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ABSTRACT 

SYNTHESIS AND DETECTION OF DNA DAMAGE 

by 

Xun Gao 

The biological effects of DNA alkyl adducts are difficult to evaluate at the cellular level due 

to their instability. Synthesis of oligonucleotides that contain a single N7-alkylguanine has 

become a vital tool to achieve the above goal. However, the instability of N7-

alkyguanines is not compatible with the phosphoramidite chemistry used by solid -phase 

oligonucleotide synthesis either. Development of chemically stable analogues of 

unstable DNA lesions enables accurate study of polymerase bypass. The design and 

successful synthesis of N7-hydroxyethyl-9-deaza-2′-deoxyguanosine and N7-oxoethyl-

9-deaza-2′-deoxyguanosine as the stable analogues of N7-hydroxyethyl- 2′-

deoxyguanosine and N7-oxoethyl-2′-deoxyguanosine, respectively, are reported. The 

synthesis of these two nucleosides whose N7 side chains are protected by TBS for the 

convenience of conversion to phosphoramidites are also developed. The C-glycosidic bonds 

of these compounds are demonstrated to be stable under strong acidic and basic conditions. 

These analogues will become versatile tools to study the replication and repair of DNA 

alkylation damages.  

DNA oxidation product 8-oxoGua has been suggested as a biomarker for early cancer 

diagnosis. An artificial receptor for the free base of 8-oxoGua on a triplex DNA backbone was 

previously developed. However, accurate detection of 8-oxoGua in urine samples was affected 

by the presence of a large excess of guanine. Herein, a unique strategy to convert such a 

receptor to a colorimetric biosensor by conjugating DNA strands to gold nanoparticles (GNP) 



is developed. Binding of 8-oxoGua to the receptor caused the conjugation of GNP, resulting 

in diagnostic red-to-purple color changes. The presence of multiple binding cavities enhances 

the binding-induced stabilization effect and widened the temperature window used for 

detection. By simply incubating our sensor with a sample, 8-oxoGua can be detected at 

submicromolar concentrations with a UV–vis spectrometer or even by naked eye. The 

detection limit in a urine matrix is determined as 126 nM and the response range covers a 

major portion of the biologically relevant concentration range. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 DNA Damage and Mutation 

Deoxyribonucleic acid (DNA) is the hereditary material in humans and almost all other 

organisms. The DNA code contains instructions needed to make the proteins and molecules 

essential for our growth, development and health. DNA is made up of molecules called 

nucleotides. Each nucleotide contains a phosphate group, a sugar group and a nucleobase. The 

four types of nucleobases are adenine (A), thymine (T), guanine (G) and cytosine (C). 

Nucleotides are attached together to form two long strands that spiral to create a structure called 

a double helix. The bases on one strand pair with the bases on another strand: adenine pairs 

with thymine (two hydrogen bonds in the center of DNA strand), and guanine pairs with 

cytosine (three hydrogen bonds in the center of DNA strand). Two factors are mainly 

responsible for the stability of the DNA double helix: base pairing between complementary 

strands and stacking between adjacent bases. The sequence of the nucleobases, A, C, G and 

T, in DNA determines our unique genetic code and provides the instructions for producing 

molecules in the body, stress the importance of the integrity and stability of the DNA. 

Unfortunately, DNA molecules are susceptible to the attack, as research showed that among 

~1013 cells in the human body there were tens of thousands of DNA lesions per day.[1] The 

vast majority of DNA damage in human tissues is certainly of endogenous origin. 

Endogenous damage arises from endogenous cellular processes, including hydrolysis and 

oxidative damage caused by reactions with reactive oxygen species (ROS). Hydrolytic 
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DNA damage involves deamination or the total removal of individual bases. Loss of DNA 

bases, known as AP (apurinic/apyrimidinic) sites, can be particularly mutagenic and if left 

unrepaired they can inhibit transcription. Oxidative DNA damage refers to the oxidation of 

specific bases. 8-Hydroxydeoxyguanosine (8-oxodG) is the most common marker for oxidative 

DNA damage and can be measured in virtually any species. It is formed most often by chemical 

carcinogens.  

Faced with DNA damage, cells always elicit DNA damage response (DDR) consist of 

DNA damage recognition, signal transduction, transcriptional regulation, cell cycle control and 

DNA repair to attenuate DNA damage. Modified bases, abasic site, and the DNA single-strand 

breaks are repaired by base excision repair (BER) pathway. DNA double-strand breaks are dealt 

with homologous recombination repair (HRR) and non-homologous end-joining (NHEJ) 

pathways. DNA mismatch repair is a system for recognizing and repairing erroneous insertion, 

deletion, and misincorporations of bases. The nucleotide excision repair (NER) pathway deals 

with modified nucleotides that distort the structure of the double helix. In addition to these 

major pathways, nucleotide damage in the form of adducts that can block replication can be 

bypassed by a mechanism known as translesion synthesis.  

The bulk of DNA damage is repaired promptly and accurately by the cellular repair 

machinery. This machinery, however, is not perfect (becoming even less so with ageing), and 

it may occasionally miss sites of damage or make mistakes - for example, an oxidation damage 

such as 8-oxodG. 8-OxodG are usually recognized and repaired by a base excision repair system. 

But if the DNA template containing 8-oxodG is replicated despite the presence of damage, the 

resulting daughter strands will carry different 'meaning' in their DNA (G to T 

http://www.cellbiolabs.com/ap-sites-quantitation-kit
http://www.cellbiolabs.com/8-ohdg-dna-damage-elisa
https://en.wikipedia.org/wiki/Nucleobase
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transversion). During the replication cycle, the altered DNA molecule will produce daughter 

molecules carrying the altered sequence, transmitting it on to their progeny. Eventually, a 

mutant clone is created. Mutations are changes in the nucleotide sequence, involving 

deletions, insertions, substitutions or rearrangements of base pairs, and can lead to 

dysfunctional proteins. As a permanent alteration in the DNA sequence that makes up a 

gene, either hereditary mutations inherited from a parent or acquired mutations caused by 

environmental factors, are common enough to be considered as a normal variation in DNA. 

Mutations are essential to evolution. Some of the mutations are beneficial, which keeps 

populations healthy, some have no effect at all and some we hear about most often are ones 

cause diseases such as cystic fibrosis, sickle cell anaemia, Tay-Sachs disease, phenylketonuria 

and color-blindness. Genomic stability depends on an efficient DNA damage repair system to 

keep the chromosomes intact. Unrepaired DNA damage not only causes cell cycle arrest, 

apoptosis but also accumulates genome mutations. It has been postulated that the two main 

causes of cellular ageing are the accumulation of mutations in DNA resulting from replication 

errors and the oxidative stress resulting from the genotoxic action of reactive oxygen species 

(ROS) on mitochondrial DNA. 

 

1.2 DNA Alkylation and Oxidation Formation 

Almost 20,000 lesions happened one day per cell, including mainly spontaneous 

depurination, reactive oxygen species damage and deamination. Even though the contribution 

of alkylation damage is unclear, the mere existence of specific repair system for this damage 

justifies the importance of the understanding interaction of exogenous agents and influences 
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with endogenous processes in the induction of cancer and other diseases. Alkylating agents are 

ubiquitous. Humans are exposed to alkylating compounds produced endogenously and in the 

environment, such as in the air, foods, waters and drugs.  

Alkylating agents can form adducts at mainly O- and N-atoms in nucleobases through 

the electrophilic attack. Reaction was shown to mainly occur via SN1 followed by first order 

kinetics or SN2 which is heavily dependent on steric effect. In DNA molecules, the ring 

nitrogens and the exocyclic oxygens are the preferred sites for alkylation, such as the N7 of 

guanine, the N3 of adenine and the O6 of guanine. S-adenosylmethionine (SAM), a methyl 

donor in many biochemical reactions as well as a weak chemical methylating agent that has 

been shown to induce mutations in DNA, generate 7-methylguanine and 3-methyladenine 

as the major product when incubated with DNA.[2] Trace amounts of O-alkylated bases 

such as O6-methylguanine are also formed, although these latter adducts are generated more 

efficiently by alkylating agents which react by an SN1 mechanism, for example, N-methyl-

N'-nitro-N-nitrosoguanidine. The comparison of the persistence of N7-guanine adducts to 

O6-guanine adducts in brain and liver of mice treated by N-methyl-N-nitrosourea (MNU) 

suggested that O6-guanine are most likely mutagenesis and carcinogenesis other than N7-

guanine.[3] The steric effect can dominate the binding site selectivity, generally the larger 

the alkyl group is, the more efficient for reactions at the O6 position of guanine, for 

example, N-ethyl-N-nitrosourea (ENU) has more preference to the O6 position than N-

methyl-N-nitrosourea (MNU).[4] N-Ethyl-N-nitrosourea (ENU) is a potent carcinogen 

to the nervous system as MNU and it generates N7-ethyl-guanine (N7-Et-Gua), O6-ethyl-

guanine (O6-Et-Gua), O2-ethyl-thymidine (O2-Et-Thy) and O4-ethyl-thymidine (O4-Et-Thy) 
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as the main adducts. The repair capacity of O6-Et-Gua, O4-Et-Thy and O2-Et-Thy is tissue-

specific, but N7-Et-Gua is not. O6-Me-Gua and O6-Et-Gua adducts can be repaired in liver 

other than the brain. In contrast, the less stable N7-Et-Gua and N3-Et-adenine adducts have 

similar repairing rates in both liver and brain, suggesting that these adducts may be eliminated 

due to spontaneous depurination.[5]  

N-nitrosamines (such as N, N-Dimethylnitrosamine (DMN) and 4-(methylnitrosamine) -1-

(3-pyridyl)-1-butanone (NNK)), and Hydrazine compounds (such as 2-dimethylhydrazine 

(SDMH)) require metabolic activation, particularly functioned through P450 enzyme to form 

highly reactive diazonium ions and aldehyde, to exhibit their mutagenic and carcinogenic 

effects. This kind of compounds is a potent rodent carcinogen, responsible for the formation of 

N7-Me-Gua and O6-Me-Gua.[6] Three kinds of olefins: ethylene (ET), propylene, and 1, 3-

butadiene (BD) have been well studied in respect of DNA alkylation agents. Been metabolised 

to the corresponding epoxides by the P450 enzyme, olefins can easily form DNA adducts. Since 

they are relatively more stable than the other metabolites such as diazonium and hydrazine, they 

will be spread similarly in the target and non-target tissues. 

Aflatoxin B1 (AFB1) is the most prevalent and carcinogenic of the aflatoxins, and the 

International Agency for Research on Cancer reported that there is sufficient evidence to 

classify AFB1 as a Group I carcinogen. AFB1 is bioactivated by epoxidation of the 

terminal furan ring double bond, generating the electrophilic intermediate AFB1-8,9-epoxide, 

which attack guanine to form N7-AFB1-Gua as the the primary AFB1-DNA adduct.[7] The N7-

AFB1-Gua converts to secondary lesions including AP sites and AFB1-FAPy. Compared to N7-

AFB1-Gua, AFB1-FAPy is highly persistent in rat liver DNA, reaching maximum amounts two 
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weeks after exposure.[8] The increased chemical stability and altered secondary DNA structure 

are responsible for the much greater mutagenicity of AFB1-FAPy compared to N7-AFB1-Gua.  

It has been well established that cellular metabolism is the source of reactive oxygen 

species. These nonpathogenic cellular processes inevitably affect the background level of 

endogenous DNA oxidation damage. Leaking electrons in the line of electron transportation 

can flow to oxygen and give birth to the formation of superoxide. Other than that, superoxide 

can also be generated by the phagocytic cell aimed to destroy the infected cells. ROS can also 

be produced by ionizing or ultraviolet radiation and generate superoxide or reactive hydroxyl 

radicals, leading to potential damage to the DNA in the cell. 

The highly reactive hydroxyl radicals (OH•) can add to the C5-C6 double bond of 

pyrimidines to generate the C5-OH and C6-OH adduct radicals. It can also abstract the H 

atom on the methyl group of thymine leading to the allyl radical. In terms of their redox 

properties, C5-OH adduct radicals are reducing and C6-OH adduct radicals are oxidizing. 

The 5-hydroxymethyluracil and 5-formyluracil are generated by addition of oxygen to 

the allyl radicals of thymine. Thymine peroxyl radicals can also be reduced and then 

protonated to give hydroxy hydroperoxides, which will spontaneously decompose and 

produce thymine glycol, 5-hydroxymethyluracil, 5-formyluracil, and 5-hydroxy-5-

methylhydantoin.  

In purines, hydroxyl radical can add to the C4, C5 and C8 position. C4-OH and C8-OH 

adduct radicals of adenine have been detected. C4-OH and C5-OH adduct radicals of purines 

can be dehydrated and generate an oxidizing purine radical, followed by reduction and 

protonation to form purine C4-OH adduct radicals. These adduct radicals are oxidizing, 
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whereas C5-OH and C8-OH adduct radicals are mainly reducing. The redox properties may 

depend on the mesomeric structures (redox ambivalence). C4-OH and C5-OH adduct radicals 

of purines can be dehydrated to form an oxidizing purine (-H•) radical, followed by reduction 

to reconstitute the purine. C4-OH adduct radical of guanine may form guanine radical cation 

(guanine+•) and may deprotonate at desired pH condition to give rise to guanine radical ( -

H•). The free guanine radical cation molecule is not the source of C8-OH adduct radical 

which lead to 8-hydroxyguanine (8-oxoguanine, 8-OH-Gua), otherwise, it reacts with 2-

deoxyribose in DNA by hydrogen abstraction causing DNA strand breaks. In double-

stranded DNA, the hydration of guanine radical cation may form the C8-OH adduct radical 

and form 8-OH-Gua by oxidation. C8-OH adduct radicals of purines may be oxidized by 

oxidants including oxygen. 8-Hydroxypurines (7,8-dihydro-8-oxopurines) in DNA can be 

formed by oxidation reaction or in the absence of oxygen with less efficiency. On the other 

hand, the C8-OH adduct radicals can also go through the unimolecular opening of the 

imidazole ring by bond breaking between C8 and N9, forming 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FapyGua) out of guanine and 4,6-diamino-5-

formamidopyrimidine (FapyAde) from adenine. Further oxidation of 8-OH-Gua by 1O2 

lead to 4-HO-8-oxodGuo and oxazolone as the major products.[9] The oxidative pathway 

of 8-OH-Gua via one-electron oxidant has also been investigated. Two stable products 

including guanidinohydantoin and spiroiminodihydantoin were characterized and  the 

later was the predominant product in the nucleoside at pH 7.[10]  

 

1.3 Repair and Translesion Synthesis of DNA Damage 
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Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints 

to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence 

or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism 

is often compromised. On the other hand, when the damage may not be repairable in some cases, 

translesion synthesis (TLS) which is a DNA damage tolerance process allow the DNA 

replication machinery to replicate past DNA lesions. 

1.3.1 DNA Damage Repair 

The removal of DNA lesions is certainly important for the limitation of mutagenesis, cytostasis, 

and cytotoxicity. Most of the DNA lesions are subject to multiple repair pathways. The 

redundancy ensures that the attenuation or malfunction of one repair process does not 

completely cease the repair pathway of a particular lesion. Which mechanisms are most 

important after low level endogenous or environmental exposure remains undetermined, but 

would presumably be direct repair, BER, NER, HRR and ICL repair (Figure 1.1). 

 

Figure 1.1 Sources of DNA damage and their repair pathway. 

1.3.2 Translesion Synthesis 

https://en.wikipedia.org/wiki/DNA_replication
https://en.wikipedia.org/wiki/DNA_replication
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Although DNA lesions can be removed by NER and BER, many lesions escape repair and 

present a block to continued transcriptional elongation by RNA polymerases and to replication 

by DNA polymerases. In eukaryotes, Translesion Synthesis (TLS) DNA polymerases, which 

belong to the Y family, and DNA polymerase ζ, which is a member of the B family, promote 

replication through DNA lesions. Structural and Biochemical studies have revealed striking 

differences among them in the roles they play in lesion bypass. In contrast to replicative DNA 

polymerases which are blocked by lesions that significantly distort the geometry of DNA, TLS 

DNA polymerases synthesize DNA with much higher error rates and are able to bypass lesions 

that block replicative polymerases.  

DNA Polymerase η was first identified in yeast and shown proficient ability to replicate 

DNA containing a cis-syn thymine-thymine (T-T) dimer by inserting two adenines across from 

the dimer.[11] This proficiency derives from its unique structural feature - its active site is open 

enough to accommodate both residues of a dimer. Other than CPD lesion, Pol η plays a 

prominent role in efficient and accurate replication through the 8-oxoguanine (8-oxoG) 

lesion.[12] 8-OxoG is highly mutagenic and causes G:C to T:A transversions. In general, most 

DNA polymerases tested show either a preference for incorrect insertion of dATP or are 

indifferent to dCTP or dATP. Pol η can bypass the lesion much more efficiently than 

misincorporation of dATP.[13] Notably, the fidelity of 8-oxodG bypass by human Pol η is 

greatly increased by the inclusion of the accessory factors PCNA and RPA.  

Pol ι is unable to replicate through a cis-syn T-T dimer like Pol η. However, Pol ι can 

incorporate nucleotides opposite an abasic site, but it is not capable of performing extension 

step. In addition, Pol ι can efficiently incorporate nucleotides opposite an N2-adducted guanine. 
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For instance, acrolein reacts with the highly reactive N2 of G followed by ring closure at N1 to 

generate γ-HOPdG, which blocks the Watson-Crick pairing in DNA. Pol ι incorporates a C or 

a T residue opposite γ-HOPdG, followed by efficiently extension performed by Pol κ from the 

C: γ-HOPdG primer terminus but not from the T:γ-HOPdG terminus. Thus, the accuracy and 

efficiency of the translesion synthesis of γ-HOPdG is ensured by the cooperation of Pol ι and 

Pol κ. 

Pol κ is a member of Y-family DNA polymerases. It is unable to insert nucleotides opposite 

most of the lesion sites such as an abasic site or T-T dimer; but it can extend from nucleotides 

inserted by another DNA polymerase opposite certain DNA lesions. Highly inefficient in 

inserting nucleotides opposite an O6-methylguanine lesion, it efficiently extends from the T or 

C nucleotide incorporated opposite this lesion by Pol δ. Opposite an 8-oxoG lesion, Pol κ inserts 

an A quite efficiently and then proficiently extend from it.  

Thymine glycol (Tg) is one of the principal DNA lesions that can be induced 

by oxidation and ionizing radiation. Pol ζ is exclusively efficient in extending Tg since no other 

polymerase has such ability. Other than extending beyond Tg and abasic sites, Pol ζ is highly 

inefficient at replicating through other lesions. 

Overall, replication through certain DNA lesions can be accomplished by one 

polymerase, but through many DNA lesions the replication requires the action of two different 

polymerases, one for insertion reaction opposite the lesion and the other for the subsequent 

extension reaction (Table 1.1).  

