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ABSTRACT

INVESTIGATION OF NEW LEARNING METHODS
FOR VISUAL RECOGNITION

by
Qingfeng Liu

Visual recognition is one of the most difficult and prevailing problems in computer vision

and pattern recognition due to the challenges in understanding the semantics and contents

of digital images. Two major components of a visual recognition system are discriminatory

feature representation and efficient and accurate pattern classification. This dissertation

therefore focuses on developing new learning methods for visual recognition.

Based on the conventional sparse representation, which shows its robustness for

visual recognition problems, a series of new methods is proposed. Specifically, first, a

new locally linear K nearest neighbor method, or LLK method, is presented. The LLK

method derives a new representation, which is an approximation to the ideal representation,

by optimizing an objective function based on a host of criteria for sparsity, locality, and

reconstruction. The novel representation is further processed by two new classifiers,

namely, an LLK based classifier (LLKc) and a locally linear nearest mean based classifier

(LLNc), for visual recognition. The proposed classifiers are shown to connect to the

Bayes decision rule for minimum error. Second, a new generative and discriminative

sparse representation (GDSR) method is proposed by taking advantage of both a coarse

modeling of the generative information and a modeling of the discriminative information.

The proposed GDSR method integrates two new criteria, namely, a discriminative criterion

and a generative criterion, into the conventional sparse representation criterion. A new

generative and discriminative sparse representation based classification (GDSRc) method

is then presented based on the derived new representation. Finally, a new Score space based

multiple Metric Learning (SML) method is presented for a challenging visual recognition

application, namely, recognizing kinship relations or kinship verification. The proposed



SML method, which goes beyond the conventional Mahalanobis distance metric learning,

not only learns the distance metric but also models the generative process of features

by taking advantage of the score space. The SML method is optimized by solving a

constrained, non-negative, and weighted variant of the sparse representation problem.

To assess the feasibility of the proposed new learning methods, several visual recog-

nition tasks, such as face recognition, scene recognition, object recognition, computational

fine art analysis, action recognition, fine grained recognition, as well as kinship verification

are applied. The experimental results show that the proposed new learning methods achieve

better performance than the other popular methods.
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In memory of my Mother

I do not think of you lying in the wet clay
Of a Monaghan graveyard; I see

You walking down a lane among the poplars
On your way to the station, or happily

Going to second Mass on a summer Sunday –
You meet me and you say:

“Don’t forget to see about the cattle – ”
Among your earthiest words the angels stray.

And I think of you walking along a headland
Of green oats in June,

So full of repose, so rich with life –
And I see us meeting at the end of a town.

On a fair day by accident, after
The bargains are all made and we can walk

Together through the shops and stalls and markets
Free in the oriental streets of thought.

O you are not lying in the wet clay,
For it is a harvest evening now and we

Are piling up the ricks against the moonlight
And you smile up at us – eternally.
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CHAPTER 1

INTRODUCTION

Due to the availability of massive databases of digital images and videos, content based

image and video analysis has been a challenging and active research topic for many years

in computer vision and pattern recognition. One important and challenging sub-area is

visual recognition. Visual recognition, which is a representative problem in computer

vision, deals with classifying an image or a video into a predefined category. From

robotics to information retrieval, many real world applications depend on the capability

to recognize object categories, scene places, and faces. As shown in Figure 1.1, there are

many visual recognition tasks applied in our daily life, such as face recognition, scene

recognition, object recognition, computational fine art analysis, action recognition, fine

grained recognition, as well as kinship verification. In particular, computational fine art

analysis contains two sub-tasks: (i) artist classification, namely, classifying a given fine

art painting to its author; and (ii) style classification, namely, classifying a given fine

art painting to a pre-defined style. Besides, fine grained recognition refers to the task of

distinguishing more specific categories, for example, distinguishing a Husky dog from an

Alaskan dog. In comparison, object recognition is the task of distinguishing a dog from a

bird. Kinship verification is to recognize the kinship relations given a pair of parent and

child images.

The intrinsic difficulty of visual recognition lies in the understanding of the semantics

and contents of images and videos with high variations in noise, scale, pose, view,

illumination as well as occlusion. As shown in Figure 1.2, the major challenges of visual

recognition contain occlusion, scale, deformation, clutter, varying illumination, changing

viewpoint, and object pose variation [29], [121].
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Figure 1.1 Some real world visual recognition applications.

Figure 1.2 Some challenges of visual recognition.
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A key step towards building a good visual recognition system includes addressing

the key issue of discriminatory feature representation. Besides, an efficient and accurate

classification based on the feature representation is indispensable to visual recognition.

Current state-of-the-art methods for visual recognition generally can be categorized

into two main frameworks, namely, the bag of features (BoF) framework and the

global feature learning framework. Figure 1.3 illustrates the system architecture of both

frameworks.

The bag-of-features (BoF) framework generally consists of five major steps for

classification. First, feature descriptors, such as the well-known scale invariant feature

transform (SIFT) descriptor [87], or histogram of oriented gradients (HOG) [16], are

extracted from the image and represented as a vector for further processing. The SIFT

descriptor method applies the local accumulation of the magnitude of pixel gradients for

each orientation, and finally derives a histogram vector with 128 dimensions. Second, a

dictionary is learned from the local feature descriptors by using some learning methods,

such as k-means [52], [77] and sparse coding [149], [75]. Third, a feature coding method,

such as sparse coding [149], Fisher vector coding [40], and the soft-assignment coding[79]

is applied to represent each feature descriptor as a new vector using the learned dictionary.

Fourth, the pooling approach is applied by integrating all the feature codings on each

dictionary item into one value. Classical pooling methods include the average pooling and

the max pooling [51]. Finally, a classification method, such as the sparse representation

based classification method [138] or the support vector machine, is applied for recognition.

In comparison, the global feature learning framework, such as the EigenFaces [123],

the FisherFaces [4] or the deep convolutional neural networks [50], takes the pattern vector

of the data as an input. Then a learning method, such as the principal component analysis,

the discriminant analysis or the deep learning [32], [50], [117], [120], [156] is applied to

derive the representation. Finally, a classification method is applied for recognition. Please
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Figure 1.3 Two visual recognition frameworks.

note that the global feature learning framework can take input from the BoF framework as

well.

This dissertation presents two new methods for visual recognition by developing a

new feature representation method and new classification methods based on the global

feature learning framework. Specifically, first, a new locally linear KNN method, or

LLK method, is presented. The LLK method derives a new representation, which is

an approximation to the ideal representation, by optimizing an objective function based

on a host of criteria for sparsity, locality, and reconstruction. The novel representation

is further processed by two classifiers, namely, an LLK based classifier (LLKc) and a

locally linear nearest mean based classifier (LLNc), for visual recognition. The proposed

classifiers are shown to connect to the Bayes decision rule for minimum error. Second,

a new generative and discriminative sparse representation (GDSR) method is proposed

by taking advantage of both a coarse modeling of the generative information and a

modeling of the discriminative information. This hybrid method provides new insights

and leads to a new effective representation and classification schema for improving
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the visual recognition performance. The proposed GDSR method integrates two new

criteria, namely, a discriminative criterion and a generative criterion, into the conventional

sparse representation criterion. Please note that the term “discriminative” means that

the dictionary is learned from the training data in order to improve the performance

of classification, while the term “generative” means the process how the dictionary is

generated, namely, the class conditional probability density function, e.g., p(dj|c). Finally,

a new score space-based multiple metric learning (SML) method is presented for a

challenging visual verification application, namely, the kinship verification. The proposed

SML, which goes beyond the conventional Mahalanobis distance metric learning [144],

not only learns the distance metric but also models the generative process of features by

taking advantage of the score space. The SML is optimized by solving a constrained,

non-negative, and weighted variant of the sparse representation problem.

Then the proposed methods are evaluated on several visual recognition tasks, namely,

face recognition, scene recognition, object recognition, computational fine art analysis,

action recognition, fine grained recognition and kinship verification. The experimental

results show the effectiveness of the proposed methods.

This dissertation is organized in the following manner. First, Chapter 2 presents

the background and the related work of several areas related to this dissertation. Second,

Chapter 3 presents a new Locally Linear KNN (LLK) method for visual recognition and

and conducts extensive experiments on various popular visual recognition data sets. Third,

Chapter 4 proposes a new Generative and Discriminative Sparse Representation (GDSR)

method for visual recognition and applies it to several popular visual recognition tasks.

Then, Chapter 5 demonstrates a novel Score space based multiple Metric Learning (SML)

method for kinship verification and shows its feasibility on challenging kinship verification

data sets. Finally, Chapter 6 discusses the future work for research.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Sparse Representation

Sparse representation or sparse coding has received much attention in recent years. Both

the local feature based sparse coding and the global feature based sparse coding methods

are broadly applied for object recognition, scene recognition, and action recognition [149],

[133], [5], [38], [138], [19], [20], [151], [152]. Yang et al. [149] used the sparse coding

to learn a dictionary and a vector of coefficients to represent the local features. Wang et

al. [133] proposed the locality-constrained linear coding method that considers the local

information in the feature coding process. Gao et al. [26] further proposed the Laplacian

sparse coding that preserves both the similarity and the locality information among the

local features.

One global feature based sparse coding method [138] was proposed as well for

robust face recognition and further applied to other tasks such as object recognition,

scene recognition, and action recognition. Some authors [10], [160], [15] proposed

the collaborative representation method, which interprets the sparse representation from

other viewpoints. To further incorporate discriminative information into the sparse

representation methods, some authors seek to model the intra-class variations within a

dictionary to improve the performance for face recognition [19], [20]. An excellent idea

is proposed to combine the sparse representation method with the linear discriminant

analysis [25], [4], [147], [68] to obtain the discriminative ability for achieving a good

sparse representation for signal classification [36]. This method, however, assumes a fixed

dictionary, as the dictionary is not discriminatively learned. Furthermore, this method uses

Fisher’s discrimination factor based on a Frobenius norm a.k.a. the matrix norm or the

6
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HilbertSchmidt norm instead of the popular discriminant analysis and criteria based on the

scatter matrices.

Recently, three categories of dictionary learning methods have been proposed for

sparse representations. The first category co-trains the discriminative dictionary, sparse

representation and the linear classifier together. Mairal et al. [93] proposed to co-train

the discriminative dictionary, sparse representation as well as the linear classifier using a

combined objective function. Zhang et al. [161] proposed a similar objective function

and applied a discriminative singular value decomposition (D-KSVD) method to learn the

discriminative dictionary and the classifier simultaneously. Jiang et al. [42] improved upon

the method introduced in [161] by introducing a label consistent regularization term.

The second category combines the sub-dictionaries to utilize their discriminative

power. Zhou et al. [164] presented a Joint Dictionary Learning (JDL) method that

jointly learns both a commonly shared dictionary and class-specific sub-dictionaries to

enhance the discrimination of the dictionaries. Yang et al. [151], [152] proposed a Fisher

Discrimination Dictionary Learning (FDDL) method, which learns a structured dictionary

that consists of a set of class-specific sub-dictionaries.

The third category learns the dictionary by modeling the relation between the

dictionary and each class. Yang et al. [150] proposed a latent dictionary learning

(LDL) method by jointly learning a latent vector which indicates the relation between

the dictionary and labels. Naveed et al. [1] proposed the discriminative Bayesian

dictionary learning (DBDL) method by inferring the distribution of the dictionary using

an approximation of the Beta process [1].

Besides, many approaches to sparse representation focus on developing efficient

learning algorithms to derive the sparse representation and the dictionary [3], [53], [92],

[23], [143], [142], [132], [131], [58] or focus on exploring the data manifold structures for

representation [26], [133], [162].
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In comparison, the proposed LLK method differs from the discriminative dictionary

learning methods in the following aspects. First, the proposed LLK method, which does

not incorporate any discriminative term, focuses on establishing the relation between a

representation method and its classifiers based on the Bayes decision rule for minimum

error. The discriminative dictionary methods cannot achieve such a relation. Second, the

proposed LLK method, which does not learn a dictionary, avoids the time consuming

iterative process of updating the dictionary and the sparse coefficients. Third, some

discriminative dictionary methods are based on sub-dictionary learning for each class,

which may result in deteriorated performance when the number of the training samples

for each class is small. The proposed LLK method does not learn the sub-dictionary.

Fourth, some discriminative dictionary methods contain linear classifiers in their objective

functions, which excludes other nonlinear classifiers that may achieve better performance.

The proposed LLK method develops new classifiers for improving the performance.

It is also worth noting that although the proposed LLK method and LLC [133] both

intend to derive the best coding scheme for image classification, the differences between

them are two-fold. First, the proposed LLK method focuses on the global representation

of an image by means of establishing the relation between image representation and

classification. The LLC method in contrast derives a coding scheme for local features,

such as the SIFT features. These local features may be used to further derive a global

image representation, but additional methods are required. Second, we are able to show

that the LLK method approximates the Bayes decision rule for minimal error. The LLC

method, in contrast, mainly focuses on the feature codings.

The proposed GDSR method differs from the discriminative dictionary learning

methods in the following aspects. First, the proposed GDSR method not only considers

the discriminative information by utilizing the underlying topology of the sparse repre-

sentations but also models the generative information of the dictionary in comparison

with other methods. Second, the proposed GDSR method does not depends on any
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assumption about the probability distribution, such as Bernoulli distributions in DBDL [1].

Third, the proposed GDSR method leads to a new classification method GDSRc, which

shows its connection to the Bayes ideal feature, which has the minimum Bayes error for

classification. Finally, the proposed GDSR method does not depend on the sub-dictionary,

which might lead to over-fitting and deteriorate the performance when the training data of

each class is not sufficient.

2.2 Kinship Verification

The pioneer work of kinship analysis originated from the anthropology and psychology

communities. Bressnan et al. [9] evaluated the phenotype matching on facial features

and claimed that parents have correlated visual resemblance with their offspring. Studies

[2] in anthropology have confirmed that children resemble their parent more than other

people and they may resemble a particular parent more at different ages. Later work [24]

by Fang et al. shows the feasibility of applying computer vision techniques for kinship

verification. Xia et al. [141] proposed a transfer subspace learning-based algorithm by

using the young parents’ set as an intermediate set to reduce the significant divergence

in the appearance distributions between children and old parents’ facial images. Lu et

al. [89] proposed neighborhood repulsed metric learning (NRML) in which the intraclass

samples within a kinship relation are pulled as close as possible and interclass samples

are pushed as far as possible for kinship verification. The term “neighborhood repulsed”

means that the neighborhood kinship relations are pulled as close as possible while the

neighborhood non-kinship relatioins are pused as far as possible. Dehghan et al. [18]

proposed to apply the generative and the discriminative gated autoencoders to learn the

genetic features and metrics together for kinship verification. Yan et al. [145] proposed

a multimetric learning method to combine different complementary feature descriptors for

kinship verification and later [146] proposed to learn the discriminative mid-level features

by constructing a reference data set instead of using hand-crafted descriptors. Lu et al.
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[88] presented the results of various teams on the FG 2015 Kinship Verification in the Wild

challenge. Zhang et al. [159] presented a deep convolutional neural network based method

for kinship verification and achieved good performance.

2.3 Metric Learning

Metric learning methods have gained a lot of attention for computer vision and machine

learning applications. Earlier work by Xing et al. [144] applied the semi-definite

programming to learn a Mahalanobis metric [144]. Goldberger et al. [28] proposed

the neighborhood component analysis (NCA) by minimizing the cross validation error

of the kNN classifier. Weinberger et al. proposed the large margin nearest neighbor

(LMNN) method [136], which uses the hinge loss to encourage the related neighbors

to be at least one distance unit closer than points from other classes. Davis et al.

proposed the information-theoretic metric learning (ITML) method [17] by formulating the

problem as minimizing the differential relative entropy between two multivariate Gaussian

distributions parameterized by the learned metric space and a prior known metric space.

Hieu and Li [97] proposed the cosine similarity metric learning (CSML) which utilizes the

favorable properties of cosine similarity. Wang et al. [134] proposed a metric learning

method using multiple kernels and learned the Mahalanobis distance metric on the kernel

feature space. Lu et al. [89] proposed the neighborhood repulsed metric learning (NRML)

for kinship verification which pays more attention to neighborhood samples.

2.4 Features

Liu et al. [62] show the effectiveness of Gabor features for face recognition. Wolf et

al. [137] proposed the three-patch Local Binary Pattern (LBP) which is computed by

comparing the values of three patches. Cao et al. [11] proposed the learning-based

(LE) descriptor, which is learned by unsupervised learning techniques and achieves a

good trade-off between discriminative power and invariance. Chen et al. [13] proposed
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the high-dimensional LBP feature by extracting multi-scale patches centered at dense

facial landmarks. Together with a rotated sparse regression based compression, the

high-dimensional LBP is able to achieve superior performance. Simonyan et al. [116]

proposed to apply the Fisher vectors [40] for face verification which achieves very good

performance. Color information contributes significantly to the discriminative power of

image representation. Conventional color spaces such as RGB, YUV, YIQ, YCbCr have

shown their ability for improving the performance of face recognition [115, 86, 66, 67].

