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ABSTRACT

APPOINTMENT PLANNING AND SCHEDULING IN PRIMARY
CARE

by
Babak Hoseini

The Affordable Care Act (ACA) puts greater emphasis on disease prevention and

better quality of care; as a result, primary care is becoming a vital component in

the health care system. However, long waits for the next available appointments and

delays in doctors offices combined with no-shows and late cancellations have resulted

in low efficiency and high costs.

This dissertation develops an innovative stochastic model for patient planning

and scheduling in order to reduce patients’ waiting time and optimize primary care

providers’ utility. In order to facilitate access to patients who request a same-day

appointment, a new appointment system is presented in which a proportion of

capacity is reserved for urgent patients while the rest of the capacity is allocated

to routine patients in advance. After the examination of the impact of no-shows

on scheduling, a practical double-booking strategy is proposed to mitigate negative

impacts of the no-show. Furthermore, proposed model demonstrates the specific

circumstances under which each type of scheduling should be adopted by providers

to reach higher utilization.

Moreover, this dissertation extends the single physician’s model to a joint panel

scheduling and investigates the efficiency of such systems on the urgent patients’

accessibility, the physicians’ utilization, and the patients’ waiting time. Incorporating

the newsvendor approach and stochastic optimization, these models are robust and

practical for planning and scheduling in primary care settings. All the analytical

results are supported with numerical examples in order to provide better managerial

insights for primary care providers.
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CHAPTER 1

INTRODUCTION

1.1. The United States Health Care Isuues

Health care around the world and specifically in the United States has put a

lot of effort into improving knowledge, innovation, and increasing capacity to

conduct and manage the current system. Still, there are several major problems

in quality, productivity, cost, and equity which are the critical attributes of a system.

Shortcomings and inefficiencies in these areas may result in missed opportunities,

waste, and harm to patients. Based on several reports [Schoen et al., 2006, Schoen

et al., 2009, Smith et al., 2013], America’s health care system has become too complex

and costly for business as usual to continue. Inefficiencies, low productivity, and

quality issues obstruct progress in improving health care system.

The United States health care system is unique among OECD (Organization for

Economic Co-operation and Development) countries for its dependency and reliance

on the private sector for financing, purchasing, and delivery of health care services.

In the U.S., 80% of hospitals are non-profit, 2% are government owned and 18% are

for-profit [Rosenthal, 2013]. Comparing the health care system with other industries

highlight the full extent of the aforementioned shortcomings.

Automobile manufacturers produce thousands of safe and standard vehicles;

through implementing systems, such as Just In Time (JIT) or Total Quality

Management (TQM) they not only increased the service rate but also the total profit.

Although health care system have to accommodate many competing priorities and

the human factor, unlike those in other industries, the health care systems can learn

from these industries how to achieve target cost and expand choices.
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Financial institutes, such as banks, provide customers financial statements and

records which are updated in real time as one of their customer satisfaction values.

Similarly, patients would be better served by an agile health care system that is

consistently reliable and that constantly improves.

1.2. Research Motivation

Recently, rising health care costs in the United States is becoming an important

issue. The United States spends far more money on health care per capita than any

other country. Since 2004, the U.S. spent almost 50% more than the second highest

country, Norway, on its health care [Davis et al., 2010, Davis et al., 2014]. For the

year 2014, PwCs Health Research Institute (HRI) projected a medical cost trend of

6.5% increase [PWC, 2013]. The Congressional Budget Office (CBO) expects total

spending on health care to increase 14% of the gross domestic product (GDP) by

2039, twice the 7% average seen over the past 40 years [Elmendorf, 2014]. According

to the federal budget spending estimation for fiscal years 2012-2016, the health care

budget increased almost $367 billion from 2012 to 2016, which is a 42% increase.

