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ABSTRACT 

REAL TIME, INTEGRATED, PAPER BASED TEMPERATURE SENSOR FOR 

LAB ON A CHIP DEVICE  

 

by 

Vignesh Shekhar 

Temperature measurement and manipulation is a critical factor in a wide range of 

applications like Point Of Care Diagnostics (POC's), Polymerase Chain Reaction (PCR), 

Temperature Gradient Focusing (TGF) to cite few prominent examples. In the past decade, 

researchers have used various techniques to sense and control the temperature in 

microfluidic systems. The primary challenge has been the twin problem of integration and 

accuracy using minimal equipment while keeping it simple. In this study, an equipment 

free fabrication of the temperature sensor using filter paper impregnated with p-type 

colloidal PbS quantum dots is demonstrated. This sensor is later integrated into line a 

PDMS microfluidic device with two parallel microfluidic channels. The integrated device 

is chiefly to sense the difference in temperature of fluids inside the two channels. COMSOL 

Multiphysics 5.1 is used to simulate the single-phase laminar fluid flow and heat transfer 

in the microchannel of the device. The design of the microfluidic channel is optimized to 

decrease heat sensing times of the sensor using the simulation results.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Microfluidics 

Microfluidics is primarily the handling of fluids at the micron level which requires both a  

deep knowledge of physics of fluids at the microscale and fabrication of the devices with 

microchannels (Whitesides, 2006). The general aim behind microfluidics is to integrate 

multiple unit operations that are undertaken in an analytical lab in a single chip.  

The advantages of microfluidics are: Reduction in size, high surface to volume 

ratio, handling less amounts of fluids, reduced consumption of chemical reagents, low 

power consumption, safety, portability, ability to work with small quantities, increase in 

speed of reaction, integration with other devices – lab on a chip, ease of disposing devices 

and fluids (Nge, Rogers, & Woolley, 2013). Hence, microfluidics has been chiefly used to 

develop technologies that improve capabilities of researchers in medical research and 

biology such as Point of care diagnostics (POC’s)(Jung, Han, Choi, & Ahn, 2015), cell 

analysis(Yeo et al., 2016), biosensing, and drug development(Kang, Chung, Langer, & 

Khademhosseini, 2008). Also, in many studies, methods are described to replace macro 

scale assays wherein ‘proof of concept’ experiments are conducted on microfluidic systems 

to find out the efficiency of a new approach (Sackmann, Fulton, & Beebe, 2014).  

Integration is one of the main benefits of miniaturization and paves the way for 

assays for point of care (POC) usage(Nge et al., 2013). Lab-on-a-chip systems integrate 

multiple lab processes into a single device like biochemical reactions(Lee, Lee Cs Fau - 

Kim, Kim Bg Fau - Kim, & Kim), separation and detection(Baek, Kim, Na, & Min, 2015), 
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polymerase chain reaction(Oblath, Henley, Alarie, & Ramsey, 2013). Researchers have 

made significant progress toward this objective over the last decade. Integration on the chip 

reduces sample loss and analysis time. Further, integration can be anywhere from a 

disposable chip in an external equipment to full integration of all lab processes.  

The present study deals with integrating real-time temperature sensing element in 

a microfluidic device for various applications like on-chip polymerase chain reaction 

(PCR). 

 

1.2 Sensor and Diagnostics 

In the recent past, paper as a substrate has attracted much attention as the main material for 

sensors in clinical diagnosis, quality monitoring, and environmental supervision because 

of its low cost, adaptability and ample supply(Nery & Kubota, 2013). These sensors can 

be integrated into ways that are adjustable, movable, dispensable and easy to use. With 

soaring costs in health care, there is an increasing need for a point of care (POC) device for 

rapid diagnostics. Paper-based sensors have shown great potential in meeting this critical 

need (Liana, Raguse, Gooding, & Chow, 2012). The current study, introduces a paper 

based temperature sensor for lab on a chip device. Paper sensors for temperature control 

and sensing in microfluidic systems offer several advantages over current methods, which 

will be discussed in detail next.  

A wide range of techniques(Miralles, Huerre, Malloggi, & Jullien, 2013) have been 

developed and used for temperature regulation within microfluidic systems. For example, 

external heating or cooling methods like Peltier elements have been developed (Chon & 

Li, 2008). Others include preheated liquids(Houssin et al., 2016), integration of 
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temperature regulating elements using microwaves(Morgan et al., 2013), lasers (liquid 

directly heated in bulk material)(Hung, Ho, & Chen, 2016), Joule heating(Erickson, Sinton 

D Fau - Li, & Li), chemical reactions(Singleton et al., 2013) and integrated wires(Bertrand 

Selva, Mary, & Jullien, 2010). The external and bulk temperature control methods have 

proven to be advantageous for specific applications like, rapid PCR analysis, providing on 

chip temperature gradients and micro-valve functioning. Though these elements have 

shown impressive accuracy, these methods are not considered as an integrated microfluidic 

system. Further, these elements have a large size (range of mm). However, many 

applications need accurate temperature measurements and precise control. Hence, the 

present study’s focus is on the integration of temperature sensing elements into a 

microfluidic device. 

Guijt, Dodge, van Dedem, de Rooij, and Verpoorte (2003), used exothermic and 

endothermic reactions to control the temperature in microchannel.  This is fully integrated 

and cost effective too. For cooling, the latent heat during the evaporation of acetone is used 

and for heating 97 wt% Sulphuric Acid (H2SO4) is used. A fluorescent dye is used to 

measure and monitor the temperature. The authors tuned flow rate ratios of the chemical 

reactants to regulate the temperature by adjusting the intensity of the reaction. 

Xue and Qiu (2005), have introduced a method to integrate micromachined 

temperature sensor array in a glass microchannel. They use a modified anodic bonding 

technique to bond two different glass materials. They also performed channel etching and 

fabricated silicon temperature detectors. These methods make it possible for them to 

fabricate a glass microchannel with integrated temperature detector array. 
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Vigolo, Rusconi, Stone, and Piazza (2010), reported a technique based on Joule 

heating which depends on the conductivity of metals or liquids. Heating resistors are 

embedded in the microfluidic systems, and a direct relationship can be achieved between 

the used power and the heat flux. 

Pitchaimani et al. , tapped PDMS’s ability to deform with temperature changes. He 

developed a PDMS based chip which would act as a thermally actuated plastic microfluidic 

valve. The fluid flow was kept under control using a temperature sensitive fluid in the 

plastic valve which would deflect a thin elastomeric film. They made the heaters by 

depositing 100 nm gold film by sputtering on the plastic film, and by applying power to it 

they controlled flow rates.  

De Mello, Habgood, Lancaster, Welton, and Wootton (2004), used joule heated 

ionic fluids flowing through serpentine-like geometry microchannels providing direct 

control of internal temperature easily. This geometry was studied by Lao, Lee, Hsing, and 

Ip (2000), with integrated platinum heaters and sensors digitally feedback controlled, 

allowing precise temperature control and providing quick response times. 

In 2009 a microheater was designed by Wu, Cao, Wen, Chang, and Sheng (2009), 

along with a thermal sensor directly by injecting silver paste into a PDMS microchannels 

and integrating metal wires. They developed multiple serpentine geometry and heated the 

silver paste in three steps: 60, 100, 150 °C and sensed the temperature by measuring the 

resistance in the integrated wire. 

Darhuber, Davis, Troian, and Reisner (2003), developed a device with micro 

heaters made of Ti metal which is coupled to the glass substrate. This is done using 

chemical patterning and is actuated electronically. Due to thermocapillary actuation; they 



 

5 

control the formation, displacement, bonding, and breaking of droplets on demand with 

excellent accuracy.  

B. Selva, Jullien, Miralles, and Cantat (2010), worked in creating thermo-

mechanical effects due to PDMS dilation and thermal capillarity. An increase in 

temperature brought out competing phenomena in microfluidics for the first time. They 

reported a bubble/drop displacement, trapping and switching based on thermo-mechanical 

effect using long PDMS capillaries and resistive heaters. 

Vigolo et al. (2010), reported a method to drive particles toward a hot or cold side 

by the addition of special electrolytes to the initial solution. They fabricated a device where 

temperature gradients were imposed by the combination of epoxy resistors and preheated 

liquid on both sides of channels. They implement the use of polystyrene beads to see the 

collection of particles in cold side by fluorescence. 

The thermal gradient was used for alternative heating of two heaters in a study 

conducted by Kim, Wang, Burns, and Kurabayashi (2009). Further this enables micro-

mixing without a pump. They made heaters from Pt/Ti alloy and used fluorescent beads as 

tracers to find out the steady state flow speed.  

