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ABSTRACT

MATHEMATICAL MODELING OF MEMBRANE FILTRATION

by
Pejman Sanaei

The purpose of this thesis is to formulate and investigate new mathematical models

for membrane filtration. The work presented is divided into six chapters. In the

first chapter the problem is introduced and motivated. In the second chapter, a new

mathematical model for flow and fouling in a pleated membrane filter is presented.

Pleated membrane filters are widely used in many applications, and offer significantly

better surface area to volume ratios than equal area unpleated membrane filters.

However, their filtration characteristics are markedly inferior to those of equivalent

unpleated membrane filters in dead-end filtration. While several hypotheses have been

advanced for this, one possibility is that the flow field induced by the pleating leads

to spatially nonuniform fouling of the filter, which in turn degrades performance.

This hypothesis is investigated by developing a simplified model for the flow and

fouling within a pleated membrane filter. The model accounts for the pleated

membrane geometry (which affects the flow), for porous support layers surrounding

the membrane, and for two membrane fouling mechanisms: (i) adsorption of very

small particles within membrane pores; and (ii) blocking of entire pores by large

particles. Asymptotic techniques are used based on the small pleat aspect ratio

to solve the model, and solutions are compared to those for the closest-equivalent

unpleated filter.

In the third and fourth chapters, mathematical models are proposed to describe

the effects of filter membrane morphology on filtration efficiency. A reasonable

question that membrane filter manufacturers may ask is: what is the optimal

configuration of filter membranes, in terms of internal morphology (pore size and

shape), to achieve the most efficient filtration? In order to answer this question, a



robust measure of filtration performance must be first proposed. Filter membrane

performance can be measured in a number of different ways. As filtration occurs,

the membrane becomes blocked, or fouled, by the impurities in the feed solution, and

any performance measure must take account of this. For example, one performance

measure might be the total throughput – the amount of filtered feed solution –

at the end of filtration process, when the membrane is so badly blocked that it is

deemed no longer functional. A simplified mathematical model is proposed, which (i)

characterizes membrane internal pore structure via pore or permeability profiles in

the depth of the membrane; (ii) accounts for various membrane fouling mechanisms

(adsorption and blocking in Chapter 3, and cake formation in Chapter 4); and

(iii) defines a measure of filter performance; and (iv) predicts the optimum pore

or permeability profile for the chosen performance measure.

In the fifth chapter, a model for more complex pore morphology is described.

Many models have been proposed to describe particle capture by membrane filters

and the associated fluid dynamics, but most such models are based on a very simple

structure in which the pores of the membrane are assumed to be simple circularly-

cylindrical tubes spanning the depth of the membrane. Real membranes used in

applications usually have much more complex geometry, with interconnected pores

which may branch and bifurcate. Pores are also typically larger on the upstream

side of the membrane than on the downstream side. An idealized mathematical

model is presented, in which a membrane consists of a series of bifurcating pores,

which decrease in size as the membrane is traversed. The membrane’s permeability

decreases as the filtration progresses, ultimately falling to zero. The dependence of

filtration efficiency on the characteristics of the branching structure is discussed.

The sixth chapter concludes the thesis with a discussion of future work.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Motivation

Membrane filters – essentially, thin sheets of porous medium which act as filters –

are in widespread industrial use, and represent a multi-billion dollar industry in the

US alone. Major multinational companies such as W.L. Gore & Associates, and

Pall Corporation, manufacture a huge range of membrane-based filtration products,

and maintain a keen interest in improving and optimizing their filters. Membrane

filtration is used in applications as diverse as water purification [30]; treatment of

radioactive sludge [17]; various purification processes in the biotech industry [6,7,27,

28]; the cleaning of air or other gases [10]; and beer clarification [51].1 While the

underlying applications and the details of the filtration may vary dramatically (gas

vs. liquid filtration; small vs. large particle removal; slow vs. fast throughput; rigid

vs. deformable particles), the broad engineering challenge of efficient filtration is the

same: to achieve finely-controlled separation at low power consumption.

The desired separation control is to remove only those particles in a certain size

range from the input flow (often referred to as “feed” or “challenge solution”); and the

obvious resolution to the engineering challenge would appear to be to use the largest

pore size and void fraction consistent with the separation requirement. However,

these membrane characteristics (and hence the filter’s behavior and performance) are

far from constant over its lifetime: the particles removed from the feed are deposited

within and on the membrane filter, fouling it and degrading the performance over

time [5, 21, 30]. The processes by which this fouling occurs are complex, and depend

strongly on several factors, including: the internal structure of the membrane [27]; the

1The literature is large; the references included for these applications are examples only.
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flow characteristics of the feed solution [7,9,10,26]; and the type of particles in the feed

(the shape, size, and chemistry affects how they are removed by the membrane [13]).

With the widespread industrial use of filters, the associated literature is

large and covers all aspects of membrane filtration processes, from membrane

preparation and manufacture, through characterization, to performance analysis, and

includes both theoretical and experimental modeling. By analyzing the literature

on the subtopic of membrane fouling, a search on www.scopus.com yields 6317

documents over the last 47 years, the last 8 years each offering 400 to 600 new

publications; see Figure 1.1. The area is clearly still of increasing interest; it is

notable that the experimental literature far outweighs the theoretical; and among the

theoretical literature, there is a paucity of studies that offer first-principles, predictive

mathematical models [30].

Iritani [30] recently compiled a very useful review of the membrane fouling

literature between 1935 and 2013, paying particular attention to the theoretical

modeling literature (other review papers exist of course, e.g., [5], [52], but this is
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one of the most recent and comprehensive). The existing modeling literature is

predominantly engineering in nature; fewer than 0.5% of the papers depicted in

Figure 1.1 are classified as Mathematics. The accepted practice in the filtration

literature is to classify membrane fouling (pore-blocking) into different types or

regimes: complete blocking (individual particles land on individual pores and seal

completely); intermediate blocking (individual particles land either on open pores, or

on top of already blocked pores); standard blocking (pores become internally stenosed

by deposition of small particles); and cake filtration (a dense “cake” layer of particles

builds up on the upstream side of the filter). Each regime is associated with different

flow characteristics, and different sub-models have been proposed for the regimes [30].

The focus in each sub-model depends on the type of filtration scenario: the two

most common scenarios are filtration under constant pressure drop; and filtration at

constant prescribed flux. In the former case, the modeling emphasis is on obtaining

explicit relationships between the instantaneous filtration rate Q(t) at time t, and the

total volume V (t) of filtrate collected (essentially, V =
∫ t

0
Qdt′); while in the latter

case, the relationship between the pressure required to sustain the constant flux, and

the volume V (t) processed, is more relevant to the efficiency of the filtration.

In complete blocking, the accepted sub-model assumes a decrease in available

membrane area that is linear in the volume V processed. Partial blocking also assumes

a V -dependent decrease in available area, but with an exponential dependence on V .

This model was historically proposed entirely empirically, and for nearly 50 years

lacked any firm theoretical or mechanistic understanding (though it has since been

interpreted from a mechanistic viewpoint [22, 25, 26]). In standard blocking, pores

(assumed identical and cylindrical) are assumed to constrict [44] such that pore

volume decreases proportionally to filtrate volume V (t), leading ultimately to total

constriction. The cake filtration regime is modeled by including a layer of increasing

thickness (growing proportionally to the filtrate volume V (t)) on the upstream side of
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the membrane, which adds a further resistance in series with that of the membrane.

Individual sub-models have been combined pairwise to construct hybrid models that

can describe situations where two of these fouling mechanisms operate simultaneously

[6,21]. There is also a variety of stochastic approaches, exemplified in [8,12–15,50,53].

Notwithstanding this activity and progress, a complete and coherent predictive

framework that can realistically describe all fouling modes of a membrane filter is

still lacking. Iritani concludes his review by noting that “. . . further development

of simple yet effective mathematical models for elucidating the complicated pore-

blocking phenomena in membrane filtration would be highly desirable for guiding

decisions on the optimal choice of the membrane and membrane-cleaning strategy

in industrial use. In particular, there is the increasingly critical need to develop

models which are applicable . . . also to [feeds] containing a wide variety of [impurities]”

[30]. This view is echoed by contacts in the Research & Development sections of

W.L. Gore & Associates, and at Pall Corporation. In conversations with Doctors A.

Kumar (formerly of Pall Corporation) and S. Swaminathan (formerly of W.L. Gore &

Associates) they have underscored the importance of understanding how the complex

internal structure of a membrane can affect the results of filtration, something that

at present is not well modeled [2]. These issues of particle size distribution within the

feed solution, and of nonuniform internal membrane structure, are aspects that will

be investigated via first-principles modeling, analysis and simulations.

This thesis is concerned with the development, analysis and computational

simulation of new models governing membrane filtration, in several situations of

widespread practical interest: (i) flow and fouling within pleated filter cartridges,

(ii) membrane fouling models for internally heterogeneous membranes, (iii) modeling

membrane filtration with multiple fouling mechanisms: the effect of permeability

variations; and (iv) modeling flow and fouling in membrane filters with complex pore

morphology. In all scenarios, we will build models that account for an arbitrary
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particle size distribution within the feed solution, and account also for a distribution

of membrane pore sizes [50]. The work completed to date on these problems in

Chapters 2, 3, 4 and 5, and outline our current work and future directions is described

in Chapter 6. First-principles theoretical studies of these scenarios should be of

interest to those carrying out fundamental experimental research on such systems, as

well as to those seeking to extend the scope of current applications and improve on

manufacturing processes.



CHAPTER 2

FOULING OF A PLEATED FILTER

2.1 Introduction

Pleated membrane filter cartridges are used in a wide variety of applications to

remove particles and undesired impurities of a certain size range from a fluid. A

typical filter design is shown in Figure 2.1: a membrane filter (with pore size chosen

depending on the particular application) is sandwiched between two, much more

porous, support layers. The resulting three-layer structure is pleated and packed

into an annular cylindrical cartridge with mesh walls. This arrangement is placed

within a larger impermeable housing and attached to a feed supply pump (Figure

2.2), which forces the feed solution through the cartridge from the outer to the inner

wall. This design has the advantage that a large filtration surface area can be confined

to a small volume, allowing for rapid filtration. However, filtration performance, as

measured by flux processed for a given pressure drop, is inferior when compared to

the equivalent area flat (non-pleated) membrane in dead-end filtration. The precise

reasons for this difference in performance have so far proved elusive, and likely involve

several factors: for example, the porous support layers that surround the pleated

membrane add resistance, which increases as the pleat packing density (PPD) within

the cartridge increases; the fluid dynamics through the pleated structure are much

more complex than in dead end (unidirectional) filtration through a non-pleated filter;

and the membrane filter itself may become damaged during the process of pleating.

Recent studies have focused mainly on elucidating, empirically, how filter cartridge

performance scales with any given factor such as PPD; see, e.g., [9, 11, 20, 35, 36]. In

this chapter, the focus is on the fluid-dynamical aspects of filtration, in particular:

how the pleated geometry affects fluid flow through the filter; how particles carried

6
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3

O E M  B e n efits :

• Smaller package size
• Increased machine reliability
• Reduced warranty costs
• Withstands system

operating stresses

Us e r B e n efits :

• Increased system reliability
• Reduced operating costs
• Reduced filtration costs
• Reduced filter element size
• Environmentally friendly disposal

G re at Thin g s C o m e in 
S m a ll P a c k a g e s…

Proprietary Outer 
Helical Wrap: Tightly
bonds to each pleat for
stability and strength. 
Benefit: Reliable,
consistent performance
and resistance to severe
operating conditions

Auto-Pull Element
Removal Tabs: 
Corrosion-resistant endcaps
feature exclusive Auto-Pull
tabs for automatic element
extraction upon opening 
the housing.
Benefit: Ease of filter
element change-out.

Coreless/Cageless
Design: Outer element
cage is a permanent part
of the filter housing  
Benefit: Lighter,
environmentally friendly
element for reduced
disposal costs and ease of
filter element change-out.

Up and Downstream
Mesh Layers: Create 
flow channels for uniform
flow through the filter.
Benefit: Extended filter 
element service life for
lower operating costs.

Proprietary Cushion
Layer: Provides support
for the medium and
protection from handling.
Benefit: Reliable, 
consistent performance 

Medium Substrate Support Layer
(not shown): Provides support for the
medium and aids in drainage flow.
Benefit: Reliable, consistent performance 

O-ring Seal: Prevents
contaminant bypassing 
the filtration medium under
normal operation.
Benefit: Reliable, consistent
filtration performance.

SRT Filte r M e d iu m F e ature   A d va nta g e B e n efit
Stress-Resistant construction • Increased stability under cyclic • Cleaner fluid under cyclic conditions

or dirt loading conditions • Consistent performance throughout  
the filter’s service life

Anti-Static design • Minimized static charge generation  • No damage to filter element or  
and no electrostatic discharges housing from static discharge

Uniform pore size control layer • Maintains particle removal efficiency • Cleaner fluid 
• Increased system protection

Tapered pore structure • Dirt captured throughout the media depth • Long filter service life
Epoxy bonded fiber matrix  • High particle removal efficiency • Cleaner fluid 
with small fiber size • Consistent performance • Increased system protection
Table 1

SRT Filtration Medium: Inert, inorganic
fibers securely bonded in a fixed, tapered pore
structure with increased resistance to system
stresses such as cyclic flow and dirt loading.
Benefit: Improved performance over the
service life of the filter element and more
consistent fluid cleanliness.

Figure 2.1 Typical geometry of a pleated membrane filter cartridge. Reproduced, with

permission, from Pall’s Power Generation Catalog. Source: [1].

by the flow are deposited on and within the filter membrane; and how this fouling

affects the total flux through the filter (and hence its performance).

During membrane filtration, the pores of the membrane become fouled with

impurities, which are carried by the feed solution. Filter performance thus ultimately

deteriorates, via a combination of mechanisms: (i) Particles smaller than the

membrane pore size are deposited (or adsorbed) within the pores, shrinking the pore

diameter and increasing membrane resistance. (ii) Particles larger than the pores

cannot pass through the membrane. Assuming that such particles follow streamlines

(large particle Péclet number, leading to passive advection), they will be sieved out

and deposited on top of pores, blocking them. (iii) Once pores are blocked in this

way, in the late stages of filtration, larger particles can form a cake on top of the

membrane, adding additional resistance via another porous layer on top. By the

time this stage is reached the filtration is very inefficient due to the high resistance,

and filters are normally discarded (or cleaned) before significant caking has occurred.
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Fig. 3. (a) Schematic diagram of pleated membrane cartridge housing (not to scale). Length of cartridge, LC, varies depending upon whether a 10′′ or 1′′ cartridge is inserted
into the base unit. All other dimensions are the same, regardless of cartridge height. (b) Piping and instrumentation diagram illustrating the experimental rigs utilised for
investigation of the different cartridge configurations of Supor® EAV 0.2 !m rated membrane. V = vessel, P = pump, HV = hand valve, PG = pressure gauge, FI = flow indicator.
(c) Representation of the experimental set-up for small-scale flat sheet discs of 25 mm diameter. Rigs operated as described in Section 2.2.

The variation in the grey level at various points within the image
was recorded. Grey scale variation data was plotted using a running
average method with a sampling proportion of 0.1.

3. Results and discussion

3.1. Effect of pleat characteristics upon clean water flux

Initial experiments aimed to demonstrate the difference
between flat sheet and pleated membrane performance when nor-
malised for membrane surface area. The clean water flux for both a
flat sheet and a 10′′ pleated membrane cartridge were determined
using a 0.2 !m rated Supor® EAV membrane. The average flux for
the two different configurations are given in Fig. 4 as a function of
applied transmembrane pressure (TMP). The smaller area of the flat
sheet disc lead to higher variation in the quantification of the flux
(indicated by the large error bars) than for the 10′′ cartridge. This
is in agreement with previous findings when working with small
areas of membrane [20]. From Fig. 4 it can be observed that at an

equivalent TMP, the permeate flux was considerably lower for the
10′′ cartridge than for the flat sheet disc. The reduction in flux is
about 53% on average. This was identical to a measured flux reduc-
tion of 53% for a PVDF sterilising grade membrane compared to a
flat sheet [18], though is lower than a flux reduction of 70% for a
pleated glass fibre cartridge [5].

Average membrane resistances (RM) for the flat sheet discs
and the 10′′ cartridge shown in Fig. 4 were calculated [21] as
1.60 × 1010 m−1 and 3.43 × 1010 m−1, respectively. In principle the
membrane resistance due to the porosity of the membrane and the
resistance to flow that the pores create [22] should be identical since
both the cartridge and flat sheet are made from the same material.

In order to investigate the influence of membrane pleating on the
measured membrane resistances a series of 1′′ pleated membrane
cartridges were specially fabricated as described in Section 2.1. The
properties of these are summarised in Table 1. The measured water
flux profiles for various specially fabricated 1′′ cartridges with a
Fan pleat and hP = 15 mm and varying PPD are shown in Fig. 5(a). It
can clearly be seen that as the pleat structure becomes more open

(b) Flow to permeate outlet
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Figure 2.2 (a) Schematic showing the external housing and pleated filter cartridge within

it. (b) Idealization of the pleated filter cartridge geometry, indicating also the coordinates

used in the model (X is measured in the inward radial direction, while Y is arc length

along the outer cylinder boundary, measured as indicated). Source: [10], (reproduced with

permission).

Mathematical models for all three fouling mechanisms have been proposed, mostly

based on empirical laws of how membrane resistance relates to total volume processed,

or net flow-rate through the membrane, in the different fouling regimes (see, for

example, [6, 17, 21, 39, 51], among many others). In this chapter, we take a different

approach that carefully accounts for the fluid dynamics induced by the pleat geometry

and couples the fluid dynamics to a first-principles model for fouling (via adsorption

(i) and blocking (ii)).

An important early study on mathematical modelling of filtering problems is

the work presented in [33]. This research makes use of approaches that are similar

in spirit to ours. These authors also consider flow through a two-dimensional pleated

filter, and exploit (as we do) the small aspect ratio of the pleat to simplify the fluid

dynamics and fouling problems. The work differs from ours in several key respects

however. First, there is no porous support material separating the pleats in that work,

so that flow between the pleats is modelled as Stokes flow rather than Darcy flow.

Second, fouling of the pleated filter is assumed to occur only via the caking referred
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to in (iii) above (in the applications we consider this is the “end stage” of the fouling

process, when the filter is nearing the end of its useful life). A primary focus of [33] is

tracking and analysing mathematically the cake boundary as it builds up. Once cake

has formed on the filter surface, that part of the filter admits no flux through it, in

contrast to our model, where blockage of a pore simply increases the resistance locally.

Thirdly, the work of [33] focuses on the case of a constant prescribed flux, whereas

we consider the case of flow driven by a constant pressure drop, so that as fouling

occurs, the flux through our filter drops to zero. While the geometry of our filtering

problem corresponds to that of [33], our formulation was done independently of their

work and for completeness we provide all details of the derivation of our model.

This chapter is laid out as follows: in Section 2.2, we develop a mathematical

model for the flow through a pleated sandwich of membrane filter and porous support

layers. We consider the case of high pleat packing density (PPD), using an asymptotic

approach to exploit both the small aspect ratio of a pleat and the thinness of

the membrane relative to the support layers. The model contains the membrane

permeability Km(X;T ), which evolves as a function of space and time. Initially, this is

constant, but as particles are deposited on and within the membrane, spatial variation

develops according to our proposed membrane fouling model. The model we develop

has several different features: we illustrate these by means of representative solutions,

and we compare the pleated filter with the closest equivalent flat (non-pleated)

filter, in Section 2.3. In order to make a meaningful comparison, and to identify

the performance difference due to the pleated geometry, we compare to a flat filter

surrounded by the same thickness of support material as the pleated filter (details of

the solution for this simple one-dimensional model are included in the appendix). We

conclude with a discussion in Section 2.4.
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Figure 2.3 (a) Section of the pleated geometry, which is repeated periodically (adapted

from [20]). The Z-axis in Figure 2.2(b) is here perpendicular to the page. Green/blue

correspond to support layers exterior/interior to the annulus; grey represents the membrane

filter (in reality much thinner than the support layers), and the heavy black arrows indicate

the flow direction. (b) Idealized membrane geometry to be considered in our model.

Symmetry lines (dashed) are located at Y = ±H, and the straight portion of the pleat

occupies 0 ≤ X ≤ L. (c) The problem domain and boundary conditions at inlet and outlet.

Some schematic flow streamlines are also shown.
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2.2 Mathematical Modeling

2.2.1 Modeling Assumptions: Outline

The geometry of a cylindrical pleated membrane filter cartridge is sketched in

Figures 2.1–2.2 and described in the Introduction. Figure 2.2(b) also introduces the

coordinates that will be used in this chapter: the Z-direction is along the cylinder’s

axis, theX-direction is radially inwards measured from the cartridge outer wall, and Y

is arc length around the outer cylinder boundary, measured as indicated. We idealize

the rather complicated flow scenario depicted in Figure 2.2 in several ways. We assume

there is no variation in the Z-direction, and that all pleats are identical. This justifies

our considering flow confined to a cross-section at constant Z, within a single pleat,

which we assume to be part of a periodic array (periodic in arc length Y ). We simplify

further by neglecting the curvature of the cylindrical cartridge, considering instead

one section of a linear periodic array in rectangular cartesian (X, Y )-coordinates.

We restrict our attention to the case of tightly-packed pleats, as shown in Figure

2.3(a). In this situation, the length L of the pleat (from outer to inner cartridge

boundary; X-direction in Figures 2.2(b) and 2.3(b)) is much greater than the pleat

thickness (the thickness of support layers plus membrane in the Y -direction), so that

the vast majority of the flow through the pleat is expected to pass through the pleat

length rather than its ends. This observation suggests neglecting the flow through the

ends of the pleats (the pleat tips and valleys) as being negligible relative to the flow

through the straight section of the membrane (the section parallel to the X-axis).

With this in mind, we make our final simplification, idealizing the pleat geometry

to be rectangular and imposing no-flux conditions at pleat tips and valleys where

shown in Figure 2.3(b). This simplification is justified further (i) by noting that the

high membrane curvature in the pleat tips and valleys is likely to lead locally to very

low membrane permeability and high resistance to flow (particularly on the inside

of the tight curve); and (ii) by limited experimental data [19] on filters subjected to
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dust-laden air and then analyzed, which indicate little or no dust particle deposition

at the actual fold locations.

The sketches in Figures 2.3(b) and (c) summarize the simplified flow problem

to be solved. Figure 2.3(b) clarifies how the pleat geometry of 2.3(a) is idealized

(the same color coding is used to distinguish between inflow and outflow sides of

the membrane), while Figure 2.3(c) shows the solution domain, with the boundary

conditions to be applied on the pressure. The flow region considered is from the

lower to the upper periodicity boundary (the dashed symmetry lines in Figure 2.3(b)):

−H ≤ Y ≤ H, and from X = 0 to X = L along the membrane, with the membrane

itself occupying region −D/2 ≤ Y ≤ D/2, 0 ≤ X ≤ L (hatched region in Figure

2.3(c)). Our small aspect ratio assumptions, to be discussed further below, are

represented by the dimensionless parameters ε = H/L � 1, δ = D/H � 1. Figures

2.3(b) and (c) also indicate the inflow and outflow, the no-flux boundaries at the

pleat valley (X = L, 0 ≤ Y ≤ H) and tip (X = 0, −H ≤ Y ≤ 0), and the symmetry

conditions at the support layer mid-surfaces (Y = ±H). In general throughout

this thesis, we use upper-case characters to denote dimensional variables, while the

lower-case equivalent will be dimensionless.

The tight packing means that the whole flow domain considered is occupied

by porous medium (support layer or membrane), within which Darcy flow of an

incompressible Newtonian feed solution, viscosity µ, is assumed, with velocity U =

(U, V ) and pressure P . We assume the feed solution to be a dilute suspension of

particles, which are advected passively through the support layers. The permeabilities

of support layers and membrane are K, Km, respectively, with Km/K � 1 in

accordance with data for real filter cartridges (see Table 2.1). We allow support

layer permeability K to vary along the pleat,1 but assume it is symmetric above

1Due to the annular configuration of the cartridge, the valley ends of pleats will be more
compressed than the tip ends, leading to lower permeability at the valleys; see Figures 2.1
and 2.2).
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and below the membrane. For the most part, we assume that K varies only in the

coordinate X along the pleat, K(X); the case of permeability that can vary also in the

Y direction, K(X, Y ), is discussed briefly in Section 2.2.3. In general, Km will vary

in both space and time as membrane fouling occurs, with the variation in time being

quasi-static: Km(X,T ).2 The time evolution of the membrane permeability similarly

induces time variation into the solution for the pressure and fluid velocity within the

pleat. However, since no explicit time-dependence appears in the Darcy flow model,

we will mostly suppress the time dependence to simplify notation, writing Km(X),

P (X, Y ), etc. This (quasi-static) assumption that only the dynamics of membrane

fouling need explicit consideration amounts to an assumption (borne out by data) that

fouling occurs on a timescale long compared with that of fluid transit time across the

pleated cartridge.

To arrive at a tractable fouling model, we consider a membrane composed of

an identical array of uniformly distributed cylindrical pores of radius A(T ). Within

our model, membrane resistance is assumed to increase in time due to fouling by two

mechanisms: (i) A(T ) decreases in time due to adsorption of tiny particles within the

pores; and (ii) pores become blocked from above by particles too large to pass through

pores. In order to model (ii), we monitor N(X,T ), the number of unblocked pores

per unit area of membrane. Again, we will mostly suppress the time-dependence

here to simplify notation, writing just A and N(X). Membrane permeability will be

expressed as a function of both A and N .

