u and webpage a, while the

output is the viewability probability of X in the page view.

Problem Definition 1. Given a page view, i.e., a user u and a webpage a, the goal

is to predict the probability that the max scroll depth, denoted by xua, is no less than

X, i.e., P (xua ≥ X|u, a).

3.2 Probabilistic Latent Class Model with Constant Memberships

3.2.1 The Real-Life Dataset

A proprietary dataset is collected over one and a half months on a large publisher’s

website. It contains more than 1.2 million page views and 100 thousand unique users.

The dataset consists of logs of user browsing behavior captured via Javascript events.

These scripts send the data to a server. This type of client-side approach accurately

captures users’ behavior even in multi-tabbed modern browsers [83].

The scroll depth is recorded according to the last row of pixels on users’ screens.

1% is adopted as the minimum unit of scroll depth; thus, the range of scroll depth is

from 0% to 100%. Once a user stops scrolling and stays at a position for one second,

the scroll depth is recorded in the user log. Figure 3.1 shows an example, in which

the bottom of the user screen is at the 50% of the whole page. Thus, the scroll depth

at the moment is 50%.

The user log of this project includes user IDs, URLs, user agents, user geo-

locations and maximum scroll depths of page views. Individual users are identified

by cookies. Table 3.1 shows some of the important attributes captured in the log.

Each row corresponds to a page view. For instance, the max scroll depth of the first

page view is 72% and that of the second page view is 66%.

Figure 3.2 illustrates the distribution of max scroll depths in our user log. It is

observed that the distribution of the max scroll depth generally follows a Gaussian-like

distribution. It can also be noticed that there are very few page views whose scroll

19

Figure 3.1 An example of a scroll depth.
Adapted from https://www.bloomberg.com/photo/oil-extends-drop-below-50-as-u-s-stockpiles-seen-
swelling-glut-/-ivpCrFJ0gjPw.html //(accessed on
08/06/2014)

depths are less than 10%. The main reason is that the the top 10% of most webpages

can be loaded on the first screen, especially on desktops. In this case, the viewability

of the first 10% of webpages is almost always 1. Therefore, the focus of this research

is the viewability prediction for the page depths greater than 10%.

3.2.2 Features Impacting the Max Scroll Depth

The dataset is analyzed to understand which log attributes significantly influence the

scroll depth, with the aim of selecting these attributes as features in the prediction

model.

Scroll Depth vs. Device Type The reason that page percentage is adopted,

rather than pixels, as a measure of scroll depth is because it provides a relative

20

Table 3.1 Example of User Log

User

ID
IP URL

Max Scroll

Depth
GMT Time

001 1.3.4.5 /abc 72% 11/23/2014 11:00:00

002 7.6.9.2 /bcd 66% 11/23/2014 11:01:33

Figure 3.2 Distribution of max scroll depth.

measure independent of device types (i.e., different devices have different screen sizes).

If a user reads 50% of a page on a mobile device, while another user reads 50% of the

same page on a desktop, it can be assumed that they read the same content of the

page. However, this does not deny a hypothesis that devices may affect user behavior

which may further influence the max scroll depth. For instance, when reading on

mobile phones, users may not have enough patience and may leave the page with

little scrolling.

Figure 3.3 illustrates the distribution of the max scroll depth across multiple

devices, i.e., desktop, mobile/phone, and tablet. The device type is detected from the

user agent attribute. The average max scroll depth is highest on the tablets (65.7%),

followed by desktops (61.6%), and mobiles (60.2%). The possible reasons for the

overall similar results across devices are: 1) The publisher’s webpages are displayed

in a mobile-friendly manner; 2) Flicking fingers on the screen is as easy as scrolling

the wheel of a mouse [39]. Finally, it is noticed that mobiles, as expected, have certain

21

Figure 3.3 Distribution of max scroll depth across devices.

page views with max scroll depth under 15%. This is very rare for desktops. The

reasons for such low percentages are: 1) some pages are very long on the mobiles; 2)

users close the browser tabs with loaded pages before they view these pages or stop

loading the pages before they are shown, in which case the max scroll depth is zero.

Although generally similar, the results exhibit a number of differences, and thus the

device type is considered as a feature in the proposed model.

Figure 3.4 Average max scroll depth as a function of user geo-location.

22

Scroll Depth vs. Geo-location The user log records the countries from which

the visitors connect and the US states if the visitors are from US. The locations with

sample page view sizes less than 1000 are filtered out. Figure 3.4 shows that most of

the top 50 locations for max scroll depth are US states. Interestingly, visitors from

U.S. Virgin Islands (65.62%) view pages the deepest, followed by New York State

(65.60%) and Texas (65.49%). On the other hand, users from Namibia read the least

(53.23%). In addition to user interests and reading habits, user geo-locations may

also determine the connection speed, the distance from the publishers’ host servers,

etc. These factors, independent of users and webpages, may directly play a role on

how users engage with the content. Since user geo-location is a significant factor, it

is considered as a feature in the proposed prediction model.

Figure 3.5 Distribution of max scroll depth for week days.

Scroll Depth vs. Day of the Week The day of the week and hour of the day are

calculated using the local time of the user which is inferred from the user’s IPs and

the GMT time in the user log. Figure 3.5 shows that the day of the week does not

have a significant impact on the scroll depth. This result contradicts past research

[87] which revealed that the day of week determines the impression volume. Thus,

this feature is not considered in the prediction model.

23

Figure 3.6 Distribution of max scroll depth of different hours of the day.

Scroll Depth vs. Hour of the Day One plausible hypothesis is that users

may scroll deepest in the evening, after work. However, surprisingly, Figure 3.6

demonstrates that users seemingly perform very similar at different hours of the day.

Thus, the hour of the day is not a significant factor to predict max scroll depth.

3.2.3 PLC const: Prediction Model with Constant Memberships

Our task is to infer the max scroll depth of a page view, xua, where u is the user

and a is the webpage. It is intuitive that the characteristics of individual users and

webpages can be utilized to improve the performance of max scroll depth prediction

models. For example, users who prefer to scroll far down on most webpages would

have a higher probability to scroll down the current page. Also, features such as

device type and geo-location are easy to be modeled.

However, some other significant features are very hard to capture due to lack

of data and the ambiguity of user-webpage interaction. For example, pages with

popular content and good design may motivate users to scroll more. But accurately

modeling topic popularity and webpage design is difficult. Other examples include

24

user interests and psychology. Therefore, depending solely on explicit features will

not lead to accurate prediction.

In addition to feature modeling, data sparsity is another challenge. While a

large publisher usually has tens of thousands of webpages, one user only visits several.

Likewise, one page may be visited by a small subset of the entire user population. As

a result, the user-page interaction employed in prediction could be extremely sparse,

which brings about challenges in the prediction performance. A widely-used solution

is grouping similar users and similar webpages together and inferring the prediction

for a user-page pair using the known data of similar user-page pairs.

To overcome these issues, we use a latent class model [11] to discover classes

of users and webpages. Specifically, we build a probabilistic latent class model with

constant memberships (PLC const). The intuition behind it is that different latent

classes of webpages and users tend to generate different levels of max scroll depths.

PLC const can detect classes of users and webpages that share similar patterns of max

scroll depth. The exact class memberships of each user and webpage are learnt from

the user log and used to do prediction for each page view in test datasets. PLC const

outputs the probability P (xua|u, a), where xua is the max scroll depth that a user u

reaches on a page a.

Formally, PLC const works as follow:

P (xua|u, a) =
Ns∑ Np∑

P (s|u)P (p|a)P (xua|fuac, s, p;wsp) (3.1)

where xua is the max scroll depth of a page view. Ns is the number of latent user

classes, and Np is the number of latent webpage classes. Both Ns and Np are pre-

defined as model parameters. The optimal values for these parameters can be explored

by cross validation. P (s|u) is the probability that user u belongs to the latent user

class s, while P (p|a) is the probability that webpage a belongs to the latent webpage

25

class p. For simplicity, in this paper, we use s and p to notate individual latent user

classes and latent page classes. The last term, P (xua|fuac, s, p;wsp), represents the

probability that the max scroll depth of the page view is xua, given the latent user

class s and webpage class p. fuac is the feature set that reflects the user, the webpage,

and context information, while wsp is the corresponding feature weights.

As mentioned above, the last term can be approximated by the probability

density function of a normal distribution. Note that there is no single distribution

that can fit all datasets. This paper proposes a general framework for predicting

user reading behavior. The proposed methods do not rely on properties specific to

the Gaussian distribution. Therefore, different publishers and advertisers can plug in

other distributions according to their own datasets. They only need to change the

probability density function (Equation 3.2) and the corresponding M-step.

P (xua|fuac, s, p;wsp)

=
1√

2πσ2
sp

· exp

(
−

(xua − wTsp · fuac)2

2σ2
sp

)
(3.2)

The right side of Equation 3.2 is developed based on the probability density

function of a normal distribution, i.e., 1
σ
√
2π
· exp(− (x−µ)2

2σ2). The mean of the

distribution, µua, can be modeled by a regression whose features are extracted from

the history of u and a as well as the context of the page view, i.e., µua = wTsp ·fuac. The

superscript uac means the feature set includes user, webpage, and context features.

Each pair of latent user class s and latent webpage class p has a set of wsp∗, i.e.,

the weights in the linear function of µua and σsp, i.e., the mean and the standard

deviation.

Based on the observations presented so far, we consider seven features:

• User Features:
1) The mean max scroll depth of all page views of u. This feature captures user

26

browsing habits.
2) The most recent three max scroll depths of u. This feature captures the
recent scroll behavior of the user.

• Webpage Features:
3) The mean max scroll depth of a by all users. This feature captures the
popularity of the webpage.
4) The most recent three max scroll depths of page views of a. This feature
captures the recent scroll behavior for this webpage.

• Interaction of User and Webpage:
5) Interaction of the mean max scroll depth of u and that of a, i.e., the product
of features 1 and 3.

• Page View Context:
6) User geo-locations, which were shown to be important by our analysis of the
dataset.
7) Device Type (i.e., desktop, mobile, or tablet), also shown to have a certain
relevance by our analysis.

Let W be the collection of the weight vectors of all latent user classes and

webpage classes. σ is the collection of the standard deviations of all latent user

classes and webpage classes. The features help iteratively determine W and σ.

In Equations 3.1 and 3.2, there are several parameters (P (s|u), P (p|a), W, σ).

They can be calculated by maximizing the following likelihood function:

l(P (s|u), P (p|a),W,σ) =

∑
u,a

ln

(
Ns∑ Np∑

P (s|u)P (p|a)P (xua|fuac, s, p;wsp)

)
(3.3)

To maximize it, the Expectation Maximization (EM) Algorithm is adopted.

The EM algorithm is widely used to solve the maximum-likelihood parameter

estimation problem. The EM algorithm performs an expectation step (E-step) and

a maximization step (M-step) alternatively. The E-step creates a function for the

expectation of Equation 3.3. This function, i.e., Equation 3.4, is evaluated using

27

the current estimates of the parameters. The initial values of the parameters are

randomly generated.

P (s, p|fuac;wsp) =P (s|u)P (p|a) · 1√
2πσ2

sp

·

exp

(
−

(xua − wTspfuac)2

2σ2
sp

) (3.4)

The M-step updates the parameters in Equation 3.4, which can maximize

Equation 3.3. In each iteration, the M-step updates the value of each parameter

based on the result of the E-step. The updated wsp
∗ of each iteration in Equation

3.7 can be determined by Limited-memory BFGS, an optimization algorithm in the

family of quasi-Newton methods.

P (s|u)∗ ∝
∑
p,a

P (s, p|fuac) (3.5)

P (p|a)∗ ∝
∑
s,u

P (s, p|fuac) (3.6)

w·sp∗ ∝argmax
wsp

{−
∑
u,a

P (s|u)P (p|a)·

[
(xua − wTspfuac)2

2σ2
sp

+ lnσsp + ln
√

2π]}
(3.7)

σ∗sp ∝

√∑
ua P (s|u)P (p|a)(xua − wTspfuac)2∑

ua P (s|u)P (p|a)
(3.8)

The EM iterations stop if the max ratio is not greater than a pre-defined

threshold, which is set to 10−3 in our experiments. In other words, it stops if the

difference of all feature weights is less than 10−3.

28

After convergence, the PLC const with the optimal parameters can predict

P (xua|u, a), i.e., the probability density of any target max scroll depth xua of a

user-webpage pair. Section 3.2.4 uses this probability to predict the viewability of

any target scroll depth.

3.2.4 Viewability Prediction for a Target Scroll Depth

Given a target scroll depth X and a user-webpage pair, the trained PLC const models

can be used to compute the probability that the max scroll depth will be X, i.e.,

P (xua = X|u, a). As stated in the problem definition, the goal is to predict the

probability that a given scroll depth will be in view, i.e., P (xua ≥ X|u, a). Therefore,

P (xua|u, a) is integrated from X to 100%, as shown in Equation 3.9. The result is the

probability that the max scroll depth of the page view will be greater or equal to the

target scroll depth X. This means the max scroll depth xua is at a page percentage

no less than X. The upper bound of the max scroll depth is 100%, i.e., the page

bottom.

P (xua ≥ X|u, a) =

∫ 100%

X

P (xua|u, a)dxua (3.9)

3.2.5 Evaluation

Experiment Datasets To evaluate the proposed method, Forbes’ user browsing

log is adopted. The user log is split into three sets of training and testing data,

as shown in Table 3.2. This was done to avoid bias. The experimental results are

reported by taking the average over the three sets. On average, there are 31K+

unique users who generated 300K+ page views in a 10 days training set and 23K+

page views in a 2 days testing set.

29

Table 3.2 Training and Test Data Partitioning

Set# Training Data (10d) Testing Data (2d)

1 11/01/2014-11/10/2014 11/11/2014-11/12/2014

2 11/13/2014-11/22/2014 11/23/2014-11/24/2014

3 11/25/2014-12/04/2014 12/05/2014-12/6/2014

Comparison Systems The performance of the proposed model is compared with

three other system described below: a deterministic method, a logistic regression

(LR) system, and a singular value decomposition (SVD) system.

Deterministic Method (DET): The proportion of the page views whose max

scroll depths are greater or equal to the target scroll depth X is calculated for each

training set. This proportion is the prediction for all page views givenX. For instance,

P (xua ≥ 30%|u, a) is 0.8953 means that the viewability xua for all test page views is

0.8953. Formally:

P (xua ≥ X|u, a) =
#pageviews whose xua ≥ X

#pageviews

Logistic Regression (LR): An LR model is built based on the Stanford NLP

API. Since one LR model cannot predict for every given target scroll depth, we train

an LR model for each target scroll depth. The same set of input features are used

as those used to train PLC. The target variable is 1 or 0, i.e., if a page scroll xua

is not less than X, then target variable is 1; otherwise it is 0. When testing, given

the features vector of a test page view, the LR model outputs the probability that

X is in-view, i.e., P (xua ≥ X|u, a). This probability can be further converted into a

binary decision.

Singular Value Decomposition (SVD): In addition to dimension reduction, SVD

is often used to predict a target variable based on historical data. For any M ∗ N

matrix A of rank r, SVD can decompose it as A = U
∑
V T . U is a M ∗M orthogonal

30

matrix that spans the “column space”. V is a N ∗ N orthogonal matrix that spans

the “row space”.
∑

is a M ∗N diagonal matrix whose first r entries are the nonzero

singular values of A. Using matrix factorization, SVD maps both row items (e.g.,

users) and column items (e.g., pages) to a joint latent factor space, such that the

interactions of row items and column items are modeled as inner products in that

space. In our case, it generates a vector to represent each user or page. The dot

product of a user vector and a webpage vector is the prediction of their interaction.

Unlike PLC, SVD does not utilize the distribution of max scroll depth and the explicit

features of page views.

Our SVD model implementation is based on libFM [60]. The number of factors

is set to 8, as suggested in the manual. The matrix A is a user-webpage matrix. Each

cell value is either 1 or 0, i.e., whether X is in-view or not. The output for a page

view is a value between 0 and 1, which is treated as the probability that X is in-view.

This probability can be converted into a binary decision. Similar to LR, we build an

SVD model for each X.

Metrics The main metrics we adopt are the Root-Mean-Square Deviation (RMSD)

and the F1-score of class 0 (i.e., given scroll depth not in-view) and class 1 (i.e., given

scroll depth in-view). We also compare the methods using the precision and recall

metrics.

RMSD: The RMSD measures the differences between the values predicted by a

model, ŷi, and the values actually observed, yi. It is widely used in various research

fields and is defined as the square root of the mean square error:

RMSD =

√∑N
i=1(ŷi − yi)2

N

where N is the number of test page views. yi is the ground truth of the ith page view.

If the target scroll depth X is in-view, yi = 1; otherwise, yi = 0. ŷi is the probabilistic

31

prediction of the ith page view, i.e., ŷi ∈ [0, 1]. RMSD serves to aggregate the

magnitudes of the errors in predictions for various times into a single measure of the

predictive power of a method. Thus, the lower RMSD is, the better the prediction

performance.

Precision, Recall and F1-score: The probability that X is in-view can be

converted to 0 or 1, i.e., if it is greater or equal to 0.5, then X is in-view; otherwise,

X is not in-view. Thus, the probabilistic prediction problem can be considered a

binary classification problem as well. Hence, precision, recall, and F1-score can be

used to compare the models. The precision of a class is the number of page views

correctly labelled as belonging to the class divided by the total number of page views

labelled as belonging to the class. High precision means high true positive rate and

low false positive rate. The recall of a class is the number of page views correctly

labelled as belonging to the class divided by the total number of page views that

belong to the class. High recall means high true positive rate and low false negative

rate. The F1-score of a class is the harmonic mean of the precision and recall of the

corresponding class.

Effect of Parameter Combination The performance of PLC const with different

combinations of the two parameters, Ns and Np, shown in Equation 3.1, is

investigated. Ns is the number of latent user classes, while Np is the number of

latent webpage classes. Since there is an ad slot located at the 60% page depth on

the real webpages analyzed, 60% is taken as the target scroll depth X. Grid search

and random search are adopted to find the optimal parameters. For the grid search,

all combinations of Ns ∈ [2, 12] and Np ∈ [2, 12] are explored. For the random search,

20 combinations of Ns ∈ [2, 30] and Ns ∈ [2, 30] which are not included in the grid

search are tried. The range of obtained RMSDs is [0.3637, 0.3683].

