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ABSTRACT

THE DESIGN AND OPTIMIZATION
OF COOPERATIVE MOBILE EDGE

by
Xueqing Huang

As the world is charging towards the Internet of Things (IoT) era, an enormous

amount of sensors will be rapidly empowered with internet connectivity. Besides the

fact that the end devices are getting more diverse, some of them are also becoming

more powerful, such that they can function as standalone mobile computing units

with multiple wireless network interfaces. At the network end, various facilities are

also pushed to the mobile edge to foster internet connections. Distributed small scale

cloud resources and green energy harvesters can be directly attached to the deployed

heterogeneous base stations.

Different from the traditional wireless access networks, where the only dynamics

come from the user mobility, the evolving mobile edge will be operated in the

constantly changing and volatile environment. The harvested green energy will be

highly dependent on the available energy sources, and the dense deployment of a

variety of wireless access networks will result in intense radio resource contention.

Consequently, the wireless networks are facing great challenges in terms of capacity,

latency, energy/spectrum efficiency, and security. Equivalently, balancing the

dynamic network resource demand and supply is essential to the smooth network

operation.

Leveraging the broadcasting nature of wireless data transmission, network nodes

can cooperate with each other by either allowing users to connect with multiple base

stations simultaneously or offloading user workloads to neighboring base stations.

Moreover, grid facilitated and radio frequency signal enabled renewable energy sharing

among network nodes are introduced in this dissertation. In particular, the smart grid



can transfer the green energy harvested by each individual network node from one

place to another. The network node can also transmit energy from one to another

using radio frequency energy transfer.

This dissertation addresses the cooperative network resource management to

improve the energy efficiency of the mobile edge. First, the energy efficient cooperative

data transmission scheme is designed to cooperatively allocate the radio resources of

the wireless networks, including spectrum and power, to the mobile users. Then,

the cooperative data transmission and wireless energy sharing scheme is designed

to optimize both the energy and data transmission in the network. Finally, the

cooperative data transmission and wired energy sharing scheme is designed to

optimize the energy flow within the smart grid and the data transmission in the

network.

As future work, how to motivate multiple parties to cooperate and how to

guarantee the security of the cooperative mobile edge is discussed. On one hand,

the incentive scheme for each individual network node with distributed storage and

computing resources is designed to improve network performance in terms of latency.

On the other hand, how to leverage network cooperation to balance the tradeoff

between efficiency (energy efficiency and latency) and security (confidentiality and

privacy) is expounded.
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CHAPTER 1

INTRODUCTION

The mobile and wireless systems have witnessed a massive penetration of wireless

devices and an exponential growth in wireless applications. To achieve the expected

service requirements with the available radio resources, radio access networks have

evolved towards the 5th Generation (5G) [1]. In particular, full duplex radio has been

proposed to double the spectrum efficiency [2, 3], and macro cells have been splitted

into various small cells powered by low power nodes to enhance the spatial reuse and

reduce the energy demand [4–7]. The underlaid device to device communications

enables opportunistic spectrum access and direct communications between nearby

devices [8–10], and cloudlet has brought cloud resources closer to the end users such

that the data centers can be accessed without going through the core network [11–15].

Moreover, energy harvesting (EH) enabled base stations, which take fuel from ambient

sources, including wind, solar, wind, and even radio frequency (RF) signals, have been

deployed on a small scale [16–18].

Although pushing everything to the edge and bringing in green energy can

alleviate the intense demand for radio resources, the achievable energy and spectrum

efficiency are approaching the theoretical limits, which are primarily attributed to the

interference caused by the ultra-dense cell packing and uncertainties in the availability

of spectrum and energy.

To address these challenges, the radio access network is expecting radical

changes other than a simple evolution of the previous generations. Virtualizing the

wireless access is a promising technological concept to overcome the aforementioned

shortcomings [19–21]. Network Function Virtualization (NFV) transforms network

appliances to software applications [22, 23] while Software Defined Networking
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(SDN) allows a centralized view of a distributed network and more efficient

service orchestration and automation by separating network control and forwarding

(including switches, routers, and firewalls) planes. During this transition towards

SDN/NFV and cloud-based telecommunication environment, network operators

propose cloud-based service delivery, including cloud-radio access network (C-

RAN) [24] and mobile-central office re-architected as datacenter (M-CORD) [25].

Meanwhile, future wireless access systems are expected to be powered by the

smart grid, a modernized electrical grid which provides efficient control of the delivery

and use of electricity [26]. As the smart grid advances and develops, green power

farms that harvest energy from green sources, e.g., solar energy and wind energy,

can substantially reduce carbon footprints. Also, the penetration of distributed green

energy capitalization allows consumers to contribute their clean energy back to the

grid [27–29]. In this way, the green energy can be transmitted and shared within the

whole wireless network and the smooth operation of the network can be guaranteed

[30].

Brown 
Power 

Power Grid

Green Power 

Cloudlet

SDN 
Controller

Baseband Unite 
(BBU) Pool

Internet
Data 

Center

Content 
Delivery 

Networks

Figure 1.1 Future smart grid powered virtualized wireless access network.
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As shown in Figure 1.1, the wireless access network consists of multi-tier legacy

physical base stations with diverse power budgets. Besides the physical wireless

architecture, the hierarchical cloud resources are deployed in the field or connected

to the switches or routers, and the SDN controller includes a set of actions, such as

radio communications resources and storage resources management. The smart grid

will distribute and deliver not only the brown energy generated by the traditional

power plants, but also the green energy either produced by the big scale centralized

energy harvesting farms or the distributed smaller energy harvesters.

With cloud and radio resources distributively located at mobile edge, it is

desirable to know how to cooperatively manage the network resources, such that

the network performances, in terms of energy efficiency, system throughput, network

latency, and security, are globally optimized. To improve the energy efficiency of the

wireless access network, the framework of cooperative data transmission is proposed

in Chapter 2, where each user equipment (UE) can simultaneously connect to multiple

base stations (BSs). For the downlink cooperative data transmission (CoMP) system,

the radio resources, in terms of power and spectrum, are cooperatively optimized to

minimize the total transmission power of the network while maintaining the quality

of service (QoS) requirement. First, the conjecture is proven such that for the system

with arbitrary M cooperative BSs and N UEs, the minimum total power consumption

can always be achieved when the number of multi-BS UEs (UEs that are powered by

multiple BSs) is limited by M−1. Second, the UE-BS association scheme is derived to

determine the clusters of multi-BS UEs as well as the clusters of individual-BS UEs

(UEs that are powered by individual BSs). Third, a complexity reduction scheme

is proposed to improve the efficiency of the joint spectrum and power allocation

algorithm (JSPA).

In addition to the cooperative data transmission scheme, diverse renewable

energy sources can be leveraged to improve energy efficiency. In Chapter 3, radio

3



frequency (RF) energy harvester is deployed to allow network nodes share energy

wirelessly. To maximize the network capacity, an orthogonal frequency division

multiplexing (OFDM) based cooperative relay system is proposed, where the relay

node not only can forward the data to the destination node, but is also capable of

transferring energy to the source node. In particular, to maximize the overall system

capacity in multiple subchannels and multiple time slots while meeting the power

constraints, a power allocation optimization problem is formulated and solved in

three steps. Step one, at each data transmission and data forwarding cycle, the total

transmission power of relay is split into two parts, one for data forwarding and the

other as power supplement for the source node. Step two, according to the analysis,

during each cycle, once all of the subchannels are sorted in a certain order, the

relay node will only provide forwarding power to the subchannels with index greater

than a certain value. Meanwhile, the incentive for the relay node to provide power

supplement should be strong enough such that relay chooses not to simultaneously

transmit data and energy. Step three, an equivalent convex constrained optimization

problem is formulated and the solution is derived by solving the Lagrange function.

The solution takes the form of water-filling in combination with a cooperative feature.

In Chapter 4, smart grid is introduced to conduct green energy flows among

base stations. For the wireless access network equipped with distributed green energy

harvesters, to improve the energy efficiency of the network, the energy consumption

and green energy supply of the network have to be balanced. The base station

either can cooperate with each other by either offloading user traffic or sharing the

green energy directly via the smart grid infrastructure. In particular, to minimize

the on-grid brown power consumption, the traffic load in the network and the green

power flow in the grid are jointly optimized in three steps. Initially, the energy

sharing efficiency of traffic offloading and that of grid facilitated energy transfer are

compared. It has been shown that the wireless energy sharing efficiency will decrease

4



with the traffic load, while the wired energy sharing efficiency is determined by the

grid structure. Next, when the traffic load is less than the threshold, traffic load

is optimized without considering the green power flow. Thirdly, the energy flow is

derived based on the traffic load obtained in the second step.

In Chapter 5, as future research work, the incentive and security issues of

the cooperative framework are introduced. Briefly, the communication and storage

resource trading is discussed among the multiple parties to motivate the cooperation.

Finally, both the physical layer security scheme and the privacy preserving light weight

communication and computation protocol are discussed.

5



CHAPTER 2

COOPERATIVE WIRELESS DATA TRANSMISSION

To improve the system performance and make the best use of the system resource,

cooperative transmission leverages the broadcast nature of wireless communications

such that some nodes in wireless networks can help each other to transmit signals for

better quality via spatial diversity or higher data rates through spatial multiplexing

[18]. In this chapter, for the green radios with multiple cooperative nodes and

node-specific power budget, we aim to minimize the total transmission power

consumption of the system while guaranteeing the UE-specific QoS requirement in

terms of throughput.

The next-generation cellular networks, including cloud radio access networks

(C-RAN) and software defined wireless networks (SDN), have proposed to enable

cooperative transmission through the base band unit pool [31] and the controller [32].

One typical technology that has already been adopted by 3GPP Long Term Evolution

is coordinated multi-point (CoMP) transmission [33]. As illustrated in Figure 2.1a,

the adjacent outer cells and cell edge users can be considered as a new virtual cell

(shaded area). This virtual cell is surrounded by multiple inner cells, has multiple

base stations (BSs) serving as power sources, and works on the outer band (allocated

by the fractional frequency reuse scheme [34]) or major subcarriers (allocated by the

soft frequency reuse scheme [35]). The features of multiple power sources and shared

spectrum have motivated the coordination transmission, which is considered as an

effective tool to improve the coverage of high data rates and the cell-edge throughput.

In addition to the cellular networks with simultaneous multiple data

transmissions, cooperative communications has been widely adopted in ad-hoc

networks and cognitive networks [36], where cooperative sequential data transmissions

6



play a major role. As illustrated in Figure 2.1b, the destination node (DN) combines

the signal transmitted by the source node (SN) in the first time slot and the

forwarding signal transmitted by the relay node in the second time slot. Network

coding based two-way relay schemes with decoding (decode-and-forward) and without

decoding (amplify-and-forward, denoise-and-forward, compress-and-forward) have

been introduced to implement cooperative communications [37]. Although the

capacity of the relay network and that of point-to-point cellular network are different,

the inherent cooperative diversity of relay network can save energy by combining the

signals received from different spatial paths and consecutive time slots [38]. Without

loss of generality, we focus on the cellular network in this chapter.

To capitalize on the internal flexibility of FDMA/OFDMA in power loading

across the frequency channels/subcarriers, and the external flexibility in multiple

nodes serving as power sources, the resource allocation scheme for cooperative wireless

systems can dynamically assign the limited resources (spectrum and power) to deliver

the best quality of service to customers at the lowest cost; that is, the available

resources are allocated to the user who can best exploit the resources according to the

current channel state information (CSI). This multi-node multi-UE diversity gained

from dynamic resource allocation improves the performance of cooperative wireless

systems. We investigate a new joint spectrum and power allocation scheme for a

cooperative downlink multi-user system using the frequency division multiple access

scheme, in which arbitrary M BSs coordinately allocate their resources to each UE.

With the assumption that multi-BS UE (user being served by multiple BSs)

would require the same amount of spectrum from these BSs, we conclude that when

the number of multi-BS UEs is limited by M − 1, the resource allocation scheme can

always guarantee the minimum overall transmit power consumption while meeting the

throughput requirement of each UE and also each BS’s power constraint. Then, to

decide the clusters of multi-BS UEs and the clusters of individual-BS UEs (users being
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Figure 2.1 Cooperative wireless system model.

served by individual BSs), we propose a UE-BS association scheme and a complexity

reduction scheme. Finally, a novel joint spectrum and power allocation algorithm is

proposed to minimize the total power consumption.

The major features that distinguish our work from the previous state-of-the-art

works with similar system scenarios are summarized in Table 2.1. Since JSPA does

not require UEs to have the capability to be served by all of the BSs, it is applicable to

any cooperative networks where mobile UEs can move out of the coverage of certain

BSs. Since JSPA is proven to be optimal, it outperforms the existing algorithms, and

its low-complexity is desirable for the practical operation of the cooperative networks,

such as the online resource allocation schemes which cope with mobile UEs.

2.1 Coordinated Transmission Model

Consider a cooperative downlink multi-user system, in which M BSs coordinately

assign spectrum and allocate power to N users located in the coordinative zone,

as depicted in Figure 2.1. Each user feeds back the instantaneous CSI to its
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Table 2.1 Comparison Between JSPA and Existing Work

BS No. Alg.
Maximum No. of Serving BS

OPT CPX
Multi-BS UE Candidates

2
MRT [39] N

2
Sub-opt Low

JMPC [40]
1 Opt

High

JSPA Varying Low

M

MRT N
M Sub-opt

Low

JMPC 1 High

JSPA M − 1 Varying Opt Low

corresponding BS via a feedback channel. Through the back-haul channels, which

can be optical fiber or out of band microwave links, each BS has access to the data

and control information (such as CSI) of associated users [41]. Note that when M

or N is very large, acquisition of CSI and data information of each UE at each

cooperative BS is very challenging for the back-haul links and feedback channels.

Therefore, we assume BSs have partial access to control and data information, i.e.,

the data transmission of the user is dynamically coordinated only among those BSs

who have gained access to this UE.

To simplify the mathematical derivation, we assume each BS has the same

power constraint P0 and share the same overall bandwidth B0. Since multiple access

technologies based on frequency division allocate orthogonal spectrum among UEs

to avoid interference, B0 is divided into N distinct and nonoverlapping flat fading

channels with various bandwidths, one for each UE. As compared with the co-channel

separation method such as zero-forcing in [42], the orthogonal spectrum sharing

method is not necessarily less efficient in terms of spectrum usage because the cell edge
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users are highly likely to be in the low SINR region caused by inter-cell interference.

In addition, for the central area of each cell, they can all utilize the same spectrum

resources, such as inner band and minor subcarriers in [34], [35], [43]. However, to

ensure tractability of our analysis, the joint resource allocation of UEs located in the

coordinated zone and central area is left for our future work.

Furthermore, if UE j is a multi-BS UE, the serving BSs would allocate the same

channel to this UE, so that without shifting frequency, UE j can optimally receive

its information from the assigned channel with maximal-ratio combining (MRC) [44],

[45]. Thus, the achievable throughout of the j-th user given by the AWGN Shannon

Capacity (sum rate) is expressed as

Rj = Bjlog2

1 +

M∑
i=1

Pi,j|Hi,j|2

σj2

 (2.1)

where Bj is the bandwidth assigned to the j-th channel, σj
2 = N0Bj represents the

power of additive white Gaussian noise at the j-th channel, Pi,j denotes the allocated

transmission power from BS i to the j-th channel, and Hi,j denotes the corresponding

channel gain between BS i and the j-th channel.

The goal here is to minimize the total transmission power of the system while

meeting each user’s throughput requirement RS
j as well as each BS’s power and

spectrum constraints. The circuit energy consumption associated with data reception

in the UE side is generally modeled as a constant, especially with given data rate and

no frequency shifting in each UE [46]. For the circuit energy consumption incurred

by data transmission at the BS side, we also adopt the simplified constant model [47];

this is due to the fact that in addition to the UEs in the coordinated zone, each BS

has to serve the UEs located in the central area of each cell, and so BSs are likely to

remain active. As a result, only the transmission power of all of the BSs is considered
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in the following problem formulation.

Poverall = min
M∑
i=1

N∑
j=1

Pi,j

s.t. Rj = RS
j , j ∈ N

N∑
j=1

Pi,j ≤ P0, i ∈M
N∑
j=1

Bj = B0

(2.2)

where M = {1, · · · ,M}, N = {1, · · · , N}. Owing to the limitation in the

feedback/back-haul channels or severe channel attenuation, if UE j cannot be

associated with BS i or has moved out of the coverage of BS i, then we set Hi,j = 0.