Table 1.1 Lesion Bypass by One or Two DNA Polymerases 

https://en.wikipedia.org/wiki/DNA_lesion
https://en.wikipedia.org/wiki/Oxidation
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 Lesion bypass by 

  Two Pol 

DNA lesion One Pol Inserter Extender 

8-oxoG Pol η   

CPDs Pol η   

Abasic sites   Pol η or Pol ι Pol ζ 

γ-HOPdG  Pol ι Pol κ 

Tg  Pol δ Pol ζ 

 

1.4 Cellular Impact of Alkylation and Oxidation DNA Damage 

There are a significant number of DNA lesions whose effects on replication and transcription 

have been well established. Some lesions can influence the replication and transcription 

fidelities, and many are mutagenic regardless whether they are formed in situ or arise by 

misincorporation from the deoxynucleotide pool. For example, 8-oxodG formed in situ results 

in G:T substitutions; alternatively, 8-oxo-dGTP may be misincorporated opposite dA, 

producing an A:C substitution.[14]  

Conformational changes and the structural alterations arise from DNA lesions enhance 

the potential for mutagenicity. In single stranded DNA, 8-oxo-dG may adopt syn conformation 

during the replication or transcription other than the native anti conformation. This results in 

mispairing with dA or dT. The most abundant alkylation damage: guanine-N7 methylation, 

according to recent research results, alters hydrogen-bonding patterns of the guanine and affects 
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the stability of duplex DNA. The formation of a stable Watson-Crick-like N7-mdG:dT base 

pair in duplex DNA implicate that N7-mdG may induce G to A transition mutations if 

unrepaired.[15] A further factor about the mutagenicity or otherwise of a DNA damage is the 

level of difficulty in the repair pathway of a particular lesion. The preferences of the repair 

enzymes dominate the ease with which the lesion is repaired. In mammalian cells, the 8-

oxoGua:C pair can be effectively repaired by OGG1, but the 8-oxoGua:A pair is poorly repaired, 

and replication is occurring before completion of DNA repair which explains the high 

mutagenic potency of the 8-OH-Gua:A mispair.[16]  

The cell line or polymerase may also need to be considered regarding mutagenicity. The 

former point is well illustrated by O6-Alkylguanine-DNA alkyltransferase 

(alkyltransferase). In human, rat and mouse tissues, liver containing the highest level of activity, 

and low levels of alkyltransferase activity relative to protein were seen in human brain, rat brain 

and small intestine, and mouse kidney. In general, the rank of alkyltransferase activity relative 

to DNA for each tissue was human > rat > mouse, which suggests that the mouse is more 

susceptible to alkylating reagent such as nitrosoureas. The latter point can be demonstrated by 

8-oxodG, the most abundant oxidation product of guanine. Pol η can stabilize the normal anti 

conformation of 8-oxodG to allow the Watson-Crick face orient toward the incoming dNTP. In 

contrast to Pol η, Pol κ favors dATP opposite the 8-oxodG. The structural studies have revealed 

the different molecular features between Pol κ and Pol η. In the complex of Pol η and 8-oxodG, 

the Lys-498 forms a hydrogen bond with O8 atom, but in Pol κ the residue is Leu-508 which 

apparently cannot stabilize the anti form of 8-oxodG. On the other hand, Pol κ has the N-

terminal extension called “N-clasp” which encircles the DNA and serves to stabilize the binding 
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site. In the presence of N-clasp, the conformational fluctuation of the ligand is limited, thus the 

thermodynamically stable syn orientation of 8-oxoG is favored. 

Sequence context is another factor that contributes to the DNA damage sites and the 

polymerase performance. The formamidopyrimidines FapyGua and FapyAde are efficiently 

generated by hydroxyl radicals in DNA. FapyAde, when present in DNA, is a moderately toxic 

lesion. Formation or the ability of FapyAde to inhibit DNA synthesis depended on the sequence 

context: almost no inhibition of DNA replication was observed in poly (dA) run and the 

strongest inhibition was observed in some adenine and guanine-rich sequences. FapyGua might 

possess similar properties.[17] N3-methyladenine (3-MeA) adducts which are expected to be 

cytotoxic. When p53 cDNA was treated in vitro with Me-lex which is a neutral N-

methylpyrrolecarboxamide-based dipeptide used to generate 3-MeA, most of the 3-MeA 

formed at A601 and A602 in the presence of a mutational hotspot at the A597AATTT602 lex-

binding site.[18] 

While the mutagenic and carcinogenic effects of DNA damage are largely well 

recognized, a rising number of epigenetic studies about DNA damage are emerging in the recent 

work. It is clear that the presence of lesions in the transcribed regions of genes can lead to 

mutation, but what is the performance of lesions in a nontranscribed region? It has been 

demonstrated that the presence of 8-oxo-dG in promoter elements can affect transcription factor 

binding. It has been confirmed that a single oxidative 8-oxodG moiety can completely inhibit 

transcription factor binding to AP-1 and Sp1.[19] These results are consistent with previous 

reports showing that promoter regions containing alkylation damage inhibit transcription factor 

binding.[20] Further, sequence text dependent low binding of Sp1 was observed when guanine 
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residue of the 5′-GGGGCGGGG-3′ (GC box) was substituted by 8-oxo-dG.[21] This effect 

may have pathological consequences, as the interference of Sp1 binding in the kidney and 

liver of diabetic rats was proposed to result from ROS-mediated damage to DNA. In addition, 

oxidation or alkylation of bases can interfere with the ability of mammalian cell DNA to serve 

as a substrate for DNA-methyltransferases (DNA-MTase), leading to altered patterns in the 

distribution of 5-methylcytosine (5-MeC) residues at CpG sites. As an epigenetic change, 

methylation of DNA can result in changes in chromatin structure, render chromatin more 

compacted, and this is often accompanied by modified patterns of gene expression. Alterations 

in the DNA methylation may play a central role in tissue-specific gene expression, as well as 

in physiological processes, such as aging, carcinogenesis, etc.[22] 

 

 

1.5 Role of DNA Damage in Cancer, Disease and Aging 

DNA damages are a major problem for life. Put simply, by-products of normal metabolism 

cause damage to DNA, protein, and lipid. We argue that this damage (the same as that produced 

by radiation) is a major contributor to aging and to degenerative diseases of aging such as cancer, 

cardiovascular disease, immune-system decline, brain dysfunction, and cataracts.  

1.5.1 Cancer 

The well-known relationships between changes in DNA damage, gene expression, and disease 

have been described for cancer. In tumors and cultured cell lines, significant changes in 

genome-wide DNA damage have been observed. This includes a general genome-wide 
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demethylation that affects repeated sequences, a more gene-specific hypermethylation, and 

accumulation of DNA damage such as 8-oxo-dG. Deficient DNA methylation might contribute 

to the genomic instability of some colorectal tumor cell lines. DNA hypomethylation has also 

been proved to cause chromosomal instability in cells treated with the demethylating agent 5-

azadeoxycytidine.[23] As a consequence, genomic instability can cause mutations in genes, 

thereby representing an indirect way in which changes in methylation patterns can affect gene 

expression. 8-oxo-dG is established biomarker of oxidative stress. In addition, 8-oxo-dG with 

potential mutagenicity in mammalian cells can also be seen as intermediate markers of a disease 

endpoint such as cancer. Evidence are the findings that GC to TA transversions derived from 

8-oxo-dG has been detected in vivo in the ras oncogene and the p53 tumor suppressor gene in 

lung and liver cancer. 

Numerous studies have attempted to establish a relationship between levels of DNA 

damage and cancer. Elevated levels of damage arise because of an environment in the tumor 

low in repair enzymes. One of the evidence is the correlations between DNA methylation 

inducer, the level of methylation in different CGIs and gastric cancer development. The 

research results clarify that accumulated levels of aberrant DNA methylation are associated 

with a risk of gastric cancer development. [24] Normal cells are protected by antioxidant 

enzymes from the toxic effects of high concentrations of reactive oxygen species generated 

during cellular metabolism. Even though cancer cells generate reactive oxygen species, it has 

been demonstrated biochemically that antioxidant enzyme levels are low in most animal and 

human cancers. Tumor cells are always lack of catalase, which responsible for the high level of 

H2O2 in tumor cells without exogenous stimulation, potentially explain the high levels of 
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oxidative damage seen.[25] However, it is still too early to directly link the elevated level of 

DNA damage to cancer until we could confirm that whether the former is the epiphenomenon 

to the later, or whether the coding region is damaged.   

1.5.2 Diseases  

Alzheimer's disease (AD) is a complex progressive, degenerative brain disorder characterized 

by an insidious loss of memory and other cognitive functions that usually results in death 5-10 

years after onset. The absence of sufficiently efficient DNA repair mechanisms, involved in the 

removal of small base damages in the brain, could result in the accumulation of misrepaired or 

nonrepaired DNA damage and might ultimately lead to the neuronal degeneration as observed 

in AD patientsAlzheimer's disease cells, unlike normal cells, fail to repair methyl-methane 

sulfonate-induced DNA damage.[26] Besides, AD lymphocytes and age-matched normal 

lymphocytes respond similarly to methylation damage, as assessed by multiple techniques.[27] 

The fact that oxidative stress also plays a crucial role in AD pathogenesis seems clear. Markers 

of oxidative damage include the increase of 8-oxoG in AD brain and the characteristic pattern 

of altered hallmark structures of AD including AGE-modification, protein crosslinking and 

carbonyl- and acyl-modification.[28]  

Inflammation can result from a range of sources including microbial infections, 

exposure to allergens and toxic chemicals and obesity. The chronic inflammatory response is 

generally harmful as the balance of the immune response is broken and linkage between chronic 

inflammation and cancer is now well accepted. Aberrant DNA methylation has been observed 

in many chronic diseases such as chronic biliary tract inflammation, Barrett's esophagus, 
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Helicobacter pylori infection and inflammatory bowel disease (IBD). In chronic inflammation 

during IBD, the level of pro-inflammatory cytokine IL-6 and TNF-α is elevated upon the 

increase of NF-ĸB, which in turn increases NF-ĸB and STAT3 in the epithelial cells, resulting 

in inhibition of apoptosis and increased proliferation of epithelial cells. The increased IL-6 can 

also increase DNMT levels in the epithelial cells, which can alter gene expression such as that 

of tumor suppressor genes. Overall, this provides an environment conducive to malignant 

transformation.[29] Another Evidence of DNA damage related inflammation shows that 8-

oxodG content in livers with chronic hepatitis was significantly higher than the 8-oxodG 

content in normal livers. There was also a significant correlation between the 8-oxodG content 

in noncancerous liver tissues with individual serum alanine aminotransferase concentration 

which is a sensitive indicator of liver cell injury.[30] Rheumatoid arthritis (RA) and Systemic 

lupus erythematosus (SLE) are both chronic inflammatory diseases. It has been suggested that 

ROS may be able to modify both IgG and DNA in RA and SLE to make them become more 

susceptible to bind to the antibodies; this result implicates the importance of ROS in their 

pathogenesis. In addition, SLE cells show a considerable decrease in this rate of 8-oxodG 

removal, suggesting an impaired ability to excise 8-oxodG from the DNA which would 

contribute to the increased number of cells dying.[31]  

The consequences of DNA damage in cardiovascular diseases have also drawn a 

lot of concerns in the latest decades. Lipid peroxidation is a major oxidative effect in 

which lipids after combination with oxygen through peroxyl radical formation, leads to  

lipid peroxidation, which undergoes homolytic decomposition to the cytotoxic downstream 

products such as the a,b-unsaturated aldehyde genotoxins, 4-oxo-2-nonenal, 4,5-epoxy-
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2(E)-decenal, and 4- hydroxy-2-nonenal.[32] Lipid hydroperoxides can also be derived from 

the action of lipoxygenases and cyclooxygenases on polyunsaturated fatty acids. Lipid 

peroxidation along with its cytotoxic products are proved to be responsible for membrane 

disruption, leading to cardiovascular diseases such as angina pectoris. The reduction of nitric 

oxide (NO) which directly inhibits cell proliferation or LDL oxidation is expected to cause 

vasoconstriction followed by atherosclerosis and hypertension. ROS that generated by NADPH 

oxidase family of enzymes weakly couples cardiac mitochondria under oxidative stress 

conditions and leads to the development of fatal ventricular arrhythmia and when ROS oxidize 

Low-density lipoprotein to O-LDL (Oxidized LDL) it leads to hyperlipidemia.[33]  

1.5.3 Aging 

The well-accepted DNA damage theory of aging propose that the accumulation of DNA 

damage, especially nuclear DNA damage (nDNA damage) is the main inducement of aging. 

Nuclear DNA damage can contribute to aging indirectly by increasing apoptosis or directly by 

increasing cell dysfunction. Mammalian lifespans correlate with the effectiveness of nDNA 

repair. The most severe forms of accelerated aging disease in humans are due to nDNA repair 

defects, and many of these diseases do not exhibit increased cancer incidence. High rates of 

cellular senescence and apoptosis due to high rates of nDNA damage are apparently the main 

cause of the elderly phenotype in these diseases.  

Biologic molecules are susceptible to spontaneous chemical reactions, mostly 

hydrolysis, oxidation and alkylation. The variable consequences of DNA damage along with 

the defect in DNA repair cause cellular dysfunction that manifests as aging independent of 

https://en.wikipedia.org/wiki/Apoptosis
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apoptosis or cellular senescence. Mouse cells show significant age-dependent nDNA damage 

which correlates with pathology. A study target 8-oxodG in multiple tissues of rat suggest that 

the rate of 8-oxodG formation in old rats is more than tripled as compared to young rats, and 

the damage resulting from 8-oxodG are almost doubled for old rats in all brain areas.[34] In the 

human frontal cortex, the evidently reduced gene expression was found after age 40 and most 

pronounced after age 70.[35] One recent study suggests that the concentration of 8-oxodG in 

leukocyte DNA or urine is positively related with ages between 20 and 70, indicating that aging 

is associated with dysdifferentiation.  

The persistence of damage and a subsequent increase in replication errors correlating 

with life span can also be explained in part by the decline of DNA repair capability with aging 

as there are sufficient evidence justifying that all pathways of DNA repair including MMR, 

NER, BER and DSB repair become less efficient with age leading to accumulation of 

mutations.[36] Many studies have shown a decline in NER for human dermal fibroblasts with 

age due to the reduced repair protein levels and activity.[37] The decline in base excision repair 

(BER) with age results from the reduction of glycosylase activity. Human fibroblasts and 

leukocytes from old donors show reduced BER glycosylase activity compared to cells from 

young donors.[38] The activity of uracil DNA glycosylase (UDG) in the cerebellum of the 

mouse brain decline nearly 50% and for 8-oxoguanine DNA glycosylase (OGG1) the reduction 

is almost 90%, and 8-OHdG repair in kidney and liver tissue of young and aged rats showed a 

significantly lower BER in the older rats. In human, the DNA glycosylase enzyme required for 

BER of 8-OHdG in lymphocytes of older showed a significant linear decline to half of the 

newborn values.[39]   
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1.6 DNA Damage Detection 

Over a period of few decades, a number of methods have been invented to detect DNA damage 

in various organisms, such as PCR-based assays, comet assay, mass spectrometry-based methods, 

electrochemical methods, immunological assays, and so on. 

1.6.1 PCR-Based Assays 

The polymerase chain reaction (PCR) has been adapted for use in just about every branch of 

molecular biology and beyond. With no surprise, it should find a place in the study of DNA 

damage repairing. PCR is one of the most reliable techniques for detecting DNA damage as the 

amplification stops at the site of the damage. Quantitative PCR (QPCR) aims to measure the 

aggregate damage on both strands in the target gene region. Sub-gene functional regions such 

as introns, exon and promoters can also be efficiently detected. The detection range is desired 

to be between 300 and 3000 bp; however the upper limit can reach up to 20-30 kbp if using 

“long-PCR” reagents, allowing QPCR to be used to study entire genes. Strand-specific QPCR 

(ss-QPCR) incorporates adaptations that allow damage to be measured in the same region as 

QPCR but in a strand-specific way. Strand-specificity can be achieved by performing the 

reverse transcription reaction in the presence of only one primer specifically annealing with a 

unique region of the viral negative strand before amplifying the obtained cDNA by adding the 

second primer or a specific primer pair for PCR amplification. Unfortunately, strand-specific 

RT-PCR is highly susceptible to false-positive results. Single-strand ligation PCR (sslig-PCR) 

push the detection limit to reach single nucleotide damage on individual strands in a single copy 
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gene in mammalian cells. If antibodies to the DNA adducts of interest are available, these can 

be used to capture and isolate adducted DNA for use in sslig-PCR. 

1.6.2 Comet Assay 

Single Cell Gel Electrophoresis assay (SCGE, also known as comet assay), is used to detect 

DNA damage in individual cell and estimate its distribution in the cell population. Cells are 

lysed to form nucleoids containing supercoiled loops of DNA linked to the nuclear matrix. After 

the electrophoresis, comet structure will be the observed by fluorescence microscopy and the 

intensity of the comet tail compared to the head is related to the number of DNA breaks. The 

possible theory behind this is that loops containing a break may lose their supercoiling to be 

free to extend toward the anode.  To improve the sensitivity and specificity of the assay, 

nucleoids are incubated with bacterial repair endonucleases that recognize specific kinds of 

damage to the DNA and convert lesions to DNA breaks, increasing the amount of DNA in the 

comet tail. The assay has applications in testing novel chemicals for genotoxicity, monitoring 

environmental contamination with genotoxins, human biomonitoring and molecular 

epidemiology, and fundamental research in DNA damage and repair. DNA damage in the 

patients with Down syndrome has been assessed by using new optimized comet assay. [40] 

1.6.3 Mass Spectrometry-Based Methods 

In the latest decade, mass spectrometry (MS) has become a powerful and reliable tool for 

the identification of specific DNA adducts up to 10-100 µg. HPLC-ES tandem mass 

spectrometry (HPLC-ES-MS/MS) can be used to detect DNA adducts such as etheno-DNA 

adducts, malondialdehyde-derived DNA adducts, tamoxifenDNA adducts, acrylamide-derived 
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DNA adducts, and this technology is especially useful for detection of oxidative base damage 

such as 8-OHdG, 8-OHdA.[41] GC-MS is commonly used for analysis of oxidative DNA 

damage due to its ability to identify a wide range of base oxidation products. In this method, 

polar bases are converted into thermally stable derivatives which possess mass spectra in a 

process called derivatization. However, derivatization at high temperature in the presence of air 

can cause ‘artifactual’ oxidation of some undamaged bases, leading to an overestimation of 

their oxidation products, including 8-hydroxyguanine. By optimizing derivatization conditions 

such as lower the temperature or adding reducing reagents this problem can be minimized.[42] 

Fapy (formamido-pyrimidines) derivatives are also measured by GC-MS.[43] 

1.6.4 Electrochemical Methods 

Electrochemical methods have revealed their considerable advantages in the fast response 

detection of DNA damage as a result of the sensitivity, selectivity, low cost and miniaturized 

devices. As an electroactive and surface-active substance, DNA can generate analytically 

valuable electrochemical signals for detection. Adenine, cytosine, and guanine are subject to 

redox processes by the mercury electrodes while guanine and adenine can be oxidized on carbon 

electrodes. The electrochemical signal response may also reflect the DNA structure. The reason 

is that the difference of accessibility of specific electroactive target may alter the 

electrochemical signal.[44] The 8-oxoguanine has been detected by this method via carbon 

electrodes. Besides, electrochemical measurements at mercury or solid amalgam electrodes 

offer a much more sensitive detection of DNA strand breaks than any other electrochemical 

method.[45] 
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1.6.5 Immunological Assays 

Immunoassays are used to quantify molecules of biological interest based on the specificity and 

selectivity of antibody reagents generated.  Immunoassays have become very popular in view 

of their high sensitivity, safety, economy and simple instrument requirements. By using a 

monoclonal antibody (D1OA1) in an immuno-slot-blot assay, the detection limit of highly 

mutagenic and carcinogenic malondialdehyde (MDA) adduct DNA can reach as low as 1 µg of 

DNA sample. This method can detect 2.5 adducts out of 108 bases. (Determination of 

malondialdehyde-induced DNA damage in human tissues using an immuno-slot-blot assay.) 