The health care system is not only under pressure because of high expenditure

but also the poor quality of care. According to World Health Organization (WHO),

the ultimate goal of primary health care is “better health for all”. One of the key

elements in achieving this goal is to organize health services around people’s needs and

expectations. The United States health care system is not only the most expensive

in the world but also has a poor ranking among OECD countries, with respect to

the aforementioned critical attributes. As shown in Figures 1.2 and 1.2, the United

States has the highest expenditure and lowest ranking in most of the performance

metrics. This poor performance drastically affects Americans’ healthiness in terms

of life expectancy, infant mortality rate, diabetes prevalence, cancer incidence and

many other metrics. For example, Figure 1.3 demonstrates how life expectation

2



Figure 1.1 Overall ranking of OECD countries in health care-2010.
Source: Calculated by the Commonwealth Fund based on 2007 International Health Policy;
2008 International Health Policy of Sicker Adults; 2009 International Health Policy Survey
of Primary Care Physicians, “OECD Health Data”, Nov 2009, Paris.

versus the expenditure on health care in the United States is lower when compared

to other countries. In another study, [Nolte and McKee, 2008] compare rates of

“amenable mortality”, which are deaths from certain causes before age 75 that are

potentially preventable with timely and effective health care among industrialized

countries. Figure 1.4 shows the total ranking of industrialized countries with respect

to amenable mortality. The most important cause for such disparity in health care

is the failure to emphasize primary care within health care system. Countries that

have focused on primary care have better health outcomes at lower cost than the

United States [Siferd and Benton, 1992]. Studies show countries with weak primary

care infrastructures have poorer performance on major aspects of health [Starfield

and Shi, 2002, Sandy et al., 2009].

The United States currently has a gap between the number of primary care

providers and the number that would be needed to deliver primary care to its’

population. Indeed, between the current health care system and the health care

system that we could have lies not just a gap, but a chasm [Bloom, 2002]. According

to another study, by 2035 more than 44,000 primary care physicians will be needed and

3



Figure 1.2 Overall ranking of OECD countries in health care-2013.
Source: Calculated by the Commonwealth Fund based on 2011 International Health Policy;
2012 International Health Policy of Sicker Adults; 2013 International Health Policy Survey
of Primary Care Physicians, “OECD Health Data”, Nov 2013, Paris.

Figure 1.3 Life expectancy vs. expenditure per capita among OECD countries.
Source: Calculated by the Commonwealth Fund based on 2007 International Health Policy;
“Health at a Glance”, 2009

with current primary care production rates, the United States will face a shortage of

33,000 primary care physicians [Petterson et al., 2015]. Despite numerous publications

and reports on deficiencies within the primary care system, the U.S. needs more effort

to strengthen primary care.

4



Figure 1.4 Amenable mortality in industrialized countries.
Source: Adapted from E. Nolte and C. M. McKee, Measuring the Health of Nations:
Updating an Earlier Analysis,“Health Affairs”,Jan 2008, 27(1):5871.

According to [Starfield, 1998], a good primary care system should consist of

first-contact (initial outreach to primary care practitioner), maintaining continuity

of care over time, comprehensiveness and be coordinated with various aspects of the

health care system. Institute of Medicine (IOM) Committee on the Quality of Health

Care in America declares two main goals for primary care in the U.S. The first goal

is providing care that is responsive to individual patients’ preferences, needs, and

values and the second goal is reducing waits and sometimes harmful delays for both

recipient and practitioner.

Although, the recent Affordable Care Act in 2010 tried to expand the coverage

among the uninsured population. The question is: who will deliver primary care to

the new cohort of patients?

To answer this question, one needs to acknowledge the crisis at hand and be

open to the opportunities that are brought forth by this challenge. It is because of

this formidable task that the interaction and the attention of policy makers are an

absolute need. According to [Sepulveda et al., 2008], if the primary care foundation

of the health care system is not fortified, access and cost shaving may be impossible.
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Since primary care is considered as a day-to-day care, the practitioner acts

as the principal responsible party for the care of patients within the health care

system. In recent years, delays in acquiring appointments and long office waiting times

have negatively impacted patients’ satisfaction, and therefore, become problematic for

primary care providers. Based on a survey, 27% of insured adults younger than 65 with

health problems, had difficulty getting a timely appointment from their physicians.