For the sake of mathematical abbreviation, we denote γi,j = (P0|Hi,j|2)/ (N0B0),

xi,j = Pi,j/P0 and yj = Bj/B0. Note that γi,j is the signal to noise ratio (SNR)

associated with BS i over the total bandwidth B0 when the entire power P0 is allocated

to the j-th UE. xi,j and yi,j represent the power and bandwidth allocation ratio, and

RS
j /B0 = R′j. Since the logarithm is monotonically increasing, the objective function

(2.2) combined with the constraints can be described as follows:

Z = min
{X,Y}

M∑
i=1

N∑
j=1

xi,j

s.t.
M∑
i=1

γi,jxi,j = (2R
′
j/yj − 1)yj, j ∈ N

N∑
j=1

xi,j ≤ 1, i ∈M
N∑
j=1

yj = 1

(2.3)

where X = {xi,j |i ∈M; j ∈ N }, Y = {yj |j ∈ N }, and Z = Poverall/P0 ≤ M

represents the total power consumption ratio.

2.2 Problem Analysis

As discussed in [40], finding the global optimal solution of the power allocation

problem is very complicated. Solving (2.3) is even more challenging due to the
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non-convexity of the joint optimization of spectrum and power. In order to achieve

the minimum power consumption, we first decouple the power allocation problem

from the spectrum allocation problem.

2.2.1 Power Allocation Scheme

The main result of this chapter is to prove that the number of multi-BS UEs in the

optimal solution is limited by M − 1, as stated in the following Lemma.

Lemma 1. For any spectrum allocation scheme Y, there exists an optimal power

allocation with at least (M − 1)(N − 1) elements of X being zero.

The proof of Lemma 1 is provided in Appendix A.1. The observation presented

in Lemma 1 simplifies the joint spectrum and power allocation problem greatly,

because 1) the power allocation is decoupled from the spectrum allocation, which

enables versatile access technologies, such as FDMA or OFDMA system; 2) the

number of BS-UE links in the system, i.e., the number of non-zero elements in X, is

limited within the range of [N,N +M − 1].

Remark 1. Define the SNR ratio between (BS i, UE j) link and (BS i′, UE j) link

as

γji,i′ =
γi,j
γi′,j

(2.4)

According to the power shifting argument in Appendix A.1, if γji,i′ allows a feasible

power shifting that will decrease the total power consumption, then the corresponding

power allocation is not optimal.

Conclusively, power shifting argument can be used as an initial assessment to

determine whether UE j should be associated with BS i, i′ or both, and we will

elaborate this in the next section.
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2.2.2 UE-BS Association Scheme

To satisfy the QoS requirements, each user j should be associated with at least one

BS i such that xi,jyj > 0. Since the number of non-zero elements in X is limited

(Lemma 1), the majority of UEs will be associated with one BS only. According to

the channel conditions, we will address the UE-BS association problem such that the

complexity of finding the zero elements is further decreased.

Suppose there is no power limit for each BS, to minimize the power consumption

of the system, the intuitive association scheme for each UE is to find the BS with the

best channel condition. With this scheme, UE j will be powered by BS i only, where

i = arg max
k∈{1,2,··· ,M}

{γk,j} (2.5)

Thus, UEs will be divided into M clusters denoted by initial disjoint clusters

{J0
i |i ∈M}, where the i-th cluster, J0

i , consists of UEs, which prefer to be powered

by BS i.

With the introduction of BS-specific power budget, BS i may not be able to

power all of the UEs in cluster i, and other BSs will provide power coordination. Let

J i
′
i be the cluster consisting of UEs that 1) belong to J0

i , and 2) are powered by BS i′

(partially or being taken over completely). Then, new disjoint clusters {Ji |i ∈M}

will be formed, where Ji consists of UEs that are powered by BS i only.

Remark 2. Since J i
′
i 6= Φ implies there is power shortage in BS i, J ii′ = Φ. Let

J i
′
i = J0

i \J i
′
i be the UE cluster which consists of UEs that are not taken over by

BS i′. If
⋃
i′∈M\i J

i′
i ⊂ J0

i , then BS i would not take UEs from any other BSs, i.e.,⋃
i′∈M\i J

i
i′ = Φ, so Ji =

⋂
i′∈M\i J

i′
i .
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Since the stability of clusters depends on the SNR ratio γji,i′ in (2.4), a common

candidate (CC) vector JCCJCCJCC can be defined for the disjoint clusters

JCCJCCJCC = [j1,2, j1,3, · · · j1,M ,

j2,3, · · · j2,M ,

. . .
...

jM−1,M ]

where each element ji,i′ is the multi-BS UE candidate that is commonly powered by

BS i and i′.

For any i ∈ {1, · · · ,M − 1} and i′ ∈ {i + 1, · · · ,M}, we require ji,i′ in JCCJCCJCC to

satisfy the following inequality

min
j∈Ji

γji,i′ ≥ γ
ji,i′

i,i′ > max
j∈Ji′

γji,i′ (2.6)

where for the initial cluster J0
i and J0

i′ , the corresponding ji,i′ satisfies γ
ji,i′

i,i′ ≥ 1 >

γ
1+ji,i′

i,i′ .

Lemma 2. To minimize the power consumption, the CC vector which satisfies (2.6)

always exists for the optimal clusters {Ji |i ∈M}.

The proof of Lemma 2 is provided in Appendix A.2. A very important point to

be noticed from Lemma 2 is that multi-BS UEs are all in JCCJCCJCC because at most one

UE will be associated with both BS i and BS i′. Thus,

|UNI(JCCJCCJCC)| ≤M − 1

where UNI(•) consists of unique elements in •.

Let Jmuli be the multi-BS UE candidates that are simultaneously powered by

BS i and other BSs. Then, we will have

Jmuli = (
⋃M

i′=i+1
ji,i′
⋃i−1

i′=1
ji′,i)\(

⋃M

i′=1
Ji′) (2.7)
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
xi,j = (2R

′
j/yj − 1)yj/γi,j, j ∈ Ji

xi,j = 0, j /∈ Ji
⋃
Jmuli

(2.8)

As we can see, by revealing the relationship between Ji and JCCJCCJCC , Lemma 2 can further

differentiate the non-zero and zero variables of X.

2.2.3 Complexity Reduction Scheme

Instead of iteratively solving (2.3) for every JCCJCCJCC that satisfies (2.6), we try to find

the possible optimal JCCJCCJCC by considering the model of a 2-BS system, which can be

used as the reference for the more complicated cooperative system involving three or

more BSs.

For the initial disjoint clusters, suppose we relax the power constraint for BS i1

and set the power limit of the other BS i2, {i1, i2} = {1, 2}, (2.3) becomes:

Z = min
∑
j∈J0

1

(2

R′j
yj −1)yj
γ1,j

+
∑
j∈J0

2

(2

R′j
yj −1)yj
γ2,j

s.t.
∑
j∈J0

i1

(2R
′
j/yj − 1)yj/γi1,j ≤ +∞

∑
j∈J0

i2

(2R
′
j/yj − 1)yj/γi2,j ≤ 1

N∑
j=1

yj = 1

(2.9)

where xi,j = 0 if j /∈ J0
i , and xi,j is given in (2.8) if j ∈ J0

i .

As we can see, (2.9) is convex over Y. By Lagrange dual function, we can derive

the closed form solution expressed in the Lambert-W function [48], or utilize various

algorithms designed for the convex problem to approach the optimal solution [49].

As shown in Figure 2.2, the relaxed solutions can be represented in the two

dimensional coordinates Si = (
∑

j∈J0
1
x1,j,

∑
j∈J0

2
x2,j), where Si is the solution to

(2.9) with BS i having no power budget. Si > (1, 1) means the power consumption of
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BS i is greater than 1, i.e., Si is located outside of the square region bound by (1, 1).

Si ≤ (1, 1) implies Si is located within the region bound by (1, 1).

S2

P(BS 1)

S1

P(BS 2)

(1,1)

0
1

1, j

j J

x


 

0
2

2, j

j J

x


 

1,1x
11, jx 

...

2,Nx

...

22, jx 

01, jx

02, 1jx 

...

...

Figure 2.2 Coordination with relaxed power constraint.

Lemma 3. Suppose UEs are sorted in the descending order of γj1,2, JCCJCCJCC = [j1,2].

1) If S1 = S2, then Si is the optimal solution.

2) If S1 > (1, 1), then there exists j′1 ∈ J0
1 such that

∑j′1−1
j=1 x1,j ≤ 1,

∑j′1
j=1 x1,j > 1,

then j1,2 ≥ j′1.

3) If S2 > (1, 1), then there exists j′2 ∈ J0
2 such that

∑N
j=j′2+1 x2,j ≤ 1,

∑N
j=j′2

x2,j > 1,

then j1,2 ≤ j′2.

The proof of Lemma 3 is provided in Appendix A.3. By relaxing the power

constraint of a BS, Lemma 3 can limit the range of j1,2, so that the complexity of

finding the optimal solution is much lower than iterating through every possible JCCJCCJCC .

Remark 3. For any disjoint clusters {Ji |i ∈M\{i1, i2}} with M ≥ 3, we can limit

the range of ji1,i2 by using Lemma 3.

The details of how to apply Lemma 3 are provided in the next section.
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2.3 Joint Spectrum and Power Allocation Algorithm

Since J0
i ⊆ Ji implies BS i may provide power coordination to other BSs, M −∑M

i=1 1{J0
i ⊆ Ji} BSs will receive power coordination, where 1{•} = 0 if • is false and

1 otherwise. Consequently, for any {Ji, Jmuli |i ∈ M} which satisfies Lemma 2, the

Solve (9) with relaxed power constraint;

Get solution S1, S2, as shown in Figure 2

S1=S2

Optimal Solution  

Z=Si, i=1,2

YES

NO

S1    (1,1)

S2    (1,1)



NO

Find       such that
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S2   (1,1)



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2 0=j j

Solve (10) for each       ;      

Get the solution set S;

 Z = min (S).
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Figure 2.3 JSPA algorithm (M = 2).
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objective function in (2.3) can be transformed into

min
M∑
i=1

(
∑
j∈Ji

(2

R′j
yj )yj
γi,j

+
∑

j∈Jmuli

xi,j)1{J0
i ⊆ Ji}+M −

M∑
i=1

1{J0
i ⊆ Ji}

s.t.
∑
j∈Ji

(2

R′j
yj −1)yj
γi,j

+
∑

j∈Jmuli

xi,j ≤ 1, i ∈M

M∑
i=1

γi,jxi,j = (2R
′
j/yj − 1)yj, j ∈

M⋃
i=1

Jmuli

N∑
j=1

yj = 1

(2.10)

where xi,j is given in (2.8), and if 1{J0
i ⊆ Ji} = 0, the first constraint is satisfied with

equality, i.e.,
∑
j∈Ji

(2R
′
j/yj − 1)yj/γi,j +

∑
j∈Jmuli

xi,j = 1.

Algorithm 1: JSPA algorithm: UE-BS association

1 for JCCJCCJCC with |UNI(JCCJCCJCC)| ≤M − 1 do

2 M = {1, · · · ,M}, N = {1, · · · , N};
3 According to (2.5), get J0

i , i ∈M, j ∈ N ;

4 J i
′
i = J0

i , i ∈M, i′ ∈M\i;
5 Ji, J

mul
i = Φ, i ∈M;

6 while
⋃
i∈M Ji

⋃
i∈M Jmuli 6= N do

7 N ← N\
⋃
i∈M Ji;

8 M←M\{i ∈M :
⋃
i′∈M\i J

i′
i ⊂ J0

i };
9 Update J0

i , i ∈M, j ∈ N ;

10 for i ∈M do

11 M′ = {1, · · · ,M}\i;
12 J i

′
i = {j ∈ J0

i : γji,i′ > γ
ji,i′

i,i′ }, i′ ∈M′;

13 Ji ← Ji
⋃
{
⋂
i∈M′ J

i′
i };

14 According to (2.7), get Jmuli , i ∈M, j ∈ N ;

15 Return {JCCJCCJCC , Ji, J
mul
i |i ∈ {1, · · · ,M}} ;

Based on Lemmas 1-3, we first present the joint spectrum and power allocation

(JSPA) algorithm with M = 2. Similar to (2.9), for each j1,2 in Figure 2.3, (2.10)

is also a convex optimization problem with N + 2 variables {Y, x1,j1,2 , x2,j1,2}. With
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arbitrary M , the two procedures to achieve the optimal resource allocation are given

in Alg. 1 and Alg. 2, where Alg. 1 is used to find the multi-BS UE candidates that

satisfy Lemma 2, and Alg. 2 will iterate the output candidates that satisfy Lemma 3

until the corresponding optimal UE-BS association scheme that minimizes the overall

power consumption is found.

2.4 Simulation Results

We assume that 20 independent and identically distributed (i.i.d.) Rayleigh-faded

users are uniformly located within the shaded zone (see Figure 2.1). R is 1000 m

and the inner cell radius R′ is 600 m. The distance-dependent path loss model is

L(d) = 128.1 + 37.6 lg(d) dB, d in km, and N0 = −174 dBm/Hz. For the sake of

simplicity, we assume B0 = 1, and each BS’s power constraint is P0 = 1.

The performances of the proposed JSPA algorithm and JMPC algorithm in [40]

are averaged over 1,000 independent snapshots by Monte-Carlo simulation. The

throughput requirement of each UE is defined as

Rj = εR0
j , ε > 0 (2.11)

where R0
j is generated according to (2.1), with all of the N users being assigned equal

spectrum and power (ESP) from each BS.

2.4.1 Two-node System

As pointed out in Table 2.1, for M = 2, both JSPA and JMPC are optimal in

the sense of power allocation. For easy comparison, we assume the system-specific

throughput requirement of JMPC is divided among all of the UEs, i.e., UE-specific

RS
j in (2.11). Then, as shown in Figure 2.4, JSPA outperforms JMPC in the total

power consumption. The reason is that JSPA supports flexible spectrum allocation,

while JMPC adopts equal bandwidth allocation for all UEs.
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Algorithm 2: JSPA algorithm: Complexity reduction

1 Z = M ;

2 for i1, i2 ∈ {1, · · · ,M}, i2 > i1 do

3 M← {1, · · · ,M}\{i1, i2};
4 for {Ji, Jmuli |i ∈M} returned by Alg. 1 do

5 N ← {1, · · · , N}\{
⋃
i∈M Ji

⋃
i∈M Jmuli };

6 Sort UE in the descending order of γji1,i2 ;

7 Update J0
i , i ∈ {i1, i2}, j ∈ N ;

8 In (2.10), Ji ← J0
i , i ∈ {i1, i2};

9 Keep power budgets of BSs other than i1/i2;

10 Get the relaxed solutions to (2.10): Si1/Si2 ;

11 if Si1 > (1, 1), Si2 ≤ (1, 1) then

12 Get j′i1 according to Lemma 3, j′i2 = maxj∈J0
i1
{j};

13 else if Si2 > (1, 1), Si1 ≤ (1, 1) then

14 Get j′i2 according to Lemma 3, j′i1 = maxj∈J0
i1
{j}+ 1;

15 else if Si1 > (1, 1), Si2 > (1, 1) then

16 Get j′i1 , j
′
i2

according to Lemma 3;

17 else if Si1 ≤ (1, 1), Si2 ≤ (1, 1) then

18 j′i1 = j′i2 = maxj∈J0
i1
{j};

for {Ji, Jmuli } returned by Alg. 1 do

if ji1,i2 ∈ {j′i1 , · · · , j
′
i2
} then

19 Get the solution to (2.10): S;

20 Z ← min{Z, S};

21 return Z;
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Figure 2.5 indicates that with ε > 1, there will be loss, i.e., the system fails to

support all of the N users’ throughput requirements with its maximum power and

spectrum resources. Apparently, the loss rate must be zero with ε ≤ 1 and the loss

rate will increase with ε. Since JSPA always consumes less or equal power, the loss

rate is smaller accordingly.
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Figure 2.4 Total power consumption of the 2-BS cooperative system.

2.4.2 Multi-node System

To verify the point that for M ≥ 3, JSPA is optimal while JMPC is sub-optimal in the

sense of power allocation, we assume instead of UE-specific throughput requirement

and spectrum allocation, JSPA requires UE-common bandwidth allocation and

system-specific throughput requirement (sum of Rj in (2.11)).

As we can see in Figures 2.6 and 2.7, JSPA always achieves the best performance,

both in total power consumption and the loss rate, even when it does not enable

flexible spectrum allocation. The gain will increase with the randomness of Rj rather

than with the simultaneous increase/decrease with bigger/smaller ε. The randomness
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Figure 2.5 Loss rate of the 2-BS cooperative system.

make it less likely for one BS to exceed the power limit, when it provides spectrum or

power to help the overloaded BS. Since JSPA and JMPC are compared in the same

enviorment, we can conclude that under the perfect coordinated transmission between

the multiple BSs, the proposed JSPA algorithm provides a significant reduction in

the power consumption.