For a detailed comparison among different color spaces, refer to [115]. Liu [65] proposed

the uncorrelated, independent, and discriminating color spaces for the face recognition

problem. Van de Sande et al. [124] show that color information along with shape features

yield excellent results on image classification system. Khan et al. [46] proposed the use

of color attributes as an explicit color representation for object detection. Zhang et al.

[158] proposed a new biologically inspired color image descriptor that uses a hierarchical

non-linear spatio-chromatic operator yielding spatial and chromatic opponent channels.

Khan et al. [47] show that better results can be obtained for object recognition by explicitly

separating the color cue to guide attention by means of a top-down category-specific

attention map. Yang et al. [153] proposed a new color model - the g1g2g3 model based

on the log chromacity color space, which preserves the relationship between R, G and B

in the model. Khan et al. [48] cluster color values together based on their discriminative

power such that the drop of mutual information of the final representation is minimized.



CHAPTER 3

THE LOCALLY LINEAR KNN METHOD FOR VISUAL RECOGNITION

3.1 Introduction

Feature extraction and classification are two fundamental issues that have received a lot

of attention over the past years in computer vision and pattern recognition. To address

these issues, many representative methods have been proposed. For example, for feature

extraction, some broadly used feature extraction methods are the linear methods [123],

[4], [69], [33], [72], [148], [71] and the non-linear methods [63], [154]. Besides,

the sparse representation based method [138] has been successfully applied to face

recognition by addressing the problem of robust feature representation and classification.

The method derives the sparse representation and applies the minimal residual classifier

for classification. The representation and the classification are separately developed

and no discriminative information is utilized. However, for some specific tasks, e.g.,

image classification, the representation often needs to serve and facilitate the subsequent

classification method. Therefore, many other methods [161], [42], [152] are proposed

to learn a discriminative dictionary and the sparse representation by utilizing the label

information. Moreover, these methods lead to other issues such as classifier restriction,

and higher computational complexity.

We, therefore, present a novel Locally Linear KNN (LLK) method in this chapter.

Specifically, the LLK method first applies the criteria of reconstruction, locality, and

sparsity to represent each test data. As a result, the new representation shows the grouping

effect of the nearest neighbors, which strengthens the coefficients of training samples

in the same class as the test sample. Then the new representation is processed by an

LLK based classifier (LLKc) and a locally linear nearest mean based classifier (LLNc),

respectively. The effectiveness of the proposed LLKc is revealed by its connection to

12
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Figure 3.1 The pipeline of the proposed LLK method. The input pattern vector is
first processed by the shifted power transformation. The IMFA method then extracts
discriminative features. The proposed LLK method further derives a new representation
v. The LLKc and the LLNc are finally applied for robust visual recognition.

the Bayes decision rule for minimum error from the kernel density estimation point of

view. The proposed LLNc is also shown to be a special case of the Bayes decision rule

for minimum error when the conditional density is a Gaussian distribution with weighted

mean and diagonal covariance matrix. Besides, other theoretical issues of the proposed

LLK method are also discussed such as the performance when non-negative constraint

is applied, the performance when group regularization is applied and the computational

efficiency of the LLK method using a screening rule method. An improved marginal Fisher

analysis (IMFA), which integrates an eigenvalue spectrum analysis for determining the

appropriate dimensionality, is further proposed for feature extraction. The shifted power

transformation and a coefficient truncating method are also applied for improving the

performance. The proposed LLK method is then evaluated for four visual recognition tasks

on eight representative data sets. Extensive experimental results show that the proposed

LLK method outperforms other popular methods. The pipeline of the proposed LLK

method is shown in Figure 3.1.

3.2 Locally Linear KNN Method

The motivation of our LLK method comes from the “ideal representation” (defined in

Definition 3.2.1), which represents a test sample as a linear combination of all the training
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samples while it constrains the corresponding coefficients to be non-zero if the training

samples are in the same class as the test sample, and otherwise zero.

Definition 3.2.1 The ideal representation. The ideal representation of a test sample x ∈

Rn from the c-th class is the coefficient vector v = [v1, v2, ..., vm]t ∈ Rm defined as

x =
m∑
i=1

vibi (3.1)

where bi ∈ Rn(i = 1, 2, ...,m) is the i-th training sample and

vi =


non-zero, if bi belongs to the c-th class

0, otherwise
(3.2)

As a result, the ideal representation is highly sparse, which leads to the development

of the conventional sparse representation based methods [138]. However, the representation

and the classifier derived from the conventional sparse representation based methods have

the following inherent issues that are still ignored.

• First, the training samples that are in the same class as the test sample are often highly

correlated and the conventional sparse representation method often tends to derive a

representation that only activates one of them with non-zero coefficient [165]. Such

a representation violates the condition of the ideal representation, which activates a

group of training samples with non-zero coefficients.

• Second, the minimal residual classifier [138] is not directly related to the Bayes

decision rule for minimum error [22].

In order to address these two issues, we propose a new Locally Linear KNN (LLK)

method defined as follows:

min
v
||x− Bv||2 + λ||v||1 + α||v− βd||2 (3.3)
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where x ∈ Rn is the test sample, B = [b1,b2, ...,bm] ∈ Rn×m represents all the training

samples and v ∈ Rm is the representation that is derived by the proposed LLK method.

The vector d = [d1, d2, ..., dm]t ∈ Rm represents the distance measure between each

training sample and the test sample as follows.

di = exp{− 1

2σ2
||x− bi||2} (3.4)

where the parameter σ controls the decay speed of the distance measure.

The first term in Equation 3.3 represents the reconstruction criterion, the second

term represents the sparsity criterion using the L1 norm for robustness, and the third term

maintains the relation between the coefficients and the distances for the locality property.

The three positive parameters λ, α and β weigh the contributions of these three terms.

The proposed LLK method has the following two properties. First, our LLK method,

as shown in Section 3.2.1, exhibits the grouping effect of the nearest neighbors (GENN),

where training samples are inclined to obtain similar and large coefficients if they are highly

correlated and close to the test sample. Furthermore, it is highly probable that these training

samples share the same class label with the test sample. As a result, our LLK method is

inclined to derive a representation that has large and similar coefficients for the training

samples in the same class as the test sample, which is consistent with the case of ideal

representation. Second, as shown in Section 3.2.2, the LLKc approximates the Bayes

decision rule for minimum error from the kernel density estimation point of view. The

LLNc is a special case of the Bayes decision rule for minimum error when the conditional

density is a Gaussian distribution with weighted mean and diagonal covariance matrix.

3.2.1 A New Representation that Approximates the Ideal Representation

The fast iterative shrinkage thresholding algorithm or the FISTA algorithm [3] is applied

to derive the new representation v of our LLK method by optimizing the objective function

defined in Equation 3.3. For convergence, the selected step size should be bounded by the
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maximal step size 1
L

for the FISTA algorithm, where L = 2λmax(BtB + αI), and λmax(·)

means the largest eigenvalue.

The new representation exhibits the grouping effect of the nearest neighbors (GENN)

as defined in Proposition 3.2.1.

Proposition 3.2.1 Grouping Effect of the Nearest Neighbors. Let v∗ = [v∗1, v
∗
2, ..., v

∗
m]t be

the solution of optimizing the objective function defined in Equation 3.3, ρ = btibj be the

sample correlation of two training samples bi and bj (i, j = 1, 2, ...,m), and M(i, j) =

|v∗i − v∗j | be the difference between two coefficients, if the signs of v∗i and v∗j are the same,

then the grouping effect of the nearest neighbors (GENN) is proposed as follows:

M(i, j) ≤ C

α

√
2(1− ρ) + β|di − dj| (3.5)

where all the samples, namely x and bi(i = 1, 2, ...,m), are normalized using the L2

normalization and C =
√

(1 + αβ2||d||2) is a constant.

The GENN property demonstrates an intuition that if the training samples are highly

correlated (ρ ≈ 1) and close to the test sample (di ≈ dj and di, dj are large), then the

coefficients of the training samples are similar (v∗i ≈ v∗j ). This is consistent with the ideal

representation. The experiments conducted in Section 3.3.7 further show the effectiveness

of the GENN.

The proof of Proposition 3.2.1 is shown as follows.

First, the Equation 3.3 is equal to

min
vi

L(v) = ||x−
m∑
i=1

vibi||2 + λ

m∑
i=1

|vi|+ α

m∑
i=1

(vi − βdi)2 (3.6)

If v∗ = [v∗1, v
∗
2, ..., v

∗
m]t is the derived representation by the LLK method, then take

the first derivative of v∗i and v∗j as

∂L

∂v∗i
= −2bti(x− Bv∗) + λsign(v∗i ) + 2α(v∗i − βdi) = 0

∂L

∂v∗j
= −2btj(x− Bv∗) + λsign(v∗j ) + 2α(v∗j − βdj) = 0

(3.7)
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Please note that if we continue taking the second derivative of the objective function

L(v), the second derivative of v∗i and v∗j will be 2 + 2α, which is larger than 0. Then we

know that the objective function has a global minimum value.

Since sign(v∗i ) = sign(v∗j ), then ∂L
∂v∗i
− ∂L

∂v∗j
is

α(v∗i − v∗j ) = (bi − bj)t(x− Bv∗) + αβ(di − dj) (3.8)

take the absolute value on both sides and make use of L(v∗) ≤ L(0) and ||x||2 = 1.

|v∗i − v∗j | = |
1

α
(bi − bj)t(x− Bv∗) + β(di − dj)|

≤ 1

α
|(bi − bj)t(x− Bv∗)|+ β|(di − dj)|

≤ 1

α
||bi − bj|| ∗ ||x− Bv∗||+ β|di − dj|

=
1

α

√
(||bi||22 + ||bj||22 − 2 ∗ btibj)||x− Bv∗||+ β|di − dj|

=
1

α

√
2(1− ρ)||x− Bv∗||+ β|di − dj|

≤ 1

α

√
2(1− ρ)

√
(||x||2 + α||βd||2) + β|(di − dj)|

=
C

α

√
2(1− ρ) + β|di − dj|

(3.9)

where C =
√

(1 + αβ2||d||2).

3.2.2 LLKc and LLNc

The following LLK method based classifier (LLKc) is then proposed to classify the new

representation v derived by our LLK method for the test sample x.

c∗ = arg max
c
sc

= arg max
c

∑
bi∈Bc

vi
(3.10)

where c = 1, 2, ..., w denotes the class label, Bc represents the set of training samples in

the c-th class and sc is the sum of the coefficients of the training samples in the c-th class.
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Figure 3.2 Examples of the LLKc and the LLNc. In the Figure (a), the test sample x
is assigned to class 1 because s1 is larger than s2. In the Figure (b), the test sample x is
assigned to class that has the minimum value of ri(i = 1, 2).

The LLK method based classifier (LLKc) thus classifies the test sample by counting

the sum of coefficients of all the training samples in each class. For example, as shown in

Figure 3.2(a), there are four training samples b1,b2,b3 and b4 with class labels 1, 1, 2, 2.

The representation v = [0.3, 0.3, 0.0, 0.4]t is derived by means of the proposed method for

the test sample x. Then the LLK method based classifier will classify the test sample to

class 1 since 0.3 + 0.3 > 0.0 + 0.4.

The effectiveness of the LLKc is revealed in Proposition 3.2.2, where a theoretical

connection is expressed between the proposed LLKc and the Bayes decision rule for

minimum error with limited assumptions. Please note that the reason why we does

not apply Bayes decision rule directly is that the Bayes decision rule is based on class

conditional probability, which is very difficult to estimate in practice. As an alternative way,

we apply a kernel density estimation using the sparse representation for a better estimation.

Proposition 3.2.2 Given the test sample x and its new representation v derived by the

proposed LLK method, if each class has the same prior distribution p(c), then the

connection between the proposed LLKc and the Bayes decision rule is as follows:

c∗ = arg max
c

∑
bi∈Bc

vi

∝ arg max
c
p(c|x)

(3.11)
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In order to relate
∑

bi∈Bc
vi to the posterior probability, the following transformations

can be applied to normalize
∑

bi∈Bc
vi to the range of [0, 1], without any influence on the

final classification results of the LLKc.

vni =
vi − vmin
vmax − vmin

vni2 =
vni∑m
i=1 vni

(3.12)

where vmin and vmax are the minimal and maximal value among all the elements of the

vector v, respectively.

The proof of Proposition 3.2.2 is shown as follows.

If v is the derived representation by the proposed LLK method, then L(v) ≤ L(0),

which means

||x− Bv||2 + λ||v||1 + α||v− βd||2 ≤ ||x||2 + α||βd||2 (3.13)

then ||v− βd||2 ≤
√

1
α

+ β2||d||2, which means ||v− βd||2 is bounded by a small positive

constant so that v ≈ βd + const. the transformations in Equation 3.12 guarantees that each

0 ≤ vi ≤ 1 and
∑m

i=1 vi = 1. It is worth noting that the transformations do not affect the

classification results. Thus, the LLKc is approximated as follows

c∗ = arg max
c

∑
bi∈Bc

vi

≈ arg max
c

∑
bi∈Bc

βdi + const

∝ arg max
c

∑
bi∈Bc

exp{− 1

2σ2
||x− bi||2}

∝ arg max
c

1

hmc

∑
bi∈Bc

k(
x− bi
h

)

(3.14)

where mc is the number of training samples in the c-th class and h is the bandwidth that

controls the degree of smoothing and it is fixed for all the classes. We use the zero mean

and unit variance Gaussian kernel k(u) = 1√
2π
exp(−u2

2
) here. Then the Equation 3.14 can

be used for the kernel density estimation [25] of the conditional probability p(x|c).
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Therefore, if the prior probability p(c) is equal for all the classes, then

c∗ = arg max
c

∑
bi∈Bc

vi

≈ arg max
c
p(x|c)

∝ arg max
c
p(c|x) (Bayes classifier)

(3.15)

In summary, the LLKc approximates the Bayes decision rule for minimum error

in the view of density estimation, and the approximation error mainly comes from the

v ≈ βd + const (relatively large α and small β are preferred) and the kernel density

estimation error.

We also present another classifier, the Locally Linear Nearest mean classifier (LLNc),

which is defined as follows:

c∗ = arg min
c
||x−mc||22

= arg min
c
||x−

∑
bi∈Bc

vibi||22
(3.16)

where mc =
∑

bi∈Bc
vibi is the “mean” of the c-th class.

For example, as shown in Figure 3.2(b) there are four training samples b1,b2,b3

and b4 with class labels 1, 1, 2, 2. The representation v = [0.3, 0.3, 0.0, 0.4] is derived

by means of the proposed method for the test sample x. Then the LLNc will compute

r1 = ||x− (0.3b1 + 0.3b2)||2 and r2 = ||x− (0.0b3 + 0.4b4)||2 and choose the smaller one.

An interesting property of the proposed LLNc is that it can be regarded as a special

case of Bayes decision rule when the conditional density function of the c-th class p(x|c)

is a Gaussian distribution with the “mean” of the c-th class mc and a diagonal covariance

matrix. As a result, the proposed LLNc is formulated as c∗ = arg minc− log p(x|c).

3.2.3 Shifted Power Transformation for Improving Reliability

Note that a global window width may deteriorate the robustness of the kernel density

estimation of the real world data, whose underlying density distribution often has different
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degrees of smoothing at different locations. In the proposed LLK method, the parameter

σ in Equation 3.4 plays the role of the global window width, and thus may deteriorate

the performance if not carefully selected. In order to alleviate the sensitivity of our LLK

method to the parameter σ, the following shifted power transformation [129] is applied.

T (x) = |x + λ1e|λ2sign(x + λ1e) (3.17)

where sign(x) represents the vector of the sign of each element in the vector x with the

value 0, 1 and -1, 0 < λ1, λ2 ≤ 1 and e = [1, 1, ..., 1]t.

The shifted power transformation is capable of transforming the data into a near

Gaussian shape, for which the kernel density estimation may work well [129]. Different

from [129] where the estimate of the density of the new data can be “back-transformed”

to an estimate of the density of the original data, our goal is not to provide the density

estimation of the original data, but to provide the density estimation in the transformed

space for better approximation to the Bayes decision rule for minimum error. Thus, we do

not operate “back-transformation”, which has a negative impact in practice. Moreover, we

also normalize d using the L2 normalization to further reduce the sensitivity to the value of

σ in the new transformed space. As a result, robustness is achieved for various values of σ

in practice (see Section 3.3.6).

3.2.4 Coefficient Truncating for Enhancing Generalization Performance

Note that the noise introduced by some distant data samples with trailing coefficients in the

new transformed space may deteriorate the generalization performance of the LLK method.