32

Table 3.3 RMSDs of Different Parameter Pairs

RMSD Np=4 Np=5 Np=6 Np=7 Np=8 Np=9

Ns=4 0.3681 0.3672 0.3678 0.3678 0.3676 0.3659

Ns=5 0.3671 0.3691 0.3678 0.3686 0.3675 0.3663

Ns=6 0.3679 0.3676 0.3678 0.3679 0.3671 0.3659

Ns=7 0.3674 0.3679 0.3672 0.3672 0.3645 0.3656

Ns=8 0.3675 0.3678 0.3663 0.3640 0.3672 0.3660

Ns=9 0.3678 0.3671 0.3652 0.3652 0.3638 0.3663

Ns=10 0.3671 0.3673 0.3649 0.3639 0.3644 0.3646

Ns=11 0.3657 0.3644 0.3637 0.3631 0.3638 0.3643

Ns=12 0.3640 0.3637 0.3634 0.3636 0.3645 0.3644

Table 3.3 shows the 5-fold cross validation RMSD results for different Ns and

Np combinations. For the sake of brevity, only partial results which contain the best

and the worst performance are presented. It is observed that different combinations

do not largely influence the performance, with the difference between the best and

the worst results being only 0.006. Most parameter combinations generate similar

values for precision, recall, and F1-score, respectively.

RMSD Comparison The goal of this experiment is to test the performance of the

models with different target scroll depths. Since generally the top 10% of a page can

be shown in the first screen without the user performing any scrolling, we set the

range of the target scroll depth to the interval [0.1, 1].

Figure 3.7 plots the RMSD comparison for the four systems. The results show

that PLC const significantly outperforms the three comparison systems. The RMSD

performance of the PL const at all Xs is averagely 10%, and 17% at maximum, better

than the second best system, SVD. All models have better performance near the top

33

Figure 3.7 RMSD performance.

and bottom of a webpage than in the middle. The reasons for the top of the pages

is that most pages are in-view at scroll depths such as [0.1, 0.2]. Being trained by

such skewed data, most probabilistic outputs of the models are closer to 0 than 1.

Although they may commit mistakes on the cases that are not in-view, the average

RMSDs are still relatively low.

The prediction becomes harder with X moving toward the middle of the pages.

Intuitively, the models are more prone to making incorrect predictions. Thus, RMSDs

in this interval are higher than those in the two tails. Nevertheless, PLC const

performs substantially better than the other systems within this challenging interval.

Due to the difficulty of capturing all the significant features, logistic regression does

not perform as well as SVD and PLC, which identify latent features or latent classes,

respectively.

Although RMSD reflects the deviation between probabilistic prediction and

ground truth, it cannot tell the whole story of the performance. For example, let us

assume there are 100 page views. Given a certain X, the ground truth tells that 99

belong to the not-in-view class and one belongs to the in-view class. A naive model

34

makes the same prediction, which is 0, all the time. Thus, RMSD for this naive model

at X is 0.1, which looks decent. However, such a good RMSD hides the inability of

the model to recognize in-view instances. To overcome this issue, we adopt precision,

recall, and F1-score to further evaluate our model.

Precision, Recall, and F1-score Comparison Avoiding both false positives

and false negatives can improve investment effectiveness for advertisers and increase

the ad revenue for publishers. Therefore, identifying both in-view and not in-view

impressions is equally important. Two practical examples illustrate this goal: (1)

since the viewability of the page bottoms tends to be low, it is important to recognize

when the page bottoms are actually in-view; (2) relatively high viewability of the

page tops leads to expectations that ads at top are always in-view; however, this is

not always the case, and it is very helpful to identify those pages whose tops are not

in-view.

Figure 3.8 shows the precision, recall, and F1 score of both class 0 and 1 (i.e., not

in-view and in-view). Overall, PLC const performs the best among the four systems.

The performance for class 1 is high when X is set in the interval [0.1, 0.6] because

the top of most pages are in-view. Although it is more challenging to recognize the

page views whose top is not in-view, PLC const classifies these page views the best

because its precision and recall for class 0 in the interval [0.1, 0.6] are the highest.

Likewise, although it is difficult to detect the page views whose bottoms are in-view,

PLC const has the highest precision and recall for class 1 within [0.6, 1].

PLC const has relatively low recall for class 1 in the interval [0.3 0.6] because

it tends to boldly classify more page views to class 0 than the other systems. Most

of these predictions are correct, (i.e., true negatives), while just a few are wrong (i.e.,

false negatives). The correct predictions increase the precision and recall for class 0,

but the wrong predictions inevitably decrease the recall for class 1 since fewer page

35

(a) Precision of class 1. (b) Precision of class 0.

(c) Recall of class 1. (d) Recall of class 0.

(e) F1 score of class 1. (f) F1 score of class 0.

Figure 3.8 Classification performance comparison.

36

views are classified into class 1. This also explains why PLC const’s precision for class

1 is the highest in the interval [0.3, 0.6]. In the interval [0.6, 1], these observations

are even more apparent. At the cost of sacrificing the recall for class 0, PLC const

achieves decent performance on the precision for both classes as well as the recall for

class 1.

The differences among the models in Figure 3.8 are not as substantial as those

in Figure 3.7 because RMSD is a more sensitive metric. For instance, given a page

view whose X is in-view according to the ground truth, the probabilistic prediction

of PLC const is 0.8, while that of LR is 0.6. Both methods have the same evaluation

results on the classification metrics because the outputs are greater than 0.5. But

their performance can be distinguished when looking at RMSD: PLC const’s RMSD

is 0.2, while LR’s is 0.4.

LR, SVD, and PLC const do not have precision results for class 1 in the interval

[0.9, 1] because no page view is classified into class 1. Thus, a precision value cannot be

calculated because the number of page views labeled in class 1 acts as the denominator

in the precision formula and is 0 in this case. For the same reason, the recall for class

1 is 0 in this interval and no F1-score for class 1 can be computed for this interval.

A similar behavior happens for class 0 in the interval [0.1, 0.2].

The reason that no page view is classified into class 1 within [0.9, 1] is that the

distributions of the two classes are very skewed in the interval. Particularly, a large

majority of page views are not in-view. Such imbalanced data precludes statistical

methods like ours to work appropriately [32]. Essentially, the classifiers cannot learn

well from the skewed data because the training examples are scarce. To overcome

this issue, we have tried simple under/over-sampling. But inevitably, the precision

has largely decreased. Therefore, mitigating data imbalance remains a task for future

work.

37

(a) Avg. training time for

entire training set.

(b) Avg. testing time for one

test page view.

Figure 3.9 Runtime comparison.

Note that DET is not impacted by imbalanced data because it always makes

the same decision for all test page views given an X. It works as well as the other

methods in the interval [0.1, 0.2] and [0.9, 1]. Since DET is much simpler and faster, a

practical suggestion on viewability prediction is to use DET to predict the viewability

of scroll depths in [0.1, 0.2] and [0.9, 1] intervals, while PLC const should be employed

to predict in [0.2, 0.8] interval.

Runtime Comparison Figure 3.9 shows the runtime comparison for PLC, LR, and

SVD. In this experiment, one PLC const model is built to predict the viewability of

all target scroll depths from 10% to 100%. (step = 5%, so 19 scroll depths). However,

for LR and SVD, we build 19 models (the step is 5% for the interval 10% to 100%).

Therefore, the time for PLC const includes one training, while the time for LR and

SVD is the sum of 19 trainings. We do not include DET because it does not involve

training and makes consistent predictions for all page views for a given X (i.e.. its

training and testing runtime are almost 0).

The results show that the training time of LR is much lower than those of

PLC const and SVD because LR does not have to learn any latent patterns from

data. Intuitively, learning and applying more latent user classes and webpage classes

38

takes more time. Since PLC const performs better in terms of prediction accuracy,

its training time is reasonable, especially compared to SVD. Let us also note that

training can be done offline.

The results also show that PLC const needs more time to make a prediction.

However, the absolute value is very low (i.e., 0.012 ms). As an exchange-sold ad is

often sold in 200 milliseconds, PLC const’s prediction time can easily be afforded for

real-time predictions of incoming pages.

Table 3.4 Dataset Partitions with Different Sizes

Training Data Testing Data (2d)

11/10/2014 (1d)

11/11/2014-11/12/2014
11/01/2014-11/10/2014 (10d)

10/22/2014-11/10/2014 (20d)

10/12/2014-11/10/2014 (30d)

PLC const Performance on Different Training Data Sizes To test the impact

of different training data sizes on the PLC const’s performance, the dataset is re-

partitioned by fixing the testing dates and varying the training data sizes, as shown

in Table 3.4. All models share the common parameter pair, Ns = 11 and Np =

7. According to Figure 3.10, PLC const results are almost the same for F1 scores.

However, the results are distinguishable for RMSD, as this is a more sensitive metric.

RMSD for PLC const(30d) is slightly worse than the others. A possible reason is

that the user interest may change over a longer period of time and subsequently

hurts the prediction performance. The performance of PLC const(1d) is not as good

as those of PLC const(10d) and PLC const(20d) because it utilizes much less user and

webpage history. Generally, PLC const(10d) and PLC const(20d) have very similar

39

(a) RMSD.

(b) F1 score for class 1.

(c) F1 score for class 0.

Figure 3.10 Performance comparison of different training data sizes.

40

performance. The former should be preferred in practice because less data are required

for training.

3.3 Probabilistic Latent Class Model with Dynamic Memberships

In the work that has been done, a PLC model with constant memberships is proposed.

This following work proposes an enhanced PLC model that can predict the in-view

probability of an ad impression in a page view.

3.3.1 PLC dyn: Prediction Model with Dynamic Memberships

By computing offline the memberships of users and webpages belonging to latent user

and webpage classes, PLC const predicts the viewability of any target scroll depth

in a page view. However, user and webpage memberships in reality can be dynamic

during the online process, since user interests and page popularity keep changing.

For instance, user interests may shift over time, e.g., from entertainment to sports,

which can influence the class memberships of a user. Webpage attractiveness may also

change for some reasons, e.g., bursting topics and content freshness. For instance,

users viewing a newly updated webpage may scroll deeper than users viewing the

same page one week later. The reason is that after one week its content is not fresh

and attractive. A drawback of PLC const is that it can only use fixed memberships

calculated from training data to make predictions in test data. For instance, assuming

there are two user classes, the memberships of a user in the training data are s1 = 0.8

and s2 = 0.2, i.e., the probability that the user belongs to the first latent user class

is 0.8. These memberships are used to predict in all test page views involving that

user. Thus, PLC const cannot adapt user’s interest shift.

To capture the dynamic nature of the memberships, we propose to represent the

memberships by a function whose output value is determined in real-time. Meanwhile,

the feature vectors should also be able to reflect the change of user, webpage, and

41

context. Based on this idea, we develop a dynamic probabilistic latent class model,

PLC dyn that extends PLC const. This model enables dynamic memberships and

also considers webpage information, such as channels, i.e., topical categories (e.g.,

“finance” and “lifestyle”), and sections, i.e., sub-channels. Webpage information is

provided by the article metadata. Note that “dynamic” does not refer to online

learning where the model parameters keeps changing based on incoming data stream.

The model parameters, i.e., feature weights, are not changed during testing once they

have been learnt from the training data. But the memberships calculated based on

the model parameters are dynamically changing since feature values may change over

time.

Let us clarify the similarities and differences between PLC const and PLC dyn

in technical details. Similar with PLC const, PLC dyn calculates the probability

that a user or a page belongs to each class and utilizes user and webpage classes

to overcome sparsity. However, unlike PLC const, PLC dyn calculates the user and

page memberships in real-time, instead of learning constant numbers of memberships

from training data offline. In particular, in Equation 3.1, the memberships P (s|u)

and P (p|a) are constant numbers learnt from training data. Before being re-trained,

PLC const always uses these fixed memberships to perform predictions for specific

users and pages. In contrast, PLC dyn uses soft-max functions powered by linear

functions to calculate user and webpage memberships, as shown in Equation 3.11.

PLC dyn learns the feature weights in the linear functions from training data,

rather than learning final memberships. These feature weights are used to compute

the memberships in real-time with the feature values at that moment. Thus, the

memberships of a user or a page may be different over time, i.e., dynamic, since the

feature values keep updating. For instance, the value of the feature “the mean max

scroll depth of the user on the webpages in the same section” is dynamic. It can

capture the change of the user’s interest. Also, the dynamic value of the feature “the

42

mean max scroll depth of the pages in the same section” can capture the change

of topic attractiveness. Thus, PLC dyn can better adapt to changes of user and

page characteristics. To support such calculation, user features and webpage features

(webpage features are not used in PLC const) are used to calculate the user and page

memberships, respectively.

Formally, PLC dyn is modeled as following.

P (xua|u, a) =

Ns∑ Np∑
P (s|fu;αs) · P (p|fa; βp)P (xua|fuac, s, p;wsp)

(3.10)

where P (s|fu;αs) represents the probability that the user u with the user

features fu and the corresponding feature weights αs belongs to the latent user

class s, while the P (p|fa; βp) represents the probability that the webpage a with

the webpage features fa and the weights βp belongs to the latent webpage class p.

P (xua|fuac, s, p;wsp) is the probability that the max scroll depth is xua given the

user and the webpage belonging to s and p respectively. It is almost the same as

its counterpart in Equation 3.1, but they have different feature vectors. fuac is the

entire feature set that concatenates all features about the user, the webpage, and the

context (e.g., screen sizes, devices), while wsp is the corresponding feature weights.

Ns and Np are the numbers of latent user and webpage classes, respectively.

Equation 3.10 uses user features fu and webpage features fa to calculate the

user and webpage memberships, respectively. The parameters that have to be learnt

from the training data are feature weights αs and βp. In contrast, the memberships

in Equation 3.1 are learnt as constant numbers, P (s|u) and P (p|a). Each user and

each webpage receives a set of membership values, which are not subject to change

during prediction.

43

The user membership P (s|fu;αs) and the webpage membership P (p|fa; βp) can

be modeled by the soft-max function [12]. The soft-max function takes the outcome

of a linear function as input and outputs the predicted probability for one of the

classes given the input vector. User and webpage memberships can be defined:

P (s|fu;αs) =
1

Zu
exp(αTs f

u) =
exp(αTs f

u)∑Ns exp(αTs f
u)

(3.11)

where Zu is the normalization factor that guarantees the sum of the memberships

of a user belonging to all classes is equal to one. The page membership with weights

βp and page features fa can be modeled similarly. As in PLC const, the last term

can be modeled by Equation 3.10:

P (xua|fuac, s, p;wsp) =
1√

2πσ2
sp

exp

(
(xua − wTspfuac)2

−2σ2
sp

)
(3.12)

fuac is the combination of the user, webpage, and context features. All features

are shown as below.

• User Features (fu):
1) The mean max scroll depth of the user in past page views, which captures
user browsing habits.
2) The mean scroll depth of the user on the webpages in the same channel.
3) The availability of the second feature.
4) The mean scroll depth of the user on the webpages in the same section, i.e.,
sub-channel.
5) The availability of the fourth feature.
6) The mean scroll depth of the users at the same geo location on the webpages
in the same channel.
7) The mean scroll depth of the users at the same geo location on the webpages
in the same section.

• Webpage Features (fa):
1) The mean max scroll depth of the page by all users. This feature captures

44

the popularity of the webpage.
2) The mean max scroll depth of the pages in the same channel, i.e., topical
category (e.g., finance).
3) The mean max scroll depth of the pages in the same section, i.e., sub-channel.
4) The mean max scroll depth of all pages in the “related content list” of the
page. If the page has no related content page, it equals to the first feature.
5) The length of the body text.

• Page View Context (f c):
1) Screen Width, i.e., the width of the user’s screen.
2) Screen Height
3) Viewport Width, i.e., the viewport is the visible area of a web page on user’s
screen. Unlike screen size, viewport size indicates the area of the user’s browser.
Viewport size is captured and sent to the server when the user clicks the link
of the page.
4) Viewport Height.
5) The mean max scroll depth of all page views on the same device.

Note that only the first user feature and the first webpage feature are used

in both PLC const and PLC dyn. Other features are either new features added in

PLC dyn (e.g., screen size and the mean max scroll depth of the pages in the same

channel) or the dynamic version of the features used in PLC const (e.g., the mean

max scroll depth of all page views on the same devices). Also, since the user and

webpage characteristics can be reflected in their own memberships, the interaction

used in PLC const is removed.

The new feature set contains many categorical characteristics, e.g., channels,

sections, and geo-locations. To reduce the number of dimensions and enable dynamic

updates, these categorical characteristics are converted to continuous features. For

instance, we convert “device type” (used in the PLC const) to “the mean max scroll

depth of all page views on the same devices” (used in PLC dyn). Specifically, in

PLC dyn, the continuous variable “the mean max scroll depth of all page views

on the same device” is adopted, instead of dummy variables representing devices.

This feature in PLC dyn occupies only one dimension, while its counterpart feature

in PLC const has three dimensions. In addition, the value of PLC dyns feature

45

is dynamic, since the mean scroll depth is changing over time. In contrast, being

represented by dummy variables, the value of PLC consts feature is constant.

(α, β,W, σ) denote the weight vectors of all latent user and webpage classes

as well as the weight vectors and standard deviations of all latent user and webpage

class pairs, respectively. These parameters can be learnt by maximizing the following

likelihood function. Note that the differences between Equations 3.13 and 3.3 are the

same as those between Equations 3.10 and 3.1.

l(α, β,W, σ) =
∑
u,a

ln

(Ns∑ Np∑
P (s|fu;αs)

P (p|fa; βp)P (xua|fuac, s, p;wsp)
) (3.13)

Similar with PLC const, the EM algorithm is adopted to learn the parameters

iteratively in PLC dyn. The E-step is as below:

P (s, p|fuac;wsp) =

P (s|fu;αs)P (p|fa; βp)P (xua|fuac, s, p;wsp)∑NsNp P (s|fu;αs)P (p|fa; βp)P (xua|fuac, s, p;wsp)

(3.14)

The values of the parameters are updated in the corresponding M-step using

the L-BFGS algorithm:

α∗s· ∝ argmax
αs·

∑
u,a

[∑
p

P (s, p|fua)

]
·

ln

[
1

Zu
· exp

(
αTs f

u
)]
− λ

2
α2
s

(3.15)

β∗p· ∝ argmax
βpj ·

∑
u,a

[∑
s

P (s, p|fua)

]
·

ln

[
1

Za
· exp

(
βTp f

a
)]
− λ

2
β2
p

(3.16)

46

w∗sp· ∝argmax
wsp·

∑
u,a

P (s, p|fua)·

ln

[
1√

2πσ2
sp

· exp

((
xua − wTspfuac

)2
−2σ2

sp

)] (3.17)

σ∗sp ∝argmax
σsp

∑
u,a

P (s, p|fua)·

ln

[
1√

2πσ2
sp

· exp

((
xua − wTspfuac

)2
−2σ2

sp

)] (3.18)

Note that the first terms of Equation 3.15 and 3.16 are not strictly convex.

Therefore, adding weight decay, i.e., the second terms, will take care of the numerical

problems associated with soft-max regression’s over-parametrized representation. The

second terms penalize large values of the parameters, α and β, and thus guarantee to

have a unique solution, i.e., converge to the global maximum. λ is the weight decay

term, which should be greater than 0. In the experiment, it is set to 0.01 based on

cross validation. After convergence, the PLC models with the optimal parameters

can predict P (xua|u, a), i.e., the probability density of any target max scroll depth

xua of a user-webpage pair.