Moreover, reports show 43% of adults, with an urgent condition, have received care

with noticeable delay [Murray and Berwick, 2003].

It is evident that the main cause of the current crisis in primary care in the U.S.

is the difficulty in matching supply with demand. However, the Affordable Care Act

(ACA) consists of many provisions and recommends strategies to improve access to

primary care service centers by increasing the supply of practitioners. These strategies

should be considered as a longer-term effort to boost the primary care workforce and

may be insufficient due to the fact that a significant increase in new primary care

practitioner will take decades to meet trending demand. Consequently, primary care

requires more effort to become accessible and efficient. Therefore, reducing waiting

times and governing pertinent goals of primary care, such as continuity of care and

accessibility results in an increase of quality of care while reducing costs.

1.3. Background and Problem Statement

There is a meaningful difference between primary health care and primary care.

According to the World Health Organization (WHO) and the United Nations

International Childrens Emergency Fund (UNICEF), primary health care (PHC) is

“essential health care based on practical, scientifically and socially acceptable methods

and technology made universally accessible through their full participation and at a

cost that the community and country can afford”. However, primary care (PC)

is “Delivery of a complex set of services, which include the first contact and the
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maintenance care, and assumes responsibility for the referral to distinct services in

response to the client needs and cultural values” [Barnes et al., 1995]. Consequently,

primary care is a subset of primary health care.

Primary care is substantiated within the health care system in which health

promotion, disease prevention, health maintenance, counseling, patient education,

diagnosis and treatment of acute and chronic illnesses, are provided in a variety

of health care settings, such as office, clinics, critical care, short/long-term care and

home care. Primary care, considered as a same day care, is provided by a primary care

practitioner, such as family physician, general practitioner, geriatrician, pediatrician,

nurse practitioner and physician assistants, who act as the first contact and the

principal point of continuing care for patients. The practitioners also coordinate

other specialists’ services as needed.

In the 1990s, long waits and delays in hospitals and doctors’ offices were

considered as status quo [Goitein, 1990]. Many primary providers had difficulty in

providing timely care which unnecessarily coerced them into hiring more physicians

and staff to reduce backlogs and waiting time, which resulted in an inefficient system.

Waiting time consists of two subcategories, direct waiting time and indirect waiting

time. Indirect waiting time is the difference between the time that an appointment

is requested and the time of the actual appointment. Direct waiting time (in-office

delay) is the difference between a patients appointment time and the time when

he/she is actually seen by the physician.

In order to address long waiting times, many primary care providers across

the United States implemented different appointment systems for patient scheduling.

In the crude model or traditional model, all the available appointments are reserved

ahead of time, usually two weeks to a month before the allotted date, and urgent

patients are squeezed in by double-booking. In this appointment system, the capacity

of a provider is fully utilized due to the overabundance of bookings. Additionally,
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the provider should use a complex matrix appointment format to schedule routine

physicals and follow-up appointments. It is of note that such systems contain an

inherent disruption of care due to the incompatibility of the schedule. The practice

of overbooking and disruption of urgent patients’ needs contribute to further prolong

waits, which propel patients to seek medical treatment via urgent care, i.e.; emergency

department or various urgent care clinics resulting in further disruption of care and

increase in costs within the health care system. The slogan for these systems is, “Do

last month’s work today” [Murray and Tantau, 2000].

In the late 90’s and after development of demand prediction methods, a new

scheduling system was introduced by researchers called carve-out model. In this

approach, a proportion of a whole capacity remains open in order to service the

urgent patients each day, and the rest of allotted times are booked in advance, like

the traditional model. Although, this model is better than the traditional model,

it still contains a considerable amount of problems. The patient who calls for a

non-urgent appointment will be pushed to the next open slot (potentially next week).