Another simple and efficient blotting method was developed to determine the frequency of 

thymine dimers in a variety of aquatic organisms such as cyanobacteria, phytoplankton and 

macroalgae, utilizing a thymine dimer-specific antibodies followed by blotting and 

chemiluminating.[46]  

Immunoassays which employ enzymes are referred to as enzyme-linked 

immunosorbent assays (ELISAs). By introducing a specific enzyme-linked antibody, the final 

added substrate will be converted to produce a detectable or mostly colorimetric signal. ELISA 

technology has been mainly developed to detect the most abundant oxidative DNA biomarker: 

8-oxodG.[47] Up to date, the ELISA kit on the market can detect as little as 100 pg/mL 8-

oxodG.   

  

https://en.wikipedia.org/wiki/ELISA
https://en.wikipedia.org/wiki/ELISA
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CHAPTER 2 

SYNTHESIS OF N7-ALKYL-9-DEAZA-2’-DEOXYGUANOSINES CONTAINING 

POLAR CHAINS AND EXAMPLES OF CHEMICALLY STABLE ANALOGUES OF 

N7-HYDROXYETHYL AND N7-OXOETHYL ADDUCTS OF 2’-

DEOXYGUANOSINE 

 

2.1 Introduction 

DNA alkylation or adduct formation occurs at nucleophilic sites in DNA. N7-position 

of guanine is the most reactive site among these nucleophilic sites. Although remain 

debatable, so far the N7-alkyl guanine adducts are generally classified as non-promutagenic. 

Research about the N7-guanine adduct is mainly focused on the characterization of the lesions 

and the relationship between the formation of the guanine adduct and the biological 

consequences. However, due to the technical limitations, it is still not an easy task to justify the 

mutagenic potential of the DNA adducts and to identify the chemical source of the damage. 

Due to the higher abundance of the guanine adducts compared to other DNA adducts, they 

become good biomarkers and their involvement into mutagenesis remain to be fully 

investigated. 

2.1.1 Formation of N7-Hydroxyethyl and N7-Oxoethyl Guanine Adducts 

It is obvious that carcinogens comprise a variety of chemicals. Some of them were from 

endogenous sources or natural products, while others arise from synthetic products of modern 

human life. These chemicals are able to react with nucleophilic sites (electron rich, S, N, and 

O), in DNA and proteins. In vitro and in vivo experiment confirm that under physiological 

conditions (pH 7.4, 37 °C), alkylation of DNA primarily occurred at the N7-position of guanine, 
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although sometimes the larger group will favor O6-position of guanine via SN1 reaction. Other 

than directly react with DNA, studies also demonstrate that some carcinogens can be activated 

by metabolic processes to obtain their abilities to react with DNA and to exhibit their mutagenic 

and carcinogenic effects. Consequently, carcinogenic compounds were classified as “direct-

acting” or “metabolically activated” carcinogens. Various technologies have been applied to 

animal and human exposure studies for routine analysis of N7-guanine adducts and other DNA 

adducts. These studies have increased our understanding of formation and persistence of DNA 

adducts, and their relationship to carcinogenesis.  

The brief introduction about the methylation on the N7 position of guanine was 

discussed above. Here we mainly focus on the formations of N7-hydroxyethyl and N7-oxoethyl 

guanine adducts. Olefins, also known as unsaturated hydrocarbons, including ethylene (ET), 

propylene, and 1,3-butadiene (BD) which are the best studied in respect to DNA adduct 

formation. Ethylene oxide (EO), which can be metabolically activated from BD and the ET or 

exist as a chemical pollutant, has been classified as human carcinogens mutagenic in various in 

vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon 

reaction with DNA, N7-2-hydroxyethyl guanine (N7-HEG) being the main adduct. Inhalation 

of ET in mice and rats shows the dose-dependent response of N7-HEG formation. Under 

chronic exposure to ET, N7-HE-Gua adducts accumulation reach steady-state after the first 

week, suggesting the metabolic saturation of ET.  

Chloroethylene oxide (CEO), the primary oxidative metabolite of vinyl chloride (VC) 

by the cytochrome P-450, can rearrange into chloroacetaldehyde (CAA). It is well believed that 

CEO is the ultimate mutagenic/carcinogenic intermediate of VC. The DNA adducts produced 
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from chloroethylene oxide include 7-(2-oxoethyl)-guanine, N2,3- etheno-guanine, 3, N4-

etheno-cytosine, among which the 7-(2-oxoethyl)-guanine is quantitatively predominant. Only 

a small portion of CEO metabolically generated from VC is available for DNA alkylation due 

to the isomerization to CAA or the suicidal inactivation of P450 which cease the metabolization 

of VC.[48]  

2.1.2 Biological Significance of N7-Hydroxyethyl and N7-Oxoethyl Guanine Adducts 

Humans are subjected to the environmental or dietary exposure of ET which could be converted 

to EO by P450 in the liver, and physiological background level of N7-HEG between 2.1 and 

5.8 pmol/mg DNA has been detected in human blood.[49] Another study using Drosophila as 

the model shows that under the relatively higher dose of EO (62.5-1000ppm), up to 20 fold 

increase in the mutation rate was observed in the nucleotide repair-deficient flies, suggesting 

the importance of NER in the N7-HEG repair and the involvement of the DNA adducts other 

than the free nucleotide.[50]   

The hydrogen-bonding pattern of N7-alkylguanine has been investigated by using a 

novel polβ-host-guest complex system followed by analysis of crystal structure. This system 

reveals that the N7 methylation moderately alters the base pair geometry of dG: dC. In addition, 

the methylation may also stabilize the enol tautomer of guanine which may alter the hydrogen 

bonding pattern. The stable Watson-Click-like base pairing observed in 7-MEdG: dT, for 

example, suggest the potential G to A transition mutations. The additionally substituted group 

in the N7 along with the formal charge resulting from the alkylation may contribute to this 

tautomerization alteration, as we can also boldly prospect that the hydrogen bonding patterns 
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between 7-HEG or 7-OEG and the other four nucleobases may also provide some interesting 

information. 

As the product of spontaneous depurination, apurinic sites (AP) are the most common 

form of endogenous DNA damage. The positively charged N7-alkyl-dG has a half-life of 

several hours to days in duplex DNA and can undergo spontaneous depurination to produce 

apurinic sites. AP sites are also intermediates of damage repairing system such as BER. Abasic 

sites dramatically affect the thermodynamic stability of duplex DNA due to the loss of hydrogen 

bonding and other noncovalent interactions. Other than that, AP can also induce G to T 

transversion mutations and interstrand cross-links. In monkey kidney cells, the preferential 

incorporation opposite the AP sites is dA (48%) > dC (39%) > dG (13%) >> dT (none), 

suggesting the potential GC-AT transversions induced by the AP site. The relationship among 

the N7-HEG, AP sites and mutations has been investigated by Rusyn et al. The repeated 

exposure to EO or ET does not cause the increase of AP sites, but are responsible for the 

increase of 7-HEG in the tissue, suggesting that the accumulation AP sites due to the DNA 

alkylation are not a primary mechanism for the mutagenicity and carcinogenicity of EO. 

However, the decrease of the proapoptotic genes in the spleen may contribute to the 

carcinogenicity of EO.[51] The presence of AP sites makes the interpretation of cellular 

mutagenic studies of 7-HEG and 7-OEG complicated. 

N7-guanine adducts are susceptible to nucleophilic attack by hydroxide on the 

C8 carbon, followed by spontaneous ring opening reaction to form 5-N-alkyl-2,6, -diamino-

4-hydroxyformamidopyrimidine (Alkyl-FAPy). Since the negative charge on the N9-position 

of the N7 adducts is delocalized to the formyl group, the glycosidic bond is stabilized and can 



 28 

no longer spontaneous depurinate anymore. This effect has important biological implications, 

as studies show that FAPy adducts become highly persist in the tissues. The replication behavior 

of DNA Polymerases bypass the lesion MeFAPy-dGuo demonstrated that this FAPy lesion was 

miscoding with all four dNTPs at various efficiencies depending on the DNA polymerase, 

besides, deletion product and the misincorporation of dA:Fapy-dG lesion product arise with 5'-

T-(MeFapydGuo)-T-3' local sequence.[52] 

2.1.3 Need for Stable Analogues of N7-Hydroxyethyl and N7-Oxoethyl Guanine Adducts 

To quantitatively analyze the mutagenic potential of a DNA lesion, one of the most reliable 

methods is to study the relative rate of dNTP incorporation by each polymerase. However, the 

low stability of N7-alkylguanine becomes an obstacle to synthesize oligonucleotides containing 

a single N7-alkylguanine for the analysis of DNA polymerase bypass. To construct single-

strand DNA template with a single lesion, spontaneous depurination and the hydrolysis ring-

open reaction are two main concerns. It has been confirmed that spontaneous depurination is 

generally faster in single-stranded DNA than in double-stranded DNA, which may indicate that 

the persistence of N7-alkylguanine lesions in duplex DNA is not only controlled by the inherent 

chemical stability of the N-glycosidic bond but also affected by the three-dimensional structure 

of the double helix in the region surrounding the lesion.[53] As a result, it is possible that the 

DNA adduct which distorts the helix structure may undergo depurination more rapidly.[54] 

Spontaneous hydrolysis which generates FAPy structure may proceed under neutral pH, 

although in low efficiency.   
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One study has been reported to use single guanine adduct containing single-strand 

plasmid DNA as a tool to investigate the fidelity of replication and transformation efficiency in 

vivo of N7-HEG in E. Coli. By carefully treating the plasmid with the enzymes cntaining AP 

endonuclease activity of exonuclease III, and the 5’- 3’ exonuclease activity of T7 DNA 

polymerase just prior to transformation into E. Coli cells, this condition, according to the author, 

minimize the presence of the depurinated molecules. However, this strategy inevitably 

encounters the challenge of depurination and FAPY hydrolysis after transformation into E. Coli, 

which somehow weakens the specificity of the conclusion. Furthermore, the requirement for a 

single G site greatly limited the possibility of investigating different local sequences. Despite 

the large number of samples they used (300), the detection limit is still relatively high (0.3%), 

thus a high-throughput screening method is desired in this strategy.  

N7-oxoethyl Guanine (N7-OEG) has been recognized as almost devoid of promutagenic 

effects since the lack of miscoding property according to early research back to 1980s.[55] 

However, These studies were mostly carried out at the cellular lever and the molecular 

behaviors were not clearly understood.  

Hence, how and which polymerases bypass N7-HEG and N7-OEG has never been 

investigated. In the past, we have used N7-methyl-9-deazaguanine as the model of N7-

methylguanine to study its polymerase replication. To expand the DNA lesions to the adducts 

formed between guanine and epoxides, particularly those generated in vivo from various 

olefins, N7-hydroxyethyl-2’-deoxyguanine and N7-oxoethyl-2’-deoxyguanosine became the 

molecules of interest. 
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2.1.4 Design of the Analogue 

A stable analogue of an unstable DNA lesion can provide a good model to study its various 

biophysical and biochemical properties. Nucleobase analogues and their corresponding 

nucleosides and nucleotides are extensively used in enzymology as inhibitors, drugs, and probes. 

Deazapurines in particular are used as analogues of natural purine substrates to make stable 

enzyme-substrate complexes. 9-Dezapurines in which the N9 is substituted by a carbon atom are 

good substrate mimics. This substitution alters the electron distribution of the ring which 

consequently stablizes the glycosidic bond and renders the N7 hydrogen less acidic. Purine 

analogues including 9-deaza purines have been employed as inhibitors of well-known enzymes 

such as purine nucleoside phosphorylase (PNP), hypoxanthine-guanine phosphoribosyl- 

transferase (HGPRT), etc.  

      The 7-deazapurines and their derivatives in which the N7 was replaced by a carbon 

atom have shown useful pharmaceutical properties. As the N7 guanine adducts are labile to 

the alkaline treatment due to the electron-withdrawing N+, 7-deaza-7-nitro-dATP (7-NO2-

dATP) and 7-deaza-7-nitro-dGTP (7-NO2-dGTP) were designed to provide similar sensitivity 

to alkaline treatment as the N7 guanine adduct while gaining thermal stability to survive PCR 

cycles. The potent electron-withdrawing nitro group facilitates the cleavage of glycosidic bonds 

under alkaline conditions.[56]  

      The idea that the lack of formal charge on the N7 may affect the competence of 9-deaza 

or 7-deaza guanine as good purine mimics is still remained debatable. The modern synthetic 

chemistry allows the researcher to find out the difference between the analogue with and 

without positive charge on it. Chen uses the decreased affinity of 9-deaza analogue toward the 



 31 

enzyme to confirm the cation-π interactions they predict, but they also found that the 

permeability will be improved if the candidate is a neutral compound.[57] To investigate DNA 

interstrand crosslink (ICL) damage induced by bifunctional carcinogens such as cisplatin or 

nitrogen mustard using PCR technology, the stable guanine analog 7-Deaza-7-(2,3-

diacetoxypropyl)-dG CEP can be used for the site-specific introduction of ICL precursor 

nucleoside.[58]  

Similar to 7-deazaguanine but maintain slightly structural difference, 9-deazaguanine 

retain the unmodified Watson-Click edge and the stability of the glycosidic bond which ensure 

the survival in the PCR. However, the 7-deazaguanines such as Me-7-deaza-G which has the 

N-C glycosidic bond are still substrate of BER enzyme. It was also discovered that 3-Me-

3-deaza-A can be removed by AlkA. As a result, the 9-deazaguanine analogues will have 

these advantages: 1) structural stability and availability via phosphoramidite chemistry; 2) 

stability against hydrolysis and BER; 3) The synthetic method can be modular for the 

preparation of other N7-alkylG adducts for future studies. Finally, the synthesis of N7-

hydroxyethyl-9-deaza-2’-deoxyguanosine (7HE9CdG) and N7-oxoethyl-9- deaza-2’-

deoxyguanosine (7OE9CdG) was selected as the two N7-alkyl-dG analogues that are resistant to 

glycosidic bond cleavage. The synthesis of side-chain-protected nucleosides that can be readily 

converted to phosphoramidites for oligonucleotide synthesis was also studied.  

 

2.2 Synthesis of the Analogues 

The N2-dmf-protected 9-deazaguanine is obtained from 2-amino-4-hydroxy-6-methyl 

pyrimidine in five steps following Rana’s protocol (Figure 2.1).[59] The glycosyl donor 1-(a,b)-
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O-Methyl-3,5-di-(O-p-toluoyl)-2ʹ-deoxyribose was prepared according to a reported procedure 

(Figure 2.2).[60]  

 

Figure 2.1 Synthesis of starting material 4. (a) H2SO4, HNO3, 0°C, 3 h,90%; (b) DMF-

dimethylacetal, CH2Cl2, rt, 4 h, 80%; (c) dry DMF, DIPEA, Benzyl bromide, rt, 20 h, 80%; (d) 

dry DMF, DMF-dimethylacetal, 65oC, 4 h, 70% (e) DMF, Na2S2O4 , 65oC, 3 h, 80%. 

 

Figure 2.2 Synthesis of 1-(α, β)-O-methyl-3,5-di-(O-p-toluoyl)-2-deoxy-D-ribose. (a) 

CH3COCl, MeOH, 0°C to rt, 3 h (b) DMAP, p-Toluoyl chloride, dry pyridine, rt, 16 h. 

 

Figure 2.3 Compounds of interest. 
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The N2-dmf protected 9-deazaguanine undergoes Lewis-acid-mediated Friedel- 

Crafts reaction with a 1-O-methyl-3,5-O-ditoluated deoxyribose derivative to yield C-

nucleoside. The β-anomer is afforded by this reaction in 26% yield (Figure 2.4A). Although 

comparable to the reaction of N2- and N7- unprotected 9-deazaguanine, the yield of this 

reaction is dramatically lower than that of N2-dmf-N7-methyl-9-deazaguanine (44%) (Figure 

2.3). The hydroxyethyl group on the N7 position is introduced by using ethylene carbonate as 

the alkylating agent, followed by the removal of toluoyl and dmf groups under strong alkaline 

condition, compound 7 is afforded. To remove the Bn group on N1 position, Pd/C-ammonium 

carbonate is proved to be very efficient reagent under mild heating.[59] As a result, this reaction 

leads to the formation of 7HE9CdG (2b).  

By following the similar strategy, 7OE9CdG can also be generated (Figure 2.4B). Allyl 

group is introduced to N7 position to generate N7-allyl nucleoside 8 by using allyl bromide as 

the alkylating agent. Then the dihydroxylation reaction is performed on the olefin to form a 

vicinal diol (9) using the popular oxidant - osmium tetroxide. Then the deprotections of dmf, 

toluoyl, and benzyl groups are following the same procedures discussed above, and the 

7DHP9CdG (2d) is obtained. By using potassium periodate to break apart vicinal diols to form 

aldehyde, 7OE9CdG (2c) is generated (Figure 2.4B). Since 7OE9CdG is not very stable under room 

temperature due to the highly reactive aldehyde, the characterization of this compound is 

performed immediately after the purification. 
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Figure 2.4 Synthesis of target molecules 2b and 2d. (a) 1-(α,β)-O-methyl-3,5-di- (O-p-toluoyl) 

-2-deoxy-D-ribose, SnCl4, 1:1 (v/v) dry CH3CN-CH2Cl2, 65 °C, 16 h, 26%; (b) ethylene 

carbonate, DBU, dry DMF, 90 °C, 4 h, 49%; (c) 1 M NaOH, 2:1 (v/v) CH3OH-H2O, 70 °C, 16 

h, 72%; (d) Ammonium formate, Pd/C, CH3OH, 75 °C, 16 h, 48%; (e) allyl bromide, NaH, dry 

THF, rt, 16 h, 48%; (f) Osmium tetraoxide, TBHP, TBAF, 4:1 (v/v) acetone-H2O, rt, 76%; (g) 

1 M NaOH, 6:1 (v/v) CH3OH-H2O, 70 °C, 16 h. 54%; (h) Ammonium formate, Pd/C, CH3OH, 

75 °C, 16 h, 74%; i) KIO4, 1:1 (v/v) CH3OH-H2O, rt, 30 min, 85%. 