In practice, not all the training samples in the c-th class (Bc) are required and some farther

away noisy samples that have trailing coefficients may adversely influence the performance

of kernel density estimation. Our solution is a coefficient truncating method, where only

the k largest coefficients vi of each class are required for classification.
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As a result, both the LLKc and the LLNc are redefined as follows, respectively.

c∗ = arg max
c

∑
(bi∈Bc)∧
(vi∈T (k))

vi (3.18)

c∗ = arg min
c
||x−

∑
(bi∈Bc)∧
(vi∈T (k))

vibi||22 (3.19)

where T(k) represents the set of k largest vi for each class. In practice, the parameter k

plays an important role in the performance (see Section 3.3.6).

3.2.5 Improved Marginal Fisher Analysis for Feature Extraction

Before we apply the proposed LLK method for deriving new representation and classi-

fication, we propose to apply the principal component analysis (PCA) and the improved

marginal Fisher analysis [76] (IMFA) to reduce the dimension of the data and extract

features.

The proposed IMFA improves upon the marginal Fisher analysis [147] by integrating

an eigenvalue spectrum analysis to determine the proper dimensionality of PCA. Specifically,

the IMFA keeps a proper balance between the energy criterion and the magnitude criterion

[69] to alleviate the over-fitting to an improper dimensionality reduced by PCA. The energy

criterion prefers high-dimensional spaces to preserve the spectral energy of the original

data by including more eigenvalues, while the magnitude criterion favors low-dimensional

spaces and discards small trailing eigenvalues that often encode noise. In order to balance

these two criteria, an eigenvalue spectrum analysis is applied to the covariance matrix Σ of

the original space that deals with the energy criterion and the intraclass compactness matrix

Ac constructed from the intrinsic graph as defined in [147] for the magnitude criterion.

Particularly, two eigenvalue spectrums are first computed in terms of the relative

magnitude gi/
∑m

k=1 gk as y-axis and the number of principal components as x-axis

(see Figure 3.3 for an example), where gi is the i-th eigenvalue of the corresponding
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Figure 3.3 The spectrum of the covariance matrix Σ (left side) for three dimensions:
80, 120, 180 and the spectrum of the matrix Ac (right side) when the dimensionality is
determined as 180 for the AR face data set.

matrix. Then the eigenvalue spectrum is truncated at an appropriate point and the number

of principal components is determined by considering the above two criteria. After

the dimensionality is determined, we can reduce the original dimension to the selected

dimension using PCA with good generalization performance and derive the discriminatory

features with the same dimension using the proposed IMFA.

3.3 Experiments

The performance of our proposed LLK method is assessed on four visual recognition tasks

on eight representative data sets. Particularly, the AR Face Database [94] and the Extended

Yale Face Database B [54] are evaluated for face recognition; the 15 Scenes data set [52]

and the MIT-67 Indoor Scenes data set [109] are applied for scene recognition; as for

object recognition, the Caltech 101 data set [55] and the Caltech 256 [30] are utilized; and

the UIUC Sports Event data set [41] and the UCF50 data set [110] are assessed for action

recognition. Please see sample images of different datasets in Figure 3.4. The size of each

data set is also presented in Table 3.1. To further investigate the properties of the proposed
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Table 3.1 The Data Sets used and their Sizes

data set Size data set Size

Caltech 256 Object Category [30] 30,607 MIT-67 Indoor Scenes [109] 15,620

Caltech 101 Object Category [55] 9,144 UCF50 data set [110] 6,676

Scenes data set [52] 4,485 AR Face Database [94] 4,000

Extended Yale face B [54] 2,414 UIUC Sports Event [41] 1,574

method, we also conducted a comprehensive analysis of some critical issues concerning

the performance.

The implementation details are as follows. The data is first represented as a pattern

vector. For fair comparison or comparable results to the state-of-the-art methods, different

pattern vectors are derived for different data sets. As for the two face databases, the

pattern vector is formed as the concatenation of the column pixels. Also, to prove the

robustness of the proposed method, the random faces [138], which is the row vectors of a

randomly generated transformation matrix from a zero-mean normal distribution, is applied

to project the face pattern vector into a dimension of 540 representation vector. Each row

of the transformation matrix is normalized to unit length. For the 15 Scenes data set, the

spatial pyramid feature provided by [42] is applied for fair comparison. For the MIT-67

Indoor Scenes data set, the Fisher vector feature [112] is used to represent the image. For

the Caltech 101 and Caltech 256 data set, the proposed method is built upon the 4096

dimension image features that are extracted by using a pre-trained convolutional neural

network CNN-M [12]. As for the UIUC Sports Event data set, the locally constrained

linear coding (LLC) [133] method is used to represent the image. The SIFT feature used to

construct the LLC representation follows the common settings [52] with a fixed step size

as 8 pixels and patch size as 16 pixels for a single scale. As for the UCF50 data set [110],
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Table 3.2 Comparison with other Popular Methods on AR Face Database under
Experimental Setting 1

Experimental setting 1 Accuracy %

D-KSVD [161] 85.40

LC-KSVD [42] 89.7

JDL [164] 91.7

FDDL [152] 92.00

SRC [138] 94.99

The proposed LLNc 96.14

The proposed LLKc 97.00

the action bank feature [111] is extracted to represent the video for fair comparison. All the

model parameter are selected using 5-fold cross validation.

3.3.1 Face Recognition

AR Face Database As for the AR Face Database, a subset of the data [94] is often used

for evaluation, where the images are cropped into the size of 165*120. The widely used

experimental setting [138] is applied first. The original color space is replaced with the

DCS color space [65], and the dimension of the face vector is reduced to 180. The model

parameters are as follows: σ = 1, λ = 0.02, α = 0.1, and β = 1.5 for the proposed LLK

method, λ1 = 0.0 and λ2 = 0.9 for the shifted power transformation, k = 5 for LLKc and

k = 7 for the LLNc. The results presented in Table 3.2 show significant improvements

over other popular algorithms.

Moreover, we also follow another experimental setting [42] and [161] for assessing

the robustness of the proposed method, where 20 images are randomly selected for training

and 6 for testing for each person for 10 iterations. In this experimental setting, the random

face [138] is applied to prove the robustness of the proposed method, and its dimension
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Table 3.3 Comparison with other Popular Methods on the AR Face Database under
Experimental Setting 2

Experimental setting 2 Accuracy %

D-KSVD [161] 95.00

SRC [138] 97.50

LC-KSVD [42] 97.80

The proposed LLNc 98.32

The proposed LLKc 98.28

is reduced to 200. The model parameters are as follows: σ = 1, λ = 0.02, α = 0.1,

and β = 1.5 for the proposed method, λ1 = 0.0 and λ2 = 0.9 for the shifted power

transformation, and k = 5 for both the LLKc and the LLNc. The experimental results

shown in Table 3.3 demonstrate the robustness of the proposed method.

Extended Yale Face Database B As for the Extended Yale Face Database B, a cropped

version [54] is often used that all the images are manually aligned, cropped, and then re-

sized to 168 × 192. We follow the experimental setting [151] that 20 images are randomly

selected for training for each subject, and the remaining images for testing for 10 iterations.

Note that this experimental setting is more difficult than that in [161]. The image is first

scaled to 42 × 48 and then the random faces [138] is applied to obtain the pattern vector to

prove the robustness of the proposed method. The dimension of the pattern vector is further

reduced to 350. The model parameters are as follows: σ = 1, λ = 0.02, α = 0.1, and β =

0.5 for the LLK method, λ1 = 0.0 and λ2 = 0.8 for the shifted power transformation, and

k = 5 for both the LLKc and the LLNc. The final results shown in Table 3.4 demonstrate

that our proposed method significantly improves upon the other popular methods by more

than 4 percentage points.
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Table 3.4 Comparison with other Popular Methods on the Extended Yale Face Database
B

Methods Accuracy %

D-KSVD [151] 75.30

SRC [151] 90.00

FDDL [151] 91.90

The proposed LLNc 95.35

The proposed LLKc 95.39

3.3.2 Scene Recognition

The 15 Scenes data set As for the 15 Scenes data set [52], the experimental protocol in

[52] and [149] is followed, where 100 images from each class are randomly selected for

training and the remaining for testing for 10 iterations. The dimensionality of the feature

vector is reduced to 500. The model parameters are as follows: λ = 0.05, α = 0.1, and

β = 1.0 for the LLK method, λ1 = 0.0 and λ2 = 0.5 for the shifted power transformation,

k = 1 for the LLKc and k = 2 for the LLNc. The results in Table 3.5 show that our

proposed method significantly outperform both the compared methods.

The MIT-67 Indoor Scenes data set As for the MIT-67 Indoor Scenes data set [109],

the commonly used experimental setting [109] is followed. The Fisher vector feature [112]

with dimensionality of 2*256*80 = 40960 is extracted from the SIFT descriptors of 80

dimension and a codebook with 256 visual words, and its dimensionality is further reduced

to 2000. The model parameters are chosen as follows: λ = 0.01, α = 0.1, and β = 1.5

for the LLNc while β = 0.5 for the LLKc, λ1 = 0.0 and λ2 = 0.5 for the shifted power

transformation, and k = 20 for both the LLKc and the LLNc. Note that we derive the

Fisher vector without learning the part detectors [43] and applying data augmentation [113].
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Table 3.5 Comparison with other Popular Methods on the 15 Scenes Data Set

Methods Accuracy %

KSPM [52] 81.40 ±0.50

ScSPM [149] 80.28 ±0.93

LLC [133] 80.57 ±−

KC [126] 76.67 ±0.93

D-KSVD [161] 89.10

LC-KSVD [42] 90.40

LaplacianSC [26] 89.7

DHVFC [27] 86.4

The proposed LLNc 97.45 ±0.27

The proposed LLKc 93.54 ±0.45

However, as shown in Table 3.6, our proposed method still achieves the near state-of-the-art

results when compared with the recent representative methods [43].

We further designed new experiments to comparatively evaluate our proposed LLKc

and LLNc classifiers, as well as the support vector machine (SVM) for the new LLK

representation derived from our LLK method. The LLK representations for both the

training images and the test images are derived directly by optimizing Equation 3.3. For the

MIT-67 Indoor Scenes data set, the SVM classifier achieves 57.31% classification accuracy,

while our LLKc and LLNc methods achieve 58.18% and 59.12% classification accuracy,

respectively. These results thus validate that our proposed LLKc and LLNc classifiers

perform better than the SVM classifier for the learned LLK representations.
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Table 3.6 Comparison with other Popular Methods on the MIT-67 Indoor Scenes Data Set

Methods Mean Accuracy %

ROI + Gist [109] 26.1

DPM [101] 30.4

Object Bank [56] 37.6

miSVM [57] 46.4

D-Parts [119] 51.4

DP + IFV [43] 60.8

CNN-SVM no Aug [113] 58.4

The proposed LLNc with FV 59.12

The proposed LLKc with FV 58.18

3.3.3 Object Recognition

The Caltech 101 data set As for the Caltech 101 data set [55], [133], we partition the

whole data set randomly into 5, 10, 15, 20, 25, 30 training images per class and no more

than 50 test images per class, and measure the performance using the average accuracy over

102 classes. For achieving comparable results to the state-of-the-art methods, the proposed

method is built upon the 4096 dimension image representation features that are extracted

by using a pre-trained convolutional neural network CNN-M [12]. Then we reduce the

dimension to 1000 except the case with 5 training images, where the dimension is reduced

to 500. The model parameters are as follows: σ = 1.5, λ = 0.05, α = 0.1, and β = 1.5 for

the LLK method, λ1 = 0.0 and λ2 = 0.5 for the shifted power transformation, and k = 20

if the training image size is larger than 20, otherwise k is the value of the training image

size for both the LLKc and the LLNc.



30

Table 3.7 Comparison with other Popular Methods on the Caltech 101 Data Set

training images 5 10 15 20 25 30

SVM-KNN [157] 46.60 55.8 59.10 62.00 - 66.20

SPM [52] - - 56.40 - - 64.60

ScSPM [149] - - 67.00 - - 73.20

LLC [133] 51.15 59.77 65.43 67.74 70.16 73.44

SRC [138] 48.80 60.10 64.90 67.70 69.20 70.70

D-KSVD [161] 49.60 59.50 65.10 68.60 71.10 73.00

LC-KSVD [42] 54.00 63.10 67.70 70.50 72.30 73.60

Zeiler [156] - - 83.80 - - 86.5

CNN-M + Aug [12] - - - - - 87.15

The proposed LLNc 76.96 82.71 84.79 85.96 86.62 87.68

The proposed LLKc 76.49 82.34 84.76 86.11 86.77 87.74

Although our proposed method does not rely on the data augmentation and fine-

tuning techniques [12], the results in Table 3.7 demonstrate that the proposed method still

achieves at least comparable results to the state-of-the-art methods [156], [12].

Caltech 256 data set As for the Caltech 256 data set [30], the widely applied experi-

mental setting [133] is followed, where 15, 30, 45, 60 images per category are randomly

selected for training and no more than 25 images for testing for 3 iterations. The 4096

dimension CNN features are extracted by using a pre-trained convolutional neural network

CNN-M [12] and their dimension are further reduced to 1000. The model parameters are

as follows: σ = 1.5, λ = 0.01, α = 0.1, and β = 1.5 for the LLK method, λ1 = 0.0

and λ2 = 0.5 for the shifted power transformation, and k = 15 for both the LLKc and the

LLNc.
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Table 3.8 Comparison with other Popular Methods on the Caltech 256 Data Set

training images 15 30 45 60

SAC [126] - 27.17 - -

ScSPM [149] 27.73 34.02 37.46 40.14

LLC [133] 34.36 41.19 45.31 47.68

IFV [104] 34.70 40.80 45.00 47.90

Bo et al. [6] 40.50 48.00 51.90 55.20

Zeiler [156] 65.70 70.60 72.70 74.20

The proposed LLNc 68.32 71.89 74.13 75.47

The proposed LLKc 68.55 72.09 74.07 75.36

Although our proposed method does not depend on the data augmentation and fine-

tuning techniques [12], the results in Table 3.8 demonstrate that the proposed method still

achieves at least comparable results to the state-of-the-art methods [156], [12].

3.3.4 Action Recognition

The UIUC Sports Event data set As for the UIUC Sports Event data set [41], we

randomly select 70 images for training and 60 images for testing in each event class and

report the average accuracy on 10 random training/testing splits in Table 3.9. We apply

the LLC method [133] to derive the image vector with the dimension of 21504 and then

reduce the dimension to 500. The model parameters are as follows: σ = 1.5, λ = 0.01,

α = 0.1, and β = 0.5 for the LLK method, λ1 = 0.0 and λ2 = 0.5 for the shifted power

transformation, and k = 30 for both the LLKc and the LLNc. As shown in Table 3.9,

the proposed method is able to outperform these popular methods that use support vector

machine with linear or non-linear kernel.
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Next we present new experimental results on evaluating the time used by our LLK

method. In particular, we first report the time used by the LLC method [133] on processing

the images in the UIUC Sports Event data set. We then report the time used by our LLK

method for deriving the LLK representation. Specifically, Table X shows that the LLC

method uses 730.18 seconds to process the images in the UIUC Sports Event data set, and

our LLK method uses 6.28 seconds to derive the LLK representation. These experimental

results reveal that the time used by our LLK method accounts for less than 1% of the time

used by the LLC method. Therefore, the time incurred by our LLK method is negligible

when compared with the time consumed by the LLC method. The reason is that the time

used by LLC method depends on the number of local features sampled from all the images,

such as the SIFT features. The time used by our LLK method in comparison depends on

the number of images. Apparently, the number of local features is much larger than the

number of images.

The UCF50 data set The UCF50 data set [110] is a challenge dataset that contains large

variations in camera motion, object appearance, view point, etc. The experimental setting

[111] is followed, where the data set is divided into 5 groups with similar size and the

5-fold group-wise cross-validation is used to measure the performance. This setting is

more challenge than the leave-one-out-cross-validation with 25 folds in [110]. The action

bank feature [111] is obtained and reduced from 14965 dimension to 500 dimension. The

model parameters are as follows: σ = 1.5, λ = 0.05, α = 0.1, and β = 1.5 for the LLK

method, λ1 = 0.01 and λ2 = 0.8 for the shifted power transformation, and k = 10 for both

the LLKc and the LLNc. We compare the proposed method with other popular methods,

which is shown in Table 3.11. The results demonstrate the effectiveness of the proposed

method.
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Table 3.9 Comparison with other Popular Methods on the UIUC Sports Event Data Set

Methods Accuracy %

SIFT + GGM [41] 73.4

OB [56] 76.3

CA-TM [98] 78.0

SAC [127] 82.04 ±2.37

ScSPM [149] 82.74 ±1.46

LLC [133] 81.41 ±1.84

LSAC [74] 82.29 ±1.84

LSC [26] 85.18 ±0.46

HMP [5] 85.7 ±1.3

The proposed LLNc 86.79 ±1.33

The proposed LLKc 86.44 ±1.44

Table 3.10 The Time Used by the LLC Method and our Proposed LLK Method on the
UIUC Sports Event Data Set

Method Time (in seconds)

LLC [133] 730.18

LLK 6.28
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Table 3.11 Comparison with other Popular Methods on the UCF 50 Action Recognition
Data Set

Methods Accuracy %

GIST [100] 38.8

Wang et al. [130] 47.9

Action bank [111] 57.9

SRC [138] 59.6

D-KSVD [161] 38.6

LC-KSVD [42] 53.6

JDL [164] 53.5

FDDL [152] 61.1

The proposed LLNc 62.42

The proposed LLKc 62.66

3.3.5 Effectiveness of the Shifted Power Transformation

The effectiveness of the shifted power transformation (SPT) is assessed by comparing the

results of LLKc (already applying SPT), LLKc without SPT, LLNc (already applying SPT)

and LLNc without SPT with different values of the parameter k. The results illustrated in

Figure 3.5 show the improvement of performance using the shifted power transformation

for all the values of k.