Moreover, when a patient calls for an appointment on a certain date that is full,

the provider asks the patient to call back again on the requested date for an urgent

appointment, which results in no set appointment for that patient and no guarantee

of the patient calling back. In addition,due to high uncertainty of demand, there is

low precision in estimating number of open slots which lead to a waste of capacity or

potential over loading capacity.

The third generation of appointment systems for primary care, developed in the

beginning of the 20 century is called open access. Open access, also known as advanced

access or same-day scheduling, is a method of scheduling in which almost all patients

can receive an appointment on the day they call, almost always with their personal

physician. Theoretically, this approach leads the provider to have no waiting time

and improve continuity of care. In this approach rather than booking style in which
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allotted time slots were reserved a week in advance, most of the slots are left open in

order to serve the same-day patients. The slogan for this approach is straightforward

“Do today’s work today” [Murray and Tantau, 2000]. This approach brings various

benefits for the primary care patients and providers. It increases the availability of

appointments for urgent patients in the same day. In addition, accessibility for routine

patients, who are seeking appointment, is maintained without further indirect waiting

time. This approach also increases the likelihood of a patient see his/her own personal

physician, which improves continuity of care and patients’ satisfaction.

Open access approach improves customer service and quality levels and address

the two major goals of primary health care defined by World Health Organization,

accessibility and continuity of care, but implementation of this system is not easy

and if a provider implements this system inefficiently or improperly, for example

with shortage in staff, irregular physician availability and etc., the consequences can

become more inefficient and potentially disruptive to both patients and practitioners

[Phan and Brown, 2009, Mehrotra et al., 2008]. Figure 1.5 demonstrates the three

aforementioned appointment systems.

Figure 1.5 Different appointment systems.
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In addition, designing a good appointment system is just one feature of the

appointment planning system in which problematic scenarios, such as no-shows,

cancellations, and walk-ins should be taken into account. The provider may want to

use different strategies to handle these issues to minimize risks and maximize profit.

The appointment planning is the process of reconciling supply (available appointment)

and demand (routine patient and urgent patients), where the provider should choose

the general setting of an appointment system, such as number of available slots,

maximum allowable overtime hours, acceptable waiting times, etc.

While planning is limited to the general setting of the appointment system,

appointment scheduling refers to assigning patients to available slots based on daily

demand. However, the daily demand is uncertain; in primary care, most of the

patients require services that can be performed within a fixed length of time which

allows providers to divide their time into evenly devised time slots. In contrast,

in a primary care environment, there are unscheduled encounters like no-shows,

unpunctuality, late cancellation, and walk-ins which cause more uncertainty to

patients scheduling. Therefore, many strategies have been developed to handle

these uncertainties, such as block-booking, patient classification (age, disease type,

socioeconomic level, etc.) and reserving slots, to name a few. In addition, the schedule

itself can be static or dynamic, which affects the scheduling manner and assumptions.

In the static case, the schedule is set before the beginning of the session usually

the morning of, while in dynamic case, the schedule can be revised based on new

appointment requests, walk-ins, and delays.

1.4. Research Objectives

This dissertation accomplished the following research objectives are as follows:

Research Objective 1: develop a joint newsvendor and stochastic model that

maximizes the social welfare, which include the provider’s utilization, staffs’ overtime
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cost, and patients’ waiting times for a carve-out scheduling appointment system.

Research Objective 2: find the optimal number of slots reserved for both routine

and urgent patients. Due to the large computation time associated with computing

the optimal solutions, we also develop heuristics to estimate these results.

Research Objective 3: derive a daily schedule in which each available slot will be

assigned to either an urgent patient or a routine patient, and whether the double

booking is allowed if it’s reserved to a routine patient.

Research Objective 4: obtain the conditions under which a certain schedule is

optimal for both the single-physician scheduling and the joint panel scheduling.

Research Objective 5: examine the effect of no-shows and walk-ins on appointment

scheduling.