The probability that a given scroll depth will be in view, i.e., P (xua ≥ X|u, a),

can be calculate based on the method stated in Section 3.2.4

3.3.2 Evaluation

This section investigates the following questions: 1) Do the proposed PLC models

outperform the comparative systems? 2) Does PLC dyn have better adaptability

than PLC const? 3) How does the training data size influence the performance of the

PLC models? 4) Does PLC dyn require less memory than PLC const?

47

Experimental Dataset After random sampling by users, data transformation, and

data cleaning, nearly 1 million page views are in the dataset. To avoid bias, the user

log is split into three sets of training data and test data, as shown in Table 3.5. The

experimental results are reported by taking the average over the three datasets. On

average, there are 80K unique users and 50K unique webpages that generated 200K

page views in a 7-day training set and 50K page views in a 1-day test set.

Table 3.5 Training and Test Data Partitioning

#Set Training Data (7d) Testing Data (1d)

1 07/06/2015-07/12/2015 07/13/2015

2 07/09/2015-07/15/2015 07/16/2015

3 07/12/2015-07/18/2015 07/19/2015

Comparison Systems The performance of the proposed models is compared with

several other systems: a deterministic method (DET), a logistic regression (LR)

system, and a singular value decomposition (SVD) system. The details have been

provided in Section 3.2.5

We also add one additional comparison system:

Cox Regression (Cox): The research problem can also be considered as a

survival analysis problem by treating reaching the max scroll depth as the subsequent

event. Thus, we build a Cox regression, commonly used in survival analysis, as a

comparison system. Cox regression is defined as hk(t) = h0(t) · exp(βTxk), where

hk(t) is the probability that a user k does not reach the max scroll depth t. h0(t)

is the baseline or underlying hazard function and corresponds to the probability of

reaching the max scroll depth when all the xs are zero. β is the weight vector of

the feature set x. The Cox regression is implemented using Lifelines [10], which is a

publicly available Python library.

48

Metrics The main metrics are still the Root-Mean-Square Deviation (RMSD),

Precision, Recall, and the F1-score of class 0 (i.e., the given scroll depth is not in-view)

and class 1 (i.e., the given scroll depth is in-view). The details have been provided in

Section 3.2.5

In addition, we add one additional classification metric:

Area Under Curve (AUC): The AUC is a common evaluation metric

for binary classification problems, which is the area under a receiver operating

characteristic (ROC) curve. An ROC curve is a graphical plot that illustrates the

performance of a binary classifier system, as its discrimination threshold is varied.

The curve is created by plotting the true positive rate against the false positive rate

at various threshold settings. If the classifier is good, the true positive rate will

increase quickly and the area under the curve will be close to 1. Higher values are

better.

Effect of Parameter Combination This experiment investigates the performance

of PLC const and PLC dyn with different combinations of Ns and Np parameters.

As a reminder, Ns is the number of latent user classes, while Np is the number of

latent webpage classes. As one of the ad slots placed at the 60% page depth on a

Forbes’ article webpage, 60% is used as the target scroll depth X in this experiment

for setting the parameters. Grid search and random search are adopted in order to

find the optimal parameter combination. For the grid search, all combinations of

Ns ∈ [2, 15] and Np ∈ [2, 15] are explored. For the random search, 20 combinations

of Ns ∈ [2, 30] and Ns ∈ [2, 30] which are not included in the grid search are adopted.

The range of obtained RMSDs is [0.4598, 0.4663] for the PLC const, while that of the

PLC dyn is [0.4445, 0.4568]. PLC const and PLC dyn obtain the best performance

with Ns = 8 and Np = 7, and Ns = 6 and Np = 8, respectively. These combinations

are used in the following experiments.

49

Figure 3.11 RMSD Performance

Figure 3.12 Log-loss Performance

RMSD and Log-loss Comparison The performance is measured at various

target scroll depths by RMSD and Log-loss. Since the top 10% of a webpage are

usually shown in the first screen without the user performing any scrolling, we set

the range of the target scroll depth to the interval [0.1, 1].

Figure 3.11 and Figure 3.12 present the results. The results indicate that

both PLC const and PLC dyn consistently outperform the comparison systems. The

percentages of the difference between the PLC dyn and the PLC const falls in the

range of [2%, 7%] with the mean of 5%.2

2For each target scroll depth, we calculated what percentage the RMSD of the PLC dyn is
lower than that of PLC const. We then take the minimum (2%), the maximum (7%), and
the mean (5%) of the resultant percentages.

50

According to our observation in Forbes user browsing log, the first 20% of

webpages are in-view in more than 80% of all page views. Also, the last 10% of

webpages are in-view in less than 10% of all page views. Therefore, all models have

better performance near the top and bottom of a webpage than in the middle. Their

performance near the top and bottom is also very similar, which is why the curves

overlap in the intervals [0.1, 0.2] and [0.9, 1].

It is increasingly difficult to make correct prediction with the target scroll depth

X moving toward the middle of pages. The reason is that the likelihood of being

in-view and the likelihood of being not in-view are getting close. The models are

more prone to incorrect predictions in the middle of pages. Therefore, RMSDs in

the interval (0,2, 0.9) are higher than those in the two tails. Nevertheless, the two

proposed PLC models still perform substantially better than the other models within

this challenging interval. In the very middle of web pages, i.e., the interval [0.4, 0.6],

the deterministic method generates errors that are higher than 0.5. This is because

that user browsing behaviors are quite noisy, in which case the overall in-view rates

learnt from the training data may not hold very well in the test data. In addition,

since it depends only on explicit features and cannot utilize any latent factors, LR

does not perform as well as SVD and the two PLC models, which identify latent

features or latent classes, respectively. Cox regression has comparable performance

with SVD. The curves of these methods almost overlap. Compared to SVD, Cox

regression does not make predictions collaboratively; however, it considers multiple

auxiliary features to identify the context and the history of users and pages. Cox has

lower RMSD than LR because it conditions on the user not leaving the page before the

target scroll depth. LR, on the other hand, treats every user-page-depth observation

as independent. Matrix factorization-based methods like SVD and Factorization

Machines (FM) can handle relatively sparse datasets. However, real-life datasets,

such as the one we use, are extremely sparse. For example, when considering only

51

users who read at least three pages and pages read by at least three users, the

density of our dataset is less than 0.0006. Even though SVD and FM use matrix

factorization to overcome the sparsity issue, they still rely on the sparse interaction

of users and pages to infer latent features. In contrast, our models rely on the

interaction of classes, instead of that of individual users and pages. Note that we

do not aim to solve the cold-start problem. We still expect each page and user

to have at a minimal historical browsing history so as to calculate their feature

values. In the experiments, the proposed models outperform SVD. Also, although

technically these methods could be used in our application, they would have to

be re-trained frequently to update according to the changes of user interests and

page characteristics, which may introduce additional maintenance overhead or even

disruption to business operation. In contrast to PLC const, PLC dyn leverages

explicit web page metadata, e.g., channels, sections, and related webpages, in order

to better identify the latent classes for webpages. It also utilizes more context

information, to boost prediction performance. The adaptability provided by dynamic

memberships can also contribute on the improvement.

It is difficult to present the effectiveness of all features in our proposed models

because there are too many sets of feature weights: Each feature in the PLC const

has Ns ∗ Np weight vectors, while each user or page feature in the PLC dyn has

Ns + Ns ∗ Np or Np + Ns ∗ Np weights, respectively. Thus, we only investigate the

feature weights in the third terms of Equations 1 and 10. The reason is that the first

term is user membership and the second term is page membership. The third term

directly determines the max scroll depth. Focusing on the best model, i.e., PLC dyn,

we compute the average weight of each feature. The top five significant features in

the PLC dyn are: 1) the mean max scroll depth of the webpage (0.3069), 2) viewport

height (-0.1202), 3) the mean max scroll depth of the user (0.1030), 4) the mean max

scroll depth of pages with related content (-0.0652), and 5) the mean max scroll depth

52

of pages in the same section (0.0392). All features are already normalized within the

range [0, 1]. The p-values of these features are all less than 0.001.

The first three features show that the scrolling behavior in a page view is related

to the current viewport size and the historical behavior of the user and the page.

Interestingly, the deeper a user scrolled in the pages with related content, the less the

user will scroll in the current page. This may be because the user has already been

familiar with the content. Thus, the user will probably not read the whole content.

The fifth feature indicates that the more interest the user has in the broad topic of

the page (i.e., section), the more the user will engage with the page.

Classification Comparison False positives (i.e., impressions which are mistakenly

considered to be in-view) cause advertisers to invest on ad opportunities that will not

be seen by users. This leads to significant investment ineffectiveness. On the other

hand, false negatives (i.e., impressions which are mistakenly considered to be not

in-view) make publishers lose the revenue that they are supposed to gain because

these impressions could have been sold at higher prices. Currently, when bidding an

ad opportunity, advertisers consider all ads near the bottom of the page as rarely-seen

impressions and thus submit very low bid prices. Thus, identifying both in-view and

not in-view impressions is equally important. There are two examples illustrate this

goal: 1) because the viewability of page bottoms tend to be low, it is important to

recognize in which page views the bottoms will be in-view. 2) Because the viewability

of page tops tends to be high, it is important to identify the page views whose tops

will not be in-view.

Figure 3.13 plots the precision, recall, and F1 score of both class 0 and class 1

(i.e., not in-view and in-view, respectively). PLC dyn overall performs the best among

the methods, followed by PLC const. The performance of class 1 of all methods is

high when the target scroll depth X is placed in the interval [0.1, 0.5], since the top of

53

(a) Precision of class 1. (b) Precision of class 0.

(c) Recall of class 1. (d) Recall of class 0.

(e) F1 Score of class 1. (f) F1 Score of class 0.

Figure 3.13 Classification performance comparison.

54

most page views can be in-view. Although it is challenging, the two PLC models can

better identify the page views whose tops are not in-view (due to high precisions and

recalls of class 0 in the interval [0.1, 0.55]). Similarly, the two PLC models also can

better identify the page views whose bottoms are in-view (due to better precisions

and recalls of class 1 in the interval [0.6, 1]).

In the interval [0.25, 0.55], both PLC methods have relatively low recall for class

1. The reason is that they classify more page views to class 0 than the comparative

systems. A majority of these predictions are correct, i.e., true negatives, while a few

are incorrect, i.e., false negatives. The correct ones increase the precision and recall

for class 0, but the wrong ones decrease the recall for class 1 inevitably, as fewer

pages are assigned into class 1. This is also the reason why the two PLC methods

precision for class 1 is the highest in the interval [0.25, 0.55]. These observations are

more apparent in the interval [0.55, 1]. At the cost of sacrificing the recall for class 0,

the PLC models achieve decent performance on the precision for both classes as well

as the recall for class 1.

The differences among the models in Figure 3.13 are not as substantial as those

in Figure 3.11 because RMSD is a more sensitive metric. For instance, given a

page view whose target scroll depth X is in-view according to the ground truth,

the probabilistic prediction of PLC dyn is 0.8, while that of LR is 0.6. Both methods

have the same evaluation results on the classification metrics because the outputs are

greater than 0.5. But their performance can be distinguished when looking at RMSD:

The PLC’s RMSD is 0.2, while LR’s is 0.4. In other words, they do not have any

difference in the classification performance, but they do in the RMSD performance.

As shown in Figure 3.13(a), all predictive methods have no precision for class 1

in the interval [0.9, 1] in that no page view in the test data is classified into class 1.

Therefore, precision cannot be calculated because the number of page views classified

into class 1 is the denominator when prediction is calculated and it is 0 in this case.

55

Due to the same reason, the recall for class 1 is 0 in this interval and no F1-score for

class 1 can be computed. A similar observation is obtained for class 0 in the interval

[0.1, 0.2], as shown in Figure 3.13(b). The reason that no page view is classified into

class 1 within [0.9, 1] is that the distributions of the two classes are very skewed in

the interval. Particularly, a large majority of page views are not in-view.

Such imbalanced data precludes statistical methods such as ours to work

appropriately [32]. Essentially, the classifiers cannot learn well from the skewed data

because the training examples are scarce. To overcome this issue, we have tried simple

under/over-sampling. But inevitably, the precision has largely decreased. Therefore,

mitigating data imbalance remains a task for future work. Note that the deterministic

method (DET) is not impacted by imbalanced data because it always makes the same

decision for all test page views given an X. Measured by the classification metrics,

it performs as well as the other methods at the two tails, especially in the interval

[0.9, 1] because the RMSD of DET is also quite close to other methods as shown

in Figure 3.11. Since DET is much simpler and faster, a practical suggestion on

viewability prediction is to use DET to predict the viewability of scroll depths in [0.1,

0.2] and [0.9, 1] intervals, while the PLC models should be employed to predict in the

middle of pages.

Figure 3.14 AUC comparison.

56

We also use AUC to evaluate the methods. Figure 3.14 shows that the PLCs

outperform other methods. In addition, we notice that AUC decreases from the top

to the bottom. To analyze this, we plot the distributions of the prediction outcomes

in the positive class and the negative class using box plots. We find that at the top of

the page the predictions of both classes are close to 1 due to imbalance in the training

data (Class1: median=0.9997, first quartile=0.9993, third quartile=0.9998; Class0:

median=0.9972, first quartile=0.9950, third quartile=0.9985). However, the overlap

between the prediction distributions of the positive class and the negative class is

relatively small: In particular, at 10%, the first quartile line of the positive class is

higher than the third quartile line of the negative class. Therefore, a decision threshold

between these two lines can separate the two classes relatively well. In contrast, at the

bottom of the page, e.g., 95%, the overlap of the two prediction distributions is more

significant (Class1: median=0.0977, first quartile=0.0514, third quartile=0.1714;

Class0: median=0.0541, first quartile=0.0305, third quartile=0.0926). The first

quartile line of the positive class is much lower than the third quartile of the positive

class. Therefore, it is more difficult to separate them by a decision threshold.

Figure 3.15 RMSD comparison by considering only latent user classes or latent
page classes.

Effect of Latent Classes Both user groups and page groups are considered in

the proposed models. In this section, we evaluate the effects of latent user classes

57

and page classes by separating them out from PLC const and PLC dyn one at a

time. We also evaluate the performance of PLC models without latent user or

page classes. Figure 3.15 presents the experimental results, in which PLC const p

and PLC dyn p mean the corresponding PLC models with the latent page classes.

PLC const u and PLC dyn u mean the corresponding PLC models with the latent

user classes. Gaussian const and Gaussian dyn represent the third terms in Equation

3.1 and Equation 3.10, respectively.

In both models, PLCs with latent user classes only outperform PLCs with latent

page classes. In particular, the RMSD of the PLC const p is in fact comparable with

SVD. Considering latent user classes in PLC const instead of latent page classes

enhances the performance. A similar observation is also obtained in the PLC dyn

model. This indicates that the reading behavior varies more with the users than with

the pages. Although it cannot be denied that pages also play an essential role, the

user decisions are the main factors that determine the scrolling behavior.

Figure 3.16 The mean RMSDs with different gaps across target scroll depths.

Performance on Different Gap lengths In practice, publishers may not be able

to re-train prediction models every day. Thus, it is important to develop models

which can adapt to the changes of users and webpages such that the performance

stays at a high level for a relatively long time. The goal of this experiment is to

evaluate the adaptability of the models. The adaptability is defined as how well a

58

Figure 3.17 The RMSDs with 0-day and 20-day gaps.

model can adapt to the changes of user factors and/or webpage factors. Such changes

in webpage characteristics may influence the class memberships of web pages. This

is in fact one of the motivations for using new feature sets and regression-powered

soft-max functions to dynamically compute the memberships of users and webpages

in PLC dyn. Therefore, to test the impact brought by such changes, the two PLC

models are compared using a constant value to represent the memberships of users

and webpages.

To this end, we re-partition the dataset by varying the time gap between a

training set and the corresponding test set. The lengths of the training period and

the test period are unchanged, i.e., they are still 7 days and 1 day. But the time

period between the training set and the test set, i.e., gap, is varied. For example,

setting the gap to 5 days, could use 07/06/2015 - 07/12/2015 as the time period for

the training set. The test set is 07/18/2015. Intuitively, the larger the gap, the more

likely the user and webpage characteristics are to shift. The gap lengths we adopt

are 0 day, 5 days, 10 days, 15 days, and 20 days. Due to the constraints of the time

span of the user log, the maximum gap length we set is 20 days.

We only compare the two PLC models because the previous experiments have

shown that the comparative systems do not perform as well as the PLC models.

59

Figure 3.16 shows the average RMSDs at all target scroll depths with different gap

lengths. Figure 3.17 plots the RMSDs of the two models at different target scroll

depths with different gaps. To make the curves more distinguishable, we only plot

the results of two gaps. The average RMSDs of PLC dyn are consistently lower than

those of PLC const. The increase of the gap length does not influence significantly

the RMSD of PLC dyn (it stabilizes around 0.384). When the gap reaches 20 days,

RMSD increases to 0.3978. The difference between the two models is increasing with

the gap because the performance of the PLC const degrades. This indicates that

computing user and webpage memberships in real-time using the soft-max function

can adapt well to the dynamic changes of user and webpage factors within the first

15-20 days after the model is trained. In contrast, for PLC const, the user and web

page memberships learnt from the training data cannot remain effective when the

gap grows.

According to their requirements, the publishers can decide when the model

needs to be re-trained in order to keep high prediction performance upon updating

the users and webpage information. For example, a publisher may select 0.5 as the

bottom line for RMSD at any target scroll depth. In other words, the model has

to be re-trained once RMSD at any target scroll depth increases to 0.5. In this

case, based on the experimental results we present, PLC const needs to be re-trained

approximately every 10 days, while PLC dyn does not have to be updated for more

than 20 days.

Performance on Different Training Data Sizes Web sites receive new users

and publish new web articles all the time. It is very difficult to draw any inference

for these new users and new webpages due to insufficient information about them

in training data set. This “cold-start” issue is very prevalent in real-life scenarios.

The purpose of this experiment is to test the effect of different training data sizes

60

Table 3.6 Dataset Partitions with Different Sizes

Training Data Testing Data (1d)

07/26/2015 (1d)

07/27/2015

07/17/2015-07/26/2015 (10d)

07/07/2015-07/26/2015 (20d)

Figure 3.18 The average RMSDs with different training sizes across all target
scroll depths.

on the PLC models’ performance. Generally, the smaller the training data, the less

information is known about users and webpages. The dataset is re-partitioned by

fixing the testing dates and varying the time period of the training data, as shown

in Table 3.6. Figure 3.18 shows the comparison of PLC dyn and PLC const in terms

of different training data sizes. Figure 3.19 shows the comparison with 1-day and

20-day at all target scroll depths.

PLC dyn has better RMSD performance with the increase of the training data

size because large training data lead to optimal weight parameters. However, the

improvement becomes smaller when the training data size keeps increasing because

the optimal feature weights have been obtained. The fact that the PLC dyn has better

performance with small training data indicates that it is more suitable for handling

the “cold-start” issue. The performance of PLC const surprisingly decreases when

61

Figure 3.19 RMSDs with 1-day and 20-day training sizes.