2.2.2 Governing Equations

The feed is assumed to be a dilute suspension of particles, which do not affect the

fluid dynamics directly (though they do have an indirect effect via the fouling, which

results in increased system resistance). We therefore use a single-phase model, in

2We do not account for any fouling of the support layers, which are not designed to capture
particles: the pores of these layers are very much larger than those of the membrane filter.
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which Darcy velocity U = (U, V ) within the support layers is given in terms of the

pressure P (X, Y ) by

U = (U, V ) = −K
µ
∇P, ∇ = (∂X , ∂Y ). (2.1)

Incompressibility of the feed solution requires

∇ ·U = 0 ⇒ ∇ · (K∇P ) = 0, (2.2)

within the support layers. As discussed in Section 2.2.1 above, we assume that the

flow is driven by an imposed pressure difference, P0, across the pleated membrane;

that there is no flux through the pleat valley on the inflow side and the pleat tip

on the outflow side; and we impose symmetry across the support layer centerlines

Y = ±H (see Figure 2.3). Hence, we impose boundary conditions

P+(0, Y ) = P0, P
+
X (L, Y ) = 0, P+

Y (X,H) = 0, (2.3)

P−X (0, Y ) = 0, P−(L, Y ) = 0, P−Y (X,−H) = 0, (2.4)

where we use ± superscripts to distinguish between quantities evaluated in Y ≷ 0

respectively, on either side of the membrane. For most of our simulations, we take P0

to be a specified constant, reflecting flow driven by a fixed pressure drop between inlet

and outlet; but we will also present some results for fixed-flux scenarios, where P0

increases in time in order to maintain the same flux as the system resistance increases

due to fouling (see Section 2.2.3).

Similar to (2.1), we also assume Darcy flow across the membrane, which is

itself a porous medium, though much less permeable than the support layers. We

are primarily concerned with the flux, Vm, per unit area across the membrane in the

Y -direction. Anticipating in advance the fact that the pressure within the membrane

will be independent of the coordinate Y perpendicular to the membrane (due to
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the small aspect ratio D/L = εδ � 1), and given that the pressure is continuous

across the interface between the membrane and support layers, the vertical pressure

gradient within the membrane may be written, correct to leading order in εδ, as

(P+|Y=D/2−P−|Y=−D/2)/D. The Darcy law for the flow through the membrane then

gives

|Vm| =
Km

µD

[
P+
∣∣
Y=D/2

− P−
∣∣
Y=−D/2

]
, 0 ≤ X ≤ L, (2.5)

where, by continuity of flux, |Vm(X)| = |V (X,D/2)| = |V (X,−D/2)| (with V as

defined in (2.1)),

|Vm| =
K

µ

∂P+

∂Y

∣∣∣∣
Y=D/2

=
K

µ

∂P−

∂Y

∣∣∣∣
Y=−D/2

, 0 ≤ X ≤ L. (2.6)

The total flux through the membrane, Q (per unit length along the axis of the

cartridge), which will be an important performance characteristic in our simulations,

is defined by

Q =

∫ L

0

|Vm|dX =

∫ L

0

K

µ

∂P+

∂Y

∣∣∣∣
Y=D/2

dX. (2.7)

Membrane permeability Km changes, over timescales long compared to the fluid

transit time, due to pore shrinkage (arising from particle adsorption) and to blocking

of pores by large particles. We now consider these fouling phenomena in more detail.

We assume that membrane pores are long thin cylindrical tubes, of length D and

radius A(T ), spanning the membrane, which initially all have the same radius, A(0) =

A0. A more sophisticated model would allow for non-uniform shrinkage of pores due

to the adsorption, but in our simple model, we assume uniform adsorption, so that

the pore radius does not vary spatially. Where an individual pore (at position X and

time T ) is unblocked the total flux through it Qu,pore(X,T ) is given (approximately)

by the Hagen-Poiseuille formula

Qu,pore =
1

Ru

(P+|Y=D/2 − P−|Y=−D/2) where Ru =
8µD

πA4
, (2.8)
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and Ru is the pore resistance. Blocking occurs when a large particle becomes trapped

at the entrance to a pore, obstructing the flow. We model this effect by adding an

extra resistance of magnitude 8µDρb/(πA
4
0), where ρb is a dimensionless number,

in series with the Hagen-Poiseuille resistance Ru. The flux through a blocked pore,

Qb,pore(X,T ), is thus given by

Qb,pore =
1

Rb

(P+|Y=D/2 − P−|Y=−D/2) where Rb =
8µD

πA4
0

((
A0

A

)4

+ ρb

)
. (2.9)

The dimensionless parameter ρb characterizes blocking strength: for large values of ρb

pore resistance increases dramatically after blocking, while for small values resistance

is almost unchanged. In the limit ρb →∞, our model captures the simplest blocking

assumption; that deposition of a large particle over a pore blocks it completely.

We can now relate the number densities of unblocked and blocked pores,

N(X,T ) and N0 − N(X,T ) respectively (where N0 = N(X, 0)), to the membrane

permeability Km by noting that the flux |Vm| of fluid (per unit area of membrane) is

|Vm| = N(X,T )Qu,pore + (N0 −N(X,T ))Qb,pore

so that, on substituting for Qu,pore from (2.8) and for Qb,pore from (2.9) in the above

and comparing to (2.5), we obtain

Km =
πA4

0

8

(
N

(A0/A)4
+

N0 −N
(A0/A)4 + ρb

)
. (2.10)

To complete the model, we need equations describing the evolution of N(X,T ),

the local number density of unblocked pores, and A(T ) the pore radius. We assume

a pore is blocked whenever a particle with radius S > A(T ) is advected to the pore

entrance. If we assume a cumulative particle size distribution function G(S), giving

the number of particles per unit volume of fluid with radius smaller than S, then the

concentration of particles of size S > A(T ) is G∞−G(A) (where G∞ = limS→∞G(S)

is the total particle concentration). The probability that a particular pore is blocked



17

(per unit time) is thus (G∞ −G(A)) multipled by the flux through the pore, Qu,pore

(given by (2.8)): Probability per unit time that

pore of radius A is blocked

 =
πA4

8µD
(G∞ −G(A))(P+|Y=D/2 − P−|Y=−D/2).

Given that, we assume unblocked pores all have radius A(T ), the number of pores

blocked per unit time, per unit area, is equal to N(X,T ) times the probability, per

unit time, that a pore of radius A(T ) is blocked. It follows that the rate of change of

the number density (per unit area) of unblocked pores, is given by

∂N

∂T
= −N πA4

8µD
(G∞ −G(A))(P+|Y=D/2 − P−|Y=−D/2). (2.11)

In order to describe fouling, we make the simplest possible assumption, namely

uniform adsorption within the pores, so that particle radius decreases uniformly

according to

∂A

∂T
= −E, A|T=0 = A0, (2.12)

for some constant E. Deposition within pores in reality will be controlled by a complex

interplay between suspended particles in the feed, and the membrane material, the

details of which will vary from one system to another; in the absence of detailed

experimental data, our model reflects an assumption that the rate of loss of pore area

is proportional to the pore circumference only, other effects being largely the same

from one pore to another.

All our simulations will be conducted with an exponential cumulative particle

distribution of the form

G(S) = G∞(1− e−BS), (2.13)
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where B−1 is a characteristic particle size. This functional form was not chosen to

fit to any specific dataset, but has the general features required. While some particle

size distributions characterized in the literature (see, e.g., [21], with two distinct

characteristic particle sizes) are more complicated, we recall that our model implicitly

assumes two separate particle size distributions: the “macroscopic” particles modelled

by G(S) with pore-blocking potential; and the “microscopic” particles implicit in our

pore adsorption model.

2.2.3 Scaling, Nondimensionalization and Asymptotics

Even with the simplifications introduced the model above is complicated, and we

therefore exploit asymptotic analysis based on the small aspect ratio of the pleat

(ε = H/L � 1), and on the thinness of the membrane relative to the support layer

(δ = D/H � 1); see Table 2.2, which summarizes the model parameters and gives

estimates, where available. For the most part, we consider filtration driven by a

fixed pressure drop, P0, between inlet and outlet, and this is the basis on which we

nondimensionalize below. We will also present some simulations for a prescribed flux

scenario, for which the scalings are a little different; we comment briefly on this in

Section 2.2.3 below.

Fluid Dynamics In order to exploit the asymptotic simplifications, we introduce

dimensionless variables as follows:

P±(X, Y ) = P0p
±(x, y), (X, Y ) = (Lx,Hy),

K(X) = Kavk(x), Km(X) = Km0km(x),
(2.14)

where Kav = (1/L)
∫ L

0
K(X)dX is the average support layer permeability and Km0

is a typical initial membrane permeability. For definiteness, we can take it to be

the initial membrane permeability in the expression (2.10), with A = A0 and N =

N0. For conciseness in the following, we will indicate dependence on variables only



19

where necessary, but it should be understood that all functions except the support

layer permeability k vary in both space and time. In the dimensionless coordinates,

our idealized problem for the pressure p±(x, y) within the support layers (equations

(2.2)–(2.4)) becomes

ε2(k(x)p+
x )x + (k(x)p+

y )y = 0, δ/2 ≤ y ≤ 1, (2.15)

p+(0, y) = 1, p+
x (1, y) = 0, p+

y (x, 1) = 0, (2.16)

ε2(k(x)p−x )x + (k(x)p−y )y = 0, −1 ≤ y ≤ −δ/2, (2.17)

p−x (0, y) = 0, p−(1, y) = 0, p−y (x,−1) = 0. (2.18)

This system is closed by enforcing flux continuity across the membrane, equations

(2.5) and (2.6), which gives

p+
y |y=δ/2 = p−y |y=−δ/2 = ε2Γ

km(x)

k(x)

[
p+|y=δ/2 − p−|y=−δ/2

]
, (2.19)

where the key dimensionless parameter Γ is defined by

Γ =
Km0L

2

KavHD
(2.20)

and gives a scaled measure of the relative importance of the resistance of the packing

material to that of the membrane, such that if Γ � 1 the packing material provides

most of the resistance whereas if Γ� 1 the membrane provides most of the resistance.

We now seek asymptotic solutions for p± in the distinguished limit Γ = O(1), ε� 1

and δ � 1 (note that our solution is asymptotically valid for all Γ � 1/ε2) by

expanding p± in powers of ε as follows:

p+(x, y) = p+
0 (x) + ε2p+

1 (x, y) + · · · , p−(x, y) = p−0 (x) + ε2p−1 (x, y) + · · · . (2.21)

We will determine coupled equations for the as yet unknown functions p±0 (x) by

seeking a solvability condition on the first order solutions p±1 (x, y). This is effected
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by substituting the expansions (2.21) into (2.15)-(2.18) and taking the O(ε2) terms,

∂

∂y

(
k(x)

∂p+
1

∂y

)
+

∂

∂x

(
k(x)

∂p+
0

∂x

)
= 0, (2.22)

∂p+
1

∂y

∣∣∣∣
y=1

= 0, k(x)
∂p+

1

∂y

∣∣∣∣
y=0+

= Γkm(x)(p+
0 − p−0 ), (2.23)

∂

∂y

(
k(x)

∂p−1
∂y

)
+

∂

∂x

(
k(x)

∂p−0
∂x

)
= 0, (2.24)

∂p−1
∂y

∣∣∣∣
y=−1

= 0, k(x)
∂p−1
∂y

∣∣∣∣
y=0−

= Γkm(x)(p+
0 − p−0 ). (2.25)

Integrating (2.22) between y = 0 and y = 1 and applying the boundary conditions

(2.23) leads to a solvability condition in the form of an ODE (in x) for p+
0 (x) and

p−0 (x). Similarly, integration of (2.24) between y = −1 and y = 0 and application of

the boundary conditions (2.25) leads to a second ODE. Boundary conditions on these

two ODEs come from the leading order terms of (2.16) and (2.18). The resulting

simplified model for p+
0 and p−0 is

∂

∂x

(
k(x)

∂p+
0

∂x

)
= Γkm(x)(p+

0 − p−0 ), (2.26)

∂

∂x

(
k(x)

∂p−0
∂x

)
= −Γkm(x)(p+

0 − p−0 ), (2.27)

p+
0 |x=0 = 1,

∂p+
0

∂x

∣∣∣∣
x=1

= 0, (2.28)

∂p−0
∂x

∣∣∣∣
x=0

= 0, p−0 |x=1 = 0. (2.29)

In addition, p+
1 and p−1 can be found by solving the differential equations (2.22) and

(2.24) subject to boundary conditions (2.23) and (2.25) respectively, giving

p+
1 (x, y) = −(k(x)p+

0x)x
k(x)

(
y2

2
− y
)

+ h+(x),

p−1 (x, y) = −(k(x)p−0x)x
k(x)

(
y2

2
+ y

)
+ h−(x),

for some functions h±(x).
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This model, at leading order, describes two porous medium flows (with pressures

p+
0 (x) and p−0 (x)) separated by a membrane through which fluid is driven (from one

side to the other) by the local pressure difference.

Generalization to support layer with y-dependent permeability k(x, y): It

is straightforward to generalize this treatment to a support layer with permeability

k(x, y). Dependence on y could be introduced by (for example) choice of a support

material with a layered structure. The result obtained is identical to (2.26)–(2.29)

except that k(x) is replaced by k̂+(x) in (2.26) and k̂−(x) in (2.27), where k̂+(x)

and k̂−(x) are the y-averages of the permeability, above and below the membrane,

respectively,

k̂+(x) =

∫ 1

0

k(x, y)dy and k̂−(x) =

∫ 0

−1

k(x, y)dy. (2.30)

When we come to suggest possible improvements to the pleated filter system in Section

2.4, we will return to this generalized formulation.

The Small Γ Limit: In this limit, the dominant resistance to flow is that of the

membrane (as opposed to that of the porous support layers) and, to leading order in

Γ, the solution to (2.26)–(2.29) is just

p+
0 = 1 and p−0 = 0. (2.31)

It is apparent that the situation here is identical to that of a flat membrane across

which a constant pressure difference is applied. We would thus expect membrane

fouling to occur uniformly along the length of the membrane, leading to optimal

membrane performance (see Appendix A and the simulations of Section 2.3).

Method of Solution It is apparent from (2.26) and (2.27) that (k(x)(p+
0 +p−0 )x)x =

0. This statement is readily integrated twice to obtain an expression for p−0 in terms
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of p+
0

p−0 (x) = −p+
0 (x)− c1(t)

∫ x

0

dx′

k(x′)
− c2(t) (2.32)

for some c1(t) and c2(t) (which are independent of x, but will vary in time as fouling

occurs). By substituting (2.32) into (2.26), we obtain a single equation for p+
0

containing two arbitrary functions of time,(
k(x)p+

0x(x)
)
x
− 2Γkm(x)p+

0 (x) = Γkm(x)

(
c1(t)

∫ x

0

dx′

k(x′)
+ c2(t)

)
, (2.33)

which must be solved subject to the four boundary conditions

p+
0 |x=0 = 1, p+

0x|x=0 = −c1(t)

k(0)
,

p+
0 |x=1 = −

(
c1(t)

∫ 1

0

dx

k(x)
+ c2(t)

)
, p+

0x|x=1 = 0. (2.34)

Hence, with p+
0 determined, we have the leading-order solution for the pressure within

the support layers, from equations (2.21) and (2.32).

The Flux of Fluid Through the Pleat The total dimensionless flux q, which

we will use to characterize membrane performance later, is defined in terms of total

dimensional flux Q (equation (2.7)) by Q = Q0q, where Q0 = Km0P0L/(µD). By

mass conservation, the total flux of fluid flowing across the membrane is equal to that

flowing across the inlet boundary and so

q = − k

Γ

∂p+
0

∂x

∣∣∣∣
x=0

. (2.35)

Another useful quantity for understanding the progress of fouling is the flux |Vm|

(as defined in (2.6)), per unit area, through the membrane (from top to bottom) as

a function of position X along the membrane. When we define the dimensionless

analogue, |vm|, of this quantity by |Vm| = |vm|Km0P0/(µD), this satisfies the relation

|vm(x, t)| = p+
0 (x, t)− p−0 (x, t). (2.36)
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Membrane Fouling The membrane permeability km and the flow vary in time

due only to the fouling by deposited particles, which occurs in a spatially nonuniform

manner. In (2.10), we expressed membrane permeability in terms of the pore radius

A, and the number of unblocked pores per unit area, N . We scale each of these

quantities with their initial values,

A = A0a, N(X) = N0n(x). (2.37)

We note further that Eq. (2.11) defines a natural timescale for the problem (that of

blocking), while G∞ gives a natural scale for the particle size distribution, motivating

us to rescale as follows:

T =
8µD

πP0G∞A4
0

t, G = G∞g(s), S = A0s, B =
b

A0

, g(s) = 1− e−bs (2.38)

while (2.10) gives a natural choice of Km0 and leads to the definition

Km0 =
πA4

0N0

8
. (2.39)

Applying these rescalings together with our original nondimensionalization (2.14) to

equations (2.10), (2.11) and (2.12), we obtain the remaining dimensionless equations

in the model

km(x, t) = a4

(
n+

1− n
1 + ρba4

)
, (2.40)

∂n

∂t
= −na4e−ba(p+|y=δ/2 − p−|y=−δ/2), n|t=0 = 1, (2.41)

∂a

∂t
= −β, a|t=0 = 1, (2.42)

where the dimensionless parameter β is given by

β =
8µED

πA5
0P0G∞

.
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Fluid Velocity and Streamfunction in Support Layers: It will be convenient

in our simulations to be able to visualize the fluid flow through the support layers.

Since the flow within these layers is quasistatic and two-dimensional, a streamfunction

ψ may be defined. From the asymptotic solution for the pressure, (2.21), and using

the dimensionless form of the Darcy equation, we have dimensionless velocity in the

upper and lower support layers given by

u±(x, y) =
(
−k(x)p±0x(x), (k(x)p±0x(x))x(y ∓ 1)

)
.

From the streamfunction definition

u±(x, y) = (ψ±(x, y)y,−ψ±(x, y)x),

we find

ψ+(x, y) = −k(x)p+
0x(x)(y − 1), ψ−(x, y) = −k(x)p−0x(x)(y + 1)− c1, (2.43)

where the integration constant in ψ− (the same c1 that was introduced in Eq.(2.32))

was chosen to match streamlines on the x-axis (the filter membrane location).

Modification for the Constant Flux Case: In the alternative scenario, where

the total flux Q0 through the membrane is fixed instead of the pressure drop, we

define the inlet pressure by P0ζ(t), where ζ increases monotonically as the membrane

is fouled, in such a way as to sustain constant total flux Q = Q0 (as defined by (2.7)).

By modifying equation (2.35)

ζ

[
k

Γ

∂p+
0

∂x

]x=1

x=0

= q0, constant, for all t, (2.44)

with dimensionless flux as defined there.
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2.2.4 Model Summary

Our final model is represented by (2.21), (2.32), (2.33), (2.34), (2.40), (2.41), (2.42).

At this stage, we now emphasize each quantity that depends on space and/or time.

At each instant of time, we must solve the boundary value problem (2.33)

∂

∂x

(
k(x)

∂p+
0 (x, t)

∂x

)
− 2Γkm(x, t)p+

0 (x, t) = Γkm(x, t)

(
c1(t)

∫ x

0

dx

k(x)
+ c2(t)

)
,

(2.45)

subject to conditions (2.34)

p+
0 (0, t) = 1, p+

0x(0, t) = −c1(t)

k(0)
, (2.46)

p+
0 (1, t) = −

(
c1(t)

∫ 1

0

dx

k(x)
+ c2(t)

)
, p+

0x(1, t) = 0, (2.47)

in terms of which the pressures in the support layers are given by (2.21), (2.32). Note

that, we have four boundary conditions (2.46), (2.47) for the second-order equation

(2.45), which ensures that the unknown functions c1(t) and c2(t) are fixed also. The

membrane permeability km(x, t) varies quasistatically in (2.45) due to the fouling; it

satisfies (2.40)

km(x, t) = a(t)4

[
n(x, t) +

(1− n(x, t))

(1 + ρba(t)4)

]
, where a(t) = 1− βt. (2.48)

The number density of unblocked pores, n(x, t), varies according to (2.41),

∂n(x, t)

∂t
= −n(x, t)a(t)4e−ba(t)

(
2p+

0 (x, t) + c1(t)

∫ x

0

dx

k(x)
+ c2(t)

)
,

n(x, 0) = 1. (2.49)

The solution scheme for this system is straightforward: At time t = 0 assign

km(x, 0) = km0 = 1. Then: (i) solve the boundary value problem (2.45), (2.46), (2.47)

for p+
0 (x, t); (ii) use this solution, and the current membrane permeability km(x, t)
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and pore radius a(t) as given by (2.48) to solve (2.49) for n(x, t); (iii) update km(x, t)

and a(t) via (2.48) according to the new n(x, t); and (iv) use the updated km(x, t)

and return to step (i); repeat.

2.3 Results

The model contains a number of parameters, which are summarized in Table 2.1

(dimensional parameters) and Table 2.2 (dimensionless parameters) along with typical

values, where known. Considerable variation in the exact values is possible as

indicated in the table, but exhaustive investigation of the effects of each parameter is

impractical, hence for most of our simulations, we fix their values as discussed below.

Table 2.1 Approximate Dimensional Parameter Values [34]

Parameter Description Typical Value

L Length of the pleat 1.3 cm

H Support layer thickness 1 mm

D Membrane thickness 300 µm

A0 Initial pore radius 2 µm (very variable)

B−1 Characteristic particle size 4 µm (very variable)

E Adsorption coefficient within pores Unknown (depends on

characteristics of membrane

and feed solution)

G∞ Total particle concentration Depends on application

N0 Number of pores per unit area 7×1010 m−2 (very variable)

P0 Pressure drop Depends on application

Kav Average support layer permeability 10−11 m2 (very variable)

Km0 Clean membrane permeability 5×10−13 m2 (very variable)
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Table 2.2 Approximate Dimensionless Parameter Values

Parameter Formula Typical value

ε H/L 0.077

δ D/H 0.3

β (8µED)/(πA5
0P0G∞) Unknown; values in

range 0.001–0.1 used

Γ Km0L
2/(KavHD) 1–50

b BA0 0.2–10

ρb Additional constant resistance when Unknown; values in

pore blocked. range 0.25–10 used

The relative measure of the resistance of the packing material to that of the

membrane, Γ, could certainly vary quite widely from one system to another depending

on the detailed structure of the filter membrane and the support layers. Our analysis

assumes Γ = O(1), which appears to be in line with data for real pleated filters [34].

Based on the values given in Tables 2.1 and 2.2 we take Γ = 10 throughout most of our

simulations (Figures 2.4–2.6), but consider how results depend on Γ in Figure 2.7. The

dimensionless pore shrinkage rate, β, is unknown but will be small (this represents the

timescale on which pores close due to adsorption, relative to that on which particles

block individual pores from upstream): we set β = 0.02. Assuming the characteristic

particle size to be larger than the membrane pore size, we set b, the ratio of initial

pore size to characteristic particle size, to 0.5 for most simulations. Finally, assuming

that blocking of a pore by a particle increases its resistance by some O(1) factor,

we set ρb = 2 for most simulations. We briefly demonstrate the effect of changing

parameters ρb and b in Figure 2.6.
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For the support layer permeability function k(x), we investigate several different

profiles to see how this affects the outcome. For a real pleated filter, we anticipate

that decreasing support layer permeability will be the more realistic scenario, since

the annular cartridge leads to higher compression (and lower permeability) of the

layers at the inner cartridge boundary (corresponding to x = 1; we refer the reader

back to Figures 2.2 and 2.3 for the cartridge geometry). However, for a more complete

investigation, and to gain further insight into the model behavior, we also consider

increasing support permeability profiles, and the case of uniform support permeability.

The different profiles considered are:

k(x) =



k1(x) = 1 uniform

k2(x) = 1.5− x linear decreasing

k3(x) = 1
1.2

(
tanh

(
0.5−x
0.25

)
+ 1.2

)
abruptly decreasing

k4(x) = 0.5 + x linear increasing

k5(x) = 1
1.2

(
tanh

(
x−0.5
0.25

)
+ 1.2

)
abruptly increasing

(2.50)

(note that each of these support permeability profiles averages to 1, in line with the

nondimensionalization chosen for k(x)).

We solve the model numerically for each chosen permeability profile, until the

membrane becomes impermeable and the total flux through it falls to zero at final

time t = tf : for each simulation considered here the flux falls to zero by virtue of the

pore radius a → 0 and hence tf = 1/β = 50 (see equation (2.48)). Our numerical

scheme is straightforward, based on second-order accurate finite difference spatial

discretization of the equations, with a simple explicit time step in the pore-blocking

equation (2.49). Figure 2.4(a) shows the streamlines, obtained by plotting the level

curves of ψ±(x, y) defined in (2.43), within the support layers at t = 0.2tf for the case

of uniform support layer permeability k1; since the streamlines appear qualitatively

similar for the other cases k2 through k5 we do not show streamlines for all cases.

Figures 2.4(b)-(f) show the evolution of the membrane permeability km(x, t) until it
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falls to zero, for each support permeability profile k1 to k5 in (2.50). We also (below)

compare results for our pleated filter model with the closest equivalent non-pleated

membrane (a flat membrane, surrounded by the same porous support layers as the

pleated filter, but in dead-end filtration; see Appendix A for the solution of this

problem).