1.5. Contribution

This dissertation intends to make three major contributions to the literature as

follows: (i)develop an innovative model that considers a stochastic number of routine

and urgent patients, no-shows, and overbooking in a carve-out scheduling system.

To the best of our knowledge, our work is the first that considers both the planning

and scheduling aspects of both the single physician and the joint panel systems.

(ii)derive the conditions under which a certain schedule is optimal, given the number

of reserved slots for routine and urgent patients, and the maximum number of slots

allowed for double-booking. (iii)develop heuristics to find the optimal number of

reserved slots for routine and urgent patients, and the maximum number of slots

allowed for double-booking to largely reduce the run-time.
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CHAPTER 2

LITERATURE REVIEW

2.1. Health Care Planning and Scheduling

Providing of high quality and affordable health care is one of the greatest challenges

for most countries. Increasing the efficiency of health care resources (doctors, nurses,

and medical equipment) can help meeting patients’ needs with reducing patients’

waiting time, improving continuity of care, and health outcomes as a whole.

Many studies have investigated efficiency improvement method through capacity

planning [Green, 2004, Hick et al., 2004, VanBerkel and Blake, 2007, Exadaktylos

et al., 2008], staff scheduling [Siferd and Benton, 1992, Dowsland, 1998, Jaumard

et al., 1998, Bourdais et al., 2003, Centeno et al., 2003] and patient oriented

scheduling, such as ambulatory care, surgeries and outpatient scheduling.

Patient oriented scheduling is used in a wide variety of environments, such as

operation rooms, ambulatory care, primary care, radiology and anywhere who dealing

with many pre-scheduled and walk-in patients. [Adan and Vissers, 2002], [Dexter

and Macario, 2002], [Harper and Gamlin, 2003], [Ballard and Kuhl, 2006], [Beliën

et al., 2006], [Van Houdenhoven et al., 2007], and [Cardoen and Demeulemeester,

2008] present planning and scheduling in operating room and elective or non-elective

surgeries. [Cardoen et al., 2010] reviews more than 120 different articles about

operating room planning and scheduling in order to analyze their contribution.

Planning and scheduling in primary care are more complex than other scheduling

in a health care system. Unlike surgical appointment scheduling or other appointment

systems in a health care system, in primary care scheduling, we have more

uncertainties, such as random demand on different days, patient no-shows, and
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appointment cancellations, while the schedule is constrained by lower flexibility, such

as limited overtime availability, limited staff and referral patients.

Planning and scheduling in primary care have attracted the interest of many

researchers. [Welch and Bailey, 1952] and [Lindley, 1952] are the pioneers on this

topic. After their early studies, many researchers started working on primary care

scheduling with different methods, which can be classified into two general categories:

static and dynamic models.

In static models the schedule for the day should be ready prior to the beginning

of that day, which is a common practice in most appointment-based systems in health

care. Most of the publications focused on static scheduling, such as [Liu and Liu,

1998], [Bosch and Dietz, 2000],[Lau and Lau, 2000], [Swisher et al., 2001], [Denton

and Gupta, 2003], [Robinson and Chen, 2003], [Muthuraman and Lawley, 2008], and

[Chakraborty et al., 2013], in which they primarily focused on the punctual patients

with independent and identically distributed service times, who are scheduled for a

single session with a single server.

On the other hand, in dynamic case, the schedule can be revised continuously

based on the current status of the system. The literature on dynamic scheduling

is sparse. [Klassen and Rohleder, 1996], [Klassen and Rohleder, 2004], [Patrick

et al., 2008], [Liu et al., 2010], [Erdogan et al., 2015], [Hahn-Goldberg et al., 2012],

and [Huang and Zuniga, 2012] present methods to dynamically schedule patients.

The application of dynamic case is limited in situations where patients are already

admitted to a hospital or a clinic and scheduling should be done for laboratory or

other examinations.