To further investigate the property of the shifted power transformation, we also

compare the results of LLKc and LLNc for different values of the parameter λ2, which

is the power exponent in the shifted power transformation. All the other parameters are

fixed and the value of λ1 = 0.0. As shown in Figure 3.6, the value of λ2 has large impact

on the performance of the proposed method.
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3.3.6 Sensitivity Analysis

Theoretical analysis in Section 3.2.3 shows that the shifted power transformation and theL2

normalization are capable of reducing the sensitivity of our LLK method to the parameter

σ for robust kernel density estimation. This section presents empirical evidence as well by

comparing the results of LLKc and LLNc for different values of the parameter σ.

As shown in Figure 3.7, the performance is indeed not sensitive to the parameter σ

after the application of both the shifted power transformation and the L2 normalization.

In comparison, the performance of our LLK method depends heavily on the value of σ

without the shifted power transformation. The performance will drop below 10% without

the necessary L2 normalization.

Theoretical analysis in Section 3.2.4 demonstrates that the coefficient truncating

method is able to discard the distant samples to avoid their adverse impact on the

performance. To provide empirical evidence, the performance of our LLK method for

different values of the parameter k is presented. The results in Figure 3.5 prove that neither

a very small value nor a very large value of k are necessary for better performance. On the

contrary, a careful selection of k is critical to the performance.

3.3.7 Grouping Effect of the Nearest Neighbors

The grouping effect of the nearest neighbors are shown to be an important property for

deriving an approximation to the ideal representation. To evaluate the tightness of the

bound and the degree of approximation to the ideal representation, experimental results are

presented in this section for different values of the parameter λ, α and β in terms of three

variables: the classification accuracy, the true activation ratio (TAR) and the false activation

ratio (FAR).

The true activation ratio (TAR) is defined as follows:

TAR =

∑Ntest

i=1 ti
Ntest

(3.20)
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where Ntest is the number of test samples and ti represents the number of the correctly

activated (non-zero) coefficients for the i-th test sample.

The false activation ratio (FAR) is similarly defined as follows:

FAR =

∑Ntest

i=1 fi
(c− 1)Ntest

(3.21)

where c is the number of classes and fi represents the number of the mistakenly activated

(non-zero) coefficients for the i-th test sample.

Taking the MIT-67 Indoor Scenes data set for example, if there are 80 training

samples for a class and the test sample comes from the same class, then the TAR of the

ideal representation is 80, which is the size of the training samples in this class, and the

FAR of the ideal representation is 0.

The results in Table 3.12 not only show the effectiveness of the grouping effect of

the nearest neighbors but also demonstrate the necessity of the trade-off between the value

of FAR and the value of TAR to achieve the best performance due to the observation that

the increasing (decreasing) of TAR sometimes may result in the increasing (decreasing) of

FAR, which may deteriorate the performance.

3.3.8 Stability Discussion

This section provides the stability discussion for different parameters and explains the

reasons why our method is stable when some parameters change. Specifically, we consider

the following parameters: λ, α, β, σ, and k.

First, as shown in Table 3.12, the performance drops significantly when the value of

λ increases. The reason is mainly due to the importance of the parameter λ in the sparse

representation related problems. As a comparison, the performance is very stable when the

value of α and value of β change within a reasonable range.

Second, as shown in Figure 3.7, the performance is stable under different values of σ.

To further show the stability of our method to the parameter σ, some extreme cases are also



37

Table 3.12 The Classification Accuracy, FAR and TAR for Different Values of the
Parameter λ, α and β on the MIT-67 Indoor Scenes Data Set

λ α β LLKc (%) LLNc (%) TAR FAR

0.01 0.1 1.5 57.65 59.12 30.60 15.35

0.05 0.1 1.5 57.13 56.06 11.05 1.44

0.10 0.1 1.5 49.15 48.60 4.35 0.16

0.01 0.1 1.5 57.65 59.12 30.60 15.35

0.01 0.3 1.5 56.91 58.52 35.92 18.33

0.01 0.5 1.5 55.95 57.88 39.91 20.63

0.01 0.1 0.5 58.18 58.60 30.45 15.34

0.01 0.1 1.0 57.80 58.82 30.52 15.34

0.01 0.1 1.5 57.65 59.12 30.60 15.35

0.01 0.1 2.0 57.95 59.12 30.66 15.36
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considered, where the values of σ such as 20, 30 are also evaluated. The performance of

LLKc is 58.40 (even better than the reported results above) and the performance of LLNc

is 58.49 for both values. The main reason why our method is stable under different values

of σ is that both the shifted power transformation and the L2 normalization are applied.

Third, as shown in Figure 3.5, the performance becomes stable when k exceeds a

certain point. The reason might be that if k is too small, the kernel density estimation is not

reliable, which may harm the performance.

3.3.9 Computational Efficiency

This section assesses the computational efficiency of our proposed method. The major

computational cost of our method is due to the size of the dictionary, as the larger the size

of the dictionary is, the more time the computation of the step size and the optimization

require. Thus we propose two methods to improve the computational efficiency of our

proposed method.

First, we extend the safe screening rule [132] for the conventional sparse represen-

tation problem to our proposed method. Please note that the safe screening rule is a process

before optimizing the objective function of the sparse representation so that we can discard

the training samples with zero coefficients for reducing the computational time.

The extended safe screening rule is defined as follows:

Proposition 3.3.1 A New Safe Screening Rule.

if |xtbi + αβdtei| < λm −
√

(1 + α)(1 + αβ2||d||2)(λm
λ
− 1), then vi = 0, where ei is

a vector whose elements are all zeros except for the i-th element, whose value is 1, and

λm = maxi |xtbi + αβdtei|.

Second, we apply the FISTA algorithm with backtracking [3] instead of the basic

FISTA algorithm to avoid the large scale eigenvalue decomposition problem. A good

initialization is required for fast convergence.
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Table 3.13 Comparison among Different Techniques for Computational Efficiency

Methods Time (s)

Basic implementation 6.55

Extended screening rule 3.12

FISTA with backtracking [3] 3.13

Table 3.13 shows the experimental results measured in terms of the average

optimization time, which is defined as the total time for optimization divided by the number

of the test images. Specifically, the experimental results in Table 3.13 reveal that both the

extended safe screening rule and the FISTA algorithm with backtracking can improve the

computational efficiency for our method.

3.3.10 Non-negative Constraint

In this section, we present the evaluation of the non-negative constraint (vi ≥ 0) for the

objective function defined in Equation 3.3. Given such a new constrained optimization

problem, the structure of the FISTA algorithm remains the same but with the only difference

of the proximal operator as our method becomes an extension to the non-negative lasso

problem [118]. We replace the original soft thresholding operator with an efficient

projection operator [21] considering the non-negative constraint. The experimental result

on the MIT-67 Indoor Scenes data set achieves 56.60 for LLKc and 56.49 for LLNc,

which shows that the non-negative constraint does not necessarily contribute to better

performance.

3.3.11 Group Regularization

In this section, we demonstrate the evaluation when group regularization (more than

one regularization term) is incorporated into our method. Specifically, a simple form of
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group regularization is evaluated, namely the L1 + L2 grouping regularization by adding a

quadratic term λ3||v||2 (λ3 = 0.05 in our experiment for best performance) to the objective

function defined in Equation 3.3. The results obtained on the MIT scene 67 data set

are 58.49 and 58.41 percent for LLKc and LLNc, respectively when using this grouping

regularization term. It can be seen that the results of group regularization are similar to our

method.

3.3.12 Discussion of the Improved Marginal Fisher Analysis

The proposed LLK method relies on the assumption that the nearest training samples are

highly probable to share the same class label to the test sample. That is the reason why

the L2 term ||v − βd||2 is applied in Equation 3.3. However, this assumption not always

holds in the real world application. Therefore, we can improve the proposed LLK method

by introducing a metric learning method.

We find out that the proposed improved marginal fisher analysis method not only

plays the role of feature extraction, but also plays the role of metric learning. Because it

is derived by pulling close training samples in the same class, while push away training

samples from different classes. Consequently, d can be computed by using the features

extracted by the improved marginal Fisher analysis and the assumption can be realized for

the LLK method.

3.3.13 Double L1 Norm

The proposed LLK method is based on a combination of both L1 norm and L2 norm. In

the final classification stage, the coefficient truncating method is applied for the LLKc

classification method. It is well-known that the L1 norm can also have the effect of the

coefficient truncating since it can make the coefficients sparse.
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Therefore we can extend the proposed LLK method by using double L1 norms as

follows:

min
v
||x− Bv||2 + λ||v||1 + α||v− βd||1 (3.22)

The new introduced L1 norm ||v − βd||1 is a relative sparsity criterion, which enforces a

specific structure of the sparse representation v. The conventional sparse representation v

is sparse with respect to the origin, namely a zero vector that resides in the m dimensional

space, which leads to many zero elements in v. In contrast, such an extension constrains

the sparsity with respect to a more informative vector in addition to the origin vector to

incorporate more structural and discriminative information.

The experiment on the MIT-67 Indoor Scenes dataset using both the LLKc and LLNc

can achieve an accuracy of 59.02 and 59.31, respectively. It shows that the double L1 norms

method can achieve slightly better result and meantime, the coefficient truncating method

is not required any more.

3.4 Conclusions

This chapter presents a novel LLK method for robust visual recognition. The proposed

method derives a new representation that has the grouping effect of the nearest neighbors

using the criteria of reconstruction, locality, and sparsity. Then two classifiers, namely the

Locally Linear KNN based classifier (LLKc) and the Locally Linear Nearest mean based

classifier (LLNc), are proposed. Both the LLKc and LLNc are related to the Bayes decision

rule for minimum error. Besides, some other theoretical issues of the proposed LLK method

are also addressed such as the non-negative constraint, the group regularization and the

computational efficiency. Furthermore, the improved marginal Fisher analysis (IMFA)

is proposed for feature extraction, the shifted power transformation and a coefficient

truncating method are applied as well. The feasibility of the proposed LLK method is

successfully evaluated for several visual recognition tasks.
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Figure 3.4 Sample images of the data sets: (a) the AR Face Database, (b) the Extended
Yale Face Database B, (c) the 15 Scenes data set, (d) the MIT-67 Indoor Scenes data set,
(e) the Caltech 101 data set, (f) the Caltech 256 data set (g) the UIUC Sports Event data set
and (h) the UCF50 data set.
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Figure 3.5 The evaluation of the shifted power transformation for different values of the
parameter k on the MIT-67 Indoor Scenes data set.

Figure 3.6 The evaluation of the shifted power transformation for different values of the
parameter λ2 on the MIT-67 Indoor Scenes data set
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Figure 3.7 The evaluation of our LLK method for different values of the parameter σ on
the MIT-67 Indoor Scenes data set



CHAPTER 4

GENERATIVE AND DISCRIMINATIVE SPARSE REPRESENTATION

4.1 Introduction

Although the sparse representation method achieves impressive results in various challenging

tasks, such as face recognition [138], and scene recognition [78], [81], [84], [76], it lacks

the support of discriminative information as it is only derived from the representation

criterion. Efforts have been made recently for incorporating the discriminative criterion

into the sparse representation criterion. These methods can be classified into two major

categories. One category is to devise a discriminative dictionary by using a set of

sub-dictionaries for each class [91], [135], [164], [151], [152], [83]. The other way is to

add constraints to the sparse representation for learning the dictionary [161], [42]. Despite

their success, the generative information of the dictionary, namely the class conditional

probability of each dictionary item, is still disregarded. The complementary nature of the

discriminative and the generative approaches, which has been well studied in the past

few years [96], [39], has demonstrated the effectiveness of a combination of both the

discriminative information and the generative information.

This chapter therefore presents a new generative and discriminative sparse repre-

sentation (GDSR) method by integrating the conventional sparse representation, a new

generative criterion and a new discriminative criterion. The proposed GDSR method intrin-

sically models a hybrid paradigm of both the generative information and the discriminative

information. It applies the generative model as a regularization for the discriminative model

to avoid over-fitting from the regularization point of view.

Figure 4.1 illustrates the system architecture of the proposed GDSR method.

Specifically, the generative criterion plays the role of generative modeling by representing

each dictionary item as a linear combination of the training samples and emphasizing

45
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the coefficients of the nearest training samples. Theoretical analysis shows that these

coefficients, termed as dictionary distribution coefficients, are capable of approximately

modeling the class conditional probability of each dictionary item. The discriminative

criterion utilizes the underlying topology of the sparse representations by considering only

the k nearest neighbors for defining a new discriminant analysis criterion with newly

defined within-class and between-class scatter matrices. In addition, a new classification

method, namely the generative and discriminative sparse representation based classification

(GDSRc) method, is proposed by utilizing both the new sparse representation and the

dictionary distribution coefficients. Theoretical analysis shows that the GDSRc method

is related to the Bayes ideal feature [25] which has the minimum error for classification.

The optimization issue of the proposed GDSR method is discussed as well by using

a coordinate descent method, which iteratively updates the sparse representation, the

dictionary and the dictionary distribution coefficients. In particular, the sparse represen-

tation is derived by using the fast iterative shrinkage thresholding (FISTA) algorithm [3],

where the issues of initialization and step size are discussed. The dictionary is obtained

by using a fast approximation and the optimization of the Lagrange dual problem. The

dictionary distribution coefficients are derived by solving a variant of the ridge regression

problem.

The effectiveness of the proposed GDSR method is evaluated on various visual

recognition tasks, such as face recognition on the AR Face Database [94] and the Extended

Yale Face Database B [54], computational fine art analysis on the Painting-91 dataset

[45], scene recognition on the 15 Scenes dataset [52] and the MIT-67 Indoor Scenes

dataset [109], as well as fine grained recognition on the CUB-200-2011 dataset [128]. The

experimental results show the feasibility of the proposed method.

To summarize, the proposed GDSR method makes the following major contributions.
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Figure 4.1 The system architecture of the proposed GDSR method.

• First, the GDSR method explicitly models the class conditional probability of each

dictionary item by using a new generative criterion and reveals the generative

structure of the dictionary.

• Second, the GDSR method achieves its discriminatory power by introducing a new

option for defining the scatter matrices for discriminant analysis.

• Third, a new GDSRc method is proposed for classification and the power of the

GDSRc method is revealed by its connection to the Bayes ideal feature.

4.2 Generative and Discriminative Sparse Representation

Dictionary learning plays an important role in the conventional sparse representation

method. An important question arising from the issue of dictionary learning is how the

dictionary can help classify testing data, which has been well studied in many papers.

Another equally important question, which has received much less attention, is how a

dictionary item is generated given a specific category, namely the generative information

of the dictionary. One naive answer is to construct a dictionary that consists of carefully
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selected training samples [138]. In this scenario, each dictionary item corresponds to a

training sample from a specific category. Such a dictionary might achieve good results,

however, the performance of this method relies heavily on the selection of the training

samples and the number of the selected training samples.

Our solution to both questions is the proposed GDSR method, which explicitly

models the class conditional probability of each dictionary item p(dj|c), where dj is the

j-th dictionary item and c is the class label, and introduces a new discriminative criterion

for enhancing the discriminative power of the dictionary. Suppose the training sample data

matrix X ∈ Rn×m is composed of m samples [x1, x2, ..., xm] and each sample resides in

an n dimensional space. The dictionary D ∈ Rn×k can be represented as [d1,d2, ...,dk],

where each dictionary item dj(j = 1, 2, ..., k) also resides in the n dimensional space. Then

our GDSR method derives the sparse representations wi ∈ Rk×1(i = 1, 2, ...,m) for each

training sample xi, and the dictionary distribution coefficients vj ∈ Rm×1(j = 1, 2, ..., k)

for each dictionary item dj .