Figures 2.4(a) and 2.4(b) show the results for the case of uniform support

layer permeability (USP), k1(x) = 1. Here the fouling profile remains symmetric

about the centerline x = 0.5, but is distinctly nonuniform in x. Fouling occurs

preferentially at the edges of the domain, near the pleat valleys and tips. Since

the pore-clogging (adsorption) mechanism is assumed to operate homogeneously

throughout the membrane, this enhanced edge-fouling can be due only to greater

pore-blocking there, which itself is a consequence of enhanced flux through the

membrane in those regions (evidenced by the streamline pattern).

Figures 2.4(c) and 2.4(d) show results for decreasing support layer permeability

(DSP) profiles. In both cases, the symmetry is now broken; the highest flow

rate, and the fouling, are skewed towards the right-hand boundary x = 1 where

support permeability is lowest. Compared with the previous USP case, the support

permeability is higher where the flow enters. Hence, compared with USP, the flow

has an easier path through the support layer, and a greater proportion of the flow

entering will pass along the support layer in the x-direction, rather than through the

membrane. Both Figures show this same trend, but the effect is more dramatic in

Figure 2.4(d), where the support permeability spatial profile is more extreme (and

hence the support permeability at entry is higher).

As we would anticipate, the converse trend is seen for the increasing support

layer permeability (ISP) profiles (Figures 2.4(e) and 2.4(f)). Here, the fluid has an

initially difficult path through the upper support layer parallel to the membrane.

Thus initially (again relative to the USP case) a greater proportion of fluid prefers to
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Figure 2.4 (a) The streamlines (level curves of ψ±(x, y)) at time t = 0.2tf for the case

of uniform support layer permeability k(x) = k1(x) = 1. (b)-(f): Membrane permeability

km at several different times (indicated in the legends) for the support permeability profiles

k1–k5 (defined in (2.50)), respectively. In all cases, tf = 50. Other parameter values are:

β = 0.02, Γ = 10, b = 0.5, ρb = 2.



31

flow through the membrane near the boundary x = 0, rather than along the support

layer in the x-direction. This leads to a greater flux through the x = 0 end of the

membrane, with greater particle deposition in that region, giving decreased membrane

permeability there as time increases.

In all cases, however, as t→ tf the membrane permeability necessarily becomes

uniform again. The explanation for this is straightforward: if km → 0 in one area

of the membrane then that part is impermeable, and fluid must pass through other

parts of the membrane, fouling those until km = 0 over the whole membrane.

We remark that the fouling patterns obtained here, with increased fouling in

the neighbourhood of pleat valleys and tips, appear qualitatively consistent with the

experimental data of [19] on the deposition of dust particles within a pleated filter.

It is also of interest to note that the fouling patterns we find (due to adsorption

and pore-blocking) are quite different in nature to those obtained by [33], who model

only cake formation on a pleated filter (and in the absence of any permeable support

layers). This suggests that the type of fouling can significantly affect how the filtration

proceeds, and hence, it is important to know which fouling modes are operational at

all stages. Our model is relevant to the many applications in which cake formation

occurs only in the very late stages, when the filter is already heavily fouled, and is

near the end of its useful life.

To gain insight into the performance of the filter membrane, we plot the graphs

of total flux (q(t), defined by (2.35)) versus throughput (defined by
∫ t

0
q(t′)dt′). In

order to present results that are readily distinguished from one another, and to focus

attention to problems of most immediate industrial relevance, we plot these graphs

for simulations corresponding to the uniform and decreasing support permeabilities

k1, k2, k3 in (2.50) (note also that, given the symmetries observed in Figure 2.4 we

anticipate results for k2 and k4 to be identical, and results for k3 and k5 to be identical).

This flux-throughput graph is a commonly-used tool in the filtration literature to



32

(a)

0 1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput

To
ta

l F
lu

x

 

 

Flat

k1

k2

k3

(b)
0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput

(P
re

ss
ur

e 
dr

op
)−

1

 

 

Flat

k1

k2

k3

Figure 2.5 (a) Total flux q(t) versus throughput
∫ t

0 q(t
′)dt′ with imposed constant

pressure drop for the pleated membrane with support permeabilities k1, k2, k3 (defined

in (2.50)), and for the non-pleated membrane solution of Appendix A (labeled ‘Flat’ in

the legend). (b) Scaled inverse pressure drop versus throughput
∫ t

0 q(t
′)dt′ for the case of

imposed constant total flux, for the pleated membrane with support permeabilities k1, k2,

k3 and for the non-pleated membrane solution. Parameter values in both cases are set to

the “default” values: β = 0.02, Γ = 10, b = 0.5, ρb = 2.

characterize experimentally the performance of filter membranes (see, e.g. [17,21,51]

among many others). Such curves exemplify the tradeoffs often inherent in membrane

performance: high total throughput over a filter lifetime may only be obtained at the

expense of low flux (meaning that filtration is slow); or flux may be high over the

filter lifetime, but total throughput low (meaning that the filter has a short lifespan).

Both scenarios are costly in different ways, and usually in practice some compromise

between the two is found.

The results for our pleated filter model are shown in Figure 2.5(a), alongside

the corresponding graph for the equivalent non-pleated membrane filter (the solution

for which is outlined in Appendix A). The graphs clearly demonstrate the superior

performance of the non-pleated membrane, which gives a higher net throughput and

higher total flux throughout. Figure 2.5(b) shows results for the case in which total

flux through the system, rather than pressure drop across it, is prescribed. In this

case, as the membrane is fouled the pressure drop required to maintain the constant

flux rises in time, and we demonstrate this by plotting the inverse pressure drop
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Figure 2.6 Flux-throughput graphs for the uniform support layer permeability k = k1 =

1 (a) for several different values of ρb (a measure of the relative increase in pore resistance

when a pore is blocked by a large particle), with b = 0.5; and (b) for several different values

of b, with ρb = 5. Other parameter values are β = 0.02, Γ = 10.

across the system as a function of throughput. The same cases as for Figure 2.5(a)

are shown, and once again the superior performance of the equivalent non-pleated

filter is apparent: comparing this filter with any of our pleated simulations, the same

throughput is achieved at lower pressure drop during the later stages of filtration

when blocking becomes significant. The lower pressure drop required for the same

throughput is clearly a more efficient scenario, requiring less power to carry out the

filtration.

Figure 2.6 briefly demonstrates the effect of varying the parameters ρb and b,

which measure (respectively) the relative increase in pore resistance when a pore

is blocked, and the relative sizes of pores and particles. These results reveal that

the pleated filter model retains features qualitatively similar to those observed for

“dead end” filtration models (for non-pleated filters). In particular, as ρb varies

from large to small there is a clear qualitative change in the shape of the flux-

throughput performance curves, as the model transitions from blocking-dominated

to adsorption-dominated behavior (Figure 2.6(a); this figure also includes the limit

ρb →∞, which represents the case in which deposition of a large particle over a pore

blocks it entirely). Such qualitative changes have been observed experimentally as the
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Figure 2.7 Flux-throughput graphs for the uniform support layer permeability k = k1 =

1 for several different values of Γ, with β = 0.02, b = 0.5, ρb = 2.

membrane type and/or filtrate is varied, see e.g. [21]. Similar qualitative changes are

observed as the parameter b is varied (Figure 2.6(b)). Again, this may be attributed

to the model transitioning from blocking-dominated (small b; pores smaller than

particles) to adsorption-dominated (large b; particles smaller than pores) behavior.

Figure 2.6 demonstrates how the flux-throughput graph varies as b is changed for

ρb = 5 (other parameters as before). When a smaller value of ρb is used (e.g.

ρb = 0.25), there is less variation in the flux-throughput graphs with b.

Since other parameters remained constant for these simulations of Figure 2.6,

overall filter performance deteriorates as ρb increases (larger ρb means that blocking of

individual pores by large particles leads to a greater decrease in system permeability);

nonetheless there is a clear and distinct change in the shape of the flux-throughput

curves as ρb changes, and this is in line with what would be anticipated from the

empirical laws commonly assumed in the filtration fouling literature (as described,

e.g., by [21]). Similar inferences may be made for the variations with b.

Figure 2.7 shows how the results change as the parameter Γ varies. In line with

the asymptotic small-Γ results of Section 2.2.3, we observe convergence of the pleated
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filter results to the non-pleated (flat) filter as Γ → 0 and the membrane resistance

is the dominant contribution to the total system resistance. For very large values of

Γ, the support layer adds very significant additional resistance to the system, and

overall filter performance is very poor.

2.4 Discussion and Conclusions

We have presented an asymptotically-reduced, first-principles model, that can

describe the key features of flow through and fouling of a pleated membrane filter.

Our model accounts for the nonuniform flow induced by the pleated geometry, and for

fouling by two distinct mechanisms: adsorption and pore-blocking. While essentially

predictive, our model contains several parameters that may be difficult to measure

for a given system (most notably, the relative importance of blocking to adsorption,

ρb, and the dimensionless adsorption rate, β). In practice, such parameters could be

inferred by fitting to a reliable dataset; but even so these parameters will vary from one

membrane-filtrate system to another, since they depend on membrane structure, and

the chemical interactions between the filtrate particles and the membrane material.

In the absence of definitive data, for our simulations we chose what we believe to be

plausible parameter values (summarized at the start of Section 2.3 and in Tables 2.1

and 2.2).

The focus in this chapter is on development of a model that can be used to

quantify (i) the performance of a pleated filter with known characteristics under

given operating conditions, and (ii) the key differences between this and the closest

equivalent non-pleated membrane filter in dead-end filtration. There are many

different metrics that can be used to quantify filter performance: we focus primarily on

optimization of filtrate throughput over the filter lifetime, for fixed filter-membrane

characteristics. Though particle capture efficiency is obviously another important

performance indicator, we assume that the same filter membrane will do an equally
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good (or bad) job of this whether in a pleated or flat configuration, and instead

try to elucidate how results depend on cartridge design, and why the comparable

unpleated case performs better. We present selected results that bear out the expected

performance discrepancy, but we do not, in this part, investigate exhaustively how

this discrepancy depends on all model parameters.

One of the suggested hypotheses for the underperformance of pleated filters

relative to non-pleated filters is that the presence of the porous support layers in

the pleated filter cartridges could be key, due to the increased system resistance

they impart. In making our comparisons, we therefore compared our model to

a non-pleated filter surrounded by support layers with the same dimensions and

permeability as those in our pleated filter (see Appendix A below). A critical

performance parameter in our models turns out to be Γ = Km0L
2/(KavHD) (see

Tables 2.1 and 2.2), a scaled dimensionless measure of the ratio of the membrane

resistance and the support layer resistance. Recalling the brief analysis of the small-Γ

limit presented in Section 2.2.3, we note that this case corresponds, at leading order, to

the non-pleated membrane solution. As can be seen from Figure 2.7, the performance

of the membrane approaches that of the flat membrane as Γ → 0 and furthermore,

this is the optimal value of Γ in the sense that it maximizes throughput before the

membrane becomes completely fouled. In light of this observation, we briefly consider

what steps might be taken to reduce Γ. These could include reducing the length L

of the pleat, or increasing the thickness H of the support layer, but both of these act

counter to the goal of pleating the membrane in the first place, which is to pack a large

amount of membrane into a compact device of small volume. The only realistic way

of reducing Γ is therefore to increase the average permeability Kav of the surrounding

support layers.

Our model can account for spatial variations in permeability of the support

layers, which may be present due to the annular geometry of the filter casing, or
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could be introduced by choice of support material. These permeabilities were assumed

symmetric about the membrane (though the model could be easily adapted to describe

the situation when this is not the case); and we investigated primarily how filtration

performance varies as this support permeability profile varies with distance x along

the pleat. Our results indicate firstly that such variations in support permeability

can lead to different fouling patterns within the membrane, at least at intermediate

filter lifetimes. More importantly, if variations in support permeability are sufficiently

abrupt, they can give rise to a marked decrease in filter performance, as borne out

by Figure 2.5(a). It was also noted, however, that variations of support permeability

in the y-direction perpendicular to the membrane may be described within the basic

modelling framework, provided only that the support permeability is averaged in the

y-direction (see (2.30)). This observation suggests that a smaller value of Γ could

be obtained simply by adding an additional layer of highly permeable material (e.g.

mesh, as seen in Figure 2.1) to the existing support, which would increase Kav and

hence decrease Γ, with an accompanying performance improvement.

The consistency of our results with previous models and literature gives us

confidence that our model, based as it is on first principles assumptions about how

fouling occurs, is sound, and provides a good basis for predictive simulations. While

a more complicated model could provide more accurate predictions, our model has

the advantage that it is simple and quick to simulate, offering a useful tool for

investigating filter design characteristics.



CHAPTER 3

FLOW AND FOULING IN MEMBRANE FILTERS : EFFECTS OF

MEMBRANE MORPHOLOGY

3.1 Introduction

Membrane filters are used in a wide variety of applications to remove particles and

undesired impurities of a certain size range from a fluid. Membrane filtration is used in

applications as diverse as water purification [30], treatment of radioactive sludge [17],

various purification processes in the biotech industry [6, 7, 27, 28], the cleaning of

air or other gases [10], and beer clarification [51]. Membrane filters also service the

biotech industry in many ways [6, 7, 27, 28]; for example, they are used in artificial

kidneys to remove toxic substances by hemodialysis; and as an artificial lung for a

bubble-free supply of oxygen in the blood [47]. The type of membrane used depends

on the specific application, but an overarching requirement is to have fine control

over particle removal from the feed solution, while keeping energy requirements to a

minimum. Membrane filters used in microfiltration can have rather varied structure

(see, e.g., Figure 3.1), but may generally be understood to be porous media, with

characteristic pore size, shape, and void fraction determined by the manufacturer.

Separation of particles from the feed solution may occur in two basic ways: (i) particles

larger than pores cannot pass through pores and hence are sieved out; and (ii) particles

smaller than pores may be adsorbed within pores and retained within the membrane.

With this in mind, the issue of energy requirements for filtration may be understood:

a membrane with tiny pores guarantees removal of all particles suspended in the

feed solution (by sieving), but provides extremely high resistance to flow, so that a

very large pressure drop is required to filter the fluid within a reasonable time frame.

In practice therefore, it is desirable that adsorption be responsible for a significant

38
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Fig. 2. A few examples of porous structures produced in thin polymeric !lms using various methods of irradiation and chemical treatment: (A)
cross section of a polycarbonate TM with cylindrical non-parallel pore channels; (B) polypropylene TM with slightly conical (tapered towards
the center) parallel pores; (C) polyethylene terephthalate TM with cigar-like pores; (D) polyethylene terephthalate TM with “bow-tie” pores.

pores can be modi!ed by covalent binding of charged groups
or by adsorption of ionic polyelectrolytes (Froehlich and
Woermann, 1986). The immobilization of aminoacids to the
PET track membranes based on the reactions of end carboxyl
and hydroxyl groups was reported (Marchand-Brynaert
et al., 1995; Mougenot et al., 1996). However, the surface
density of the immobilized in this way species is rather
low.
The radiation-induced graft polymerization onto track

membranes is a process which has been studied in more
detail (Zhitariuk et al., 1989; Zhitariuk, 1993; Tischenko
et al., 1991; Shtanko and Zhitariuk, 1995). Styrene (St),
methacrylic acid (MAA), N -vinyl pyrrolidone (VP),
2-methyl 5-vinyl pyridine (2M5VP), N -isopropyl acryl-
amide (NIPAAM) and some other monomers have been
grafted onto PET track membranes. Grafting of St in-
creases the chemical resistance and makes the membrane
hydrophobic. MAA and VP were grafted onto TMs to in-
crease wettability which is especially important when aque-
ous solutions are !ltered through small-pore membranes.
2M5VP was grafted with the aim to make the membrane
hydrophilic and change its surface charge from negative to
positive. During the past decade the grafting of NIPAAM
and other intelligent polymers were extensively studied in
the research work carried out at TRCRE (Takasaki) and
GSI (Darmstadt) (Yoshida et al., 1993, 1997; Reber et al.,
1995).

7. Applications

Applications of commercially produced track membranes
can be categorized into three groups: (i) process !ltration;
(ii) cell culture; (iii) laboratory !ltration. The process !l-
tration implies the use of membranes mostly in the form
of cartridges with a membrane area of at least 1 m2. Pu-
ri!cation of deionized water in microelectronics, !ltration
of beverages, separation and concentration of various sus-
pensions are typical examples. There is a strong competi-
tion with other types of membranes available on the mar-
ket. Casting membranes often provide a higher dirt load-
ing capacity and a higher throughput. For this reason the
use of track membranes in this !eld is still limited (Brock,
1984).
In the recent years a series of products were de-

veloped for the use in the domain called cell and tis-
sue culture (Stevenson et al., 1988; Sergent-Engelen
et al., 1990; Peterson and Gruenhaupt, 1990; Roth-
man and Orci, 1990). Adapted over the years to a va-
riety of cell types, porous membrane !lters are now
recognized as providing signi!cant advantages for cul-
tivating cells and studying the cellular activities such
as transport, absorption and secretion (van Hinsbergh
et al., 1990). The use of permeable support systems based
on TMs has proven to be a valuable tool in the cell biology
(Costar=Nuclepore Catalog, 1992).

(a) (b) (c)

Figure 3.1 Magnified membranes with various pore distributions and sizes. Photographs

(b) and (c) have width 10 µm. Source: (a) is from [4], (b) and (c) are from [27].

proportion of the filtration, so that membranes with larger pores operating at lower

pressures can be used.

In addition, the system resistance changes significantly during the course of

filtration, as the pores of the membrane become fouled with impurities, which

are carried by the flow. As discussed before, filter performance thus ultimately

deteriorates, via a combination of mechanisms (alluded to above): (i) Particles larger

than the pores cannot pass through the membrane. Assuming that such particles

follow streamlines (advection-dominated flow with large particle Péclet number), they

will be deposited on top of pores, blocking them. (ii) Particles smaller than the

membrane pore size are deposited (or adsorbed) within the pores, shrinking the pore

diameter and increasing membrane resistance. (iii) Once pores are blocked, other

particles can form a cake on top of the membrane, adding additional resistance via

another porous layer on top. Mathematical models for all three fouling mechanisms

have been proposed, based mostly on empirical laws of how membrane resistance

relates to total volume of filtrate processed, or net flow-rate through the membrane,

in the different fouling regimes (see, for example, [6,17,21,39,51], among many others).

In this chapter, we take a different approach, which accounts for the fluid dynamics

through idealized pores of specified geometries, and models from first principles the

fouling due to adsorption and sieving.

Various models for filtration and fouling, which attempt to address aspects of

the effect of the pores’ size, geometry and distribution within the membrane, have
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been formulated and examined by researchers to date (e.g., [16, 23, 24, 29, 31, 32,

37, 38, 40, 41, 43, 44, 46, 54, 55]). Several models have been proposed for describing

the internal stenosis of membrane pores by deposition of small particles (so-called

“standard blocking”). Most such models are based on simplifying assumptions such

as uniform deposition of particles on pore walls, and round cylindrical pores that

traverse the membrane depth. However, as particles deposit on the pore walls,

their concentration decreases along the pore depth and therefore the deposition rate,

which is necessarily proportional to local particle concentration, decreases as the

feed passes towards the pore outlet. In other words, particle deposition is greater

at the upstream side of the filter (pore inlet) than at the downstream side (pore

outlet). Experimentally, rather steep particle deposition profiles across the depth of

the membrane have been observed; see [31] for recent results. To account for such

effects, a so called m-model was proposed in [42] and [41], based on the assumption

that particles can deposit (uniformly) only over the inlet portion of the pore walls

characterized by the parameter m, the ratio of the length of this portion to the whole

pore length. This model was further refined in [43] and modified to account for

non-uniform deposition of particles within pores. However, this work still assumes

an initially uniform pore profile, and takes no account of additional blockage due to

sieving of particles larger than pores. Depth-dependent filtration was also considered

by [16], using rather different methods to those we use here. These authors use

homogenization theory to model a membrane filter as a layered series of spherical

obstacles around which the filtered liquid must flow, and which expand as fouling

occurs. Griffiths et al. [24] also made further contributions to understanding the

depth-variation, formulating a discrete “network” model that treats a membrane as

a series of layers, each of which contains cylindrical channels that may shrink under

the action of adsorption (or be blocked from above by deposition of a large particle).
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The goal of the present chapter is to extend the scope of the work outlined

above, deriving a continuum model that accounts for membrane internal geometry,

and that allows fouling by both particle sieving and particle adsorption to operate

simultaneously. We use first-principles modeling to make general predictions about

how pore geometry affects filtration performance of a membrane filter. The chapter is

laid out as follows: in Section 3.2 we introduce a mathematical model for flow through

a single pore of specified geometry. Scenarios where flow is driven by specified pressure

drop (Section 3.2.2) and constant flux (Appendix C.1) are considered. Some sample

solutions, which demonstrate the features of fouling and separation, are presented

in Section 3.3. We also discuss which initial pore profile, in the restricted class of

linear pore profiles, gives the best filtration performance (in a sense that we will make

precise). Finally, we conclude in Section 3.4 with a discussion of our model and results

in the context of real membrane filters.

We acknowledge, of course, that membrane filtration and fouling is a much more

complex process than the model assumptions (both of our work and others’) allow

for. It is clear from Figure 3.1 that many membrane filters are porous media of very

complex microstructure, containing many interconnected pores, possibly winding and

tortuous, with varying cross-section. Such complexity makes detailed modeling very

challenging, We nonetheless believe that reduced models, of the type considered here,

can play a valuable role in guiding filter design. We return to this issue in Section

3.3.2 in our discussion of how pore profiles within the membrane might be optimized,

and in the Conclusions Section 3.4.

3.2 Darcy Flow Model of Filtration

The modeling throughout this section assumes that the membrane is flat and lies

in the (Y, Z)-plane, with unidirectional Darcy flow through the membrane in the

positive X-direction (so-called “dead-end” filtration). The membrane properties and
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flow are assumed homogeneous in the (Y, Z)-plane, but membrane structure may vary

internally in the X-direction (depth-dependent permeability) thus we seek a solution

in which properties vary only in X and in time T . Our model may be considered as a

representation of the average state (averaged across the (Y, Z)-cross section) of a real

membrane in which spatial fluctuations in the plane of the membrane are present.

Throughout this section, we use uppercase fonts to denote dimensional quantities;

lowercase fonts, introduced subsequently in Section 3.2.2 and Appendix C.1, will be

dimensionless.

The superficial Darcy velocity U = (U(X,T ), 0, 0) within the membrane is given

in terms of the pressure P by

U = −K(X,T )

µ

∂P

∂X
,

∂

∂X

(
K(X,T )

∂P

∂X

)
= 0, 0 ≤ X ≤ D, (3.1)

where K(X,T ) is the membrane permeability at depth X. We consider two driving

mechanisms: (i) constant pressure drop across the membrane specified; and (ii)

constant flux through the membrane specified. In the former case, the flux will

decrease in time as the membrane becomes fouled; in the latter, the pressure drop

required to sustain the constant flux will rise as fouling occurs. We will focus primarily

on case (i) in this chapter, and so assume this in the following model description; our

simulations for the constant flux scenario shown later require minor modifications to

the theory (relegated to an Appendix). With constant pressure drop, the conditions

applied at the upstream and downstream membrane surfaces are

P (0, T ) = P0, P (D,T ) = 0. (3.2)

The key modeling challenge lies in linking the permeability K(X,T ) to measurable

membrane characteristics that evolve in time, in order to obtain a predictive model.

In this chapter, we consider a simple model in which the membrane consists of a series

of identical axisymmetric pores of variable radius A(X,T ), which traverse the entire
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C(X,T)

2W

2W
X

D

A(X,T)

Figure 3.2 Schematic showing the single unit of membrane, assumed repeated in a square

lattice. Small particles, at concentration C(X,T ), which enter pores and deposit within,

are indicated, as are large particles, which block the pore inlet.

membrane. While this may seem a poor approximation to some types of membrane,

it is in fact a rather good description of a track-etched membrane filter of the type

shown in Figure 3.1(a). We further suppose the pores to be arranged in a square

repeating lattice, with period 2W . The basic setup is schematized in Figure 3.2

(described in more detail below): we consider a feed solution laden with particles,

some of which are large and, if larger than the pores, will block them (sieving); and

some of which are small, and are transported down the pore and may be deposited

on its walls (adsorption, also referred to as “standard blocking” in the literature).

Mass conservation shows that the pore velocity, Up (the cross-sectionally

averaged axial velocity within each pore), satisfies

∂(πA2Up)

∂X
= 0, (3.3)

while Darcy’s law for the averaged superficial velocity U within the pore plus its

period-box gives

U = −φmKp(X,T )

µ

∂P

∂X
, (3.4)
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where φm = πA(X,T )2/(2W )2 is the local membrane porosity at depth X, and

Kp(X,T ) = A(X,T )2/8 is the local permeability of an isolated pore. The pore and

superficial velocities are related by

U = φmUp, (3.5)

by a simple flux-balance argument. This flow model is completed by assumptions on

how the membrane permeability changes in time due to fouling by particles, discussed

below. The key nomenclature used both here and below is summarized for easy

reference in Table 3.1.