2.5 Summary

In this chapter, we have investigated the joint spectrum and power allocation problem

in minimizing the overall transmit power consumption while meeting the throughput

requirements of each UE and each BS’s power constraint for a cooperative downlink

multi-user system. By using a new approach with “power shifting” and “common

candidate vector”, we have shown analytically that the number of multi-BS UEs

should be limited by the number of BSs. Moreover, we have also proposed the

UE-BS association scheme and the corresponding complexity reduction scheme,

which determines the serving BSs for each UE based on channel conditions and
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Figure 2.6 Total power consumption of the 3-BS cooperative system.
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Figure 2.7 Loss rate of the 3-BS cooperative system.

the constraints in the optimization problem. Finally, a novel joint spectrum and

power allocation algorithm, proven to yield the minimum total power consumption,

is proposed. In the future, the capacity of the feedback/back-haul channel, the
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resource allocation scheme for the users located in the non-coordinated zone, and

more sophisticated circuit energy consumption model of both BSs and UEs can be

taken into consideration in which case the theoretical results can be directly applied

to the realistic wireless communication system. Meanwhile, although the system

model is based on the downlink cellular network, the derived results are applicable

for various networks with cooperative features: multiple power sources and shared

spectrum.
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CHAPTER 3

DATA AND ENERGY COOPERATION IN WIRELESS

COMMUNICATIONS SYSTEMS

Greening wireless access networks is receiving much attention because explosive surge

of mobile data traffic in wireless edge consumes a significant amount of energy [18]. On

one hand, the wireless access networks can continually improve the energy utilization,

so that reduced energy consumption may result in reduced interference and improved

system performances [50]. On the other hand, renewable green energy can be

capitalized to power these networks, and thus, enhances our climate, health, and

economy [51].

As far as energy utilization is concerned, cooperative data transmission uses

multiple serving nodes to transmit signals to the same end device, so that the useful

signals are strengthened while the experienced interference is lessened. Cooperative

data transmission is generally classified into two categories: coordinated and

sequential cooperative data transmission. The former means multiple serving nodes

transmit simultaneously, such as the coordinated multipoint (CoMP) transmission

[52], and the latter indicates the data transmission of serving nodes occurs one after

another, such as the network coding based relay schemes [53].

As compared with traditional wireless access networks which mainly rely on non-

renewable brown energy, energy harvesting techniques have the potential to liberate

the network from energy related inhibition. To overcome the dynamics of green energy

sources and ensure long-term, uninterrupted network operation, energy cooperation

schemes have been designed so that the energy can be shared among multiple devices

[30]. With the deployment of smart grid, wireless access nodes can share each other’s

energy directly. With radio frequency (RF) energy harvesting, one node’s energy

storage can be transferred to another node wirelessly. To study the throughput gain
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Figure 3.1 Cooperative data and energy transmission system.

derived from energy cooperation, power allocation schemes have been designed for

various systems, including multiple access channel [54] and two way channel [55].

In the next generation green wireless access network, the evolved more flexible

system architecture will enable the cooperative data transmission among different

network tiers, ranging from macro cells to device to device communications [52].

Moreover, the introduction of network function virtulization and software defined

network will reduce the overhead associated with coordinating the energy and data

information among multiple serving nodes. The cooperation of data and energy has

been studied in the smart-grid powered CoMP system [56], and RF energy harvesting

enabled relay system [51,53,57–59].

In this work, we extend our work in [53] by considering a relay-enhanced OFDM

system consisting of a RF energy harvesting source node (SN) and a cooperative

decode-and-forward (DF) relay node (RN), which are transmitting and forwarding in

multiple fading subchannels and multiple time slots. For such a system, we propose

and investigate a novel power allocation scheme such that the system capacity is
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maximized while the power constraints of both source node and relay are satisfied

in each time slot. We show that the corresponding optimization problem can be

solved by splitting the total transmission power of relay into two parts, one for

data forwarding and the other for providing additional power supplement for the

source node. In particular, our analysis indicates that there exists the last common

channel, which separates the subchanels only powered by SN and the subchannels

powered by both SN and RN. For a given set of last common subchannels, a closed

form solution is derived, and the corresponding optimal power allocation scheme is

presented. Numerical results show that for given parameters the proposed cooperative

water-filling algorithm provides the optimal performance.

3.1 System Model and Problem Formulation

Suppose the system capacity is measured over T = {1, · · · , T} cycles, where each

data transmission and forwarding cycle consists of two consecutive time slots (TSs),

and T can be the delay requirements of data traffic. As illustrated in Figure 3.1, in

each odd TS, SN transmits data to the relay node and the destination node (DN),

while in the even TS, RN forwards the signal received in the previous TS. SN can

harvest energy from the forwarding signals and facilitate the data transmission in the

next cycles.

The total bandwidth occupied by SN is divided into N = {1, · · · , N}

subchannels (SCs), each with bandwidth of B, and the block-fading channel response

Hk
i,j, i ∈ T , j ∈ N , is approximately constant within two time slots and flat within

each narrow-band subchannel. More specifically, k = 1 refers to the SN-DN link and

k = 2 the RN-DN link, and H1′
i,j denotes the corresponding subchannel gain between

SN and RN.
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Before the first cycle starts, the amount of the green/brown energy acquired by

SN and RN is assumed to be P 1
max and P 2

max, respectively.1 Denote P k
i,j as the ratio

between the transmission power allocated to the j-th subchannel at the i-th cycle

and P 1
max, where k = 1 refers to the power source being SN, and k = 2 the power

source being DF-RN. Note that P k
i,j is referred to as the power allocation for the rest

of the paper. Thus, at the i-th cycle, the AWGN Shannon Capacity associated with

the j-th subchannel can be expressed as follows [60].

ci,j =
B

2
log2(1 + min{P 1

i,jγ
1′

i,j,
2∑

k=1

P k
i,jγ

k
i,j}) (3.1)

where at the i-th cycle, γki,j =
∣∣Hk

i,j

∣∣2P 1
max/(N0B) is the SNR associated with the SN-

DN link (k = 1) as well as that of the RN-DN link (k = 2), when the j-th subchannel

is allocated the entire power of SN. γ1′
i,j is the corresponding SNR associated with the

SN-RN link. N0B represents the power of white noise.

Note that we assume γ1′
i,j > γ1

i,j, i ∈ T , j ∈ N , so that RN receives more

information than DN in the first TS, and forwarding in the second TS has the potential

to improve ci,j [61], [62].

Our aim is to maximize the total capacity while meeting the power constraint

of each node.

C = max
{P 1
i,j ,P

2
i,j}

T∑
i=1

N∑
j=1

ci,j

s.t. Ct
SN :

t∑
i=1

N∑
j=1

P 1
i,j ≤ 1 +

t−1∑
i=1

N∑
j=1

βi,jP
2
i,j, t ∈ T

CRN :
T∑
i=1

N∑
j=1

P 2
i,j = P 2

tot

(3.2)

where Ct
SN denotes the power constraint of SN at cycle t, and CT

SN is satisfied with

equality because SN will use all its energy to increase the capacity. CRN represents the

1The terms of power and energy are used interchangeably in this chapter because the power
consumption and energy storage are all measured within each TS.
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power budget of RN, and P 2
tot = P 2

max/P
1
max. βi,j = η

∣∣H1′
i,j

∣∣2 is the overall RF energy

harvesting efficiency, with η denoting the energy harvesting efficiency factor [63].

βT,j = 0 because the energy harvested in the last cycle cannot be utilized for future

data transmission.

3.2 Problem Anslysis

According to [53], the channel capacity ci,j can be maximized when P 1
i,jγ

1′
i,j =∑2

k=1 P
k
i,jγ

k
i,j, and it is intuitive to define a threshold P th

i,j such that at the i-th cycle,

the capacity of the j-th channel will increase with P 2
i,j if P 2

i,j ≤ P th
i,j . Meanwhile, when

P 2
i,j > P th

i,j , SN can also harness more energy from the forwarding signals. Hence, we

can divide P 2
i,j based on P th

i,j . 

P 2
i,j = pi,j + αi,j

αi,j = [P 2
i,j − P th

i,j ]
+

P th
i,j = [P 1

i,jγ
′
i,j]

+

γ′i,j = (γ1′
i,j − γ1

i,j)/γ
2
i,j

(3.3)

where [•]+ = max{•, 0}. pi,j is for data forwarding and αi,j is for power supplement.

With the separation between pi,j and αi,j, the definition of capacity ci,j in (3.1)

becomes

ci,j =
B

2
log2(1 + P 1

i,jγ
1
i,j + pi,jγ

2
i,j) (3.4)

Remark 4. At cycle i, i ∈ T , RN can aggregate the power supplements to one single

aggregation channel (AGC) jimax as follows:
jimax = arg max

j∈N
βi,j

αi,j =

 0, j 6= jimax

αi ≥ 0, j = jimax

(3.5)
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where jimax is the subchannel with the maximum energy harvesting efficiency, and αi

is the total power supplement provided by RN at cycle i.

Suppose at each cycle i, all of the N subchannels are sorted in ascending order

of βi,j + γi,j, where γi,j is the SNR ratio between the RN channel and SN channel,

γi,j = γ2
i,j/γ

1
i,j. Then, the following properties are obtained for the optimal power

allocation.

Lemma 4. At each cycle i, i ∈ T , there exists a last common channel (LCC) j∗i ,

such that

pi,j =


0, j < j∗i

∈ [0, P th
i,j∗i

], j = j∗i

P th
i,j , j > j∗i

(3.6)

Proof.

At the i-th cycle, when the relay node has to choose between two subchannels,

the subchannel with higher γ2
i,j and βi,j will always be chosen because higher γ2

i,j will

yield greater capacity and greater βi,j means more harvested energy for the source

node.

Consequently, when the power allocated by SN to all of the subchannels are

given, the relay node will start from the subchannel with the highest index, allocate

power to the threshold, and then move on to the previous subchannel. The process

will continue until a certain subchannel j∗i is reached, and RN decides to stop.

Lemma 5. When there exists power supplement at the i-th AGC, i.e., αi > 0, the

maximum total capacity can be guaranteed when all of the LCCs j∗I , ∀I ∈ T satisfy

the following inequalities:

jimax > j∗i (3.7)
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βi >

 βI,j∗I + γI,j∗I , if pI,j∗I < P th
I,j∗I

βI,j∗I−1 + γI,j∗I−1, if pI,j∗I = P th
I,j∗I

(3.8)

where βi is the maximum overall energy harvesting efficiency at cycle i, i.e., βi =

βi,jimax.

Proof.

Based on the definition of power supplement in (3.3), αi > 0 indicates pi,jimax
=

P th
i,jimax

. According to (3.6) in Lemma 4, there must be jimax > j∗i .

By the definition in (3.3), αi will only increase the harvested energy, while pi,j

can transmit both energy and data simultaneously. Essentially, when RN has a certain

amount of power x, will RN spend x as power supplement or forwarding power? We

conduct the following comparison in terms of the energy storage of SN.

1) If RN uses x as power supplement at cycle i, the energy harvested by SN is

xβi (3.9)

2) If RN uses x as forwarding power at cycle I ∈ T and subchannel J ∈ N , the

energy saved by SN is

xβI,J + ∆P 1
I,J = xβI,J + xγI,J (3.10)

where xβI,J is the harvested energy, and to guarantee that the capacity of subchannel

J in (3.4) remains the same, ∆P 1
I,J is the additional energy that SN will have to spend,

if there is no x amount of forwarding power. The amount of ∆P 1
I,J is determined as

follows.

P 1
I,Jγ

1
I,J + (x+ pI,J)γ2

I,J = (P 1
I,J + ∆P 1

I,J)γ1
I,J + pI,Jγ

2
I,J ,

where x+ pI,J < P th
I,J .

Thus, if RN provides power supplement at cycle i, (3.9) must be greater than

(3.10). That is

βi > βI,J + γI,J (3.11)

where the forwarding power at cycle I subchannel J does not reach the threshold.

31



Since subchannels are sorted in ascending order of βi,j + γi,j, if αi > 0, we just

need to guarantee (3.11) will hold for the last common channel J∗I or J∗I − 1. Hence,

(3.8) is proved.

The intuition behind Lemma 4 is that with a given power budget, RN will prefer

to spend it in the subchannels with better channel condition and greater harvesting

efficiency. Lemma 5 suggests that the power gain provided by power supplement αi

should be strong enough such that RN does not spend it in the suchannel which can

simultaneously transfer information and energy.

From the characteristics of optimal αi in Lemma 5 and the aggregation method

in Remark 4, we have the following remark regarding decreasing number of supplement

power variables.

Remark 5. Define A0 = {i|αi = 0} as the AGC set with power supplements that are

equal to zero. Then, i ∈ A0, if any of the following conditions are satisfied: 1) there

eixsts I < i with βI ≥ βi; 2) j∗i ≥ jimax; 3) there eixsts I ∈ T with βI,j∗I−1+γI,j∗I−1 ≥ βi;

4) i = T .

Suppose the AGC set A0 = {i|αi > 0} contains non-zero power supplement,

then the Equality set A1 = {I|CI
SN in (3.2) is satisfied with equality} can always

be found as follows.

Lemma 6. For any i1, i2 ∈ A0, i1 < i2, the maximum total capacity can be guaranteed

when there exists I ∈ A1, where i1 < I ≤ i2.

Proof. When αi1 , αi2 > 0, there must be βi1 < βi2 (Remark 5). In particular, as

compared with αi1 , SN will harvest more energy with greater αi2 . This means αi1

only exists because SN is in power shortage between cycle i1 + 1 and i2. Meanwhile,

the amount of αi1 should be just enough to support the data transmission from cycle

i1 + 1 to cycle i2.
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Remark 6. Sort A0 in ascending order as A0 = {i1, i2, · · · , i|A0|}. For the k-th

element ik in A0, the corresponding k-th element can be found in A1, where ik < Ik ≤
ik+1. Moreover, T ∈ A1.

Based on the above analysis, the 2NT variables in (3.2) can be reduced to less

than (N + 1)T variables {P 1
i,j, pi,j∗i }. For any given set of LCCs {j∗i |i ∈ T }, and the

corresponding A0, A1 given in Remarks 5-6, the total capacity can be simplified as

follows.

2C
B

= max
{P 1
i,j ,pi,j∗i

}

T∑
i=1

{
log2(1 + P 1

i,j∗i
γ1
i,j∗i

+ pi,j∗i γ
2
i,j∗i

)+

j∗i −1∑
j=1

log2(1 + P 1
i,jγ

1
i,j) +

N∑
j=j∗i +1

log2(1 + P 1
i,jγ

1′
i,j)

}
s.t. Ct

SN :
t∑
i=1

N∑
j=1

P 1
i,j ≤ 1 +

t−1∑
i=1

N∑
j=j∗i +1

βi,jγ
′
i,jP

1
i,j +

t−1∑
i=1

βiαi +
t−1∑
i=1

βi,j∗i pi,j∗i , t ∈ T

CRN :
T∑
i=1

(pi,j∗i + αi +
N∑

j=j∗i +1

γ′i,jP
1
i,j) = P 2

tot

TCi : pi,j∗i ≤ P 1
i,j∗i
γ′i,j∗i , i ∈ T

(3.12)

where αi is either zero (i ∈ A0), or it can be represented as a function of {P 1
i,j, pi,j∗i }

using the CI
SN in A1. The threshold constraint TCi is defined in (3.3).

3.3 Optimal Power Allocation

To achieve the maximum capacity, we assign an index set {jiLCC |i ∈ T } to LCCs in

(3.12), where jiLCC represents the corresponding order of j∗i when LCCs are sorted in

ascending order of βi,j∗i + γi,j∗i .

Lemma 7. For any two consecutive cycles i1, i2 ∈ T , i1 < i2,

1) If ji1LCC ≥ ji2LCC, then at least one of the following constraints is satisfied with

equality.

pi1,j∗i1
≤ P th

i1,j∗i1
, pi2,j∗i2

≥ 0 (3.13)

2) If ji1LCC < ji2LCC, then at least one of the following constraints is satisfied with

equality.

pi1,j∗i1
≥ 0, pi2,j∗i2

≤ P th
i2,j∗i2

, Ci2−1
SN in (3.12) (3.14)
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Proof. 1) According to Lemma 4, when ji1LCC ≥ ji2LCC , at least one of the constraints

in (3.13) holds with equality.