Specifically, the GDSR method is defined as follows:

min
D,W,V

m∑
i=1

||xi − Dwi||2 + λ||wi||1 + γL(V,D) + αH(W)

s.t. ||dj|| ≤ 1, (j = 1, 2, ..., k)

(4.1)

The first term in Equation 4.1 is the conventional sparse representation criterion,

where the parameter λ controls the L1 normalization. The second term L(V,D), which

represents the generative criterion, is defined as follows:

L(V,D) =
k∑
j=1

||dj − Xvj||2 + σ||vj − ηpj||2 (4.2)

where V = [v1, v2, ..., vk] is the matrix that consists of the dictionary distribution

coefficients vector vj = [vj1, vj2, ..., vjm]t. The vector pj = [pj1, pj2, ..., pjm]t ∈ Rm

represents the distance measure between the dictionary item dj and the training sample
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Figure 4.2 (a) Conventional view represents the data as a linear combination of the
dictionary items. (b) The proposed GDSR represents each dictionary item as a linear
combination of the data as well.

xi as follows:

pji = exp{− 1

2h2
||dj − xi||2} (4.3)

where the parameter h controls the decay speed. Please note that pji ≤ 1 and ||pj||2 can be

normalized.

As illustrated in Figure 4.2, traditional view of the dictionary learning is to represent

the training sample as a linear combination of the dictionary items. In comparison, our

generative criterion demonstrates a reciprocal viewpoint as well, which represents each

dictionary item as a linear combination of the training samples. As a matter of fact, the

dictionary items and the training samples consist of a bipartite graph and they influence

each other mutually. In addition, the generative criterion also makes a constraint on the

dictionary distribution coefficients vector vj , where the coefficients are proportional to the
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distance between the dictionary item and the training sample, in order to estimate the class

conditional probability of each dictionary item p(dj|c) by using vj (Proposition 4.2.1).

The third term is the discriminative criterion, which is defined as follows:

H(W) = tr(βS
′

w − (1− β)S
′

b) (4.4)

The new within-class scatter matrix is defined as S
′

w =
∑m

i=1

∑
(wi,wj)∈Tw

k
(wi − wj)(wi −

wj)
t, where Twk represents the set of (wi,wj) pairs where the sample xi and sample xj

are among their k nearest neighbors respectively in the same class. The new between-

class scatter matrix is then defined as S
′

b =
∑m

i=1

∑
(wi,wj)∈T b

k
(wi − wj)(wi − wj)

t, where

T bk represents the set of the k nearest (wi,wj) pairs among all the (wi,wj) pairs between

sample xi and sample xj from the different classes.

This discriminative criterion utilizes the underlying topology of the sparse repre-

sentation of the training samples for defining new within-class and between-class scatter

matrices by considering only the k nearest neighbors. The new discriminative criterion

can be further transformed into H(W) = tr(WLWt), where L = 2β(Dw −Ww)− 2(1−

β)(Db −Wb). In particular, let Ww be a matrix, whose elements Ww(i, j) = 1 if xi and xj

are among the k nearest neighbors of each other in the same class, and Ww(i, j) = 0,

otherwise. Let Wb be a matrix, whose elements Wb(i, j) = 1 if the pair (wi,wj) is

among the k nearest pairs from all the pairs among the samples of the different classes,

and Wb(i, j) = 0, otherwise. Let Dw and Db be diagonal matrices, whose main diagonal

elements are Dw(i, i) =
∑

j 6=iWw(i, j) and Db(i, i) =
∑

j 6=iWb(i, j), respectively.

One important property of the proposed GDSR method is its modeling of class

conditional probability of each dictionary item p(dj|c) stated as the following generative

property 4.2.1.

Proposition 4.2.1 Generative Property Given that V is the derived dictionary distribution

coefficients by the proposed GDSR method, the class conditional probability of each
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dictionary item p(dj|c) is modeled as follows.

p(dj|c) ∝
∑

xi∈Xc

vji (4.5)

where Xc is the set of training samples in the c-th class.

The proof of Proposition 4.2.1 is shown as follows.

If V is the derived dictionary distribution coefficients by the proposed GDSR method,

then the objective function in Equation 4.1 satisfies O(D,W, vj) ≤ O(D,W, 0), which

means

L(vj,D) ≤ L(0,D) (4.6)

then we have
||dj − Xvj||2 + σ||vj − ηpj||2 ≤ ||dj||2 + σ||ηpj||2

≤ 1 + ση2

(4.7)

Therefore ||vj − ηpj||2 is bounded by a small positive constant so that vj ≈ ηpj +

const.

As a result, the GDSRc is approximated as follows∑
xi∈Xc

vji ≈
∑

xi∈Xc

η × pji + const

∝
∑

xi∈Xc

exp{− 1

2h2
||dj − xi||2}

∝ 1

s×mc

∑
xi∈Xc

k(
dj − xi
s

)

∝ p(dj|c)

(4.8)

where mc is the number of training samples in the c-th class and s is the bandwidth that

controls the degree of smoothing and it is fixed for all the classes. We use the zero mean

and unit variance Gaussian kernel k(u) = 1√
2π
exp(−u2

2
) here for kernel density estimation
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[25] of the conditional probability p(dj|c). Please note that the prior probability p(c) is

assumed to be equal for all the classes.

In summary, the GP is a coarse estimation of the class conditional probability p(dj|c)

in the view of density estimation, and the approximation error mainly comes from the

vj ≈ ηpj + const (relatively large σ and small η are preferred) and the kernel density

estimation error.

Please note that conventional way to estimate p(dj|c) assumes some parametric

distribution first, such as Bernoulli distribution. In comparison, the generative property of

the proposed method shows that p(dj|c) is estimated from the kernel density estimation

point of view. The generative property (GP) presents a coarse estimation of the class

conditional probability of each dictionary item instead of an accurate estimation since our

goal is to accurately classify data instead of accurately estimating the probability, and such a

coarse modeling carries sufficient information for improving the classification performance

as shown in the experimental section.

Another interesting property of the proposed GDSR method is the grouping property

of the dictionary distribution coefficients (GPDDC) for vj as shown in Property 4.2.2.

Proposition 4.2.2 Grouping Property of the Dictionary Distribution Coefficients Let

vj = [vj1, vj2, ..., vjm]t be the solution of optimizing the objective function defined in

Equation 4.1, ρ = xtsxt be the sample correlation of two training samples xs and xt

(s, t = 1, 2, ...,m), and M(s, t) = |vjs − vjt| be the difference between two coefficients

of vj , then the grouping property of the dictionary distribution coefficients (GPDDC) is

defined as follows.

M(s, t) ≤ C
√

1− ρ+ η|pjs − pjt| (4.9)

where all the samples are normalized using the L2 normalization and C =
√

2(1+ση2)
σ2 is a

constant.

The proof of Proposition 4.2.2 is shown as follows.
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Let the objective function defined in Equation 4.1 denoted as O(D,W,V), then take

the derivative of vjs and vjt as

∂O

∂vjs
= −2xts(dj − Xvj) + 2σ(vjs − ηpjs) = 0

∂O

∂vjt
= −2xtt(dj − Xvj) + 2σ(vjt − ηpjt) = 0

(4.10)

Then ∂O
∂vjs
− ∂O

∂vjt
is

σ(vjs − vjt) = (xs − xt)t(dj − Xvj) + ση(pjs − pjt) (4.11)

Take the absolute value on both sides and make use of O(D,W, vj) ≤ O(D,W, 0)

and all the training samples are L2 normalized.

|vjs − vjt| = |
1

σ
(xs − xt)t(dj − Xvj) + η(pjs − pjt)|

≤ | 1
σ

(xs − xt)t(dj − Xvj)|+ η|pjs − pjt|

≤ 1

σ
||xs − xt|| ∗ ||dj − Xvj||+ η|pjs − pjt|

=
1

σ

√
2(1− ρ) ∗ ||dj − Xvj||+ η|pjs − pjt|

≤ 1

σ

√
2(1− ρ)

√
1 + ση2 + η|pjs − pjt|

= C
√

1− ρ+ η|pjs − pjt|

(4.12)

where C =
√

2(1+ση2)
σ2 .

Intuitively, if two training samples xs and xt come from the same class (they have

high correlation ρ ≈ 1), and they are close to the dictionary item dj (pjs ≈ pjt and they

are large), then their corresponding coefficients are similar and large (vjs ≈ vjt), otherwise

the coefficients will be different. In other words, the GPDDC reveals the fact that if a

dictionary item has more training sample neighbors from one class, then it will carry more

information about this class.
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4.3 Optimization Procedure

The objective function in Equation 4.1 now can be optimized by a coordinate descent

method, which alternatively updates the sparse representation, the dictionary distribution

coefficients, as well as the discriminative dictionary. In order to obtain a better convergence

rate, the sparse representation and the dictionary are initialized using the conventional

sparse representation method [53], while the dictionary distribution coefficients vj are

initialized using the value of ηpj .

4.3.1 Update the Sparse Representation

First, to obtain the sparse representation W given the dictionary D and the dictionary

distribution coefficients V, the objective function defined in Equation 4.1 can be optimized

by decomposing it into separate objective functions for each training sample xi as follows.

min
wi

||xi − Dwi||2 + αLiiwt
iwi + αwt

ihi + λ||wi||1; (4.13)

where hi =
∑

j 6=i Lijwj = [hi1, hi2, ..., hik]
t and Lij(i, j = 1, 2, ...,m) is the value in the

i-th row, j-th column of the matrix L defined above. For this separate objective function,

the FISTA algorithm [3] is applied to learn the sparse representation wi for each training

sample xi.

An important quantity to be determined before applying the FISTA algorithm is the

step size that guarantees convergence. The largest step size may be theoretically derived for

each training sample from Equation 4.13. Specifically, the largest step size that guarantees

convergence of the FISTA algorithm for optimizing Equation 4.13 is 1
Lip(f)

, where Lip(f)

is the smallest Lipschitz constant of the gradient∇f for f(wi) = ||xi−Dwi||2+αLiiwt
iwi+

αwt
ihi. It can be derived thatLip(f) = 2Emax(DtD+αLiiI), namely twice of the maximum

eigenvalue of matrix DtD + αLiiI. Note that in practice one has the liberty of choosing a

step size that is smaller than the largest step size.
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4.3.2 Update the Dictionary Distribution Coefficients

Second, when the dictionary D and the sparse representation W are given, the dictionary

distribution Coefficients V can be derived using the following analytical solution.

vj = (XtX + σI)−1(Xtdj + σηpj) (4.14)

As a matter of fact, Xtdj is the sample correlation between the dictionary item

dj and all the training samples, and pj is the reciprocal of the exponential form of

Euclidean distance between dj and all the training samples. Therefore, the dictionary

distribution coefficient vj represents a measurement between the dictionary item and the

training samples using a combination of both the correlation information and the distance

information. From another perspective, vj is a similarity measure using both the angular

distance (correlation information) and the Euclidean distance (reciprocal of the exponential

form of Euclidean distance). This important property of vj will significantly help the

derivation of the dictionary as shown in the following sub-section.

4.3.3 Update the Dictionary

Third, given the sparse representation W and the dictionary distribution coefficients V, the

dictionary D can be derived by optimizing the following objective function.

min
D
||X− DW||2 + γ(||D− XV||2 + σ||V− ηP||2)

s.t. ||dj|| ≤ 1, (j = 1, 2, ..., k)

(4.15)

where P = [p1,p2, ...,pk].

The optimization of Equation 4.15 is not a trivial problem due to the exponential form

of the vector pj with respect to dj . Instead of using some generic solvers, we seek to a more

efficient approximation for deriving the dictionary based on the observation from Equation

4.14 that the coefficients of the nearest neighbors of dictionary items are suffice since

the dictionary distribution coefficients vector vj represents a similarity measure between



56

training samples and dictionary items. Specifically, the approximation method consists of

the following steps.

• First, the influence of distant training samples are diminished by setting the elements

in vj , whose absolute value is less than a threshold, to be zero. The new vector is

then denoted as v̄j .

• Then, the dictionary is derived by solving the following new optimization problem,

given that these v̄j consist of a new matrix V̄.

min
D
||X− DW||2 + γ||D− XV̄||2

s.t. ||dj|| ≤ 1, (j = 1, 2, ..., k)

(4.16)

This problem is a constrained optimization problem with inequality constraints,

which may be solved using the Lagrange optimization and the Karush-Kuhn-Tucker

condition [53]. Particularly, the primal optimization is solved by taking the first derivative

with respect to D and set it to zero, and then the dual problem may be formulated as follows:

min
Λ

tr(X(Wt + γV̄)(WWt + γI + Λ)−1(W + γV̄t
)Xt + Λ− XtX) (4.17)

where Λ is a diagonal matrix whose diagonal values are the dual parameters of the primal

optimization problem. The dual problem defined by Equation 4.17 can be solved by using

the gradient descent method. Finally, assuming Λ∗ be the solution of the dual problem,

then the dictionary D is updated using the following equation:

D = X(Wt + γV̄)(WWt + γI + Λ∗)−1 (4.18)

4.4 Generative and Discriminative Sparse Representation based Classification

After the dictionary D and the dictionary distribution coefficients V are derived, a new

generative and discriminative sparse representation based classification (GDSRc) method

is presented. Specifically, for a test data y, we derive the generative and discriminative
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sparse representation by optimizing the following criterion: minw {||y− Dw||2 + λ||w||1}.

Note that as the dictionary D, which is learned in the training optimization process,

possesses the power of both generative and discriminative information, the representation,

w = [w1, w2, ..., wk]
t is thus called the generative and discriminative sparse representation.

The novel GDSRc method is then applied based on the derived generative and

discriminative sparse representation w and the dictionary distribution coefficients V. In

particular, the GDSRc method is defined as follows.

c∗ = arg max
c

k∑
j=1

wj
∑

xi∈Xc

vji (4.19)

Note that we only select the top T largest values of vji for the GDSRc method. In practice,

the value of T plays an important role in the performance.

We now show the connection between the proposed GDSRc method and the Bayes

ideal feature [25]. The Bayes ideal feature is known as the optimal feature for classification

based on the criterion of Bayes error. Mathematically, the Bayes ideal feature is defined as a

vector b = [p(1|y), p(2|y), ..., p(c−1|y)]t ∈ Rc−1. This vector carries sufficient information

to set up the Bayes classifier, which has the minimum Bayes error for classification.

However, in practice, this vector is difficult to obtain. The well-known discriminant

analysis applies another criterion different from the Bayes error and derives a c − 1

dimension feature, which is claimed as an approximation to the Bayes ideal feature. But

the explicit relation is still unclear between the feature extracted by discriminant analysis

and the Bayes ideal feature.

The following Proposition 4.4.1 demonstrates that our GDSRc method has a direct

relation to the Bayes ideal feature, which guarantees the performance of our GDSRc

method.

Proposition 4.4.1 For a given test data y, the GDSRc method computes the approximate

Bayes ideal feature b and classify y to the c-th class, which is corresponding to the largest

element in b.



58

The proof of Proposition 4.4.1 is shown as follows.

Given the test data y, the ideal Bayes feature try to derive the posterior probability

p(c|y) for each class. The test data y can be approximated as a linear combination of the

dictionary item as y ≈
∑k

j=1wjdj . Besides, it is reasonable to assume that the posterior

probability function p(c|y) is a Lipschitz function. As a result, according to local coordinate

coding [155], we have the following result:

p(c|y) ≈
k∑
j=1

wjp(c|dj)

∝
k∑
j=1

wjp(dj|c)p(c)

∝ p(c)
k∑
j=1

wj
∑

xi∈Xc

vji

(4.20)

Note that we can normalize wj so that
∑k

j=1wj = 1 to satisfy the condition of local

coordinate coding.

Finally, based on this approximation to the ideal Bayes feature, our proposed GDSRc

method chooses the largest elements for classification using the following equation given

the same prior probability p(c):

c∗ = arg max
c
p(c|y)

∝ arg max
c

k∑
j=1

wj
∑

xi∈Xc

vji

(4.21)

As a result, the proposed GDSRc method takes advantage of the approximated Bayes

ideal feature and establishes its connection to the Bayes decision rule for minimum error

for classification.

Figure 4.3 shows an example of how the proposed GDSRc works. A test sample x has

a linear combination of the dictionary items as w1 = 0.2, w2 = 0.5 and w3 = 0.1. Then the

score for each class using the learned dictionary distribution coefficients are calculated as

follows: w1×0.8+w2×0.4+w3×0.1 = 0.37 for class 1 andw1×0.1+w2×0.2+w3×0.5 =
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Figure 4.3 Example of the GDSRc. The test sample x will be assigned to class 1 because
0.37 is larger than 0.17.

0.17 for class 2. Then the test sample x will be classified into class 1 since it has the largest

score.

4.5 Experiments

To evaluate the effectiveness of the proposed GDSR method, it is tested on various

visual recognition tasks, namely face recognition, computational fine art analysis, scene

recognition and fine grained recognition. In particular, the datasets for evaluating the

proposed GDSR method are listed in Table 4.1. Some sample images are also shown in

Figure 4.4. Besides, additional comprehensive analysis on some critical issues concerning
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Table 4.1 The Data Sets used and their Sizes

Task Dataset Size

Face recognition AR face [94]

Extended Yale

face B [54]

4,000

2,414

Fine art analysis Painting-91

dataset [45]

4266

Scene recognition MIT-67 Indoor

Scenes [109]

15 Scenes [52]

15,620

4,485

Fine grained recognition CUB-200-2011

[128]

11788

about the performance is also presented for further investigating the properties of the

proposed method.