Table 1.1 gives a summary of techniques adopted in integrated temperature 

regulation for lab on chip systems in the last 16 years.  
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Table 1.1 Summary of Integrated Temperature Sensing and Control Methods Applied in 

the Last 16 Years 

 

AUTHOR METHOD ELEMENTS SPECIFICATIONS 

Guijt et al. (2003) Chemical Reaction Two reagents for 

heating and cooling 

Temp range: -3 to 

76°C, 1°C/s ramp 

Bertrand Selva et 

al. (2010) 

Joule heating 

(homogeneous 

temperature) 

Resistor, 

fluorescent dye 

25 - 96°C, 0.6°C , 

20°C/s ramp, 300 

mW power 

Vigolo et al. 

(2010) 

Joule heating 

(temperature 

gradient) 

Silver filled epoxy 25-75°C, 20°C/s 

ramp, 1000 mW, 

2°C accuracy 

Pitchaimani et al.  Thermal actuation 

of plastic valves 

Temperature 

sensing fluid, PCB 

controller 

Heater power: 

36 mW – 80 mW 

De Mello et al. 

(2004) 

Joule heating 

(homogeneous 

temperature) 

Thermocouples, 

ionic liquids 

20--130°C, 0.1°C/s 

ramp, 0.2°C 

accuracy, 1000 mW 

Lao et al. (2000) Joule heating 

(homogeneous 

temperature) 

Platinum heaters 

and sensors, control 

algorithm and 

feedback PI 

scheme 

50-100°C, +20 

-10°C/s ramp, 1°C 

accuracy, 2200 mW 

Wu et al. (2009) Joule heating 

(homogeneous 

temperature) 

Micro-heaters, 

Feedback system 

PCR carried out in 

25 cycles at 

1min/cycle 

Darhuber et al. 

(2003) 

Thermocapillary 

effect 

Microheater arrays, 

chemical surface 

patterning 

Breakup of droplet 

on demand, single 

micro heater applied 

power 5-200 W 

B. Selva et al. 

(2010) 

Thermo-

mechanical effect 

Optimized resistor 

patterning 

<0.4 W, first-time 

observance of 

competing 

phenomena in 

microfluidics 

Vigolo et al. 

(2010) 

Thermophoresis 

(temperature 

gradient) 

Electrolytes, 

liquid/epoxy 

resistors 

Selective driving of 

particles by addition 

of electrolytes 

Kim et al. (2009) Micromixing 

(temperature 

gradient) 

Microfabricated 

heating instrument 

Pump-less micro-

mixing by 

alternative heating 

cycles 
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1.3 Current Disadvantages in Temperature Sensing 

A wide variety of technologies has been implemented in the past decade to obtain 

integrated temperature control. These techniques pose different advantages or drawbacks 

on the degree of integration, cost, space utilized, and accuracy. The drawbacks of current 

temperature sensing involve complex fabrication, bigger elements, usage of reagents/dyes 

to control and sense temperature, costly methods, lower integration/accuracy.  

Given the current disadvantages in temperature sensing, the present study deals 

with a cheap, hassle-free fabrication of an on chip paper based temperature sensor. This 

paper-based device can be used for heating by applying a potential difference. As both the 

microfluidic device and the sensor/heater is made of PDMS and paper respectively, the 

overall integrated microfluidic device is cost-effective. The heat transfer coupled with 

laminar flow in the microchannel is simulated using COMSOL Multiphysics 5.1 to 

optimize the micro channel’s design to decrease the sensing times based on flow rates, 

corresponding residence times and various depths of the cavity in the microchannel.  

 

1.4 PDMS – The Material of Choice 

Materials such as glass, silicon, and polymers like Polydimethylsiloxane (PDMS), 

Polystyrene (PS), Polymethylmethacrylate (PMMA) and Polycarbonate (PC) have been 

used over the years to fabricate microfluidic devices (Nge et al., 2013). Clearly, there is no 

‘perfect’ material as each one of them has some benefits and drawbacks when used in 

microfluidics. Finally, it is the application which helps the researcher to decide which 

material to use in the construction of the device.  
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In this study, Polydimethylsiloxane (PDMS) is used to fabricate the microfluidic 

device due to the following benefits (McDonald et al., 2000):  

 Micron-scale structures can be fabricated with a large constancy in PDMS by Soft 

lithography.  

 

 PDMS is visually transparent and can be used for various detection techniques. 

 Low-temperature curing is possible with PDMS, and it is not toxic.  

 It can seal to itself and other materials reversibly by Van der Waals bonding. 

 It seals irreversibly after plasma-air exposure through covalent bonding. 

 PDMS is elastomeric and forms smooth, nonplanar surfaces.  

 It detaches itself from fine features of a mold without any damage. 

 

 It is cheaper than other materials used in manufacturing microfluidic devices. 

 

 PDMS has very low thermal conductivity (~0.2 W/mK) (McDonald et al., 2000) 

which is beneficial to the study here.  

 

These advantages that PDMS provides, paves the way to build a microfluidic device with 

ease, without any equipment and to efficiently integrate a paper sensor into it.  

 

1.5 Motivation and Thesis Outline 

The disadvantages in the temperature sensing/heating in the lab-on-a-chip systems is the 

motivation behind the current study. The present study overcomes these disadvantages and 

brings out a cheap, efficient, and optimized lab-on-a -chip paper based thermal sensor using 

a simple fabrication technique. The optimization of the microchannel to improve the 

sensitivity of the sensor is carried out by simulating the fluid flow and heat transfer inside 

the microchannel using COMSOL Multiphysics 5.1.  
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Here we detail the fabrication protocol, simulation, optimization and experimental 

verification of the integrated temperature sensor. In Chapter 1, an introduction to 

microfluidics coupled with the importance of integrating processes onto a chip is touched 

upon. A review of methods developed in the past 16 years in the field of temperature 

sensing and control in microfluidics is also presented. The disadvantages of these methods 

are revealed and how the current study nullifies these disadvantages is pointed out. At the 

end of this chapter, the materials used to fabricate microfluidic systems is identified, and 

PDMS is selected due to its various advantages. 

In Chapter 2, the protocol to fabricate the paper based temperature sensor along 

with the integration of this sensor in a microfluidic device by soft lithography is 

demonstrated. The problem statement – the optimization of the microchannel design is 

discussed at the end of this chapter. 

In Chapter 3, various geometries that are considered in this study along with the 

assumptions, boundary conditions, initial conditions and material properties are detailed. 

Further, these are used in a model to solve the Navier-Stokes, continuity and heat equations. 

The assumptions and boundary conditions are also supported with relevant literature. This 

chapter also discusses the solution methodology followed in COMSOL Multiphysics 5.1 

which involves meshing and solving by the finite element method. Results from the 

simulation are presented and a simple calibration model is discussed at the end of  

Chapter 3. Lastly, Chapter 4 includes a summary and conclusions derived from the 

simulation results and suggestions for future work in developing an explosive sensor on a 

chip are discussed. 
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CHAPTER 2 

DEVICE 

 

This chapter details the simple protocol to fabricate a cost-effective, flexible temperature 

sensor based on cellulose papers and colloidal semiconductor quantum dots. Further, the 

particulars in the fabrication of the microfluidic device that integrates the paper sensor with 

a PDMS device is shown.  

 

2.1 Temperature Sensor Fabrication 

The work of Sun, Goharpey, Rai, Zhang, and Ko (2016) was followed in the 

preparation of paper strips impregnated in colloidal PbS quantum dots for temperature 

sensing which involves the following steps: Standard air-free Schlenk line technique is 

used to synthesize 8.1 nm PbS quantum dots. A 50 mL three neck flask is used to combine 

0.446 g of PbO (99.999%) and 20 mL of oleic acid (tech grade, 90%). This mixture is 

stirred, dried at 110 °C in vacuum for 2-3 hours to obtain a clear solution. Nitrogen is filled 

in the flask and solution temperature is increased to 150 °C and then 0.2 mL of 

hexamethyldisilazane (synthesis grade) in 10 mL of 1-octadecene (90%) is promptly 

infused. The temperature of the mixture quickly drops to 120 °C. For 16 minutes the 

reaction temperature is controlled at 120 ± 6 °C and is stopped using a water bath. The 

dispersion of the quantum dots is done in hexane, acetone is used in the precipitation, and 

Nitrogen filled glove box is used for centrifugation. After doing the purification step twice, 

the quantum dots are re-distributed and stored in hexane. A 50 mg/mL PbS quantum dots 

solution is used to dip a filter paper (Whatman 40, 2.5 X 1.0 cm). The filter paper is then 
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dipped into 0.1 M KOH in methanol solution for a minute, and the ligand exchange 

procedure is brought about. Later, this filter paper strip is flushed with ample amount of 

methanol to remove free residual ligands. A layer by layer method is used for the ligand 

exchange process and is repeated 15 times. Finally, the temperature sensing paper strip is 

obtained which is later integrated into the microfluidic device described in the next section.  