2) When ji1LCC < ji2LCC , suppose none of the conditions in (3.14) holds with

equality, then it is feasible that SN allocates more power to channel j∗i1 in the i1-th

cycle, and RN allocates more power to channel j∗i2 in the i2-th cycle.

The above mentioned power shifting will decrease the power consumption of

either SN or RN and it will continue until one of the conditions in (3.14) is honored.

Remark 7. Suppose LCC I has the highest index, then 1) If pI,j∗I < P 1
I,j∗I

γ′I,j∗I , and

CI−1
SN is not satisfied with equality, then pi,j∗i = 0, i ∈ T \I.

2) If pI,j∗I < P 1
I,j∗I

γ′I,j∗I , and CI−1
SN is satisfied with equality, then pi,j∗i = 0, i ∈ {I +

1, · · · , T}.

From the characteristics of optimal LCC in Lemma 4 and Remark 4, we have

the cooperative water-filling (WF) algorithm in Algorithm 3.

2C
B

= max
{P 1
i,j ,pI,j∗I

}

∑I∈I∗ log2(1 + P 1
I,j∗I

γ1
I,j∗I

+ pI,j∗I γ
2
I,j∗I

) +
T∑
i=1
i/∈I∗

log2(1 + P 1
i,j∗i
γ1
i,j∗i

)+

T∑
i=1

j∗i −1∑
j=1

log2(1 + P 1
i,jγ

1
i,j) +

T∑
i=1

N∑
j=j∗i +1

log2(1 + P 1
i,jγ

1′
i,j)

}
s.t.

t∑
i=1

N∑
j=1

P 1
i,j ≤ 1 +

t−1∑
i=1

N∑
j=j∗i +1

βi,jγ
′
i,jP

1
i,j +

∑
i∈A0

βiαi1{t≥i+1}+∑
I∈I∗

βI,j∗I pI,j∗I1{t≥I+1}, t ∈ T∑
I∈I∗

pI,j∗I +
∑
i=A0

αi +
T∑
i=1

N∑
j=j∗i +1

γ′i,jP
1
i,j = P 2

tot

pI,j∗I ≤ P 1
I,j∗I

γ′I,j∗I , I ∈ I
∗

(3.15)

where 1{x} is the indicator function, which is 1 when x is true and 0 otherwise.

Equation (3.15) is a convex optimization problem consisting of concave objective
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Algorithm 3: Cooperative-WF algorithm

1 C∗ = ∅ ;

2 T = {1, · · · , T};
3 for LCC set {j∗i |i ∈ T } do

4 A = {i|αi = 0, i ∈ T } (Remark 5);

5 for A0: Superset of A do

6 αi = 0, i ∈ A0;

7 A0 = T \A0 ;

8 for A1: Equality set for A0 ( Remark 6) do

9 I∗ = ∅;
10 while T 6= ∅ do

11 I = {i ∈ T |jiLCC = |T |};
12 I∗ = {I∗, I};
13 if I − 1 ∈ A1 then

14 pi,j∗i = 0, i ∈ {I + 1, · · · , T};
15 T = {1, · · · , I − 1};

16 else

17 T = ∅;

18 Calculate C according to (3.15);

19 C∗ = {C∗, C};

20 Return C∗ = max{C∗};
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function and linear constraints [57], and the Lagrange function is defined in (3.16),

L = −2C
B

+
∑
t∈A1

µt(
t∑
i=1

N∑
j=1

P 1
i,j − 1−

∑
i∈A0

βiαi1{t≥i+1} −
t−1∑
i=1

N∑
j=j∗i +1

βi,jγ
′
i,jP

1
i,j−∑

I∈I∗
βI,j∗I pI,j∗I1{t≥I+1}) + η(

∑
I∈I∗

pI,j∗I +
∑
i∈A0

αi +
T∑
i=1

N∑
j=j∗i +1

γ′i,jP
1
i,j − P 2

tot)+

T∑
i=1

N∑
j=1

δi,jP
1
i,j +

∑
I∈I∗

δ∗IpI,j∗I

(3.16)

where the Lagrange multipliers δi,j and δ∗I are due to the constraint that P 1
i,j, pI,j∗I ≥ 0.

Note that the same constraints apply for αi, i ∈ A0. However, they are non-zero

power supplements and therefore are excluded. Moreover, since Cooperative-WF

algorithm sweeps through all the LCC sets, we assume the threshold constraints

are not satisfied with equality for each LCC set and therefore are excluded in the

Lagrangian function. Similarly, we exclude the constraints Ct
SN , t /∈ A1.

The solution to Karush-Kuhn-Tucker conditions is given in (3.17).

pI,j∗I =

[
ln2

−
∑
t∈A1

µt1{t≥I+1}βI,j∗
I

+η
−

1+P 1
I,j∗
I
γ1
I,j∗
I

γ2
I,j∗
I

]+

, I ∈ I∗

P 1
i,j =



[
ln2∑

t∈A1

µt1{t≥I}
−

1+pI,j∗
I
γ2
I,j∗
I

γ1
I,j∗
I

]+

, I ∈ I∗

[
ln2∑

t∈A1

µt1{t≥i}
− 1

γ1i,j

]+

,
i /∈ I∗, j ∈ {1, · · · , j∗i }

i ∈ I∗, j ∈ {1, · · · , j∗i − 1}[
ln2∑

t∈A1

µt(1{t≥i}−1{t≥i+1}βi,jγ
′
i,j)+ηγ′i,j

− 1

γ1
′
i,j

]+

, else

η =
∑
t∈A1

µt1{t≥i+1}βi, i ∈ A0

(3.17)

As we can see, the optimal power allocation takes the form of traditional water-filling

and also has a cooperative nature in the sense that P 1
i,j and pI,j∗I are correlated.

The optimal solution can be obtained by getting a set of {η, µt} that simultaneously

fulfills the equal power constraints Ct
SN , t ∈ A1, and CRN . Similar to the water-

filling procedure, an algorithmic solution can be found such that the power allocation
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satisfies the remaining non-equal power constraints and threshold constraints in (3.15)

[57,58].

3.4 Numerical Results

In this section, we provide numerical results for the studied cooperative relay setting

and illustrate the derived optimal policy. We assume that the cycle length is 1

ms, noise spectral density is N0 = −174 dBm/Hz and the system consists of total

N = 6 subchannels, each with bandwidth of B = 180 KHz. Moreover, the harvesting

efficiency is set as η = 0.8, and the power budget of SN is normalized as P 1
max = 1

W. For the channel model, we assume H = −20d−3h consists of both path-loss

attenuation and Rayleigh fading, where 3 is the path-loss exponent, and −20 dB is

the average signal power attenuation at a reference distance of 1 m. h is an exponential

random variable with unit mean denoting the Rayleigh fading, and d is the length of

each link in m. The length of the SN-DN link, SN-RN link, RN-DN link are 50 m,

10 m, and 40 m respectively.

The performances of the proposed Cooperative-WF algorithm and the Separate-

WF algorithm are shown in Figure 3.2. Cooperative-WF algorithm with η = 0 implies

that SN cannot share RN’s energy since there is no RF energy harvesting functionality.

Similarly, the Separate-WF algorithm only employs data cooperation. SN and RN

will individually use the traditional water-filling algorithm to allocate power.

As expected, the proposed power allocation scheme is shown to be optimal both

at low power constraint and high power constraint. With P 2
tot = 0, there is neither

data cooperation or energy cooperation between SN and RN for all algorithms, and

the second time slot of each cycle is wasted. Also, we should note that for the

Separate-WF algorithm, when P 2
tot increases, C may decrease or remain the same.

The reason is that when P 2
tot ≥ 5 in Figure 3.2, RN may allocate more power to

the j-th subchannel with better RN-DN link condition (higher γ2
i,j). When ci,j is
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Figure 3.2 System capacity versus power budget of RN (T = 5).

determined by the smaller P 1
i,jγ

1′
i,j, the increased P 2

i,jγ
2
i,j will not improve the capacity.

However, this is not the case for the Cooperative-WF algorithm. In fact, C will

always increase with P 2
tot due to the cooperative features of the system.

3.5 Summary

In this chapter, for the OFDM based cooperative relay system, where the relay

node not only can forward the data to the destination node, but is also capable

of transferring energy to the source node, we have derived the closed form solution

to optimally allocate power for a relay-enhanced data and energy cooperative ODFM

system, and a novel power allocation scheme has been proposed to achieve the

maximum network capacity. Considering the flexibility of the system, the cooperative

power allocation results can be extended to scenarios with wired energy sharing or

multiple DF-RNs, which are left for our future research endeavors.
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In particular, to maximize the overall system capacity in multiple subchannels

and multiple time slots while meeting the power constraints, a power allocation

optimization problem is formulated and solved in three steps. First, at each data

transmission and data forwarding cycle, we split the total transmission power of

relay into two parts, one for data forwarding and the other as power supplement

for the source node. Then, our analysis indicates that at each cycle, once all of the

subchannels are sorted in a certain order, the relay node will only provide forwarding

power to the subchannels with index greater than a certain value. Meanwhile, the

incentive for the relay node to provide power supplement should be strong enough

such that relay chooses not to simultaneously transmit data and energy. Finally, an

equivalent convex constrained optimization problem is formulated and the solution is

derived by solving the Lagrange function. The solution takes the form of water-filling

in combination with a cooperative feature.
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CHAPTER 4

WIRED ENERGY AND WIRELESS DATA COOPERATION

Owing to the direct impact of greenhouse gases on the earth environment and

the climate change, the energy consumption of Information and Communications

Technology (ICT) is becoming an environmental and thus, social and economic issue

[53,64,65]. Mobile networks are among the major energy guzzlers of communication

networks, and their contributions to the global energy consumption increase rapidly.

Therefore, greening mobile networks is crucial to reducing the carbon footprints of

ICT [66–69].

As green energy technologies advance, green energy such as sustainable biofuels,

solar and wind energy can be readily utilized to power BSs. Telecommunications

companies such as Ericsson and Nokia Siemens have designed green energy powered

BSs for mobile networks [70, 71]. By adopting green energy powered BSs, mobile

service providers may save on-grid power consumption, and thus, reduce their CO2

emissions [72–74]. However, since the green energy generation is not stable, green

energy may not be a reliable energy source for mobile networks. Therefore, future

mobile networks are likely to adopt hybrid energy supplies: on-grid brown power and

green energy. Green energy is utilized to reduce the on-grid brown power consumption

and thus, reduce the CO2 emissions while on-grid brown power is utilized as a

backup power source. To achieve energy efficient wireless data transmission, Hong

and Zhu [75] proposed to power wireless access networks with smart grid, where in

addition to the green energy generator equipped in each BS, the radial structure

power distribution networks are adopted to connect the BSs. Both the power flows

in the smart grid and beamforming vectors are investigated for the wireless access

network with/without cooperative data transmission.
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Figure 4.1 Smart grid enabled mobile network.

In smart grid, electricity can be traded among distributed power generators

and consumers [28, 29, 76]. Powered by smart grid, mobile networks are able to buy

electricity from different power generators according to energy market information

and optimize their BS operation to minimize their operating expenses [18,30,77]. Via

smart grid, the surplus green energy generated by a BS can be shared with other BSs

to reduce the on-grid brown power consumption of mobile networks [78]. Considering

both green energy and smart grid, the power supplies of future mobile networks are

shown in Figure 4.1. In the network, BSs have three power supplies: the power

generated from the green energy generator in individual BSs, the power shared from

other BSs, and the brown power generated from the remote power plant. The power

generated from the remote power plant is the least efficient because of the energy

loss during the power transmission and distribution. We refer to the power generated

from the remote power plant as on-grid brown power.

Considering the broadcast nature of wireless communications, in addition to

the wired energy transfer facilitated by the grid architecture, energy can be shared

among multiple BSs through wireless energy transfer based methods, such as traffic

offloading [30]. Wired energy transfer not only 1) is limited by the availability of
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grid architecture, but also 2) suffers from energy transfer loss caused by the grid

equipment, such as power transformer and transmission line. Wireless energy transfer,

on the other hand, 1) is constrained within a certain geographical area, owing to the

wireless channel attenuation between the mobile user and the base station that will

share the energy, and 2) suffers from energy loss in the sense that the offloaded traffic

always requires more energy, as compared with the original associated nearest BS.

To minimize the on-grid brown power consumption of mobile networks, we

propose to jointly investigate wired energy transfer and wireless energy transfer in the

smart grid powered wireless access network. Wired energy transfer is controlled by

the power distribution scheme, and the BS operation controls the UE-BS association

scheme so that energy can be shared among BSs without wired energy transfer.

Although the optimization of the BS operation [79], the green energy utilization [72],

and the power distribution [80] are well studied separately, the joint BS operation

and Power distribution Optimization (BPO) problem is not well investigated.

Within the coverage of the proposed wireless access network, the distribution

network of smart grid will not only deliver power resources to base stations, but also

to residential customers and other industuries, of which the load is very difficult to

model. The complex topology of the power distribution network makes it very difficult

to solve the full power flow among the whole distribution network [81]. Consequently,

the BPO problem conducts analytic study on how much power is consumed by each

base station and how much power is injected to/withdrawn from the grid. The

detailed scheduling of the power flow will be carried out by the smart grid, and

is out of the scope of this dissertation.

Solving the BPO problem is challenging due to the complex coupling of the

BS operation, the green energy utilization, and the power distribution. We propose

an approximate solution which decomposes the BPO problem into two subproblems:

the weighted user-BS association (WUA) problem and the BS energy sharing (BES)
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problem. By addressing the WUA problem, we realize the energy efficiency aware BS

operation. By solving the BES problem, we optimize the power sharing among BSs

and thus minimize the BSs’ on-grid power consumption. The important notations

are summarized in Table 4.1.

4.1 System Model

In this chapter, we consider a mobile network with B = {1, · · · , N} BSs. Each BS

can draw brown energy from the connected smart grid. In addition to brown energy,

the BSs are equipped with independent energy harvesting system that generates

electricity from green energy sources, such as solar. The green energy generation

rate in the i-th BS is denoted as Ei. Owing to the disadvantages of “banking”

green energy [82], we assume the “harvest-use” structure is adopted for each energy

harvester, i.e., the green energy cannot be stored [18]. However, the harvested green

energy is not wasted even if it is not used immediately by the BS that generated it.

Facilitated by the grid architecture, the individually harvested green energy can be

shared among BSs, indicated as bi-directional inter-BS energy flows in Figure 4.2,

where δi,j is the amount of energy transferred from BS i to BS j, and δj,i is the other

way around. The smart grid can be considered as a virtual battery for the green

energy harvested from all BSs. Note that it is not necessary to have a direct grid link

between any BS i and BS j.

In the network, the i-th BS will always transmit with the maximum power

P t
i , i ∈ B.1 1) To reduce carbon footprints, BSs will utilize the harvested green energy

Ei first. 2) When green energy in a BS is not sufficient to satisfy this amount of energy

demand, the BS can draw power from the other BSs which have surplus green energy,

i.e.,
∑

j∈B\i δj,i. 3) If the BS’s energy demand is still not satisfied, the BS consumes

on-grid brown power, which is pulled from the remote power plant through the high

1The downlink power control scheme of an LTE system is very limited. The transmission
power can be assumed to be constant over the entire bandwidth [83].
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Table 4.1 List of Important Notations

A Network coverage area

B BS set, including N BSs

Bo Set of BSs which consume on-grid brown power

Bg Set of BSs which have surplus green energy

x UE location

δ δi,j : Power supplement from BS i to BS j through grid

η(x) ηi(x): Binary association indicator of UE x and BS i

η̃(x) η̃i(x): Maximum SINR association indicator of UE x and BS i

ρ ρi: Traffic load (utilization rate) of each BS i

ρ̃ ρ̃i: Traffic load of BS i with maximum SINR association scheme

ri(x) Data rate of UE at x if associated with BS i

r(η, x) Data rate of UE at x if associated to a BS according to η

r̃(x) Maximum achievable data rate of UE at x

τi Latency ratio of BS i

τ∗ Maximum allowable latency ratio

Pi Total power consumption of BS i

P ti Transmission power of BS i

P si Static power consumption of BS i

P oi On-grid power consumption of BS i

Ei Available green power at BS i

θi,j Power transfer efficiency between BS i to BS j

θ0,i Power transfer efficiency from main grid to BS i

θ Approximate wired energy transfer efficiency ratio

ω̃ ω̃i: Wireless energy transfer efficiency threshold of BS i

ζ, ψ Backtracking line search parameters

ξk Step size at the k-th iteration
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Figure 4.2 On-grid brown energy flow and Inter-BS green energy flow.

voltage transmission line, the distribution substations, and the power distribution

network.