All of our experiments are implemented using both C++ and Matlab in a desktop

computer with 8 cores of Intel i7 CPU, 16 GB RAM and a GTX 745 GPU Card. The

feature extraction process takes up to 1 hour. The training of our GDSR method takes up

to 2.5 hour. The deep learning related fine tuning process is completed in a distributed

computing system with one Tartan GPU up to 8 hours.

4.5.1 Face Recognition

Extended Yale face database B The Extended Yale Face Database B consists of 2414

frontal view face images from 38 individuals each with around 64 images taken under

various lightening conditions. A cropped version of the database [54] is often applied,

where all the images are manually aligned, cropped, and then re-sized to 168 × 192 .
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Figure 4.4 Sample images of the datasets: (a) the Extended Yale Face Database B, (b) the
AR Face Database, (c) Painting-91 dataset, (d) the MIT-67 Indoor Scenes dataset, (e) the
15 Scenes dataset and (f) CUB-200-2011 dataset.

Two experimental settings are applied for fair comparison. First, we follow the

experimental setting [151] that 20 images are randomly selected for training for each

subject, and the remaining images (around 44 per subject) are for testing for 10 iterations.

To show the robustness of our proposed method, we present results of our GDSR method

under an extremely noisy condition, where the random faces [138] are used as the input.

Specifically, the random faces [138] consists of the row vectors of a randomly generated

transformation matrix from a zero-mean normal distribution, which is applied to project

the face pattern vector into a dimension of 504 representation vector. Each row of the

transformation matrix is normalized to unit length. Then the dimension is reduced to 350

and the dictionary size is 512. The model parameters are selected as follows: λ = 0.1

for the sparse representation criterion; γ = 0.05, σ = 0.05, η = 0.1 and h = 0.1 for the

dictionary distribution criterion; α = 0.5, and β = 0.5 for the discriminative criterion; and

k = 20 for the GDSRc method.

Second, we follow the experimental setting [1], [42] that half images are randomly

selected for training for each subject, and the remaining images are for testing for 10

iterations. The random faces are applied as well and the dimension of the representation
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Table 4.2 Comparison with the State-of-the-Art Methods on the Extended Yale Face
Database B under two Experimental Settings

Experimental setting 1 Accuracy %

D-KSVD [161] 75.30

SRC [138] 90.00

FDDL [151] 91.90

The GDSR method 95.19

Experimental setting 2 Accuracy %

LLC [133] 90.70

D-KSVD [161] 94.79 ± 0.49

LC-KSVD1 [42] 93.59 ± 0.54

LC-KSVD2 [42] 95.22 ± 0.61

FDDL [152] 96.07 ± 0.64

SRC [138] 96.32 ± 0.85

DBDL + SVM [1] 96.10 ± 0.25

DBDL [1] 97.31 ± 0.67

The GDSR method 97.45 ± 0.40

vector is reduced from 504 to 350. the dictionary size is 512. The model parameters are

selected as follows: λ = 0.05 for the sparse representation criterion; γ = 0.05, σ = 0.05,

η = 0.1 and h = 0.1 for the dictionary distribution criterion; α = 0.1, and β = 0.5 for the

discriminative criterion; and k is the number of training samples per subject for the GDSRc

method.

The final results shown in Table 4.2 demonstrate the effectiveness of the proposed

methods under such a noisy condition.
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AR Face Database The AR Face Database consists of over 4000 frontal view images for

126 individuals each with 26 pictures taken in two separate sessions. A subset of the data

[94] that consists of 50 male subjects and 50 female subjects is chosen and are cropped

to size 165*120. We follow three main widely adopted experimental settings to make fair

comparisons.

The first experimental setting is defined in [42], [161], where the methods are

evaluated by randomly selecting 20 images for training and the others for testing for each

person for 10 iterations. In this experimental setting, the random faces [138], [42] with 540

dimensions are applied for fair comparison. Then the dimension is reduced from 540 to 400

and the size of the dictionary is 512. The model parameters are selected as follows: λ = 0.1

for the sparse representation criterion; γ = 0.01, σ = 0.05, η = 0.1 and h = 0.1 for the

dictionary distribution criterion; α = 0.5, and β = 0.5 for the discriminative criterion; and

k = 15 for the GDSRc method.

The second experimental setting is defined in [138], [151], [152] where 14 images

with only illumination change and expressions are selected for each person: the seven

images from session 1 for training and the other seven from session 2 for testing. The

pattern vector is formed as the concatenation of the column pixels. Then the dimension is

reduced to 300 and the size of the dictionary is 512. The model parameters are selected as

follows: λ = 0.05 for the sparse representation criterion; γ = 0.01, σ = 0.05, η = 0.1 and

h = 0.1 for the dictionary distribution criterion; α = 0.5, and β = 0.5 for the discriminative

criterion; and k = 7 for the GDSRc method.

The third experimental setting is defined in [20], where the 26 images for each person

are randomly permuted and the first half is taken for training, the rest for testing for total

10 iterations. The features are similar as those in the second experimental setting. Then the

dimension is reduced to 500 and the size of the dictionary is 512. The model parameters

are selected as follows: λ = 0.1 for the sparse representation criterion; γ = 0.01, σ = 0.05,
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Table 4.3 Comparison with the other Popular Methods on AR Face Database under three
Experimental Settings

Experimental setting 1 Accuracy %

D-KSVD [161] 95.00

SRC [138] 97.50

LC-KSVD2 [42] 97.80

FDDL [152] 96.22

DBDL + SVM [1] 95.69

DBDL [1] 97.47

The GDSR method 98.50

Experimental setting 2 Accuracy %

D-KSVD [161] 85.40

LC-KSVD [42] 89.7

JDL [164] 91.7

FDDL [152] 92.00

SRC [138] 94.99

The GDSR method 96.29

Experimental setting 3 Accuracy %

SRC [20] 93.75 ±1.01

ESRC [20] 97.36 ±0.59

SSRC [20] 98.58 ±0.40

The GDSR method 99.02±0.31%
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η = 0.1 and h = 0.1 for the dictionary distribution criterion; α = 0.5, and β = 0.5 for the

discriminative criterion; and k = 13 for the GDSRc method.

The experimental results that are presented in Table 4.3 show that the our GDSR

method is able to improve upon the other popular methods under all the three experimental

settings.

4.5.2 Computational Fine Art Analysis

The Painting-91 dataset [45] contains 4266 fine art painting images by 91 artists. The

images are collected from the Internet and covers artists from different eras. There are

variable number of images per artist ranging from 31 (Frida Kahlo) to 56 (Sandro Boticelli).

The dataset classifies 50 painters to 13 style categories with style labels namely: (1)

abstract expressionism, (2) baroque, (3) constructivism, (4) cubism, (5) impressionism,

(6) neoclassical, (7) popart, (8) post-impressionism, (9) realism, (10) renaissance, (11)

romanticism, (12) surrealism, and (13) symbolism. Following the experimental protocol

[45], two tasks, namely artist classification and style classification, are assessed by using a

predefined training data and test data containing 2275 training images and 1991 test images.

In order to represent the painting art images, we use a hybrid feature extraction step

where Fisher vector features are extracted from SIFT descriptors, Weber local descriptors

[14] and DAISY descriptors [122] so as to extract the local, spatial, relative intensity

and gradient orientation information from the painting image. The color cue provides

powerful discriminatory information in general [66], therefore we further incorporate the

color information by computing the above Fisher vector features in different color spaces

namely YCbCr, YIQ, oRGB, XYZ, YUV and HSV. To further improve the results, we

combine our Fisher vector features with the feature extracted from a pre-trained CNN

model, namely GoogleNet [120]. Note that the results of the single GoogleNet feature are

also reported, which are only 46.71 and 55.79 for artist and style classification, respectively.
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Artist classification involves classifying a painting to its respective artist among all

the 91 artists. The dimension is reduced to 2000 and the size of the dictionary is 1024. The

model parameters are selected as follows: λ = 0.05 for the sparse representation criterion;

γ = 0.05, σ = 0.05, η = 0.1 and h = 0.1 for the dictionary distribution criterion; α = 0.1,

and β = 0.5 for the discriminative criterion; and k = 25 for GDSRc method.

The style classification task deals with the problem of categorizing a painting to the

13 style classes defined in the dataset. Then the dimension is reduced to 1200 and the size

of the dictionary is 1024. The model parameters are selected as follows: λ = 0.05 for the

sparse representation criterion; γ = 0.05, σ = 0.05, η = 0.1 and h = 0.1 for the dictionary

distribution criterion; α = 0.1, and β = 0.5 for the discriminative criterion; and k = 40 for

GDSRc method.

Experimental results in Table 4.4 show that our proposed GDSR method achieves

the state-of-the-art results in both the artist and style classification tasks, and significantly

outperforms other methods. Figure 4.5 shows the confusion matrix for the 13 style

categories of the Painting-91 dataset using our proposed GDSR method. It can be

discovered that the first style (abstract expressionism) and the 13-th style (symbolism) have

the best classification accuracy. While the 6-th style (neoclassical) is the most difficult

categories to classify as there are large confusions in the Figure 4.5 between the style

categories with the second style (baroque) and the 10-th style (renaissance). Similarly, the

9-th style (realism) and show large confusions in the confusion diagram with the 11-th style

(romanticism). The reason is that the styles neoclassical, realism, baroque and romanticism

belong to the same art movement period which is a period of time where a group of artists

follow a common goal resulting in higher similarity between these styles. The style art

movement results derived by our proposed GDSR method confirms the effectiveness of the

proposed method.
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Table 4.4 Comparison with other Popular Methods for Artist and Style Classification on
the Painting-91 Dataset

Feature Artist Classification Style Classification

LBP [99, 45] 28.50 42.20

Color-LBP [45] 35.00 47.00

PHOG [7, 45] 18.60 29.50

Color-PHOG [45] 22.80 33.20

GIST [100, 45] 23.90 31.30

Color-GIST [45] 27.80 36.50

SIFT [87, 45] 42.60 53.20

CLBP [31, 45] 34.70 46.40

CN [125, 45] 18.10 33.30

SSIM [114, 45] 23.70 37.50

OPPSIFT [124, 45] 39.50 52.20

RGBSIFT [124, 45] 40.30 47.40

CSIFT [124, 45] 36.40 48.60

CN-SIFT [45] 44.10 56.70

Combine(1 - 14) [45] 53.10 62.20

MSCNN-1 [103] 58.11 69.67

MSCNN-2 [103] 57.91 70.96

CNN F3 [102] 56.40 68.57

CNN F4 [102] 56.35 69.21

GoogleNet [120] 46.71 55.79

GDSR 67.06 77.09
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Table 4.5 Comparison with the State-of-the-Art Methods on the MIT-67 Indoor Scenes
Dataset

Methods Mean Accuracy %

ROI + Gist [109] 26.1

DPM [101] 30.4

Object Bank [56] 37.6

miSVM [57] 46.4

D-Parts [119] 51.4

DP + IFV [43] 60.8

D3 [139] 78.13

VGG16-Place365 [163] 76.53

The GDSR method 82.97

4.5.3 Scene Recognition

The MIT-67 Indoor Scenes Dataset The MIT-67 Indoor Scenes dataset [109] is a very

challenging indoor scene recognition dataset, which contains 67 indoor categories with

15620 images. Commonly used experimental setting [109] are followed, wherein 80*67

images are used for training and 20*67 images for testing.

The pretrained VGG16-Place365 CNN model [163] is applied to extract the feature,

whose dimension is further reduced from 4096 to 3500. The dictionary size is selected as

2048. The model parameters are selected as follows: λ = 0.05 for the sparse representation

criterion; γ = 0.05, σ = 0.05, η = 0.1 and h = 0.01 for the generative criterion; α =

0.1, and β = 0.5 for the discriminative criterion; and k = 75 for GDSRc method. The

results shown in Table 4.5 demonstrate that the proposed method is able to achieve the

state-of-the-art results.
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Table 4.6 Comparison with the State-of-the-Art Methods on the 15 Scenes Dataset

Methods Accuracy %

LLC [133] 89.20

D-KSVD [161] 89.10

LC-KSVD1 [42] 90.40

LC-KSVD2 [42] 92.90

LaplacianSC [26] 89.7

DHVFC [27] 86.4

VGG16-Place365 [163] 92.15

DBDL [1] 98.73

The GDSR method 98.75 ± 0.15

The 15 Scenes Dataset The 15 Scenes dataset [52] contains 4485 images from 15 scene

categories, each with the number of images ranging from 200 to 400. Following the

experimental protocol defined in [52], 100 images per class are randomly selected for

training and the remaining for testing for 10 iterations. First, the spatial pyramid features

provided by [42], which are obtained by using a four-level spatial pyramid and a codebook

with a size of 200, are applied to represent the image as a vector with the dimension of 3000

for fair comparison. Then the dimension is reduced to 1000 and the size of the dictionary is

1024. The model parameters are selected as follows: λ = 0.05 for the sparse representation

criterion; γ = 0.05, σ = 0.05, η = 0.1 and h = 0.1 for the dictionary distribution criterion;

α = 0.1, and β = 0.5 for the discriminative criterion; and k = 100 for the GDSRc method.

The results shown in Table 4.6 demonstrate that the proposed method is able to achieve

better results than the other state-of-the-art methods.
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Table 4.7 Comparison with the other Popular Methods on the CUB-200-2011 Dataset

Methods Accuracy %

PN-DCN [8] 75.70

CoSeg[49] 82.80

B-CNN [60] 84.80

TS-CNN [73] 76.90

PS-CNN [37] 76.60

ProCRC [10] 78.30

The GDSR method 85.34

4.5.4 Fine Grained Recognition

The Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset, which contains 5994 images

for training and 5794 images for testing, is applied to evaluate the performance for fine

grained recognition. In both training and testing phases, our experiment only use the

bounding box without the part annotation. We combine the feature extracted from VGG-19

CNN [117] that is fine tuned on the CUB-200-2011 dataset and the feature derived from

GoogleNet [120] that is fine tuned on the NABird dataset [34], which leads to a vector

of 5120 in dimension. The dimensionality is then reduced to 1000 and the size of the

dictionary is 512. The model parameters are selected as follows: λ = 0.05 for the sparse

representation criterion; γ = 0.05, σ = 0.05, η = 0.1 and h = 0.1 for the generative

criterion; α = 0.1, and β = 0.5 for the discriminative criterion; and k = 29 for the GDSRc

method. The results on Table 4.7 show the effectiveness of the proposed method.

4.6 Comprehensive Analysis

4.6.1 Explicit Modeling of the Generative Information

This section analyzes an explicit modeling of the generative information of the dictionary

items. Specifically, the Figure 4.6 is presented, where the x axis represents each dictionary

item and the y axis represents the normalized approximated value of p(dj|c) ∝
∑

xi∈Xc
vji
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for each class. As illustrated in Figure 4.6, each dictionary item carries a soft class

membership and captures information from different classes.

4.6.2 Evaluation of Dimensionality and Dictionary Size

This section presents an analysis of the performance under different sizes of dictionary

and different values of dimensionality of the feature for scene recognition on the MIT-67

Indoor Scenes dataset. Specifically, the dictionary sizes of 128, 256, 512, 1024, 2048

are evaluated for dimensionality 500, 1000, 1500, 2000, 2500, 3000, 3500 and 4000,

respectively. From Figure 4.7, we can conclude that (1) on the one hand, larger dictionary

size usually contributes better performance, (2) on the other hand, the low dimension

feature space is more sensitive to the over-completeness (dictionary size is large than

the dimensionality) of the dictionary but higher dimension no longer requires that. For

example, the dimensionality 500 requires at least dictionary size of 512 to achieve

good performance (above 80%), while higher dimensionality, such as 3500, just requires

dictionary size of 256.

4.6.3 Evaluation of the Size of the Training Data

We evaluate the performance of our GDSR method when the size of the training data varies

for each category on the Extended Yale Face Database B. From Figure 4.8, it is able to

conclude that on the one hand, our GDSR method achieves better performance with larger

size of training data size available; on the other hand, the performance with large size

dictionary is more sensitive to the size of the training data than small size dictionary.

4.6.4 Evaluation of GDSRc

We present the evaluation of GDSRc when different values of T (defined in Section 4.4)

are applied for different sizes of dictionary. The experimental results in Figure 4.9 show

that a large value of T is often preferred for better performance regardless of the size of
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Table 4.8 Comparison with other Classifiers on the MIT-67 Indoor Scenes Dataset

Methods MIT-67 Indoor Scenes %

KNN 76.70

Linear-SVM 79.60

RBF-SVM 80.07

GDSRc 82.97

the dictionary. As a matter of fact, the value of T is usually set as the size of the training

samples of each class for best performance.