3.2.1 Fouling Model: Particle Adsorption and Sieving

We consider the effects of fouling by the two primary mechanisms discussed in the

Introduction: (i) fouling by pore blocking (sieving of particles too large to pass

through membrane pores, which thus deposit on the membrane’s upstream surface);

and (ii) adsorption of small particles on pore walls. As noted earlier, although cake

formation may be an important fouling mechanism in the late stages of the filtration,

it is not considered explicitly in this chapter. The “blocking” mechanism that we do

model is a necessary preliminary to cake formation, and may be considered as the first

step in the caking process. The fouling modeling is similar in spirit to that used in our

earlier work on pleated membrane filters [49] (see Chapter 2 as well); however that

work focused on the effects of the pleating, and took no account of depth-dependent

structure within the membrane (which is the specific focus of the present chapter).

To model the two distinct fouling mechanisms, we treat the large blocking and small

adsorbing particles as separate populations: a bimodal particle size distribution. The

actual dimensions (of both particles and pores) that might be relevant will change

from one situation to another, but it is reasonable to think of our “small” particles

as having diameter of no more than 0.1 times the pore diameter, while the “large”
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particles are around the same diameter as the pore (or larger). We first discuss the

pore-blocking mechanism (i).

Fouling by Pore Blocking: As noted above, we assume that pores are slender

tubes spanning the membrane, of length D and variable radius A(X,T ), arranged in

a 2W -periodic square lattice (see Figure 3.2). Initially all pores have specified radius,

A(X, 0) = A0(X) < W . Where an individual pore (at time T ) is unblocked the total

flux through it, Qu,pore(T ), is given (approximately) by

Qu,pore = − 1

Ru

∂P

∂X
where Ru =

8µ

πA4
, (3.6)

and Ru is the pore resistance per unit of the membrane depth. Blocking occurs when

a large particle becomes trapped at the entrance to a pore, obstructing the flow.

Instead of treating such pores as completely closed, permitting no further flow (as

many authors do), we instead assume that the blocking increases the pore’s resistance

to flow, so that the flux through it is decreased. We model this effect by adding an

extra resistance, characterized by the dimensionless parameter ρb, in series with the

resistance Ru of the unblocked pore. The flux through a blocked pore, Qb,pore(X,T ),

is then given by

Qb,pore = − 1

Rb

∂P

∂X
where Rb =

8µ

πW 4

((
W

A

)4

+ ρb

)
. (3.7)

Here, Rb is the resistance per unit length of the blocked pore. The dimensionless

parameter ρb characterizes the tightness of the seal formed when a large particle

sits over a pore: for large values of ρb, pore resistance increases dramatically after

blocking (a tight seal, permitting only a small fraction of the original flux through the

pore), while for small values resistance is almost unchanged (a poor seal, permitting

nearly the same flux as the unblocked pore). We can now relate the number densities

of unblocked and blocked pores per unit area, N(T ) and N0 − N(T ); respectively
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(where N0 = N(0) and N0(2W )2 = 1), to the superficial Darcy velocity by noting

that the flux of fluid per unit area is

N0(2W )2U = N(T )Qu,pore + (N0 −N(T ))Qb,pore,

so that, on substituting for Qu,pore from (3.6) and for Qb,pore from (3.7) in the above,

we obtain

U = −πW
4

8µ

∂P

∂X

(
N

(W/A)4
+

N0 −N
(W/A)4 + ρb

)
, (3.8)

an expression in which, comparing with (3.1), the depth-dependent membrane

permeability K(X,T ) is implicit.

To close the blocking model, we require an equation describing the evolution of

N(T ), the instantaneous number of unblocked pores. 1 We assume a pore is blocked

whenever a particle from the large-particle population, with radius S > A(0, T ) is

advected to the pore entrance (we assume that large particles follow the streamlines

and do not interact with each other). If we assume a cumulative large-particle size

distribution function G(S), giving the number of large particles per unit volume of

fluid with radius smaller than S, then the concentration of particles of size S > A(0, T )

is G∞ − G(A) (where G∞ = limS→∞G(S) is the total large-particle concentration).

The probability that a particular pore become blocked (per unit time) is thus (G∞−

G(A)) multiplied by the flux through the pore, Qu,pore: Probability per unit time that

pore of radius A is blocked

 = − πA4

8µ

∂P

∂X
(G∞ −G(A))

∣∣∣∣
X=0

.

1We use a one-dimensional model in which quantities vary only in the depth of the
membrane, X, and time, T , intended to represent a spatial average of a real system in
which variation in the plane (Y, Z) of the membrane may be present. A different (much
more computationally intensive) approach would be to model individual particles landing
on pores at specific (Y,Z) locations, which requires stochastic considerations. Such an
approach was used by Griffiths, Kumar & Stewart (2014).
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It follows that N(T ), the number density of unblocked particles per unit area, evolves

according to the equation

∂N

∂T
= N

πA4

8µ

∂P

∂X
(G∞ −G(A))

∣∣∣∣
X=0

. (3.9)

Note that this model predicts that N → 0 as T → ∞, so that eventually all pores

will block. This is not unexpected: since blocked pores acquire significant additional

resistance, flow will preferentially be diverted to unblocked pores (which admit higher

flux), advecting the large blocking particles to those yet-unblocked sites. The model

assumes blocking only by large particles, and only at the pore inlet, since terms are

evaluated at X = 0. Strictly speaking, a pore will be blocked in this way by any

particle larger than its narrowest point, so one could argue that the right-hand side

should be evaluated at the value X = X∗(T ) where A(X,T ) achieves its minimum at

each instant. We will see however that, due to the adsorption occurring preferentially

at the pore inlet, for all parameter sets we consider, X∗(T ) → 0 quite quickly.

Therefore, we do not anticipate that results would change significantly if we took

careful account of this effect.

Another potential deficiency of this blocking model is that any particles from the

“large particle” population that are smaller than the pore inlet will not be captured

by the membrane, but simply pass through it. This seems possible for particles with

significant inertia passing through a simple, track-etched membrane of the type shown

in Figure 3.1 (a) and (b), but for membranes of more complex structure a scenario in

which a significant proportion of such “large” particles pass through the membrane

is likely both unrealistic and undesirable. For this reason, almost all simulations

presented in this chapter are for the case where all large particles are bigger than the

initial pore inlet radius, A(0, 0) = A0(0). In this case, the cumulative large-particle
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distribution may be taken as

G(S) =

 G∞ if S > A0(0),

0 if S ≤ A0(0);
(3.10)

all particles from this distribution will be sieved by the membrane. For comparison, we

will also show some results with an exponential cumulative large-particle distribution

of the form

G(S) = G∞(1− e−BS), (3.11)

where B−1 is a characteristic particle size in the feed solution. In this case, some of

these “large” particles are smaller than the pore inlet radius; as noted above, such

particles will escape capture altogether and simply be advected straight through the

pore.

Table 3.1 Key Nomenclature Used in the Model

U Superficial Darcy velocity Up Pore velocity

K Membrane permeability Kp Permeability of pore

P Pressure P0 Pressure drop across membrane

C Concentration of small particles C0 C0 = C(0, T ), specified

A Pore radius A0 A0(X) = A(X, 0), specified

N Number of unblocked pores N0 Number of pores per unit area

2W Length of the square repeating lattice D Membrane thickness

G∞ Total concentration of large particles B−1 Characteristic large-particle size

Qu,pore Flux through an unblocked pore Qb,pore Flux through a blocked pore

Ru Unblocked pore resistance Rb Blocked pore resistance

Λ Particle-wall attraction coefficient α Pore shrinkage parameter

Fouling by Adsorption: To account also for the effects of membrane fouling

by particle adsorption, we must specify how the population of small particles
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is deposited within pores. As indicated in Figure 3.2, we consider these small

particles independently of the large blocking particles discussed above, and track

the concentration, C(X,T ), of small particles, averaged over the pore cross-section,

as the feed passes down the pore. In general, the small particles are advected and

diffuse within the flow [18], and adhere to the wall at a rate proportional to their

local concentration. The full advection-diffusion model, with dependence on radial

coordinate within the pore as well as axial coordinate X down the pore, is nontrivial,

and the details of its analysis are relegated to Appendix B. Here, we present just

the result that emerges after an asymptotic analysis based on a distinguished limit of

the particle Péclet number, and averaging over the pore cross-section: the averaged

concentration C(X,T ) of small particles satisfies a simple advection model,

Up
∂C

∂X
= −Λ

C

A
, (3.12)

to be solved subject to specified particle concentration at the inlet,

C(0, T ) = C0. (3.13)

The (dimensional) constant Λ is intended to capture the physics of the attraction

between particles and pore wall that leads to deposition. More details are provided

in Appendix B, but (3.12) models, in a crude way, effects such as van der Waals’

interactions between suspended particles and the membrane material, and attractive

forces due to electrostatic charge. Inherent in (3.12) is an assumption that all small

particles are identical with regard to their deposition dynamics, which may well not

be true in practice. In addition, the model assumes that particle adherence to a clean

membrane is the same as for a pre-fouled membrane, again a questionable assumption.

Nonetheless, for appropriate choices of parameters, we expect our model to provide a

reasonable approximation to a real system with sufficiently homogenous feed solution,

and to be quite broadly applicable. The pore radius A(X,T ) shrinks in response to
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the deposition: we propose

∂A

∂T
= −ΛαC, (3.14)

for some constant α (related to the particle size), which simply assumes that the

pore cross-sectional area shrinks at a rate determined by the total area of particles

deposited locally at depth X. The initial pore radius is specified throughout the

membrane,

A(X, 0) = A0(X). (3.15)

Note that particle deposition in our model is permanent and irreversible. It is possible,

however, that in the later stages of filtration, as the pores narrow, shear forces become

significant enough to lead to some re-dispersion of particles. Such re-dispersal is

beyond the scope of our model, though could be incorporated in a more sophisticated

treatment. We observe that purely adsorptive fouling can be retrieved by setting

N ≡ N0 in (3.8).

3.2.2 Scaling and Nondimensionalization

When filtration is driven by a constant pressure drop P0 across the upstream and

downstream membrane surfaces, we nondimensionalize the modified Darcy model

(3.2), (3.3), (3.5)–(3.15), using the scalings

P = P0p, X = Dx, C = C0c, N = N0n, (A, S) = W (a, s), B =
b

W
,

(U,Up) =
πW 2P0

32µD
(u, up), G = G∞g(s), T =

8µD

πP0W 4G∞
t, (3.16)

(time here is nondimensionalized on the blocking timescale), giving the following

dimensionless model for u(x, t), up(x, t), p(x, t), a(x, t), c(x, t), n(t) (dimensionless

Darcy velocity, cross-sectionally averaged pore velocity, pressure, pore radius, cross-

sectionally averaged particle concentration, and number density of unblocked pores,
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respectively):

4u = πa2up, (3.17)

u = −a4 ∂p

∂x

(
1− n

1 + ρba4
+ n

)
,

∂u

∂x
= 0, (3.18)

up
∂c

∂x
= −λ̂ c

a
, λ̂ =

32ΛµD2

πP0W 3
, (3.19)

∂a

∂t
= −βc, β =

8µDΛαC0

πP0W 5G∞
, (3.20)

dn

dt
= na4 ∂p

∂x
(1− g(a))

∣∣∣∣
x=0

, (3.21)

with boundary and initial conditions

p(0, t) = 1, p(1, t) = 0, c(0, t) = 1, a(x, 0) = a0(x), n(0) = 1. (3.22)

Equation (3.18) then gives the pressure p as

p = u

∫ 1

x

dx′

a4( 1−n
1+ρba4

+ n)
, (3.23)

and the superficial Darcy velocity in terms of the pore radius a(x, t) as

u =

(∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1

, hence up = 4

(
πa2

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1

. (3.24)

Substituting in (3.19) and (3.21) our final system reduces to equations (3.24), plus

dn

dt
= − n

(∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1 ( 1− n
1 + ρba4

+ n
)−1

(1− g(a))

∣∣∣∣∣∣
x=0

, (3.25)

∂c

∂x
= −λca

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)
, λ =

8ΛµD2

P0W 3
,

∂a

∂t
= −βc, (3.26)

with β as defined in (3.20) and initial/boundary conditions

n(0) = 1, c(0, t) = 1, a(x, 0) = a0(x) < 1. (3.27)
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In line with (3.10) and (3.11), the two forms considered for the cumulative particle

distribution function g(s) are

g(s) =

 1 if s > a0(0),

0 if s ≤ a0(0),
(3.28)

and

g(s) = 1− e−bs, (3.29)

where b = BW characterizes the ratio of characteristic membrane pore size to typical

particle size. Note that for g(s) as specified in (3.28) particles are larger than pores

throughout, and g(a)|x=0 = 0 in equation (3.25).

3.3 Results

In this section, we present some simulations of the model (3.24)–(3.27) described in

Section 3.2 above, paying particular attention to how results depend on the pore

geometry. Selected results for the case driven by constant flux, Eqs.(C.3)–(C.5), will

be presented later in Appendix C.

Our model contains several dimensionless parameters: λ which captures the

physics of the attraction between particles and the pore wall; the ratio ρb of the

additional resistance due to pore-blocking to the original resistance of the unblocked

pore; and the dimensionless pore shrinkage rate β. For the case in which we consider

a distribution of large particle sizes, with cumulative particle size distribution g(s)

specified by (3.29), we also need to specify the ratio b of pore size to characteristic

particle size in g(s). The values of each of these dimensionless quantities depend on

physical dimensional parameters that must be measured for the particular system

under investigation, and we lack such detailed experimental data; hence we have to

make our best estimate as to the most appropriate values to use in our simulations.

The parameters are summarized in Tables 3.2 (dimensional parameters) and 3.3



53

(dimensionless parameters) along with typical values, where known. Considerable

variation is possible from one system to another, as noted in the Tables; nonetheless

we believe that our simulations illustrate the predictive potential of our model if

detailed data are available. Most of the parameters in Table 3.2 (such as W , D, B,

α, G∞, N0, P0 and C0) depend on physical characteristics of the filter membrane and

the feed fluid, therefore in principle could be measured directly or obtained from the

manufacturer. Other parameters are harder to measure directly, but indirect methods

can be useful. For example, as noted earlier, the particle-wall attraction coefficient

Λ may be estimated by comparing solutions of equation (3.12) to experiments that

reveal the density of particles absorbed within the filter (as obtained by, e.g., [31]

via fluorescence microscopy); but such experiments are nontrivial. Direct estimation

of ρb for a real membrane system could be more problematic, but if this is the only

model parameter for which no data can be inferred then this may be viewed as an

overall fitting parameter.

Given the number of parameters, most of them will be fixed throughout our

simulations. The value of the dimensionless attraction coefficient between pore wall

and particles, λ, is unknown, and could certainly vary widely from one system to

another depending on the detailed structure of the filter membrane and on the nature

of the feed solution. In the absence of firm data, we take λ = 2 for most simulations.

The dimensionless pore shrinkage rate, β, is unknown but will normally be small (it

represents the timescale on which pores close due to adsorption, relative to that on

which particles block individual pores from upstream): we set β = 0.1. We note here

that the parameters λ and β are not independent: if we wish to consider the effect

of changing membrane thickness D for example, we must keep λ ∝ β2, while if we

wish to investigate the effect of the attraction coefficient Λ, we must keep λ ∝ β.

We expand upon this point later. In the absence of definitive data on ρb, assuming

that blocking of a pore by a particle increases its resistance by twice the original
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Table 3.2 Dimensional Parameter Values ( [21,34])

Parameter Description Typical Value

2W Length of the square repeating lattice 4.5 µm (very variable)

Λ Particle-wall attraction coefficient Unknown (depends on

characteristics of membrane

and feed solution)

D Membrane thickness 300 µm

A0 Initial pore radius 2 µm (very variable)

B−1 Characteristic large-particle size for the 4 µm (very variable)

inhomogeneous particle size distribution (3.11)

α Pore shrinkage parameter (see (3.14)) related Unknown (depends on

to particle size characteristics of feed solution)

G∞ Total concentration of large particles Depends on application

N0 Number of pores per unit area 7×1010 m−2 (very variable)

P0 Pressure drop Depends on application

10–100 K Pa used here

Qpore Flux through a single pore Depends on application

C0 Total concentration of small particles in feed Depends on application

solution

resistance of the unblocked pore, we set ρb = 2 for most simulations. Finally, for

those simulations where we allow an exponential distribution of large particle sizes,

with g(s) = 1− e−bs (see equations (3.11) and (3.29)), we consider values of b in the

range 0.2 to 10. We briefly demonstrate the effect of changing certain key parameters

in Figures 3.4 and 3.5.

As noted in the Introduction Section 3.1, most prior work considers a uniform

initial pore profile. While we cannot consider all possible initial pore profiles, we

present results for a selection of profiles that allow us to model uniform, increasing,

decreasing and non-monotone membrane resistances, as functions of depth. According



55

Table 3.3 Dimensionless Parameters and Approximate Values

Parameter Formula & description Typical value

λ (8ΛµD2)/(P0W
3) Unknown; values in

Dimensionless particle-wall attraction coefficient range 0.1–10 used

φ π/(4W 2D)
∫ D

0
A(X, 0)2dX Typically 0.5− 0.7,

Initial average porosity (void fraction) here values in range

0.25− 0.75 used

β (8µDΛαC0)/(πP0W
5G∞) Unknown; values in

Adsorption rate coefficient range 0.001–0.2 used

b BW 0.2–10

Large-particle size (for inhomogeneous particle size

distribution (3.11))

ρb Additional constant resistance when pore blocked Unknown; values in

range 0–10 used

to the Darcy model, the local membrane resistance is proportional to A(X, 0)−4.

Using the nondimensionalization of (3.16), one can define a dimensionless averaged

membrane resistance, r(t), as

r(t) =

∫ 1

0

dx

a(x, t)4
. (3.30)

In order to make a meaningful comparison, we run simulations for pore shapes

that give the same initial membrane resistance r0 = r(0). This means that we are

comparing membranes that perform identically when no fouling occurs – they would

give identical throughputs when filtering pure water under the same applied pressure
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drop. The pore profiles considered are:

a(x, 0) =



a1(x, 0) = 0.904 uniform initial pore profile,

a2(x, 0) = 0.16x+ 0.83 linear increasing initial pore profile,

a3(x, 0) = 0.99− 0.16x linear decreasing initial pore profile,

a4(x, 0) = 0.874 + 0.39(x− 0.5)2 convex parabolic initial pore profile,

a5(x, 0) = 0.933− 0.33(x− 0.5)2 concave parabolic initial pore profile,

(3.31)

all of which correspond to the same initial membrane resistance r0 = 1.50. We

note that these initial profiles also happen to have very similar average porosity or

void fraction, φ0 = (π/4)
∫ 1

0
a(x, 0)2dx (though this would not be true of all equal-

resistance membranes): φ0 = 0.64 for a1 and a5, and φ0 = 0.65 for a2, a3 and a4.

Three of the profiles (a1, a4 and a5) are initially symmetric about the membrane

centerline, but we will see that in all cases asymmetry rapidly develops due to the

particle adsorption within pores.

We solve the model numerically for each chosen pore profile, until the membrane

becomes impermeable and the total flux through it falls to zero at final time t = tf

(when the pore radius a → 0). Our numerical scheme is straightforward, based

on first-order accurate finite difference spatial discretization of the equations, with

a simple implicit time step in the pore-blocking equation (3.20) and trapezoidal

quadrature to find the integrals in equation (3.24).

3.3.1 Model Simulations

We present results for the model summarized in Section 3.2.2 according to the

scenarios discussed above. The main results are shown in Figure 3.3: we simulate

the model for each of the initial profiles given in (3.31), with parameters λ = 2

and ρb = 2 characterizing the effects of fouling by adsorption and pore-blocking

(sieving). Figure 3.3(a) shows the cross-sectionally averaged pore velocity up for the
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Figure 3.3 Filtration simulations: (a) The cross-sectionally averaged pore velocity up

with uniform initial pore profile a1(x, 0) = 0.904; (b)-(f) the pore radius and particle

concentration at selected times up to the final blocking time (tf , indicated in the legends)

for different initial pore radius profiles: (b) a1(x, 0) = 0.904, (c) a2(x, 0) = 0.16x+ 0.83, (d)

a3(x, 0) = 0.99− 0.16x, (e) a4(x, 0) = 0.874 + .39(x− 0.5)2, (f) a5(x, 0) = 0.933− 0.33(x−
0.5)2; (g) total flux vs throughput for these initial profiles for homogeneous ((3.28), black

curves) and exponential ((3.29), red curves) distributions of large particles, with λ = 2,

β = 0.1, ρb = 2 and b = 0.5.
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initially uniform pore profile, and Figures 3.3(b)-(f) show the pore radius a(x, t) and

the concentration of small particles c(x, t) for each of the five different initial pore

profiles, at various times throughout the evolution. Other parameter values are given

in the figure caption. The cumulative large-particle size distribution function is as

given in (3.28), so that all of the large particles in the feed are bigger than the pore

inlet size and are therefore sieved out. A striking feature of these plots is that pore

closure (accompanied by cessation of filtration) occurs first at the upstream membrane

surface, even for pores that are initially widest on that side. This is consistent

with the graph of the pore velocity up (Figure 3.3(a)), which is initially uniform

(for the initially uniform channel) but rapidly becomes nonuniform, becoming much

higher at the narrowing pore inlet; and also with the particle concentration graphs,

which show that most of the particle deposition occurs at the pore inlet. This effect

becomes more pronounced at later times as the pore radius shrinks near the inlet,

further enhancing the deposition there. The graphs of c(x, t) in Figure 3.3(b)-(f)

demonstrate that the filter membranes are initially capturing more than 90% of small

particles (by adsorption) in all cases, with this proportion increasing to nearly 100%

at later times. The capture proportion could be adjusted by varying the parameter λ:

increasing (decreasing) λ will increase (decrease) the proportion of particles captured.

The effect of λ is discussed further below.

As mentioned earlier, a common experimental characterization of membrane

filtration performance is the graph of total flux through the membrane at any

given time versus the total volume of filtrate processed at that time (throughput);

the so-called flux–throughput graph for the membrane. Since the flux is directly

proportional to the averaged Darcy velocity, we define our dimensionless flux by

q(t) = u(0, t); throughput is then defined by
∫ t

0
q(t′)dt′. We plot these curves, for

each of the five pore profiles considered, in Figure 3.3(g). This plot also shows

the equivalent flux-throughput graphs for the exponential large-particle distribution
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function of (3.29), for comparison with the homogeneous case (3.28). The graphs

collectively demonstrate that, although all pore profiles give the same initial average

membrane resistance (and, to a good approximation, the same initial porosity or

void fraction), they exhibit significant differences in performance over time. In

particular, membranes whose pores are widest on the upstream side give notably

better performance overall according to this performance measure, with more filtrate

processed under the same conditions. The membrane with least total throughput is

that whose pores are initially narrowest on the upstream side, exhibiting rapid pore

closure (pore profile a2(x) in (3.31)). Furthermore, we see that the flux-throughput

curves are initially concave, becoming convex only as total system blockage is

approached. This change in curvature has been observed in experimental systems

(e.g., [21]) but rarely in model simulations: it seems that only models that incorporate

multiple blocking mechanisms simultaneously can exhibit such behavior. It appears

to be indicative of the different blocking regimes: in the early stages the pore-blocking

is the dominant mechanism responsible for the decrease in flux, while in the latter

stages adsorptive blocking dominates (at least for the choice of parameters used here).

The differences in performance noted here for homogeneous (3.28) and exponential

(3.29) distributions of large-particle sizes are in part due to the fact that for the

homogeneous distribution all large particles are sieved, while in the exponential case

some are smaller than the pore and pass through the membrane. System resistance

therefore increases more rapidly in the former case.

Figure 3.4(a) demonstrates the effect of varying the parameter ρb, which

measures the relative increase in pore resistance when a pore is blocked by a large

particle. All of these simulations are performed for the homogeneous large-particle

size distribution (3.28). We note that as ρb varies from large to small there is a clear

qualitative change in the shape of the flux–throughput performance curves, as the

model transitions from blocking-dominated to adsorption-dominated. A large value of
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Figure 3.4 Flux-throughput graphs for the uniform initial pore profile a1(x, 0) = 0.904,

with λ = 2 and β = 0.1, (a) for several different values of ρb (relative increase in pore

resistance when blocked by a large particle) with homogeneous particle size distribution

g(s) given by (3.28); and (b) for both homogenous large-particle distribution (3.28), and

for several non-homogeneous particle distributions given by (3.29) with different values of

b (a measure of the relative sizes of pores and particles), with ρb = 2.

ρb means that blocking of a pore by a large particle leads to a tight seal at the inlet and

a significant increase in resistance (blocking-dominated); while a small value means

that a blocked pore is very loosely sealed, and offers only marginally more resistance

to flow than an unblocked pore (hence fouling will be adsorption-dominated). Again,

see the experimental data in, e.g., [21], which reveal similar features as the membrane

type and/or filtrate is varied. Since increasing the value of ρb adds more total system

resistance, the total throughput decreases monotonically as ρb increases.

Similar qualitative changes may be observed in the case where we model a

feed solution with a distribution of particle sizes, described by the exponential

size distribution function g(s) = 1 − e−bs (from (3.29)). In this case, whether

or not particles are sieved (and hence block pores) depends on their size relative

to the instantaneous pore radius. As the parameter b, measuring the relative

characteristic sizes of pores and particles, is varied (Figure 3.4(b)), we again see

the transition from blocking-dominated to adsorption-dominated behavior: when

b is small, pores are smaller than particles, so pores rapidly become blocked and

this is the dominant fouling mode; whereas when b is large pores are larger than
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particles, hence little sieving occurs, and adsorption is the dominant fouling mode. A

secondary consequence of increasing b (“large” particles becoming increasingly small

relative to pores) is that the fouling is slower and net system resistance increases

more slowly (large particles that are not sieved pass straight through the membrane),

so total throughput increases. It must be remembered, however, that this increased

throughput is achieved at the expense of decreased particle removal. For comparison,

Figure 3.4(b) also shows the result for the case when the feed solution contains a

homogenous distribution of large particles that are larger than the pores (g(s) = 0

throughout). As anticipated, this case is close to the small-b simulations, where most

particles are larger than pores.