 

 

2.2 PDMS Device Fabrication 

This section explains the process of making the PDMS microfluidic device with the paper-

based temperature sensor by soft lithography. The Fabrication process of the microfluidic 

chip is also shown in Figure 2.1 and 2.2. The device fabrication consists of the following 

steps: 45 grams of PDMS (Sylgard 184) and 4.5 grams of curing agent (Sylgard 184 

silicone elastomer kit) (10:1 ratio of PDMS and curing agent) is obtained in a dish and 

mixed well for five minutes thoroughly. The mixture is placed in a dessicator to remove 

air bubbles, which approximately takes twenty minutes.  

In the meantime, there are three parts to this device which are to be made separately 

and combined as one final device. Part 1: Glass top – A glass slide is obtained, and four 

holes are drilled in line with the two ends of the parallel channels in a cricut tape  

(ARcare-90445 clear polyester double-sided acrylic adhesive (Adhesives Research, Inc.). 

Using superglue or epoxy, two inlet, and two outlet fluid ports are fixed in their respective 

holes in the glass slide. Part 2: Microchannels (middle portion) – consists of a cricut tape 

on which two parallel microchannels are cut using a Cricut Explore One machine. The 

diameter of the two channels is 500 micrometers and 30 mm in length. Part 3: PDMS 
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substrate (base) – A paper electrode is obtained, and two pieces of copper wire are cut (~2 

inches in length). Electrically conductive silver paint is applied to the two ends of the paper 

sensor on one side. Two copper wires are pasted to the silver padded ends with conductive 

Figure 2.1 The steps in the fabrication process of the PDMS microfluidic device. The 

paper sensor is prepped with the copper wires first and is immersed in PDMS+curing 

agent complex. It goes through the curing process twice and finally the PDMS base with 

the sensor is obtained which is then passed on to the device assembly stage. 
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silver paint again. The wired paper sensor is taken in a petri dish with the wire side facing 

upward. The degassed mixture of PDMS is then poured onto the wire portion of the sensor 

in the petri dish and placed in the degasser again to remove air bubbles.  

After degassing, the petri dish contents are cured in a preheated oven for three hours 

at 70 °C. After curing, the PDMS base is cut out to the shape of the glass slide. This PDMS 

base is inverted (wire side facing down) and the base is again placed in a petri dish. Now, 

45 grams of PDMS and 4.5 grams of the curing agent is obtained and mixed thoroughly 

for five minutes and degassed in a desiccator to remove air bubbles. The degassed mixture 

is then poured over the PDMS base in the petri dish. The petri dish contents are then cured 

at 70 °C for three hours.  

Figure 2.2 Final Assembly of the microfluidic device after preparation of the PDMS 

base. The PDMS base integrated with the sensor from the soft lithography process is 

obtained along with the prepared glass slide with ports and the cricut tape. The PDMS 

base and the glass slide undergo Plasma treatment before assembling the device. 

together as shown in the figure. 
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After the curing process, the PDMS is cut out to the shape of the glass slide top.  

Two holes are made over the surface of the sensor at its two ends in the PDMS layer over 

which the two microchannels will be placed. Part 4: Final assembly of thermal sensor – 

The PDMS base, glass top are air-plasma treated before assembling them. The cricut tape 

containing the channels is stuck on the surface of the PDMS base and is made sure that the 

channels go over the two holes made on the surface of the paper sensor in the PDMS layer. 

On top of the cricut tape the glass top with the ports is stuck (the ports need to be in line 

with the channel). After assembly, this device is flow tested for any leakage before carrying 

out experimental runs.  

 

2.3 Experimental Setup 

 

Figure 2.3 Experimental setup of the device. The two inlets of the device are connected 

to two syringe pumps and the two outlets go into two microcentrifuge tubes. The wires 

from the paper sensor are attached to a digital multimeter. 
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Figure 2.3 shows the experimental setup of the microfluidic device. The two inlets of the 

device are connected to two NE-1000 programmable single syringe pumps through the 

tubing. The tubing from the outlet goes into two microcentrifuge tubes. The wires of the 

sensor are attached to an FLUKE-115 Compact digital multimeter.  

Deionized water is taken in two 25mL beakers. The beakers are heated or cooled to 

a required temperature and are maintained at that required temperature. 1mL samples of it 

are taken in two plastic syringes, and it’s placed on the single syringe pumps. Tubing is 

used to connect with the inlet ports of each channel. The copper wires extending from the 

device is attached to the digital multimeter. A flow rate is set in the syringe pump and is 

initiated (preferably 1mL/hr). The initiated run is continued until steady voltage readings 

are obtained. Before doing another experimental run the flow is stopped, and the sensor is 

allowed to equilibrate to a voltage reading of zero.  

 

2.4 Optimization 

Figure 2.4 shows a simple reproduction of the design of the microfluidic channel inside the 

PDMS device. Consider a heated fluid at some temperature entering the inlet at some flow 

rate and flowing through the outlet. To allow the sensor to sense the actual temperature, 

first of all, the fluid must reach the surface of the sensor inside the cavity along the length 

of the channel. Second of all, after liquid’s contact with the sensor the temperature which 

the sensor senses is not going to be the same as at the inlet. It is going to take some time 

for temperature homogeneity to develop all over the channel after heated fluid injection 

(demonstrated in COMSOL Multiphysics 5.1). The aim here is to optimize the design of 
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the channel such that the heated fluid makes contact with the sensor easily and also sense 

the actual temperature quickly (fast sensing times) after injection.  

COMSOL Multiphysics 5.1 is employed for the optimization of the channel design 

by coupling heat transfer and laminar fluid flow phenomena and computing it. The channel 

dimensions are varied, and the simulation is run to bring about the best design for the 

channel in which the sensing time of the sensor is the least. In obtaining an optimized 

design the sensing times, residence times are plotted against various depths of the reservoir 

above the sensor surface for different flow rates in which a sensing time less than the 

residence time is sought after. Thereby, a range of the various depths of the reservoir along 

the channel can be found which have sensing times lesser than the residence times. The 

COMSOL simulation setup and methodology used will be discussed in the next section. 

  

Figure 2.4 Schematic representation of the microfluidic channel in the 

PDMS device. The arrows represent fluid motion from the inlet to the 

outlet. L1, L2, a, A, H, W are the length, width and height dimensions 

of the channel. The objective is to study the heat sensing times of the 

sensor on changes in dimensions of ‘A,' ‘L1’ and ‘L2’. 
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CHAPTER 3 

COMSOL  

 

The Navier-Stokes, continuity and heat equations need to be solved with the appropriate 

initial conditions, assumptions and boundary conditions. This section deals with the 

solution of the governing coupled Navier-Stokes equation with the heat equation. Further, 

we describe in details the algorithm that is followed in simulating the heat transfer and 

laminar flow in the microchannel in COMSOL Multiphysics 5.1.  

 

3.1 Mathematical Modeling 

In this study, the case considered is single-phase laminar forced convective flow of water 

in a microchannel with a cavity along its length. Heat transfer by convection is the thermal 

energy transfer in the presence of a temperature difference as a combination of advection 

(fluid motion in bulk) and diffusion (random molecular motion). As liquid water is 

transported through the channels with the help of an external pump, the mechanism of 

liquid and heat transport is called as forced convection. The velocity components pop up 

in the convective terms of the energy equation, so the energy equation’s solution depends 

on the converged solution of the flow field. 

Liquid water’s density does not change appreciably with temperature rise, and thus, 

mixed convection (forced and free) effects are not considered. The objective of this study 

is to obtain an optimized design for the microchannel which has lesser sensing times than 

the residence times. The subsequent sections will focus on the assumptions, initial 

conditions, boundary conditions, governing equations and steps in COMSOL for setting 
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up the model and for simulating the laminar flow coupled with heat transfer in the 

microchannel. 

3.1.1 Assumptions and Initial Conditions 

 

Water is considered to be the fluid in the model which undergoes steady, laminar flow in 

the microchannel. The density of the fluid is taken to be constant, thereby making the 

incompressible fluid approximation valid. This assumption was also taken in the works of 

(Khan & Yovanovich, 2008), (Negi, 2013), and (Liu & Garimella, 2005).  