To examine the stabilities of the glycosidic bonds of 7HE9CdG and 7DHP9CdG, these two 

compounds are incubated under the following three conditions for 8 h: i) HCl (pH 2.5), r.t., ii) 

NaOH (pH 11.7), r.t., and iii) phosphate buffer (pH 7.2), 70 °C. The glycosidic bond is 

confirmed to be very stable by using the NMR and epimerization was not observed, and these 

results demonstrate that the stable analogues of N7-alkyl-dG are good candidates of 
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phosphoramidite chemistry. Considering the naturally instability of the aldehyde group, 

7OE9CdG is excluded from the stability study. 

 

Figure 2.5 Incompatibility between SnCl4 and TBS group, unsuccessful deprotection of 

acetate group by lipase B. (a) Ethylene carbonate, DBU, dry DMF, 90 °C, 4 h, 49% (b) TBSCl, 

Imidazole, 4-DMAP, DMF, 20 h, 62% (c) 1-(α,β)-O-methyl-3,5-di- (O-p-toluoyl)-2-deoxy-D-

ribose, SnCl4 (1M) in CH2Cl2 , 1:1 (v/v)dry CH3CN- CH2Cl2, reflux, 20h. (d) AcOAc, NEt3, rt, 

16h, 78% (e) Lipase B, 1:1 (v/v) H2O-DMSO, 37°C, pH = 7.2, 2d. 

TBS is the typically used in the solid phase synthesis of DNA/RNA to protect hydroxy 

group. It can be easily removed under mild condition by TBAF. Having completed the synthesis 

of 7HE9CdG and 7OE9CdG, to construct the molecules which can be readily convert to 

phosphoramidites and used in the solid phase synthesis, the side chain on N7 position needs to 

be protected by TBS to obtain target molecules 3b and 3d. Initially, according to the previous 

results that the N7 capped nucleobase may give better yield in the coupling reaction, the 

hydroxyethyl group of compound 11 was protected by TBS. However, the following 

glycosylation reaction fails due to the speculated reason that the TBS may not be compatible 

with the lewis acid using in the coupling reaction - SnCl4 (Figure 2.5). To circumvent this 

problem, the alternative route is first using the acetate to protect of the hydroxy group and then 
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selectively deprotect it and replace with TBS after the glycosylation reaction. As reported, 

lipase B could efficiently and selectively deprotect acetate group under mild condition, however 

this enzymatic deprotection by lipase B is futile on compound 13 (Figure 2.5). Thus, the 

strategies in figure 4 are maintained to perform the coupling reaction before the N7 substitution. 

 

Figure 2.6 Unsuccessful deprotection on compound 13. (a) TBSCl, Imidazole, 4-DMAP, DMF, 

rt, 16 h, 75%; (b) 5:1 (v/v) CH3OH-H2O, 0.05 M NaOH, rt, 1 h, 75%; (c) 1 M NaOH, 2:1 (v/v) 

CH3OH-H2O, 70 °C, 16 h, 72%; (d) different bases (ammonia, KOH, or NaOH), temperatures 

(0-75 °C), reaction times (1-48 h), and solvent ratios (water-ethanol-THF mixture). 

After the hydroxyethyl group of compound 6 is protected by TBS, multiple conditions 

are examined to selectively deprotect the toluoyl and dmf groups while maintaining the TBS 

group. Unfortunately, great difficulties are encountered in this step. Although it was well 

documented that the dmf group was typically used in the solid phase synthesis for the protection 

of the exocyclic amine of nucleobases and it could be removed under a mild condition, during 

the previous course of the study of 7Me9CdG (2a), it is found that strong basic conditions and 

high temperature are required to remove the N2-dmf if the N1 of 9-deazaguanine is protected 

by a benzyl (Bn) group. It should also be noted that TBS cannot survive strong basic alkaline 

condition, and the glycosidic bond is very sensitive to acidic conditions (Figure 2.6). To 
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perform the selective deprotection, different bases (concentrated ammonia, diluted or 1 M 

KOH/NaOH), temperatures (0-75 °C), and solvent ratios (water-ethanol-THF mixture) are 

tested. In general, mild conditions only enable the removal of the toluoyl groups while keeping 

the dmf unprotected, and harsh conditions lead to the deprotection of toluoyl, dmf, and TBS at 

the same time.  

 

Figure 2.7 Hydrogenolysis on compound 13. (a) Ammonium formate, Pd/C, DMSO, reflux, 48 

h, 10 %. 

Anticipating that the removal of the N1-Bn group can release the steric hinderance and 

facilitates the deprotection of dmf under milder conditions while keeping TBS intact, compound 

13 is treated with Pd/C-ammonium formate in refluxing methanol overnight. Unfortunately, the 

same reaction that works efficiently in the syntheses of 2b and 2d is completely futile on 

compound 13. Change of the conditions to refluxing DMF leads to partial removal of the N2-

dmf group and maintain the N1-Bn, but the low yield limits the use of this condition for the 

whole synthetic plan (48 hrs, less than 10% conversion) (Figure 2.7). As a result, it appears that 

N1-Bn and N2-dmf of compound 13 have a remarkable steric effect on each other, which blocks 

facile deprotection of either group.  
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Figure 2.8 Synthesis of compound 16. a) 1 M NaOH, 1:4 (v/v) H2O-CH3OH, reflux, 20 h, 

75%; , b) 1-(α, β)-O-methyl-3,5-di-(O-p-toluoyl)-2-deoxy-D-ribose, SnCl4, 1:1 (v/v) dry 

CH3CN-CH2Cl2, 65 °C, 16 h, 26%; c) ethylene carbonate, DBU, dry DMF, 110 °C, 4 h, 46%, 

α:β = 1:3. 

Obviously the removal of the dmf has to be ensured in the later stage of the synthesis. 

Once the carbohydrate is introduced which carries two toluoyl groups, selective deprotection 

would become very difficult to achieve. It seems that the removal of dmf group should be done 

prior to glycosylation step, on condition that the unprotected N2 amino group would not 

compete with the N7 alkylation under basic conditions. The dmf-free nucleobase 14 still reacts 

with 9-deaza-dG through coupling reaction in moderate yield (26%) However, during the N7-

alkylation, the reaction does not proceed under the previously adopted temperature (90 °C) 

using DBU and ethylene carbonate. This observation suggests that the removal of N2-dmf 

group renders the N7-H more difficult to dissociate. Until the temperature is elevated to 110 °C, 

the desired hydroxyethylated product is generated, however, as a mixture of inseparable α/β 

isomers (1:3, 1H NMR integration) (Figure 2.8). Therefore, an alternative solution is required 

to achieve the synthesis of 3b.  
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Epimerization of C-nucleosides under basic conditions had also been found by other 

chemists. Hamm et al first found epimerization of unalkylated 9-deaza-dG in concentrated 

ammonia at 55 °C for 15 h,[61] while the same observation could not be found at room 

temperature, suggesting that the high temperature was essential for the epimerization. In 

contrast, the N7-alkylated N7-methyl-9-deaza-dG (2a) was not prone to epimerization under 

strong alkaline conditions even at high temperature.[59] Therefore it seems that the 

epimerization of 9-deazaguanine nucleosides requires the deprotonating of N7-H through either 

general base-catalysis or specific base-catalysis. Furthermore, the electronic effect also 

contributes to the epimerization in this case. With the N2-dmf protecting group, no 

epimerization is observed with compound 5, suggesting that less electron-donating effect 

exerted by N2-dmf can attenuate epimerization. This result is consistent with the literature 

record of the C-glycoside of 6-aminopyridone.[62] In short, the availability of N7-H, alkaline 

pH, high temperature, and electron donating groups on the nucleobase in combination create 

favorable conditions for the epimerization of 9-deaza-dG. 
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Figure 2.9 Synthesis of compound 3b (a) ethylene carbonate, DBU, dry DMF, 90 °C, 4 h, 47%; 

(b) 1-(α, β)-O-methyl-3,5-di-(O-p-toluoyl)-2-deoxy-D-ribose, SnCl4, 1:1 (v/v) dry CH3CN- 

CH2Cl2, reflux, 16 h, 28%; (c) TBSCl, imidazole, 4-DMAP, DMF, rt, 16 h, 93% (d) 0.05 M 

NaOH, 10:1 (v:v) CH3OH-H2O, rt, 1 h, 74%; (e) ammonium formate, Pd/C, CH3OH, 75 °C, 16 

h, 43%. 

Non-reacting hydroxyl groups are nucleophilic and in many cases they need to be 

rationally protected in a Lewis acid-promoted glycosylation reaction. However, if the 

intermediate is an O-glycoside, attacking of the alkoxyl group to the oxocarbenium 

intermediate is reversible. As such, the more stable C-glycosidic bond will be favored over 

an O-glycosydic bond. This analysis is consistent with the experimental result. The 

unprotected N7-hydroxyethyl-9-deazaguanine 17 successfully reacts with the sugar donor to 

form the desired product with no significantly lower yield (Figure 2.9). Then after TBS 

protection of the hydroxy group followed by removal of the two toluoyl groups and the N1-Bn 

group, compound 3b is finally obtained.  
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Figure 2.10 Unsuccessful reactions towards target molecule 3d (a) allyl bromide, NaH, dry 

THF, rt, 4 h. (b) allyl bromide, NaH, dry THF, rt, 4 h, 64%. (c) osmium tetraoxide, 

TBHP, TBAF, 4:1 (v/v) acetone-H2O, rt, 16 h, 81%. (d) 1 M NaOH, 1:4 (v/v) H2O-

CH3OH, 70 °C, 16 h, 53%. (e) 1-(α,β)-O-methyl-3,5-di-(O-p-toluoyl)-2-deoxy-D-ribose, SnCl4, 

1:1 (v/v) dry CH3CN-CH2Cl2, reflux, 16 h. 

The synthesis of 3d is carried out follow a similar strategy as that of 3b (Figure 6B). In 

the beginning, starting from the compound 14, the allylation reaction using allyl bromide as the 

alkylating agent produces a mixture of N2- and N7-allyl products, suggesting the alkylating 

reaction of 14 is dominated by kinetic control (Figure 2.10). Instead, the N2-dmf-protected 9-

deazaguaine (4) is then used as the starting material, which allows the allyl group to be 

specifically introduced to N7. After the removal of N2-dmf group under strong alkaline 

conditions, the olefin is dihydroxylated to generate compound 23. However, the glycosylation 

reaction between the vicinal diol 24 and the sugar donor is completely futile. It appears that the 

diol may chelate and thus deactivate the SnCl4 catalyst. Therefore, the dmf-free N7-allyl-9-

deazaguanine is employed to carry on the coupling reaction. (Figure 2.11) The N7 allyl group 
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successfully survives in this reaction to produce compound 27 in 23 %. Then dihydroxylation 

is performed to obtain a vicinal diol 28, followed by TBS protection of both hydroxyl groups 

(29). After the removal of the two toluoyl groups and the N1-Bn, 3d is successively generated. 

 

Figure 2.11 Synthesis of compound 3d. (a) allyl bromide, NaH, dry THF, rt, 4 h, 64%; (b) 1 M 

NaOH, 1:4 (v/v) H2O-CH3OH, 70 °C, 16 h, 70%; (c) 1-(α,β)-O-methyl-3,5-di-(O-p-toluoyl) -2-

deoxy-D-ribose, SnCl4, 1:1 (v/v) dry CH3CN-CH2Cl2, 65 °C, 16 h, 23%; (d) osmium tetraoxide, 

TBHP, TBAF, 4:1 (v/v) acetone-H2O, rt, 16 h, 40%; (e) TBSCl, imidazole, 4-DMAP, DMF, rt, 

16 h, 76%; (f) 0.1 M NaOH, 10:1 (v:v) CH3OH-H2O, rt, 1 h, 68%; (g) ammonium formate, 

Pd/C, CH3OH, 75 °C, 16 h, 56%.  

In summary, two polar-chain-containing N7-alkyl-9-deaza-dGs were successfully 

synthesized. This work has expanded the series of chemically stable analogues of N7-alkyl-

dGs. The stability test confirmed that the C-glycosidic bonds of the two new compounds 

were stable under strong acidic and basic conditions and at high temperatures.  An efficient 

synthetic route to side-chain-protected 9-deazaguanosine in spite of the difficulties in 

stereoselectivity and regioselectivity when the exocyclic amine of 9-deazaguanine was not 
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protected. These side-chain-protected nucleosides can be readily converted to 

phosphoramidites for solid-phase oligonucleotide synthesis to allow the study of polymerase 

actions on N7-hydroxyethyl and N7-oxoethyl adducts of 2'-deoxyguanosine. 

2.2.1 Methods and Materials 

General Information. 1H and 13C NMR spectra were recorded on a NMR spectrometer 

operating at 500 or 600 MHz for 1H and 125 or 150 MHz for 13C using the solvent as an internal 

reference. The coupling constants (J) for 1H NMR are recorded in hertz. High resolution mass 

spectra (HRMS) of compound 9, 13, 19, and 29 were obtained with MALDI-TOF and all others 

with ICR (ESI). Melting points were recorded on a microscopic instrument.  

THF was distilled freshly from LiAlH4. Acetonitrile, dichloromethane, and DMF were 

distilled freshly from CaH2. 1-Benzyl-9-deazaguanine (4) was prepared following Jagruti’s 

protocol and its characterization was described previously by Gibson, et al. [63].1-(α, β)-O-

methyl-3,5-di-(O-p-toluoyl)-2-deoxy-D-ribose was prepared according to a reported 

procedure.[60]  

Stability Test. 7HE9CdG and 7DHP9CdG were incubated under the following three 

conditions for 8 h: i) HCl (pH 2.5), r.t., ii) NaOH (pH 11.7), r.t., and iii) phosphate buffer (pH 

7.2), 70 °C. After that, the reaction mixture was neutralized, concentrated and purified by flash 

column chromatograp using relatively more polar eluent (methanol/ethyl acetate 1:2, compared 

to the 1:5 for 2b and 2d) to retain possible products. The NMR spectra are compared with the 

spectra of the pure compound to determine any possible bond cleavage and epimerization. 
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(2R,3S,5R)-5-(3-Benzyl-2-(((dimethylamino)methylene)amino)-4-oxo-4,5- 

dihydro-3H-pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl)  

tetrahydrofuran-3-yl-4-methyl benzoate (5). To a suspension of N'-(3-benzyl-4-oxo- 4,5-

dihydro-3H-pyrrolo-[3,2-d]pyrimidin-2-yl)-N,N-dimethylformimidamide 4 (3.52 g, 

12.0 mmol) and 1-(α,β)-O-methyl-3,5-di- (O-p-toluoyl)-2-deoxy-D-ribose (6.6 g, 17.2 mmol) 

in a mixture of methylene chloride (20.0 mL) and acetonitrile (20.0 mL) was added a solution 

of SnCl4 (23.2 mL, 23.2 mmol, 1 M in CH2Cl2). The reaction mixture was heated at 65 °C for 

16 h. The reaction mixture was diluted with methylene chloride and washed successively with 

sat. NaHCO3 and brine. The organic layer was separated, dried over MgSO4. The solution was 

concentrated and purified by column chromatography (SiO2, 0.06-0.20mm, eluting with 

hexane/ethyl acetate 2:1 to 1:2) to give compound 5 as a light yellow solid (1.96 g, 26%). mp 

92-93°C. 1H NMR (500 MHz, CDCl3) δ ppm 2.36 (s, 3H), 2.42 (s, 3H), 2.49-2.53 (m, 1H), 

2.91-2.95 (m, 1H), 3.05 (s, 3H), 3.12 (s, 3H), 4.50 (s, 1H), 4.58 (dd, J = 10.5, 5.0 Hz, 1H), 4.66 

(dd, J = 11.0, 4.5Hz, 1H), 5.49-5.56 (m, 3H), 5.74 (s, 1H), 7.15-7.36 (m, 10H), 7.90 (d, J = 7.0 

Hz, 2H),  8.01 (s, 2H), 8.58 (s, 1H), 10.36 (s, 1H). 13C NMR (125 MHz, CDCl3) 21.6, 21.7, 

35.0, 37.9, 40.8, 45.6, 60.4, 64.8, 73.8, 81.8, 114.4, 116.2, 126.8, 127.0, 127.2, 127.23, 128.0, 

128.1, 129.1, 129.14, 129.7, 129.8, 138.9, 143.6, 144.0, 153.7, 156.2, 156.8, 166.2, 166.5. ESI-

MS (M+H)+ for C37H37N5O6: expected 648.2822, found 648.2852. 

(2R,3S,5R)-5-(3-Benzyl-2-(((dimethylamino)methylene)amino)-5-(2-

hydroxyethyl)-4-oxo-4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-

methylbenzoyl)oxy)methyl) tetrahydrofuran-3-yl-4-methylbenzoate (6). To a solution of 5 

(0.52 g, 0.8 mmol) in dry DMF (5.0 mL), DBU (280.0 µL, 1.8 mmol) and ethylene carbonate 



 45 

(0.21 g, 2.4 mmol) was added. The reaction was heated under 90 °C for 4 h. After removal of 

DMF, the reaction mixture was diluted with ethyl acetate and washed successively with water 

and brine. The solution was concentrated and purified by column chromatography (SiO2, 0.06–

0.20mm, eluting with hexane/ethyl acetate 1:4 to1:8) to give compound 6 as a white solid (0.27 

g, 49%). mp 75-76°C. 1H NMR (500 MHz, CDCl3) δ ppm 2.40 (s, 3H), 2.44(s, 3H), 2.52-2.57 

(m, 1H), 2.85-2.89 (m, 1H), 3.05 (s, 3H), 3.15 (s, 3H), 3.90 (s, 2H), 4.46 (s, 2H), 4.51 (s, 1H), 

4.59 (dd, J = 11.0, 4.0 Hz, 1H), 4.70 (dd, J = 11.3, 4.5 Hz, 1H), 5.53 (s, 3H), 5.76 (s, 1H), 7.09 

(s, 1H), 7.19-7.21 (m, 3H), 7.26-7.29 (m, 4H), 7.35 (d, J = 5.0 Hz, 2H), 7.94 (d, J = 7.5 Hz, 

2H), 8.01 (d, J = 7.5 Hz, 2H), 8.60 (s, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 21.5, 21.6, 34.9, 

37.8, 40.7, 45.2, 50.8, 63.0, 64.5, 73.5, 81.7, 113.4, 115.2, 126.6, 127.0, 127.04, 127.6, 128.0, 

129.0, 129.4, 129.6, 130.7, 138.6, 143.6, 143.8, 153.7, 156.3, 156.6, 166.0, 166.3. ESI-MS 

(M+H)+ for C39H41N5O7: expected 692.3084, found 692.3122. 