4.1.1 Traffic Model

Assume N BSs are deployed to provide data service to an area A. We assume

that the traffic arrives according to a Poisson process with the arrival rate per unit

area at location x equaling to λ(x), and the traffic size per arrival has a general

distribution with average value of s(x), thus resulting in a total λ(x)s(x) average

traffic load. Assuming a mobile user at location x is associated with the i-th BS,

then the user’s data rate ri(x) can be generally expressed as a logarithmic function

of the instantaneous signal to interference plus noise ratio, SINRi(x), according to

the Shannon Hartley theorem [79],

ri(x) = log2(1 + SINRi(x)) (4.1)

Here,

SINRi(x) =
P t
i gi(x)

σ2 +
∑

j∈B,j 6=i Pjgj(x)
(4.2)
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where σ2 denotes the noise power level, and gi(x), i ∈ B, is the channel gain between

BS i and UE located in x, including the path loss and the shadowing fading.

As we can see, the service rate for UE located at x and associated with the i-th

BS is

µi(x) =
ri(x)

s(x)
(4.3)

Assuming mobile users are uniformly distributed in the area, the overall

utilization rate of the i-th BS can be expressed as follows.

ρi =

∫
x∈A

ηi(x)
λ(x)

µi(x)
dx (4.4)

where η(x) = (η1(x), · · · , ηN(x)) is an association indicator function. If ηi(x) = 1,

the user at location x is associated with the i-th BS; otherwise, the user is not

associated with the i-th BS. For the maximum SINR association scheme η̃(x) =

(η̃1(x), · · · , η̃N(x)), user at x will only connect to the base station which yields the

maximum SINRi(x). Note that the value of ρi indicates the fraction of time during

which the i-th BS is busy transmitting data; in particular, we also uses ρi to indicate

the amount of traffic load of BS i.

The traffic served by the i-th BS, i.e.,
∫
x∈A λ(x)ηi(x)dx, which is the sum of the

traffic arrivals from its coverage area, is a Poisson process, and the user departure

rate µi(x) follows a general distribution. Consequently, the BS realizes an M/G/1

queuing system. Assuming mobile users share the BS’s radio resource and are served

based on the round robin fashion, the traffic delivery in the BS can be modeled as an

M/G/1− PS (processor sharing) queue.

According to [84], the average traffic delivery time, including waiting time and

service time, for the user in the i-th BS is

Ti(x) =
1

µi(x)(1− ρi)
(4.5)
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Denote τi(x) as the latency ratio that measures how much time a user at location

x must be sacrificed in waiting for a unit service time.

τi(x) =
Ti(x)− 1

µi(x)

1
µi(x)

=
ρi

1− ρi
(4.6)

where 1/µi(x) is the service time.

According to (4.6), τi(x) only depends on the traffic load in the i-th BS.

Therefore, all the users associated with BS i have the same latency ratio. Thus,

we define

τi =
ρi

1− ρi
(4.7)

as the latency ratio of the i-th BS. A smaller τi indicates that the i-th BS introduces

less latency to its associated users.

4.1.2 Energy Consumption Model

The BS’s power consumption consists of two parts: the static power consumption

and the dynamic power consumption [50]. The static power consumption is the power

consumption of a BS without any traffic load. The dynamic power consumption refers

to the additional power consumption caused by traffic load in the BS, which can be

well approximated by a linear function of the traffic load [85]. Denote P s
i as the static

power consumption of the i-th BS. Then, the i-th BS’s power consumption can be

expressed as

Pi = βiρi + P s
i (4.8)

Here, βi is the linear coefficient which reflects the relationship between the traffic

load and the dynamic power consumption in the i-th BS. βi includes the transmission

power P t
i in Equation (4.2) and power efficiency related to the physical equipment,

such as power amplifier.
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For the wired energy transfer scheme among the wireless access networks,

instead of using Kirchhoffs Current Law (KCL), Kirchhoffs Voltage Law (KVL)

and nodal analysis method to approximate the power flows [86], we assume when

an individual energy harvester (green energy powered BS) feeds its excess green

energy back to the grid, it can obtain a certain amount of credit from the grid.

The credit can be used by other cooperative harvesters (other BSs) with insufficient

green energy in the system (wireless access networks) to purchase the on-grid energy.

The relationships between the green energy, on-grid brown energy and energy credit

are approximated as wired energy transfer efficiency as follows.
θ0,i = θT0,iθ

D
0,i = θT0,iθ

PT
0,i θ

PL
0,i ∈ (0, 1)

θi,j = θj,i = θPT θPLi,j = θPT θPLj,i ∈ (0, 1), i 6= j
(4.9)

where θ0,i is the brown power transmission efficiency reflecting the power loss of

transferring power from the remote power plant and the i-th BS, and θi,j refers to the

green power transmission efficiency of using green energy harvested by i-th BS at the

j-th BS.

θ0,i includes both the transmission loss θT0,i and the distribution loss θD0,i [87].

The transmission loss is incurred during the process of moving large amounts of

power over high voltage and long distance. The distribution system consists of

the substations and feeder lines that take power from the high voltage grid and

progressively step down the voltage, and eventually enter the base station. Essentially,

power distribution loss considers both the efficiency of power transformer θPT0,i and

the efficiency of power transmission line θPL0,i .

The wired power transfer among BSs only occur in the energy distribution

system; namely, θi,j consists of both 1) θPT , the efficiency of grid-tie inverter, which
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is assumed to be the same for all BSs 2, and 2) the efficiency of power line between

the two BSs θPLi,j .

Moreover, we assume the grid is smart in the sense that when energy is

transferred from one location to another, the direct energy transfer efficiency is always

the highest among all the possible energy transfer routes between these two grid

connected locations. Consequently, the energy transfer efficiency in (4.9) exhibits the

following characteristics. 
θ0,i ≥ θ0,jθj,i

θi1,i2 ≥ θi1,iθi,i2

(4.10)

The above assumption is reasonable because if the energy efficiency θ0,i is less than

θ0,jθj,i, the smart grid will first transfer energy to BS j, and then to BS i. Eventually,

we will have θ0,i = θ0,jθj,i. Similarly, there is no need to transmit directly between

BSs i1 and i2 without the intermediate node i, if θi1,i2 is less than θi1,iθi,i2 .

Thus, the on-grid brown power consumption in the i-th BS is

P o
i =
{Pi − (Ei +

∑
j∈B δj,iθj,i −

∑
j∈B δi,j)}+

θ0,i

(4.11)

where the positive function {•}+ = max{•, 0}, and δi,i = 0.
∑

j∈B δj,i is the amount

of green energy received from other BSs.
∑

j∈B δi,j is the amount of green energy

transmitted to other BSs.

4.2 Problem Formulation and Analysis

In jointly optimizing the BS operation and the power distribution, the network aims

to minimize the on-grid power consumption while satisfying the mobile users’ quality

of service (QoS) requirement, which refers to the average traffic delivery latency in

2Grid-tie inverter is capable of converting direct current (DC) sources such as solar panels or
small wind turbines into alternating current (AC) for tying with the grid. Grid-tie inverter
will not be a necessity when the AC distribution system is replaced by the DC distribution
system.
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this chapter. The joint BS operation and Power distribution Optimization (BPO)

problem can be formulated as

min
(ρ,δ)

∑
i∈B

P o
i =

∑
i∈B

{Pi−(Ei+
∑
j∈B δj,iθj,i−

∑
j∈B δi,j)}+

θ0,i
(4.12)

s.t. 0 ≤ τi ≤ τ ∗, i ∈ B (4.13)

where τ ∗ is the maximum allowable latency ratio for satisfying users’ QoS

requirements in the network. ρ = (ρ1, ρ2, · · · , ρN), and

δ =



0, δ1,2, · · · , δ1,N

δ2,1, 0, · · · , δ2,N

...,
...,

. . . ,
...

δN,1, δN,2, · · · , 0


(4.14)

where δi,jδj,i = 0. This indicates that when BS i provides green energy to BS j, then

BS j will not simultaneously transmit energy back to BS i, because energy loss is

incurred during green energy transferring process.

Suppose with the maximum SINR association scheme η̃(x), the traffic load of

each BS is ρ̃ = (ρ̃1, · · · , ρ̃N). To ensure the area defined in (4.13) is feasible, we

assume τ ∗ is at least greater than the latency ratio corresponding to ρ̃.

To solve the BPO problem, the traffic load assigned to each BS and the power

sharing among the BSs should be optimized. A BS’s traffic load is determined by the

user-BS association scheme. The power transmission efficiency of the power grid is

one of the factors in determining the optimal user-BS association. The optimal power

sharing depends on the BSs’ traffic load, the green energy generation rate, and the

power transmission efficiency. Owing to the complex coupling of these variables and

parameters, solving the BPO problem is challenging.
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4.2.1 Problem Simplification

Similar to the link capacity concept in the wired/wireless data transmission network,

the capacity to flow power on a line or a group of lines of the smart grid can also be

limited and dynamic [88]. Consequently, in reality, the power flows among BS pairs

depend not only on the available energy and energy transfer efficiency, but also on

other power injections and withdrawals using the power lines in between. In the power

grid, injection shift factor (ISF) is used to approximate the change in active-power

flow across a transmission line due to a change in active-power generation or load at a

particular bus. Based on ISF, line flow distribution factors, such as the power transfer

distribution factor (PTDF), can be derived to model the relative change in power

flow on a particular line due to a change in injection and corresponding withdrawal

at a pair of buses. More recently, the Generalized ISF has been proposed to predict

active-power line flows during the transient period following a disturbance [89].

Both PTDF and Generalized ISF are linear power flow models designed to

maintain the grid balance [90]. Since it is known empirically that, given a fixed

topology and ignoring controllable device limits, the linear factors are relatively

insensitive to the levels of injections and withdrawals [91], we assume that the power

flows among the BS pairs in the wireless access network is separated from the other

power injections or loads in the smart grid. With this assumption, the characteristics

of power supplements provided by each BS are presented in the following Lemmas.

Lemma 8. For any given power consumption scheme ρ, there exists an optimal power

supplements profile δ, such that the power supplements provided by each BS will not

exceed its own available green energy.

∑
j∈B

δi,j ≤ Ei +
∑
j∈B

δj,iθj,i, i ∈ B
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Lemma 9. For any given power consumption scheme ρ, there exists an optimal power

supplements profile δ, such that each BS will never receive green power supplement

from one BS while providing power supplement to another BS.

(
∑
j∈B

δi,j)(
∑
j∈B

δj,i) = 0, i ∈ B

The proofs can be found in Appendices A.4-A.5. The results presented can

be anticipated from (4.10) because the direct route between two nodes is the most

efficient in terms of energy transfer. fly, to minimize the total on-grid energy

consumption, the grid and BSs will choose the direct path to reduce the power loss.

The observation presented in Lemmas 8 and 9 simplifies the BPO problem as

follows: if the i-th BS consumes on-grid brown power, then
∑

j∈B δi,j = 0, and the

corresponding P o
i is redefined as follows.

P o
i =

Pi − Ei −
∑

j∈Bg θj,iδj,i

θ0,i

, i ∈ Bo (4.15)

where Bo and Bg are the set of BSs which consume on-grid brown power and the set

of BSs which have surplus green energy, respectively. Bo = {i|Pi > Ei, i ∈ B} and

Bg = {i|Pi ≤ Ei, i ∈ B}.

The corresponding problem in (4.12) is reformulated as follows.

min
(ρ,δ,Bo,Bg)

∑
i∈Bo

Pi−Ei−
∑
j∈Bg θj,iδj,i

θ0,i
(4.16)

s.t. 0 ≤ ρi ≤ τ∗

1+τ∗
, i ∈ B (4.17)

Bo ∩ Bg = ∅ (4.18)

Bo ∪ Bg = B (4.19)∑
j∈Bo

δi,j ≤ Ei − Pi, i ∈ Bg (4.20)∑
j∈Bg

θj,iδj,i ≤ Pi − Ei, i ∈ Bo (4.21)
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where the constraint in (4.17) is mapped from 0 ≤ τi ≤ τ ∗, based on the definition

of the average latency ratio given in (4.7), and ρ̃ ≤ τ ∗/(1 + τ ∗). The constraint in

(4.21) is introduced to eliminate the positive function of the objective function of the

BPO problem, and

δ =


δi,j ≥ 0, i ∈ Bg, j ∈ Bo

0, else

4.2.2 Problem Decomposition

Given a BS’s green energy generation rate and the power transmission efficiency of

power grid in the objective function of (4.16), the first component of the on-grid brown

power consumption (Pi − Ei)/θ0,i is determined by the BS’s power consumption while

the second component
∑

j∈Bg θj,iδj,i/θ0,i is determined by the power sharing among

the BSs.

For the second component, according to Chapter 10 in [92], the efficiency of

transferring power from the remote power plant to BS i is much lower than the

efficiency of power line between BS i and other BSs.

θ0,i � θPLi,j , ∀j ∈ B\i (4.22)

Since wireless access networks encourage the usage of the carbon neutral green energy

rather than the on-grid brown energy, in addition to the physical wired energy transfer

loss, the carbon emission factor will also render small θ0,i and large θPLi,j . Consequently,

the energy loss ratio of any BS can be approximated as the same, denoted by θ.

θ ' θPT
θPLi,j
θ0,i

=
θi,j
θ0,i

, ∀j ∈ B\i (4.23)

where all BSs have the same grid-tie efficiency θPT in (4.9).

With this approximation, the system model in Figure 4.2 is transformed into

an equivalent system shown in Figure 4.3, where the green energy hub collects all the
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power supplements from BSs, and distribute the green energy to other BSs in need

of energy.

The above approximation analysis allows BPO problem in (4.16) to be decomposed

into the following two consecutive steps.

Step I: With (4.23), the objective function in (4.16) becomes

∑
i∈Bo

Pi − Ei
θ0,i

− θ
∑
i∈Bo

∑
j∈Bg

δj,i

Consequently, instead of identifying the energy flows among all BS pairs, the following

naive power supplement scheme will minimize the total on-grid power consumption.

1) BS i, i ∈ Bg, will simply forward all the remaining energy, Ei − Pi, to the

green energy hub. 2) BS i, i ∈ Bo, will draw at most (Pi − Ei)/(θ0,iθ) amount of

energy from the green energy hub.
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With the above power supplement scheme, the BPO problem is expressed as

the following weighted user-BS association (WUA) problem.

min
(ρ,Bo,Bg)

∑
i∈Bo

Pi−Ei
θ0,i
−
∑
i∈Bg

θ(Ei − Pi) (4.24)

s.t. (4.17), (4.18), (4.19)

Ei ≥ Pi, i ∈ Bg (4.25)

Pi ≥ Ei, i ∈ Bo (4.26)

where
∑

i∈Bg Ei − Pi is the total amount of power that BSs send to the green energy

hub.

Note that in the objective function of (4.24), there will be no on-grid brown

energy consumption when
∑

i∈Bg Ei−Pi ≥
∑

i∈Bo(Pi − Ei)/θ0,i. However, the corresponding

{ρ,Bo,Bg} will still be optimal.

Step II: The on-grid power consumption in (4.16) is further reduced by lifting

the assumption of (4.23). With the traffic load ρ and the power consumption Pi

returned by (4.24), the BS energy sharing (BES) problem is designed to obtain the

energy flows among all BS pairs.

min
δ

∑
i∈Bo

Pi−Ei
θ0,i
−
∑
i∈Bo

∑
j∈Bg

θj,iδj,i
θ0,i

(4.27)

s.t. (4.20), (4.21)

The decomposition reduces the complexity of solving the BPO problem because in

each step, only a subset of the variables needs to be optimized. Moreover, it increases

the flexibility of the proposed wireless communications system to be accommodated

by the smart grid.

For example, when BSs deposit and withdraw credits from the green energy hub

in Figure 4.3, the credit is of common value to each BS. If smart grid schedules the

locally available on-grid energy to the BSs that withdraw the credit, the second step

is not needed. On the other hand, when the wired green energy transfer is scheduled
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by smart grid between the BS pairs, the on-grid power consumption of the network

can be optimized by solving the problems in Step I and Step II sequentially.

4.3 An Approximate Solution

In this section, heuristic algorithms are proposed to solve the WUA problem and BES

problem.

4.3.1 Wired and Wireless Energy Transfer

For the mixed integer programming problem in Equation (4.24), instead of iterating

all possible Bo and Bg, we note that in order to reduce the on-grid brown power

consumption of BSs in Bo, the design of the optimal traffic load ρ has to reflect the

following two schemes.