Figure 3.20 Memory comparison of training.

the training data size increases from 10-days to 20-days. The reason is that the

user interest and article attractiveness change over time, which subsequently hurt the

prediction performance.

Memory Usage Comparison Figures 3.20 and 3.21 show the memory usage

comparison between the two models. PLC dyn requires much less memory than

PLC const for both training and testing. The main reason is that PLC const has

to store the memberships of all users and webpages that occur in the training data,

which has Ns · Nuser and Np · Npage memberships. Ns is the number of latent user

classes, while Np is the number of latent webpage classes. Nuser is the number of users

in the training data, while Npage is the number of webpages in the training data. In

the experiments, Ns is set to 8 and Np is set to 7. The magnitudes of Nuser and Npage

62

Figure 3.21 Memory comparison of testing.

are 104. On the other hand, PLC dyn only has to store the parameters in the linear

functions, i.e., α, β, which have |fu| and |fa| numbers, respectively. As stated in

Section 3.3.1, |fu| is 7 and |fa| is 5.

3.4 Chapter Conclusions

To the best of our knowledge, our research is the first to study the problem of

predicting the viewability probability for a given scroll depth and a user/webpage

pair. Solving this issue can benefit online advertisers to allow them to invest more

effectively in advertising and can benefit publishers to increase their revenue. We

presented two PLC models, i.e., PLC with constant memberships and PLC with

dynamic memberships, that can predict the viewability for any given scroll depth

where an ad may be placed. The experimental results show that both PLC models

have substantially better prediction performance than the comparative systems. The

PLC with dynamic memberships can better adapt to the shift of user interests and

webpage attractiveness and has less memory consumption.

CHAPTER 4

DWELL TIME PREDICTION

The first phase estimates ad viewability by predicting user scrolling behavior.

However, it does not consider ad dwell time into account. Thus, the second phase

proposes to estimate ad viewability by predicting how likely a user will stay at the

page depth where an ad locates for at least certain seconds.

4.1 Problem Definition

The problem is defined as below.

Problem Definition 2. Given a page view, i.e., a user u and a webpage a, the goal

is to predict the probability that u will stay at a target page depth X for at least T

seconds, i.e., X is shown on the screen for at least T seconds.

The prediction is made after the page was requested and before the user engages

with the page. The proposed methods can also be used to predict the dwell time at

the target page depth.

4.2 Factorization Machines (FM) Model

4.2.1 The Real-Life Dataset

A large web publisher (i.e., Forbes Media) provides user browsing logs collected from

real website visits in one week of Dec 2015 and webpage metadata. The dataset

contains 2 million page views. For each page view, it records the user id, page

url, state-level user geo location, user agent, and browsing events, e.g., the user

opened/left/read the page. Each event stores the event time stamp and the page

depths where the top and bottom of the user screen are. Once a user scrolls to a page

depth and stays for one second, an event is recorded. The page depth is represented

63

64

as the percentage of the page. The reason that we adopted page percentage rather

than pixels is because it provides a relative measure independent of device screen size.

If a user reads 50% of a page on a mobile device, while another user reads 50% of the

same page on a desktop, it can be assumed that they read the same content.

Table 4.1 is a simplified example of the user log. Each event has a time stamp

so that the time that a user spent on a part of page can be calculated. To infer the

current part of a page that a user is looking at, the user log also records the page

depths at which the first and the last rows of pixels of the screen are. Thus, we are

able to infer when a user scrolled to which part of a page and how long the user

stayed. In other words, the dwell time of a page depth in a page view can be easily

calculated and accumulated from the information provided by the user log.

In Table 4.1, the user scrolled to 30%-60% of the page after reading 20%-50%

of the page for one minute. Thus, the dwell time of the page depths that have been

scrolled past can be determined. For example, the dwell time of 20% - 30% is one

minute at this moment.

Table 4.1 A Simplified Example of The User Log

User URL Time ... Event User Behavior

001 /abc
2/1/2015

10:00:00
...

Read

Page

{”first row”:20,

”last row:50, ...”}

001 /abc
2/1/2015

10:01:00
...

Read

Page

{”first row”:30,

”last row:60, ...”}

4.2.2 The Proposed FM Model

It is intuitive that the dwell time of a page depth is highly related to the user’s

interests and reading habits, the topic of the article in the page, the design at that

page depth, etc. For instance, some users tend to stay longer on pages, while some

65

are less patient. A viral content may attract most users to scroll deep on the page and

spend a long time on the whole page. Page depths with important topic sentences

may keep most users longer on them. Thus, the characteristics of individual users,

webpages, and page depths should be taken into account for depth-level dwell time

prediction. More importantly, the interactions of these three factors must be modeled

so that their joint effect is captured: 1) The interaction of users and pages captures

a user’s interest in a page. 2) The interaction of users and page depths can reflect

individual users’ browsing habits. For example, some users read entire pages carefully,

but some only read the upper half. 3) The interaction of pages and depths models the

design of individual pages at individual page depths. For example, pages that have a

picture at a depth may receive relatively short dwell time at that depth because people

usually can understand a picture more quickly than text. However, it is non-trivial to

explicitly model user interests, page characteristics, the attractiveness of page depths,

and their interactions. Also, although implicit feedback, e.g., reading dwell time, is

more abundant than explicit feedback, e.g., ratings, it often has higher variability [84],

which makes prediction more challenging.

Therefore, Factorization Machines (FM) [60] is adopted. Factorization Machines

are a generic approach that combines the high-prediction accuracy of factorization

models with the flexibility of feature engineering. The FM model has been used

in applications such as context-aware rating prediction [60], retweeting [34], and

microblog ranking [57]. The reason that we adopt the FM model is that it can

capture the interaction of multiple inter-related factors, overcome the data sparsity,

and provide the flexibility to add auxiliary information.

According to the problem definition, the basic FM model requires three factors:

user, page, and page depth. The input is derived from the user-page-depth matrix

built from the user logs: In the basic form of depth-level dwell time prediction, we

have a three-dimensional cube containing nu users, na pages, and nd page depths.

66

Thus, each dwell time is associated with a unique triplet ¡user, page, depth¿. Such a

3D matrix can be converted into a list of (nu + na + nd) rows. The target variable

for each row corresponds to an observed dwell time represented by the triplet. N

training page views lead to N · 100 rows, as each page view contains 100 observed

dwell time values (one for each percent from 1% to 100% page depth). This input

is similar to what is prepared for regressions. However, regressions would not work

well because the data is very sparse and they are unable to capture the interaction

between the input variables.

The basic idea of FM is to model each target variable as a linear combination

of interactions between input variables. Formally, it is defined as following.

ŷ(x) = w0 +
n∑
i=1

wixi +
n−1∑
i=1

n∑
j=i+1

〈vi,vj〉xixj (4.1)

where, ŷ(x) is the prediction outcome given an input x. w0 is a global bias, i.e., the

viewability of the page depth or the overall average depth-level dwell time.
∑n

i=1wixi

is the bias of individual input variables. For example, some users would like to read

more carefully than others; some pages can attract users to spend more time on them;

some page depths, e.g., very bottom of a page, usually receive little dwell time. The

first two terms are the same as in linear regression. The third term captures the

sparse interaction between each pair of input variables.

Unlike standard regression models which model the weight of each interaction

by a real number wij, the FM model uses a factorized parametrization to capture

the interaction effect (Eq. 4.2). Such low-rank interaction allows the FM model to

estimate reliable parameters even in sparse data.

〈vi,vj〉 =
K∑
k=1

vikvjk (4.2)

67

The basic FM model works with only three factors: user, page, and depth.

However, context information can also help improve the prediction performance.

Thus, we identify three context features, viewport (i.e., the part of a user browser

visible on the screen), local hour, and local day of the week (denoted by weekday in

the experiments), which are likely related to user reading behavior. The viewport

indicates the device utilized by the user (e.g., a mobile device usually have a much

smaller visible browser area than a desktop) and can directly determine the user

experience. Specifically, one viewport value consists of the height and the width of a

browser, e.g., 1855× 1107. To reduce sparsity, both heights and widths are put into

buckets with size 100 pixels. For instance, 1855×1107 can be discretized into 18×11.

The local hour and local day of the week, expected to reflect if users are working, are

inferred from the GMT time stamp and user geo provided in the user log.

In addition, although in theory user demographics and page attributes are

already considered in the latent user and page dimensions, incorporating these

additional sources of information as features may further improve the prediction

accuracy in some applications [37]. For user demographics, we consider user geo

locations because this is the only explicit feature about users that can be easily

obtained by publishers without violation of user privacy. User geo, inferred from IPs,

may reflect a user’s interests and education, and it may determine the user’s network

condition. Specifically, geo is the country name if the user is outside USA or a state

name if she is within USA.

For page attributes, we consider article length, channel, and freshness. Article

length is represented by the word count of the article in the page, and it has been

proven to be a significant factor impacting page-level dwell time [83]. However, its

influence on page-depth-level dwell time is still unclear. Article lengths are put into

buckets so that there are a limited number of possible states. The channel of the

article in a page is its topical category on the publisher’s website, e.g., finance and

68

lifestyle. A channel can be considered as a high-level topic label of a page. Freshness

is the time span between the page is read and the page is firstly published on the

website. Freshness is measured by days. The freshness of an article may determine

the interests of a user on it. Fresh news may receive more user engagement.

The viewport content is also models by several state-of-the-art models because

it is believed that the content shown in a user’s browser affects the time that the user

spends on it. The user log records the position of each viewport and the article meta

data include the content of each article. Thus, it is possible to obtain the textual

content shown in the user’s browser. Several models are used to model the semantics

of each viewport content: TF-IDF, LDA, and Doc2Vec.

TF-IDF [79], short for term frequency-inverse document frequency, is a very

commonly-used method to weight words based on their importance to a textual

document in a collection. The TF-IDF value increases proportionally to the number of

times a word appears in the document, but is offset by the frequency of the word in the

corpus, which helps to adjust for the fact that some words appear more frequently in

general. In our application, we first training a TF-IDF model over all training articles.

In the test process, given a viewport content, the keywords with high TF-IDF values

are extracted. These keywords form a vector to represent the topic of the viewport

content.

LDA [74], short for Latent Dirichlet Allocation, is an unsupervised process for

inferring the topics in a textual document. It outputs a clearly-defined probability

for arbitrary documents. As a generative mode, LDA provides the mechanism for

finding patterns of term co-occurrence and using those patterns to identify coherent

topics. in particular, all terms that co-occur with term w are more likely to have been

generated by the topic that w belongs to. Each word in a document can generate

different topics with probabilities. Containing many different words, each document

can be considered as a mixture of a few of topics and that each word’s creation is

69

attributable to one of the document’s topics. The parameters in a LDA model can

learned from the training corpus. More details about how LDA works can be found

in [8]. Since the webpage articles in our corpus are relatively long (compared to

short text, e.g., tweets), it is suitable to use LDA to model the topic distribution of

a document due to the presence of abundant word co-occurrence. Thus, all training

articles are fed into the LDA model. The learned model can be use to infer the

topic distribution of each test viewport content. In the experiments, we compare two

different ways to incorporate LDA outcome into the FM model. The first is to only

consider the latent topic with the highest probability and concatenate it with other

feature using one-hot encoding. In other words, one viewport content is assigned to

only one topic. This strategy is often used in topic modelling. The second strategy

is to consider all latent topics. The topic distribution vector will be concatenated

with other features. In addition, we evaluate different pre-specified numbers of latent

topics in the experiments.

Doc2Vec [41] is an unsupervised learning of continuous representations for

variable-length pieces of texts, such as sentences, paragraphs or entire documents.

Unlike traditional text representation schemes, e.g., TF-IDF, Doc2Vec take into

account the ordering and semantics of the words. For instance, “car” and “auto”

are treated as two totally different words, while they are regarded as synonyms in

Doc2Vec. Given a chunk of text, Doc2Vec provides a fixed-length feature vector to

represent the meaning of the text. The vector can be used as an input in the FM

model. Doc2Vec is extended based on the Word2Vec algorithm [48]. Word2Vec is

a type of shallow two-layer neural networks that are trained from training data to

produce word embeddings. Instead of relying on the number of co-occurrence as what

LDA does, Word2Vec takes the words in a context with a fix-size window as input

and understands a word by predicting its surrounding context (cBoW) or predicting

a word given it surrounding context (skip-gram). Skip-gram model is adopted in

70

this project since existing work [48] shows that it outperforms the other variants on

analogy tasks. The output of Word2Vec is word vectors that can be mapped into a

vector space such that semantically similar words have similar vector representations,

e.g., the word vectors of “car” and “auto” are close.

In Doc2Vec, the vector representation of a chunk of text is trained to be

useful for predicting words in a paragraph. More precisely, Doc2Vec concatenates

the paragraph vector with several word vectors from a paragraph and predict the

following word in the given context. Similar to word vectors, the Doc2Vec vectors of

two pieces of text which have close meaning should be very close to each other. Given

a unseen piece of text, a fully trained Doc2Vec model can infer a vector to represent

its meaning. The Doc2Vec used in this project is developed based on Gensim [59].

All training articles are fed into the Doc2Vec model. The learned model can be

use to infer the feature vector of each test viewport content. We evaluate different

dimensionalities of the feature vector in the experiments.

4.2.3 Evaluation

Experiment Datasets A one-week user log is split into three sets of training and

testing data. The experimental results are reported by taking the average over the

sets. On average, the training and test data contain 150K+ and 20K+ page views,

respectively. The training/test data consist of all depths of all training/test page

views.

Comparison Models Several comparison systems are developed as following:

GlobalAverage: In dwell time prediction, i.e., Section 4.2.3, it computes the

average dwell time of each page depth X in all training page views. If a user did

not scroll to X before leaving the page, its dwell time in the page view is zero. In

viewability prediction, i.e., Section 4.2.3, it computes the fraction of training page

depths whose dwell times are no less than the required dwell time. In both tests, 100

71

constant numbers are obtained after iterating over all training pageviews. They are

used to make a deterministic prediction for the corresponding page depth.

UserAverage: It is similar to GlobalAverage. But it computes the average

dwell time of each depth X based on each user’s reading history (rather than all

training page views). In viewability prediction, for a depth of a training pageview,

whether or not it is viewed for at least certain seconds is recorded, i.e., 0 or 1. The

probabilistic prediction is made based on the average over all binary outcomes of a

page depth of a user.

PageAverage: Similar to UserAverage, it computes the average dwell time of

each depth X based on each page’s history.

Regression: Two regression models are built. 1) The first, Regress bc, is

developed based on existing work on page dwell time prediction [83]. To apply to

depth-level prediction, one more feature, i.e., page depth, is added. In particular,

topical categories are represented by channels. Page length is calculated by article

word counts. Device types are identified from user agents. In the viewability

prediction test, logistic regression with the same features is adopted because it can

output probability that the dwell time of X is at least certain seconds. 2) The second,

Regress(depth+dov2vec 150+channel+viewport), is developed based on the finding in

Section 4.2.3 that shows the viewport, doc2vec 150, and channel are the best features

for improving prediction. To predict at page depth-level, depth is added as well.

For both models, in the viewability prediction test, logistic regression with the same

features is adopted. They outputs the probability that the dwell time of X is at least

certain seconds.

Metrics The metrics we adopt are Root-Mean-Square Deviation (RMSD) and

Logistic Loss. Both serve to aggregate the magnitudes of the errors in predictions for

72

various times into a single measure of the predictive power of a method. Thus, for

both metrics, lower values are better.

RMSD: The RMSD has been widely used in regression problems. It measures

the differences between the values predicted by a model, ŷi, and the values actually

observed, yi. For depth-level dwell time prediction, it is defined as the square root of

the mean square error:

RMSD =

√∑N
j=1

∑100
i=1(ŷij − yij)2

N · 100

where N is the number of test page views. The second sigma accumulates the

errors at all 100 page depths in the ith page view. yij is the actual dwell time, at the

jth page depth in the ith page view. ŷij is the corresponding predicted dwell time.

Logistic Loss: It is widely used in probabilistic classification. Compared to

the RMSD, it penalizes a method more for being both confident and wrong. For

example, if for a particular observation, a classification model assigns a very small

probability to the correct class then the corresponding contribution to the Log Loss

will be very huge. In our case, the probability is interpreted as how likely it is that

the dwell time of a page depth is at least a certain amount of time.

logloss = − 1

N · 100

N∑
i=1

100∑
j=1

[yij log(ŷij) + (1− yij) log(1− ŷij)]

Comparison of Feature Combinations We add context and auxiliary features,

including user features, page features, and depth features, into the basic FM model

in order to evaluate the effect of different combinations. The models are applied to

predict the dwell time of every page depth in each test page view. Since it is unknown

which feature combination is the best, we first add one more feature to the basic FM

model and keep adding more features to the best one once at a time. The result of

73

Table 4.2 The RMSD Comparison by Adding One More Additional Feature

Feature Groups Models K=10 K=20 K=30

Basic FM 12.5707 12.5401 12.5420

Context

FM (weekday) 12.6575 12.6665 12.6779

FM (hour) 12.7563 12.8792 12.8262

FM (viewport) 12.3645 12.3285 12.2909

User FM (geo) 12.5465 12.6186 12.5971

Article

FM (length) 12.636 12.6642 12.6388

FM (channel) 12.3752 12.3597 12.3489

FM (freshness) 12.4770 12.4944 12.6223

Viewport

Content

FM (TF-IDF) 12.6404 12.6239 12.6474

FM (topic 10) 12.5308 12.5335 12.6072

FM (topic 20) 12.3929 12.5092 12.5122

FM (topic 30) 12.5168 12.5719 12.5184

FM (topic 40) 12.7689 12.6897 12.7385

FM (topic group 10) 12.3852 12.3416 12.2912

FM (topic group 20) 12.4913 12.4687 12.4393

FM (topic group 30) 12.4298 12.3899 12.4137

FM (topic group 40) 12.4576 12.4065 12.3866

FM (doc2vec 50) 12.4584 12.4298 12.3042

FM (doc2vec 100) 12.4014 12.3790 12.2831

FM (doc2vec 150) 12.3082 12.2675 12.2965

FM (doc2vec 200) 12.3271 12.3498 12.3525

74

adding one additional feature is presented in Table 4.2. The performance is measured

by RMSD. The first row is the basic FM model, which has only three dimensions,

i.e., user, page, and depth. We also vary the dimension of the 2-way interactions, K,

which is the length of the latent vector v for each variable (Equation 4.2).

The result shows that some features can significantly improve the prediction

performance of the basic FM. Viewport is the most significant context feature.

Intuitively, viewport indicates the type of device, which influences reading experience

and thus the way users engage with webpages. Channel is also a significant one in

that, representing the topic of the whole page, it directly determines the interest of

the user to the page. The Channel information is provided by the creators of the

article metadata. Thus, it can be considered as 100% correct.