2-Amino-3-benzyl-7-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-

5-(2-hydroxyethyl)-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one (7). A suspension of 6 

(0.15 g, 0.22 mmol) in 1 M sodium hydroxide in a mixture of methanol (2.0 mL) and water (1.0 

mL) was heated under 70 °C for 16 h and allowed to cool to room temperature. The reaction 

mixture was concentrated and purified by column chromatography (SiO2, 0.06–0.20mm, 

eluting with hexane/ethyl acetate 1:5 to 1:10) to give 7 as a white solid (0.063 g, 72 %). mp 99-

100°C. 1H NMR (500 MHz, CD3OD) δ ppm 2.08 (dd, J = 13.0, 5.0 Hz, 1H), 2.46-2.52 (m, 1H), 

3.69 (d,  J = 12.0 Hz, 1H), 3.80–3.85 (m, 3H), 4.02 (s, 1H), 4.36-4.41 (m, 3H), 4.45 (d, J = 

5.0 Hz, 1H), 5.28-5.32 (m, 3H), 7.22 (d, J = 7.5 Hz, 2H). 7.25 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 

8.0 Hz, 2H). 13C NMR (125 MHz, CD3OD) δ ppm 42.1, 43.7, 50.5, 61.7, 63.4, 74.4, 74.7, 87.9, 
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112.4, 112.8, 126.17, 127.2, 128.4, 131.7, 135.7, 142.6, 151.0, 154.7. ESI-MS (M+H)+ for 

C20H24N4O5: expected 401.1825, found 401.1839. 

2-Amino-7-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(2-

hydroxyethyl)-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one (2b). To a mixture of 7 (0.063 g, 

0.16 mmol) and 10% palladium on carbon (0.03 g) in methanol (2.0 mL) was added ammonium 

formate (0.10 g, 1.5 mmol) under Ar. The reaction mixture was heated under 75 °C for 16 h 

and then filtered through Celite. The filtrate was concentrated and purified by column 

chromatography (SiO2, 0.06–0.20mm, eluting with methanol/ethyl acetate 1:50 to 1:5) to give 

2b as a white solid (0.024 g, 48%). mp 124-125°C. 1H NMR (500 MHz, CD3OD) δ 2.04 (dd, J 

= 11.0, 4.5 Hz, 1H), 2.43 (ddd, J = 11.0, 9.5, 4.5 Hz, 1H), 3.70 (dd, J = 10.0, 2.0 Hz, 1H), 3.79-

3.83 (m, 3H), 4.00 (s, 1H) 4.34-4.37 (m, 2H), 4.44 (d, J = 4.5 Hz, 1H), 5.26 (dd, J = 9.5, 4.5 

Hz, 1H). 7.20 (s, 1H). 13C NMR was not available due to the poor solubility. ESI-MS (M+H)+ 

for C13H18N4O5: expected 311.1355, found 311.1377. 

(2R,3S,5R)-5-(5-Allyl-3-benzyl-2-(((dimethylamino)methylene)amino)-4-oxo-4,5-

dihydro-3H-pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-

3- yl 4-methylbenzoate (8). To a suspension of 5 (1.61 g, 2.4 mmol) in dry THF (25.0 mL), 

sodium hydride (0.1 g, 2.3 mmol, 60% in mineral oil) was added. The mixture was stirred for 

15 min before allyl bromide (150 µL, 3.5 mmol) was added. The mixture was stirred at room 

temperature for 16 h. After removing the solvent, the reaction was diluted with methylene 

chloride and washed successively with water and brine. The organic layer was separated, dried 

over MgSO4, and concentrated. Purified by column chromatography (SiO2, 0.06-0.20mm, 

eluting with hexane/ethyl acetate 5:1 to 3:1) to give compound 8 as a white solid (0.82 g, 48%). 



 47 

mp 94-95°C. 1H NMR (500 MHz, CDCl3) δ ppm 2.41 (s, 3H), 2.45 (s, 3H), 2.53-2.57 (m, 1H), 

2.89-2.92 (m, 1H), 3.04 (s, 3H), 3.12 (s, 3H), 4.52-4.55 (m, 1H), 4.60 (dd, J = 11.5, 4.0 Hz, 

1H), 4.71 (dd, J = 11.5, 5.0 Hz, 1H), 5.01-5.09 (m, 2H), 5.13-5.23 (m, 2H), 5.55 (s, 3H), 5.77 

(t, J = 5.0 Hz, 1H), 6.00-6.05 (m, 1H), 7.06 (s, 1H), 7.19-7.23 (m, 3H), 7.26-7.29 (m, 4H), 7.38-

7.39 (m, 2H), 7.95 (d, J = 7.5 Hz, 2H), 8.01 (d, J = 7.5 Hz, 2H), 8.59 (s, 1H).13C NMR (125 

MHz, CDCl3) δ ppm 21.8, 21.83, 35.2, 38.4, 41.0, 45.3, 50.6, 64.8, 68.6, 73.8, 82.1, 114.0, 

117.6, 126.8, 127.3, 127.9, 128.3, 129.0, 129.2, 129.23, 129.26, 129.3, 129.85, 129.9, 130.1, 

134.5, 143.8, 144.0, 154.2, 166.5. ESI-MS (M+H)+ for C40H41N5O6: expected 688.3135, found 

688.3202. 

(2R,3S,5R)-5-(3-Benzyl-5-(2,3-dihydroxypropyl)-2-(((dimethylamino)methylene) 

amino)-4-oxo-4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-

methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl 4-methylbenzoate (9). To the suspension of 8 

(0.82 g, 1.2 mmol) in a mixture of acetone (4.0 mL) and water (1.0 mL) was added TBHP (220 

µL, 1.1-1.3 mmol, 5.0-6.0 M in decane), TBAF (0.028 g, 0.11 mmol) and OSO4 (trace). The 

reaction was stirred at room temperature for overnight. The reaction mixture was diluted with 

methylene chloride and washed successively with water and brine. The organic layer was 

separated, dried over MgSO4, and concentrated. Purified by column chromatography (SiO2, 

0.06-0.20mm, eluting with hexane/ethyl acetate 1:1 to 1:3) to give compound 9 as a light yellow 

solid (0.66 g, 76%). mp 80-81°C. 1H NMR (500 MHz, CDCl3) δ ppm 2.40 (s, 3H), 2.44 (s, 3H), 

2.52-2.60 (m, 1H), 2.84-2.93 (m, 1H), 3.06 (s, 3H), 3.15 (s, 3H), 3.51 (s, 2H), 3.88-3.94 (m, 

2H), 4.30-4.34 (m, 1H), 4.51-4.60 (m, 3H), 4.69-4.72 (m, 1H), 5.54 (s, 3H), 7.11 (s, 1H), 7.19–

7.35 (m, 9H), 7.93 (d, J = 8.0 Hz, 2H), 8.01 (s, 2H), 8.58 (s, 1H). 13C NMR for both 
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diastereomers (125 MHz, CDCl3) δ ppm 21.0, 21.6, 35.0, 37.8, 40.8, 45.4, 50.0, 50.1, 60.4, 62.9, 

63.0, 64.6, 71.8, 73.5, 73.6, 81.8, 113.8, 126.8, 127.08, 127.1, 127.7, 128.1, 129.0, 129.09, 

129.1, 129.2, 129.68, 129.7, 129.72, 131.7, 138.7, 143.7, 143.9, 153.8, 156.8, 166.4. ESI-MS 

(M+H)+ for C40H43N5O8: expected 722.3190, found 722.3193. 

2-Amino-3-benzyl-5-(2,3-dihydroxypropyl)-7-((2R,4S,5R)-4-hydroxy-5- 

(hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one (10). A 

suspension of 9 (0.66 g, 0.91 mmol) in 1 M sodium hydroxide in a mixture of methanol (3 mL) 

and water (0.5 mL) was heated under 70 °C for 16 h and allowed to cool to room temperature. 

The reaction mixture was concentrated and purified by column chromatography (SiO2, 0.06-

0.20mm, eluting with methanol/ethyl acetate 1:20 to 1:10) to give 10 as a white solid (0.21 g, 

54%). mp 93-94°C. 1H NMR (500 MHz, CD3OD) δ ppm 2.07 (dd, J = 13.0, 5.5 Hz, 1H), 2.51 

(ddd, J = 13.0, 11.5, 5.5 Hz, 1H), 3.48 (ddd, J = 11.5, 5.5, 3.0 Hz, 1H), 3.54 (ddd, J = 11.5, 5.0, 

2.0 Hz, 1H), 3.69 (dd, J = 9.5, 2.5 Hz, 1H), 3.82 (dd, J = 9.5, 2.5 Hz, 1H), 3.93–3.97 (m, 1H), 

4.00–4.02 (m, 1H), 4.26 (dt, J = 14.0, 5.0 Hz, 1H), 4.45–4.46 (d, J = 5.0 Hz, 1H), 4.51-4.56 (m, 

1H), 5.29-5.35 (m, 3H), 7.23-7.29 (m, 4H), 7.32-7.35 (m, 2H). 13C NMR for both diastereomers 

(125 MHz, CD3OD) δ ppm 44.18, 44.2, 45.9, 52.6, 62.2, 65.4, 65.5, 73.9, 76.5, 76.8, 90.1, 114.9, 

115.1, 128.3, 129.3, 130.5, 134.3, 137.9, 145.3, 153.1, 157.2. ESI-MS (M+H)+ for C21H26N4O6: 

expected 431.1931, found 431.1966. 

2-Amino-5-(2,3-dihydroxypropyl)-7-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl) 

tetrahydrofuran-2-yl)-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one (2d). To a mixture 

of 10 (0.21 g, 0.49 mmol) and 10% palladium on carbon (0.1 g) in methanol (5 mL) was added 

ammonium formate (0.29 g, 4.5 mmol) under Ar. The reaction mixture was heated under 75 °C 
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for 16 h and then filtered through Celite. The filtrate was concentrated and purified by column 

chromatography (SiO2, 0.06–0.20mm, eluting with methanol/ethyl acetate 1:20 to 1:5) to give 

2d as a white solid (0.12 g, 74%). mp 135-136 °C. 1H NMR (500 MHz, d6-DMSO) δ ppm 1.90 

(dd, J = 13.8, 4.8 Hz, 1H), 2.11-2.17 (m, 1H), 3.27 (t, J = 5.0 Hz, 2H), 3.45 (s, 2H), 3.71 (s, 

2H), 4.03-4.09 (m, 1H), 4.18 (s, 1H), 4.32-4.35 (m, 1H), 4.66 (s, 1H), 4.91 (s, 2H), 5.07 (dd, J 

= 11.2, 6.0 Hz, 1H), 5.20 (br, 1 H), 5.72 (s, 2H), 7.15 (s, 1H), 10.53 (s, 1H). 13C NMR for both 

of the diastereomers (150 MHz, d6-DMSO) δ ppm 42.7, 51.6, 59.9, 63.9, 64.4, 72.3, 73.5, 74.0, 

88.4, 113.3, 114.4, 131.3, 132.3, 151.6, 156.3. ESI-MS (M+H)+ for C14H20N4O6: expected 

341.1461, found 341.1486. 

2-(2-Amino-7-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4- 

oxo-3,4-dihydro-5H-pyrrolo[3,2-d]pyrimidin-5-yl)acetaldehyde (2c). To compound 2d 

(0.050 g, 0.15 mmol) in a mixture of methanol (1 mL) and water (1 mL) was added potassium 

periodate (0.035 g, 0.15 mmol). The reaction mixture was stirred under room temperature for 

30 min, then concentrate and purified by column chromatography (SiO2, 0.06–0.20mm, eluting 

with methanol/ethyl acetate 1:20 to 1:5) to give 2c as a white solid (0.039 g, 85%). mp 117-

118 °C. 1H NMR (600 MHz, d6-DMSO) δ ppm 1.91-1.99 (m, 1H), 2.10-2.13 (m, 1H), 3.44 (s, 

2H), 3.72 (s, 1H), 4.20-4.22 (m, 1H), 4.93-4.95 (m, 1H), 5.07 (s, 2H), 5.84-6.01 (m, 2H), 7.16 

(s, 1H), 9.60 (s, 1H), 10.66-10.72 (s, 1H). 13C NMR was not available due to the poor solubility. 

ESI-MS (M+H)+ for C13H16N4O5: expected 309.1199, found 309.1220. 

(2R,3S,5R)-5-(3-Benzyl-5-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-

(((dimethylamino)methylene)amino)-4-oxo-4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-7-

yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl 4-methylbenzoate (13). To a 
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solution of 6 (0.45 g, 0.65 mmol) in DMF was added imidazole (0.13 g, 1.9 mmol), 4-DMAP 

(0.002 g, 0.018 mmol), TBSCl (0.29 g, 1.9 mmol). The reaction was stirred under room 

temperature for 16 h. After removal of the solvent, the mixture was diluted by methylene 

chloride and washed with water and brine. The solution was concentrated and purified by 

column chromatography (SiO2, 0.06–0.20mm, eluting with hexane/ethyl acetate 5:1 to 3:1) to 

give compound 13 as a light yellow solid (0.43 g, 82 %). mp 50-51°C. 1H NMR (500 MHz, 

CDCl3) δ ppm -0.12 (s, 6H), 0.83 (s, 9H), 2.40 (s, 3H), 2.44 (s, 3H), 2.49-2.52 (m, 1H), 2.87-

2.89 (m, 1H), 3.03 (s, 3H), 3.10 (s, 3H), 3.93 (s, 2H), 4.44 (s, 2H), 4.52 (s, 1H), 4.60 (dd, J = 

11.3, 4.5 Hz, 1H), 4.66 (dd, J = 11.5, 5.0 Hz, 1H), 5.56 (s, 3H), 5.78 (s, 1H), 7.12 (s, 1H), 7.19–

7.21 (m, 3H), 7.25-7.29 (m, 4H), 7.35-7.37 (m, 2H), 7.96 (d, J = 7.5 Hz, 2H), 8.01 (d, J = 6.5 

Hz, 2H), 8.59 (s, 1H). 13C NMR (125 MHz, CDCl3) δ ppm -5.4, 18.4, 21.9, 21.94, 26.1, 31.8, 

35.2, 41.0, 45.3, 51.3, 63.5, 65.0, 73.6, 82.1, 113.0, 114.7, 126.8, 127.46, 127.5, 127.9, 128.3, 

129.3, 129.4, 129.96, 130.0, 139.3, 143.1, 143.9, 144.1, 154.2, 156.0, 156.8, 166.4, 166.6. ESI-

MS (M+H)+ for C45H55N5O7Si: expected 806.3943, found 806.3944. 

2-Amino-3-benzyl-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one (14). A 

suspension of 6 (3 g, 10.2 mmol) in 1 M sodium hydroxide in a mixture of methanol (12 mL) 

and water (6 mL) was heated under 70 °C overnight and allowed to cool to room temperature. 

The reaction mixture was concentrated and purified by column chromatography (SiO2, 0.06-

0.20mm, eluting with ethyl acetate) to give 13 as a white solid (1.86 g, 75%). The 

characterization of this compound was previously described by Gibson et al. 

(2R,3S,5R)-5-(2-Amino-3-benzyl-4-oxo-4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-

7-yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl-4-methylbenzoate (15). To 
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compound 14 (0.31 g, 1.3 mmol) and 1-(α,β)-O-methyl-3,5-di-(O-p-toluoyl)- 2-deoxy-D-ribose 

(0.7 g, 1.9 mmol) in a mixture of methylene chloride (3.0 mL) and acetonitrile (3.0 mL) was 

added a solution of SnCl4 (2.5 mL, 2.5 mmol, 1 M in CH2Cl2). The reaction mixture was heated 

at 65 °C for 16 h. The reaction mixture was diluted with methylene chloride and washed 

successively with satured NaHCO3 and brine. The organic layer was separated and dried over 

MgSO4. The solution was concentrated and purified by column chromatography (SiO2, 0.06–

0.20mm, eluting with hexane/ethyl acetate 1:1 to 1:2) to give compound 15 as a light yellow 

solid (0.20 g, 26%). mp 84-85°C. 1H NMR (500 MHz, CDCl3) δ ppm 2.37 (s, 3H), 2.41 (s, 3H), 

2.60-2.63 (m, 2H), 4.53 (s, 1H), 4.64 (dd, J = 12.0, 4.0 Hz, 1H), 4.78 (dd, J = 11.5, 4.5 Hz, 1H), 

5.34-5.42 (m, 2H), 5.47-5.50 (m, 1H), 5.65-5.66 (m, 1H), 7.18-7.33 (m, 10H), 7.91 (d, J = 7.5 

Hz, 2H), 7.98 (d, J = 8.0 Hz, 2H), 10.54 (s, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 21.9, 22.0, 

30.0, 39.3, 45.1, 65.1, 73.6, 82.9, 113.0, 113.7, 127.0, 127.2, 127.3, 128.5, 129.3, 129.39, 129.4, 

129.5, 130.2, 134.8, 143.7, 144.1, 144.2, 151.3, 166.5, 166.8. ESI-MS (M+H)+ for C34H32N4O6: 

expected 593.2401, found 593.2422. 

(2R,3S,5R,5S)-5-(2-amino-3-benzyl-5-(2-hydroxyethyl)-4-oxo-4,5-dihydro-3H- 

pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl-

methylbenzoate (16). To compound 15 (0.100 g, 0.17 mmol) in dry DMF (2 mL), DBU (28 µL, 

0.18 mmol) and ethylene carbonate (0.04 g, 0.45 mmol) was added. The reaction was heated 

under 110 °C for 4 h. After removal of the solvent, the reaction mixture was diluted with ethyl 

acetate and washed with water and brine. The residue was concentrated and purified by column 

chromatography (SiO2, 0.06–0.20mm, eluting with hexane/ethyl acetate 1:5 to 1:8) to give 

compound 16 as a white solid (0.050g, 46%). The ratio of the epimers (α:β = 1:3) was 
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determined by 1H NMR. 1H NMR for both epimers (600 MHz, CDCl3) δ ppm 2.38 (s, 4.78H), 

2.41 (s, 3H), 2.50 (dd, J= 11.2, 5.6 Hz, 1.35H), 2.62–2.65 (m, 1.38H), 3.35 (s, 0.66H), 3.67 (s, 

2H), 3.89 (t, J= 5.6 Hz, 2.88H), 4.42 (t, J= 5.6 Hz, 2H), 4.46-4.47 (m, 1.59H), 4.51-4.53 (m, 

0.53H), 4.55 (dd, J= 11.2, 5.6 Hz, 1H), 4.64-4.65 (m, 0.39H), 4.75 (dd, J= 11.2, 5.6 Hz, 1H), 

5.11 (s, 0.61H), 5.20-5.29 (m, 3.21H), 5.42 (dd, J= 9.6, 4.8 Hz, 1H), 5.48 (t, J= 6.6 Hz, 0.38H), 

5.52–5.58 (m, 0.34H), 5.64 (d, J= 5.4 Hz, 1H), 7.08 (s, 1H), 7.16-7.36 (m, 13.72H), 7.78 (d, J 

= 7.2 Hz, 0.62H), 7.93 (d, J = 7.8 Hz, 2.47H), 7.97 (d, J = 8.2 Hz, 2H). 13C NMR for both 

epimers (150 MHz, CDCl3) δ ppm 21.80, 21.82, 42.2, 44.6, 51.3, 62.2, 64.7, 73.2, 83.2, 110.6, 

110.9, 112.4, 126.9, 127.1, 127.3, 128.6, 129.2, 129.3, 129.8, 129.9, 130.1, 130.2, 131.2, 133.4, 

144.0, 144.1, 144.2, 151.36, 151.4, 152.5, 166.5, 166.6, 166.7. 