Another key consideration in evaluating membrane performance is the concen-

tration of particles that remain in the filtrate as it exits the membrane, c(1, t): in

general, a lower particle concentration at the outflow side of the membrane indicates

superior separation efficiency for the filter membrane. Figure 3.5(a) plots c(1, t)

versus throughput for each of the initial profiles given in (3.31). The results here are

qualitatively consistent with those of the flux–throughput graphs of Figure 3.3(g), in

particular, for a given “tolerance” value of the particle concentration at the outlet,

membranes with narrow pores on the upstream side always give less total throughput

than those whose pores are wide on the upstream side. Note, however, that in

Figure 3.5(a), in order to obtain sufficiently distinct graphs, we set the dimensionless

membrane-pore attraction coefficient λ = 1 and the dimensionless pore shrinkage rate

β = 0.05, while values λ = 2 and β = 0.1 were used in Figure 3.3.

It is also of interest to study the influence of the membrane-pore attraction

coefficient Λ, and of characteristics such as the membrane thickness D. These

each appear in two of our dimensionless parameters: λ = 8ΛµD2/(P0W ), and

β = 8µDΛαC0/(πP0W
5G∞) (see Table 3.3); hence we cannot vary the parameters

λ and β in isolation. To study the effect of the attraction coefficient Λ (see (3.12);
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Figure 3.5 (a) Particle concentration at the downstream membrane surface x = 1 (pore

exit) vs throughput, with λ = 1, β = 0.05, ρb = 2 and g(s) given by (3.28), for several

initial pore profiles given in (3.31); and (b) Particle concentration vs throughput graph for

several different values of λ, for the uniform initial pore profile a1(x, 0) = 0.904, with ρb = 2

and g(s) = 1. For the black curves we set β ∝ λ (corresponding to varying Λ in (3.12)) and

for the red curves β ∝
√
λ (corresponding to varying membrane thickness D).

this would be changed by, for example, changing the membrane material, or the type

of particles in the feed solution) we consider different values of λ, with β changed in

proportion to λ, consistent with the way Λ appears in the definitions of these two

parameters. To study the effect of changing the membrane thickness D, we again

consider different values of λ, but now take β ∝
√
λ. In Figure 3.5(b), we plot

the particle concentration at the pore outlet, c(1, t), versus throughput for several

different values of λ, with β ∝ λ or β ∝
√
λ, corresponding to these two distinct

system changes.

In the former case (β ∝ λ), we associate small values of λ with weaker

membrane-particle attraction. As anticipated, this is observed to give rise to poor

separation of particles from feed, with a significant fraction of the small particles

remaining suspended in the flow at the pore outlet. Large values of λ, corresponding

to strong membrane-particle attraction, give uniformly low particle concentrations at

the outlet. Such strong attraction is, of course, associated with faster total blocking

of the membrane pores: if all particles adhere to the pore wall then the pore will

close sooner. In the latter case (β ∝
√
λ), we associate smaller/larger values of λ
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with thinner/thicker membranes. As above, we expect worse/better separation in

this case (as measured by the particle concentration at the pore outlet), and this

is borne out in the simulations. With a thin membrane the feed solution transits

too quickly to deposit all of its particles (though the flux-throughput characteristics

would look favorable, since a thin membrane affords little resistance to the flow,

and poor particle removal corresponds to a slow fouling process). With a thick

membrane the feed remains within the membrane long enough to deposit nearly all its

particles, so separation is good; but of course the tradeoff is poorer flux-throughput

characteristics, the thick membrane providing higher flow resistance and the good

separation leading to more rapid fouling. Interestingly though, in comparing these

two scenarios, changing the attraction coefficient appears to have a much larger

effect on the overall behavior than does changing the membrane thickness, suggesting

that membrane chemistry could be a very important consideration affecting overall

performance.

In the context of these observations, we emphasize that our model considers

all small particles to be identical. It may be the case that the feed contains several

populations of small particles, each with a different deposition coefficient. While we

do not explicitly model such a scenario, it would be a fairly straightforward extension

to our model, and could be useful for an application in which only certain species are

to be removed from a feed solution. We note also that λ and β are assumed to be

constant throughout the duration of filtration. In reality, it may well be the case that

particles adhere differently to the clean membrane than to the fouled membrane, so

that the values of λ and β should change as filtration progresses. Such considerations

are beyond the scope of this thesis.
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Figure 3.6 (a) Total throughput
∫ t

0 q(t
′)dt′ versus initial pore gradient b0, keeping

dimensionless initial net resistance, r0 =
∫ 1

0
dx′

(a0+b0x′)4
= 5, fixed, for several different values

of λ, with homogeneous distribution of large particle sizes (3.28) and ρb = 2. For the

thin curves we set β ∝ λ (corresponding to varying Λ; maximum throughput marked by

red dots) and for the thick curves β ∝
√
λ (corresponding to varying membrane thickness

D; maximum throughput marked by blue diamonds). (b) Total throughput versus initial

pore gradient b0, for several different values of dimensionless initial resistance r0 with

homogeneous distribution of large particle sizes (3.28), λ = 2, β = 0.1 and ρb = 2. The red

dots are maximum throughput for each given initial resistance r0.

3.3.2 Optimal Initial Membrane Pore Profile

One question of interest to manufacturers is: for a membrane of given net (average)

resistance, what is the optimum porosity profile as a function of depth through the

membrane? For our model this translates to: what is the optimal shape of the

filter pores among all filters with the same initial average resistance? To answer this

question, we must first decide how to define filtration performance. This definition

will vary depending on the user requirements (we have already seen above the

tradeoff inherent between maximizing throughput and simultaneously removing as

many particles as possible from the feed), but for purposes of illustration we will use

the common experimental characterization of performance as the total throughput

over the filter lifetime, as introduced earlier, noting that our methods can easily be

adapted to give predictions for any other chosen efficiency measure. In our exposition

below, we consider optimizing performance while fixing the initial average membrane

resistance.
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Figure 3.7 Initial total particle concentration at the pore outlet versus initial pore

gradient b0, for several different (small) values of dimensionless initial resistance r0 with

homogeneous distribution of large particle sizes (3.28), λ = 2, β = 0.1 and ρb = 2.

Since the general optimization problem is very challenging, requiring consid-

eration of pores of all possible shapes, we simplify by restricting attention to the class

of membranes with pores whose initial radius A(X, 0) varies linearly with membrane

depth X. In order to make a meaningful comparison, we consider members of the

family of all linear initial pore profiles, a(x, 0) = a0 + b0x, with the same initial

resistance r0 = r(0) (as defined by (3.30)). For a given value of the pore profile

gradient b0, the intercept value a0 is then fixed. Note that, depending on the chosen

value of r0, not all values of b0 may be possible: for a low-resistance, highly-permeable

membrane, the pore occupies a large fraction of the period-box (within which it must

be entirely confined), and hence the range of values of b0 will be limited in such cases

to small absolute values.

Figures 3.6(a) and (b) illustrate our results, plotting throughput versus pore

gradient for several different scenarios. In Figure 3.6(a), the dimensionless initial

resistance is fixed at r0 = 5 (a value chosen large enough that a wide range of pore

gradients are available), and throughput is plotted as a function of pore gradient for
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several different values of the deposition coefficient λ. Recalling the discussion at the

end of Section 3.3.1 above, we cannot change λ in isolation; here we consider the two

cases discussed there: (i) we change β proportionally to λ, modeling changes in the

dimensional particle-membrane attraction coefficient Λ (the thin curves), and (ii) we

change β proportionally to
√
λ, modeling changes in the membrane thickness D (the

thick curves).2 In Figure 3.6(b), total throughput is again plotted versus slope of

the initial pore profile, for several different values of the membrane resistance r0. As

noted above, only a limited range of pore gradients are realizable at low resistances.

In all cases shown in Figure 3.6, the optimum (as measured by maximal total

throughput) is achieved at the most negative value of the pore profile gradient, in

other words, the pore profile giving maximal total throughput is always that which

is as wide as possible at the upstream membrane surface. This result is perhaps

unsurprising given our previous simulation results of Figure 3.3 showing the rapid

pore closure at the upstream surface: maximum throughput will be achieved by

delaying this closure as long as possible.

Note that Figure 3.6 tells us nothing about the proportion of small particles

captured in each filtration scenario (though they assume capture by sieving of all

large particles). In Figure 3.7, we plot the (initial) total small-particle concentration

at the pore outlet, for each case shown in Figure 3.6(b). It is evident from Figure 3.7

that (i) the net capture of small particles depends only weakly on the pore gradient;

and (ii) in any case, the most negative pore gradient is favorable to improved net

particle capture, leading to a slightly lower concentration of particles at the outlet

compared with most other pore gradients.

2We note that there are many ways in which this study could be extended to give a
more general optimization: we could for example allow both pore gradient and membrane
thickness, and/or the size of the period box, to vary simultaneously while keeping initial
membrane resistance fixed, which would involve a sweep through a larger parameter space.
However, viewing the present work as a preliminary study, we defer a more general
investigation to a future publication.
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Figure 3.8 Total throughput versus initial pore gradient b0, for several different (small)

values of dimensionless initial resistance r0 with homogeneous distribution of large particle

sizes (3.28), λ = 0.01, β = 0.1 and ρb = 2. The red dots are maximum throughput for

each case: note that in contrast to Figure 3.6 maximal throughput now occurs at some

intermediate value of the pore gradient, and not the most negative value.

If we set such concerns aside then we might suspect that a different optimal

result would be obtained for very low values of the deposition coefficient, where pore

closure might in fact occur at an internal point for pores of decreasing radius. Figure

3.8 confirms this expectation: for λ = 0.01 and β = 0.1 the optimum profile is

no longer the widest possible at the upstream side. A more uniform profile is now

favored, but it should be noted that (i) gains in total throughput are only marginal

in this situation; and (ii) in such small-λ simulations, only a very small fraction of

the small particles is removed by the membrane.

Though we show results here only for the class of linear pore profiles, we note

that preliminary investigations of other classes of pore shape (quadratic, cubic and

simple exponential profiles) suggest very similar findings. In particular, although

the actual optimal pore shapes obtained are somewhat different in each case, the

maximal throughput in all cases is very similar, with only marginal improvements

over the linear case.
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3.4 Conclusions

We have presented a model that can describe the key effects of membrane morphology

on separation efficiency and fouling of a membrane filter. Our model accounts for

Darcy flow through the membrane, and for fouling by two distinct mechanisms:

pore-blocking (sieving) by large particles, and adsorption of small particles within

pores. While essentially predictive, our model contains several parameters that may

be difficult to measure for a given system – most notably, the relative increase in pore

resistance due to a blocking event, ρb; the dimensionless attraction coefficient between

the membrane pore wall and particles, λ; and the dimensionless pore shrinkage rate,

β. In practice, such parameters could be inferred by fitting to a reliable dataset; but

even so these parameters will vary from one membrane-feed system to another, since

they depend on membrane structure, on the type and size of the particles carried by

the feed, and on the chemical interactions between the particles in the feed and the

membrane material. The model as presented here implicitly assumes that all of the

“small” particles comprising the concentration C are identical, but it would not (we

think) be difficult to extend the modeling to account for several different types of

small particles, each with its own concentration and its own sticking parameter.

In the absence of firm data on model parameters, we have chosen what we

believe to be plausible parameter values (summarized at the start of Section 3.3) for

most of our simulations. The focus in this chapter is on development of a model

that can be used to quantify the effects of membrane morphology on separation

efficiency, in terms of the performance (flux-throughput) curve of a membrane filter

with known characteristics under given operating conditions, and by the graphs of

particle concentration at pore outlet.

Our model accounts, in the simplest possible way, for variations in membrane

pore profiles. The pore profile variation in real membranes is undoubtedly highly

complex: here we restrict attention to simple axisymmetric pore profiles characterized
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by depth-dependent initial radius a(x, 0), which span the entire membrane depth,

and we investigate how filtration performance varies as these initial pore profiles

change. Our results simulating filtration at constant pressure drop indicate that such

variations in pore profile lead to different fouling patterns within the membrane.

More importantly, if the initial pore radius at the top of membrane is small (pore

profile a2(x) in (3.31)), it can give rise to a marked decrease in filter performance

as quantified by the total amount of filtrate processed under the same operating

conditions, as shown by Figure 3.3(g). This figure, which summarizes results for five

distinct (equal resistance) initial pore profiles, shows that the case where the initial

pore profile is linear decreasing across the membrane, given by a(x, 0) = a3(x) (see

equation (3.31)), gives significantly higher total throughput when compared with the

other cases considered (initial pore profile uniform, linear increasing, concave/convex

parabolic across the membrane).

Similar differences in performance, though less pronounced, are observed for

the case where the total flux is prescribed (rather than the pressure drop), as shown

in Figure C.1(f) in Appendix C. Maintaining the same flux requires a significantly

higher pressure drop for the linear increasing case a(x, 0) = a2(x) than for all other

cases, while the case a(x, 0) = a3(x), linear decreasing pore profile in (3.31), shows

the best performance, requiring the lowest pressure drop to sustain the desired flux.

When studying the influence of the deposition (or particle-pore attraction)

parameter λ = 8ΛµD2/(P0W ), care must be taken to track the concentration of

small particles, both within the membrane and in particular at the downstream edge

of the membrane (Figures 3.5 and 3.6). A naive interpretation of Figure 3.6(a)

would suggest that smaller values of λ are preferable, since these lead to greater

total throughput. However, a glance at Figure 3.5(b) confirms that if λ is too small

then a large concentration of small particles remain in the filtrate, which is likely

undesirable. From the definition of λ, this could stem from several causes; e.g., there
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may be insufficiently strong attractive forces between particles and membrane (Λ);

the filter membrane may be too thin (D); or the pressure drop may be too high (P0)

so filtration is too fast to give good deposition.

This brings us to another major performance requirement of filtration: to

achieve the desired level of particle separation from the feed solution. This separation

level may vary from one application to another (sometimes a filtrate should be as clean

as possible, with all impurities removed; at other times a threshold level of impurities

may be tolerated, or it may be desirable to remove only a certain type of particles

from the feed) and hence the best choice of filter may depend on the application. If we

consider the simplest scenario in which the filtrate should be as clean as possible, while

simultaneously maximizing throughput, then for a given tolerance level of impurities

(maximum allowable concentration c(1, t) at pore outlet), the more throughput the

filter gives, the better performance it has. Figure 3.5(a) shows that among all the

initial pore profiles given in (3.31), a2(x) and a3(x) have the worst and the best

performance respectively, under these criteria.

We note that the flux-throughput curves generated by our model are in good

qualitative agreement with experimental data from the literature, as seen in, e.g., [23,

36] and many other works. This consistency between our model results and the

experimental data gives us further confidence that our model, based as it is on first

principles assumptions about how fouling occurs, is sound, and provides a good basis

for predictive simulations. While a more complicated model could perhaps provide

more accurate predictions, our model has the advantage that it is simple and quick

to simulate, offering a useful tool for investigating filter design characteristics.

Our predictive model leads naturally to questions of how membrane structure

may be optimized. Defining optimal performance is very application-dependent, and

in this chapter we consider only a simple optimization, maximizing total throughput

of filtrate over the filter lifetime as the pore profile is varied. We do not explicitly
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optimize also for particle removal efficiency, which is of course important; but

we compare performance only of membranes with the same initial net resistance,

assuming that particle removal is comparable for such membranes (as is borne out

by the simulations shown in Figures 3.5(a) and 3.7). We optimize only within a

restricted class of pore profiles, presenting detailed results for linear pore profiles

(preliminary work suggests that considering a larger class of profiles yields only

marginal improvements). We note that our findings here are remarkably consistent

with those of [24], despite the many differences in approach. Collaborative work is

ongoing to reach quantitative agreement between these different models.

There are of course many alternative approaches to optimization that could be

considered, and a full investigation is beyond the scope of this thesis. One could,

as noted in Section 3.3.2 above, extend the investigation to sweep through a larger

parameter space in which the membrane thickness D and the size of the period-box

2W are varied while keeping membrane resistance fixed. Another approach that could

be interesting is to reverse time in the problem: if one assumes that the “optimal”

filtration scenario is that in which pore closure occurs uniformly along the length

of the pore (such a scenario would maximize the time for which the pore is open),

then one could run the model backwards to simulate the opening of an infinitesimally

thin, parallel-sided pore. Stopping the simulation when the net resistance reaches a

chosen value would then provide the optimal pore shape for that chosen resistance

(of course, there are still other optimization questions here relating to varying the

membrane thickness and the period-box size).

Finally, though our model represents an important first step in systematically

accounting for internal membrane complexity, it must be emphasized that real

membranes are much more complicated in structure than our simple assumptions

allow, as is evident from a glance at Figure 3.1. They may consist of many randomly

oriented pores, which branch and reconnect, so that the feed solution takes a winding
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and tortuous path through the membrane rather than the simple flow assumed

here. In Chapter 5, we will describe more sophisticated models, with branching

and reconnecting pores, to better account for such internal membrane complexity.



CHAPTER 4

MODELING MEMBRANE FILTRATION WITH MULTIPLE

FOULING MECHANISMS: THE EFFECT OF PERMEABILITY

VARIATIONS

4.1 Introduction

In Chapter 3, we developed a model that can describe the key effects of membrane

morphology on separation efficiency and fouling of a membrane filter. Our model

accounts for Darcy flow through the membrane, and two distinct mechanisms of

fouling: adsorption of small particles within pores, and pore-blocking (sieving) by

large particles. In this chapter, we propose a novel model for the formation and

growth of a cake layer on the upstream side of the filter, and couple this to our earlier

model, to allow all fouling modes to operate simultaneously. We present several

simulations of our model, with an emphasis on how each type of fouling affects results,

and how changes in membrane structure (modeled by different choices of pore profile

within the membrane) impact the outcome. In particular, we discuss how our model

(properly calibrated) could be used to calculate the optimum pore profile, within the

limitations of our modeling. We conclude with a discussion of our model and results

in the context of real membrane filters.

4.2 Darcy Flow and Fouling Model

As discussed in Chapter 3, again we consider dead-end filtration through a planar

membrane that lies parallel to the (Y, Z)-plane, with unidirectional Darcy flow

through the membrane in the positive X-direction. The membrane properties

and flow are assumed homogeneous in the (Y, Z)-plane, but the membrane has

depth-dependent permeability (even if permeability is initially uniform, fouling will

lead to nonuniformities over time), which we denote by Km(X,T ). We use uppercase

73
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fonts to denote dimensional quantities, and in the following will introduce subscripts

“m” and “c” to distinguish (where necessary) between quantities in the membrane

and in the cake layer.

The superficial Darcy velocity U = (U(X,T ), 0, 0) within the membrane is given

in terms of the pressure Pm by

U = −Km(X,T )

µ

∂Pm

∂X
,

∂

∂X

(
Km(X,T )

∂Pm

∂X

)
= 0, 0 ≤ X ≤ D, (4.1)

where µ is the viscosity of the feed solution, D is the membrane thickness and µ

is the viscosity of Newtonian feed solution. The modeling challenge is to link the

permeability Km(X,T ) to membrane characteristics, which evolve in time due to

fouling, to obtain a predictive model. Within our model, membrane permeability

decreases in time (i.e., membrane resistance increases in time) due to fouling by

three mechanisms: (i) pores become blocked from above by particles too large to pass

through pores; (ii) pore radius decreases in time due to adsorption of tiny particles

within the pores; and (iii) at a late stage, particles deposited on the filter upstream

form a cake layer. This cake layer is assumed to occupy the region −I(T ) ≤ X ≤ 0,

so that I(T ) is the cake thickness, with I(0) = 0.

We consider a simple model in which the membrane consists of a series of

identical axisymmetric slender pores of variable radius A(X,T ), which traverse the

membrane thickness (Figure 3.2). Pores are arranged in a square repeating lattice,

with period 2W , and a filtrate, carrying small particles (at concentration C(X,T ))

and large particles (larger than pores; discussed below), which are deposited within

the membrane and on top of the membrane, respectively, is driven through the

filter. In Chapters 2 and 3 ( [48, 49]), we considered two driving mechanisms: (i)

constant pressure drop across the membrane specified; and (ii) constant flux through

the membrane specified. In the former case, the flux will decrease in time as the

membrane becomes fouled; in the latter case, the pressure drop required to sustain
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Figure 4.1 Schematic showing the pore and cake layer.

the constant flux will rise as fouling occurs. In this chapter, we will consider only

case (i), which is the most common in practice. With constant pressure drop P0, the

conditions applied above and below the membrane are

Pc(−I(T ), T ) = P0, Pm(D,T ) = 0, (4.2)

where Pc is the pressure within the cake, and X = −I(T ) is the top of the cake (see

Figure 4.1). Initially all pores have specified radius, A(X, 0) = A0(X). Where an

individual pore (at time T ) is unblocked the total flux through it Qu,pore(T ) is given

(approximately) by

Qu,pore = − 1

Ru

∂Pm

∂X
where Ru =

8µ

πA4
, (4.3)

and Ru is the pore resistance per unit of the membrane depth.

4.2.1 Pore Blocking by Large Particles

Blocking occurs when a particle from population of large particles becomes trapped

at the entrance to a pore, obstructing the flow. We follow our earlier approach in
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Chapters 2 and 3 to model this effect by adding an extra resistance of magnitude

8µρb/(πA
4
0) (again per unit of the membrane depth), where ρb is a dimensionless

number, in series with the resistance Ru. The flux through a blocked pore,

Qb,pore(X,T ), is then given by

Qb,pore = − 1

Rb

∂Pm

∂X
where Rb =

8µ

πA4
0

((
A0

A

)4

+ ρb

)
. (4.4)

The parameter ρb characterizes blocking strength: for large values of ρb pore

resistance increases dramatically after blocking, while for small values resistance is

almost unchanged. Total pore blocking is retrieved as ρb → ∞. We can now relate

the superficial Darcy velocity U to the number densities of unblocked and blocked

pores per unit area, N(T ) and N0 − N(T ), respectively (where N0 = N(0) and

N0(2W )2 = 1) by noting that the flux of fluid per unit area of membrane is

N0(2W )2U = N(T )Qu,pore + (N0 −N(T ))Qb,pore,

hence, substituting for Qu,pore from (4.3) and for Qb,pore from (4.4) in the above, we

obtain

U = −πA
4
0

8µ

∂Pm

∂X

(
N

(A0/A)4
+

N0 −N
(A0/A)4 + ρb

)
. (4.5)

The instantaneous number density of unblocked pores, N(T ), decreases as pores

become blocked. We assume blockage occurs whenever a particle with radius

S > A(0, T ) is advected to the pore entrance. For simplicity, here we assume that

our large-particle population consists entirely of particles larger than A(0, T ), while

our small-particle population (discussed below) consists of particles that are smaller

than A(X,T ) throughout (in Chapter 3, we proposed how to deal with a distribution

of large-particle sizes where some are smaller than pores). If G is the concentration

of the large particles then the probability that a particular pore is blocked (per unit

time) is GQu,pore:
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 Probability per unit time that

pore of radius A is blocked

 = −G πA4

8µ

∂Pm

∂X

∣∣∣∣
X=0

.

It follows that N(T ) evolves according to

∂N

∂T
= NG

πA4

8µ

∂Pm

∂X

∣∣∣∣
X=0

. (4.6)

4.2.2 Pore Blocking by Adsorption

To model adsorptive fouling requires consideration of how the small particles are

advected and deposited within the pores of the membrane. Following Chapter 3,

we propose a simple advection model for the concentration of small particles, Cm,

within the membrane, which assumes that particles are deposited on the wall at a

rate proportional to both the local particle concentration, and to the available wall

circumference:

Upm
∂Cm

∂X
= −Λm

Cm

A
, 0 ≤ X ≤ D, (4.7)

where Upm is the pore velocity within the membrane (the cross-sectionally averaged

axial velocity within each pore) and Λm is a constant that captures the physics of the

attraction between particles and wall that is causing the deposition (a derivation is

given in Appendix B). The pore velocity Upm satisfies

∂ (πA2Upm)

∂X
= 0, 4W 2U = πA2Upm, (4.8)

by simple mass conservation arguments. The pore radius shrinks in response to the

deposition; we propose

∂A

∂T
= −ΛmαCm, 0 ≤ X ≤ D, (4.9)
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for some constant α (related to the particle size). The initial pore radius is specified

throughout the membrane,

A(X, 0) = A0(X), 0 ≤ X ≤ D. (4.10)

4.2.3 Cake Formation

In the later stages of filtration, particles may accumulate on the upstream side of

the membrane, forming a cake layer as shown in Figure 4.1. This new layer in turn

increases the system resistance and becomes thicker in time. To have a realistic

late-stage filtration model, we wish to consider the effects of this cake layer.