Table 3.1 Values for the Material Properties of Water 

 

Property Name Value Unit 

Dynamic viscosity mu 0.0008509 Pa*s 

Ratio of specific heats gamma 1.0 1 

Heat capacity at constant 

pressure 

Cp 0.00418 J/(kg*K) 

Density rho 996.59 Kg/m3 

Thermal conductivity k 0.6 W/(m*K) 

 

Gravitational forces are neglected since the system is horizontal and also that the 

static pressure under gravity is very low (P = ρgh; 1000kg/m3*9.81m/s2*100µm = 0.9 Pa).  

Tretheway and Meinhart (2002), have shown using particle image velocimetry that the  

no-slip condition is valid for water flowing through hydrophilic channels. The PDMS 

microchannel in this study, is hydrophilic due to plasma treatment, thereby making the  

no-slip assumption valid for the model here. The no-slip assumption was also taken in the 

works of (Wadgaonkar & Arikapudi), (Patsis, Petropoulos, & Kaltsas, 2012), and (Negi, 

2013).  



 

19 

Radiation heat transfer is neglected when compared to convection-diffusion heat 

transfer (Liu & Garimella, 2005) and insulated boundaries are assumed everywhere except 

the inlet and outlet boundary (Erickson et al.), (Patsis et al., 2012), (Negi, 2013). 

The following are the initial conditions and material properties given for the model: 

T=300 K, p = 0 Pa, u = 0 m/s similar to the initial conditions taken in (Liu & Garimella, 

2005)’s work.  

3.1.2 Boundary Conditions 

The boundary conditions applied in this model are similar to the boundary conditions 

adapted in the works of  (Wadgaonkar & Arikapudi), (Patsis et al., 2012), (Erickson, 

Sinton, & Li, 2003), (Negi, 2013). For incompressible flows, velocity inlets and outlets are 

set. Velocity inlet is used to fix incoming velocities for incompressible flows. The pressure 

is calculated at the inlet. The velocities: 10^-3, 5*10^-4, 10^-4 and 5*10^-5 m/s are used 

at the inlet boundary in this model. For heat transfer, an inlet temperature of 323.15K is 

specified in the model. 

To define the outflow a pressure boundary condition is given based on the flow 

pressure, p0 (static or gauge pressure) at the outlet of the model. The pressure outlet 

boundary condition fixes the static pressure at the outlet. In trying to simulate the 

incompressible fluid flow, there is no way to determine the absolute pressure at any point. 

Therefore, we start with a guess pressure at the outlet. This is interpreted as the static 

pressure of the environment into which the flow exhausts. In this model, the static/gauge 

pressure ‘p0’ is set to 0 Pa and the operating pressure ‘pref’ is set to 1 atm. 

For heat transfer, the outflow boundary condition is selected at the outlet boundary 

in the model. Outflow conditions are configured to model flow exits where details of flow 
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velocity and pressure are not known before the solution to flow problem. The outflow fixes 

the exit at an outflow boundary and intends to represent a smooth continuation of flow 

through the boundary. The velocity and pressure are calculated. This condition is 

appropriate where the exit flow is close to a fully developed condition because the outflow 

condition assumes zero normal gradients for all flow variables except pressure. The solver 

extrapolates from within the domain and updates the outflow velocity and pressure in a 

way which is consistent with a fully developed flow. Moreover, an overall mass balance 

correction is applied. 

All walls of the microchannel except the inlet and outlet boundaries in this model 

have the thermal insulation boundary condition (-n*[k∇T] = 0). Also, the walls are given 

the no-slip condition which means that the velocity ‘u’ at the walls of the microchannel is 

zero.    

3.1.3 Governing Equations 

The Navier-Stokes equation governs the motion of fluids. For the case of a compressible 

Newtonian fluid, it gives Equation 3.1 where p is fluid pressure, u is the velocity of the 

fluid, ρ the fluid density and µ the fluid dynamic viscosity. The term on the left-hand side 

of Equation 3.1 is the inertial force, the first term on the right is pressure force, and the 

second term on the right is a viscous force, and the last term on the right is the external 

forces applied to the fluid. Moreover, Equation 3.2 represents conservation of mass. The 

first term 
𝜕𝜌

𝜕𝑡
 in Equation 3.2 is the change of density with time. This term is cancelled as 

constant density is assumed in this model. Thus, Equation 3.2 leads to Equation 3.3 which 

is true for incompressible fluids. 
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ρ ( 
𝜕𝒖

𝜕𝑡
 + u.∇𝒖 ) = -∇𝑝 + ∇. ( µ(∇𝒖 + (∇𝒖)T) - 

2

3
µ(∇. 𝒖)I ) + F (3.1) 

The Navier-Stokes equation is always solved along with the continuity equation: 

𝜕𝜌

𝜕𝑡
 + ∇.(ρu) = 0 (3.2) 

The conservation of momentum is represented by Navier-Stokes equation whereas the 

conservation of mass is represented by the continuity Equation 3.2. 

Based on flow regime, it is possible to simplify these equations. In fluid dynamics, 

different flow regimes are classified using a non-dimensional number, like Reynolds 

number/ Mach number. The Reynolds number, Re = ρUL/µ is the ratio of inertial forces to 

viscous forces. In this study, the flow is laminar and incompressible. Therefore the 

continuity Equation 3.2 reduces to Equation 3.3.  

∇. 𝒖 = 0 (3.3) 

Also, because of the divergence of the velocity being equal to zero the term, - 
2

3
µ(∇𝒖)I can 

be removed from the viscous force term in the Navier Stokes equation. Since gravity forces 

are neglected the external forces term ‘F’ is also removed from the Navier Stokes equation. 

Finally, the Navier Stokes equation reduces to Equation 3.4. 

0 = -∇𝑝 + ∇. ( µ(∇𝒖 + (∇𝒖)T) (3.4) 

ρCp
𝜕𝑇

𝜕𝑡
 + ρCpu.∇T + ∇𝐪 = Q + Qp + Qvd ; q = -k∇T (3.5) 

The heat equation is given by equation 3.5, where Cp is heat capacity of the fluid, 

Q is the source term, and ρ is fluid density. The first term on the left-hand side represents 

the heat accumulation term, the second term on the left-hand side represents heat transfer 

due to bulk fluid motion, q represents Fourier’s law for heat conduction and Qp, Qvd is the 

work due to pressure changes and viscous dissipation respectively.  
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In this study, the model is a multiphysics model as it involves more than one kind 

of physics. The Navier-Stokes equations from fluid dynamics work together with the heat 

transfer equation. There are four unknowns (dependent variables): the velocity field 

components, u and v, the pressure, p, and the temperature, T. 

The equations are related through bidirectional multiphysics couplings. It involves 

fluid dynamics coupled with heat transfer. The pressure p, and the velocity fields u and v, 

are solutions of the Navier-Stokes equations whereas the temperature T, is solved using the 

heat equation. The bidirectional multiphysics couplings relate all these variables. 

The above equations are the heart of fluid flow and heat transfer modeling. 

COMSOL Multiphysics solves those using time-dependent solvers for a particular set of 

boundary conditions and predicts the above unknown variables for a given geometry. The 

next section deals with setting up of the model in COMSOL Multiphysics 5.1. 

 

3.2 Method of Solution 

When computational fluid dynamics are performed, a good geometric model is the first 

step to achieve a successful simulation. To do so, first, the relevant physics is chosen in 

COMSOL Multiphysics 5.1. The single-phase laminar flow and heat transfer in fluids 

physics are selected along with a time-dependent study. The next thing to do, is to build 

the geometry. The geometry was manually built in COMSOL. Two global parameters are 

created which is the depth of the cavity in the microchannel and its position along the length 

of the microchannel. This makes parametric sweeps possible and provides results using 

which an optimized design of the microchannel is brought about.  
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The next step after creating geometry is to add material. Water is added to all the 

domains of the geometry. The Laminar flow physics node is then selected, and the 

appropriate boundary conditions are given. The inlet velocity is mentioned after selecting 

the respective boundary in the geometry. Likewise, the outlet pressure condition (p = 0Pa) 

is given to the outlet boundary. No slip wall boundary conditions are given everywhere 

else, and initial conditions are set to zero.  

For the Heat transfer in fluids physics node, the same previous process is followed. 

An inlet temperature is given at the inlet boundary by selecting it, and the temperature 

outflow (-n.q = 0) is given at the outlet boundary. The zero flux condition is applied at the 

outlet boundary in fully developed flows and means that the conditions of the outflow plane 

will be extrapolated from within the domain and have no impact on the upstream flow. The 

rest of the boundaries are taken to be thermally insulated with initial conditions set to zero.  