2-Amino-3-benzyl-5-(2-hydroxyethyl)-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one 

(17). To compound 14 (1.3g, 4.4 mmol) in dry DMF (5 mL), DBU (280 µL, 1.83 mmol) and 

ethylene carbonate (1.0 g, 11.7 mmol) was added. The reaction was heated under 90 °C for 4 h. 

After removal of the solvent, the reaction mixture was diluted with ethyl acetate and washed 

with water and brine. The residue was chromatographed by ethyl acetate to give compound 17 

as a white solid (0.6 g, 47%). mp 168-169 °C. 1H NMR (500 MHz, d6-DMSO) δ ppm 3.65 (dd, 

J = 9.5, 5.0 Hz, 2H), 4.30 (t, J = 4.5 Hz, 2H), 5.23 (s, 2H), 5.90 (s, 1H), 6.25 (s, 1H), 7.21–7.26 

(m, 4H), 7.32 (t, J = 6.0 Hz, 2H). 13C NMR (150 MHz, CD3OD) δ ppm 45.1, 51.9, 63.2, 100.3, 

112.7, 127.5, 128.5, 129.8, 134.6, 137.3, 146.9, 152.8, 156.2. ESI-MS (M+H)+ for C15H16N4O2: 

expected 285.1352, found 285.1337. 

(2R,3S,5S)-5-(2-Amino-3-benzyl-5-(2-hydroxyethyl)-4-oxo-4,5-dihydro-3H-

pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl-4-
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methyl benzoate (18). To compound 17 (0.6 g, 2.2 mmol) and 1-(α, β)-O-methyl-3,5-di-(O-p-

toluoyl)- 2-deoxy-D-ribose (2.4 g, 3.3 mmol) in a mixture of methylene chloride (5.0 mL) and 

acetonitrile (5.0 mL) was added a solution of SnCl4 (4.5 mL, 4.5 mmol, 1 M in CH2Cl2). The 

reaction mixture was heated at 65 °C for 16 h. The reaction mixture was diluted with 

methylene chloride and washed successively with sat. NaHCO3 and brine. The organic layer 

was separated, dried over MgSO4. The solution was concentrated and purified by column 

chromatography (SiO2, 0.06–0.20mm, eluting with hexane/ethyl acetate 1:1 to 1:2) to give 

compound 18 as a white solid (0.39 g, 28%). mp 89-90 °C. 1H NMR (500 MHz, CDCl3) δ ppm 

2.40 (s, 3H), 2.43 (s, 3H), 2.50 (dd, J = 13.0, 5.0 Hz, 1H), 2.67 (ddd, J = 10.5, 10.5, 4.5 Hz, 

1H), 3.60 (s, 1H), 3.90 (s, 2H), 4.42 (s, 3H), 4.55 (dd, J = 10.5, 4.5 Hz, 1H), 4.73 (dd, J = 10.5, 

4.5 Hz, 1H), 5.02 (s, 2H), 5.19-5.26 (m, 2H), 5.45 (dd, J = 10.5, 5.0 Hz, 1H), 5.65 (d, J = 5.0 

Hz, 1H), 7.09 (s, 1H), 7.20-7.32 (m, 9H), 7.95 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H). 13C 

NMR (125 MHz, CDCl3) δ ppm 21.87, 21.9, 38.6, 44.8, 51.3, 63.0, 65.0, 73.5, 82.6, 112.8, 

113.1, 126.7, 127.3, 127.4, 128.2, 129.38, 129.4, 129.9, 130.0, 131.0, 135.3, 144.1, 144.3, 150.9, 

155.2, 166.4, 166.7. ESI-MS (M+H)+ for C36H36N4O7: expected 637.2663, found 637.2697. 

(2R,3S,5S)-5-(2-Amino-3-benzyl-5-(2-((tert-butyldimethylsilyl)oxy)ethyl)-4-oxo-

4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl) 

tetrahydrofuran-3-yl 4-methylbenzoate (19). To Compound 18 (0.39 g, 0.6 mmol) in DMF was 

added imidazole (0.13 g, 1.9 mmol), 4-DMAP (0.002 g, 0.018 mmol), TBSCl (0.3 g, 2.0 mmol). 

The reaction was stirred under room temperature for 16 h. After removal of the solvent, the 

mixture was diluted by methylene chloride and washed with water and brine. The solution was 

concentrated and purified by column (SiO2, 0.06-0.20mm, eluting with hexane/ethyl acetate 5:1 
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to 3:1) to give compound 19 as a gummy solid (0.42 g, 93%). mp 55-56 °C. 1H NMR (500 

MHz, CDCl3) δ ppm -0.11 (d, J = 5.0 Hz, 6H), 0.82 (s, 9H), 2.39 (s, 3H), 2.41 (s, 3H), 2.44 (dd, 

J = 11.5, 4.5 Hz, 1H), 2.62 (ddd, J = 11.5, 11.5, 4.5 Hz, 1H), 3.90 (t, J = 3.5 Hz, 2H), 4.31-4.37 

(m, 2H), 4.44 (dt, J = 11.5, 3.5 Hz, 1H), 4.51 (dd, J = 9.5, 3.5 Hz, 1H), 4.67 (dd, J  = 9.5, 4.0 

Hz, 1H), 5.14-5.28 (m, 3H), 5.45 (dd, J = 9.5, 4.5 Hz, 1H),  5.65 (d, J  = 4.5 Hz, 1H), 7.08 

(s, 1H), 7.19-7.30 (m, 9H), 7.94 (d, J = 7.0 Hz, 2H), 7.97 (d, J = 6.5 Hz, 2H). 13C NMR (125 

MHz, CDCl3) δ ppm -5.6, 18.1, 21.6, 21.65, 25.8, 37.8, 44.3, 51.1, 53.5, 63.1, 64.7, 72.6, 82.3, 

111.7, 112.2, 126.1, 127.1, 127.3, 127.8, 129.0, 129.1, 129.7, 129.74, 130.9, 135.3, 143.7, 144.0, 

151.4, 154.7, 166.0, 166.2. ESI-MS (M+H)+ for C42H50N4O7Si: expected 751.3528, found 751. 

3505. 

2-Amino-3-benzyl-5-(2-((tert-butyldimethylsilyl)oxy)ethyl)-7-((2S,4S,5R)-4- 

hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-4H-pyrrolo[3,2-

d]pyrimidin-4-one (20). To Compound 19 (0.42 g, 0.56 mmol) in a mixture of methanol (10.0 

mL) and water (1.0 mL) was added sodium hydroxide (0.05 M). The reaction mixture was 

stirred under room temperature for 1 h. The reaction mixture was concentrated and purified by 

column chromatography (SiO2, 0.06-0.20mm, eluting with methanol/ethyl acetate 1:50 to 1:20) 

to give 20 as a white solid ( 0.21 g, 74%). mp 57-58 °C. 1H NMR (500 MHz, CD3OD) δ ppm -

0.09 (d, J= 10.0 Hz, 6H), 0.82 (s, 9H), 2.02 (dd, J = 11.0, 5.0 Hz, 1H), 2.51–2.56 (m, 1H), 3.68 

(d, J = 12.0 Hz, 1H), 3.87–3.90 (m, 2H), 4.08 (s, 1H), 4.31 (dt, J = 14.0, 5.0 Hz, 1H), 4.53–4.58 

(m, 2H), 5.13 (d, J = 16.0 Hz, 1H), 5.26 (dd, J = 11.5, 5.5 Hz, 1H), 5.40 (d, J = 16.0 Hz, 1H), 

7.06 (s, 1H), 7.22–7.35 (m, 5H). 13C NMR (125 MHz, CD3OD) δ ppm -4.5, 19.7, 27.2, 44.4, 
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45.7, 52.6, 64.9, 65.5, 76.7, 89.9, 114.3, 114.7, 128.2, 129.2, 130.4, 134.0, 137.7, 144.9, 152.9, 

156.6. ESI-MS (M+H)+ for C26H38N4O5Si: expected 515.2690, found 515.2706. 

2-Amino-5-(2-((tert-butyldimethylsilyl)oxy)ethyl)-7-((2S,4S,5R)-4-hydroxy-5-

(hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one 

(3b). To compound 20 (0.21 g, 0.41 mmol) and 10% palladium on carbon (0.11 g) in methanol 

(5.0 mL) was added ammonium formate (0.28 g, 4.5 mmol) under Ar. The reaction mixture 

was heated under 75 °C for 16 h and then filtered through celite. The filtrate was concentrate 

and purified by column chromatography (SiO2, 0.06–0.20mm, eluting with methanol/ethyl 

acetate 1:20 to 1:5) to give 3b as a white gummy solid (0.075 g, 43%). mp 49-50 °C. 1H NMR 

(600 MHz, d6-DMSO) δ ppm -0.13 (s, 6H), 0.79 (s, 9H), 1.88 (dd, J = 12.2, 5.4 Hz, 1H), 2.06-

2.11 (m, 1H), 3.42 (s, 2H), 3.72 (s, 1H), 3.81 (t, J = 5.4 Hz, 2H), 4.17 (s, 1H), 4.25 (t, J = 4.8 

Hz, 2H), 4.90 (s, 1H), 5.07 (dd, J = 12.0, 5.4 Hz, 1H), 5.71 (s, 1H), 7.12 (s, 1H), 10.78 (s, 1H). 

13C NMR (150 MHz, d6-DMSO) δ ppm -4.7, 18.8, 26.7, 42.8, 51.1, 63.9, 73.4, 74.0, 88.4, 112.8, 

114.5, 130.9, 145.8, 151.6, 155.6. ESI-MS (M+H)+ for C19H32N4O5Si: expected 425.2221, 

found 425.2260. 

N'-(5-Allyl-3-benzyl-4-oxo-4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-2-yl)-N,N- 

dimethylformimidamide (25). To a suspension of compound 4 (2.0 g, 6.8 mmol) in dry THF 

(25.0 mL), sodium hydride (0.28 g, 6.7 mmol, 60% in mineral oil) was added. The mixture was 

stirred for 15min before allyl bromide (330.0 µL, 8.0 mmol) was added. The mixture was stirred 

at room temperature for 16 h. After removing the solvent, the reaction was diluted with 

methylene chloride and washed successively with water and brine. The organic layer was 

separated, dried over MgSO4 and concentrated. Purified by column chromatography (SiO2, 
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0.06–0.20mm, eluting with hexane/ethyl acetate 5:1 to 3:1) to give compound 25 as a light 

yellow solid (1.4 g, 64%). mp 93-94 °C. 1H NMR (500 MHz, CDCl3) δ ppm 3.06 (s, 3H), 3.15 

(s, 3H), 5.06-5.09 (m, 3H), 5.19 (d, J = 10.5 Hz, 1H), 5.52 (s, 2H), 6.05 (ddt, J = 16.5, 10.5, 5.0 

Hz, 1H), 6.31 (s, 1H), 7.03 (s, 1H), 7.19-7.21 (m, 1H), 7.27 (t, J = 7.5 Hz, 2H), 7.37 (d, J = 7.5 

Hz, 2H), 8.61 (s, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 35.0, 40.8, 45.1, 50.4, 101.3, 114.3, 

116.9, 126.7, 127.9, 128.1, 130.4, 134.8, 139.0, 144.4, 154.3, 155.8, 156.2. ESI-MS (M+H)+ 

for C19H21N5O: expected 336.1824, found 336.1832. 

5-Allyl-2-amino-3-benzyl-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one (26). To 

Compound 25 (1.0 g, 3 mmol) in a mixture of methanol (20.0 mL) and water (5.0 mL) was 

added sodium hydroxide (1.0 M). The reaction mixture was heated under 70 °C for 16 h. The 

reaction mixture was concentrated and purified by column chromatography (SiO2, 0.06–

0.20mm, eluting with ethyl acetate) to give 26 as a white solid (0.58 g, 70%). mp 121-122 °C. 

1H NMR (500 MHz, CD3OD) δ ppm 4.99-5.05 (m, 3H), 5.16 (dd, J = 10.5, 1.5 Hz, 1H), 5.33 

(s, 2H), 6.04-6.12 (m, 2H), 7.21-7.30 (m, 4H), 7.35 (t, J = 7.5 Hz, 2H). 13C NMR (125 MHz, 

CDCl3) δ ppm 44.5, 50.5, 101.3, 112.3, 117.0, 126.5, 127.9, 129.1, 131.1, 134.6, 135.7, 144.9, 

151.1, 154.8. ESI-MS (M+H)+ for C16H16N4O: expected 281.1403, found 281.1387. 

(2R,3S,5R)-5-(5-Allyl-2-amino-3-benzyl-4-oxo-4,5-dihydro-3H-pyrrolo[3,2-

d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl-4-

methylbenzoate (27). To compound 26 (0.58 g, 2.1 mmol) and 1-(α,β)-O-methyl-3,5-di- 

(O-p-toluoyl)-2-deoxy-D-ribose (2.3 g, 3.1 mmol) in a mixture of methylene chloride (5.0 mL) 

and acetonitrile (5.0 mL) was added a solution of SnCl4 (4.2 mL, 4.2 mmol, 1 M in CH2Cl2). 

The reaction mixture was heated at 65 °C for 16 h. The reaction mixture was diluted with 
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methylene chloride and washed successively with sat. NaHCO3 and brine. The organic layer 

was separated, dried over MgSO4, and concentrated. Purified by column chromatography (SiO2, 

0.06-0.20mm, eluting with hexane/ethyl acetate 2:1 to 1:2) to give compound 27 as a light 

yellow solid (0.30 g, 23%). mp 59-60 °C. 1H NMR (600 MHz, CDCl3) δ ppm 2.40 (s, 3H), 2.41 

(s, 3H), 2.56-2.59 (m, 2H), 4.47 (dt, J = 4.2, 1.8 Hz, 1H), 4.57 (dd, J = 12.0, 4.2 Hz, 1H), 4.76 

(dd, J = 12.0, 4.2 Hz, 1H), 4.94–4.96 (m, 2H), 5.09 (d, J = 10.4 Hz, 1H), 5.17 (d, J = 10.4 Hz, 

1H), 5.29 (s, 2H), 5.48 (t, J = 8.4 Hz, 1H), 5.64-5.66 (m, 1H), 5.95–6.02 (m, 1H), 7.04 (s, 1H), 

7.23-7.29 (m, 7H), 7.31-7.34 (m, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H). 13C 

NMR (125 MHz, CDCl3) δ ppm 21.75, 21.8, 38.6, 44.5, 50.6, 64.8, 73.2, 77.4, 82.5, 112.8, 

113.1, 117.6, 126.4, 127.2, 127.3, 128.0, 129.0, 129.2, 129.23, 129.8, 134.2, 135.4, 143.8, 144.1, 

151.3, 154.7, 166.2, 166.4. ESI-MS (M+H)+ for C37H36N4O6: expected 633.2714, found 

633.2745. 

(2R,3S,5R)-5-(2-Amino-3-benzyl-5-(2,3-dihydroxypropyl)-4-oxo-4,5-dihydro- 

3H-pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl)tetrahydrofuran-3-yl 

4-methylbenzoate (28). To the suspension of compound 27 (0.30 g, 0.48 mmol) in a mixture of 

acetone (4.0 mL) and water (1.0 mL) was added TBHP (100 µL, 0.5-0.6 mmol, 5.0-6.0 M in 

decane), TBAF (0.012 g, 0.048 mmol) and OSO4 (trace). The reaction was stirred at room 

temperature for 16 h. The reaction mixture was diluted with methylene chloride and washed 

successively with water and brine. The organic layer was separated, dried over MgSO4, and 

concentrated. The solution was purified by column chromatography (SiO2, 0.06-0.20mm, 

eluting with hexane/ethyl acetate 1:1 to 1:3) to give compound 28 as a light yellow solid (0.13 

g, 40%). mp 61-62 °C. 1H NMR (500 MHz, CDCl3) δ ppm 2.36 (s, 3H), 2.39 (s, 3H), 2.50-2.58 
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(m, 2H), 3.46 (dd, J = 12.0, 5.5 Hz, 1H), 3.52 (ddd, J = 11.5, 4.5, 1.5 Hz, 1H), 3.88-3.93 (m, 

1H), 4.18 (dt, J = 14.0, 7.0 Hz, 1H), 4.40 (dt, J = 5.0, 2.0 Hz, 1H), 4.44 (dd, J = 14.0, 3.5Hz, 

1H ), 4.54 (ddd, J = 12.0, 5.0, 2.0 Hz, 1H), 4.67 (dt, J = 12.0, 5.4 Hz, 1H), 5.26 (s, 2H), 5.43 

(dd, J = 10.0, 6.0 Hz, 1H), 5.59-5.60 (m, 1H), 7.19-7.28 (m, 10H), 7.89 (d, J = 8.5 Hz, 2H), 

7.94 (d, J = 8.0 Hz, 2H). 13C NMR for both diastereomers (125 MHz, CDCl3) δ ppm 22.5, 22.56, 

46.0, 52.79, 52.8, 65.4, 65.4, 66.7, 73.8, 73.85, 75.5, 79.51, 84.6, 114.1, 114.3, 128.3, 129.0, 

129.1, 129.40, 130.6, 131.1, 131.5, 131.53, 133.7, 137.7, 146.2, 146.3, 153.4, 156.9, 168.4, 

168.6. ESI-MS (M+H)+ for C37H38N4O8: expected 667.2769, found 667.2786. 

(2R,3S,5R)-5-(2-Amino-3-benzyl-5-(2,3-bis((tert-butyldimethylsilyl)oxy)propyl)- 

4-oxo-4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-7-yl)-2-(((4-methylbenzoyl)oxy)methyl) 

tetrahydrofuran-3-yl-4-methylbenzoate (29). To Compound 28 (0.13 g, 0.19 mmol) in DMF 

was added imidazole (0.08 g, 1.1 mmol), 4-DMAP (0.002 g, 0.018 mmol), TBSCl (0.17 g, 1.1 

mmol). The reaction was stirred under room temperature for 16 h. After removal of the solvent, 

the mixture was diluted by methylene chloride and washed with water and brine. The solution 

was concentrated and purified by column chromatography (SiO2, 0.06-0.20mm, eluting 

with hexane/ethyl acetate 5:1 to 3:1) to give compound 29 as a white gummy solid (0.13 g, 

76%). mp 44-45 °C. 1H NMR (600 MHz, CDCl3) δ ppm -0.31 (s, 3H), -0.07 (d, J = 10.2 Hz, 

3H), 0.07 (s, 6H), 0.78 (d, J = 2.4 Hz, 9H), 0.91 (s, 9H), 2.39 (s, 3H), 2.40 (s, 4H), 2.42-

2.44 (m, 1H), 3.52-3.55 (m, 1H), 3.61 (dd, J = 10.2, 3.6 Hz, 1H),  3.99-4.14 (m, 2H), 4.50-

4.52 (m, 1H), 4.60-4.64 (m, 2H), 4.77 (dd, J = 11.4, 4.8 Hz, 1H), 5.39-5.43 (m, 3H), 5.61-5.63 

(m, 1H), 7.11 (s, 1H), 7.18-7.20 (m, 2H), 7.24-7.27 (m, 4H), 7.32-7.35 (m, 5H), 7.91 (d, J = 7.8 

Hz, 2H), 8.02 (d, J = 7.8 Hz, 2H). 13C NMR  for  both  diastereomers  (600 MHz, CDCl3) 
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δ ppm -5.1, -5.0, -4.5, 18.2, 18.6, 21.9, 22.0, 26.1, 26.2, 29.9, 38.5, 44.6, 52.3, 52.6, 65.2, 65.8, 

72.9, 73.0, 73.6, 82.6, 112.2, 112.3, 126.7, 126.8, 127.4, 127.5, 128.3, 129.4, 129.5, 130.0, 

130.1, 131.4, 131.6, 135.5, 143.9, 144.2, 150.9, 151.2, 166.4, 166.6. ESI-MS (M+H)+ for 

C49H66N4O8Si2: expected 895.4498, found 895.4525. 