This dissertation focuses more on planning and scheduling in primary care

setting. Therefore, various pertinent details and literature review will be presented

respectively.
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2.2. Primary Care Planning and Scheduling

Scheduling in primary care is often concerned with matching demand to the available

resources to provide a service. The purpose of primary care scheduling is to find an

appointment system in order to optimize performance metrics (cost, waiting time, idle

time, continuity of care, etc.) in a clinical environment under demand uncertainty.

Therefore, one can classify literature based on appointment system design, objectives

of the study (performance metrics) or based on the applied methodology.

2.2.1 Primary Care Performance Metrics

Minimizing patients’ waiting time and practitioners’ idle time. Patient

waiting time is an important factor of quality of service offered by primary care

providers. While long waiting times are a major source of patient dissatisfaction and

can cause a negative effect on patient treatment, the doctors’ and staffs’ idle time

is a loss of sale for the provider. Therefore, hiring more doctors and staff is not an

optimal solution to reduce the patients’ waiting time and appease providers’ needs of

cost control.

The early studies on patient waiting time and staffs’ idle time use queueing

models started by [Bailey, 1952]. He attempts to balance waiting and idle times

through a mathematical queueing model. His procedure suggests giving patients

appointments at regular intervals, each equal to the average consultation time.

[Jansson, 1966] shows how the sum of waiting time and idle time can be minimized by

proper choices of the constant inter-arrival time and the initial numbers of customers

in the queue. Later [Fetter and Thompson, 1966] introduce seven variables which

affect the balance between patient waiting time and staff idle time i.e. appointment

interval, service time, patients’ arrival pattern, the number of no-shows, the number of

walk-ins, physicians’ arrival pattern, and interruptions in patient services respectively.

[Birchall et al., 1983] show that their queueing model can reduce the idle time of the
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clinic staff without increasing patient waiting times. [Brahimi and Worthington,

1991] develop a queueing model which is successfully implemented to the problem of

designing an appropriate appointment system for the out-patient department at the

Royal Lancaster Infirmary at that time. After these early studies [Fries and Marathe,

1981], [Babes and Sarma, 1991], [Ho and Lau, 1992], [Paul, 1995], [Aharonson-Daniel

et al., 1996], [Liu and Liu, 1998], [Lau and Lau, 2000], [Robinson and Chen, 2003],

[Muthuraman and Lawley, 2008], and [Hassin and Mendel, 2008] develop different

models to minimize patients’ waiting time in primary care systems.

[Harper and Gamlin, 2003] develop a detailed simulation model of an Ear, Nose

and Throat (ENT) outpatient department to identify critical factors that influence

patient waiting times and the buildup of queues in the clinic. They show how patient

waiting times can be significantly reduced through improved planning of the schedule

and management of the clinic. [Denton and Gupta, 2003] demonstrate that the

optimal schedule in a practice that is not overloaded depends both on the ratio of the

cost of handling an urgent overflow patient to the cost of delaying a patient and on

the arrival dynamics of the urgent and routine patients. [Kaandorp and Koole, 2007]

derive a local search procedure to minimize weighted average of expected waiting

times of patients, the idle time of the doctor and the tardiness (lateness) as objective.

[Green and Savin, 2008] present two queueing models to provide guidelines to enhance

identifying an appropriate balance between physician capacity and patient panel size

that are consistent with manageable patient backlogs. [Chen et al., 2010] conduct

a cross-sectional study in a community hospital in China and demonstrate how the

adoption of an appointment system can reduce waiting time.

[Zhu et al., 2012] analyze an appointment scheduling systems in specialist

outpatient clinics (SOC) in Singapore to detect important factors causing long patient

waiting time or clinic overtime. Results of their study show overloaded session, late

start of the session, unevenly distributed slots, irregular calling sequence, and unused
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session time are the most important causes of delaying patients. In a very similar

study which is conducted in an Indonesian public hospital, [Mardiah and Basri, 2013]

show how applying “doctor on call” system may lead to high patients’ waiting times.