Figure 3.1 Geometry built in COMSOL. The actual representation of the 

layout of the microchannel in the microfluidic device. The figure shows the 

dimensions of the channel and the cavity along the length of the channel. 
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Before making the assumption of having the rest of the boundaries insulated, two 

types of boundary conditions were tested. First, a constant convective heat flux boundary 

condition was given to the sensor surface area (at the base of the cavity) alone, based on 

the resistance in series concept. The heat transfer coefficient of the PbS quantum dot 

impregnated paper sensor and PDMS was calculated using the ratio of thermal conductivity 

(k) to its characteristic length (L). The thermal conductivity and characteristic length of the 

paper sensor were taken as 0.23 W/mK (Sun et al., 2016) and 210 µm (thickness of paper 

sensor) respectively. For PDMS, values of 0.15 W/mK(McDonald et al., 2000) and 

0.01m(thickness of PDMS base) were taken for the thermal conductivity and the 

characteristic length respectively. The heat transfer coefficient of the paper sensor was 

found to be 1095.23 W/m2K and that of PDMS was found to be 15 W/m2K.  

 

Figure 3.2 The resistance in series concept applied at the sensor 

boundary. The combined heat transfer coefficient is calculated and 

applied to the base of the sensor cavity in COMSOL. The combined 

heat transfer coefficient being 14.79 W/m2K. 
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Based on the resistance network concept, the combined heat transfer coefficient ‘h’ 

is calculated by the formula, h = (1/hPbS + 1/hPDMS). The combined heat transfer coefficient 

was found out to be 14.79 W/m2K which was entered in the convective heat flux boundary 

condition in COMSOL. 

In the second type of boundary condition, a constant heat flux is applied on all 

boundaries assuming the whole channel being surrounded by PDMS material. A constant 

convective heat flux hPDMS = 15 W/m2K is given to the heat flux boundary condition in 

COMSOL. 

 

Figure 3.3 Tmax/Tin vs. height plots for the boundary conditions: heat flux just at the 

sensor boundary (top), heat flux at the sensor and also the walls considering the 

channel covered with PDMS. The plots show that the inlet temperature does not 

reach the sensor’s surface for both the boundary conditions. The plots were generated 

with the cavity positioned at L=5000µm, various heights and various velocities. The 

inlet temperature was set at 323.15K 
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The simulation is run using these two boundary conditions instead of the insulating 

boundary condition. Surprisingly, the inlet temperature does not reach the sensor, as seen 

in Figure 3.3 Therefore, an insulating boundary condition is used at the sensor boundary 

and also the walls of the microchannel. 

The heat transfer in fluids and laminar flow physics are coupled by selecting the 

Multiphysics coupling node. COMSOL is based on the finite element method approach, 

which is why meshing is needed to be done after the geometry and physics nodes are 

prepped. Although there are other methods like finite difference and finite volume to 

discretize differential equations, a common method for solving the fluidics problems is the 

finite element method (Shilling, 2001). For any linear or nonlinear system of ordinary 

differential equations, the finite element method can be outlined as follows. First, the 

solution domain is discretized by the construction of series of interlocking elements and 

nodes, which results in a finite number of elements that approximates the spatial geometry. 

These elements can have different shapes like triangular, tetrahedral, and linear. Then the 

process involves variational calculus, matrix multiplication, minimization of error 

functions. This results in a solution for the computational domain at the nodes. In the case 

of linear elements, linear interpolation between nodes. 

In this study, a user defined mesh/selective mesh is selected for the geometry. A 

finer mesh is given to the base of the cavity in the channel where the paper sensor is present, 

and an extremely course mesh is given to the rest of the geometry. This selective mesh 

reduces computational load compared to a geometry which is fully finer meshed. It also 

provides accurate results with the finer mesh at the sensor area which is the focus of the 

study here.  
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Figure 3.5, shows the plot comparison of the maximum temperature at the sensor’s 

surface for a finer mesh versus an extremely coarse mesh. The objective is to find the time 

at which the sensor’s surface reaches the maximum temperature (inlet temperature = 

323.15 K). In the case of the physics controlled mesh-extremely coarse mesh everywhere 

(plot – B in the figure) at the surface of the sensor, the maximum temperature is 

Figure 3.4 Selective user defined meshing of the geometry. The figure shows the 

comparison of the mesh at the sensor surface (fine) vs. that elsewhere (extremely 

coarse). The number of nodes are very high on the sensor surface which would produce 

more accurate results compared to a highly coarse mesh at the sensor surface. 
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inconclusive due to irregularity, oscillations in the data. Having faced this issue, a user 

controlled mesh – Finer mesh at the sensor surface, and extremely coarse everywhere was 

used. Along with this, the time step in the time-dependent study node was changed to 0.1s 

(previously, 1s), and the solver was made strict (previously, free). These changes gave a 

plot shown in the figure below (plot – A). The maximum temperature can be recorded 

easily now as it is steady at 323.15K (inlet temperature) without oscillations, unlike the 

extremely coarse mesh. 

 

Figure 3.5 T-max vs. time plot for finer mesh vs. extremely coarse mesh at the 

sensor’s surface. The plot on the left shows that by using a finer mesh the t-max 

at the sensor surface reaches 323.15 and is steady without oscillations. On the 

right, the unsteady nature of the plot is shown when an extremely coarse mesh is 

used. 
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After meshing, the time-dependent study node is selected and the start, stop and 

time steps in seconds were given, and the computation was initiated. As discussed earlier, 

initial results showed random oscillations in the data in results and were inaccurate. Hence, 

the time step was reduced to 0.1s from 1s, solver was made strict from it being a free solver, 

and the relative tolerance was activated and set to 0.01. These settings gave minimal/no 

oscillations in the data obtained in results. Parametric sweeps are done along with batch 

runs for various inlet velocities, a range of depths and positions of the cavity along the 

microchannel. Results are extracted after the simulation which is the velocity field, average 

and maximum temperature sensing times of the sensor area. 

Figure 3.6 Meshing comparison between selective and physics controlled mesh. 

Comparison of finer mesh and the extremely coarse mesh is shown. Fewer nodes are 

present in the extremely coarse mesh sensor surface which affects accuracy highly. The 

finer mesh provides excellent accuracy but comes with heavy computational loads. 
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3.3 Results and Discussion 

The microfluidic device model was set up in COMSOL Multiphysics 5.1 and simulated in 

it using a computer with the following configuration: i7 processor-2.4GHz, 8 GB RAM,64 

bit Windows 10 with 4GB Nvidia GeForce 920M Graphics card. 

The parameters used in setting up the model and deriving results from COMSOL 

Multiphysics are given in the following table. 

Table 3.2 Table of Parameters 

Dimensions of the microchannel Inlet/Outlet radius and height: 500µm 

Channel diameter: 500µm 

Channel depth: 100µm 

Channel length: 30000µm 

Height of the cavity (H) The following heights(µm) were used: 

100,200,300,400,500,600,700,800,900,1000 

Position of the cavity from the inlet (L) The following positions(µm) were used: 

5000,10000,15000,20000,25000 

Velocity(m/s) Flow rate (ml/hr) Residence time (s) 

10-3 10.8 30 

5*10-4 5.4 60 

10-4 1.08 300 

5*10-5 0.54 600 

 

The simulation of the microchannel model in COMSOL Multiphysics 5.1 is done 

to obtain the velocity and temperature profiles. The velocity profile gives an idea of the 

flow behavior inside the cavity while the temperature profiles provide an idea of the 

temperature distribution inside the channel and in particular the cavity, which is the focus 

of this study. The temperature profiles would tell us when the inlet temperature reaches the 

sensor which is required to understand the sensitivity of the sensor. 

The main objective of the simulation is to obtain the best design of the 

microchannel in which the times to reach the maximum temperature and the average 
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temperature on the sensor surface is well within the residence times calculated for the 

particular inlet flow rates.  

The time taken for the maximum temperature (t-max) and average temperature  

(t-avg) to reach the sensor surface is the subject of interest in the simulation. By finding 

these times, the working range of the sensor is established.  

Figure 3.7 Plots for t-max vs height for inlet velocity V = 10^-4 m/s with cavity heights 

from 100 to 1000 µm and cavity positions: 5000, 10000, 15000, 20000, 25000 µm. The 

inlet temperature is varied for each run. The plots show a similar trend but with an 

increasing time. 
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Figure 3.8 Plots for t-max, t-avg vs. heights at various inlet velocities, cavity heights: 100-

1000µm and positions: 5000, 10000, 15000. The inlet temperature was set to 323.15 K.  
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Figure 3.7, shows the plots for t-max vs. heights of the cavity for various inlet 

temperatures and positions of the cavity at velocity V = 10-4 m/s. The plots show no change 

in the trend with the variation in inlet temperature except that there is a difference in the 

time to achieve the inlet temperature at the sensor surface.  