Nevertheless, some features cannot help on prediction. For instance, adding

weekday or hour cannot decrease the RMSD of the basic Fm model. This indicates

that probably the time that one user spends on a page depth does not significantly

differ by the hour of the day and the the day of the week. Also, User geo location

does not enhance the performance of the basic FM. The possible reason is that the

granularity of user geo is too coarse. In the user log, user geo is state-level if in USA,

otherwise country-level. Learning latent features for each geo cannot specifically

capture the characteristics of individual users. For example, it can be imagined that

one from Buffalo and one from New York City may have different interests and reading

behavior, even though both are in New York State. Article length may not play a

key role at depth-level, as the text length in a screen is determined by the viewport

size, not the length of the entire article.

Four methods are adopted to model viewport content. FM (TF-IDF keywords)

considers all non-stopwords with high TF-IDF in a viewport content. FM (topic n)

considers the most probable topic calculated by LDA with the topic number n. FM

(topic group n) considers the topic distribution calculated by LDA with the topic

75

number n. In contrast to FM (topic n), FM (topic group n) takes into account all

latent topics whose probability is more than 0. The value of the possible topics are its

probability, not binary. In this way, the most probable topic is still weighted higher

than others. Hence, it is expected that FM (topic group n) can provide more details

about the topic of a viewport content. Lastly, FM (doc2vec m) uses a Doc2Vec

vector to model the content of a viewport. We vary the length of the vector m to

see its impact on the performance. Table 4.2 shows that the RMSD of FM (TF-IDF

keywords) is not as low as the basic FM. The possible reason is that the keywords

of a viewport content still contain much noise. Also, keywords are extremely sparse:

Most keywords only occur in one viewport content. The performance of FM (topic n)

varies according to the pre-defined topic number n. n = 20 leads to the best prediction

performance. Compared to FM (topic n), FM (topic group n) generates more stable

performance because it consider not only the topic with the highest probability, but

also all other topics with a probability more than 0. It can more smoothly reflect the

topical relatedness among different viewport content. Finally, considering the deeper

relationship among words, FM (doc2vec m) on average has the best performance

compared to the other three methods. FM (doc2vec 150) with K = 20 reaches the

best performance.

Increasing K does not always lead to performance improvement. Longer latent

feature vectors may fit the data better, while in some cases may cause overfitting. As

the Bias-Variance trade-off, the optimal K can be obtained by cross-validation.

In order to further explore the best performance, more than one features are

Incorporated into the basic FM model at the same time. Since FM (doc2vec 150)

with K = 20 reaches the lowest RMSD, additional features are kept adding into it.

Also, as doc2vec models viewport content, the other features, i.e., TF-IDF keywords

and LDA, fall into the same category are not considered this time. For example, since

76

dov2vec 150 already models the content of a viewport, keywords and LDA topic will

not be considered to be added into FM (dov2vec 150).

Table 4.3 The Comparison by Adding More Additional Features to FM

(doc2vec 150)

Models RMSD;K=20

FM (dov2vec 150+viewport) 12.2301

FM (dov2vec 150+channel) 12.0733

FM (dov2vec 150+freshness) 12.3487

FM (dov2vec 150+channel+viewport) 12.0419

FM (dov2vec 150+channel+freshness) 12.1985

FM (dov2vec 150+channel+viewport+freshness) 12.1827

Table 4.3 shows that the FM model with dov2vec 150, channel, and viewport

as additional features gets the lowest RMSD, i.e., the best performance. In other

words, the dwell time of a given depth is determined by the content around that

depth (captured by dov2vec), the topic of the whole article (captured by channel),

and the size of the browser (captured by viewport). Freshness is not as predictive as

the other three. The possible reason is that, although fresh news attract a great deal

of attention, users sometimes spend long time on stale articles because they mean to

seek the information in those stale articles.

Page Depth-level Dwell Time Prediction We compare the best model obtained

from the above experiment, i.e., FM (dov2vec 150+channel+viewport) with K=20,

with the comparison systems. All models are applied to predict the exact dwell time

of each page depth in test page views. The results in Table 4.4 demonstrate that the

FM model significantly outperforms the comparison systems. This is because it is

able to overcome sparsity and capture pairwise interactions between features. The

77

Table 4.4 Depth Dwell Time Prediction Comparison

Approaches RMSD

GlobalAverage 13.6971

PageAverage 13.5243

Regress bc 13.2643

UserAverage 13.1482

Regress (depth+dov2vec 150+channel+viewport) 12.9043

FM (dov2vec 150+channel+viewport;K=20) 12.0419

RMSDs of PageAverage and UserAverage are better than GlobalAverage because

their predictions are tailored to each page or each user. Also, the result indicates

that controlling the user variable seems to be more effective than controlling the page

variables. This is because that, although both variables matter, dwell time is more

determined by individual users’ subjective wills. The RMSD of Regress bc is not

as low as the one of UserAverage, which indicates that methods for page-level dwell

time prediction cannot be easily applied to depth-level prediction. Without capturing

the interaction of features, Regress(depth+dov2vec 150+channel+viewport) does not

obtain as good prediction outcome as FM(dov2vec 150+channel+viewport;K=20).

The result shown in Table 4.4 are calculated over all test page depth. In order to

look into the performance at different areas of pages and evaluate the robustness of the

proposed method, page depths are split into different buckets: bucket1: [1%, 25%],

bucket2: [26%, 50%], bucket3: [51%, 75%], and bucket4: [76%, 100%]. According to

the result shown in Table 4.1, the proposed method stably outperforms the others in

all buckets.

Generally, the prediction error is decreasing with the increase of the page depth.

The reason is that most users only read the first half of the page. Therefore, the dwell

time of the page depths near the bottom of the page is mostly zero second. It is easier

78

Figure 4.1 Depth dwell time prediction comparison (buckets).

to do prediction at the bottom of the page. This is why the prediction performance

of all methods are closer in the bucket4, while the proposed method is still the best.

Viewability Prediction Viewability can be regarded as the probability that an

item (e.g., an ad) at a page depth will be viewable. This can be treated as probabilistic

classification. Therefore, we run an experiment to evaluate whether the FM model

can handle this problem.

We vary the dwell time threshold of a viewable impression from 1s (IAB

standard) to 10s. The target variable of each page depth in the dataset is 1 if its

dwell time is at least T seconds; otherwise 0. In this way, the prediction problem is

converted from regression to classification. The prediction outcome of each test page

depth is the probability that its dwell time is at least T seconds.

Figure 4.2 shows that the FM model clearly outperforms the baselines. It is

also noticed that the FM model achieves the best performance at the two ends (1s

and 10s). Given a page depth, it is more challenging to predict if the dwell time is at

least 5s. The reason is that the number of page depths with dwell time at least 5s and

the number of page depths with dwell time less than 5s are very close (about 50%).

In contrast, there are about 70% page depths whose dwell time is at least 1s. Similar

79

Figure 4.2 Viewability prediction comparison.

to the depth-level dwell time prediction, GlobelAverage and LogisticRegress bc have

similar performance. Also, the LogisticRegress with significant features is better than

other baselines.

One interesting observation is that, although UserAverage and PageAverage

outperform GlobalAverage by RMSD, as shown in Table 4.4, they are much worse

than GlobalAverage by logistic loss in viewability prediction. Also, they do not have

as stable performance as other methods. The main reason is that most users and

pages in the test data have few historical pageviews in the training data. Also, most

pageviews have sparse dwell time distribution, i.e., the dwell times of many page

depths are 0. In this case, for individual users or pages, the viewability predictions

of a depth are close to 0 or 1. Once the prediction is incorrect in the test data, the

penalty by logistic loss will be large because it heavily penalises classifiers that are

confident about an incorrect classification. For instance, the dwell times at 10% depth

of a user’s all historical pageviews are 0s, 0s, 0s, and 3s. In a test pageview, the user

80

spent 1s at that page depth, which is the ground truth. Given T = 1, the prediction

of the user at this depth will be always (0 + 0 + 0 + 1)/4 = 0.25. This means the

classifier thinks that the depth will very likely be viewed for less than 1s. However,

the logistic loss of the prediction is logloss(0.25, 1) = 25.9047, which is a very huge

penalty. This is because that in classification problem it is better to be somewhat

wrong than emphatically wrong. This characteristic is very important for publishers

because it can help publisher avoid large decision-making errors, for instance, they

are suggested that an impression at a page depth will be certainly viewable, but it

turn out to be an unviewable one.

4.2.4 Feature Analysis

We also look into some features and investigate how user reading behaviors are related

with the feature values. This may influence advertisers’ biding behaviors as well as

publishers’ ad allocation strategies and website design.

Figure 4.3 Day of week vs. traffic and mean page-level dwell time (New York
State; 0=Sunday).

Figure 4.4 Hour of day vs. traffic and mean page-level dwell time (New York
State).

81

Weekday and Hours We investigate whether user reading behavior varies with

time, i.e., (local) day of week and (local) hours of day. The long-term data are

provided by Google Analytics (GA)1. Forbes uses it to track and report traffic and

the usage of websites. Since the time recorded in GA is the visit’s time converted to

the timezone configured for the GA profile (Forbes profile uses the US Eastern Time),

we fix the region of the visits to the New York State. The data provided by GA is

collected in the most recent one month, i.e., Aug 2016.

Figure 4.3 shows website traffic and the mean page-level dwell time on different

days of week. It only includes the pageviews from the New York State in order to

eliminate the impact of different timezones. Although website traffic varies by the

days of week, the mean page-level dwell time almost does not have any fluctuation.

Users spend the same time on the pages on different days of week. Besides, Figure 4.4

presents a more obvious pattern that the page-level dwell time does not vary by the

change of the hours. Concretely, more users come to Forbes in the daytime. But they

do not seem to spend more time on pages. We also tried multiple regions at different

timezones, e.g., California. The findings are the same.

In addition, in order to reveal how much time is spent at different page

depths, we go back to our user log data of Dec 2015 and sample at least 100,000

pageviews from each weekday/hour. Then, the dwell time distributions over all page

depths on representative weekdays/hours are plotted in Figures 4.5 and 4.6. These

weekdays/hours are either the time point that have either the longest or the shortest

mean page-level dwell time. Similar to the page-level dwell time, the depth-level dwell

time does not influenced much by time as well. The difference of the peaks are only

about three seconds. The shape of the dwell time distributions are also very close to

each other on different weekdays/hours. The possible reason is that, although most

users tend to visit the website in the daytime of weekday, the users who visit during

1https://analytics.google.com/

82

Figure 4.5 The comparison of mean depth-level dwell time on Wednesday and
Saturday (in seconds).

the midnight or weekend are meant to seek for certain information on the pages. In

this case, they may not spend much shorter time than the ones visit in daytime of

the weekdays.

Studies [87, 77] discover that, in the current pay-by-impression pricing model,

the wining bidding prices significantly vary by the hours of day. Specifically, the

wining bids peak at 8-10am due to intensive competition. However, our research finds

that the page depth-level dwell time does not vary much. Users may still engage a

lot with web articles at midnight. Thereby, the chance that ads exposed on screen

for long enough time at midnight is as the same as that in the daytime. Namely, ad

viewability may not change largely across different hours of day and days of week.

Therefore, through this research, advertisers hopefully can realize that the impressions

at midnight do not have much lower viewability. Hence, they do not necessarily

compete with each others in the daytime and consequently pay higher prices for the

marketing chances that they can also get during non-peak time.

Channels In each of the six primary channels on Forbes website, 2000 pageviews

are randomly sampled. For each pageview, the dwell time of the user spent on every

page depth is calculated. Thus, each pageview has a vector of length 100. Each

value in the vector is the time that the user spent on the corresponding page depth.

83

Figure 4.6 The comparison of mean depth-level dwell time on different hours of
day (in seconds).

Figure 4.7 The comparison of mean depth-level dwell time across channels (in
seconds).

84

For each channel, the centroids of the 2000 vectors are calculated by averaging. The

resultant 6 centroids can be considered as summaries of the dwell time patterns of

corresponding channels. The centroids are plotted in Figure 4.7.

All six plots indicate that users usually spend more time on the first half of

the page than the second half. Also, the top several percents of the page are usually

skipped because this area is always the menu bar. However, the patterns of individual

channels are not identical. Users tend to spend less time on the lifestyle channel,

which usually publishes web articles about travel, sports, and autos. Intuitively,

users may not read every single sentence in these pages. On the other hand, users

spend long time on the opinion channel, which publishes updated analysis on popular

news. It is reasonable in that these opinion articles are original and can attract users

to read about the authors’ points. Likewise, as the most well-known product, the

lists channel, which usually publishes the rankings, e.g., the The World’s Billionaires,

receive high engagement on the first half, while users quickly lose attention at the

second half. The possible reason is that most users only focus on the top positions

when reading a list, e.g., people more care about how are the top three richest

billionaires than the top tenth. Surprisingly, it is revealed that users stay longer

only in the very top part of the technology articles: people would like to know what

is happening in the technology industry, but have not interest in the detail about

the technology. In addition, while business and Asia share very similar patterns

across page depths, Asia receives slightly longer dwell time. Publishing articles about

the economy and billionaires of Asia, the Asia channel has significantly more Asian

visitors. Due to the language barrier and relatively slow network connection, Asian

visitors usually spend relatively more time on pages.

While the figures show on average the users tend to have different levels of

engagement in different channels, the difference will be more outstanding by looking

into individuals because users have diverse interests. By recommending articles of

85

Figure 4.8 The comparison of mean depth-level dwell time across viewport
categories (in seconds).

interest to specific users, publishers can boost the engagement of individual pageviews,

attract higher bidding prices, and thereby obtain more ad revenue. In future work,

we will uncover the relationship between user engagement and ad revenue.

Viewport We also investigate user reading behaviors on different viewports. As

mentioned before, viewport is the user’s visible area of a web page. Viewport is

highly determined by the size of the user’s browser. It can also indicate the devices

that the user is using, e.g., a very small viewport size indicates that the user probably

is using a mobile device. Since it is possible that users may adjust their browser into

many different sizes, we group viewport sizes by every 100 pixels. For example,

’320x520’ is represented as ’3x5’.

86

Only popular viewport sizes are considered in this experiment. According to

an online public resource2, viewport sizes are grouped into four categories which

represent four main display devices: 1) ’3x6’, ’3x3’, and ’3x5’ frequently occur in the

dataset among all small viewports. In fact, these are probably mobile visitors. 2)

’7x9’, ’7x10’, ’10x7’, and ’10x9’ are significant in the middle size viewports. These

are probably tablet visitors. The first two correspond to the portrait mode, while the

last two corresponds to the landscape mode. Unlike on mobile devices, the number of

landscape viewports are almost as significant as the portrait mode. 3) ’13x6’, ’13x7’,

’12x6’, and ’12x7’ may correspond to the viewports on laptops. 4) We also collect

data for big screens: ’25x12’, ’25x13’. It is observed from the user log that a number

of users visit the website using a big monitor. In each category, 2000 pageviews are

randomly sampled. The result is shown in Figure 4.8.

People generally spend less time on mobile devices. Existing research shows that

people usually use mobile devices for casual reading [24], where people use the mobile

Web to access general information without a specific goal. In this case, users may

not stay long on pages. Also, the dwell time distribution of mobile devices seemingly

has two peaks: one is near 30%, the other is near about 60%. The reason may be

that flicking fingers on the screen is as easy as scrolling the wheel of a mouse [39].

People usually read the first paragraph and then quickly flick to the last part of the

article. In contrast, the dwell time distribution of tablet devices is smoother because

a tablet have a bigger screen than the a mobile device. Thus, when a user is reading

the first/last paragraph, the middle part is also in-view. In this case, the dwell time

in the middle of a page is not significantly lower than that in the two tails.

Existing work [64] finds that users take less time to finish assigned search tasks

on devices with bigger displays. However, it is not also held in out case that depth-

level dwell time on bigger screens is lower than that on smaller screens: According to

2http://viewportsizes.com/. The owner of this website collects the viewport sizes on many
devices. For example, the typical viewport size of iPhone 6 is ’375x667’

87

Figure 4.8, dwell time is increasing with the increase of the viewport size. The main

reason is that bigger viewports can display more content. Therefore, users would stay

longer to read on the depths displayed in the viewports without much scrolling.

Low engagement may lead to low ad viewability. With the ubiquity of

mobile devices, a rapidly increasing number of visits are from mobile devices.

Low engagement on mobile devices may hurt the quality and value of publishers’

impression inventory. Therefore, publishers should improve the usability of their

website, especially on mobile devices. One possible way is to present a mobile-friendly

webpage layout on mobile devices. Improving user experience, publishers may keep

users longer on the webpages.

4.3 Deep Sequential Neural Networks

4.3.1 Introduction

Although the FM model uses latent vectors to model input variables, it is still

insufficient to capture the deep pattern among input variables.

Therefore, this work considers webpage depth viewability prediction as a

sequential labeling problem. Three deep learning networks are proposed. They can

predict how likely it is that a given page depth will be viewed by a user for at least

a certain dwell time. The proposed models utilize the information of the previous

page depths to predict the viewability at the current page depth. In particular,

the models leverage Recurrent Neural Network (RNN) using the Long Short-Term

Memory (LSTM) to model sequential dependency into predicting webpage depth

viewability.

Since users read webpages from top to bottom, the dwell times of all page

depths in a page view forms a sequence of inputs. Therefore, RNNs can be adopted

in our case because they leverage the internal memory to process sequences of inputs.

However, traditional RNNs suffer from the vanishing gradient problem [29]. LSTM

88

RNNs are designed to avoid the long-term dependency issue by adding gates to

control how much past information is transferred through time steps. The problem

is modelled as a ’many-to-many’ sequence labeling problem. In the first proposed

model, LSTM noInteract, every time step outputs one prediction outcome, i.e., the

viewability of a page depth. The input of each time step in the proposed LSTM

RNN contains information about the user, the page, the depth, and the context.

The first three are learned using three embedding layers. Since user behavior is

determined by the interaction of user, page and depth. In the second proposed

model, LSTM Interact, we also propose to consider the interaction of user, page,

and depth by multiplying their embedding vectors before sending the information to

the LSTM layers. Furthermore, users often scroll-back on pages. The time a user

spent at lower page depths also may indicate the time the user will spend at upper

page depths. In addition, in single directional LSTM, predictions made at very top

page depths rely on few previous page depths. For instance, only the LSTM layers

at the page depth of 1% can contribute to the prediction at the page depth of 2%.

In this case, the end prediction performance will be discounted. In the third model,

Bi-LSTM Interact, we therefore upgrade LSTMs to bi-directional LSTMs, which can

take future information, i.e., lower page depths, into account. In this case, all page

depths will help the prediction at 2%.

The models are evaluated using real data from Forbes Media, a large web

publisher. The experimental results demonstrate that our models outperform the

comparison models, i.e., GlobalAverage, Logistic Regression, and Factorization

Machines. The model with the best performance is Bi-LSTM Interact that is powered

by bi-directional LSTMs and considers embedding interaction.

To summarize, the main contributions are:

• To the best of our knowledge, we are the first to use many-to-many LSTM
networks, i.e., each timestep generates one output prediction, to predict user

89

behavior (existing work uses time-series LSTM, which is to make prediction
given known past statuses).