First, the green energy supplement scheme will try to decrease ρi, i ∈ Bg, so

that more leftover green power, i.e., Ei − Pi, will be transferred to BSs in Bo. The

wired energy transfer directly balances the available green energy of each BS. On the

other hand, the traffic offloading scheme will try to increase ρi, i ∈ Bg. It allows BSs

with more green energy to serve more mobile users, and reduces the traffic load of

BSs in Bo.

Since we assume power supplement and traffic offloading are both feasible in area

A, how BSs choose the optimal traffic load and minimize the on-grid brown energy

consumption depends on the energy loss factor of both methods. As compared with

the wired energy transfer efficiency defined for power supplement in (4.9), the energy

loss associated with traffic offloading is owing to the wireless channel gain.

As shown in Figure 4.4, with maximum SINR association scheme η̃(x), UE

located at x is in the coverage of BS i∗, i.e., the channel gain in Equation (4.2) is

gi∗(x) = maxi∈B gi(x). Suppose with the traffic offloading scheme, UE x is offloaded

to BS i. With gi(x) < gi∗(x), to serve the same traffic demand of UE x, BS i will

spend more power than BS i∗. The additional power consumption can be recognized
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Figure 4.4 Wireless energy transfer of traffic offloading.

as the power loss caused by traffic offloading. Hence, in a way, traffic offloading can

be considered as wireless transfer of energy from BS i to BS i∗, and BS i∗ will use the

received energy to serve the offloaded users. The “wireless energy transfer efficiency”

defined for traffic offloading is also less than 1.

As shown in Figure 4.5, the wireless energy transfer efficiency will increase

with traffic load ρi∗ < ρ̃i∗ . In particular, with ρ1
i∗ > ρ2

i∗ , we have gi∗(x1)/gi(x1) <

gi∗(x2)/gi(x2). Thus, offloading UE at x2 will cost more energy than offloading UE

at x1.

4.3.2 Analysis of the WUA Problem

By comparing the wireless energy transfer efficiency incurred by traffic offloading and

the wired energy transfer efficiency via smart grid, we propose to find the traffic load ρ

in (4.24) by sequentially optimizing the traffic offloading scheme and the green energy

sharing scheme. First, when the wireless energy transfer efficiency is greater than the

wired energy transfer efficiency, a BS’s surplus green energy should be utilized to

serve more user traffic. When the neighbors’ nearby traffic is absorbed, the wireless

energy transfer efficiency will be lower, and a BS’s surplus green energy should be

shared with other BSs via the smart grid.
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The decoupling between wired and wireless energy transfer requires traffic load

of each BS to be greater than a certain value, such that the energy loss caused by

offloading (gi(x) < gi∗(x)) is less than directly transferring energy from BS i to BS

i∗.

ρ ≥ ω̃ρ̃ (4.28)

where ω̃ = (ω̃1, · · · , ω̃N) ≤ 1 is the threshold set for the wireless energy efficiency in

terms of traffic load, and ρ̃ is the unbalanced traffic load, i.e., the traffic load of each

BS when users are connected to BSs according to the maximum SINR association

scheme η̃(x).

The corresponding weighted user-BS association problem in (4.24) can be expressed

as

min
(ρ,Bo,Bg)

∑
i∈Bo

Pi−Ei
θ0,i

(4.29)

s.t. (4.17), (4.18), (4.19), (4.25), (4.26), (4.28)

Lemma 10. The optimal traffic load ρ and the corresponding Bo and Bg for (4.29)

must be the optimal solution to the WUA problem in (4.24).

The proof of Lemma 10 is given in Appendix A.6. The lower bound of ρi

in (4.28) can be realized by setting a constraint on a user’s minimum data rate at
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location x.

r(η, x) ≥ ωr̃(x), x ∈ A (4.30)

where r(η, x) is the data rate of a user located at x with user association scheme η,

and r̃(x) = max
∑

i∈B ri(x) is denoted as the data rate of UE at x with the maximum

SINR association scheme. 0 < ω < 1 is a linear coefficient that constrains the

minimum data rate of a user at location x. By changing ω, we can limit the wireless

energy transfer efficiency to be larger than θ.

Note that (4.30) is consistent with the design of prevailing wireless access

systems. In LTE systems, for example, to ensure the energy efficiency of base station

and mobile devices, downlink sensitivity and uplink sensitivity are set such that a

mobile user can only associate with the BSs to which the user’s pathloss is smaller

than the predefined thresholds [93].

4.3.3 Solving the WUA Problem

In this section, we present the energy loss and latency aware (ELLA) user association

scheme that solves the WUA problem in (4.29). First, the constraints (4.18), (4.19),

(4.25), and (4.26) in (4.29) can be converted back to the positive function in the

objective function as follows.

min
ρ

∑
i∈B

{Pi−Ei}+
θ0,i

(4.31)

s.t. (4.17), (4.28)

In the ELLA scheme, we approximate {Pi − Ei}+/θ0,i as log(e(Pi−Ei)/θ0,i+1), and

approximately reformulate the WUA problem using the logarithmic barrier function

[94]. Then, the approximate WUA (AWUA) problem is

minF (ρ) (4.32)

s.t. (4.28)
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where F (ρ) is the redefined objective function.

F (ρ) =
∑
i∈B

log(e
Pi−Ei
θ0,i + 1)− 1

t

∑
i∈B

log(
τ ∗

τ ∗ + 1
− ρi) (4.33)

where t > 0 is a parameter that sets the accuracy of the approximation. The quality

of the approximation increases as t grows.

Lemma 11. With ρi ∈ [ω̃iρ̃i,
τ∗

τ∗+1
], i ∈ B, F (ρ) is a convex function of ρ.

The convexity of F (ρ) can be proved by showing 52F (ρ) > 0. To solve (4.32),

the sub-gradient algorithm is adopted, in which the objective function F (ρ) will

decrease as the traffic load ρ iterates in the descent direction ρ̂(k)− ρ(k).

ρ(k + 1) = ρ(k) + ξk(ρ̂(k)− ρ(k)) (4.34)

where ρ(k) = (ρ1(k), ρ2(k), · · · , ρN(k)) is the advertised traffic load at the k-th

iteration, and ρ̂(k) = (ρ̂1(k), ρ̂2(k), · · · , ρ̂N(k)) is the instantaneous traffic load at

the k-th iteration. Moreover, 0 < ξk < 1 is the step size calculated by BS via

backtracking line search [94], such that

F (ρ(k + 1)) ≤ F (ρ(k)) + ξkζ〈5F (ρ)|ρ=ρ(k), ρ̂(k)− ρ(k)〉 (4.35)

where 0 < ζ < 0.5 is a constant, 〈, 〉 denotes the inner product, and the gradient of

the convex function F (ρ) at ρ(k) is

5F (ρ)|ρ=ρ(k) = (5F (ρ1(k)),5F (ρ2(k)), · · · ,5F (ρN(k)))

According to Equation (4.4), traffic load is a function of the binary UE-BS

association indicator η(x). Define η̂(x) as the association indicator for the instantaneous

traffic load ρ̂(k):

η̂(x) = (η̂1(x), η̂2(x), · · · , η̂N(x)), x ∈ A (4.36)
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Lemma 12. The following binary UE-BS association indicator will provide a descent

direction at the k-th iteration.

η̂i(x) =

 1, i = arg max
j∈B

rj(x)

5F (ρj(k))

0, else
(4.37)

As illustrated in Appendix A.7, (4.37) is derived by finding a search direction

which yields a negative inner product with 5F (ρ)|ρ=ρ(k). The corresponding ELLA

algorithm is given in Alg. 4. The convergence and optimality of the ELLA algorithm

are presented in the following theorems, which are proved in Appendices B.1-B.2.

Theorem 1. There exists a traffic load vector with ρ∗(k + 1) = ρ∗(k).

Theorem 2. The traffic load vector ρ converges to the optimal traffic load vector ρ∗

that minimizes F (ρ).

4.3.4 Solving the BES Problem

To obtain the optimal energy sharing among BSs, we use the optimal association

scheme and corresponding power consumption obtained from the AWUA problem.

Since
∑

i∈Bo(Pi − Ei)/θ0,i in (4.27) is known, the BES problem equals to the following

linear programming problem that can be efficiently solved using an optimization

software such as CVX [95].

max
δ

∑
i∈Bo

∑
j∈Bg

θj,iδj,i
θ0,i

(4.41)

s.t. (4.20), (4.21)

4.4 Implementation

When jointly designing the BS operation and power distribution, the cooperation

between wireless access networks and smart grid is essential. The following sections

will introduce how to cooperatively implement both systems to realize the optimal

performance.
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Algorithm 4: ELLA Algorithm

1 k = 1;
2 ρ(k) = 0;
3 while ρ(k) 6= ρ(k + 1) do
4 k = k + 1;
5 for x ∈ A do
6 B = {1, · · · , N};
7 Calculate temporary BS for UE located at x;

i∗ = arg max
i∈B

ri(x)

5F (ρi(k))

8 if ri∗(x) ≥ ωr̃(x) then
9 Update UE-BS association indication function;

η̂i(x) =

{
1, i = i∗

0, else

10 else
11 B = B\i∗;
12 Go to Step 7;

13 for i ∈ B do
14 Update instantaneous traffic load ρ̂i(k);

ρ̂i(k) = min(

∫
x∈A

λ(x)s(x)η̂i(x)

ri(x)
dx,

τ ∗

τ ∗ + 1
− ε) (4.38)

15 ξk = 1;
16 while (4.35) is not true do
17 Update step size ;

ξk = ψξk (4.39)

18 Update traffic offload ρi(k + 1) according to (4.34);

ρi(k + 1) = ρi(k) + ξk(ρ̂i(k)− ρi(k)) (4.40)

19 Remark 1: In (4.38), ε is an arbitrary small positive constant to guarantee
ρi <

τ∗

τ∗+1
;

20 Remark 2: In (4.39), 0 < ψ < 1 is a real number;
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Figure 4.6 Distributed ELLA algorithm.

4.4.1 Wireless Access Network Operation

To provide mobility support, the protocols of the current 3GPP LTE system has

addressed mobility management issues such as searching for base station, cell reselection

and handover decision parameters based on Reference Signal Received Power/Reference

Signal Received Quality (RSRP/RSRQ), service cost, load balancing, and UE speed.

For the cell selection and handover procedures, the Radio Resource Control (RRC)

protocol mandates that 1) UE measures downlink signal strength and processes the

measurement result; 2) UE sends the measurement report to the serving base station;

3) the serving base station makes the cell selection or handover decision based on the

received measurement reports [96, 97].

4.4.1.1 Distributive ELLA algorithm To accommodate the user association

protocol in the currently deployed wireless access networks, we propose to implement

the ELLA scheme in a distributed fashion, which consists of a user side algorithm

and a BS side algorithm.

As shown in Figure 4.6, the user side algorithm measures the instantaneous

data rate ri(x) of the physical downlink shared channel and RSRP/RSRQ of the
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reference signals. The BS side measures the current traffic load ρ̂(k). Based on the

measurements, the BS side decides η̂(x), i.e., selects the optimal BS to minimize

the objective function of the AWUA problem, and updates its advertised traffic load

ρ(k + 1) for the future.

In order to guarantee convergence of the distributed user-BS association scheme,

we assume that the time scale of the traffic arrival and departure process is faster

relatively to that of BSs in advertising their traffic loads. In other words, BSs

broadcast their traffic loads after the system exhibits the stationary performance.

We assume that all the BSs are synchronized and advertise their traffic loads

simultaneously, and the time interval between two consecutive traffic load advertisements

is defined as a time slot. Each time slot accommodates one iteration of the ELLA

scheme. Moreover, the green energy generation rate is consistent during the time

period of establishing a stable user-BS association.3

4.4.2 Smart Grid Operation

The traditional power grid model consists of power generation, transmission,

dispatching and consuming links. For the market based power grid, the economic

power dispatch model controls “the operation of generation facilities to produce

energy at the lowest cost to reliably serve consumers, recognizing any operational

limits of generation and transmission facilities” [99]. To integrate distributed

harvested renewable energy with the grid, the green power dispatch function is

continuously removing priority dispatch for brown energy sources, such as coal. It

will be distributed into the emerging microgrids, which are small scale power systems

with local generation resources, storage devices and loads [100].

3Since the time scale of the traffic arrival and departure process is typically less than several
minutes, the user-BS association process is at a time scale of several minutes. The solar
power generation is usually modeled at a time scale of a hour. Thus, this assumption is
reasonable [98].
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In particular, the communications network between the local energy harvester

and microgrid controller is capable of exchanging data, and the controller will centrally

make power scheduling calculations and manage the power flows in electric grids

accordingly. Owing to the significant growth in the on-site renewable energy sources,

a less complex distributed energy scheduling scheme has been developed to tap the

distributed computing power of energy devices [101].

4.4.2.1 Distributive algorithm for the BES problem Once the traffic load

of each BS converges to the optimal ρ, BSs in Bg will forward all the residual green

energy Pi − Ei into the grid, and BSs in Bo will demand Ei − Pi amount of energy.

The net energy metering will collect the data and transmit them to the deployed

microgrid control center, where the optimal energy routing algorithm δi,j is obtained

by solving (4.41).

4.5 Simulation Results

Simulations are set up to evaluate the performance of the proposed approximate

solution in a mobile network with 12 BSs deployed in a 6km × 6km area. The BS’s

transmit power is P t
i = 20 W . The BS’s static power consumption is 700 W and

βi = 500, i ∈ B [85]. We adopt COST 231 Walfisch-Ikegami [102] as the propagation

model with 9 dB rayleigh fading and 5 dB shadowing fading. The carrier frequency is

2110 MHz, the bandwidth is 5 MHz, the antenna feeder loss is 3 dB, the transmitter

gain is 1 dB, the noise power level is -104 dBm, and the receiver sensitivity is -97

dBm. The green energy generation rate is consistent during the simulation.

We compare the proposed algorithm with the green energy aware and latency

aware (GALA) scheme [103], which optimizes the user-BS association by considering

both the green energy utilization and average traffic delivery latency. The energy-

latency coefficient θ∗ ∈ [0, 1] in GALA balances the weight of the latency and green

energy. When θ∗ is set as zero, the BS’s desired traffic loads are its actual traffic loads
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Figure 4.7 ELLA’s convergence.

without considering green energy. In this case, we consider the BS being latency-

sensitive; otherwise, if θ∗ is equal to one, the BS’s desired traffic loads are dominated

by its green traffic capacity and thus the BS is energy-sensitive. More details of the

GALA scheme is referred to [103].

The convergence of the ELLA algorithm is shown in Figure 4.7, where the

on-grid brown power consumption part in (4.33) is defined as follows

F ′(ρ) =
∑
i∈B

log(e
Pi−Ei
θ0,i + 1) (4.42)

As we can see, at the beginning of the ELLA algorithm (the first 35 time slots), F (ρ)

tends to infinity. This is because at the beginning of the ELLA algorithm, traffic

demands are directed to the BSs with higher green energy generation rates, and thus

these BSs’ QoS constraints are violated. Since traffic loads concentrate on the BSs

with higher green energy rates, the on-grid power consumption is low. Therefore,

F ′(ρ) is small at the beginning of the ELLA algorithm. As the ELLA algorithm

evolves, traffic demands are gradually offloaded from the congested BSs to other BSs
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Figure 4.8 Coverage area (τ ∗ = 8).
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Figure 4.9 On-grid power consumption.

67



20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

Time slots

∑ i
∈
B

µ
i

 

 

ELLA, τ*=8
ELLA, τ*=7
ELLA, τ*=6
GALA, θ*=0.6

Figure 4.10 Traffic delivery latency.

until the BSs’ QoS requirements are satisfied. The ELLA algorithm converges after

around 40 time slots.

The coverage area of the ELLA algorithm is shown in Figure 4.8. In associating

users with BSs, the ELLA algorithm considers the energy efficiency of traffic offloading,

the green energy generation rates, and the wired power transmission efficiency. By

considering the wireless energy transfer efficiency of traffic offloading, the maximum

coverage area of a BS is constrained. By accommodating the green energy generation

rate and the wired power transmission efficiency, more traffic is directed to the BSs

with higher green energy generation rate and power transmission efficiency. In this

simulation, as compared with its neighboring BSs, the fifth BS has a higher green

energy generation rate and power transmission efficiency. Thus, the fifth BS covers a

relatively larger area.