Figure 3.9 Plots for t-max, t-avg vs. heights at various inlet velocities, cavity heights: 

100-1000µm and positions: 20000, 25000. The inlet temperature was set to 323.15 K. 
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Figures 3.8 and 3.9 represent the t-max, t-avg versus the cavity height plots  

at various cavity positions and velocities. For the velocities V = 10-3 and  

5*10-4 m/s, the curve is linear, whereas for lower velocities the linearity vanishes and major 

variation occurs between heights H = 400-800 µm 

Due to the similarity in the trend of t-max vs height plot at various cavity positions 

and velocities, for detailing a sample plot from Figure 3.8 is shown in Figure 3.10. This is 

Figure 3.10 Plot for t-max vs. cavity height at cavity position L = 5000µm for various 

velocities.  
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a plot of t-max vs cavity heights for the cavity position L = 5000 µm at various velocities. 

For velocities, V = 10-4 and 5*10-5 m/s, the curve is linear initially from height H = 100 to 

400 µm. After H = 400 µm more time is taken to reach the inlet temperature at the sensor 

surface. The curve then flattens a bit and again increases steeply up to H = 800 µm and 

flattens out again.  

The same trend is observed for plots at the other cavity positions L = 10000, 15000, 

20000 and 25000 µm (refer Figures 3.8 and 3.9). The only difference in these plots from 

the previous plot is that the flat regions becomes steeper as the cavity positions increase. 

From the Figures, 3.8 and 3.9, the allowable cavity heights at appropriate lengths 

for the used velocities was found. For velocity, V=10-3m/s, H=100,200,300 at L=5000, 

10000,15000,20000,25000 is allowable. For velocity, V=5*10-4m/s, H=100 at L=5000, 

10000,15000,20000,25000 is allowable. For velocity, V=10-4m/s, H=100 at L=5000, 

10000 is allowable. Suitable H and L at V=5*10-5 could not be found. These parameters 

can be used to fabricate an optimized device. 

Figure 3.11, shows the slice side views of the flow profiles and average temperature 

profiles in the sensor cavity at various times. Similarly, Figure 3.12 shows the average 

temperature profiles of the sensor surface from the bottom. The heights and cavity positions 

used to obtain these profiles were, H = 100, 500 and 100; cavity positions L = 5000, 15000 

and 25000. A velocity of V = 10-4 m/s was used to carry out these runs. 
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Figure 3.11 Slice side view of the average temperature profile at the sensor cavity for 

various times. The velocity profile and the average temperature profile is shown for 

cavity heights: 100, 500, 1000 µm and cavity positions: 5000, 15000, 25000 µm. 
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Figure 3.12 Bottom view of the average temperature profile at the sensor surface for 

various times. The average temperature profile is shown for cavity heights: 100, 500, 

1000 µm and cavity positions: 5000, 15000, 25000 µm. 

 



 

38 

3.4 Sensor Calibration and Validation of Results 

A simple calibration model set up is shown in Figure 3.13. Heated or cooled fluid streams 

of known temperatures are sent into the sensor and a calibration curve is created using the 

output voltage and the known temperature difference. After the Calibration curve is 

created, unknown temperature differences can be obtained by relating the obtained output 

voltage to the corresponding temperature difference in the calibration curve.  

After calibration of the temperature sensor, the validation of COMSOL results is 

done using the following methodology. The sensor device is given fluid streams of known 

temperatures with inlet velocity of 10-4m/s using syringe pumps. The time taken to reach a 

steady, required output voltage reading for the corresponding known temperature 

difference is noted. This value is then compared with the result obtained from COMSOL.  

Unfortunately, data from the sensor device could not be obtained by this time and 

work is currently underway to calibrate the sensor and validate its results with COMSOL. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.13 A simple temperature sensor calibration model. A calibration curve is 

created using known temperature differences and its corresponding output voltage. 

Then, using the calibration curve the unknown temperature difference is obtained.  
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CHAPTER 4 

CONCLUSION 

 

The thesis started with a review of the methods used in temperature sensing and 

measurements for lab on chip systems in the last 16 years. Even though these methods were 

useful and efficient, they were costly and involved the usage of heavy equipment or were 

unable to utilize the method for a lab on a chip system. Due to the need for a cheap, hassle 

free fabrication of a temperature sensor for lab-on-a-chip systems, the present study dealt 

with an equipment free, cheap fabrication of a paper based temperature sensor integrated 

into a microfluidic device, proving it to be suitable for lab-on-a -chip systems.  

In the present study, the fluid flow and heat transfer in the device is simulated using 

COMSOL Multiphysics 5.1. A detailed description of the model set-up and the governing 

equations with the boundary conditions involved in the model was also put forth, and a 

successful simulation was brought about.  

From the simulation results, the proper dimensions of the microchannel for 

sufficient temperature sensing in a lab on a chip device was obtained. The temperature 

distribution and single-phase laminar fluid flow in a microfluidic cavity are also understood 

from the simulation results. This understanding can also be extended to other thermal 

microfluidic devices during fabrication.  
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CHAPTER 5 

FUTURE WORK 

 

The motive in the future work is to develop an on-chip sensor to detect explosives using 

the above-described paper sensor. The design involves two cavities along the length of the 

microchannel with two sensors, a chemical sensor at cavity one and a temperature sensor 

at cavity two. The paper based temperature sensor can be transformed into a chemical 

sensor by depositing or growing chemical sensing materials (Blue, Vobecka, Skabara, & 

Uttamchandani, 2013) on their surfaces.  These materials will produce heat in the presence 

of target chemicals by bonding with the explosive material atoms/reacting with them which 

gives out a heat of reaction. This basically would make the chemical sensor a heating 

element which would heat up the incoming fluid containing the volatile explosive atoms. 

Then the temperature sensor at cavity two would sense this difference in temperature and 

give out a potential difference read out. Even though the chemical sensor could itself give 

out a reading when it detects the explosive material atom, the sensor at cavity two confirms 

the presence because of the heat produced which is specific to the explosive material 

interacting with the chemical sensor. Cross-sensitivity with other volatile organic 

compounds might affect the ability of the chemical sensor in detecting explosive material 

atoms specifically, thereby making the temperature sensor at cavity two a confirmation on 

detection. Hence, this sensor chip would prove to be a continuous flow real time accurate 

explosive detector. 
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APPENDIX  

COMSOL IMPLEMENTATION  

 

To build the model in COMSOL Multiphysics using the governing equations, two physics 

interfaces are used: the Laminar Flow interface for laminar single-phase fluid flow and the 

Heat Transfer in Fluids interface for heat transfer. In this model, the equations are coupled 

in both directions. The Multiphysics nodes Temperature Coupling and Flow Coupling is 

selected to automatically use velocity and pressure from Laminar Flow into Heat Transfer 

in Fluids. 

MODELING INSTRUCTIONS 

Open COMSOL Multiphysics and click Model Wizard. 

MODEL WIZARD 

1. In the Model Wizard window, click 3D. 

2. In the Select physics tree, select Fluid flow>Single-Phase Flow>Laminar Flow (spf). 

3. Click Add. 

4. Click Study. 

5. In the Select study tree, select Preset Studies for Selected Physics Interfaces>Time   

Dependent. 

 

6. Click Done. 

DEFINITIONS 

Parameters 

1. On the Model toolbar, click Parameters. 

 

2. In the Settings window for Parameters, locate the Parameters section. 

3. In the table, enter the following settings: H = 100um and L =500um (these parameters 

are useful to do parametric sweeps). 
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GEOMETRY 1 

 

1. Click geometry and in the settings window set the length unit to µm. 

 

Block 1 (blk 1) 

1. On the Geometry toolbar, right click and choose Block. 

 

2. In the Settings window for Block, locate the Size section. 

3. Enter the value 500 for the height, width and depth.  

4. In the same Settings window, locate Position section and enter the following values: 

X=0, Y=0, Z=100 

5. Click the Build All Objects button. 

 

Block 2 (blk 2) 

1. On the Geometry toolbar, right click and choose Block. 

 

2. In the Settings window for Block, locate the Size section. 

3. Enter the value 500 for the height, width and depth.  

4. In the same Settings window, locate Position section and enter the following values: 

X=29500, Y=0, Z=100 

5. Click the Build All Objects button. 

 

Block 3 (blk 3) 

1. On the Geometry toolbar, right click and choose Block. 

 

2. In the Settings window for Block, locate the Size section. 

3. Enter the values 100, 30000 and 500 for the height, width and depth respectively. 

4. In the same Settings window, locate Position section and enter the following values: 

X=0, Y=0, Z=0 

5. Click the Build All Objects button. 

 

Cylinder 1 (cyl 1) 

1. On the Geometry toolbar, right click and choose Cylinder. 

 

2. In the Settings window for Cylinder, locate the Size section. 

3. Enter the values 1000 and H for the radius and height respectively.  
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ADD MATERIAL 

1. On the Model toolbar, right click on Materials and select Add Material to open the 

Add Material window. 