• Unlike conventional embedding-based LSTM RNNs, the proposed models
explicitly capture 2-way and 3-way interactions of embeddings.

• It is the first work to use bi-directional LSTM in user behavior prediction. To the
best of our knowledge, bi-directional LSTM is only applied in handwriting/speech
recognition [30] and bio-informatics [31].

• It shows how the proposed models can be used in the ad viewability problem,
which is a highly significant research question in the field of advertising. The
experimental results validate the effectiveness of the proposed models using a
dataset from a large publisher.

4.3.2 The Real-Life Dataset

Data Description A large web publisher (i.e., Forbes Media) provides user

browsing logs collected from real website visits in April 2016 and webpage metadata.

The dataset contains 5 million page views. For each page view, it records the user

id, page URL, state-level user geo location, user agent, and browsing events, e.g., the

user opened/left/read the page. Once a user scrolls to a page depth and stays for 1s,

an event is recorded. The page depths whose dwell times are less than 1s will not be

recorded in the data, in which case we consider their dwell time to be 0s. The page

depth is represented as the percentage of the page, ranging from 1% to 100%.

Each event has a timestamp so that the time that a user spends on a part of

a page can be calculated. To infer the current part of a page that a user is looking

at, the user log also records the page depths at which the first and the last rows of

pixels of the screen are. Thus, we are able to infer the part of the page to which the

user scrolls and how long the user stayed at that part of the page. Therefore, the

dwell time at a page depth can be calculated from the information provided by the

user log. Existing work [40] uses almost the same method to accumulate the dwell

time of a viewport position (i.e., the area of a user’s browser visible on the screen).

However, in this existing work, vertical positions are measured by pixels, instead

90

Figure 4.9 The average dwell time of page depths.

of page percentages. The reason that we adopted page percentages is because they

provides a relative measure independent of the device screen size. If a user reads 50%

of a page on a mobile device, while another user reads 50% of the same page on a

desktop, it is assumed that they read the same content.

Empirical Observations We sample 10% of the page views in order to conduct a

preliminary data investigation. The average dwell time at each page depth is shown

in Figure 4.9. For example, the maximum average dwell time is 15.42s at the page

depth of 35%. According to this figure, the average page depth-level dwell time

becomes larger initially and then decreases on the second half of webpages. Users

spend less time at the top and bottom areas of web pages. This is because the top

areas typically contain the navigation bar, mostly titles in big font, or advertisements

while the bottom areas contain mostly recommendation to other articles. Users tend

to quickly skip these areas and go to the body of content. After reading the body of

content, users often leave pages without reading the recommended links.

Figure 4.10 shows the fraction of page depths whose dwell times are at

least 1 second, which is the default duration threshold set by IAB. The threshold

can be customized by publishers and especially advertisers. In our experiments

(Section refsec:experiments), we evaluate the proposed models under different

duration thresholds. Figure 4.10 can be derived from Figure 3.2 by setting a dwell

time threshold, i.e., 1s because the curves share a very similar shape. It can also

91

Figure 4.10 The distribution of page views whose dwell times at the
corresponding page depths are at least 1s.

be observed that page depth viewability has three phases: It goes up initially and

gradually decreases once it reaches the page percentage of 20%. In the last quartile

of a page, the viewability goes down at a larger rate.

Figure 4.11 shows the cummulative distribution of page-depth dwell time. In

our model, one page view has 100 page depths. As the figure shows, the dwell time

of 38.87% page depths is 0 second. This means that the users either quickly scroll

past these page depths or leave the pages before scrolling to these page depths. This

is intuitive in that users skip the uninteresting areas and only focus on the content

they have interest. We also observe that the cumulative percentage for dwell time

up to 60 seconds is 94.04%. In other words, users usually spend no more than one

minute at one page depth.

Since we use a real-life dataset, it is inevitable to observe outliers in which the

depth-level dwell time is extremely high, e.g., hundreds of seconds. This is due to

the fact that some users leave the web pages open and go away from their computers.

These outliers have no value for the dwell time prediction. Thus, according to the

results in Figure 4.11, we set a threshold of 60 seconds for depth-level dwell times.

92

Figure 4.11 The cumulative distribution of page depth dwell time

The entire page view is discarded from the dataset if the dwell time of one of its depth

exceeds 60 seconds.

Figure 4.12 shows the distribution of the number of user actions in a page view.

A user action is defined as a reading event if a user scrolls to a part of a page and

stays for at least one second. A majority of page views have few actions. For example,

26.96% of page views have only 1 action. There are 98.56% page views which have

no more than 20 actions. The results make sense because most users do not engage

much with pages. It is also observed that outlier page views with as many as 297 user

actions exist in the dataset. Therefore, to remove the outliers, we discard the page

views that have more than 20 user actions.

4.3.3 Background of LSTM RNN

Before discussing the proposed solutions, we would like to briefly introduce LSTM

RNN first.

A recurrent neural network (RNN) is a type of artificial neural network

whose connections form cycles, which enable RNN to handle long-term dependencies

problems. Unlike feedforward neural networks, RNN can use their internal memory

to process arbitrary sequences of inputs. However, traditional RNNs suffer from the

93

Figure 4.12 The distribution of the number of user actions in a page view.

vanishing or exploding gradient problem [55]: the network output either decays or

blows up exponentially as it cycles around the network’s recurrent connections, due

to the influence of a given input on the hidden layer. Specifically, in the case of decay,

the gradient signal between time steps gets smaller so that learning either becomes

very slow or stops. This makes the task of learning long-term dependencies in the

data more difficult. In addition, if the leading eigenvalue of the weight matrix is more

than 1.0, it can increase the gradient signal, so that it can cause learning to diverge.

To avoid the long-term dependency problem, Long Short-term Memory (LSTM)

networks [29] have been proposed. The LSTM network is a type of recurrent

neural network used in deep learning because it can successfully train for very large

architectures. The LSTM networks are good at handling the cases that contain many

long sequences. The architecture of LSTM is designed to remember information

for long periods of time. The key to LSTMs is the multiplicative gates, which allow

LSTM memory cells to store and access information over long periods of time, thereby

avoiding the vanishing and exploding gradient problem. Gates are a way to optionally

let information through. Researchers use a sigmoid neural net layer and a pointwise

multiplication operation to implement gates. The output of the sigmoid neural net

layer is either 0 or 1. A value of 0 means a blocked way and a value of 1 means an

94

unobstructed way. The binary output of the sigmoid network describes how much

of each component should be let through. LSTM RNNs have been shown to learn

long-term dependencies more easily than the simple RNNs.

The main advantage of LSTM RNN compared to Markov chains and hidden

Markov models is that it does not consider the Markov assumption, and thus can be

better at exploiting the potential patterns for modeling sequential data. Also, LSTM

RNN can discover deep relationship between two time steps, as well as the input of

a time step and the outcome. The sequential dependency between the dwell time of

different depths is so complex and dynamic that time series analysis of Markov model

approaches are not capable to model it effectively. Because of its good performance,

LSTM RNN has been used in language modeling [67], speech recognition [30], and

user searching behavior [9].

4.3.4 The Proposed LSTM RNN Models

We propose to use LSTM RNN to solve the webpage depth viewability prediction

problem. In particular, we developed three models: 1) LSTM RNN; 2) LSTM

RNN with embedding interaction; 3) A bi-directional LSTM RNN with embedding

interaction.

LSTM RNN Model Understanding and further predicting user engagement on

webpages is non-trivial. User engagement is an emotional, cognitive and behavioural

connection between a user and a resource, e.g., a webpage [4]. Commonly used

metrics to understand user engagement with webpages include scrolling and dwell

time. Many factors can influence a user’s emotion and cognition when the user is

reading a page. It is intuitive that the dwell time of a page depth is highly related

to the user’s interests and reading habits [22], the topic of the article in the page,

aesthetic design at that page depth, etc. Also, content interestingness relates to the

emotions experienced during page reading. A viral content may attract most users

95

to scroll deep on the page and spend a long time on the whole page. Furthermore,

different users may have different reading patterns on an interesting page. Finally,

aesthetics concerns the sensory and visual appeal of an interface, and it is seen as an

important factor for engagement [52]. Webpage layout and graphics may impact the

time a user spends at page depths. Page depths with important topic sentences may

keep most users longer on them.

Thus, the characteristics of individual users, webpages, and page depths should

be taken into account for depth-level dwell time prediction. However, it is non-trivial

to explicitly model user interests, page characteristics, and the attractiveness of page

depths. Web content publishers usually do not have detailed user profile information,

including gender and age. The only user profile they may know is the user agent

in the HTTP request and the user geo locations inferred from IP addresses. Also,

modeling page interestingness and popularity is still an open research problem. More

importantly, the complex interactions of these three factors must be modeled so that

their joint effect is captured: 1) The interaction of users and pages captures a user’s

interest in a page. 2) The interaction of users and page depths can reflect individual

users’ browsing habits. For example, some users read entire pages carefully, but

some only read the upper half. 3) The interaction of pages and depths models the

design of individual pages at individual page depths. For example, pages that have a

picture at a depth may receive relatively short dwell time at that depth because people

usually can understand a picture quicker than text. Therefore, predicting user reading

behavior at page depth level is highly challenging. Although implicit feedback, e.g.,

reading dwell time, is more abundant than explicit feedback, e.g., ratings, it often has

higher variability [84], which makes prediction more difficult.

Section 4.2 applies Factorization Machines (FM) to predict the webpage

depth-level dwell time. However, the existing solution has two limitations: 1) The

latent features learnt by matrix factorization cannot discover the deep joint effect

96

of the input variables. The FM model learns latent features for input variables

through a one-layer shallow network. It has limited ability to discover and utilize

deep relationship between the input and the outcome. 2) The user engagement with

the previous page depth in the same page view is not considered, despite the fact that

it is expected to be a strong indicator for the user behavior at a given page depth.

For instance, if a user is predicted to spend long time at the page depths from 1% to

20%, the user probably will stay long at the page depth 21% as well.

This LSTM RNN model addresses these limitations as follows: (1) It uses a

deep neural network to capture the underlying patterns between many input factors

and webpage depth viewability. (2) The proposed deep learning model takes into

account the predicted viewability of the previous page depths in the same page view.

Our LSTM RNN considers the webpage depth-level viewability prediction as a

sequential labelling problem, in which the predictions at the time steps (i.e., page

depths) can influence the prediction at the current time step. We use LSTM in

conjunction with RNN because the length of each sequence in our application is as

long as 100 and a traditional RNN will suffer from the vanishing or exploding gradient

problem.

Figure 4.13 presents the method used to solve the ’many-to-many’ prediction

problem by our LSTM RNN. The left side is a webpage, which has 100 page depths.

Each page depth corresponds to one time step in the RNN setting, as shown in the

right side of the figure. The proposed method makes predictions at every time step.

The prediction is the viewability of the page depth in the specific page view. The

input of each time step includes information about the user, the page, the depth,

and the context. Since the LSTM layers of each time step can generate a viewability

prediction, the hidden neurons in the LSTM should carry information about the

viewability of that time step. The hidden layers at page depth i should be able to

summarize the viewabilities from page depth 1% to i. Therefore, using LSTM to pass

97

Figure 4.13 Modelling webpage depth viewability prediction.
Adapted from https://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-deep-learning-and-
how-is-it-useful
(accessed on 03/17/2017)

the information of the previous time steps can incorporate the previously-predicted

viewability into the prediction at the current time step. Note that, since the prediction

for a page view is made before page loading, the true viewability of all page depths are

unknown. Thus, the predicted viewability of the past page depths are used to predict

that of the current depth. The outputs at all page depths v1(u, a), ..., v100(u, a) are

counted to compute the performance. Thus, the problem is modeled as a sequence

labelling (e.g., Part-of-speech tagging), where the true labels of the past are unknown,

instead of time-series (e.g., stock price prediction), where the true labels of the past

are used in prediction.

Figure 4.14 presents the architecture of the proposed (rolling) LSTM RNN used

in webpage depth viewability prediction. At each page depth, the LSTM RNN consists

of one input layer, two LSTM layers, and one output layer.

With the suggestions of the domain experts at Forbes, we consider significant

information in the input layer. In particular, the input layer concatenates several

components:

98

Figure 4.14 The LSTM RNN model.

• The user’s viewport size, i.e., viewport height and width. A viewport is the
part of a user browser visible on the screen. The viewport indicates the device
utilized by the user (e.g., a mobile device usually has a much smaller viewport)
and can directly determine the user experience. To reduce sparsity, both heights
and widths are put into buckets with size 100 pixels.

• The user’s geo location, which is detected from user IP addresses. Since
individual users are identified by cookie IDs, it is possible that the same user
visits the website from different locations in multiple sessions. We consider user
geo locations because this is the only explicit feature about users that can be
easily obtained by publishers without violation of user privacy. In practice, user
geo may reflect a user’s interests and education. Specifically, geo is the country
name if the user is outside USA or a state name if she is within USA.

• local hour, and local day of the week (denoted by weekday in the experiments),
which are likely related to user reading behavior.

• Article length is represented by the word count of the article in the page, and it
has been proven to be a significant factor impacting page-level dwell time [83].
Article lengths are put into buckets, so that there are a limited number of
possible states.

99

• Freshness is the duration between the reading time and the time the page was
published on the website. Freshness is measured in days. The freshness of an
article may determine the interests of a user on it. Fresh news may receive more
user engagement.

• The channel and section of the article in a page are its topical categories on the
publisher’s website, e.g., finance and lifestyle. A channel can be considered as
a high-level topic label of a page. A section is defined as a sub-channel at finer
topical granularity.

• Other page attributes in the Forbes article metadata are also taken into account:
page type (e.g., “blog”, “blogslide”, or “trendingactivity”), whether the page is
in standard template type, whether the page contains any image, whether the
article is written by Forbes staff, and the number of user comments. All context
variables are modeled by one-hot encoding for simplicity. As one common step
of feature engineering, rarely-occurred feature values are grouped into “<feature
name> OTHER” categories.

Existing works [9, 91] use mostly one-hot encoding to represent the categorical

variables which have millions of values. However, this encoding increases a lot the

sparsity and width of the input layers. More importantly, it learns a very limited

representation of the variables. Therefore, it is important to use a rich and dense

representation to model the most important categorical variables in the data. To this

end, our LSTM RNN uses three embedding layers to model the three most important

categorical variables: user, page, page depth.

Before concatenating and feeding the four components to the LSTM layers, we

apply dropout to each component. Dropout [66] is a simple and effective method to

prevent a neural network from overfitting. In particular, it randomly sets a fraction

of the units in an output vector to 0 at each update during training time. By cross

validation, the fraction is set to 20%.

Stacked above the input layers are multiple LSTM layers. The number of layers

is a parameter that can be tuned by experiments. Each can be considered as one

reasoning step based on the output of the previous layer. The number of hidden

nodes in each LSTM can be empirically determined. Each LSTM layer has two

outputs: 1) The first output carries the information of this time step and is sent

100

Figure 4.15 Example of propagation without interaction.

to the counterpart at the next time step through a complex set of gates. 2) The

second output is passed to the next layer by an activation function. Specifically, the

activation function we use is the Tanh function, i.e., tanh(x) = 2
1+e−2x − 1, which is

non-linear and outputs values in the (-1,1) range.

Unlike the sigmoid function whose output is not zero-centered, the Tanh

function is less likely to get the network stuck in the current state during training.

Also, the Tanh function is not as fragile as the Rectified Linear Unit (ReLU). A large

gradient flowing through a ReLU neuron could cause the weights to update in such

a way that the neuron will never activate on any data point again.

We also apply dropout to the output of each LSTM layer: 20% units in the

output are randomly picked and set to 0. The vertical output of the last LSTM x are

passed into a sigmoid function, i.e., sigmoid(x) = 1
1+e−x , which outputs a value that

in the [0,1] range.

The output represents the page depth viewability, i.e., the probability that the

page depth will be viewable.

LSTM RNN with Embedding Interactions Model The model presented so

far (termed LSTM noInteract from now on) can be further improved by capturing

the interactions of the three important factors: user, page, and page depth. The

extended model introduced in this section is denoted as LSTM Interact.

101

Figure 4.16 Example of propagation with interaction.

Like most general neural networks, the LSTM noInteract only captures the OR

relationships among input factors, rather than the AND relationship. The input of

an activation function at a layer is a linear combination of the input units passed from

the previous layer. For instance, Figure 4.15 shows a part of an example network.

The two embedding vectors have values [p1, p2, ..., pd] and [q1, q2, ..., qd], respectively.

d is the length of the embedding layers. The input of the neuron yj in the next

layer is βj =
∑d

i=1wpi,jbi +
∑d

i=1wqi,jbi. The output of yj is tanh(βj) (assume the

activation function adopted is TanH). Thus, like all vanilla neural networks, the

LSTM noInteract does not consider the pairwise interaction of the embedding layers.

To solve this problem, we use knowledge from the recommender system field.

For example, to predict a movie rating for an unseen user and movie pair, one simple

way is to use matrix factorization, e.g., Singular Vector Decomposition (SVD). SVD

learns a latent vector for each user/item. Given an unseen user and item pair, the dot

product, i.e., the interaction, of the user latent vector pu and the page latent vector

qi is the predicted outcome, e.g., a movie rating: r̂ui = qTi pu. In other words, it sums

up all values generated by element-wise vector multiplication (i.e., multiplying two

embedding vectors element by element).

In our case, the embedding vector of an entity can be regarded as a latent vector

in SVD. Thus, we can use a similar method to capture the interaction of multiple input

factors. In particular, we adopt element-wise embedding multiplication as shown in

102

Figure 4.17 The LSTM RNN with embedding interaction model.

Figure 4.16. The ith element yi in the interaction vector is equal to yi = pi ∗ qi. For

example, the interaction of [1 0 3] and [2 3 7] is [2 0 21]. The interaction of two

embedding layers of length d is a vector of length d. The resulting values will be

summed up with other factors in the next layer.

Therefore, at the input layer of the second model, we also consider the 2-way

interaction and the 3-way interaction of user, page, and depth embeddings (shown

in Figure 4.17). The resulting four interaction vectors are then concatenated with

the other input vectors that are already considered in the LSTM noInteract. This

extended model is denoted as LSTM Interact.

Bi-directional LSTM RNN Model In LSTM layers, the state at a time step

captures only information from the past and present input. In our application,

both LSTM Interact and LSTM noInteract proposed so far leverage the sequential

dependency among page depths. They predict each output based on the current

and previous inputs only: in a same page view, the time that a user spends at the

103

Figure 4.18 The bi-directional LSTM RNN with embedding interaction.

past page depths can indicate the time that the user will spend at the subsequent

page depths. Such sequence is formed from the top of a page to the bottom because

naturally a page is read in a top-down fashion.

However, it is commonly-observed that users often scroll-back on pages as well.

Therefore, dwell time of lower page depths could indicate the dwell time of upper

page depths. For instance, a user who spent a long time at the last paragraph of

an article and is scrolling up will probably stay long in the middle of the page. The

possible reason is that the last paragraph may rekindle the user’s interest to the entire

article. In this case, single directional LSTMs fail to capture such backward patterns

to improve prediction performance.