Following blocking of pores by large particles on top of them, we assume that

this creates new “membrane” area available for formation of a caking layer. If we

assume that material (comprising large particles) is deposited on available membrane

at a rate proportional to the flux and number of blocked pores, then we may propose

a model for how the cake layer thickness I(T ) increases in time,

dI

dT
= (N0 −N)(2W )2(G∆p)U, I(0) = 0, (4.11)

where G is the total particle concentration defined earlier, U is the feed solution flux

(the superficial Darcy velocity), defined in (4.5), and ∆p is the effective particle

volume within the cake layer. This model says that the thickness of cake layer

increases at a rate proportional to the membrane area available for caking, the

concentration of large particles that form the cake, the volume of those particles,

and the fluid flux. At the cake’s upper surface, we have specified pressure and

small-particle concentration

Pc(−I(T ), T ) = P0, Cc(−I(T ), T ) = C0.

The cake layer itself behaves like a secondary filter membrane, with some

permeability Kc(X,T ) (a function of the characteristics of the particles suspended
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in the feed solution), which decreases in time due to deposition of small particles

within it. We can therefore again use the Darcy model to describe flow across the

cake:

U = −Kc

µ

∂Pc

∂X
, −I(T ) ≤ X ≤ 0, Pc(−I(T ), T ) = P0. (4.12)

Since the cake is composed of particles, we use the Kozeny-Carman equation (see,

e.g. [45]) to relate its permeability Kc to its void fraction φc:

Kc =
φ3

c

KozS2
cp(1− φc)2

, (4.13)

where φc(T ) is the void fraction or porosity of the cake (φc ∈ (0, 1); for randomly-

packed spherical particles for example, φc ≈ 0.37); Scp is the specific area (the ratio

of the surface area to the volume of the solid fraction of the porous medium); and

Koz is the Kozeny constant (Carman proposed a value of 5 in [45]).

The model for the cake layer is completed by making assumptions about how

small particles are deposited within the cake, increasing its resistance. In the spirit

of our membrane fouling model (4.7), we propose a simple advection model for the

small particles:

Upc
∂Cc

∂X
= −Λc

Cc

(φc∆p)1/3
. (4.14)

Here the pore velocity Upc within the cake is related to the superficial Darcy velocity

U by

Upc =
U

φc

. (4.15)

As before, the model assumes that small particles are deposited at a rate proportional

to the local particle concentration. The constant Λc captures the physics of the

attraction between the large particles (which constitute the cake) and the small

particles. The cake structure is, of course, very complicated in reality; but in essence

the pores of the cake consist of the spaces between particles of volume ∆p, therefore we
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assume that (φc∆p)1/3 will be proportional to the cake pore radius (whence the term

in the denominator on the right-hand side of (4.14)). The cake porosity φc decreases in

response to the particle deposition: consistent with our earlier membrane deposition

model (see (4.9) with A ∝ (φc∆p)1/3) we propose

∂φc

∂T
= −Λc(φc∆p)2/3Cc. (4.16)

These last two equations (4.14), (4.16) are analogous to equations (4.7) and (4.9)

in the membrane model, respectively. We must also have continuity of particle

concentration and pressure at the interface between the cake layer and the membrane,

Cc(0, T ) = Cm(0, T ), Pc(0, T ) = Pm(0, T ). (4.17)

For future reference, we note the simple pressure drop equation

4P |D−I(T ) = 4Pm|D0 +4Pc|0−I(T ), (4.18)

or, in integral form,∫ D

−I(T )

∂P

∂X
dX =

∫ D

0

∂Pm

∂X
dX +

∫ 0

−I(T )

∂Pc

∂X
dX. (4.19)

4.3 Scaling and Nondimensionalization

We nondimensionalize the model presented above using the scalings

(X, I) = D(x, i), A = Wa, T =
8µD

πP0W 4G
t, (U,Upm, Upc) =

πP0W
2

32µD
(u, upm, upc),

(Pm, Pc) = P0(pm, pc), (Cm, Cc) = C0(cm, cc), N = N0n, Kc =
πW 2

32
kc, (4.20)

giving a dimensionless model for u(x, t), upm(x, t), upc(x, t), pm(x, t), pc(x, t), a(x, t),

cm(x, t), cc(x, t), i(t), kc(t), φc(t) and n(t). The dimensionless governing equations in

the membrane layer 0 ≤ x ≤ 1 become

4u = πa2upm, (4.21)
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u = −a4∂pm

∂x

(
1− n

1 + ρba4
+ n

)
,

∂u

∂x
= 0, (4.22)

upm
∂cm

∂x
= −λcm

a
, λ =

32ΛmµD
2

πP0W 3
, (4.23)

∂a

∂t
= −βmcm, βm =

8µDΛmαC0

πP0W 5G
, (4.24)

dn

dt
= na4∂pm

∂x

∣∣∣∣
x=0

, (4.25)

with boundary and initial conditions

pm(1, t) = 0, a(x, 0) = a0(x), (4.26)

where a0(x) < 1 is a specified function.

The governing equations in the cake layer −i(t) ≤ x ≤ 0 are:

upc =
u

φc

, (4.27)

u = −kc
∂pc

∂x
,

∂u

∂x
= 0, (4.28)

kc = κc
φ3

c

(1− φc)2
, κc =

32

πW 2KozS2
cp

, (4.29)

∂φc

∂t
= −βcccφc

2/3, βc =
8µDΛc∆p

2/3C0

πP0W 4G
, (4.30)

upc
∂cc

∂x
= −λc

cc

φ
1/3
c

, λc =
32ΛcµD

2

πP0W 2∆p
1/3
, (4.31)

di

dt
= η(1− n)u, η =

∆p

4W 2D
, (4.32)
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with boundary and initial conditions

pc(−i(t), t) = 1, cc(−i(t), t) = 1. (4.33)

The above implicitly assumes that the specific area, Scp, is constant throughout. This

will not quite be true, but we believe it is reasonable to neglect its evolution due to

fouling. The model is closed by continuity conditions at the interface between the

membrane and the cake,

cc(0, t) = cm(0, t), pc(0, t) = pm(0, t), (4.34)

and by the flux balance equations

4φcupc = 4u = πa2upm. (4.35)

Significant analytical progress may be made with this model. Equations (4.22)

with the boundary condition at the pore outlet, pm(1, t) = 0, give the pressure within

the pore, pm(x, t), as

pm(x, t) = u

∫ 1

x

dx′

a4( 1−n
1+ρba4

+ n)
, (4.36)

while equations (4.28) and (4.33) give the pressure in the cake layer as

pc(x, t) = 1− u
∫ x

−i(t)

dx′

kc

. (4.37)

By using the continuity condition (4.34) for the pressure, we find the dimensionless

Darcy velocity as

u =

(∫ 0

−i(t)

dx′

kc

+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1

. (4.38)

From equation (4.25) the number of unblocked pores satisfies

dn

dt
= − n

(∫ 0

−i(t)

dx′

kc

+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1 ( 1− n
1 + ρba4

+ n
)−1

∣∣∣∣∣∣
x=0

, (4.39)
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and the cake layer thickness can be easily found from equation (4.4)

di

dt
= η(1− n)

(∫ 0

−i(t)

dx′

kc

+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1

. (4.40)

Finally we simplify the equations for particle concentration within the membrane and

the cake layer ((4.23) and (4.31)) as

∂cm

∂x
= −λmcma

(∫ 0

−i(t)

dx′

kc

+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)
, cm(0, t) = cc(0, t), λm =

8ΛmµD
2

P0W 3
,

(4.41)

∂cc

∂x
= −λcφ

2/3
c cc

(∫ 0

−i(t)

dx′

kc

+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)
, cc(−i(t), t) = 1, (4.42)

and we have the pore shrinkage equation

∂a

∂t
= −βmcm, (4.43)

where βm is given in (4.24).

4.4 Optimizing for the Membrane Pore Profile

A question of interest to manufacturers is: for a membrane of given net resistance,

what is the optimum permeability profile as a function of depth through the

membrane? For our model this translates into asking: what is the optimal shape

of the filter pores? In order to answer this question, we must first choose a

measure of filtration performance. This measure will vary depending on the user

requirements, but for purposes of illustration, we consider the common experimental

characterization of performance as the total volume of filtrate over the filter lifetime

(total throughput), defined by
∫ tf

0
q(t′)dt′, where q(t) = u(0, t) is our dimensionless

flux at any given time and tf is the final time of filtration.

The general optimization problem is very challenging, requiring consideration

of pores of all possible shapes, so we simplify by restricting attention to the class of

membranes with pores whose initial radius a(x, 0) is polynomial in the depth of the
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membrane x,

a(x, 0) = a0(x) =
n∑
i=0

bix
i. (4.44)

To make a meaningful comparison, we should compare performance of membranes

that are similar in some quantifiable way. In our earlier work [49], we compared

membranes with linear pore profiles and with the same initial net resistance, r(0),

defined as

r(0) =

∫ 1

0

a−4(x, 0)dx. (4.45)

While tractable for the small class of linear pores, this approach becomes very costly

to implement for the wider class of polynomial pore profiles. However, for quite a

range of different pore shapes and sizes, we have observed that membranes of the

same initial net porosity, defined as

φ̄m(0) =
π

4

∫ 1

0

a2(x, 0)dx, (4.46)

(the factor of 1/4 because with our nondimensionalization each pore is confined within

a box of area 4 units) have very nearly the same net resistance (this appears to be true

to within about 8% for porosities φ̄m(0) ∈ (0.6, π/4)). We may, therefore, compare

instead filter membranes with polynomial initial pore profile, and with the same net

initial void fraction or porosity φ̄m(0) = φ̄m0 , As we shall see, this is an easier problem.

We write the initial pore profile in terms of an orthogonal basis. Let P̃n(x) be

the nth Legendre polynomial, an nth degree polynomial defined on [−1, 1] that can

be expressed via Rodrigues’ formula [3]

P̃n(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]. (4.47)
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The P̃n(x) also satisfy the recursive formula

(n+ 1)P̃n+1(x) = (2n+ 1)xP̃n(x)− nP̃n−1(x), where P̃0(x) = 1, P̃1(x) = x.

(4.48)

An important property of the Legendre polynomials is that they are orthogonal with

respect to the L2 inner product on the interval [−1, 1],∫ 1

−1

P̃n(x)P̃m(x)dx =
2

2n+ 1
δmn. (4.49)

This property underlies the advantage of using porosity rather than resistance in order

to tackle the problem easily. Note that the initial pore profile, a0(x) is defined on the

interval [0, 1], so we use an affine transformation to introduce the shifted Legendre

polynomials as Pn(x) = P̃n(2x − 1), which can be calculated either from (4.47) or

(4.48). These shifted Legendre polynomials are also orthogonal, with

< Pi(x), Pj(x) >L2=

∫ 1

0

Pi(x)Pj(x)dx =
1

2i+ 1
δij, (4.50)

(this follows trivially from (4.49)). Next we write the initial pore profiles as

a0(x) =
n∑
i=0

biPi(x), where bi = (2i+ 1)

∫ 1

0

a0(x)Pi(x)dx, (4.51)

where Pi(x) is the ith degree shifted Legendre polynomial. Combining (4.46) and

(4.50) gives us the initial void fraction or porosity φ̄m0 = φ̄m(0) as

φ̄m0 =
π

4

n∑
i=0

b2
i

2i+ 1
. (4.52)

This approach may be generalized to more general initial pore profiles, as we discuss

later.

4.5 Results

In this section, we present some sample simulations of the model summarized in

Section 4.3 showing how results depend on the pore features and parameters. Our



86

Table 4.1 Approximate Dimensional Parameter Values [34]

Parameter Description Typical Value

2W Length of the square repeating lattice 4.5 µm (very variable)

Λm Particle-wall attraction coefficient Unknown (depends on

characteristics of membrane

and feed solution)

Λc Small particle-large particle attraction Unknown (depends on

coefficient feed solution)

D Membrane thickness 300 µm

A0 Initial pore radius 2 µm (very variable)

α Pore shrinkage parameter (see (4.9)) related Depends on application

to particle size

G Total concentration of large particles in feed Depends on application

N0 Number of pores per unit area 7×1010 m−2 (very variable)

P0 Pressure drop Depends on application

Qpore Flux through a single pore Depends on application

C0 Total concentration of small particles in feed Depends on application

Koz Kozeny constant 5

Scp Specific area; the ratio of surface area to the Depends on application

volume of the solid fraction in the cake

∆p Effective particle volume within the cake layer Depends on application

model contains several dimensionless parameters and functional inputs, which must

be specified: λm, which captures the physics of the attraction between small particles

and the membrane pore wall, leading to adsorptive fouling; λc, which captures

the attraction between small and large particles that leads to adsorption of small

particles within the cake; βm, the dimensionless pore shrinkage rate; βc, the rate of

decreasing pore porosity in the cake layer; ρb, the ratio of the additional resistance

due to pore-blocking to the original resistance of the unblocked pore; κc, the cake
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permeability; and the rate of increasing cake layer thickness; η. An exhaustive

investigation of the effects of each of these parameters is clearly impractical. Their

values depend on physical dimensional parameters that must be measured for the

particular system under investigation, and we lack such detailed experimental data;

hence we have to make our best guess as to the most appropriate values to use in our

simulations. The parameters are summarized in Tables 4.1 (dimensional parameters)

and 4.2 (dimensionless parameters) along with typical values, where known.

Given the number of parameters, most of them will be fixed throughout our

simulations. The value of the dimensionless attraction coefficients between pore wall

and particles, and also between large and small particles in the cake layer, λm and λc,

respectively, are unknown, and could certainly vary quite widely from one system to

another depending on the detailed structure of the filter membrane. In the absence

of firm data on their values, we take λm = 2 and λc = 0.5 for most simulations. The

dimensionless membrane and cake pore shrinkage rates, βm and βc, respectively, are

unknown but will normally be small (these represent the ratios of the timescales of

adsorptive pore closure to pore blocking in membrane and cake): we set βm = βc =

0.1. Assuming that blocking of a pore by a particle increases its resistance by twice

the original resistance of the unblocked pore, we set ρb = 2 for most simulations.

Finally, in the absence of firm data, η is set to 0.05, while the dimensionless cake

permeability constant κc is set to 1. We briefly demonstrate the effect of changing

parameters λc, βc and η later.

For the pore radius function, a(x, t), we investigate several different initial pore

profiles to see how this affects the outcome. Recalling the discussion of Section 4.4, we

first run some sample simulations for pore shapes that give the same initial membrane

resistance r0 = r(0). This means that we are comparing membranes that perform

identically when no fouling occurs – they give identical throughputs when filtering
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Table 4.2 Dimensionless Parameters and Approximate Values

Parameter Formula & description Typical value

λm (8ΛmµD
2)/(P0W

3) Unknown; values in

Dimensionless particle-wall attraction coefficient range 0.1–10 used

λc (32ΛcµD
2)/(πP0W

2∆p
1/3) Unknown; values in

Dimensionless cake attraction coefficient range 0.1–10 used

φ̄m π/(4W 2)
∫ D

0
A2dX = π/4

∫ 1

0
a2dx Varies in range 0.5− 0.7,

Membrane averaged void fraction

βm (8µDΛmαC0)/(πP0W
5G) Unknown; values in

Adsorption rate coefficient range 0.001–0.1 used

βc (8µDΛc∆
2/3
p C0)/(πP0W

4G) Unknown; values in

Cake pore shrinkage range 0.01–1 used

ρb Additional constant resistance when pore blocked Unknown; values in

range 0.2–10 used

η ∆p/(4W
2D) Unknown; values in

Cake layer thickness rate range 0.01–1 used

κc 32/(πW 2KozS
2
cp) Unknown; values in

Cake permeability coefficient range 0.1–1 used

pure water under the same applied pressure drop. The pore profiles considered are:

a(x, 0) =



a1(x, 0) = 0.904 uniform initial pore profile

a2(x, 0) = 0.16x+ 0.83 linear increasing

a3(x, 0) = 0.99− 0.16x linear decreasing

a4(x, 0) = 0.874 + .39(x− 0.5)2 convex parabola

a5(x, 0) = 0.933− 0.33(x− 0.5)2 concave parabola

(4.53)

all of which correspond to the same initial net membrane resistance, r0 = 1.5.

In line with the discussion of Section 4.4, we note that these initial profiles also

have very nearly the same initial net porosity or void fraction, φ̄m0 (see (4.46); the
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values of φ̄m0 for each of these profiles differ by a maximum of 1.5%). We solve the

model numerically for each chosen permeability profile, until the membrane becomes

impermeable and the total flux through it falls to zero at final time t = tf (which

happens, when the pore radius a → 0 somewhere within the membrane). Our

numerical scheme is straightforward, based on first-order accurate finite difference

spatial discretization of the equations, with a simple implicit time step in the

pore-blocking equation (4.24). We use trapezoidal quadrature in order to evaluate

the necessary integrals.

Figures 4.2(a)-(e) show the pore radius a(x, t), and concentrations of small

particles within the membrane and the cake layer, cm(x, t) and cc(x, t), respectively,

for each of the initial profiles given in (4.53) at various times throughout the evolution,

with parameter values as given in the figure caption. A striking feature of these plots

is that pore closure (accompanied by cessation of filtration) always occurs first at

the upstream membrane surface, even for pores that are initially widest on that

side. This phenomenon is also suggested by the particle concentration graphs, which

show that most of the deposition occurs at the pore inlet. This effect becomes more

pronounced at later times as the pore radius shrinks near the inlet, further enhancing

the deposition there. This is consistent with the results found in Chapter 3, which

did not include the effects of the cake layer. For the filtration scenarios modeled

here, all large particles in the feed are captured by sieving (and later, form the cake).

The graphs of cm(x, t) and cc(x, t) in Figure 4.2(a)-(e) demonstrate that the filter

membranes are initially capturing more than 90% of small particles (by adsorption)

in all cases, with this proportion increasing to nearly 100% at later times. Meanwhile,

the cake layer grows to almost 10% of the membrane thickness by the end of the

filtration process in all cases. The capture proportion of small particles could be

adjusted by varying the parameters λm and λc: increasing them will increase the
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Figure 4.2 The pore radius and particle concentration at several different times up to

the final blocking time (tf , indicated in the legends) for different initial pore radius profiles

(a-e). Figure (a) a1(x, 0) = 0.904, (b) a2(x, 0) = 0.16x + 0.82, (c) a3(x, 0) = 0.98 − 0.16x,

(d) a4(x, 0) = 0.87+ .39(x−0.5)2, (e) a5(x, 0) = 0.93−0.33(x−0.5)2. (f) shows total flux vs

throughput for those initial pore radius profiles with λm = 2, λc = 0.5, βm = 0.1, βc = 0.1,

ρb = 2, κc = 1 and η = 0.05.
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proportion of small particles captured in the membrane and cake layers, respectively,

and vice-versa. These effects are discussed further below.

A common experimental characterization of membrane filtration performance

is to plot a graph of total flux through the membrane at any given time (q(t) =∫ 1

0
u(x, t)dx) versus the total volume of filtrate processed at that time (throughput,

defined by
∫ t

0
q(t′)dt′); the so-called flux–throughput graph for the membrane. We

plot these curves, for each of the five pore profiles considered, in Figure 4.2(f). Our

results are broadly consistent with those of Chapter 3 ( [48]), which accounts for only

blocking and adsorptive fouling. The graphs demonstrate that, although all pore

profiles compared have the same initial average membrane resistance (and almost the

same porosity or void fraction), they exhibit significant differences in performance.

In particular, membranes whose pores are widest on the upstream side give notably

better performance overall according to this performance measure, with more volume

processed under the same conditions. The membrane with the least total throughput

is that whose pores are initially narrowest on the upstream side (pore profile a2(x)

in (4.53)). Furthermore, we see that the flux-throughput curves are initially concave,

becoming convex only as total system blockage is approached as observed in Chapter

3 and also in [21]. With a careful look at the very late stages of filtration for all initial

pore profiles, we see that the cake layer effects a final change of the flux-throughput

curve to concave again, seen as a gradual asymptote of the flux to zero, as discussed

by Griffiths et al. [23].

It is of interest to study the effects of cake layer model parameters (parameters

associated with the other two fouling mechanisms were investigated in detail in

Chapter 3), on membrane filter performance. In Figure 4.3(a), the influence of

the dimensional particle-particle attraction coefficient Λc (while other parameters are

fixed) is shown for the uniform initial pore profile a1(x, 0) = 0.904. According to Table

4.2, the dimensionless cake pore shrinkage rate βc = 8µDΛc∆
2/3
p C0/(πP0W

4G) and
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Figure 4.3 Flux versus throughput for uniform initial pore profile a1(x, 0) = 0.904, (a)

for several different values of λc and βc, we set λc ∝ βc (corresponding to varying the

dimensional particles attraction coefficient Λc), with λm = 2, βm = 0.1, ρb = 2 and κc = 1.

and (b) for several different values of βc, η and λc , we set βc ∝ λ−2
c ∝ η2/3 (corresponding

to varying the dimensional effective particle concentration ∆p, see (4.30), (4.31) and (4.4)),

with λm = 2, βm = 0.1, ρb = 2 and κc = 1.

the dimensionless particle-particle attraction coefficient λc = 32ΛcµD
2/(πP0W

2∆
1/3
p )

both depend on Λc, therefore βc and λc must each be changed proportional to Λc as it

varies. Our results illustrate that filter throughput initially increases as βc and λc but

will decreases for larger values of βc and λc. Furthermore, Figure 4.3(b) demonstrates

the significance of the non-dimensional cake pore shrinkage rate βc on filter membrane

performance for the same uniform initial pore profile a1(x, 0) = 0.904, when another

dimensional model parameter changes. Here we consider the membrane features fixed

and focus on the influence of the solvent on the filtration process by changing the

dimensional effective large-particle size ∆p. Again as shown in Table 4.2, variation of

∆p does not affect only βc; the dimensionless small/large particle attraction coefficient

λc, and the dimensionless cake growth coefficient η = ∆p/(4W
2D) also change. The

results simply show that the filter performance decreases as ∆p increases.

Figure 4.4(a) demonstrates the evolution of the cake layer until flux through

the membrane falls to zero for all initial pore profile given in (4.53). Our results

here generally show that cake layer grows at a steady rate in its initial stages of
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Figure 4.4 (a) Cake thickness versus time for all five initial pore profiles in (4.53), with

λm = 2, λc = 0.5, βm = 0.1, βc = 0.1, ρb = 2, κc = 1 and η = 0.05; and (b) cake thickness

versus time, for the uniform initial pore profile a1(x, 0) = 0.904 for several different values

of λc and βc (λc ∝ βc), with λm = 2, βm = 0.1, ρb = 2, κc = 1 and η = 0.05.

formation, but at the late stages, as the flux through the membrane decreases (due to

the significant fouling) the rate of growth of the cake layer thickness decreases, until

the membrane clogs completely. (Note that in practice a filter would be discarded

well before this final, very slow (low flux), stage leading to total clogging.) As

shown in Figure 4.4(a), the final time of filtration process varies with the initial

pore profile and among the profiles in (4.53), the maximum and minimum belong to

a3 and a2; respectively (in other words, the total filtration process is longer/shorter

for the membrane with wider/narrower pores at the upstream). Furthermore, our

results show that the thickness of cake layer for membranes with initial pore profiles

given in (4.53) is less than 10% of membrane thickness, which is consistent with our

observation in Figures 4.2(a-e).

Figure 4.4(b) shows effects of variation of dimensional particles attraction

coefficient Λc, on the cake layer thickness for the uniform initial pore profile a1(x, 0) =

0.904. Again as shown in Table 4.2, both λc and βc change proportional to Λc.

The results show that the cake layer thickness initially increases as Λc increases but

eventually decreases for larger values of λc and βc.
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Figure 4.5 (a) Maximum throughput versus initial pore porosity with linear, quadratic

and cubic initial pore profiles, and (b) optimum linear, quadratic and cubic pore profile

for initial pore porosities φ̄m0 = 0.2 and 0.4 (defined in (4.46)), with λm = 2, λc = 0.5,

βm = 0.1, βc = 0.1, ρb = 2, κc = 1 and η = 0.05.

Pore profile optimization study

As discussed in Section 4.4, manufacturers are interested to find the optimal pore

profile as a function of depth through the membrane. Here we present a brief

study on how to approach this general optimization problem, focusing on the class

of polynomial membrane pore profiles. As was mentioned earlier in Section 4.4,

membranes of the same initial net porosity have very nearly the same net resistance,

therefore we present our results here versus net porosity rather than net resistance.

Figure 4.5(a) illustrates our results, plotting maximum throughput versus initial pore

porosity φ̄m0 = π/4
∫ 1

0
a(x, 0)2dx for linear, quadratic and cubic initial pore profiles.

Though we here consider only low-order polynomials, our results indicate that in

the intermediate porosity range, increasing the order of the polynomial describing

the pore shape can lead to a reasonable increase (over 10%) in total throughput.

(Total throughput can only increase as the degree of the polynomial is increased, as

a polynomial of degree n is a special case of a polynomial of degree n + 1). It is

observed, however, that when initial pore porosity is small (close to zero) or large

(close to π/4) the performance is almost independent of the polynomial degree. In

addition, for fixed initial porosity, the difference between maximum throughput for
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quadratic and cubic initial pore profiles is slightly less than the difference between

the maximum throughput for linear and quadratic initial pore profiles, hinting (as

would be expected) at a convergence of performance to some global optimum as the

degree of the approximating polynomial is increased.

The shapes of some optimum initial pore profiles in the class of linear, quadratic

and cubic polynomials are shown in Figure 4.5(b) for selected initial pore porosities

φ̄m0 = 0.2 and 0.4 (we chose these values in order to distinguish the graphs easily).

Consistent with the observations of Figure 4.2(f), the optimal profile among all of the

three initial profiles, is widest at the upstream membrane surface (the cubic profile).