 

2. Go to the Add Material window. 

3. In the tree, select Built-In>Water, liquid. 

4. Click Add to Component in the window toolbar and close the Add Material window. 

MULTIPHYSICS 

1. On the Physics toolbar, click Multiphysics and choose Global>Temperature 

Coupling. 

 

2. On the Physics toolbar, click Multiphysics and choose Global>Flow Coupling. 

LAMINAR FLOW (spf) 

No changes are done in the default tabs Fluid Properties 1, Initial values 1 and Wall 1. 

The default specifications in these tabs are true to the model in this study. Right click on 

the Laminar Flow tab and select Inlet and Outlet. 

 

Inlet 1 

1. On the Physics toolbar, right click and choose Inlet 

 

2. Select Boundary 7 only. 

3. In the Settings window for Inlet, locate the Velocity section.  

 

4. The normal inflow velocity is chosen and U0 is given the values of 10^-3, 5*10^-4, 10^-

4, 5*10^-5 m/s (used in this study) 

 

Outlet 1 

1. On the Physics toolbar, right click and choose Outlet. 

 

2. Select Boundary 24 only. 

 

3. In the Settings window for Outlet, locate the Pressure Conditions section. The default 

pressure is 0 Pa and remains as such. 
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HEAT TRANSFER IN FLUIDS (HT) 

 

1. No changes are made in the default tabs, Heat Transfer in Fluids 1 and Thermal 

Insulation 1.  

 

Initial Values 1 

1. In the Model Builder window, under Component 1 (comp1)>Heat Transfer in Fluids 

(ht) click Initial Values 1 

 

2. In the Settings window for Initial Values, locate the Initial Values section. 

 

3. In the T text field, type 300K. 

 

Temperature 1 

1. On the Physics toolbar, right click and choose Temperature. 

 

2. Select Boundary 7 only. 

 

3. In the Settings window for Temperature, locate the Temperature section. 

 

4. In the T0 text field, type 323.15 (313.15, 333.15, 343.15 K are the other values used in 

this study) 

 

Outflow 1  

1. On the Physics toolbar, right click and choose Outflow. 

 

2. Select Boundary 24 only. 

 

Heat Flux 1 

1. This is used for the special case of studying the temperature profile with PDMS on all 

boundaries and for the flux just at the sensor surface (resistance concept). 

 

2. On the Physics toolbar, right click and choose Heat Flux. 

 

3. In the Settings window, under the Equation section, select the Convective Heat Flux 

option. 

 

4. The Heat transfer coefficient is given as 14.79 when the flux is just applied to Boundary 

14. (Flux at the sensor surface alone-study) 

 

5. The Heat transfer coefficient is given as 15 when the flux is applied to all boundaries 

except boundary 7 and 24 (PDMS material on all boundaries-study) 

 

6. The External Temperature in both cases is set to 300 K. 
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MESH 1 

 

1. In the Model Builder window, under Component 1 (comp1) click Mesh 1 and select 

User Controlled Mesh 

 

Size 

1. In the Settings window, select Extremely Coarse Mesh. 

 

Size 1 

1. In the Settings window, select Finer Mesh and select Boundary 14 only. 

 

2. Click Mesh 1 and click Build All. 

 

STUDY 1 

 

1. Right click on the Study 1 tab and select Show Default Solver. 

 

2. In the Settings window of Solver Configurations>Solution 1>Time Dependent Solver 

1, under Time Stepping change the method of Steps Taken by Solver from Free to Strict. 

 

Step 1: Time Dependent 

1. In the Settings window of Study 1>Step 1: Time Dependent, under Study Settings set 

the Relative Tolerance to 0.01 

 

2. The Times range is also specified in the format of (Start-time, time step, End-time) 

 

3. Then, the Compute button is hit to start the Simulation. 

 

Parametric Sweep 

1. Right click on the Study1 node and select Parametric Sweep. 

 

2. In the Settings window, add the parameters to be swept (H and L). 

 

3. The Unit ‘um’ is specified and the Values needed to be studied are entered in the 

parameter window.  

 

4. The Sweep type is set to All Combinations or Specified Combinations with respect to 

the values entered in the Parameter list 

 

5. In the Study Extensions option in the Settings window, turn ‘Off’ the use of 

Parametric Solver. 

 

6. Hit Compute in the Settings window to start the Simulation. 
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RESULTS 

 

1. After the Simulation is run, the default plots are generated namely; Temperature, 

Velocity and Pressure. These nodes are present in the Results node. 

 

Surface Maximum and Surface Average 

1. Right click on the Derived Values node and select Surface Maximum and Surface 

Average from the options Maximum and Average respectively. 

 

2. In the Settings window, under Data, select the appropriate Data Set. Select 

Study1/Solution1 if a batch run is done or select Parametric Solutions1 if a Parametric 

Sweep is done  

 

3. Select Boundary 14 only 

 

4. In the Expression tab in the Settings window, take ‘T’ as the Expression and ‘K’ as 

the Unit. 

 

5. Hit Evaluate in the Settings window, to evaluate the Surface Average or the Surface 

maximum at Boundary 14. 

 

6. The Results are shown in a table under the Graphics window which can be exported as 

a text file or read then and there. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 

REFERENCES 

 

 

Baek, C., Kim, H. Y., Na, D., & Min, J. (2015). A microfluidic system for the separation 

and detection of E. coli O157:H7 in soil sample using ternary interactions between 

humic acid, bacteria, and a hydrophilic surface. Sensors and Actuators B: 

Chemical, 208, 238-244. doi: http://dx.doi.org/10.1016/j.snb.2014.11.028 

 

Blue, R., Vobecka, Z., Skabara, P. J., & Uttamchandani, D. (2013). The development of 

sensors for volatile nitro-containing compounds as models for explosives detection. 

Sensors and Actuators B: Chemical, 176, 534-542. doi: 

http://dx.doi.org/10.1016/j.snb.2012.10.088 

 

Chon, C. H., & Li, D. (2008). Temperature Control in Microfluidic Systems. In D. Li (Ed.), 

Encyclopedia of Microfluidics and Nanofluidics (pp. 1976-1980). Boston, MA: 

Springer US. 

 

Darhuber, A. A., Davis, J. M., Troian, S. M., & Reisner, W. W. (2003). Thermocapillary 

actuation of liquid flow on chemically patterned surfaces. Physics of Fluids, 15(5), 

1295-1304. doi: 10.1063/1.1562628 

 

De Mello, A. J., Habgood, M., Lancaster, N. L., Welton, T., & Wootton, R. C. R. (2004). 

Precise temperature control in microfluidic devices using Joule heating of ionic 

liquids. Lab on a Chip - Miniaturisation for Chemistry and Biology, 4(5), 417-419. 

doi: 10.1039/b405760k 

 

Erickson, D., Sinton D Fau - Li, D., & Li, D. Joule heating and heat transfer in 

poly(dimethylsiloxane) microfluidic systems. (1473-0197 (Print)).  

 

Erickson, D., Sinton, D., & Li, D. (2003). Joule heating and heat transfer in 

poly(dimethylsiloxane) microfluidic systems. Lab on a Chip - Miniaturisation for 

Chemistry and Biology, 3(3), 141-149. doi: 10.1039/b306158b 

 

Guijt, R. M., Dodge, A., van Dedem, G. W. K., de Rooij, N. F., & Verpoorte, E. (2003). 

Chemical and physical processes for integrated temperature control in microfluidic 

devices. Lab on a Chip, 3(1), 1-4. doi: 10.1039/B210629A 

 

Houssin, T., Cramer, J., Grojsman, R., Bellahsene, L., Colas, G., Moulet, H., . . . Chen, Y. 