Besides, we also present the comparison with other classifiers when the same feature

representation is applied. Specifically, the KNN classifier (K = 3), the linear kernel based

SVM and the RBF kernel based SVM are applied for comparison. The experimental results

in Table 4.8 show that our GDSRc can achieves better results.

4.6.5 The CNN Features

In order to harness the power of deep convolutional neural network (CNN) [50], we also

applies current state-of-the-art deep CNN models for extracting the features. Specifically,

two representative deep CNN models, namely the VGG net [117] and the GoogleNet [120]

are applied for three data sets in our experiments: the Painting-91 dataset, the CUB-200-

2011 dataset and the MIT-67 Indoor Scenes dataset.

The power of VGG net comes from a smaller 3 × 3 receptive fields and a deeper

model layers (the model structure with the best performance has 19 layers). Besides, data

augmentation techniques, such as multiple cropping and dense evaluation, also play an

important role in the performance. While the power of the GoogleNet not only comes from

its deeper model layers, but also a network in network [59] module called Inception [120],

which harnesses the computing resources inside the network.
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As for the Painting-91 dataset, a single GoogleNet and its combination with the

CMFFV [107], [108], [105] feature are applied for comparison. As shown in 4.4, the

combination of GoogleNet, the CMFFV [107], [108], [105] and the proposed GDSR

method can achieve 67.06 and 77.09 for artist and style classification, respectively. In

comparison, a single GoogleNet feature can only achieve 46.71 and 55.79 for artist and

style classification, respectively. A single CMFFV feature can only achieve 65.78 and

73.16 for artist and style classification, respectively.

As for the CUB-200-2011 dataset, we combine the feature extracted from VGG-19

CNN [117] that is fine tuned on the CUB-200-2011 dataset and the feature derived from

GoogleNet [120] that is fine tuned on the NABird dataset [34]. As shown in Table 4.7, we

can achieve 85.34 for fine-grained recognition, which improves other state-of-the-art deep

learning methods.

As for the MIT-67 Indoor Scenes dataset, the VGG Net that is pre-trained from the

Place365 data set [163] is applied to extract the feature directly without fine tuning. As

shown in Table 4.5, the deep CNN feature combined with the proposed GDSR method can

achieve 82.97, which significantly improves upon other methods.

According to our analysis of the results with deep CNN features, we have the

following empirical findings when the target data set is relatively small (less than the

million level size), and different from the dataset (e.g. ImageNet data set) used for

pre-training of the deep CNN model.

• Previous layers of the deep CNN model are more generic, while the last few layers

are more data set specific.

• When the fine tuning is applied to the target data set, a small base learning rate is

often selected for the whole model, but a higher learning rate is selected for the last

few layers in order to learn more information from the target data set.
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• Fusing different deep CNN models, such as VGG net and GoogleNet, often leads to

better performance.

• The combination of deep CNN feature and conventional computer vision features,

such as the CMFFV [107] feature, can achieve better performance.

• A discriminatively learned representation and classification, such as our GDSR

method, will boost the performance for the deep CNN feature.

4.6.6 Evaluation of the Effect of the Proposed GDSR Method

To evaluate the contribution of the individual steps to the overall recognition rate, we

conduct experiments on the MIT-67 Indoor Scenes dataset using the initial input features

as described in the above section. In order to have a fair comparison, we use the RBF-SVM

classifier for classification instead of the GDSRc method since it depends on both the

generative and discriminative criteria. It can be seen from Table 4.9 that the GDSR method

(both discriminative and generative criteria) achieves the best performance of 80.67% since

it incorporates both the discriminative and the generative information.

We further discuss the effects of our proposed method on the initial features and

how it encourages better clustering and discrimination among different classes of a dataset.

To visualize the effect of our proposed method, we use the popular t-SNE visualization

technique [90] that produces visualization of high dimensional data in scatter plots by

reducing the dimensionality to two-dimension. Figure 4.10 shows the t-SNE visualizations

of the initial features used as input and the features extracted after applying the GDSR

method for different datasets. It can be seen from Figure 4.10 that the proposed GDSR

method helps to reduce the distance between data-points of the same class leading to

formation of higher density clusters for data-points of the same class. Another advantage

is that the GDSR method assists to increase the distance between clusters of different

classes resulting in better discrimination among them. The GDSR method uses both the
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Table 4.9 Evaluation of the Contribution of Generative and Discriminative Criterion in
GDSR Method using the MIT-67 Indoor Scenes Dataset

Method Accuracy (%)

GDSR with only discriminative criterion 77.24

GDSR with only generative criterion 78.51

Proposed GDSR (both criteria) 80.67

Table 4.10 Comparison between the Proposed Method and other Popular Methods on the
Caltech 256 Dataset

Method 30 45 60

ScSPM [149] 34.02 37.46 40.14

IFK [104] 40.80 45.00 47.90

LLC [133] 41.19 45.31 47.68

M-HMP [6] 48.00 51.90 55.20

ZFNet CNN [156] 70.60 72.70 74.20

GDSR 72.39 75.13 76.90

generative and discriminative information, therefore, encourages better separation between

data samples of different classes.

4.6.7 Evaluation of Different Training Size

The Caltech 256 dataset [30] is applied here to evaluate the influence of different training

data size on the proposed GDSR method. The initial input features used are extracted from

a pre-trained ZFNet [156]. For the GDSR method, we set the dictionary size to 1024, and

the parameters as λ = 0.05, h = 0.1, α = 0.1, and β = 0.5. The experimental results in

Table 4.10 show that our proposed method is able to achieve better results compared to

other methods for different training data size, namely 30, 45, 60 for each class.



76

4.7 Conclusions

This chapter presents a new generative and discriminative sparse representation (GDSR)

method, which leads to a new effective representation and classification schema. In

particular, the generative criterion reveals the class conditional probability of each dictionary

item. The discriminative criterion applies new within-class and between-class scatter

matrices for discriminant analysis to enhance the discriminative capability. In addition,

a new generative and discriminative sparse representation based classification (GDSRc)

method is proposed by utilizing both discriminative and generative information. Experimental

results on several visual recognition tasks show the effectiveness of the proposed methods.



77

Figure 4.5 The confusion matrix for 13 style categories of the Painting-91 dataset

Figure 4.6 The explicit modeling of the generative information using different data sets
for dictionary size 32: (a) Extended Yale face database B, (b) AR Face Database, (c)
Painting-91 dataset, (d) MIT-67 Indoor Scenes, (e) 15 Scenes dataset and (f) CUB-200-
2011 dataset.
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Figure 4.7 The performance of the proposed GDSR method under different sizes of
dictionary and different values of dimensionality of the feature.
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Figure 4.8 The performance of the proposed GDSR method when the size of training data
in each class varies on the Extended Yale Face Database B.
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Figure 4.9 The performance of the proposed GDSRc method when the value of T varies
on the MIT-67 Indoor Scenes dataset.
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Figure 4.10 The t-SNE visualization of the initial input features and the features extracted
after applying the proposed GDSR method.



CHAPTER 5

SCORE SPACE BASED MULTIPLE METRIC LEARNING FOR KINSHIP

VERIFICATION

5.1 Introduction

Kinship verification has been an important topic in anthropology for many years. Pioneer

work in anthropology [95], [2], [9] believes that there are some genetic related features

which are inherited by children from their parents that can be used to determine the kinship

relations. Recently, kinship verification from facial images is gaining increasing attention

as an emerging research area in artificial intelligence [140], [24], [141], [89], [18], [146],

[85], [106], [82], [80].

Many feature methods have been proposed for describing facial images[62], [70],

[137], [11], [13], Fisher vector [116]. These features, which are designed specifically for

distinguishing one image from others (the discriminative ability), cannot guarantee that

a child image is more similar to its parent image than to other images (the inheritable

ability). The major reason is that these features are designed or learned for recognition of

face image thus cannot characterize the genetic relations between kinship images. Another

reason is that the inherent similarity gap between kinship images is much larger than

that in the face recognition problem, e.g., LFW [35], which means similarity between

discriminative features is not sufficient for kinship verification. Lu et al. [89] proposed

to apply a metric learning method on several features and proposed the MNRML method

by combining different metrics on different features. The subsequent work [145], [146],

[88] followed their idea by combining features and metric learning methods sequentially.

In their methods, the features and the metric learning methods are developed in different

paradigms independently, which may attenuate the effect when they are combined. Besides,

82
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Figure 5.1 The whole process of the proposed SML framework.

most metric learning methods are based on the Mahalanobis distance metric, which may

not achieve the best performance in some scenarios.

To address these issues, this chapter proposes a novel score space based multiple

metric learning (SML) method for kinship verification. The proposed SML method,

which goes beyond the Mahalanobis distance metric, derives a semantically meaningful

similarity between images by combining multiple anthropology inspired features and their

metrics into a unified paradigm. Specifically, three novel anthropology inspired features

(AIF) are first extracted, namely the AIF-SIFT, AIF-WLD and AIF-DAISY features. The

process of deriving the anthropology inspired features consists of an anthropology inspired

similarity enhancement method and the extraction of opponent color SIFT [44], color

WLD-SIFT and DAISY [122] descriptors based on the enhanced image. In particular,

the similarity enhancement method is applied to kinship image pairs by extending the SIFT

flow method [61] and generating the enhanced images by reinforcing similar facial parts.

The opponent SIFT descriptor, the color WLD-SIFT descriptor and the DAISY descriptor

are then extracted on the enhanced images.
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Second, a novel score space based multiple metric learning (SML) method is derived

by learning a new metric and weights for multiple features in a unified paradigm. In

particular, the new metric is learned while fixing the weights by balancing the behavior

of pushing away the k-nearest non-kinship samples while pulling close the kinship ones

for each training pairs. The weights are updated while fixing the transformation.

Finally, a novel normalized multiple similarity measure is proposed based on the

observation that fractional power transformation is able to transform data into a near

Gaussian shape with a stable variance which is well suited for dot product based similarity

measure like cosine similarity measure from the Bayes decision rule for minimum error

point of view [64]. The whole process of the proposed method is illustrated in Figure 5.1.

The proposed method is then evaluated on two challenging kinship databases, KinFaceW-I

and KinFaceW-II data set [89]. The experimental results show that the proposed method is

able to achieve the state-of-the-art results.

5.2 Anthropology Inspired Feature Extraction

Naini et al. [95] analyzed the contributions of heredity and environment on external

facial features. Their anthropological results [95] show that eyes, chin and parts of the

forehead show higher visual resemblance between parents and their offspring and provide

large feedback. From the computer vision point of view, these high resemblance in facial

regions between kinship image pairs exhibit three important properties as follows given

the notations that p = (x, y) are the grid coordinate of images, d(p) = (u(p), v(p)) is the

displacement vector at p, u(p) and v(p) are two integers that represent the displacements of

x and y axes from the coordinates p, respectively, s1, s2 are the two dense SIFT descriptors

to be measured and ε represents the set of all the spatial neighborhoods.

• First, these facial regions between kinship image pairs have high visual resemblance

(e.g., their eyes resemble each other), which means their local descriptors are similar,

namely ‖s1(p)− s2(p + d(p))‖ is small.
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• Second, these facial regions should be at similar relative locations on two faces (e.g.,

their eyes appear at similar locations on two faces), which means there may be a

small displacement between the centers of two local descriptors, namely ‖d(p)‖ is

small.

• Third, the neighborhood regions of high resemblance facial regions tend to be similar

(e.g., the neighborhood small regions around the center of eyes tend to be smoothly

changed), which means ‖d(p)− d(q)‖ is small where (p,q) ∈ ε.

Inspired by these anthropological observations, we propose three novel anthropology

inspired features to capture these high resemblance facial regions between parents and their

children. First, we present a new anthropology inspired similarity enhancement (AISE)

method by extending the SIFT flow [61] method from the scene alignment to kinship

image pairs. The SIFT flow algorithm matches densely sampled SIFT features and finds

correspondence estimated by SIFT flow. The objective function for SIFT flow [61] is

defined as follows:

E(d) =
∑

p

(‖s1(p)− s2(p + d(p))‖1)+

∑
p

η(‖d(p)‖1) +
∑
p,q∈ε

θ(‖d(p)− d(q)‖1)

(5.1)

As we have seen, the SIFT flow method, which satisfies three properties of high visual

resemblance facial regions between kinship pairs, is very suitable to be extended to kinship

image pairs for capturing the inheritable information between parents and children. Then

the estimated SIFT flow can be applied to reinforce the high visual resemblance facial

regions and generate similarity enhanced images.

To visualize the effectiveness of our method, the top three principal components of

the SIFT descriptors of the image are mapped to the principal components of the RGB

space, as shown in Figure 5.2. The purple and the orange regions in the visualization

highlight the high visual resemblance regions in the kinship images. It can be discovered
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that these regions focus on eyes, mouth, chin and parts of the forehead. Therefore

our proposed AISE method derives interesting phenomena that are consistent to the

anthropology results in [95]. Other interesting patterns can also be deduced for different

relations from Figure 5.2. It can be observed that the father-son and mother-daughter

relation show large visual correspondence in different parts of facial regions leading to

the deduction that individuals of the same gender in kinship relations share higher visual

resemblance. It can also be seen that mother-daughter relation has higher genetic responses

compared to father-daughter relation confirming the observation that mothers resemble

their daughters more as in [2]. The experimental results in Section 5.4.2 also confirm

such an observation.

Then the AIF-SIFT, AIF-WLD and AIF-DAISY descriptors are extracted from the

similarity enhanced images derived by our anthropology inspired similarity enhancement

method. Therefore we name these three anthropology inspired features as AIF-SIFT, AIF-

WLD and AIF-DAISY. In particular, the AIF-SIFT feature is computed in the opponent

color space [44] of the enhanced image. We then derive densely sampled SIFT features

from the image encoded by the Weber local descriptors (WLD) and the process is repeated

separately for the three components of the image resulting in color AIF-WLD feature. To

improve the robustness against photometric and geometric transformations of the enhanced

image, dense AIF-DAISY descriptors are computed with parameters radius of descriptor

set as 15, number of rings as 3, number of histograms per ring as 8 and number of histogram

bins as 8 resulting in a 200 dimension AIF-DAISY descriptor.

5.3 Score Space based Multiple Metric Learning Method

The complementary nature of discriminative and generative approach [96] leads to the

generative score space. One example is the Fisher score [39], which has been widely

applied for visual classification problems such as face recognition [116], object recognition

[40]. In this section, we extend the Fisher score from classification problem to metric
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Figure 5.2 Visualization of SIFT images of different kinship relations using the top three
principal components of SIFT descriptors extracted from the image. The purple and orange
regions in the visualization highlight the inheritable genetic feature regions in the kinship
images.
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learning problem. Particularly, let Xi = {dt, t = 1, 2, ..., T} be the set of T local descriptors

(e.g. AIF-SIFT, AIF-WLD or AIF-DAISY) extracted from an image of the i−th pair. Then

Yi is defined similarly for the other image of the i−th pair. Let p(X|λ) be the probability

density function of generating Xi or Yi with a set of parameters λ, then the Fisher score is

defined as follows:

F(Xi) =
1

T
5λ log[p(Xi|λ)] (5.2)

As a matter of fact, the Fisher score is the gradient vector of the log-likelihood that

describes the contribution of the parameters to the generation process. It describes the

generative perspective of features. Based on the Fisher score, a score space based similarity

measure, namely Fisher kernel [39], is derived as KF (Xi,Yi) = (F(Xi))
T I−1F(Yi)

using the Fisher information matrix I. The conventional Fisher kernel provides a natural

similarity measure between images by considering the underlying probability distribution.

However, three major issues inherent of the conventional Fisher kernel are still waiting

for solutions. First, the conventional Fisher kernel fails to take into account of the

label information. Second, the Fisher information matrix I is difficult to obtain and

approximation techniques are not sufficient to guarantee performance. Third, it only

measures the similarity for a single aspect between images, which depends on the type

of the local image descriptors.

Therefore, this chapter presents a novel score space based multiple metric learning

method to address these three issues by learning a new distance metric that captures the

pairwise information, and the weights of multiple distance metrics that exploits information

from different features. Specifically, the score space based multiple distance metric is

defined as follows with the weightswc(c = 1, 2, ..., k): D(Xi,Yi) =
∑k

c=1wcDc(Xc
i ,Y

c
i) =∑k

c=1 wc(pci)TM(cci) =
∑k

c=1 wc(pci)TWWT (cci) =
∑k

c=1wc(xci)T (yci), where pci = F(Xi),

cci = F(Yi), xci = WTpci and yci = WT cci (i = 1, 2, ...,m). It is easy to see that matrix

M = WWT is symmetric and positive definite. To keep the notation simple, we use
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D(xi, yi) instead of D(Xi,Yi) in the remaining parts of the chapter. The introduction of W

alleviates the assumptions on the Fisher information matrix since W can be learned from

the training data and contains sufficient information for recognizing kinship relations.