Note that as the initial dimensionless porosity increases, the shape of the optimal

initial pore profile converges to the linear one. Since most membranes in widespread

use are rather permeable, these results suggest that, even though membrane pore

morphology is very complex in reality, optimizing only within the restricted class of

linear pore profiles should provide a reasonable guide: consideration of a larger class

of pore profiles yields only marginal improvements.



CHAPTER 5

MEMBRANE FILTRATION WITH COMPLEX BRANCHING PORE

MORPHOLOGY

5.1 Introduction

The goal of the present chapter is to extend the scope of the work outlined in

Chapter 3, deriving a general pore branching model that accounts for a wide range

of membrane internal geometries, and that allows for fouling by particle adsorption

within pores. The chapter is laid out as follows: in Section 5.2, we introduce a

mathematical model for flow through a membrane with internal branching structure,

and propose the adsorptive fouling model (a semi-discrete version of our earlier

continuum model in Chapter 3 ( [48])). In Section 5.3, we introduce appropriate

scalings and nondimensionalize the model. Sample simulations, which demonstrate

the important effects of pore geometry and branching features, are presented in

Section 5.4. Finally, we conclude in Section 5.5 with a discussion of our model and

results in the context of real membrane filters.

5.2 Mathematical Modeling

The modeling throughout this chapter (as in Chapter 3) assumes that the membrane is

flat and lies in the (Y, Z)-plane, with unidirectional Darcy flow through the membrane

in the positive X-direction. The membrane properties and flow are assumed

homogeneous in the (Y, Z)-plane, but membrane structure may vary internally in

the X-direction (depth-dependent permeability) thus we seek a solution in which

properties vary only in X and in time T . Throughout this section, we use uppercase

fonts to denote dimensional quantities; lowercase fonts, introduced in Section 5.3, will

be dimensionless.

96
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P. Apel / Radiation Measurements 34 (2001) 559–566 563

Fig. 2. A few examples of porous structures produced in thin polymeric !lms using various methods of irradiation and chemical treatment: (A)
cross section of a polycarbonate TM with cylindrical non-parallel pore channels; (B) polypropylene TM with slightly conical (tapered towards
the center) parallel pores; (C) polyethylene terephthalate TM with cigar-like pores; (D) polyethylene terephthalate TM with “bow-tie” pores.

pores can be modi!ed by covalent binding of charged groups
or by adsorption of ionic polyelectrolytes (Froehlich and
Woermann, 1986). The immobilization of aminoacids to the
PET track membranes based on the reactions of end carboxyl
and hydroxyl groups was reported (Marchand-Brynaert
et al., 1995; Mougenot et al., 1996). However, the surface
density of the immobilized in this way species is rather
low.
The radiation-induced graft polymerization onto track

membranes is a process which has been studied in more
detail (Zhitariuk et al., 1989; Zhitariuk, 1993; Tischenko
et al., 1991; Shtanko and Zhitariuk, 1995). Styrene (St),
methacrylic acid (MAA), N -vinyl pyrrolidone (VP),
2-methyl 5-vinyl pyridine (2M5VP), N -isopropyl acryl-
amide (NIPAAM) and some other monomers have been
grafted onto PET track membranes. Grafting of St in-
creases the chemical resistance and makes the membrane
hydrophobic. MAA and VP were grafted onto TMs to in-
crease wettability which is especially important when aque-
ous solutions are !ltered through small-pore membranes.
2M5VP was grafted with the aim to make the membrane
hydrophilic and change its surface charge from negative to
positive. During the past decade the grafting of NIPAAM
and other intelligent polymers were extensively studied in
the research work carried out at TRCRE (Takasaki) and
GSI (Darmstadt) (Yoshida et al., 1993, 1997; Reber et al.,
1995).

7. Applications

Applications of commercially produced track membranes
can be categorized into three groups: (i) process !ltration;
(ii) cell culture; (iii) laboratory !ltration. The process !l-
tration implies the use of membranes mostly in the form
of cartridges with a membrane area of at least 1 m2. Pu-
ri!cation of deionized water in microelectronics, !ltration
of beverages, separation and concentration of various sus-
pensions are typical examples. There is a strong competi-
tion with other types of membranes available on the mar-
ket. Casting membranes often provide a higher dirt load-
ing capacity and a higher throughput. For this reason the
use of track membranes in this !eld is still limited (Brock,
1984).
In the recent years a series of products were de-

veloped for the use in the domain called cell and tis-
sue culture (Stevenson et al., 1988; Sergent-Engelen
et al., 1990; Peterson and Gruenhaupt, 1990; Roth-
man and Orci, 1990). Adapted over the years to a va-
riety of cell types, porous membrane !lters are now
recognized as providing signi!cant advantages for cul-
tivating cells and studying the cellular activities such
as transport, absorption and secretion (van Hinsbergh
et al., 1990). The use of permeable support systems based
on TMs has proven to be a valuable tool in the cell biology
(Costar=Nuclepore Catalog, 1992).

(a) (b)

Figure 5.1 Magnified membranes with various pore distributions and sizes ((a) is

from [4], (b) is from [27]). Photograph (b) has width 10 µm.

As discussed in Chapter 3, the superficial Darcy velocity U = (U(X,T ), 0, 0)

within the membrane is given in terms of the pressure P by

U = −K(X,T )

µ

∂P

∂X
,

∂

∂X

(
K(X,T )

∂P

∂X

)
= 0, 0 ≤ X ≤ D, (5.1)

where K(X,T ) is the membrane permeability at depth X and D is the thickness of

membrane. Two driving mechanisms are used in applications: (i) constant pressure

drop across the membrane specified; and (ii) constant flux through the membrane

specified. In the former case, the flux will decrease in time as the membrane becomes

fouled; in the latter, the pressure drop required to sustain the constant flux will

rise as fouling occurs. We will focus on case (i) in this chapter, and so assume this

in the following model description. With constant pressure drop P0, the boundary

conditions on the pressure are

P (0, T ) = P0, P (D,T ) = 0. (5.2)

In this chapter, we consider only one of the three fouling mechanisms described

earlier: fouling due to particle adsorption within the membrane pores (also known

as “standard blocking”). Though pore-blocking and cake formation are not difficult

to incorporate in our model, including them here will make it harder to draw firm

conclusions about the effects of pore branching, hence we leave these for a future study.

We consider a feed solution containing small particles (much smaller than the pore

diameter), which are transported down pores and may be deposited on the internal
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pore walls. In Chapter 3 (also see [48]), we modeled the filter membrane as a periodic

lattice of identical axisymmetric pores, which traverse the membrane from upstream

to downstream side, with radius varying in the depth of the membrane. In reality, as

noted before, most membranes have a much more complex structure: Figure 5.1 shows

just two examples of filter membrane cross-sections. Many membranes have depth

structure that varies from large pores on the upstream side to much smaller pores on

the downstream side, and large pores may branch into several smaller pores as the

membrane is traversed. To begin to address this type of complexity, we will construct

a simplified model in which a membrane consists of units that repeat periodically in

the plane of the membrane in a square lattice pattern, with period 2W . Within each

lattice unit, we assume that the membrane has a layered structure, exemplified by

the sketch in Figure 5.2: here the period-unit consists of a single circularly-cylindrical

pore on the upstream side which, after a distance D1, bifurcates into smaller tubes

(pores). Each of these then undergoes further bifurcation after distance D2, and

so on. This sequence of divisions generates a membrane with m layers, each layer

containing twice as many pores as the previous layer. Clearly, many possible variants

on this basic scenario could be imagined, including pores that recombine downstream:

our model will readily generalize to other cases. We will consider two scenarios in

this chapter: (i) a symmetric branching model, in which the pores within each layer

are identical; and (ii) an asymmetric branching model. We will focus primarily on

case (i) in this chapter and outline the model in detail in Section 5.2.1 below; our

description for the asymmetric branching model requires minor modifications, shown

in Section 5.2.2.

5.2.1 Symmetric Branching Model

In this case, we consider all pores within a given layer to be identical, circularly-

cylindrical, and perpendicular to the plane of the membrane. A simple case with 3
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layers is schematized in Figure 5.2: each branching unit is assumed to stem from a

single pore on the upstream surface. Ignoring the effect of the short pore regions that

are not perpendicular to the membrane, this layered structure can be modeled using

the Hagen-Poiseuille model: an individual pore in layer i of radius Ai has resistance

per unit length Ri = 8/(πA4
i ). Within a branching unit the mth layer contains Mi

pores, and has depth Di (for the case where only bifurcations of pores are allowed,

Mi = 2i−1). Mass conservation shows that the averaged pore velocity in the ith layer,

Ūp,i (the cross-sectionally averaged axial velocity within each pore in layer i), satisfies

∂(πA2
i Ūp,i)

∂X
= 0. (5.3)

Assuming a uniform pressure gradient across each layer (equivalent to the assumption

that pores have uniform radius within each layer), the Darcy velocity Ui in the ith

layer satisfies, approximately (defining D0 = 0 for convenience),

(2W )2Ui(X) = − Mi

µRi

Pi − Pi−1

Di

,
i−1∑
j=0

Dj ≤ X ≤
i∑

j=1

Dj, 1 ≤ i ≤ m, (5.4)

where Pi (1 ≤ i ≤ m−1) are the unknown inter-layer pressures within the membrane

(P0 is the specified driving pressure and Pm = 0). By continuity, all Ui must be equal

to the global Darcy velocity U , hence (5.4) represents m equations for U and the

unknown Pi. Solving successively for Pi we obtain

(2W )2U =
P0

µR
, where R =

m∑
i=1

DiRi

Mi

and Ri =
8

πA4
i

. (5.5)

Equation (5.5) is an expression that captures the net resistanceR of the microstructured

membrane. Note that the superficial Darcy and cross sectionally averaged pore

velocities for each layer are related by

(2W )2U = πMiA
2
i Ūp,i, 1 ≤ i ≤ m, (5.6)

by a simple flux-balance argument, consistent with (5.1) and (5.3).
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Figure 5.2 Symmetric branching structure with 3 layers (m = 3), of thicknesses D1, D2,

D3 and specified pressure drop P = P0.

The model outlined above gives a reasonable description of Darcy flow through

a membrane with the specified microstructure, but says nothing about fouling of such

a membrane. Our fouling model is similar in spirit to some of Chapter 3 (also see

[48]), which used careful averaging over the pore cross-section to derive an advection

equation for the concentration of small particles within the pores, with a sink term

modeling the adsorption at the pore wall (details are provided in Chapter 3). The

direct analog of that model for pores in each sub-layer of the membrane is

Ūp,i
∂Ci
∂X

= −Λ
Ci
Ai
,

i−1∑
j=0

Dj ≤ X ≤
i∑

j=1

Dj, 1 ≤ i ≤ m, (5.7)

where Ci is the particle concentration in the pores of the ith layer, to be solved subject

to specified particle concentration at the inlet,

C0(T ) = C0, (5.8)

and continuity of particle concentration from one layer to the next, Ci(T ) = Ci+1(T ).

The (dimensional) constant Λ captures the physics of the attraction between particles

and wall that is causing the deposition (for details see Appendix B). The pore radius
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in each layer shrinks in response to the deposition according to

∂Ai
∂T

= −ΛαCi, 1 ≤ i ≤ m, (5.9)

for some constant α (related to the particle size), which simply assumes that the pore

cross-sectional area shrinks at a rate given by the total area of particles deposited

locally. The initial pore radii are specified throughout the membrane,

Ai(X, 0) = Ai,0,

i−1∑
j=0

Dj ≤ X ≤
i∑

j=1

Dj, 1 ≤ i ≤ m, (5.10)

where Ai,0 is the (constant, specified) initial radius of the pore in the ith layer.

In a membrane with many layers, the above system can be time consuming

to solve numerically. However, in such situations we anticipate that the length

of pores between successive bifurcations is short relative to the typical lengthscale

of gradients in Ci (estimated from (5.7)), corresponding to an assumption that

32ΛµD2/(πP0W
3) � 1. We thus propose a simplified model using (5.7), in which

Ci is piecewise constant in X, changing its value only at pore bifurcations (so we no

longer enforce continuity at the boundary between adjacent layers). This assumption

also implies that Ai will be independent of X (see (5.9)). A simple finite-difference

approximation of (5.7) gives

Ūp,i
Ci − Ci−1

Di

= −Λ
Ci
Ai
, 1 ≤ i ≤ m, (5.11)

where the cross-sectionally averaged axial velocity within each pore in layer i, Ūp,i, is

given by (5.5) and (5.6) as

Ūp,i =
P0

πµMiA2
iR
, 1 ≤ i ≤ m. (5.12)
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This allows the particle concentration Ci in the pores of the ith layer to be expressed

in terms of the concentration in the previous layer as

Ci =
Ūp,iCi−1

Ūp,i + ΛDi/Ai
, 1 ≤ i ≤ m. (5.13)

As noted previously, this model describes the case of fouling by standard blocking

(particle adsorption) only.

5.2.2 Asymmetric Branching Model

The model above has the simplifying feature that all pores in a given layer are identical

initially and thus, given the deterministic nature of our fouling model, remain so at

later times. Real membranes do not possess such symmetry, hence we now formulate

a more realistic model in which pores in the same layer are non-identical. The same

basic layered structure is assumed however, in which a single pore at the upstream

surface bifurcates into two smaller (non-identical) tubes after distance D1, and so on.

The sequence of divisions generates a membrane with m layers, each containing twice

as many pores as the previous one; thus there are again Mi = 2i−1 pores in layer i.

These pores in general all have different radii, which we denote by Aij, 1 ≤ j ≤ 2i−1

(the radius of the jth pore in layer i). The pressures at either end of this pore will be

Pij at the downstream end, and Pi−1,[j+1/2]
1 at the upstream end (see Figure 5.3 for

a simple schematic in the case of 3 layers). In the first layer i = 1, there is just one

pore of radius A11, with upstream pressure P01 = P0 specified. Ūp,ij represents the

cross sectionally averaged velocity of the fluid in the jth pore in layer i, and satisfies,

approximately,

πA2
ijŪp,ij = − 1

µRij

Pij − Pi−1,[ j+1
2

]

Di

, 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1, (5.14)

1The floor function [x] is the greatest integer less than or equal to x.



103

2W

D
3

P=P
0

A
31

A
33

A
21

D
2

D
1

A
22

A
34

11
P

22
PP

21

A
11

A
32

P=0

Figure 5.3 Asymmetric branching structure with 3 layers (m = 3), thicknesses D1, D2,

D3, and specified pressure drop P = P0. The radius of the jth pore in layer i and the

pressure at the downstream end of this pore are Aij and Pij , respectively.

where Rij = 8/(πA4
ij) is the resistance per unit length of the jth pore in layer i. By a

simple flux balance argument, the superficial Darcy velocity, U , across the membrane

is related to the pore velocities in each layer by

(2W )2U = πA2
11Ūp,11,

πA2
ijŪp,ij = πA2

i+1,2j−1Ūp,i+1,2j−1 + πA2
i+1,2jŪp,i+1,2j, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ 2i−1.

(5.15)

If the pore radii are specified then equations (5.14), (5.15) represent 2m + 2m−1 − 1

equations in 2m+2m−1−1 unknowns, consisting of U , Ūp,ij (1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1)

and Pij (1 ≤ i ≤ m− 1, 1 ≤ j ≤ 2i−1), hence they can be solved. Consistent with the

adsorption fouling model proposed in (5.13) we now have

Cij =
Ūp,ijCi−1,[ j+1

2
]

Ūp,ij + ΛDi/Aij
,

∂Aij
∂T

= −ΛαCij, 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1, (5.16)
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where Cij is the average particle concentration of the jth pore in layer i. We solve

the model (5.14), (5.15) and (5.16) subject to C01 = C0, P01 = P0, Pmj = 0 for

1 ≤ j ≤ 2m−1, with Aij(0) for 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1 all specified.

5.3 Scaling and Nondimensionalization

Symmetric Branching Model:

We nondimensionalize the model (5.2)–(5.12), using the scalings

Pi = P0pi, (X,Di) = D(x, di), Ci = C0ci, Ai = Wai,

(U, Ūp,i) = πW 2P0

32µD
(û, ˆ̄up,i), T = W

ΛαC0
t,

(5.17)

whereD =
∑m

i=1Di is the membrane thickness. This gives the following dimensionless

model for û(t), ˆ̄up,i(t), pi(t), ai(t), ci(t) (dimensionless Darcy velocity, cross-sectionally

averaged pore velocity, inter-layer pressures, pore radii and cross-sectionally averaged

particle concentration in the ith layer, respectively):

û =
1∑m

i=1 di/(Mia4
i )
, û =

π

4
Mia

2
i
ˆ̄up,i, (5.18)

ci =
ˆ̄up,ici−1

ˆ̄up,i + λ̂di/ai
, λ̂ =

32ΛµD2

πP0W 3
, (5.19)

∂ai
∂t

= −ci, (5.20)

with boundary and initial conditions

c0(t) = 1, ai(0) = a0i, p0(t) = 1, pm(t) = 0, (5.21)

where 1 ≤ i ≤ m, and a0i ∈ (0, 1) are specified.
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Using equation (5.18), one can define a dimensionless membrane resistance r̂(t)

consistent with (5.5), as

r̂(t) =
m∑
i=1

di
Mia4

i (t)
, (5.22)

Note that, while this definition is in a sense “natural”, typically it leads to very large

values for r̂ and as a consequence, very small values for û = 1/r̂, specifically in the

membrane with many layers and tiny branches in the downstream. Our initial choice

for the scalings in (5.17) makes sense based on a single pore (see Chapter 3 ( [48]))

but is not appropriate for a system with multiple layers and branching. Hence, we

make a further rescaling based on a typical value, r̂0, of the resistance as defined in

(5.22). In most cases we may take r̂0 to be the initial dimensionless resistance, since

we will often compare equal resistance systems (see Section 5.4 later). Therefore, we

define

r =
r̂

r̂0

, u = r̂0û, λ = λ̂r̂0, (5.23)

where r, u and λ are the new dimensionless resistance, Darcy velocity and particle-wall

attraction coefficient, respectively. Using these new scalings, (5.18), (5.19) and (5.22)

give

r(t) =
1

r̂0

m∑
i=1

di
Mia4

i (t)
, (5.24)

u =
1

r
, u =

π

4
Mia

2
i ūp,i, (5.25)

ci =
ūp,ici−1

ūp,i + λdi/ai
, λ =

32ΛµD2r̂0

πP0W 3
, (5.26)

while (5.20) and (5.21) still hold.
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Asymmetric Branching Model:

We nondimensionalize the model (5.14)–(5.16), using the same scalings in (5.17) and

(5.23), giving the following dimensionless model for u(t), ūp,ij(t), pij(t), aij(t), cij(t)

(dimensionless Darcy velocity, cross-sectionally averaged pore velocity, inter-layer

pressures, pore radii and cross-sectionally averaged particle concentration within the

jth pore in layer i, respectively):

4u = πa2
11ūp,11, a2

ijūp,ij = a2
i+1,2j−1ūp,i+1,2j−1 + a2

i+1,2jūp,i+1,2j, (5.27)

ūp,ij = − 4

π
a2
ij

pij − pi−1,[ j+1
2

]

di
, (5.28)

cij =
ūp,ijci−1,j

ūp,ij + λdi/aij
, λ =

32ΛµD2r̂0

πP0W 3
, (5.29)

∂aij
∂t

= −cij, (5.30)

where 1 ≤ i ≤ m, 1 ≤ j ≤ 2i−1. We solve the model (5.27)–(5.30) subject to boundary

and initial conditions

c01(t) = 1, aij(0) = a0ij, p01(t) = 1, pmj = 0 for 1 ≤ j ≤ 2m−1, (5.31)

where 0 < a0ij < 1 are specified.

5.4 Results

In this section, we present some simulations of the models (5.20), (5.21), (5.24)–

(5.26) and (5.27)–(5.31) described in Section 5.3 above, paying particular attention

to how results depend on the branch configuration. Our model contains only one

dimensionless parameter, λ, which captures the physics of the attraction between

particles and the pore wall. The value of this parameter is unknown, and may vary
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widely between systems depending on the detailed structure of the filter membrane

and on the nature of the feed solution. In the absence of firm data we take λ = 30 for

most simulations, and briefly investigate the effect of varying λ later in Figure 5.6.

We present results first for the case of symmetric branching (model (5.20),

(5.21), (5.24)–(5.26)) before turning our attention to the more complex asymmetric

branching model (equations (5.27)–(5.31)).

5.4.1 Symmetric Branching Model Results

For simplicity, we consider all of the layers to be equally spaced, therefore di = 1/m.

As noted previously, for the simple “bifurcating pore” model Mi = 2i−1 for 1 ≤ i ≤ m,

therefore (5.24) gives

r(t) =
m∑
i=1

1

m2i−1a4
i (t)

. (5.32)

In order to make a meaningful comparison, we run simulations for pore structures

that have the same initial membrane resistance r0 = r(0). This means that we are

comparing membranes that perform identically when no fouling occurs – they would

give identical performances when filtering pure water under the same applied pressure

drop.

Furthermore, in order to keep the number of variable parameters small, we

assume that initial pore radius decreases geometrically in the depth of membrane;

that is, we take a0i = a1(0)κi−1 to be the radius of the pores in the ith layer, where

a1(0) is the initial radius of the pore in the first layer and κ is the geometric ratio.

Therefore, by fixing the initial resistance r0 (as defined by (5.32)) and varying the

geometric coefficient κ, we can investigate a wide range of membrane morphologies

(the radius of the pore in the top layer will be fixed for each κ-value chosen, since

r(0) = r0 is specified; specifically, as κ increases, the initial pore radius in the top
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Figure 5.4 Symmetric branching model: The pore radius evolution in each layer

(indicated in the legends) with the same initial resistance r0 = 1, when the initial radius

of the pores in the layers are geometrically decreasing, for different geometric coefficient

κ: (a) 0.6, (b) 0.65, (c) 0.707, (d) 0.75, (e) 0.8. (f) and (g) show total flux and particle

concentration at outlet vs throughput; respectively, for these geometric coefficients with

λ = 30 and m = 5.
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Figure 5.5 Maximum throughput versus geometric coefficient κ with λ = 30, (a) for

several different values of dimensionless initial resistance r0 with number of layers m = 5

(b) for several different number of layers m in symmetric branching configurations with

r0 = 6.66.

layer must decrease and vice-versa, in order to keep the total membrane resistance

fixed).

The main results are shown in Figure 5.4: we simulate the model (5.20), (5.21),

(5.24)–(5.26) for several different values of the geometric coefficient (κ = 0.6, 0.65,

0.7, 0.75 and 0.8), with parameter λ = 30, number of layers m = 5, and initial

membrane resistance r0 = 1. Figures 5.4 (a)-(e) show the pore radius ai(t) in each

layer versus time. A striking feature of these plots is that pore closure occurs first at

the upstream membrane surface layer, at least for the model parameters considered

here. In addition, the closure time, which is the time at which the membrane no

longer permits flow and filtration ceases (here, the time at which the first layer pore

radius becomes zero), varies with the geometric coefficient. Our model predicts that

the smaller the geometric coefficient, the larger the closure time; this appears to be

primarily because the pore radius in the first layer is wider for a branch with a smaller

geometric coefficient, and this is always the pore that closes first.

Figure 5.4 (f) shows flux-throughput graphs for the membrane structures of

Figures 5.4 (a)-(e). The flux-throughput graph plots the instantaneous flux through

the membrane at any given time versus the total volume of filtrate processed at that
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time (throughput), and is a common experimental characterization of membrane filter

performance. Since the flux is directly proportional to the averaged Darcy velocity, we

define dimensionless flux for our model by q(t) = u(0, t); throughput is then defined

by
∫ t

0
q(t′)dt′. We plot these curves, for each of the five chosen values of the geometric

coefficient, in Figure 5.4(f). The graphs collectively demonstrate that, although all

branch structures give the same initial average membrane resistance, they exhibit

significant differences in performance over time. In particular, for the chosen model

parameters, branch structures with wider pores in the top layer (upstream side) give

notably better performance overall according to this performance measure, with more

filtrate processed under the same conditions. The minimum total throughput is given

by the branch structure with the narrowest pore on the upstream side, exhibiting

rapid pore closure (κ = 0.8; this is most uniformly permeable membrane of those

considered). Our results here are broadly consistent with our findings in our previous

non-branching pore model in Chapter 3 (also see [48]). In Chapter 3, we also found

that, with the same initial average membrane resistance, membranes whose pores are

widest on the upstream side give notably better performance overall (more filtrate

processed under the same conditions) and the membrane with least total throughput

is that whose pores are initially narrowest on the upstream side.

Another key consideration in evaluating membrane performance is the concen-

tration of particles remaining in the filtrate as it exits the membrane, cm(t) = c(1, t):

in general a lower particle concentration at the outflow side of the membrane indicates

superior separation efficiency for the filter membrane. Figure 5.4(g) plots cm(t)

versus throughput for each of the given geometric coefficients. The results here are

qualitatively consistent with those of the flux–throughput graphs of Figure 5.4(f); in

particular, for a given “tolerance” value of the particle concentration at the outlet,

membranes with narrow pores in the first layer of the branching network (or with

larger geometric coeficient κ) always give less total throughput than those whose
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Figure 5.6 Maximum throughput (a) and initial particle concentration at pore outlet

cm(0) (b) versus geometric coefficient κ for several different values of λ in symmetric

branching configurations with m = 5 and r0 = 1.

pores are wider on the upstream side (again, initial resistance is the same for all

membranes compared).