Figures 4.9 and 4.10 compare the on-grid power consumption and the traffic

delivery latency of the ELLA and GALA algorithms, respectively. As shown in Figure

4.9, as compared with the GALA algorithm, the ELLA algorithm achieves additional

on-grid power savings. The amount of power savings reduces as τ ∗ decreases. When
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τ ∗ = 8, the ELLA algorithm achieves about 150 W power savings as compared

with the GALA algorithm. The power saving is not very significant because 1) we

constrain the maximum coverage area of each BS to restrict the energy efficiency of

traffic offloading being higher than that of sharing energy among BSs; 2) the GALA

algorithm is also green energy aware and is designed to optimize the green energy

utilization. In Figure 4.10, the traffic delivery latency of the ELLA algorithm is larger

than that of the GALA algorithm because the ELLA algorithm aims to minimize the

on-grid power consumption with a targeted traffic delivery latency while the GALA

algorithm tries to optimize the trade-off between the on-grid power consumption and

the traffic delivery latency.

By solving the BES problem, the optimal power sharing among BSs is derived.

With the BS energy sharing, the network’s on-grid power consumption is further

reduced as shown in Table 4.2. As compared with the GALA algorithm which only

optimizes the BS operation, the proposed approximate solution to solve the BPO

problem saves around 18% on-grid power.

Table 4.2 On-grid Power Consumption of BSs (kw)

GALA BPO (τ∗ = 6) BPO (τ∗ = 7) BPO (τ∗ = 8)
4.6 3.80 3.77 3.76

4.6 Sumamry

In this chapter, we have proposed to jointly optimize the BS operation and power

distribution for mobile networks powered by smart grid. The joint BS operation and

Power distribution Optimization (BPO) problem is difficult to solve because of the

highly coupling of the BS operation and the power distribution. We have proposed an

approximate solution that solves the BPO problem, which saves about 18% on-grid

power as compared with the solutions that only optimize the BS operation.
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CHAPTER 5

FUTURE WORK

The performance of wireless mobile edge in terms of energy efficiency can be improved

by leveraging the radio resource cooperation in Chapter 2 and the renewable energy

sharing discussed in Chapters 3 and 4. In this chapter, we briefly discuss how

network cooperation can improve the latency and security performances of wireless

communication and networking.

5.1 Communications and Storage Resources Trading

For the cooperative mobile edge, we have made the implicit assumption that each

device is willing to cooperate and can be trusted. When this assumption is lifted, the

network performance depends on incentive scheme and network security, because

the base stations, cloudlets, or even users can be reluctant to share their own

resources or they could be dishonest even malicious. In this section, we will discuss

the communication and storage trading scheme that motivates the mobile edge

cooperation.

5.1.1 Communications Resource Trading

Wired energy trading between BSs can facilitate the radio resource exchange between

the grid-connected wireless access nodes [104, 105]. Bayram et al. [105] introduced

the energy trading framework for smart grid with distributed energy harvesters. By

dynamically scheduling the green energy in the smart grid, the energy usage can be

balanced among the grid-tied consumers. With high energy efficiency and low carbon

output, energy trading is a win-win solution for end users and smart grid, and various

pricing schemes have been proposed [106]. Chen et al. [107] introduced the energy

storage unit attached to the energy consumer, and Wang et al. [108] proposed a game
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theoretic model to design the dynamic pricing scheme between multiple buyers and

sellers.

5.1.2 Storage Resource Sharing

Wireless content distribution is facilitating many emerging applications for smart

phone users, such as live streaming and on-demand video streaming [109, 110]. To

improve the user experience in terms of delay and battery life, mobile edge computing

has been proposed for the next generation network architecture to bridge the end

users and contents in the remote cloud [111,112]. The local mobile edge servers equip

the wireless access networks with distributed caching memories and computational

resources [113,114]. Leveraging the ultra-dense deployment of small cells and advances

in device-to-device communications, the mobile edge serving nodes can be adapted

from the legacy network nodes, such as mobile users and low power nodes, which are

willing to cooperatively transmit files to other end users.
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To explore the limited caching capabilities at the serving nodes, cache placement

schemes have been proposed to study which files should be stored in advance at which

serving nodes. Considering the popularity of the file requests, various cache placement

schemes have been proposed to maximize the probability of finding the desired file

through the local serving nodes instead of going to the second tier cache. In the mobile

edge, however, offloading traffic from a macro base station to nearby second/third

tier serving nodes is not necessarily a good option. The reason is that the radio

resources such as spectrum and power available at each serving node is limited; too

many user requests aggregated at one local serving node may cause traffic congestion

and deteriorate the quality of service in terms of longer delay, and multiple closely

located serving nodes may cause intolerable device to device interference or inter-tier

interference.

To further improve the storage and communications resource utilization in

serving nodes, content delivery schemes have explored the content request overlap,

such that the traffic offload within the network is reduced [115]. For each serving

node, the naive multicasting of the same file to a group of users can save the radio

resources [116]. For a group of serving nodes, the coded caching scheme has been

proposed to split the files and produce content overlap at the caches [117].

5.1.3 Incentive Scheme Design

For smart grid powered wireless access networks with distributed data storage and

energy harvesters, we propose to study 1) the content delivery scheme by considering

both the content exchange and energy sharing among grid-tied base stations, and

2) the dynamic spectrum access system, where the smart grid connected primary

base station and secondary system are independently equipped with green energy

harvesters. The secondary base station will gain spectrum usage by forwarding

primary data or transfer its saved on-grid energy credit to the primary base station.
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Figure 5.2 Energy efficiency v.s. data confidentiality.

5.2 Secure Multi-party Communications and Computation

In this section, the uncertainly in terms of untrustworthy is introduced into the

system, and security issue will be discussed from two perspectives: data confidentiality

and data privacy.

5.2.1 Physical Layer Security

As illustrated in Chapter 2, in terms of energy efficiency, the receiver will

simultaneously connect with multiple transmitters only when the radio resource is

not sufficient to support the data transmission. However, the single point to point

data transmission is vulnerable to passive attacks. For instance, Eve in Figure 5.2a

can eavesdrop the data transmission between Alice and Bob. To protect the data

confidentiality, current physical layer security schemes explore the dynamics of the

wireless channels. As shown in Figure 5.2b, Carlo will be leveraged to transmit signals

and jam the data reception of Eve.

However, the energy efficiency of the system will decrease owing to the additional

power consumption required by Carlo and extra interference introduced to Bob.

Consequently, we propose to leverage the characteristics of radio frequency signals,

and better balance energy efficiency and data confidentiality. RF signals can be

used to transmit data, cause unwanted interference, and jam the data reception. As
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Figure 5.3 Energy harvesting enabled physical layer security.

discussed in Chapter 3, it can also be used to transmit energy. Consequently, Alice can

shift between energy harvesting and data transmission. As long as the time switching

pattern in Figure 5.3a is confidential between Alice and Bob, Alice can jam the data

reception of Eve by herself, because Eve cannot distinguish between data and energy

transfer. Moreover, as illustrated in Figure 5.3b, Carlo can also shift between data

and energy to Bob, instead of causing pure interference. Similarly, Alice can harvest

energy from Bob.

5.2.2 Multi-party Privacy

With the advancement of internet of things technologies, users are more actively

creating their own data and sharing the resources among themselves [118, 119].

It is crucial to investigate a privacy preserving multi-party communications and

computation protocol, which synergizes the merits of both the distributively

located resources and crowdsourced data. Existing privacy preserving schemes

include anonymization, trusted computation, cryptographic computation, verifiable

computation, and perturbation. They cannot be applied directly to the IoT system
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Figure 5.4 Privacy enhanced cooperative framework.

architecture, where the parties involved are often resource limited. As shown in

Figure 5.4, each user may own multiple devices and rent multiple virtual machines.

Therefore, by grouping the parties with no privacy concern, the system can scale

down and there is more room to maneuver the privacy enhancement scheme.
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APPENDIX A

PROOFS OF LEMMAS

A.1 Proof of Lemma 1

First, we will prove that Lemma 1 is true for M = 2. Then, mathematical induction

is used to prove the scenario for M ≥ 3.

A.1.1 M = 2

Since all of the N users need power, either from BS 1, BS 2, or both, then at least N

elements of X are non-zero. To prove Lemma 1, we need to prove that the minimum

power consumption can be guaranteed when at most one of the N users is served by

two BSs simultaneously.

1,1x
2,1x

2,2x1,2x

1,1x 2,1x

2,2x1,2x

(a) (b)

UE1 UE2

BS1

BS2

1,1x

2,2x

2,1x

1,2x

Figure A.1 Power shift in the 2-BS cooperative wireless system.

We use reductio ad absurdum here. Suppose in the optimal solution {X,Y},

both UE 1 and UE 2 are powered by BS 1 and BS 2, i.e., xi,j > 0, (i, j = 1, 2). Then,

any power shift ∆xi,j 6= 0, (i, j = 1, 2) in Figure A.1 (b) will result in higher total
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power consumption. 
x′1,1 = x1,1 + ∆x1,1, x

′
1,2 = x1,2 −∆x1,2

x′2,1 = x2,1 −∆x2,1, x
′
2,2 = x2,2 + ∆x2,2

To guarantee the throughput requirement,
∑M

i=1 γi,jxi,j should remain the same

after the power shift, which yields
γ1,1∆x1,1 − γ2,1∆x2,1 = 0

γ2,2∆x2,2 − γ1,2∆x1,2 = 0

If γ1,1γ2,2 − γ1,2γ2,1 ≥ 0, there always exists a power shift to ensure ∆x1,2 +

∆x2,1 −∆x1,1 −∆x2,2 ≥ 0, where
∆x2,1 ≥ ∆x2,2 ≥ 0,∆x1,1 = ∆x1,2 ≥ 0

∆x1,2 ≥ ∆x1,1 ≥ 0,∆x2,1 = ∆x2,2 ≥ 0

Similarly, for γ1,1γ2,2 − γ1,2γ2,1 ≤ 0, the following ∆xi,j is always feasible such

that the total power consumption will decrease after the power shifting.
∆x2,2 ≤ ∆x2,1 ≤ 0,∆x1,1 = ∆x1,2 ≤ 0

∆x1,1 ≤ ∆x1,2 ≤ 0,∆x2,1 = ∆x2,2 ≤ 0

This contradicts with the assumption.

If there is a set consisting of more than two users powered by BS 1 and 2

simultaneously, we can iteratively group these users into pairs, and do power shifting

as in the two-user case. The remaining users that are powered by two BSs form a

new user set. Finally, we will get at most one user being served by the two BSs

simultaneously.

Note 1 : 1) For γ1,1γ2,2 − γ1,2γ2,1 < 0, it is always more power efficient if BS 1

schedules more power to UE 2, while UE 1 prefers BS 2; the optimal power allocation

must be the case when at least one of x′1,1 and x′2,2 is zero. 2) For γ1,1γ2,2−γ1,2γ2,1 > 0,
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the optimal power allocation must be the case when at least one of x′1,2 and x′2,1 is

zero. 3) For γ1,1γ2,2 − γ1,2γ2,1 = 0, if the power keeps shifting until at least one of

xi,j (i, j = 1, 2) becomes zero, it can still guarantee the minimum power consumption

because power shifting brings no increment in the total power consumption.

A.1.2 M ≥ 3

Assume Lemma 1 is true for the scenario with M − 1 BSs.

For the scenario with M BSs and N UEs, we represent the power allocation

solution as an M ×N area, similar to the 3× 4 area in Figure A.2 (a).

Suppose there are more than MN − (M − 1)(N − 1) = M + N − 1 non-zero

cells in the M × N area, taking M + N non-zero cells for example. Since each UE,

i.e., column, has at least one non-zero cell, then at least N −M UEs will be powered

by individual BSs.

Suppose columns {M + 1, · · · , N} of the M × N area represent UEs that are

powered by individual BSs, then there must be 2M non-zero cells in the M × M

square formed by the first M columns of the M × N area (similar to the first 3 × 3

square in Figure A.2 (b)).

1,1x 2,1x

2,2x1,2x

UE1 UE2

BS1

BS2

1,3xBS3

UE3 UE4

3,2x

4,4x3,3x

1,1x 2,1x

2,2x

UE1 UE2

BS1

BS2

1,3x
BS3

UE3 UE4

4,4x

(a) (b)

2,3x

3,2x

3,3x

1,1xD

1,3xD 3,3xD

3,2xD2,2xD

2,1xD

Figure A.2 Power shift in the 3-BS cooperative wireless system.

Denote Ti, i ∈ {1, · · · ,M} as the number of non-zeros elements in the i-th row

of the M ×M square. Since
∑M

i=1 Ti ≤ 2M and Lemma 1 is true for M − 1 BSs, then
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in the M ×M square, we can get

2M − Ti ≤ (M − 1) + (M − 1),∀i ∈ {1, · · · ,M}

The above equation implies Ti = 2,∀i ∈ {1, · · · ,M}, i.e., each row has two

non-zero cells in the M×M square. If there are columns that have only one non-zero

cell, delete these columns and the corresponding rows where these non-zero cells are

located. Finally, an m×m, (M ≥ m ≥ 2) sub-square which has two non-zero cells in

each column and each row must exist. Divide the 2m non-zeros cells into two groups,

each with m non-zero elements. Within each group, each row is distinct and so is

each column.

Taking the 3 × 3 dotted sub-square in Figure A.2 (b) for example. Group 1

includes {x1,1, x2,2, x3,3} and group 2 includes {x3,1, x1,2, x2,3}. It can be proved that

in the optimal solution, the number of non-zero elements in the 3 × 3 sub-square

should be no greater than 2× 3− 1 [120].

In summary, if the product of γi,j of cells in group 1 is greater than the product

of SNR of group 2, then a power shift from group 2 to group 1 that will decrease the

total power consumption exists. If the product of group 1 is no more than the group

2’s product, then there exists a power shift from group 1 to group 2 that will bring

no increment to the total power consumption.

In either case, the power shifting will continue until at least one of the cells

becomes zero. So, the number of non-zero cells in the m×m square will be no more

than 2M − 1. The number of non-zero cells in the M ×N area will be no more than

(2M − 1) + (N −M) = M + N − 1. Accordingly, the number of zeros cells will be

greater than MN − (N +M − 1) = (M − 1)(N − 1).

When there are more than M + N non-zero cells in the M × N area, we can

always iteratively take M + N non-zero cells and do power shifting to make the

number of the non-zero cells no more than M +N − 1.
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A.2 Proof of Lemma 2

We will prove that Lemma 2 is true for the scenarios for M = 2, 3. For scenarios with

M > 3, the same argument can be utilized to arrive at the same conclusion.

A.2.1 M = 2, JCCJCCJCC = [j1,2]

To prove Lemma 2, we need to show in the optimal clusters J1 and J2, when users

are sorted in descending order of γj1,2,

max
j∈J1
{j} < min

j∈J2
{j} (A.1)

For the initial clusters J0
1 = {1, · · · , j0} and J0

2 = {j0 + 1, · · · , N}, let j1,2 = j0.

For the optimal clusters, suppose there are two users j∗1 ∈ J1, j
∗
2 ∈ J2, and

j∗1 > j∗2 , as shown in Figure A.3. Since γ1,j∗1
γ2,j∗2

− γ2,j∗1
γ1,j∗2

< 0, power shifting

between the two users will result in only one of the following scenarios (Note 1 ):

Scenario 1 : As shown in Figure A.3 (a), J1 = J0
1 , J2 = J0

2 .

Scenario 2 : One of the users is powered by two base stations; take j∗2 for

example, as shown in Figure A.3 (b). Then, the power shifting between UE j∗2 and

j0 will result in Figure A.3 (c), where x′2,j∗2x
′
1,j0

= 0.

1) If x′2,j∗2 = 0, we will have J1 = {1, · · · , j0 − 1}, {j0 + 1, · · · , N} ⊂ J2.

2) If x′2,j∗2 > 0, x′1,j0 = 0, then UE j∗2 will continue to do power shifting with UE

{j0 − 1, j0 − 2, · · · , j∗2 + 1} until either x′2,j∗2 = 0 or J2 = {j∗2 + 1, · · · , N}. In either

case, for any j1 ∈ J1 and j2 ∈ J2, there will be j1 < j2.

Furthermore, at least N−1 UEs will belong to J1 or J2 (Lemma 1), if J1

⋃
J2 =

{1, · · · , N}, j1,2 = max
j∈J1
{j}. If UE j∗ is powered by both BS 1 and BS 2 simultaneously,

j1,2 = j∗.

A.2.2 M = 3, JCCJCCJCC = [j1,2, j1,3, j2,3]

The UE-BS association scheme in the optimal solution must fall in one of the categories

in Figure A.4, where a solid arrow represents power coordination (providing power
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Figure A.3 UE-BS association in the 2-BS cooperative wireless system.

for other BS’s UE), and a dashed line means spectrum coordination only (increasing

the transmission power of its own UE to spare more spectrum for other BSs). For

each category, we can find the corresponding JCCJCCJCC which satisfies Lemma 2. Readers

are referred to [120] for details.