The derivation of W and wc consists of two iterative procedures. Let D =

{(xci , yci)|xci , yci ∈ Rn×1(i = 1, 2, ...,m, c = 1, 2, ..., k)}. The main purpose of the

transformation W and weights wc is to push away the nearby non-kinship samples as far as

possible while pulling the kinship relation samples as close as possible, and approximate

the ideal similarity matrix. In other words, the distance between xci and yci should be as

small as possible if xci and yci have kinship relations and otherwise the distance should be

large. Therefore, the objective function for the SML method can be formulated as follows.

min
W,wc

‖DI −
k∑
c=1

wcDc‖2
F + α

k∑
c=1

w2
c + λ

k∑
c=1

dc|wc|

s.t.WTW = I,
k∑
c=1

wc = 1, wc > 0

(5.3)

In this objective function, the third term of Equation 5.3 represents the criterion of pushing

away the nearby non-kinship samples as far as possible while pulling the kinship samples

as close as possible. While the first and second term show the reconstruction criterion and

the regularization for the weights of different metrics The dc is defined as dc =
∑m

i=1 2 ∗

Dc(xci , yci)−Dc(xci , (yci)∗)−Dc((xci)∗, yci) = Tr (WT (2Mc
1 −Mc

2 −Mc
3)W), where Mc

1 =∑m
i=1 pci(cci)T , (xci)∗ is the nearest neighbor of xci , (yci)∗ is the nearest neighbor of yci , Dc ∈

Rm×m is the similarity matrix for the c-th feature (c = 1, 2, ..., k) and DI ∈ Rm×m is

the ideal similarity matrix which is derived by multiplying the scaled label vector with its

transpose. Note that Mc
1 is not symmetric, then we make it symmetric by using Mc

1 =

(Mc
1 + (Mc

1)T )/2 without influencing the value of dc. Mc
2 and Mc

3 can be computed in a

similar way.

Now the problem becomes a constrained, non-negative, and weighted variant of the

sparse representation problem and the term
∑k

c=1 dc|wc|, which corresponds to the criterion
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of pushing away the nearby non-kinship samples and pulling close the kinship samples,

behaves as a regularization for the multiple metric learning problem.

The the objective function 5.3 then can be optimized using an iterative procedure.

Specifically, given the fixed wc, we can approximately update W by discarding the

reconstruction criterion and optimizing the following objective function:

max
W

Tr(WT

k∑
c=1

wc(Mc
2 + Mc

3 − 2Mc
1)W)

s.t.WTW = I

(5.4)

This can be done by deriving the eigenvectors of matrix
∑k

c=1 wc(Mc
2 + Mc

3 − 2Mc
1).

Then given the W, we can optimize the following problem to derive wc:

min
wc

‖DI −
k∑
c=1

wcDc‖2
F + α

k∑
c=1

w2
c + λ

k∑
c=1

dc|wc|

s.t.
k∑
c=1

wc = 1, wc > 0

(5.5)

We can apply the FISTA algorithm [3] to optimize the objective function defined in

Equation 5.5. The structure of the FISTA algorithm remains the same but the proximal

operator is different as our method is a constrained, non-negative, and weighted variation.

We thus replace the original soft thresholding operator with an efficient projection operator

[21] considering the non-negative constraint. We can also transform the objective

function defined in Equation 5.5 into a quadratic programming problem by using the fact

λ
∑k

c=1 dc|wc| = λ
∑k

c=1 dcwc since wc > 0. Then the objective function can be optimized

efficiently.

After the SML is derived, a novel normalized multiple similarity measure (NMSM)

is further proposed, where the SML is normalized as follows with the power transformation

p(x) defined as p(x) = sign(x)|x|β , where β (0 < β < 1) is the power parameter, and both

the power and the sign operations are element-wise.
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Figure 5.3 Example images from the KinFaceW-I and KinFaceW-II data set

NMSM(xi, yi) =
k∑
c=1

wc
Dc(p(xci), p(yci))

‖WTp(xci)‖‖WTp(yci)‖
(5.6)

The proposed NMSM takes advantage of normalization through fractional power

transformation and the L2 normalization. The fractional power transformation is able to

transform from the data into a near Gaussian shape with a stable variance [40], [129]. With

the help of the L2 normalization, it can be proved that the NMSM is proportional to a

weighted linear combination of the whitened cosine similarity measure for each feature,

which shows its theoretical roots in the Bayes decision rule for minimum error [64] under

some conditions such as multivariate Gaussian distribution assumption. Then the proposed

NMSM establishes a relation between the score space based multiple metric learning and

the Bayes rule induced similarity measure under the assumption of multivariate Gaussian

distribution. Thus it is theoretically guaranteed to achieve good performance.

5.4 Experiments

This section evaluates the effectiveness of our proposed method on two challenging kinship

databases: the KinFaceW-I data set and the KinFaceW-II data set [89], [88]. These two

data sets contain images for four kinship relations: father-son (F-S), father-daughter (F-D),

mother-son (M-S), and mother-daughter (M-D). In the KinFaceW-I data set, there are 156,
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Table 5.1 Comparison between the SML and other Methods on the KinFaceW-I Data Set

Methods F-S F-D M-S M-D Mean

CSML [97] 61.10 58.10 60.90 70.00 62.50

NCA [28] 62.10 57.10 61.90 69.00 62.30

LMNN [136] 63.10 58.10 62.90 70.00 63.30

NRML [89] 64.10 59.10 63.90 71.00 64.30

MNRML [89] 72.50 66.50 66.20 72.00 69.90

ITML [17] 75.30 64.30 69.30 76.00 71.20

DMML [145] 74.50 69.50 69.50 75.50 72.25

MPDFL [146] 73.50 67.50 66.10 73.10 70.10

GGA [18] 70.50 70.00 67.20 74.30 70.50

ANTH [18] 72.50 71.50 70.80 75.60 72.60

DGA [18] 76.40 72.50 71.90 77.30 74.50

Polito [88] 85.30 85.80 87.50 86.70 86.30

LIRIS [88] 83.04 80.63 82.30 84.98 82.74

NUAA [88] 86.25 80.64 81.03 83.93 82.96

CNN-Basic [159] 70.80 75.70 79.40 73.40 74.80

CNN-Points [159] 71.80 76.10 84.10 78.00 77.50

SML AIF-SIFT 75.61 72.75 75.04 85.87 77.32

SML AIF-WLD 85.27 78.40 81.01 84.18 82.22

SML AIF-DAISY 80.75 81.40 77.60 84.18 80.98

SML 88.15 82.49 80.62 90.95 85.55
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134, 116, and 127 image pairs for each relation respectively. In the KinFaceW-II data set,

there are 250 pairs of images for each kinship relation. Example images are shown in

Figure 5.3. In our experiments, we conduct 5-fold cross validation where both data sets are

divided into five folds having the same number of image pairs [89], [88].

5.4.1 Implementation Details

The AISE method is first applied to derive the similarity enhanced images. Second, we

derive the AIF-DAISY feature and the color AIF-WLD feature on the similarity enhanced

images. The dense color SIFT feature is derived with a step size of 1 and five scale patch

sizes as 2, 4, 6, 8, 10. Then, the dimensionality of the opponent color SIFT feature is further

reduced to 64 by PCA. The spatial information [116] is added to the SIFT feature with 2

more dimensions. The color AIF-WLD feature is computed similarly. The dimensionality

of the AIF-DAISY feature is directly reduced to 66 by PCA. Afterwards, a Gaussian

mixture model with 256 components is estimated for the Fisher score computation. Then

the score space based multiple metric learning is learned from the data with the parameters

α = 1 and λ = 0.1 for both the KinFaceW-I data set and the KinFaceW-II data set. The

normalized multiple similarity measure with β = 0.5 is applied. Finally a two class support

vector machine is used to determine the kinship relations between images.

5.4.2 Comparison with the State-of-the-Art

This section presents the comparison between the proposed method and the state-of-the-art

methods. Experimental results on Table 5.1 and Table 5.2 show that our method is able to

achieve competitive and even better results than the state-of-the-art methods.

In particular, the Polito team [88] achieves the state-of-the-art 86.30% mean

verification rate on the KinFaceW-I data set, which is slightly better than our method

that achieves 85.55% mean verification rate. However, our method achieves 89.80% mean
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Table 5.2 Comparison between the SML and other Methods on the KinFaceW-II Data Set

Methods F-S F-D M-S M-D Mean

CSML [97] 71.80 68.10 73.80 74.00 71.90

NCA [28] 73.80 70.10 74.80 75.00 73.50

LMNN [136] 74.80 71.10 75.80 76.00 74.50

NRML [89] 76.80 73.10 76.80 77.00 75.70

MNRML [89] 76.90 74.30 77.40 77.60 76.50

ITML [17] 69.10 67.00 65.60 68.30 67.50

DMML [145] 78.50 76.50 78.50 79.50 78.25

MPDFL [146] 77.30 74.70 77.80 78.00 77.00

GGA [18] 81.80 74.30 80.50 80.80 79.40

DGA [18] 83.90 76.70 83.40 84.80 82.20

Polito [88] 84.00 82.20 84.80 81.20 83.10

LIRIS [88] 89.40 83.60 86.20 85.00 86.05

NUAA [88] 84.40 81.60 82.80 81.60 82.50

CNN-Basic [159] 79.60 84.90 88.50 88.30 85.30

CNN-Points [159] 81.90 89.40 92.40 89.90 88.40

SML AIF-SIFT 88.20 82.00 87.80 85.20 85.80

SML AIF-WLD 75.40 71.60 73.00 77.00 74.25

SML AIF-DAISY 87.80 85.00 89.20 86.00 87.00

SML 91.40 87.20 90.80 89.80 89.80
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verification rate on the KinFaceW-II data set, which is significantly better than Polito, who

only achieves 83.10% mean verification rate on the KinFaceW-II data set.

Meanwhile, our method achieves the state-of-the-art results: 89.80% mean verifi-

cation rate on the KinFaceW-II data set, which is better than the convolutional neural

network based method CNN-Points [159], which achieves 88.40% mean verification rate.

Besides, our method obtains 85.55% mean verification rate on the KinFaceW-I data set,

which improves upon CNN-Points [159] by a large margin around 8%. In summary, our

method averagely obtains the state-of-the-art results on both data sets.

Note that our method can significantly improve upon other metric learning methods

that use multiple features, such as MNRML [89], DMML [145]. The second observation

is that our method often achieves better results on F-S and M-D kinship relations than F-D

and M-S kinship relations, which is consistent to the anthropological results [2]. The reason

is that the similarity variation between images of different gender is larger than that of the

same gender and our proposed SML method is able to capture such a variation by learning

the new transformation and the weights of multiple features. The third observation is that

our proposed SML method achieves more improvement on the KinFaceW-II data set due

to the availability of more training samples.

Please also see Figure 5.4 for comparison with other state-of-the-art results.

5.4.3 Evaluation of the Anthropology Inspired Features

This section assesses the effectiveness of the anthropology inspired features (AIF). Note

that three anthropology inspired features (AIF-SIFT, AIF-WLD and AIF-DAISY features)

are evaluated separately first (simply assign the weight of the feature set to 1, and others

0). Similarly, without applying the AISE method for deriving similarity enhanced images,

we do the same for SIFT, WLD and DAISY features separately to obtain results. The

experimental results on Table 5.3 show that the performance of the anthropology inspired

features (AIF-SIFT, AIF-WLD and AIF-DAISY features) derived from the enhanced
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Figure 5.4 The ROC curve for comparison with other state-of-the-art results.
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Table 5.3 Evaluation of the Effectiveness of the Anthropology Inspired Features (AIF-
SIFT, AIF-WLD and AIF-DAISY Features) on the KinFaceW-I and KinFaceW-II Data Set

KinFaceW-I F-S F-D M-S M-D Mean

SIFT 73.41 69.02 66.40 79.56 72.09

WLD 73.35 65.69 70.69 71.70 70.36

DAISY 71.79 65.68 66.34 75.96 69.94

AIF-SIFT 75.61 72.75 75.04 85.87 77.32

AIF-WLD 85.27 78.40 81.01 84.18 82.22

AIF-DAISY 80.75 81.40 77.60 84.18 80.98

KinFaceW-II F-S F-D M-S M-D Mean

SIFT 80.40 70.20 79.80 80.00 77.60

WLD 68.80 62.00 63.20 65.00 64.75

DAISY 76.40 69.80 71.00 70.60 71.95

AIF-SIFT 88.20 82.00 87.80 85.20 85.80

AIF-WLD 75.40 71.60 73.00 77.00 74.25

AIF-DAISY 87.80 85.00 89.20 86.00 87.00
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images using the AISE method significantly improve the performance of SIFT, WLD

and DAISY features without applying the AISE method. Such a significant improvement

demonstrates the effectiveness of our AISE method.

5.4.4 Comparison of SML, SSML and FK

This section presents the comparison of our proposed SML method, single SML (SSML)

method which uses a single feature, as well as Fisher kernel (FK) method [40] with a single

feature when other experimental settings are fixed. Experimental results in Table 5.4 show

that our proposed SML method improves upon the SSML and FK method on both datasets.

We thus can make the following conclusions: (1) multiple features improves upon a single

feature since SML method improves upon the SSML for all the features; (2) the learning

of the new transformation improves the performance since SSML method improves upon

FK method for all the three features.

5.4.5 Computational Complexity

This section presents the analysis of the computational complexity of our method.

Empirically our method costs 165 and 527 seconds on two datasets respectively. Theoretically

the cost isO((m+n)∗n2) when updating W andO(k3) when updatingwc for each iteration.

The total cost isO(t((m+n)∗n2+k3)) for t iterations. In practice, k = 3,m < n, t <= 10,

thus the total cost is O(n3).

5.5 Conclusion

This chapter presents a novel score space based multiple metric learning (SML) method

for Kinship Verification. First, three new anthropology inspired features are extracted,

namely the AIF-SIFT, AIF-WLD and AIF-DAISY features. Second, a novel score space

based multiple metric learning method is proposed to combine multiple features and their

metrics between images in a unified paradigm by iteratively learning a new transformation
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Table 5.4 Comparison of SML, SSML and FK Methods on the KinFaceW-I and
KinFaceW-II Data Set

KinFaceW-I F-S F-D M-S M-D Mean

FK AIF-SIFT 73.43 72.05 71.16 79.87 74.13

FK AIF-WLD 80.81 76.54 76.70 79.41 78.36

FK AIF-DAISY 75.65 77.32 68.59 79.44 75.24

SSML AIF-SIFT 75.61 72.75 75.04 85.87 77.32

SSML AIF-WLD 85.27 78.40 81.01 84.18 82.22

SSML AIF-DAISY 80.75 81.40 77.60 84.18 80.98

SML 88.15 82.49 80.62 90.95 85.55

KinFaceW-II F-S F-D M-S M-D Mean

FK AIF-SIFT 82.40 77.40 79.80 78.80 79.60

FK AIF-WLD 73.80 71.20 76.20 73.80 73.75

FK AIF-DAISY 85.60 81.80 85.00 82.60 83.75

SSML AIF-SIFT 88.20 82.00 87.80 85.20 85.80

SSML AIF-WLD 75.40 71.60 73.00 77.00 74.25

SSML AIF-DAISY 87.80 85.00 89.20 86.00 87.00

SML 91.40 87.20 90.80 89.80 89.80
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and the weights. Third, a novel normalized multiple similarity measure is presented based

on the SML. Experimental results show that the proposed method is able to achieve the

state-of-the-art results for kinship verification.



CHAPTER 6

FUTURE WORK

This dissertation has presented three learning methods for visual recognition, namely a

new locally linear K nearest neighbor method, or LLK method, a new generative and

discriminative sparse representation (GDSR) method and a new Score space based multiple

Metric Learning (SML) method. The key part of the LLK method and the GDSR method

lies in the connection between a novel sparse representation method and a classification

method. The input feature of these two methods also plays an important role in the

performance. Therefore, in the future work, I will focus more on exploring the powerful

deep learning method, such as convolutional neural network (CNN), for feature extraction

for different visual recognition tasks and data sets. In the meantime, different model

structures, parameter tuning, dataset augmentation about CNN are also important topics

that I will work on.

I will also try to make a large scale data set for the fine art painting analysis

problem. The new large scale paintings data set aims at providing both the computer vision

community and the artist community a better understanding of the fine art paintings by

using the cutting edge deep learning methods, especially the state-of-the-art deep CNN

models, such as VGG Net, GoogleNet and ResNet.

Besides, I will also try to make a large data set for kinship verification with the goal

of assisting the anthropology studies by using the advanced computer vision technologies.

Furthermore, I am also involved a project of intelligent incident detection and

vehicle counting in videos. I will explore new video analysis techniques using both deep

convolutional neural network and deep recurrent neural network.

101
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Finally, I will continue exploring the computer vision problems in the real world,

such as satellite image analysis and medical image analysis. I will apply the state of the art

techniques to solve these problems for a better world.
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