2-Amino-5-(2,3-bis((tert-butyldimethylsilyl)oxy)propyl)-7-((2R,4S,5R)-4-hydroxy-5- 

(hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one (3d). 

To Compound 29 (0.13 g, 0.14 mmol) in a mixture of methanol (5 mL) and water (0.5 mL) was 

added sodium hydroxide (0.1 M). The reaction mixture was stirred under room temperature for 

1 h. The reaction mixture was concentrated and purified by column chromatography (SiO2, 

0.06-0.20mm, eluting with methanol/ethyl acetate 1:50 to 1:20) to give 30 (0.065 g, 68%). To 

compound 30 (0.065 g, 0.10 mmol) and 10% palladium on carbon (0.030 g) in methanol (3.0 

mL) was added ammonium formate (0.063 g, 1.0 mmol) under Ar. The reaction mixture was 

heated under 75 °C for 16 h and then filtered through celite. The filtrate was concentrated and 

purified by column chromatography (SiO2, 0.06–0.20mm, eluting with methanol/ethyl acetate 

1:20 to 1:5) to give 3d as a white gummy solid (0.031 g, 56%). mp 53-54 °C. 1H NMR (600 

MHz, d6-DMSO) δ ppm -0.28 (d, J = 6.0 Hz, 3H), -0.08 (s, 3H), 0.05 (s, 6H), 0.79 (s, 9H), 0.89 

(s, 9H), 1.88-1.91 (m, 1H), 2.02-2.11 (m, 1H), 3.46-3.50 (m, 2H), 3.70 (d, J = 15.6 Hz, 1H), 

3.97-4.03 (m, 2H), 4.18 (d, J = 12.0 Hz, 1H), 4.34 (d, J = 10.2 Hz, 1H), 4.90 (s, 1H), 5.06-5.10 

(m, 1H), 5.69 (d, J = 20.0 Hz, 1H), 7.02 (s, 1H), 10.50 (d, J = 15.2 Hz, 1H). 13C NMR (150 

MHz, d6-DMSO) δ ppm -4.5, -3.9, 18.6, 19.0, 26.7, 49.6, 52.1, 52.2, 63.9, 64.0, 66.3, 73.6, 73.9, 

74.2, 88.3, 113.2, 114.8, 131.2, 145.8, 151.4, 155.3. ESI-MS (M+H)+ for C26H48N4O6Si2: 

expected 569.3191, found 569.3234. 
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CHAPTER 3  

HIGHLY SPECIFIC COLORIMETRIC DETECTION OF DNA OXIDATION 

BIOMARKER USING GOLD NANOPARTICLE/TRILEX DNA CONJUGATES 

 

3.1 Introduction 

DNA is inevitably subjected to oxidative damage during cellular metabolism, and the oxidative 

damage can cause a variety of diseases including cancer. More than 20 oxidatively damaged 

DNA base lesions were identified in 2003 by Cooke et al. Among these lesions, 8-oxo-2'-

deoxyguanosine (8-oxo-dG) and 8-oxo-guanosine (8-oxoGuo) have become the focus of 

intense research interest due to their relative higher abundance compared to other lesions. DNA 

repair is considered the major factor contributing to the urinary 8-oxoGua levels, although the 

precise pathways have not been fully understood. To get a better understanding of the role of 

such DNA lesion in the aetiology of many diseases such as cancer and ageing, methods of the 

8-oxoGua analysis have been developed rapidly. Chomatographic methods and immunoassay 

are major detection methods for urinary 8-oxoGua. It has been reported that some of the 

detection methods may actually generate oxidative nucleobase during the sample preparation, 

although efforts have been made to minimize this problem.    

3.1.1 Formation and Repair Mechanism of 8-OxodG 

Normal cellular metabolism continuously generates reactive oxygen species (ROS) as 

byproducts, such as peroxides, superoxide, hydroxyl radical, and singlet oxygen. These 

molecules, produced as byproducts during the mitochondrial electron transport of aerobic 

respiration or by oxidoreductase enzymes and metal-catalyzed oxidation, have the potential to 

https://en.wikipedia.org/wiki/Peroxide
https://en.wikipedia.org/wiki/Superoxide
https://en.wikipedia.org/wiki/Hydroxyl_radical
https://en.wikipedia.org/wiki/Singlet_oxygen
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cause a number of deleterious events. In addition, daily activities such as fatigue and smoking, 

environmental factors such as smoking, exposure to radiation and polluted chemicals, may 

contribute to the increase of the oxidative stress. Cigarette smoke contains reactive oxygen-

generating substances such as hydroquinone and catechol and induces oxidative DNA-damage 

in vitro. According to several studies, the urinary 8-OHGua levels of the smokers studied here 

were certainly higher than those of nonsmokers. [64] 

Bruskov et al have suggested that 8-oxodG can be formed due to heat-mediated 

generation of ROS and their reactions with DNA.[65] The OH• radical is shown to attack the 

C4, C5, and C8 positions of guanine among which the C8 position is the most favored reaction 

site. In addition, H2O2 that is void of reactivity with any of the nucleotides can produce the 

highly reactive OH• radical and an OH- anion through the Fenton and Haber-Weiss mechanisms 

that involve metal cations.[66, 67] According to a computational study of the 8-oxoGua 

formation mechanism, the addition reaction of an OH• radical at the C8 position of guanine is 

found to form 8-oxoGua, which a second OH• radical at the C8 position of guanine leading to 

the formation of 8-oxoGua complexed with a water molecule by two different pathways. 

According to one mechanism, the 8-OHGua complexed with a water molecule followed by 

tautomerization to 8-oxoGua, while in the other mechanism the five-membered ring open and 

close to form 8-oxoGua complexed with a water molecule.  
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Figure 3.1 Mechanisms of 8-oxoG formation. 

Direct oxidation of guanine in DNA can generate 8-oxodG, meanwhile, the oxidation 

of dGTP in the nucleotide pool can form 8-oxodGTP, which can be incorporated into DNA 

during replication. 8-oxodG is mainly repaired by oxoguanine DNA glycosylase 1 (OGG1), 

releasing 8-oxoGua for urinary excretion. Nei endonuclease VIII-like 1 (NEIL1) in E. Coli, 

DNA translesion synthesis enzymes, and nucleotide excision repair along with the putative 

nucleotide incision repair all act as backup systems assisting OGG1. The mutY homolog 

(MUTYH) in E. Coli remove the adenine mispaired with 8-oxoGua to reduce the risk of 
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mutations. Nudix (nucleoside diphosphate linked moiety X) - type motif 1 (NUDT1) 

hydrolyze the 8-oxodGTP to di or mono- nucleotide to prevent the incorporation during the 

replication. Obtułowicz et al found positive correlations between 8-oxoGua excretion and 

OGG1 mRNA expression according to the fact that mRNA levels of OGG1 increased in 

colorectal cancer (CRC) patients, which could explain the increased 8-oxoGua excision rate in 

CRC patients and the upregulated OGG1 mRNA expression by oxidative stress.[68] 

3.1.2 Aging and Diseases Related to 8-OxoGua Excretion 

The association between aging and 8-oxoGua excretion is of interest since it is well believed 

that one of the major contributors of aging is DNA oxidative damage. Upon the studies about 

effects of aging on the level of oxidatively damaged DNA in various organs, most investigated 

organs such as brain, heart, kidney, lung, and liver are more susceptible to aging-associated 

oxidative damage to DNA, while the organs like intestine, spleen, and testis seem to be less 

susceptible. Although in one study the positive association between age and 8-oxoGua 

excretion is reported,[69] in general it seems that aging has little effect on the 8-oxoGua 

excretion based on results of other large studies.[70, 71]  

The level of urinary 8-oxoGua is addressed as a possible factor of cancer or pre-

cancerous diseases. Loft et al using nested-in-cohort case-control model to investigate the 

association between urinary 8-oxoGua and lung cancer, and it is of importance that they found 

association between risk of lung cancer and 8-oxoGua excretion among men, former smokers 

and nonsmokers.[72] According to reported results, urinary and leukocytic 8-oxoGua levels in 

patients with colorectal tumor were significantly higher than healthy controls.[68] Similarly, 
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patients with head and neck cancer excrete more 8-oxoGua compared with healthy controls. 

Elevated levels of 8-oxoGua both in the cerebrospinal fluid and the urine were also found in 

patients with mixed Alzheimer disease/vascular dementia.[73] In contrast, a study also shows 

that no significant difference in urinary 8-oxoGua was found among patients with lung cancers 

and healthy controls.[74] Under certain circumstances, elevated 8-oxoGua excretion is the 

consequence of the disease other than the reflection of oxidative stress. This is supported by the 

results that only the untreated patients with celiac cancer have elevated urinary 8-oxoGua, while 

the treated patients with limited diseases have a similar level of urinary 8-oxoGua compared 

with healthy controls.[75]  

3.1.3 Urinary Excretion of 8-OxoGua as a Biomarker 

Validating 8-oxoGua as a biomarker has been advanced for a long time. Even though high pH 

and heating used to compromise the poor solubility of 8-oxoGua can somehow sabotage the 

long-term storage of 8-oxoGua, it is also reported that the similar levels of 8-oxoGua in urine 

samples are found when stored under -130°C for 9-13 years.  

To clarify the cellular resource of urinary 8-oxoGua, Rozalski et al found a 26% 

reduction in the urinary level of 8-oxo-7,8-dihydroguanine in OGG1 deficient mice in 

comparison with the wild-type strain.[76] This small difference could be because that the 8-

oxodG in DNA is higher in OGG1 deficient mice due to the accumulation of the oxidative 

damage, and assume first order kinetics, less backup repair systems are required for this 

excretion. Depending on this result, it should be emphasized that assuming the steady state 

kinetics, urinary 8-oxoGua excretion is related to the rate of ongoing oxidative damage 

http://www.sciencedirect.com/science/article/pii/S135727250500021X
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regardless of repair capacity. Thus, correlations between urinary excretion and cellular level of 

8-oxoGua would be of interest in steady state and the association between these two has been 

confirmed regarding different diseases such as colorectal cancer, lung cancer, celiac cancer and 

so on. In contrast, research on mixed dementia found elevated urinary 8-oxoGua level without 

increasing leukocytic 8-oxoGua level.  

It has also been confirmed that both the urinary 8-oxoGua and 8-oxodG can reflect the 

oxidative stress by a number of studies. [69, 71, 77] Although large variation was found between 

these two biomarkers in different species, the augment of these two from the same samples will 

be taken into accounted. Frequently, spot urine samples corrected for creatinine have been used 

for the analysis of 8-oxodG. However, the correlation between the 8-oxodG to creatinine ratio 

in spot samples and the 24 h excretion of 8-oxodG has been shown to be rather poor.[78] 

Creatinine correction is commonly used and usually found no problems for repeated 

measurements, but creatinine excretion varies significantly by muscle mass which is related to 

age, sex and diseases.  

As a well-accepted biomarker, 8-oxoGua excretion is still in its early development. 

Problems such as analytical validation and dietary sources still need to be addressed. Besides, 

it is impossible to relate the urinary excretion of 8-oxoGua to DNA damage in a particular organ. 

3.1.4 General Methods for the Measurement of 8-OxoGua or 8-OxodG 

In 1986, a method of detecting 8-oxodG using HPLC-EC was introduced by Floyd et al.[79] 

The excellent sensitivity allows this method to be widely applied in the last decade with various 

modifications. In general, the DNA was hydrolyzed and separated on C18 columns followed 
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by EC detection. The inefficient release of 8-oxodG by the hydrolytic enzymes is thought to be 

the major reason of the underestimation of 8-oxodG in DNA.[80] In addition, small quantities 

of DNA sample may greatly increase the ratio of 8-oxodG/dG due to the trace metals in the 

buffers or enzymes, and as a result hydrolysis of >100µg of DNA samples would be preferable 

to allow a greater margin of error. The detection of urinary 8-oxodG was found to be difficult 

until a two-step solid-phase extraction method was developed, and the detection limit was as 

low as 0.9 nM in urinary 8-oxoG measurement.   

Gas chromatography with mass spectrometry (GC-MS) is a highly specific, sensitive 

and versatile technique for the quantitative analysis of individual products of oxidized DNA 

bases including 8-oxoguanine. However, an artifactal oxidation of guanine during the 

derivatization reaction including the silylation reaction prior to the GC-MS was 

demonstrated.[81] One of the solutions to this problem is to purify 8-oxoGua by 

immunoaffinity chromatography prior to the silylation reaction or derivatization by HPLC.  

32P-postlabeling assays based on TLC have been developed to selectively and sensitively 

detect the oxidation DNA damage including 8-oxodG.[82] The deoxyribonucleoside-3’-

monophosphates was prepared by enzymetic digestion, followed by 5′ phosphorylation using 

λ-32P ATP. Radiolabelled digests was separated by 2-directional PEI- cellulose TLC. This 

method has high sensitivity (<1 8-oxodG per 105-6 nucleotides) when using nanogram quantity 

of DNA.[83] To reduce the risk of artifactual oxidation of dG to 8-oxodG caused by the ionizing 

radiation, an improvement in which the unmodified nucleotides was removed prior to the post-

labelling was developed. The enrichment of 8-oxodG allow using the larger quantities of DNA 
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and higher specific activity [γ-32P]ATP, and as a result, the sensitivity was increased to <1 8-

oxodG per 107 nucleotides using microgram quantity of DNA.  

Compared to HPLC which is relatively complicated and inconvenient to use in the 

clinical laboratories, enzyme-linked immunosorbent assay (ELISA) are easier to perform. To 

compare these two methods to determine whether the ELISA method is applicable to detect 8-

oxodG, Kayoko et al found a good correlation between them, but ELISA estimates were about 

2-fold higher than the HPLC.[84] This was explained by a possible nonspecific binding of 

materials prior to the assay, or crossreactivity with other modified bases present in the samples, 

or the lack of selectivity between urinary 8-oxodG and 8-oxoGua. 

8-OxodG and 8-oxoGua in human DNA are released by DNA repair pathways and the 

modified nucleotides or nucleobases are excreted into urine. Unlike determination of 8-oxodG 

or 8-oxoGua in leukocyte DNA, the measurement of urinary 8-oxodG has some advantages: (1) 

it is a non-invasive method (2) it can minimize the artifactual oxidation product during sample 

procedure or derivatization, (3) 8-oxodG shows high stability in urine (4) the urinary 8-oxodG 

is thought to present the whole body oxidative damage. Urinary 8-oxodG is preferentially 

analyzed by HPLC-EC and GC-MS. To improve the accuracy of the measurement of urinary 

8-oxodG, separation of the analyte from the urinary matrix containing complex materials has 

become a major challenge. Herein different procedure has been described for HPLC techniques 

such as solid phase extraction and coupled-column HPLC. In addition, tandem mass 

spectrometry method (MS/MS) has been used with HPLC. Without any sample pre-treatment, 

HPLC-MS/MS is able to analyse all types of 8-hydroxylated guanine modifications.[85]   
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3.1.5 Aptamers as Small Molecules Recognition Elements and Their Applications   

Nucleic acids are well-known for their abilities to store genetic information. Although not as 

complex as proteins, the nucleic acid can also fold into tertiary structures which are able to 

perform multiple functions such as catalytic activities and ligand binding. Systematic evolution 

of ligands by exponential enrichment (SELEX) was first introduced in 1990 and the nucleic 

acids using in this process are called aptamers. Aptamers are short nucleic acid oligomers which 

have high affinity and specificity toward their targets through a combination of molecular-shape 

complimentary, hydrogen bonding and stacking interactions. As a growing need for effective 

sensing methods, the focus on the molecular recognition probes dramatically promotes the 

development of aptamers. Compare to the antibodies which are also broadly used as recognition 

units, aptamers offer several key advantages. First, the aptamer sequence can be easily and 

economically generated by the automated solid-phase synthesis. This also means specific 

designs are feasible such as adding a fluorescent beacon at a certain position. In addition, the 

nucleic acid nature of aptamer makes it more robust against the harsh conditions such as high 

temperature. Especially, aptamers can be reversibly denatured under conditions that irreversibly 

denature the antibodies. And toxicity and low immunogenicity of particular antigens do not 

interfere with the aptamer development.  

Small molecules play key roles in many biological processes because of their ability to 

diffuse across cell membranes. They can have a variety of biological functions, such as cell 

signaling molecules, drugs in medicine, pesticides in farming, and in many other roles.[86] One 

major challenge to the small molecule-binding aptamers is that most of the aptamers cannot 

bind targets with high affinity required for most sensing applications. In general, the larger 

https://en.wikipedia.org/wiki/Cell_signaling
https://en.wikipedia.org/wiki/Cell_signaling
https://en.wikipedia.org/wiki/Drug
https://en.wikipedia.org/wiki/Medicine
https://en.wikipedia.org/wiki/Pesticide
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target molecular weight resulted in lower Kd.[87]  Efforts have been done to seek the natural 

aptamer with high affinity to target such as riboswitch or to study the structure-affinity 

relationship of the aptamer.[88] Considering the effectiveness of the naturally developed 

aptamers, there is still great potential in this field. 

Till now, plenty of research regarding the engineering of aptamer-based biosensors 

has been reported. These biosensors were well-constructed by a variety of methodologies, 

including electrochemical biosensors and optical biosensors. One notable approach to small-

molecule biosensing has been the “structure-switching” strategy. Upon binding to the target, 

the duplex structure of aptamer switches to another tertiary structure. The signal generated by 

the conformational change can be detected by EC method, or it can be converted to other 

colorimetric signals such as fluorescence. The switch from the duplex to the aptamer-target 

complex is a general approach that allows the recognition of the target to generate signals for 

detection. This method has been applied to the detection of a lot of small molecules such as 

adenosine or ATP, theophylline, cocaine, histidine and arginine.[89-92] Aptamers can also 

serve as regulatory elements through the ability to combine with other functional moieties 

without affecting recognition and bind to their cognate target. By replacing one of the stem-

loop sections of the widely studied hammerhead ribozyme with the ATP-binding aptamer, ATP 

binding was required for activation.[93] This chimeric system can be used as regulatory 

elements for nucleic acid enzymes (either natural ribozymes or synthetic DNAzymes) or other 

actuator parts, allowing diversifying the signal generation methods.[94]  

3.1.6 Gold Nanoparticles in Biological Sensing of Small Molecules 
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The distinct physical and chemical attributes possessed by gold nanoparticles make them 

excellent scaffolds for the fabrication of novel chemical and biological sensors. First, AuNPs 

can be synthesized by a straightforward approach. Second, they possess unique optical and 

electronic properties. Third, excellent biocompatibility can be demonstrated by the high 

surface-to-volume ratio provided by AuNPs. Fourth, all of these properties of AuNPs are 

tunable by varying their size, shape and the surrounding chemical environment. Notably, 

AuNPs provide a novel platform for multi-functionalization with a wide range of organic or 

biological ligands for the detection of small molecules and biological targets and allow 

researchers to develop advanced sensing strategies with improved sensitivity, stability and 

selectivity. 