A.3 Proof of Lemma 3

If S1 = S2, then they must be the optimal solution because relaxing the constraints

by limiting the transmit power of only one BS brings no benefits to the total power

consumption.
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Figure A.4 Spectrum and power coordination in the 3-BS cooperative wireless
system (red BS means power consumption is 1).

Then, we only prove part 2) with S1 > (1, 1), as part 3) can be similarly proved.

Suppose in the CC vector JCCJCCJCC which corresponds to the optimal solution {x∗i,j}, we

have j1,2 < j′1, then the optimal cluster J∗1 ⊆ {1, · · · , j′1 − 2} ⊂ J0
1 .
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1) For the optimal solution {x∗i,j}, we can find the corresponding mapping {x′i,j}

by relaxing the constraint of BS 1 as follows:
x′1,j = x∗1,j + γj2,1x

∗
2,j, x′2,j = 0, j ∈ J0

1\J∗1

x′1,j = x∗1,j, x′2,j = x∗2,j, j ∈ J∗1
⋃
J0

2

(A.2)

Since {xi,j} in S1 is the optimal relaxed solution, {x′i,j} must fall into the shadowed

region of Figure A.5,

∑
j∈J0

1

x′1,j +
∑
j∈J0

2

x′2,j >
∑
j∈J0

1

x1,j +
∑
j∈J0

2

x2,j (A.3)

Based on (A.3), we have the following result

j′1−1∑
j=1

(
x′1,j − x1,j

)
>

j0∑
j=j′1

(
x1,j − x′1,j

)
+
∑
j∈J0

2

(
x2,j − x′2,j

)
(A.4)

2) For {xi,j}, the relaxed solution in S1, we can find the corresponding mapping

{x∗′i,j} by considering the power constraint of BS 1. The power allocation with power

constraints for each BS becomes

x∗
′

1,j = x1,j, x
∗′
2,j = 0, j ∈ {1, · · · , j′1 − 1}

x∗
′

1,j = βx1,j, x
∗′
2,j = γj1,2(1− β)x1,j, j = j′1

x∗
′

1,j = 0, x∗
′

2,j = γj1,2x1,j, j ∈ {j′1 + 1, · · · , j0}

x∗
′

1,j = 0, x∗
′

2,j = x2,j, j ∈ J0
2

(A.5)

where β = (1−
∑j′1−1

j=1 x1,j)/x1,j′1
. From (A.2) and (A.5), we have

2∑
i=1

j′1−1∑
j=1

(
x∗i,j − x′∗i,j

)
≥

(
j′1−1∑
j=1

x∗1,j + (
j′1−1∑
j=1

x′1,j −
j′1−1∑
j=1

x∗1,j)γ
j′−1
1,2

)
−

j′1−1∑
j=1

x1,j

2∑
i=1

N∑
j=j′1

(
x′∗i,j − x∗i,j

)
=
(

(1− γj
′
1

1,2)βx1,j′1
+

j0∑
j=j′1

γj1,2x1,j +
∑
j∈J0

2

x2,j

)
−(

j0∑
j=j′1

γj1,2x
′
1,j +

∑
j∈J0

2

x′2,j

) (A.6)
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Figure A.5 Solution mapping, slop=1.

Substituting
∑j′1−1

j=1 x∗1,j = 1 =
∑j′1−1

j=1 x1,j + βx1,j′1
into (A.6), we can see

2∑
i=1

j′1−1∑
j=1

(
x∗i,j − x′∗i,j

)
≥ βx1,j′1

+

(
j′1−1∑
j=1

(
x′1,j − x1,j

)
− βx1,j′1

)
γ
j′1−1
1,2

2∑
i=1

N∑
j=j′1

(
x′∗i,j − x∗i,j

)
≤ βx1,j′1

+

(
j0∑
j=j′1

(
x1,j − x′1,j

)
− βx1,j′1

)
γ
j′1
1,2 +

∑
j∈J0

2

(
x2,j − x′2,j

)
(A.7)

According to the sorting rule of UE, γ
j′1−1
1,2 ≥ γ

j′1
1,2. From (A.4) and (A.7), we

have
2∑
i=1

j′1−1∑
j=1

(
x∗i,j − x′∗1,j

)
≥

2∑
i=1

N∑
j=j′1

(
x′∗1,j − x∗i,j

)

Consequently, the following result, which contradicts with the assumption that {x∗i,j}

is the optimal solution, can be obtained.

2∑
i=1

N∑
j=1

x∗i,j ≥
2∑
i=1

N∑
j=1

x′∗i,j

A.4 Proof of Lemma 8

The lemma can be proved by contradiction. Suppose for a given power consumption

profile of each BS, i.e., Pi, i ∈ B, BS i1 will have to draw brown power from the grid,

and then transmit it to other BSs. BS i2 is one of the power supplement recipients
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from BS i1.

δi1,i2 +
∑

j∈B\i2
δi1,j > Ei1 +

∑
j∈B\i2

δj,i1θj,i1 + δi2,i1θi2,i1

where δi2,i1 = 0.

Then, the corresponding on-grid power consumption of BSs i1 and i2 are given

in (A.4).

P o
i1

=
Pi1+δi1,i2−(Ei1+

∑
j∈B\i2

δj,i1θj,i1−
∑
j∈B\i2

δi1,j)

θ0,i1

P o
i2

=
{Pi2−δi1,i2θi1,i2−(Ei2+

∑
j∈B\i1

δj,i2θj,i2−
∑
j∈B\i1

δi2,j)}
+

θ0,i2

Next, we decrease δi1,i by ∆δi1,i. The corresponding power consumption of the

two BSs are updated as follows.

P o′

i1
+ P o′

i2
≤ P o

i1
− ∆δi1,i2

θ0,i1

+ P o
i2

+
∆δi1,i2θi1,i2

θ0,i2

(A.8)

Since in (4.10), we have assumed the brown power flow within the smart grid should

be optimal in terms of the power transmission efficiency, θ0,i1θi1,i2 < θ0,i2 , we can

conclude that reducing δi1,i2 will yield less P o′
i1

+ P o′
i2

.

This contradicts with the assumption and hence it is not optimal for BS i1 to

draw brown power from the grid and then transmit it to BS i2.

Consequently, there is no reason for any base station to provide brown energy

supplement to other BSs.

A.5 Proof of Lemma 9

Lemma 2 can be proved using the technique similar to proving Lemma 1. Suppose

BS i will first withdraw green energy from BS i1, and then transmit it to BS i2, as

shown in Figure A.6. The corresponding power consumption of those three BSs are

given in (A.5).
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Figure A.6 Power supplements among BSs.

P o
i1

=
{Pi1+δi1,i+δi1,i2−δi2,i1θi2,i1−(Ei1+

∑
j∈B\{i,i2}

δj,i1θj,i1−
∑
j∈B\{i,i2}

δi1,j)}
+

θ0,i1

P o
i =

{Pi+δi,i2−δi1,iθi1,i−(Ei+
∑
j∈B\{i1,i2}

δj,iθj,i−
∑
j∈B\{i1,i2}

δi,j)}+

θ0,i

P o
i2

=
{Pi2+δi2,i1−δi1,i2θi1,i2−δi,i2θi,i2−(Ei2+

∑
j∈B\{i,i1}

δj,i2θj,i2−
∑
j∈B\{i,i1}

δi2,j)}
+

θ0,i2

Next, we design two power shift schemes for the two cases.

Case I: δi2,i1 = 0. We decrease δi1,i by ∆δi1,i. To keep the power consumption

of BSs i1 and i, the following power shift can be obtained.
δ′i1,i = δi1,i −∆δi1,i, δ

′
i1,i2

= δi1,i2 + ∆δi1,i

δ′i1,i = δi1,i −∆δi1,i, δ
′
i,i2

= δi,i2 −∆δi1,iθi1,i

(A.9)

Then, the corresponding power consumption of BS i2 is updated as follows.

P o′

i2
= P o

i2
+
−∆δi1,iθi1,i2 + ∆δi1,iθi1,iθi,i2

θ0,i2

According to (4.10), θi1,i2 > θi1,iθi,i2 . So, P o′
i2
≤ P o

i2
. This contradicts with the

assumption.
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Case II: δi1,i2 = 0. We decrease δi1,i by ∆δi1,i. To keep the power consumption

of BSs i1 and i, the following power shift can be obtained.
δ′i1,i = δi1,i −∆δi1,i, δ

′
i2,i1

= δi2,i1 −
∆δi1,i
θi2,i1

δ′i1,i = δi1,i −∆δi1,i, δ
′
i,i2

= δi,i2 −∆δi1,iθi1,i

(A.10)

Then, the corresponding power consumption of BS i2 is updated as follows.

P o′

i2
= P o

i2
+
−∆δi1,i

θi1,i2
+ ∆δi1,iθi1,iθi,i2

θ0,i2

According to (4.9), 1/θi1,i2 > 1 > θi1,iθi,i2 . So, P o′
i2
≤ P o

i2
. This also contradict

with the assumption.

To sum up, each BS will never receive green power supplement from one BS

while providing power supplement to another BS.

A.6 Proof of Lemma 10

Lemma 3 is proved by the following two steps.

Step I: We prove that the optimal solution to the following problem must also

be optimal to the original WUA problem in (4.24).

min
(ρ,Bo,Bg)

∑
i∈Bo

Pi−Ei
θ0,i
−
∑
i∈Bg

θ(Ei − Pi)

s.t. (4.17), (4.18), (4.19), (4.25), (4.26), (4.28)

(A.11)

By comparing the objective functions and constraints of (4.24) and (A.11), we only

need to prove that the optimal solution to (4.24) satisfies the newly added traffic load

constraint in (4.28).

Suppose the optimal traffic load of BS i∗ of the original WUA problem is less

than the threshold in (4.28), ρi∗ < ω̃i∗ ρ̃i∗ . Since ω̃i∗ ≤ 1, increasing ρi∗ by ∆ρi∗ is still

feasible, i.e., meeting the latency ratio requirement in (4.17).

Then, the traffic load of other BSs which serve the users in the coverage of BS

i∗ will decrease by ∆ρi, i ∈ B\i∗. The increased traffic load will be less than the
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decreased traffic load because gi∗(x) > gi(x).

∆ρi∗ <
∑
i∈B\i∗

∆ρi (A.12)

The objective function of the WUA problem will change with ∆ρi, as illustrated in

(A.13).

(Pi∗+∆Pi∗ )−Ei∗
θ0,i

= Pi∗−Ei∗
θ0,i∗

+ βi∗∆ρi∗
θ0,i∗

, i∗ ∈ Bo

−θ(Ei∗ − (Pi∗ + ∆Pi∗)) = −θ(Ei∗ − Pi∗) + θβi∗∆ρi∗ , i∗ ∈ Bg∑
i∈Bo\i∗

(Pi−∆Pi)−Ei
θ0,i

−
∑

i∈Bg\i∗
θ(Ei − (Pi −∆Pi)) =

∑
i∈Bo\i∗

Pi−Ei
θ0,i
−

∑
i∈Bg\i∗

θ(Ei − Pi)−( ∑
i∈Bo\i∗

βi∆ρi
θ0,i

+
∑

i∈Bg\i∗
θβi∆ρi

)
(A.13)

With i∗ ∈ Bg, when ω̃i∗ is set to make sure the difference between ∆ρi∗ and∑
i∈B\i∗ ∆ρi is big enough, (A.13) will yield smaller result for the WUA problem.

θβ∗i ∆ρi∗ −

( ∑
i∈Bo\i∗

βi∆ρi
θ0,i

+
∑

i∈Bg\i∗
θβi∆ρi

)
<

θβ∗i ∆ρi∗ −

( ∑
i∈Bo\i∗

θβi∆ρi +
∑

i∈Bg\i∗
θβi∆ρi

)
< 0

where 1/θ0,i > θi,j/θ0,i = θ.

Similar conclusion can be derived for i∗ ∈ Bo.

β∗i ∆ρi∗

θ0,i∗
−

 ∑
i∈Bo\i∗

βi∆ρi
θ0,i

+
∑

i∈Bg\i∗
θβi∆ρi

 < 0

The above results contradict with the assumption and hence the solution with

ρi∗ < ω̃i∗ ρ̃i∗ is not optimal. The objective function will decrease until ρi∗ + ∆ρi∗ ≥

ω̃i∗ ρ̃i∗ .

Step II: We prove the optimal solution to the redefined WUA problem in

(4.29) must be the optimal solution to (A.11). Since the feasible area defined by the
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constraints of (4.29) and (A.11) are the same, to prove they have the same optimal

solutions, we only need to prove that the optimal solution of the redefined WUA

problem will result in the maximum
∑

i∈Bg θ(Pi − Ei), i.e., maximum
∑

i∈Bg Pi.

The traffic load requirement in (4.28) has imposed BSs with sufficient green

energy to serve as many mobile UEs as possible, because offloading traffic has the

highest energy transfer efficiency. So, to achieve the smallest
∑

i∈Bo(Pi − Ei)/θ0,i, i.e.,

smallest traffic load for BSs belonging to Bo, there must be maximum
∑

i∈Bg θ(Pi−Ei).

So, (4.28) eliminates
∑

i∈Bg Pi − Ei in (A.11).

In conclusion, the WUA problem can solved by finding the optimal solution to

(4.29).

A.7 Proof of Lemma 12

Since F (ρ) is a convex function, the descent direction ρ̂(k) − ρ(k) should make an

acute angle with the negative gradient as follows [94].

〈5F (ρ)|ρ=ρ(k), ρ̂(k)− ρ(k)〉 < 0 (A.14)

where the gradient of F (ρ) at ρ(k) is

5F (ρi(k)) =
f(ρi(k))(βit(τ

∗−ρi(k)τ∗−ρi(k))+(τ∗+1)θ0,i)+(τ∗+1)θ0,i
θ0,it(τ∗−ρi(k)τ∗−ρi(k))(f(ρi(k))+1)

(A.15)

where f(ρi(k)) = e
βiρi(k)+P

s
i −Ei

θ0,i .

According to the definition of traffic load in (4.4), the following can be obtained.

〈5F (ρ)|ρ=ρ(k), ρ̂(k)− ρ(k)〉 =
∑

i∈B5F (ρi(k))(ρ̂i(k)− ρi(k)) =∫
x∈A λ(x)s(x)

∑
i∈B

5F (ρi(k))(η̂i(x)−ηi(x))
ri(x)

dx
(A.16)

To make the inner product in (A.16) negative, we need∑
i∈B

(η̂i(x)−ηi(x))5F (ρi(k))
ri(x)

=∑
i∈B

η̂i(x)5F (ρi(k))
ri(x)

−
∑

i∈B
ηi(x)5F (ρi(k))

ri(x)
< 0

(A.17)
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The above inequality will hold when the binary UE-BS association indicator is set as

follows:

η̂i(x) =


1, i = arg max

j∈B
rj(x)

5F (ρj(k))

0, else

Hence, Lemma 12 is proved.

90



APPENDIX B

PROOFS OF THEOREMS

B.1 Proof of Theorem 1

According to the definition of ρ̂(k) in (4.38) of the ELLA algorithm, both ρ̂(k) and

ρ(k) are defined on [0, τ ∗/(τ ∗ + 1) − ε]. So, ρ̂(k) is a continuous mapping to itself.

Based on the Brouwer’s fixed-point theorem, there exists a solution that satisfies

ρ̂∗(k) = ρ∗(k), and the corresponding ρ∗(k + 1) in (4.34) is also equal to ρ∗(k).

B.2 Proof of Theorem 2

According to (4.34),

ρ(k + 1)− ρ(k) = ξk(ρ̂(k)− ρ(k)) (B.1)

Since 0 < ξk < 1, and ρ̂(k)− ρ(k) is the descent direction at ρ(k), we can get

〈5F (ρ)|ρ=ρ(k),ρ(k + 1)− ρ(k)〉 < 0 (B.2)

As we can see, ρ(k+1)−ρ(k) also provides a descent direction of F (ρ) at ρ(k). This

indicates F (ρ(k + 1)) < F (ρ(k)) until ρ(k + 1) = ρ(k).

According to Chapter 9.3 in [94], with a descent direction, linear convergence

can be achieved such that ρ(k) converges to the optimal traffic load vector ρ∗ that

minimizes F (ρ) at least as fast as a geometric series. By properly selecting the

backtracking line search parameters ζ and ψ, the number of iterations required for

the convergence can be reduced. However, how to optimize these two parameters is

beyond the scope of this dissertation.
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