Figures 5.5(a) and (b) further illustrate our results, plotting throughput versus

the geometric coefficient for several different scenarios. In Figure 5.5(a) the number of

layers is fixed, m = 5, and total throughput is plotted versus the geometric coefficient,

for several different values of the membrane resistance r0. Note that at low membrane

resistance, where pores must be large, the range of realizable geometric coefficients is

limited. Needless to say, as initial membrane resistance increases, the performance of

the filter (as measured by total throughput) decreases. Consistent with our results

in Figure 5.4 for fixed initial resistance, a larger geometric coefficient results in less

total throughput.

In Figure 5.5(b), the dimensionless initial resistance is fixed at r0 = 6.66, and

throughput is again plotted as a function of geometric coefficient for several different

values of m (the number of layers in the structure). Note that, with the assumed

form of the branching geometry, a structure with more layers tends to have a higher

resistance (for a given geometric coefficient κ, pores in the lower layers become very

small). Therefore, in order to access a wide range of geometric coefficients with a

many layered structure, we ensure that the value of the dimensionless resistance r0
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is chosen sufficiently large (see (5.32)). Our results here indicate that for a fixed

geometric coefficient and fixed resistance, better performance is obtained by the

branch configuration with more layers. (Note that in order to fix both the geometric

coefficient and the resistance while increasing the number of layers, the size of the

pore in layer 1, a1(0), must increase.)

It is also of interest to study the influence of the dimensional deposition

coefficient Λ on results. This coefficient appears in our choice of timescale: T =

W/(ΛαC0)t, as well as in the dimensionless parameter λ = 32ΛµD2r̂0/(πP0W
3)

(see (5.17) and (5.29)), therefore when we change Λ, we must also rescale time in

simulations. Figure 5.6(a) illustrates the effect of changing λ, plotting throughput

versus the geometric coefficient for several different values of the deposition coefficient

λ, while the dimensionless initial resistance is fixed at r0 = 1 for a symmetric

branching configuration with m = 5 layers. Here again, our results show that for

all values of λ considered, the maximal total throughput is achieved at the smallest

geometric coefficient; equivalently, at fixed initial resistance the optimum throughput

is obtained for the branch configuration with pores as wide as possible in the first

layer (the highest permeability gradient). Figure 5.6 (b) shows the initial particle

concentration at the pore outlet, cm(0) = c(1, 0), versus the geometric coefficient, for

several different values of λ with m = 5 and r0 = 1. As shown, for larger values of λ

there is little variation in cm(0), but at smaller values of λ, the geometric coefficient

κ can have a significant effect on the proportion of particles removed. A common

observation among all graphs in Figure 5.6(b) is the existence of a local maximum

in cm(0) as κ is increased, located somewhere between 0.7 and 0.8. We note that

the value κ = 1/
√

2 corresponds to a membrane of uniform porosity in the depth

of the filter, suggesting that filters with either decreasing or increasing porosity in

the membrane depth are preferable to those of uniform porosity as regards particle

removal.
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5.4.2 Asymmetric Branching Model Results

Since the symmetric branching geometry is highly idealized, we also briefly study

asymmetric branching pore structures in a simple sub-case, where the same layered

structure is assumed, but the pores in the second layer are non identical, and in

subsequent layers the whole structure divides into two sub-branches, left and right,

with pores decreasing geometrically in the depth of membrane with geometrical

coefficients κL and κR, respectively. Consequently the total dimensionless membrane

resistance is given by

r(t) = r1(t) +

(
1

rR(t)
+

1

rL(t)

)−1

, (5.33)

where r1(t), rR(t) and rL(t) are resistances of the first layer, right and left sub-

branches respectively, and can be obtained as

r1(t) =
1

ma4
1(t)

, rR(t) =
1

m

m∑
i=2

1

2i−2aR4
i (t)

, rL(t) =
1

m

m∑
i=2

1

2i−2aL4
i (t)

, (5.34)

with

aRi(0) = a1(0)κi−1
R , aLi(0) = a1(0)κi−1

L , for 2 ≤ i ≤ m, (5.35)

where a1 is the radius of pore in the first layer, aRi and aLi are the ith layer pore

radii in the left and right sub-branches, respectively. Equation (5.33) is analogous to

Kirchhoff’s circuit laws and can be easily obtained using our basic flow model plus

appropriate continuity equations (see (5.4)).

In Figures 5.7 (a)–(e), we present simulations where the ratio of right and left

branch geometric is fixed as κR/κL = 0.8, and vary the radius of the top pore as

for the symmetric branching model results of Figures 5.4 (a)-(e). The dimensionless

deposition coefficient is set to λ = 30, the number of layers is fixed at m = 5, and

the initial dimensionless membrane resistance (defined in (5.33)) is r(0) = r0 = 1.

Similar to the symmetric branching model, pore closure occurs first in the top layer
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Figure 5.7 Asymmetric branching model: The pore radius evolution in each layer

(indicated in the legends) with the same initial dimensionless resistance r0 = 1 for the

asymmetric case with the ratio of right and left branch geometric coefficients κR/κL = 0.8.

Results are shown for different values of the first layer pore initial radius a1(0): (a) 0.2512,

(b) 0.1887, (c) 0.1472, (d) 0.1194, (e) 0.1008. (f) shows total flux vs throughput for these

first layer initial pore radii (red curves) and also for the corresponding symmetric cases of

Figure 5.4(a)-(e) (same initial values of top pore radius and net membrane resistance). (g)

shows particle concentration at outlet cm(t) versus throughput for the left (black curves)

and right (red curves) sub-branches, respectively, with λ = 30 and m = 5.
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Figure 5.8 Asymmetric case: maximum throughput versus geometric coefficient ratio

κR/κL, for several branching structures with different initial top pore radius and the same

r0 = 1, λ = 30 and m = 5.

for all cases, at least for the parameters used here. Furthermore, in all cases shown,

the time to total blockage (the duration of the filtration process) is the same as the

symmetric branching structure, since the blocking first happen in the first layer.

Figure 5.7 (f) illustrates the flux-throuput characteristics for this asymmetric

case and comparing to the corresponding symmetric case (with the same initial values

for the top pore radius and net resistance; see Figure 5.4(f)). Our results here indicate

that breaking symmetry reduces efficiency: all asymmetric cases considered lead to

less total throughput than the corresponding symmetric case. Figure 5.7 (g) shows

particle concentration at outlet cm(t) versus throughput for the left (black curves)

and right (red curves) sub-branches; respectively, for the above given parameters. As

shown here, the particle concentration downstream in the narrower (right) sub-branch

is much less than that in the left sub-branch.

To attempt to characterize the effect of breaking symmetry on filtration

performance, we plot maximum throughput versus geometric coefficient ratio κR/κL

in Figure (5.8) for branching structures with m = 5 layers, the deposition coefficient

λ = 30 and the total initial resistance r(0) = r0 = 1. The geometric coefficient

ratio κR/κL ∈ (0, 1] (with no loss of generality, κR ≤ κL) characterizes the degree
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of asymmetry, with a value of 1 being the symmetric case, and asymmetry increases

as the ratio approaches zero. For each of the graphs in Figure (5.8), we fixed the

first layer initial pore radius (as presented in the legend) then varied the value of

κR/κL while keeping initial total resistance fixed at r0 = 1. The results confirm

the hypothesis suggested by the previous simulations: as the degree of asymmetry

increases, filtration efficiency (as measured by total throughput over the filter lifetime)

decreases. This effect is more prominent for those branching structures with larger

pores in the top layer. Breaking the symmetry for those structures with smaller pores

on top does not affect the performance very much.

5.5 Conclusions

We have presented a simple model to quantify the effects of membrane morphology

on separation efficiency and fouling of a membrane filter. Our model accounts for

Darcy flow through a simple bifurcating pore structure within the membrane, and

for fouling by particle adsorption within pores. Our model contains one parameter

that may be difficult to measure for a given system: the dimensionless attraction

coefficient, λ, between the membrane-pore wall, and the particles carried by the feed

solution. In principle, this could be estimated by fitting to a reliable dataset, but

since it depends on properties of both membrane and feed solution, it will vary from

one membrane-feed system to another.

The focus in this chapter is on development of a model that can be used

to quantify the performance of a membrane filter in terms of its pore-branching

characteristics. The internal morphology of real membranes is undoubtedly highly

complex: here we focus mainly on a simple symmetric branching pore structure

characterized by a geometric coefficient κ (which quantifies how pore size changes

in the depth of the membrane) and by initial total membrane resistance r0 (once κ

and r0 are fixed for a symmetric bifurcating pore structure, the radii of all pores
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are determined). We briefly consider the effect of introducing a restricted type

of asymmetry in Section 5.3, where the same layered structure (as described in

symmetric branching structure) is assumed, but the pores in the second layer are non

identical, and in subsequent layers the whole structure divides into two sub-branches,

left and right, with pores decreasing geometrically in the depth of membrane.

Our results simulating filtration at constant pressure drop indicate that such

variations in branching structure lead to different fouling patterns within the

membrane. More importantly, if the initial pore radius at the top of membrane

is large, it can give rise to a marked improvement in filter performance, as quantified

by the total amount of filtrate processed under the same operating conditions. This

is true for both symmetric and asymmetric branching structures, as shown by Figures

5.4(f) and 5.7(f), respectively while the total initial membrane resistance for all of

configurations is identical. Our model also illustrates how results change as the degree

of asymmetry changes, which is characterized by introducing the geometric coefficients

ratio κR/κL, for right and left sub-branches, respectively. Our results in Figures 5.7(f)

and 5.8 show how, as symmetry is broken, the filter performance (described above)

deteriorates.

All simulations are carried out for constant pressure drop across the membrane.

Our results for the symmetric membrane case indicate that smaller values of the

geometric coefficient, corresponding to greater variation in pore size in the depth of

the membrane (with larger pores always on top) lead to superior outcomes in terms

of both total throughput and particle capture. Preliminary results for asymmetric

branching structures suggest that any asymmetry will lead to decreased filtration

performance as measured by total throughput over the filter lifetime.



CHAPTER 6

FUTURE WORK

In this chapter, we discuss our ongoing and future work plans, outlining the modeling

directions currently being pursued, as well as possible future modeling ideas. In

general, future works focus on (i) calibrating and testing the present model against

reliable experimental data; (ii) exploring reasonable model parameter space to identify

optimum performance within industrial constraints; (iii) considering stochasticity,

such as particle interactions in our modeling; and (iv) refining the models presented

in Chapters 2, 3, 4 and 5. Model refinement will follow several directions as discussed

below:

6.1 Pleated Filter Membrane

Model refinement for pleated filter membranes will follow several directions: (a)

improving the description of the membrane, from its current characterization in

terms of identical cylindrical pores by adding the work described in Chapter 3 to the

model of Chapter 2; (b) improving the model for particle adsorption within pores; (c)

expanding the model to allow for caking, which occurs in the late stages of membrane

fouling (such work, at least in the pleated filter application, can draw on the modeling

and ideas of [33]); (d) quantifying membrane performance also in terms of proportion

of impurities removed from the feed solution; and (e) using a more realistic (if still

idealized) representation of the cartridge geometry.

6.2 Effects of Particle Diffusion

During our earlier investigations in Chapters 3 and 4, we simplified our modeling

by ignoring the role of diffusion in the particle concentration equation, assuming

that its effect is negligible compared with that of particle advection, and that of

118
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the interactions between membrane pores and particles which cause the particles to

adhere to the membrane. It is possible that in certain situations diffusion could play

an important role (e.g., in a very slow filtration process, or during the late stages

of filtration when the flow rate is naturally very low due to high levels of fouling).

Therefore, another avenue for future work is investigating the possible effects that

particle diffusivity can have on the filtration process.

6.3 Branching Model

Though our model represents an important first step in systematically accounting

for internal membrane complexity, it must be emphasized that real membranes have

much more complex structure than that considered here; and that in reality multiple

fouling modes are operating simultaneously (our model neglects blocking of pores by

particles larger than them, and the caking that occurs in the late stages of filtration).

In future work, we plan to address more complicated pore morphologies, and scenarios

with multiple fouling modes operating simultaneously.



APPENDIX A

NON-PLEATED MEMBRANE MODEL

In our simulations, we compared the performance of our pleated filter model to that

of the closest equivalent non-pleated membrane filter. The scenario we consider for

the unpleated membrane is a three-layer sandwich (support layer in H ≥ Y ≥ D/2;

filter membrane in D/2 ≥ Y ≥ −D/2; support layer in −D/2 ≥ Y ≥ −H) through

which unidirectional flow is driven by an imposed pressure drop, with P+(X,H) = P0

and P−(X,−H) = 0 (all notation here is as introduced in Section 2.2.2). The support

layer permeability is here considered constant, K = Kav, and flow is perpendicular to

the membrane (“dead end” filtration). Due to the uniformity of conditions along the

X-axis, the problem is independent of X, so the support layer permeability Km will

vary only in time. We again assume Darcy flow through both support layers, with

continuity of flux across the membrane, which sustains a pressure drop according to

its permeability.

We introduce the same scalings and nondimensionalization as in Section 2.2.3,

which leads to the following problems in upper and lower support layers,

d2p±

dy2
= 0 with p+(1) = 1, p−(−1) = 0. (A.1)

Additional conditions matching the flow across the membrane must be imposed as in

Section 2.2.3, giving

dp+

dy
(δ/2) =

dp−

dy
(−δ/2) =

Km

Kavδ

[
p+(δ/2)− p−(−δ/2)

]
. (A.2)

We assume, as before, that the membrane and support layer permeabilities satisfy

a certain balance: Km0/(Kavδ) = ε2Γ, where the measure of the resistance of the
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packing material to that of the membrane, Γ, is order-one with respect to both ε and

δ (see Eq. (2.20); note that, in this problem where the X lengthscale L does not

enter the problem, this balance of permeabilities may be considered as the definition

of ε). This allows us to seek a perturbation expansion for the pressure as p± =

p±0 + ε2p±1 + · · · . Using equations (A.1) and (A.2) together, we obtain

p+ = 1 + ε2Γ
km

k
(y − 1) +O(ε4)

p− = ε2Γ
km

k
(y + 1) +O(ε4),

representing the fact that, as we would anticipate for a membrane whose permeability

is low compared to that of the surrounding layers, the pressure is constant to leading

order in each surrounding layer, with the pressure drop taking place across the

membrane. To close the model, we need to couple it to the fouling model developed

in Sections 2.2.2 and 2.2.3 for adsorption within pores (represented by pore radius

a(t); equation (2.42)) and occlusion of pores by large particles (represented by n(t);

equation (2.41)). For the simple 1D model here, this reduces to

km(t) = a(t)4

[
n(t) +

(1− n(t))

(1 + ρba(t)4)

]
where a(t) = 1− βt, β =

8µED

πA5
0P0G∞

,

dn(t)

dt
= −a4(t)e−ba(t)n(t), n(0) = 1,

and ρb is again a dimensionless number characterizing the additional resistance

induced when a large particle blocks a pore (see Eq.(2.9)).



APPENDIX B

DERIVATION OF THE ADVECTION MODEL FOR SMALL

PARTICLES

In this Appendix, we justify the advection model for the concentration of small

particles presented in Chapter 3 (3.19), which in dimensionless form is equation

(3.12). We begin from first principles, considering the flow of a suspension of small

particles through a periodic array of identical channels (see Figure 3.2). We seek

solutions for the flow and particle concentration within a single channel of radius

A(X,T ), in cylindrical coordinates (R, θ,X) in which properties vary only in the

axial direction X, the radial direction R, and time T . Throughout this appendix,

unstarred dependent variables are radially-averaged over the pore cross-section, while

the starred equivalents have radial dependence. Though the pore geometry changes

due to the particle deposition, this occurs on a timescale much longer than that of

the flow, hence we use a quasistatic model in which the flow domain 0 ≤ R ≤ A may

be regarded as fixed. The pore velocity vector V∗p = (V ∗p , 0, U
∗
p ) and the pressure P ∗

satisfy the Stokes equations, inertia being negligible in all scenarios of interest:

∇P ∗ = µ∇2V∗p, ∇ ·V∗p = 0, 0 ≤ X ≤ D, 0 ≤ R ≤ A, (B.1)

subject to

P ∗|X=0 = P0, P ∗|X=D = 0, V∗p = 0 at R = A. (B.2)

The full advection-diffusion equation satisfied by the small-particle concen-

tration C∗(R,X, T ) is:

∂C∗

∂T
= ∇ ·Q∗c, Q∗c = −Ξ∇C∗ + V∗pC

∗ + F ∗C∗er, (B.3)
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where Q∗c is the total particle flux, Ξ is the diffusion coefficient of the small particles

in the feed solution and F ∗ is the radial particle drift speed induced by interaction

with the pore wall. This term is intended to describe any forces, such as electrostatic

interactions and perhaps van der Waals’ forces, that act to attract particles towards

the wall where they can adhere. It could be argued that this attraction force should

act in the direction locally perpendicular to the wall rather than radially, requiring

a more careful analysis using the normal vector; but since the pore is slender the

normal direction is very close to the radial direction and, to the order we consider in

our asymptotics, the end result may be shown to be the same with the purely radial

term in (B.3). The boundary conditions are

C∗(R, 0, T ) = C0,
∂C∗

∂R

∣∣∣∣
R=0

= 0, Q∗c · n =
Λ

2
C∗ at R = A (wall deposition),

(B.4)

for some constant Λ. Consistent with our quasi-static assumption we solve the steady-

state version of (B.3),

Ξ

(
1

R

∂

∂R
(R
∂C∗

∂R
) +

∂2C∗

∂X2

)
= V ∗p

∂C∗

∂R
+ U∗p

∂C∗

∂X
+

1

R

∂(RF ∗C∗)

∂R
, (B.5)

where we have used the continuity equation, ∇ · V∗p = 0. Furthermore the wall

deposition boundary condition in (B.4), by use of the zero-velocity boundary condition

in (B.2) and calculation of n ‖ ∇(R− A), becomes

−Ξ
∂C∗

∂R
+ Ξ

∂C∗

∂X

∂A

∂X
+ F ∗C∗ =

Λ

2
C∗ at R = A (wall deposition). (B.6)

We nondimensionalize using the scalings

V∗p =
πP0W

2

32µD
(εv∗p, 0, u

∗
p), X = Dx, (A,R) = W (a, r),

P ∗ = P0p
∗, C∗ = C0c

∗, F ∗ =
πP0W

2

32µD
εf ∗, (B.7)
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where ε = W/D � 1. This gives the dimensionless form of (B.1), (B.2), (B.4), (B.5)

and (B.6) as

32

πε2
∂p∗

∂r
=

1

r

∂

∂r
(r
∂v∗p
∂r

)−
v∗p
r2

+ ε2
∂2v∗p
∂x2

, (B.8)

32

π

∂p∗

∂x
=

1

r

∂

∂r
(r
∂u∗p
∂r

) + ε2
∂2u∗p
∂x2

, (B.9)

1

r

∂(rv∗p)

∂r
+
∂u∗p
∂x

= 0, (B.10)

p∗|x=0 = 1, p∗|x=1 = 0, u∗p = v∗p = 0 at r = a(x), (B.11)

Pe

(
1

r

∂

∂r
(r
∂c∗

∂r
) + ε2

∂2c∗

∂x2

)
= v∗p

∂c∗

∂r
+ u∗p

∂c∗

∂x
+

1

r

∂(rf ∗c∗)

∂r
, where Pe =

32Ξµ

ε2πP0W 2
,

(B.12)

c∗(r, 0, t) = 1,
∂c∗

∂r

∣∣∣∣
r=0

= 0, −Pe
∂c∗

∂r
+ ε2Pe

∂c∗

∂x

∂a

∂x
+ f ∗c∗ = λ1c

∗, at r = a,

(B.13)

where λ1 = 16ΛµD2

πP0W 3 . We exploit asymptotic analysis of this model, based on the

assumption ε = W/D � 1 and in the distinguished limit P̂e = εPe = O(1),

representing a specific balance between advective and diffusive particle transport.

We expand the dependent variables in powers of ε, e.g.:

c∗(r, x, t) = c∗0(r, x, t) + εc∗1(r, x, t) + ε2c∗2(r, x, t) + · · · ,

f ∗(r) = f ∗0 (r) + εf ∗1 (r) + ε2f ∗2 (r) + · · · ,
(B.14)

etc. Solving Eqs.(B.8)–(B.11) gives the pore velocity and pressure at leading order

(u∗p0, v∗p0 and p0, respectively) as

u∗p0 =
8

π

∂p∗0
∂x

(r2 − a2), v∗p0 =
2

π

∂

∂x

(∂p∗0
∂x

(r3 − 2a2r)
)
, p∗0 =

∫ 1

x
dx′

a4∫ 1

0
dx′

a4

. (B.15)
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At leading order equation (B.12) reduces to c∗0(r, x, t) = c(x, t), consistent with leading

order in the boundary conditions (B.13). At order-one, we obtain

P̂e

r

∂

∂r
(r
∂c∗1
∂r

) = u∗p0

∂c

∂x
+
c

r

∂(rf ∗0 )

∂r
, (B.16)

where u∗p0 is the leading-order dimensionless axial pore velocity. Using the operator

1
πa2

∫ 2π

0

∫ a
0
· rdrdθ to take the cross sectional average of (B.16), we obtain

2P̂e

a

∂c∗1
∂r

∣∣∣∣∣
r=a

= up
∂c

∂x
+

2c

a
f ∗0 (a), (B.17)

where up denotes the cross-sectional average of u∗p0, obtained from (B.15)

up = − 4

π
a2 ∂p

∂x
, (B.18)

where, in line with our notation, p is the cross-sectional average of p∗0 (note that here

p ≡ p∗0). In addition the second boundary condition in (B.13) gives, at O(1)

−P̂e
∂c∗1
∂r

+ cf ∗0 = λ1c, at r = a. (B.19)

Combining (B.17) and (B.19) gives the desired result (equation (3.19))

up
∂c

∂x
= −λ̂ c

a
, λ̂ =

32ΛµD2

πP0W 3
, c0(0, t) = 1. (B.20)



APPENDIX C

THE MODEL FOR SPECIFIED FLUX

Here, we briefly outline how the results of Chapter 3 change if conditions of

constant flux, rather than constant pressure drop, are applied. We first outline the

modifications to the model, then present a sample simulation.

C.1 Model Summary

The original model (3.2)–(3.15) still holds, but now P0 in (3.2) must be considered a

function of time, P0(T ), while equation (3.3) integrates directly to give

πA2Up = Qpore, (C.1)

where Qpore is the constant flux per pore. We nondimensionalize the model using the

same scalings as in (3.16), except for

P =
8µDQpore

πW 4
p, (U,Up) =

Qpore

4W 2
(1, up). (C.2)

The resulting model is easily reduced to:

dn

dt
= − n

(
1− n

1 + ρba4
+ n

)−1

(1− g(a))

∣∣∣∣∣
x=0

,
∂c

∂x
= −λ̃ca, ∂a

∂t
= −β̃c, (C.3)

where

β̃ =
1

QporeG∞
, λ̃ =

πΛWD

Qpore

, (C.4)

with modified Darcy pressure p within the membrane given by

p =

∫ 1

x

dx′

a4( 1−n
1+ρba4

+ n)
. (C.5)
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The model (C.3) must be solved subject to the same boundary and initial conditions

(3.27). Note that equation (C.5) allows the pressure p(0, t) at the membrane inlet

(the dimensionless pressure drop in this constant flux case) to be evaluated.

C.2 Results

Figures C.1 (a)-(e) show results for the same initial pore profiles given in (3.31).

Figure C.1(f) shows the inverse pressure drop versus throughput for each of those

pore profiles.

The results differ quite significantly from those for the constant pressure case.

In contrast to those simulations, the pore radius evolution is now much more uniform

along the pore length. Pore closure still always occurs first at the upstream end of

the pores for the cases shown here, but with a smaller value of λ̃ this is not inevitable.

Since the total flux through the system is held constant, the flux-throughput graph

gives no characterization of the system in these simulations, hence we instead plot how

the pressure drop rises over time as blocking occurs in order to maintain the specified

flow rate (Fig. C.1(e)). Mathematically, the pressure must go to infinity within finite

time to sustain the same flux as total blockage is reached, but this is of course not

practical. In reality, the driving pressure is increased until some specified maximum

value (based on practical constraints of the system under consideration) is reached.

Following this, the system then reverts to the fixed pressure drop operation, with

the pressure fixed at this maximal value, and the subsequent behavior can then be

modeled as discussed in Section 3.3.1. As with the constant pressure simulations, the

best overall performance (in terms of efficiency) is provided by the pores of monotone

decreasing radius (profile a3(x) in (3.31)), and the worst performance by pores of

monotone increasing radius (profile a2(x)). However, the differences in performance

are less pronounced than for the constant pressure case.
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Figure C.1 Simulations at constant flux: The pore radius at several different times at

different final blocking times (tf , indicated in the legends) for different initial pore radius

profiles: (a) a1(x, 0) = 0.904, (b) a2(x, 0) = 0.16x + 0.83, (c) a3(x, 0) = 0.99 − 0.16x, (d)

a4(x, 0) = 0.874+0.39(x−0.5)2, (e) a5(x, 0) = 0.933−0.33(x−0.5)2, and (f): inverse pressure

drop vs throughput for those initial pore radius profiles with homogeneous distributions of

large-particle sizes, (3.28) (g(s) = 0), λ̃ = 2, β = 0.1 and ρb = 2.
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