Moreover, in single directional LSTM, predictions made at very top page depths

rely on few previous page depths. For instance, as the Figure 4.13 indicates, only the

LSTM layers at the page depth of 1% can contribute to the prediction at the page

104

depth of 2%. Only the LSTM layers of 1% is known when predicting the output of 2%

because predictions are made sequentially from page top to the bottom, i.e., single

direction. The information of the page depths after 2% are inaccessible. In this case,

relying on very few previous information can lead to unreliable prediction outcome

at very top page depths. Less accurate prediction at top page depths may distort the

predictions at further page depths. Such problem can be overcome if the page depths

after a current one can be taken into account. In this case, the prediction at any page

depth considers the information of the other 99 page depths.

Therefore, it may be helpful to enhance the proposed models using a bi-

directional LSTM RNN [30], which propagates information in both directions.

Bi-directional LSTMs combine a single directional LSTM that moves forward through

time, beginning from the start of a sequence, with another LSTM that moves

backward through time, beginning from the end of a sequence. It allows the output at

a time step t to compute a representation that depends on both the past and the future

but in most sensitive to the input around the input at t, without having to specify

a fixed-size window around t. Bi-directional LSTMs are useful in some applications,

where the prediction outcome of a time step depends on the entire input sequence,

rather than only the past and present.

In our case, the bi-directional LSTMs replace the LSTM layers in Figure 4.17:

one forward LSTM and one backward LSTM running in reverse direction and with

their outputs merged at the output layer. Figure 4.18 shows the architecture of the

proposed bi-directional LSTM RNN. The forward LSTM operates as usual: it carries

information of the past page depths. In contrast, the backward LSTM flows from the

page bottom to the top. It brings information about the dwell time of the page depths

that are lower than the current page depth. Along with the input at the current page

depth, their outputs are then merged by element-wise averaging because they would

equally contribute to the outcome of the page depth. A dropout of 20% follows to

105

avoid overfitting. In this way, bi-directional LSTMs enable information from both

past and future to come together.

Bi-directional LSTM RNNs have been used in speech recognition [30] and

bio-informatics [31]. To the best of our knowledge, we are the first to apply

bi-directional LSTM networks in user behavior prediction. This bi-directional LSTM

RNN is denoted as Bi-LSTM Interact.

4.3.5 Evaluation

Experimental Datasets A three-week user log is split into training and testing

data. The training data and testing data contain 1M+ page views and 50K+ page

views, respectively. The training/test data consist of all depths of all training/test

page views. Note that LSTM RNN parameters are shared by all time steps (i.e., page

depths), and each page view contains 100 depths.

At the beginning of each epoch, the training data is shuffled and further split

into a new training set and a validation set. The error on the validation set is used as

a proxy for the generalization error. We use validation-based early stopping to obtain

the models that work the best with the validation data. Since it is common that the

validation error may fluctuate during training (producing multiple local minima), the

maximum number of epochs is set to 30. By observing the curve of validation errors,

it can be guaranteed that overfitting occurs within the first 30 epochs. The models

with the minimum validation error are saved and used to predict the testing data. We

observe that the minimum validation errors are often obtained at the 8th-15th epochs.

In addition, since the exact prediction performance varies by several factors, e.g.,

parameter initialization, all models are run three times. The reported performance

results are obtained by averaging the three runs.

Implementation The proposed LSTM RNN models are implemented using Keras [21]

with Theano [70] backend. The experiments are run on a desktop with i7 3.60Hz CPU

106

and 32GB RAM. The matrix computation is sped up using NVIDA GeForce GTX

1060 6G GPU. Running 30 epochs usually takes 5-8 hours depends on the parameter

setting.

Considering the training speed and memory consumption, we set the training

batch size to 256. A large batch size might alleviate the impact of noisy data, while

a small one sometimes can accelerate the convergence. Hence, we varied the batch

size, e.g., 128 and 512, but no significant differences have been observed.

During training for viewability prediction, we use the log-loss function as the

objective function, i.e., binary crossentropy, the preferred loss function for binary

classification problems. The parameter is initialized by sampling from a uniform

distribution. The optimizer we adopt is Stochastic Gradient Descent (SGD), which

can can overcome the high cost of backpropagation and still lead to fast convergence,

with a learning rate of 0.01, a learning rate decay of 1e-6, and a momentum of 0.99.

Nesterov momentum is also enabled. An existing study [68] finds that momentum-

accelerated SGD are effective for training RNNs. We also tried RMSprop and Adam

optimizers. Although Adam can further accelerate convergence, neither beats SGD

for prediction performance.

Comparison Models GlobalAverage: In a training page view, if the dwell time

of a page depth is at least t seconds, the viewability of the page depth in the page view

is considered to be 1; otherwise, it is 0. Therefore, we can calculate what percentage

of page views are viewable at each page depth. The 100 constant numbers obtained

are used to make deterministic predictions for the corresponding test page depths.

Logistic Regression (LR): Since the viewability prediction can be considered

as a classification problem. A logistic regression model is developed as a baseline. The

input variables are almost the same as those used in the proposed model. LR models

user, page, and depth using one-hot encoding. We develop a one-layer neural network

107

with sigmoid activation function to mimic a logistic regression. The LR is trained

following the same process as the proposed models. The learning method is also SGD

with learning rate 0.001.

Factorization Machines (FM): Factorization machines (FM) [60] are a

generic approach that combines the high-prediction accuracy of factorization models

with the flexibility of feature engineering. This method has been widely used in

many applications. The basic idea of FM is to model each target variable as a

linear combination of interactions between input variables. Formally, it is defined

as: ŷ(x) = w0 +
∑n

i=1wixi +
∑n−1

i=1

∑n
j=i+1 〈vi,vj〉xixj, where, ŷ(x) is the prediction

outcome given an input x. w0 is a global bias, i.e., the overall average depth-level

dwell time.
∑n

i=1wixi is the bias of individual input variables. For example, some

users would like to read more carefully than others; some pages can attract users to

spend more time on them; some page depths, e.g., very bottom of a page, usually

receive little dwell time. The first two terms are the same as in linear regression.

The third term captures the sparse interaction between each pair of input variables.

The FM model is implemented based on [76]. The proposed FM model considers four

input variables: user, page, depth, and viewport size.

Metrics The metrics we adopt focus on different aspects of the effectiveness:

Logistic Loss: It is widely used in probabilistic classification. It penalizes a

method more for being both confident and wrong. Lower values are better: logloss =

− 1
N ·100

∑N
i=1

∑100
j=1 [yij log(ŷij) + (1− yij) log(1− ŷij)], where N is the number of the

test page views. Each has 100 page depths, i.e., 100 prediction outputs. ŷij is the

predicted viewability and yij is the actual viewability at the jth page depth in the

ith page view.

Area Under Curve (AUC): The AUC is a common evaluation metric

for binary classification problems, which is the area under a receiver operating

108

characteristic (ROC) curve. An ROC curve is a graphical plot that illustrates the

performance of a binary classifier system, as its discrimination threshold is varied.

The curve is created by plotting the true positive rate against the false positive rate

at various threshold settings. If the classifier is good, the true positive rate will

increase quickly and the area under the curve will be close to 1. Higher values are

better.

Accuracy: The accuracy classification score computes the percentage of the

test instances which are correctly predicted. In the experiments, accuracy is computed

by the default decision boundary, 0.5. Higher values are better.

Root-mean-square Deviation (RMSD): It is used in dwell time prediction,

which is a regression problem. RMSD measures the differences between the values

predicted, ŷi, and the values observed, yi: RMSD =

√∑N
j=1

∑100
i=1(ŷij−yij)2

N ·100 , where N is

the number of test page views. yij is the actual dwell time at the jth page depth in

the ith page view. Lower values are better.

Figure 4.19 Log-loss performance of the proposed models

Comparison of The Proposed Models This section compares the performance

of the proposed models. Figure 4.19 shows their performance in the test data. The

models contains two LSTM layers, each of which has 500 hidden neurons. The

embedding layers have 500 hidden neurons. This network configuration is obtained

109

experimentally, as discussed in Section 4.3.5. To evaluate the models’ performance

with different viewability thresholds, i.e., minimum required dwell time, we set

three thresholds: 1s, 5s, and 10s. The viewability threshold of 1s is in line with

the viewability definition suggested by the IAB. In the experiment, the models are

compared by log-loss, accuracy and AUC. However, since we observed that the model

with lower log-loss also has higher accuracy and AUC, only the log-loss results are

shown.

The Bi-LSTM Interact model performs best, as it leverages the predicted

behaviors at both past page depths and future page depths. The results verify that

such bi-directional patterns can consistently enhance the performance by all metrics

under all three viewability thresholds. We also notice that LSTM Interact performs

better than LSTM noInteract because it captures the embedding interaction, which

can further boost the prediction performance

Comparing across viewability thresholds, the performance for 1s is the best.

Surprisingly, the performance for 5s is not as high as that of 10s. This is because the

number of positive instances, i.e., the page depths whose dwell times are at least 5s,

and negative instances, i.e., the page depths whose dwell times are less than 5s are

almost equal (Figure 4.11). This makes the prediction more challenging.

Table 4.5 Viewability Prediction. Threshold = 1s

Approaches Logloss Accuracy AUC

GlobalAverage 0.6586 59.45% 61.98%

Logistic Regression 0.6484 63.36% 62.55%

FM 0.6173 64.88% 66.11%

Bi-LSTM Interact 0.5916 67.36% 71.54%

110

Table 4.6 Viewability Prediction. Threshold = 5s

Approaches Logloss Accuracy AUC

GlobalAverage 0.6786 57.35% 59.42%

Logistic Regression 0.6726 58.94% 61.47%

FM 0.6527 60.13% 63.54%

Bi-LSTM Interact 0.6250 64.87% 70.72%

Table 4.7 Viewability Prediction. Threshold = 10s

Approaches Logloss Accuracy AUC

GlobalAverage 0.6635 59.65% 58.46%

Logistic Regression 0.6546 60.40% 61.61%

FM 0.6332 62.58% 63.96%

Bi-LSTM Interact 0.6076 66.98% 70.94%

Performance of Viewability Prediction at All Page Depths This section

compares our best model, Bi-LSTM Interact, and the comparison methods using the

log-loss, accuracy, and AUC metrics. The parameter setting of the proposed model

is the same as the one used previously.

Tables 4.5, 4.6, and 4.7 present the performance comparison with three

viewability thresholds. The Bi-LSTM Interact model is clearly better than the

comparison methods for all three metrics: The lower log-loss indicates that our model

has fewer mistakes due to over-confidence when the decision boundary is 0.5. This is

also reflected by the accuracy results. The higher AUC values show that our model

also obtains better performance on average by varying the decision boundary from

0 to 1. The results verify that bi-directional patterns can consistently enhance the

performance for all metrics under all three thresholds.

111

Figure 4.20 Performance of viewability prediction in buckets.

The performance of Bi-LSTM Interact is significantly better than that of FM.

This shows that a deep neural network can discover more underlying patterns

between input variables. These patterns can improve the overall performance. The

dependency between page depths can also contribute to viewability prediction. The

Logistic Regression uses one-hot encoding to represent the user, page, and page

depths. Thus, it has limited capability to fit the data as well as the FM which builds

latent vectors to model the three categorical variables. Using latent vectors instead of

one single weight to model an input variable can increase model complexity. Models

with higher complexity can fit datasets better. The GlobalAverage always makes the

deterministic prediction using the fraction of positive page depths computed based

on the training data. Its performance is the lowest compared with the other methods.

To further evaluate the performance of all methods at different areas of pages,

page depths are separated into one of three buckets based on the observations from

Figure 4.10: [1,25%], [26%,75%], or [76%,100%]. For brevity, we only present the

112

results with viewability threshold of 1s because it is the suggested one by the IAB.

Figure 4.20 shows that Bi-LSTM Interact consistently outperforms the comparison

systems in all page depth buckets. It is interesting to notice that the performance

is better in the middle of the pages, where the log-loss scores are significantly lower

and the accuracy and AUC scores are significantly higher. This can be explained

by looking at Figure 4.10, which shows more than 50% page views that have middle

parts in-view for at least 1s. The reason is that users tend to spend more time on the

article content. Thus, it is relatively easier to predict viewability in the middle area.

Comparing the performance at the top and the bottom areas, we can see that

the performance at the bottom is clearly worse than that at the top for accuracy. On

the other hand, the AUC performance at the bottom is slightly better than that at

the top. Since accuracy is calculated using 0.5 as the decision boundary, this indicates

that 0.5 does not appear to be a suitable decision boundary at the page bottom. The

reason is that the dwell times of most bottom page depths are lower than 1s. Such

imbalance leads the probabilistic outputs of all methods to be closer to 0, instead

of 0.5; using 0.5 as the decision boundary makes a large majority of predictions 0.

Thus, varying the decision threshold, especially lowering it in this case, can enhance

the prediction performance.

Effect of Main Parameters In this section, we tune the model by varying some

important parameters: the sizes of the embedding layers, the size of the LSTM layers,

and the number of LSTM layers. In these experiments, the minimum dwell time

threshold is set to 5s, in which case the number of negative training instances is almost

the same as the number of positive training cases. Note that the same experiments

are conducted for the other two proposed models, but due space constraints, we show

results only for the Bi-LSTM Interact that achieves the best performance.

113

Figure 4.21 Effect of main parameters.

114

Figure 4.21(a) shows the effect of the dimensionality of the embedding layers,

i.e., the number of hidden neurons in an embedding layer. The metrics are

computed over the test data. To simplify the solution space, we apply the same

dimensionality for user embedding, page embedding, and depth embedding. Varying

the dimensionality of the embedding layers also change the dimensionality of the

interactions. When varying the embedding layer sizes, we fix the dimentionalities of

the bi-directional LSTM layers to 500.

The results show that higher-dimensional word embeddings do not always

provide better performance. This finding is in line with existing work [71] that

applies word embeddings in a Name Entity Recognition task. Although intuitively

wider embedding layers should have finer representation, they also tends to cause

overfitting. On the other hand, too narrow embedding layers cannot capture well the

traits of input variables.

Embedding=500 obtains the lowest log-loss in the test data. It also has the

highest accuracy. However, Embedding=600 is slightly better than Embedding=500

for the AUC score. This implies that Embedding=500 is better than Embedding=600

for the decision threshold of 0.5. But when considering all thresholds on average,

Embedding=600 is slightly better. On the other hand, narrower embedding layers

have fewer parameters to learn, which requires less training data and shorter training

time. Therefore, Embedding=500 may still be preferable in practice.

Figure 4.21(b) shows the effect of the dimensionality of the bi-directional LSTM

layers. The number of layers is fixed to two. The results demonstrate that two

bi-directional LSTMs with 500 hidden neurons have the best performance for log-loss

and accuracy, while the two bi-directional LSTMs with 600 hidden layers lead to the

highest AUC by 0.02%. Considering Figure 4.21(a), it appears that hidden layers

with 600 hidden neurons are likely to have better performance for all thresholds on

115

average. However, 500 is better when the decision threshold is 0.5, which is usually

the default value.

Figure 4.21(c) presents the effect of the numbers of the bi-directional LSTM

layers stacked sequentially. It clearly illustrates that the performance can be

significantly improved by increasing the number of bi-directional LSTMs from 1 to 2.

But all three performance curves become flat for 3 layers and worse after adding the

fourth layer.

Therefore, no one single parameter setting can dominate under all metrics.

These experiments in fact reflect two commonly used methods of deep network tuning:

go deeper and go wider. Theoretically, a wider deep network can learn a richer

representation of the input entity: A hidden layer with more hidden nodes can capture

more latent features of a user, a page, a depth, or their interaction with the context.

On the other hand, a deeper network that has more hidden layers should be able to

learn complex logic processes. In this work, the proposed models require relatively

wide embedding layers and bi-directional LSTM layers. The reason is that it is

necessary to capture more latent aspects of individual user, page, and depth without

explicit features. In addition, Figure 4.21(c) shows that two LSTM layers are enough

to fit well the user behavior data. Although user behavior is difficult to learn, the

user behavior prediction problem usually does not require too many reasoning steps

vertically at each time step [9], compared with the deep networks used in computer

vision field [65].

Performance of Dwell Time Prediction The proposed models for page depth

viewability prediction can also be applied to predict the exact dwell time of a page

depth. This can also be useful for publishers and advertisers: For example, predicted

depth-level dwell time can help publishers quantify the interestingness of a page depth

to a specific user. In this case, the publisher can determine at which depth is preferable

116

Figure 4.22 Performance of dwell time prediction.

to show recommended article links. Also, advertisers may want to know the exact

dwell time that a user will spend at a page depth.

The main difference between viewability prediction and dwell time prediction is

the output. The former, a classification problem, outputs a probability, i.e., [0,1]; the

latter, a regression problem, outputs a non-negative value, i.e., [0,+∞] (time can not

be negative). Thus, in order to make page depth dwell time prediction, we change the

activation function of the output layer from a sigmoid function to a rectified linear unit

(ReLU). Given a input x of a linear combination sent from the previous layer, ReLU

converts it by relu(x) = max(0, x). Thus, the output of a ReLU is a non-negative

value. In addition, the learning rate is reduced from 0.01 to 0.001 because 0.01 is

too large for the regression problem. We use the mean squared error as the objective

function. The results are calculated based on all test page depths, instead of buckets.

Figure 4.22 shows that the all three proposed models significantly outperform the

comparison systems. The Bi-LSTM Interact generates the least RMSD.

4.4 Chapter Conclusion

Online publishers and advertisers are interested to predict how likely it is that a

user will stay at a page depth for at least a certain dwell time, defined as webpage

117

depth viewability. Viewability prediction can maximize publishers’ ad revenue and

boost advertisers’ return on investment. This work first proposes a model based on

Factorization Machines to predict webpage depth-level viewability for a page view.

Using real-world data, both page depth-level dwell time and viewability prediction

experiments consistently show the proposed FM model outperforms the comparison

models. This work then proposes three deep sequential neural networks based on

Recurrent Neural Network (RNN) with the Long Short-Term Memory (LSTM). The

proposed deep learning models predict the viewability and exact dwell time for any

page depth in a specific page view. Using a real-world dataset, the experiments

consistently show our models outperforming the comparison models.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The aim of this dissertation is to advance the state-of-the-art research on ad

viewability prediction. As an emerging research topic, ad viewability obtains its

significance in industry. Ad viewability prediction can improve the effects and

efficiency of advertisers’ marketing investment and, on the other side of the table,

increase publishers advertising revenue. As a result, more efficient advertising

campaigns enhance advertisers profit. More ad revenue help small and medium

publishers sustain from intense business competition.