AuNPs feature a surface plasmon resonance (SPR). SPR is the results of collective 

resonant oscillation of the free electrons of the conduction band of the AuNPs excited by 

incoming photons. The nature of this surface plasmon resonance (SPR) was elucidated by Mie 

in 1908.[95] The SPR dynamics are influenced by size, solvent, ligand, and temperature. The 

spectral shift induced by solvent refractive index changes was confirmed by Murray and this 

result was consistent with Mie theory.[96] The dependence of optical thickness on the refractive 

index altered by solvent and ligand can be used for impurities detection due to different 

refractive indexes of gold oxide and gold chloride.[97] Notably, the SPR frequency is 

dependent on the proximity of nanoparticles. In another word, the aggregation of nanoparticles 

results in significant red-shifting (from ~520 nm to ~650 nm), changing the solution color from 

red to blue. This attractive phenomenon has made AuNPs a promising candidate for 

colorimetric sensors.  
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 DNA-based AuNP assembly was developed in 1996.[98] Fabrication of AuNPs 

conjugated with thiolated DNA strand allowed the self-aggregation of nanoparticles to be 

rational and reversible. By tailoring the properties of the AuNPs, researchers have developed 

many oligonucleotide-mediated AuNP aggregations for colorimetric detection 

methods.[99-101] In one of these approaches, unfolded and folded DNA could be discriminated 

by unmodified DNA. Before binding to the target, the coil-like aptamers do not protect the 

AuNPs against self-aggregation. Once binding to the target, the aptamer form 3D structure and 

can no longer stablize the AuNPs against salt-induced aggregation. Since the color change is 

visible to naked eye, this technology has been used for the colorimetric detection of potassium 

ion and proteins.[102, 103] In another approach, two ssDNA-modified AuNP probes were 

designed to be complementary to both ends of the target oligonucleotide. The color change due 

to the AuNP aggregation as well as the sharp transition of UV-vis spectroscopy demonstrated 

that nanoparticle probes can be used for the homogeneous colorimetric detection of 

oligonucleotides as the alteration of expensive fluorescence-based methods.[101] 

 

 

 

3.2 Need for the Reliable Sensors of 8-OxoGua 

Single-stranded DNA aptamer sensor provides a direct approach to quantify the concentration 

of biologically important ligand, but with limited binding affinity and selectivity. For example, 

the dissociation constant of adenosine aptamer/adenine complex is 6 µM as reported, and the 

aptamers do not distinguish adenosine from AMP or ATP.[104] DNA-duplex or DNA-triplex 
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aptamer with an abasic site has been reported to be a good system for the selective and strong 

binding where an abasic (AP) site is utilized as an active cavity for binding events. It is well 

known that AP sites are formed by spontaneous depurination or by the DNA glycosylase during 

the base excision repair (BER). By intentionally incorporate such lesion sites into the duplex or 

triplex, a normal DNA is allowed to complementarily hybridize with an AP-site-containing 

DNA. The high stability of the AP-site-based aptamer is achieved by a combination of hydrogen 

bonding with target molecules and stacking interaction with nucleobases flanking the AP site. 

More importantly, the charge repulsion between the phosphate groups of the aptamer in the 

binding site ensures the selectivity of nucleoside over its monophosphate or triphosphate 

derivative.[105]  

Duplex DNA aptamer of 8-oxoG was previously designed.[106] Although the great 

fluorescence quenching ability of 8-oxoG resulted in a highly selective method to detect free 8-

oxoG against other tested nucleobases, the binding affinity was only moderate, which limited 

its application in the low concentration range. Since almost every existing duplex DNA aptamer 

showed only moderate binding affinity to its respective target, it is unlikely that a different 

design based on a duplex scaffold will significant promote the binding affinity[107, 108] To 

build a sensor that can provide a sensitive and reliable tool to quantify nucleoside and 

nucleobase ligands, a triplex DNA aptamer with Hoogsteen hydrogen bonding site was 

designed. Based on the theory that the stable triplex DNA containing 8-oxodG would be able 

to convert into a stable triplex aptamer-8-oxoGua complex, a DNA triplex that contains a center 

AP site was designed to serve as the receptor for free 8-oxoGua. By incorporating Pyrrolo-C as 

the signal reporter, significant fluorescence quenching was detected by the addition of 8-
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oxoGua in the triplex containing A·OG-C triad or a C·OG-A triad. The combined detection 

range was 3 nM - 1 μM and remarkable selectivity was achieved. However, the fluorescence 

sensors overestimate 8-oxoGua concentrations by 1.5-2.0 folds in presence of high 

concentration of guanine which is typical in urine. Moreover, the fluorescent dyes suffered from 

photobleaching over a long period of exposure. Hence, a more reliable method which is highly 

resistant from the interference of guanine is desired.  

 

3.3 Gold Nanoparticle Conjugated DNA Triplex Sensor 

In 2006, a colorimetric assay by using oligonucleotide-directed AuNP assembly is developed 

for the screening of triplex DNA binders.[109] This approach contained three components: two 

sets of AuNPs functionalized with non-complementary single-stand DNA and a free single-

strand DNA. With proper design of the sequence, triplex structure formation is possible, 

however, the low stability of the structure prevent the aggregation of the AuNPs under the room 

temperature. Only under the presence of appropriate triplex DNA binders which could stabilize 

the triplex structure, the GNP aggregation would be induced and exhibit significant different 

color. This approach offers a convenient and high-throughput method for screening triplex 

binders from large combinatorial libraries. This unique design enlightens us to use the similar 

strategy to develop a colorimetric and high-throughput method for the detection of urinary 8-

oxoGua. 
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Figure 3.2 Schematic illustration of DNA-GNP based colorimetric sensor for 8-oxoGua 

detection. 

The assay consists of two sets of gold nanoparticles NP-1 and NP-2 and a free strand of 

DNA, DNA-3. NP-1 and NP-2 are functionalized with pyrimidine-rich thiol-modified 

oligonucleotides strand. These two strands are non-complementary and do not interact. DNA-

3 which is complementary to NP-1 is rationally designed to amplify the stabilizing effect. 

According to the research about the structural dependence of the binding effect, first, large 

binding site would dramatically decrease the stability of the triplex formation, hence single 

binding sites such as C3 spacers are considered in this assay; second, it is envisioned that three 

propylene linkers used for binding pockets with three inner purine segments between the 

binding sites would be able to amplify the stabilizing effect without sacrificing the stability of 

the triplex. NP-2 DNA has the proper sequence to form a triplex structure once the NP-1/DNA-

3 duplex has formed.  
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The thermal stability of the same triplex DNA in the absence of AuNPs was tested by 

UV-melting experiment (Figure 3.1). No triplex-to-duplex transition was observed above 20 °C, 

suggesting that the three C3 spacers separated by two -AAA- segments significantly destabilize 

the triplex formation. The instability of triplex structure in the absence of the ligand allows the 

amplification of the stability effect. Unlike the fluorescent sensor which is still sensitive to 

guanine which is abundant in urine, this well-designed triplex DNA aptamer/AuNPs system 

will not be stabilized by the binding of guanine. In other words, urinary guanine can not affect 

the melting points of aggregated AuNPs and the resulting purple-to-red color change in the 

assay. 

 

Figure 3.3 Melting curves of AuNP-free triplex or duplex DNA monitored at 260 nm. 

The relationship between the thermal stability of the triplex helix and the concentration 

of 8-oxoGua was determined through a series of UV-Vis melting experiments monitored at the 

wavelength of 520 nm. Fixed amount of NP-1, NP-2 and DNA-3 (2 nM) were used in this 

experiment and different concentration of 8-oxoGua was added to stabilize the triplex. As 

expected, a sharp melting transition was observed in each experiment due to the cooperative 
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dissociation of GNP aggregates (Figure 3.2), along with the distinct purple-to-red color change. 

In the absence of 8-oxoGua, the melting temperature was 40 °C. Within the 8-oxoGua 

concentration range of 400 nM-1600 nM, each time the 8-oxoGua concentration was doubled, 

the melting temperature was increased by approximately 2 °C (Table 1). Unlike the common 

melting curve of the DNA (Figure 1), the signature sharp melting transitions by using AuNPs 

offer relatively wide temperature windows to distinguish different 8-oxoGua concentration in 

the samples.  

 

Figure 3.4 Melting curves of GNP aggregates in the presence of different concentrations of 8-

oxoGua.  
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Table 3.1 Melting Temperatures in Different Conditions 

Entry [AuNP-DNA] (nM) [8-oxoGua] (nM) Tm (°C) 

1 2 0 40.0 

2 2 400 42.0 

3 2 800 43.9 

4 2 1600 46.0 

5 1 0 40.1 

6 1 400 44.0 

7 1 0 41.0 

8 1 400 43.0 

 

Benefit from the two-degree temperature window established from the UV-Vis melting 

experiment, it is feasible to carry out the in situ colorimetric assays, which could allow the 

otherwise complicated detection of urinary 8-oxoGua to become much more convenient, 

economical, and rapid, particularly compared to the traditional chromatographic or enzymatic 

methods. A set of samples with the same amount of GNP aggregates produced by 2 nM of the 

AuNP-DNA were incubated with the different compound: 8-oxoGua, adenine, guanine, 

cytosine, and thymine (400 nM each) at 40 °C for 2 min. As expected, only the sample 

containing 8-oxoGua survived through the incubation and remain pink color (Figure 3.3), 

whereas the sample in the absence of 8-oxoGua turned into red. To verify this result, the visible 

spectrum of the same sample was measured and the significant blue shift was observed when 

8-oxoGua was added (Figure 3.4). Notably, the samples in the presence of other potential 

interfering species which typically exist in urine also dissociated and turned red. This 

experiment demonstrated that under the certain temperature, this assay could excellently 
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discriminate between 8-oxoGua and other chosen nucleobases. Hence, this assay can perform 

higher accuracy in the presence of urinary guanine then the fluorescent sensor which 

overestimates urinary 8-oxoGua concentration due to the interference of guanine.   

 

Figure 3.5 Colorimetric assays of GNP-DNA aggregates after incubation under 40 °C for 2 

minutes in presence of different nucleobases. 

 

Figure 3.6 Visible spectra of DNA-modified gold nanoparticle before and after the addition of 

8-oxoGua when samples were heated to 40 oC.  Black: control; Red: 400nM 8-

oxoGua.Conditions: GNP-DNA conjugates, 2 nM of each, linker, 360 nM, PBS, 10 mM, PIPES, 

100 mM, additional NaCl, 100 mM, MgCl2, 10 mM, SDS, 0.1%wt, pH 5.7. 

The same colorimetric assay was performed to qualitatively determine the concentration 

range of 8-oxoGua (Figure 3.5). By two minutes of incubation at 40 °C, the sample in the 

absence of 8-oxoGua melted and turned red, while all the other samples containing 8-oxoGua 
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(400-1600 nM) remained pink. When the temperature increased to 42 °C, the sample containing 

400 nM 8-oxoGua began to turn into red. At 44 °C, the sample with 800 nM 8-oxoGua also 

became red, while the only sample that remained pink was in the presence of 1600 nM 8-

oxoGua. These colorimetric performances of the GNP aggregates under mild heating were 

consistent with the above UV–Vis melting results. The sensor may be used for a wide range 

of different applications since the threshold of detection was temperature-dependent.  

 

Figure 3.7 Colorimetric assays of GNP-DNA aggregates after incubation under different 

temperatures in presence of different concentrations of 8-oxoGua. 

The peak of absorbance ratio of two wavelengths (A650/A520) recorded on a UV–vis 

spectrometer indicates the onset of significant GNP aggregation. The double wavelength 

monitoring greatly increased the sensitivity of the sensor. For instance, although clear 

aggregations could be observed when a sample containing 200 nM 8-oxoGua was incubated 

at 40 °C, after agitation, the sample appeared to be no different from the control and thus 

cannot be directly detected with naked eyes. However, the A650/A520 ratio of the 200 nM sample 
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under stirring conditions was significantly different from the control. Based on the melting 

curves of GNP in presence of different 8-oxoGua concentrations, at under 41°C, the control 

sample has been fully melting, while the sample containing 400 nM 8-oxoGua was melting and 

the sample in presence of 800 nM and 1600 nM 8-oxoGua remain aggregates. By plotting the 

A650/A520 ratio versus 8-oxoGua concentrations at 41°C to generate an 8-oxoGua response curve, 

the concentration of 8-oxoGua in an unknown sample could be quantitatively determined by 

this assay (Figure 3.6). The limit of detection using the spectrometer was 128 nM. The detection 

limit was higher than the fluorescent sensor developed previously, but the detection range still 

covers the major portion of the biological relevant concentration range. 

 

Figure 3.8 The plot of absorption ratio (A650/A520) vs. different concentrations of 8-oxoGua at 

41 °C.  

A 2 nM suspension of GNP-DNA contained approximately 600 nM binding cavities, 

but the detection range of this assay can be up to 1600nM. The unique design of the triplex 

which contains three consecutive cavities allows the binding of 8-oxoGua to be positively 

cooperative due to the effect of binding-induced preorganization. Therefore, it is possible that 

200 nM of 8-oxoGua would only be able to bind one of the three cavities in each receptor with 
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a weak binding constant, and this speculation is consistent with the high upper limit of the 

detection range. To further promoting the detection range to a lower limit, the GNP 

concentration was changed from 2 nM to 1 nM. In this way, the same amount of 8-oxoGua was 

able to occupy a bigger portion of the cavities, and the triplex helix would be more stabilized. 

Indeed, the melting temperature difference was changed from 2 °C to 4 °C when the 

concentration of the GNP was changed from 2 nM to 1 nM (Figure 3.7, table 3.1).  

 

Figure 3.9 Melting curves of GNP aggregates at using 1 nM GNP concentration.  

To demonstrate that this assay can overcome the impact of the highly concentrated 

urinary nucleobases and thereby can be practically used in the detection of urinary 8-oxoGua, 

we performed the melting experiment and colorimetric assay with a urine mimic which contains 

100 mM urea, 4 μM adenine, 0.4 μM cytosine, 1.2 μM guanine, and 6 μM uracil. In order to 

increase the sensitivity, 1 nM of the GNP was employed. The sample with the urine mimic and 

without the 8-oxoGua was melted at 41°C, which is slightly higher than the one without the 

urine mimic (40°C), suggested that the non-specific binding was caused by the highly 

concentrated nucleobases. The melting temperature of the sample in the presence of both urine 

mimic and 400 nM 8-oxoGua increased to 43 °C, indicating that the stability of the triplex-
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induced by the 8-oxoGua was not interfered by the urine mimic. The two-degree window also 

allow the colorimetric assay to show a clear red versus the pink difference between the spiked 

and unspiked sample, consistent with the results of the melting study (Figure 3.8). 

 

Figure 3.10 Melting curves of 1 nM GNP-DNA aggregates in urine mimic.  

Although a variety of methods have been developed to quantify urinary 8-oxoGua 

concentrations, the methods that are able to determine the absolute amount of 8-oxoGua in 

concentration units or nmol/24h are rare. The GNP-DNA aptamer sensor developed by us 

combine the specificity and tunable detection range by changing the GNP concentrations and 

incubation time, which allow a protocol for each specific application to be flexible to meet the 

clinical demand for 8-oxoGua quantification.  

In summary, the conjugation of the two pyrimidine-rich DNA strand to gold 

nanoparticles promote the detection of the assembling of multi-gapped triplex receptors. The 

multiple binding sites of the receptor increase the binding-induced stabilization effect and thus 

widened the temperature window used for the colorimetric detection. The triplex aptamer 

guarantee the selectivity for 8-oxoGua over guanine, a commonly known interfering species. 
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For the first time, 8-oxoGua can be directly detected at sub-micromolar concentrations without 

using a major instrument. This methodology has the potential to be used on the detection of 

nucleobases and nucleosides in biological fluids.  
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APPENDIX 

1H AND 13C SPECTRA 

1H and 13C spectra taken from NMR instrument are shown from p86 to p108. 

 

1H spectrum of compound 5 in CDCl3. 

 

13C spectrum of compound 5 in CDCl3. 
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1H spectrum of compound 6 in CDCl3. 

 

13C spectrum of compound 6 in CDCl3. 
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1H spectrum of compound 7 in CD3OD. 

 

13C spectrum of compound 7 in CD3OD. 
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1H spectrum of compound 2b in CD3OD. 
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1H spectrum of compound 8 in CDCl3. 

 

13C spectrum of compound 8 in CDCl3. 
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1H spectrum of compound 9 in CDCl3. 

 
13C spectrum of compound 9 in CDCl3. 
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1H spectrum of compound 10 in CD3OD. 

 

13C spectrum of compound 10 in CD3OD. 
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1H spectrum of compound 2d in d6-DMSO. 

 

13C spectrum of compound 2d in d6-DMSO. 
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1H spectrum of compound 2c in d6-DMSO. 
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1H spectrum of compound 13 in CDCl3. 

 

13C spectrum of compound 13 in CDCl3. 
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1H spectrum of compound 15 in CDCl3. 

 

13C spectrum of compound 15 in CDCl3. 
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1H spectrum of compound 16 in CDCl3. 

 
13C spectrum of compound 16 in CDCl3. 
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1H spectrum of compound 17 in d6-DMSO. 

 
13C spectrum of compound 17 in CD3OD. 
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1H spectrum of compound 18 in CDCl3. 

 

13C spectrum of compound 18 in CDCl3. 
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1H spectrum of compound 19 in CDCl3. 

 

13C spectrum of compound 19 in CDCl3. 
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1H spectrum of compound 20 in CD3OD. 

 

13C spectrum of compound 20 in CD3OD 
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1H spectrum of compound 3b in d6-DMSO. 

 

13C spectrum of compound 3b in d6-DMSO. 
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1H spectrum of compound 25 in CDCl3. 

 

13C spectrum of compound 25 in CDCl3. 
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1H spectrum of compound 26 in CD3OD. 

 

13C spectrum of compound 26 in CDCl3. 
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1H spectrum of compound 27 in CDCl3. 

 

13C spectrum of compound 27 in CDCl3. 
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1H spectrum of compound 28 in CDCl3. 

 
13C spectrum of compound 28 in CDCl3. 
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1H spectrum of compound 29 in CDCl3. 

 
13C spectrum of compound 29 in CDCl3. 
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1H spectrum of compound 3d in d6-DMSO. 

 

13C spectrum of compound 3d in d6-DMSO. 
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