(2016). Ultrafast, sensitive and large-volume on-chip real-time PCR for the 

molecular diagnosis of bacterial and viral infections. Lab on a Chip, 16(8), 1401-

1411. doi: 10.1039/C5LC01459J 

 

Hung, M.-S., Ho, C.-C., & Chen, C.-P. (2016). Laser-induced heating integrated with a 

microfluidic platform for real-time DNA replication and detection. Journal of 

Biomedical Optics, 21(8), 087003-087003. doi: 10.1117/1.JBO.21.8.087003 

http://dx.doi.org/10.1016/j.snb.2014.11.028
http://dx.doi.org/10.1016/j.snb.2012.10.088


 

48 

Jung, W., Han, J., Choi, J.-W., & Ahn, C. H. (2015). Point-of-care testing (POCT) 

diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectronic 

Engineering, 132, 46-57. doi: http://dx.doi.org/10.1016/j.mee.2014.09.024 

 

Kang, L., Chung, B. G., Langer, R., & Khademhosseini, A. (2008). Microfluidics for Drug 

Discovery and Development: From Target Selection to Product Lifecycle 

Management. Drug Discovery Today, 13(1-2), 1-13. doi: 

10.1016/j.drudis.2007.10.003 

 

Khan, W. A., & Yovanovich, M. M. (2008). Analytical Modeling of Fluid Flow and Heat 

Transfer in Microchannel/Nanochannel Heat Sinks. Journal of Thermophysics and 

Heat Transfer, 22(3), 352-359. doi: 10.2514/1.35621 

 

Kim, S.-J., Wang, F., Burns, M. A., & Kurabayashi, K. (2009). Temperature-programmed 

natural convection for micromixing and biochemical reaction in a single 

microfluidic chamber. Analytical Chemistry, 81(11), 4510-4516. doi: 

10.1021/ac900512x 

 

Lao, A. I. K., Lee, T. M. H., Hsing, I. M., & Ip, N. Y. (2000). Precise temperature control 

of microfluidic chamber for gas and liquid phase reactions. Sensors and Actuators 

A: Physical, 84(1–2), 11-17. doi: http://dx.doi.org/10.1016/S0924-4247(99)00356-

8 

 

Lee, S. H., Lee Cs Fau - Kim, B.-G., Kim Bg Fau - Kim, Y.-K., & Kim, Y. K. An integrated 

microfluidic chip for the analysis of biochemical reactions by MALDI mass 

spectrometry. (1387-2176 (Print)).  

 

Liana, D. D., Raguse, B., Gooding, J. J., & Chow, E. (2012). Recent advances in paper-

based sensors. Sensors (Basel), 12(9), 11505-11526. doi: 10.3390/s120911505 

 

Liu, D., & Garimella, S. V. (2005). Analysis and optimization of the thermal performance 

of microchannel heat sinks. International Journal of Numerical Methods for Heat 

& Fluid Flow, 15(1), 7-26.  

 

McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., & 

Whitesides, G. M. (2000). Fabrication of microfluidic systems in 

poly(dimethylsiloxane). Electrophoresis, 21(1), 27-40. doi: 10.1002/(sici)1522-

2683(20000101)21:1<27::aid-elps27>3.0.co;2-c 

 

Miralles, V., Huerre, A., Malloggi, F., & Jullien, M. C. (2013). A Review of Heating and 

Temperature Control in Microfluidic Systems: Techniques and Applications. 

Diagnostics (Basel), 3(1), 33-67. doi: 10.3390/diagnostics3010033 

 

 

 

http://dx.doi.org/10.1016/j.mee.2014.09.024
http://dx.doi.org/10.1016/S0924-4247(99)00356-8
http://dx.doi.org/10.1016/S0924-4247(99)00356-8


 

49 

Morgan, A. J. L., Naylon, J., Gooding, S., John, C., Squires, O., Lees, J., Porch, A. (2013). 

Efficient microwave heating of microfluidic systems. Sensors and 

ActuatorsB:Chemical,181,904909.doi:http://dx.doi.org/10.1016/j.snb.2013.02.099 

 

Negi, V. S. (2013). NUMERICAL STUDY OF MICROSCALE HEAT SINKS USING 

DIFFERENT SHAPES & FLUIDS. Paper presented at the COMSOL Bangalore, 

India. 

 

Nery, E. W., & Kubota, L. T. (2013). Sensing approaches on paper-based devices: a review. 

Anal Bioanal Chem, 405(24), 7573-7595. doi: 10.1007/s00216-013-6911-4 

 

Nge, P. N., Rogers, C. I., & Woolley, A. T. (2013). Advances in Microfluidic Materials, 

Functions, Integration and Applications. Chemical Reviews, 113(4), 2550-2583. 

doi: 10.1021/cr300337x 

 

Oblath, E. A., Henley, W. H., Alarie, J. P., & Ramsey, J. M. (2013). A microfluidic chip 

integrating DNA extraction and real-time PCR for the detection of bacteria in 

saliva. Lab on a Chip, 13(7), 1325-1332. doi: 10.1039/C3LC40961A 

 

Patsis, G. P., Petropoulos, A., & Kaltsas, G. (2012). Modelling and evaluation of a thermal 

microfluidic sensor fabricated on plastic substrate. Microsystem Technologies, 

18(3), 359-364. doi: 10.1007/s00542-011-1409-5 

 

Pitchaimani, K., Sapp Bc Fau - Winter, A., Winter A Fau - Gispanski, A., Gispanski A Fau 

- Nishida, T., Nishida T Fau - Hugh Fan, Z., & Hugh Fan, Z. Manufacturable plastic 

microfluidic valves using thermal actuation. (1473-0197 (Print)).  

 

Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of 

microfluidics in biomedical research. Nature, 507(7491), 181-189. doi: 

10.1038/nature13118 

 

Selva, B., Jullien, M. C., Miralles, V., & Cantat, I. (2010). Thermocapillary actuation by 

optimized resistor pattern: Bubbles and droplets displacing, switching and trapping. 

Lab on a Chip - Miniaturisation for Chemistry and Biology, 10(14), 1835-1840. 

doi: 10.1039/c001900c 

 

Selva, B., Mary, P., & Jullien, M.-C. (2010). Integration of a uniform and rapid heating 

source into microfluidic systems. Microfluidics and Nanofluidics, 8(6), 755-765. 

doi: 10.1007/s10404-009-0505-7 

 

Singleton, J., Zentner, C., Buser, J., Yager, P., LaBarre, P., & Weigl, B. H. (2013). 

Instrument-free exothermic heating with phase change temperature control for 

paper microfluidic devices. Proceedings of SPIE, 8615, 86150R. doi: 

10.1117/12.2005928 

http://dx.doi.org/10.1016/j.snb.2013.02.099


 

50 

Sun, C., Goharpey, A. H., Rai, A., Zhang, T., & Ko, D. K. (2016). Paper Thermoelectrics: 

Merging Nanotechnology with Naturally Abundant Fibrous Material. ACS Appl 

Mater Interfaces, 8(34), 22182-22189. doi: 10.1021/acsami.6b05843 

 

Tretheway, D. C., & Meinhart, C. D. (2002). Apparent fluid slip at hydrophobic 

microchannel walls. Physics of Fluids (1994-present), 14(3), L9-L12.  

 

Vigolo, D., Rusconi, R., Stone, H. A., & Piazza, R. (2010). Thermophoresis: Microfluidics 

characterization and separation. Soft Matter, 6(15), 3489-3493. doi: 

10.1039/c002057e 

 

Wadgaonkar, I., & Arikapudi, S. Modeling of Humidification in Comsol Multiphysics 4.4. 

  

Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 

368-373. doi: 10.1038/nature05058 

 

Wu, J., Cao, W., Wen, W., Chang, D. C., & Sheng, P. (2009). Polydimethylsiloxane 

microfluidic chip with integrated microheater and thermal sensor. Biomicrofluidics, 

3(1), 12005. doi: 10.1063/1.3058587 

 

Xue, Z., & Qiu, H. (2005). Integrating micromachined fast response temperature sensor 

array in a glass microchannel. Sensors and Actuators A: Physical, 122(2), 189-195. 

doi: http://dx.doi.org/10.1016/j.sna.2005.04.019 

 

Yeo, T., Tan, S. J., Lim, C. L., Lau, D. P. X., Chua, Y. W., Krisna, S. S., . . . Lim, C. T. 

(2016). Microfluidic enrichment for the single cell analysis of circulating tumor 

cells. Scientific Reports, 6, 22076. doi: 10.1038/srep22076 

            http://www.nature.com/articles/srep22076#supplementary-information 

 

http://dx.doi.org/10.1016/j.sna.2005.04.019
http://www.nature.com/articles/srep22076#supplementary-information

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Device
	Chapter 3: COMSOL
	Chapter 4: Conclusion
	Chapter 5: Future Work
	Appendix: COMSOL Implementation
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