According to the standard definition of a viewable impression, ad viewability is

proposed to be predicted from two different angles: by scrolling behavior and dwell

time. The first angle leverages the fact that users often do not scroll down enough to

make an ad impression shown on screen. Two machine learning models are proposed

based on the probabilistic latent class models: PLC const and PLC dyn. The first

model computes constant memberships of each user and page offline, while the second

model computes dynamic memberships in the real time. The experimental results

show that the proposed models outperform the state-of-the-art methods. However,

predicting ad viewability by scrolling behavior does not take into account the time

that an ad is shown on the screen. Ad dwell time is also a requirement in the

standard definition of ad viewability. Thus, the second phase proposes to estimate

ad viewability by predicting dwell time of the page depth where an ad is located.

Factorization machines models with different feature combinations are first proposed.

The one with Doc2Vec vectors, viewport, and channel obtains the best prediction

performance. To discover and leverage the deep patterns among input variables,

three deep sequential neural networks are then proposed. In particular, three RNN

118

119

LSTM models are built to improve the ad viewability prediction performance. The

experiments shows that the deep learning models outperform the comparison models.

The bidirectional LSTM model performs the best.

All proposed models predict ad viewability before a user reads a page. The

LSTM models have the best prediction performance. They need more input training

data and offline training time in order to learn the optimal values of parameters. In

contrast, the PLC dyn need the least training data. This is preferable for those cases

where huge training data are not available. In addition, the FM-based models are

highly suitable for industry because they are easy to be implemented and customized.

The contribution of this research includes: 1) We are the first to define and

solve the problem of viewability prediction, which is a significant problem in online

advertising. 2) We are also the first to predict user scrolling behavior. 3) We are

the first to investigate the depth-level dwell time prediction by developing machines

learning models. 4) The proposed models are evaluated using real-life datasets. The

experimental results show that our models significantly outperform the comparison

systems.

There are several potential future research directions. Since users may have

different behaviors on different devices. We plan to differentiate devices (i.e., desktop

or mobile) and browsers. The performance of the proposed models on different devices

and browsers will be evaluated and compared. Also, the hierarchical relationship

among page, section, and channel, as well as user and geo-location can be further

utilized. It is promising to investigate whether such relationships can contribute the

ad viewability prediction. Another direction is to predict ad viewability during page

reading. In addition, some publishers may prefer to dynamically present ads during

page reading. An ad impression is not determined and sold until a user scrolls to the

page depth where the ad is located. Thus, the ad viewability can be largely increases.

120

It is helpful to estimate the viewability of an ad located at a deeper page depth when

a user is reading a page.

BIBLIOGRAPHY

[1] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang Zhang. Laser:
A scalable response prediction platform for online advertising. In Proceedings
of the 7th ACM International Conference on Web Search and Data Mining,
WSDM ’14, pages 173–182, 2014.

[2] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking
by incorporating user behavior information. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’06, pages 19–26, 2006.

[3] Mohamed Aly, Sandeep Pandey, Vanja Josifovski, and Kunal Punera. Towards a
robust modeling of temporal interest change patterns for behavioral targeting.
In Proceedings of the 22Nd International Conference on World Wide Web,
WWW ’13, pages 71–82, 2013.

[4] Simon Attfield, Gabriella Kazai, Mounia Lalmas, and Benjamin Piwowarski. Towards
a science of user engagement. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining Workshop, 2011.

[5] Santiago R Balseiro, Jon Feldman, Vahab Mirrokni, and S Muthukrishnan. Yield
optimization of display advertising with ad exchange. Management Science,
60(12):2886–2907, 2014.

[6] MohammadHossein Bateni, Jon Feldman, Vahab Mirrokni, and Sam Chiu-wai Wong.
Multiplicative bidding in online advertising. In Proceedings of the fifteenth
ACM conference on Economics and computation, pages 715–732. ACM, 2014.

[7] Mikhail Bilenko and Matthew Richardson. Predictive client-side profiles for person-
alized advertising. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, pages
413–421, 2011.

[8] David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, April 2012.

[9] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. A neural click
model for web search. In WWW, pages 531–541, 2016.

[10] Davidson-Pilon C. Lifelines. https://github.com/camdavidsonpilon/lifelines, 2016.

[11] Suleyman Cetintas, Datong Chen, and Luo Si. Forecasting user visits for online
display advertising. Information Retrieval, 16(3):369–390, 2013.

[12] Suleyman Cetintas, Luo Si, Yan Ping Xin, and Ron Tzur. Probabilistic latent class
models for predicting student performance. In Proceedings of the 22nd ACM

121

122

CIKM Conference on Information and Knowledge Management, pages 1513–
1516. ACM, 2013.

[13] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. Simple and scalable response
prediction for display advertising. ACM Transaction on Intelligent Systems
Technology, 5(4):61:1–61:34, December 2014.

[14] Jianqing Chen and Jan Stallaert. An economic analysis of online advertising using
behavioral targeting. MIS Q., 38(2):429–450, June 2014.

[15] Wei Chen, Di He, Tie-Yan Liu, Tao Qin, Yixin Tao, and Liwei Wang. Generalized
second price auction with probabilistic broad match. In Proceedings of the
fifteenth ACM conference on Economics and computation, pages 39–56. ACM,
2014.

[16] Ye Chen, Pavel Berkhin, Bo Anderson, and Nikhil R Devanur. Real-time bidding
algorithms for performance-based display ad allocation. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1307–1315. ACM, 2011.

[17] Ye Chen, Dmitry Pavlov, and John F. Canny. Large-scale behavioral targeting. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’09, pages 209–218, 2009.

[18] Ye Chen and Tak W Yan. Position-normalized click prediction in search advertising.
In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 795–803. ACM, 2012.

[19] Ying-Ju Chen. Optimal dynamic auctions for display advertising. Available at SSRN
2216361, 2013.

[20] Haibin Cheng, Eren Manavoglu, Ying Cui, Ruofei Zhang, and Jianchang Mao.
Dynamic ad layout revenue optimization for display advertising. In Proceedings
of the Sixth International Workshop on Data Mining for Online Advertising
and Internet Economy, ADKDD ’12, pages 9:1–9:9, 2012.

[21] Franois Chollet. keras. https://github.com/fchollet/keras, 2015.

[22] Mark Claypool, Phong Le, Makoto Wased, and David Brown. Implicit interest
indicators. In Proceedings of the 6th International Conference on Intelligent
User Interfaces, IUI ’01, pages 33–40, 2001.

[23] Greg Corrado. Deep networks for predicting ad click through rates. In International
Conference on Machine Learning Online Advertising Workshop, 2012.

[24] Yanqing Cui and Virpi Roto. How people use the web on mobile devices. In
Proceedings of the 17th International Conference on World Wide Web, WWW
’08, pages 905–914, 2008.

123

[25] Jon Feldman, S Muthukrishnan, Martin Pal, and Cliff Stein. Budget optimization in
search-based advertising auctions. In Proceedings of the 8th ACM conference
on Electronic commerce, pages 40–49. ACM, 2007.

[26] Stephanie Flosi, Gian Fulgoni, and Adrea Vollman. If an advertisement runs online
and no one sees it, is it still an ad? Journal of Advertising Research, 2013.

[27] Google. The importance of being seen. https://think.storage.googleapis.com/docs/the-
importance-of-being-seen study.pdf (accessed on 03/17/2017), 2014.

[28] Thore Graepel, Joaquin Q Candela, Thomas Borchert, and Ralf Herbrich. Web-
scale bayesian click-through rate prediction for sponsored search advertising
in microsoft’s bing search engine. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 13–20, 2010.

[29] Alex Graves. Supervised sequence labelling. In Supervised Sequence Labelling with
Recurrent Neural Networks, pages 5–13. Springer, 2012.

[30] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recog-
nition with deep bidirectional lstm. In 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU).

[31] Jack Hanson, Yuedong Yang, Kuldip Paliwal, and Yaoqi Zhou. Improving protein
disorder prediction by deep bidirectional long short-term memory recurrent
neural networks. Bioinformatics, 33(5):685, 2017.

[32] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Trans. on
Knowl. and Data Eng., 21(9):1263–1284, September 2009.

[33] Michal Holub and Maria Bielikova. Estimation of user interest in visited web page. In
Proceedings of the 19th International Conference on World Wide Web, WWW
’10, pages 1111–1112, 2010.

[34] Liangjie Hong, Aziz S. Doumith, and Brian D. Davison. Co-factorization machines:
Modeling user interests and predicting individual decisions in twitter. In
Proceedings of the Sixth ACM International Conference on Web Search and
Data Mining, WSDM ’13, pages 557–566, 2013.

[35] Bernard J. Jansen. Click fraud. Computer, 40(7):85–86, July 2007.

[36] Youngho Kim, Ahmed Hassan, Ryen W. White, and Imed Zitouni. Modeling
dwell time to predict click-level satisfaction. In Proceedings of the 7th ACM
International Conference on Web Search and Data Mining, WSDM ’14, pages
193–202, 2014.

[37] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, August 2009.

124

[38] Subodha Kumar and Suresh P Sethi. Dynamic pricing and advertising for web content
providers. European Journal of Operational Research, 197(3):924–944, 2009.

[39] S Kyle. Experimenting in loyalty conversion with wnyc: Achieving mobile-
desktop parity. http://blog.chartbeat.com/2013/10/07/experimenting-
loyalty-conversion-wnyc-achieving-mobile-desktop-parity/.

[40] Dmitry Lagun and Mounia Lalmas. Understanding user attention and engagement
in online news reading. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, pages 113–122. ACM, 2016.

[41] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and
documents. In ICML, volume 14, pages 1188–1196, 2014.

[42] Chao Liu, Ryen W. White, and Susan Dumais. Understanding web browsing
behaviors through weibull analysis of dwell time. In Proceedings of the
33rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’10, pages 379–386, 2010.

[43] Kun Liu and Lei Tang. Large-scale behavioral targeting with a social twist. In
Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, pages 1815–1824, 2011.

[44] Ingrid Lunden. Internet ad spend to reach $121b in 2014.
http://techcrunch.com/2014/04/07/internet-ad-spend-to-reach-121b-in-
2014-23-of-537b-total-ad-spend-ad-tech-gives-display-a-boost-over-search/,
2014.

[45] F. Manjoo. You wont finish this article. http://www.slate.com/articles/technology/
technology/2013/06/how people read online why you won t finish this article
.html, 2013.

[46] Manfred Mareck. Is online audience measurement coming of age? Research World,
2015(51):16–19, 2015.

[47] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.
Ad click prediction: A view from the trenches. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1222–1230. ACM, 2013.

[48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
pages 3111–3119, 2013.

[49] Ananth Mohan, Zheng Chen, and Kilian Q Weinberger. Web-search ranking with
initialized gradient boosted regression trees. In Yahoo! Learning to Rank
Challenge, pages 77–89, 2011.

125

[50] Mohamed Mostagir. Optimal delivery in display advertising. In Communication,
Control, and Computing (Allerton), 2010 48th Annual Allerton Conference
on, pages 577–583. IEEE, 2010.

[51] Sami Najafi-Asadolahi and Kristin Fridgeirsdottir. Cost-per-click pricing for display
advertising. Manufacturing & Service Operations Management, 16(4):482–497,
2014.

[52] Heather L. O’Brien and Elaine G. Toms. The development and evaluation of a survey
to measure user engagement. J. Am. Soc. Inf. Sci. Technol., 61(1):50–69,
January 2010.

[53] Michael Ostrovsky and Michael Schwarz. Reserve prices in internet advertising
auctions: A field experiment. In Proceedings of the 12th ACM conference
on Electronic commerce, pages 59–60. ACM, 2011.

[54] Sandeep Pandey, Mohamed Aly, Abraham Bagherjeiran, Andrew Hatch, Peter
Ciccolo, Adwait Ratnaparkhi, and Martin Zinkevich. Learning to target: What
works for behavioral targeting. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, CIKM ’11, pages
1805–1814, 2011.

[55] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In Proceedings of the International Conference on
International Conference on Machine Learning, pages 1310–1318, 2013.

[56] Claudia Perlich, Brian Dalessandro, Rod Hook, Ori Stitelman, Troy Raeder, and
Foster Provost. Bid optimizing and inventory scoring in targeted online adver-
tising. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 804–812. ACM, 2012.

[57] Runwei Qiang, Feng Liang, and Jianwu Yang. Exploiting ranking factorization
machines for microblog retrieval. In Proceedings of the 22nd ACM international
Conference on Information and Knowledge Management, CIKM ’13, pages
1783–1788, 2013.

[58] Ana Radovanovic and William D Heavlin. Risk-aware revenue maximization in display
advertising. In Proceedings of the 21st International Conference on World
Wide Web, pages 91–100. ACM, 2012.

[59] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the International Conference on Language
Resources and Evaluation Workshop on New Challenges for NLP Frameworks,
pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/

publication/884893/en.

[60] Steffen Rendle. Factorization machines with libfm. ACM Transaction on Intelligent
System Technology, 3(3):57:1–57:22, May 2012.

126

[61] Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks:
Estimating the click-through rate for new ads. In Proceedings of the 16th
International Conference on World Wide Web, pages 521–530. ACM, 2007.

[62] Guillaume Roels and Kristin Fridgeirsdottir. Dynamic revenue management for online
display advertising. Journal of Revenue & Pricing Management, 8(5):452–466,
2009.

[63] Rómer Rosales, Haibin Cheng, and Eren Manavoglu. Post-click conversion modeling
and analysis for non-guaranteed delivery display advertising. In Proceedings
of the fifth ACM International Conference on Web search and data mining,
pages 293–302. ACM, 2012.

[64] Lauren Shupp, Robert Ball, Beth Yost, John Booker, and Chris North. Evaluation of
viewport size and curvature of large, high-resolution displays. In Proceedings
of Graphics Interface, GI ’06, pages 123–130, Toronto, Ont., Canada, Canada,
2006. Canadian Information Processing Society.

[65] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. Proceedings of the International Conference on
Learning Representations, 2015.

[66] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[67] Martin Sundermeyer, Hermann Ney, and Ralf Schlüter. From feedforward to recurrent
lstm neural networks for language modeling. Trans. Audio, Speech and Lang.
Proc., 23(3):517–529, March 2015.

[68] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. pages III–1139–III–1147,
2013.

[69] Liang Tang, Romer Rosales, Ajit Singh, and Deepak Agarwal. Automatic ad format
selection via contextual bandits. In Proceedings of the 22nd ACM international
Conference on Information and Knowledge Management, CIKM ’13, pages
1587–1594, 2013.

[70] Theano Development Team. Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, May 2016.

[71] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A simple and
general method for semi-supervised learning. In Proceedings of The Annual
Meeting of The Association for Computational Linguistics, pages 384–394.
Association for Computational Linguistics, 2010.

127

[72] William E Walsh, Craig Boutilier, Tuomas Sandholm, Rob Shields, George
Nemhauser, and David C Parkes. Automated channel abstraction for
advertising auctions. 2009.

[73] Chieh-Jen Wang and Hsin-Hsi Chen. Learning user behaviors for advertisements
click prediction. In The International ACM SIGIR Conference on Research
and Development in Information Retrieval Workshop on Internet Advertising,
pages 1–6, 2011.

[74] Chong Wang and David M. Blei. Collaborative topic modeling for recommending
scientific articles. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 448–
456, 2011.

[75] Chong Wang, Achir Kalra, Cristian Borcea, and Yi Chen. Revenue-optimized
webpage recommendation. In 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), pages 1558–1559. IEEE, 2015.

[76] Chong Wang, Achir Kalra, Cristian Borcea, and Yi Chen. Webpage depth-level dwell
time prediction. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, CIKM ’16, pages 1937–1940,
2016.

[77] Jun Wang and Shuai Yuan. Real-time bidding: A new frontier of computational adver-
tising research. In Proceedings of the Third ACM International Conference on
Web Search and Data Mining, pages 415–416. ACM, 2015.

[78] Harald Weinreich, Hartmut Obendorf, Eelco Herder, and Matthias Mayer. Not quite
the average: An empirical study of web use. ACM Transaction on The Web,
2(1):5:1–5:31, March 2008.

[79] Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok.
Interpreting tf-idf term weights as making relevance decisions. ACM
Transaction on Information Systems, 26(3):13:1–13:37, June 2008.

[80] Xiaohui Wu, Jun Yan, Ning Liu, Shuicheng Yan, Ying Chen, and Zheng Chen.
Probabilistic latent semantic user segmentation for behavioral targeted adver-
tising. In Proceedings of the Third International Workshop on Data Mining
and Audience Intelligence for Advertising, pages 10–17. ACM, 2009.

[81] Songhua Xu, Hao Jiang, and Francis C. M. Lau. Mining user dwell time for
personalized web search re-ranking. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Three,
IJCAI’11, pages 2367–2372. AAAI Press, 2011.

[82] Jun Yan, Ning Liu, Gang Wang, Wen Zhang, Yun Jiang, and Zheng Chen. How much
can behavioral targeting help online advertising? In Proceedings of the 18th
International Conference on World Wide Web, WWW ’09, pages 261–270,
2009.

128

[83] Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. Beyond
clicks: Dwell time for personalization. In Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys ’14, pages 113–120, 2014.

[84] Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. Silence is also evidence:
Interpreting dwell time for recommendation from psychological perspective. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 989–997. ACM, 2013.

[85] Shuai Yuan, Ahmad Zainal Abidin, Marc Sloan, and Jun Wang. Internet advertising:
An interplay among advertisers, online publishers, ad exchanges and web users.
arXiv preprint arXiv:1206.1754, 2012.

[86] Shuai Yuan, Jun Wang, Bowei Chen, Peter Mason, and Sam Seljan. An empirical
study of reserve price optimisation in real-time bidding. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1897–1906. ACM, 2014.

[87] Shuai Yuan, Jun Wang, and Xiaoxue Zhao. Real-time bidding for online advertising:
Measurement and analysis. In Proceedings of the Seventh International
Workshop on Data Mining for Online Advertising, ADKDD ’13, pages 3:1–3:8,
2013.

[88] Yong Yuan, Feiyue Wang, Juanjuan Li, and Rui Qin. A survey on real time bidding
advertising. In Service Operations and Logistics, and Informatics (SOLI), 2014
IEEE International Conference on, pages 418–423. IEEE, 2014.

[89] Weinan Zhang, Shuai Yuan, and Jun Wang. Optimal real-time bidding for
display advertising. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1077–1086.
ACM, 2014.

[90] Weinan Zhang, Shuai Yuan, Jun Wang, and Xuehua Shen. Real-time bidding
benchmarking with ipinyou dataset. arXiv preprint arXiv:1407.7073, 2014.

[91] Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin
Wang, and Tie-Yan Liu. Sequential click prediction for sponsored search
with recurrent neural networks. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

[92] Zeyuan Allen Zhu, Weizhu Chen, Tom Minka, Chenguang Zhu, and Zheng Chen. A
novel click model and its applications to online advertising. In Proceedings
of the third ACM International Conference on Web search and data mining,
pages 321–330. ACM, 2010.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: Scrolling Behavior Prediction
	Chapter 4: Dwell Time Prediction
	Chapter 5: Conclusions And Future Work
	Bibliography

	List of Tables
	List of Figures (1of 2)
	List of Figures (2 of 2)