Minimizing cost of the system while maximizing providers’ profit.

As described in Section 1.2, with an ever-growing primary care cost, the pressure

to remain profitable has undoubtedly intensified for many office-based primary care

physicians. This challenge will become even more intensified as patient demand

increases, the supply of available primary care practitioners decreases and the focus

on the health care sector shifts to overall cost reduction. Therefore, health care

providers have the option to increase their profits by seeing more patients and/or by

cutting their costs through more efficient utilization of resources to maintain their

profitability.

Many literature consider waiting cost, idle time cost and overtime cost as a

function which should be minimized. In the contrast, other studies consider different

methods to increase patient visitation in a day using overbooking, short time window,

delegation of work, utilizing overtime, and group medical appointments.

[Shonick and Klein, 1977] develop a model to overbook patients such that

a maximum number of patient visitation is maintained. [Kim and Giachetti,

2006] develop a stochastic overbooking model to determine the optimal number of

appointments in order to maximize expected total profits of the provider. [LaGanga

and Lawrence, 2007] develop a stochastic model to capture the trade-off between

overbooking and relative costs (waiting time and overtime costs). [Muthuraman and

Lawley, 2008] develop a myopic scheduling policy to reduce patient waiting time

and staff overtime and increase revenue. [Patrick, 2012] develop a Markov decision

process model that shows a short booking window can reduce costs and increase staff

utilization. [Qu et al., 2012] introduce a mean-variance model in order to find the
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optimal percentage of open slots for an advance-access clinic to maximize the average

number of patients seen and minimize variability in the number of patients seen.

If the reader is interested, there is an extensive review of appointment scheduling

literature by [Cayirli, 2003] which reviews more than 80 papers concerning this topic.

2.2.2 Appointment Systems

Different appointment systems have been proposed to achieve all main goals of PC

(first contact, continuity, comprehensive, coordination with other parts of PHC) and

reduce costs. The most popular systems for appointment scheduling are traditional,

carve out model, and open access (advance access). Although these three systems

have a common goal, they follow different approaches and as mentioned in Section

1.3, each of them has their pros and cons. In the following previous literature on

these three systems is discussed in detail.

Traditional scheduling. In this system patients call the receptionist and

usually after a telephone triage by a nurse are classified to an urgent or non-urgent

patient. Most of the time urgent patients will be handled by double booking, however,

in some cases if the schedule is saturated the practice may send the patient to another

doctor or clinic [Murray and Berwick, 2003] which result in disruption of continuity

of care.

[Vissers, 1979] propose a simple general method for determination of a suitable

appointment system using already known mean and standard deviation of the

consultation time, patient punctuality and physician punctuality. [Ho and Lau,

1992] shows how the optimal schedule can change in different environments (different

no-show probability, service time and the number of patient per session). [Shonick

and Klein, 1977] and [LaGanga and Lawrence, 2007] both use overbooking strategy

in a traditional scheduling system to mitigate the negative effect of no-shows in

order to increase providers’ productivity. [Zacharias and Armony, 2016] proposed
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a model to determine panel size and number of offered appointment slots per day

in a traditional scheduling model in order to reduce patients’ backlogs and waiting

time. [Muthuraman and Lawley, 2008] develop and appointment scheduling using

stochastic overbooking model to minimize patients’ waiting time and staffs’ overtime

and increase patients’ utility while all the appointments are fully booked prior to the

beginning of the scheduling. [Liu and Liu, 1998] investigate the impact of doctors’

arrival pattern on minimizing doctors’ idle time and patients’ waiting time through

a traditional scheduling system.

Carve-out scheduling. In spite of the traditional system, in carve-out

scheduling model, some slots are left open for urgent patients to increase accessibility

and reduce waiting times. [Klassen and Rohleder, 1996] present a carve-out system

in a dynamic environment to reduce patients’ waiting time and doctors’ idle time

simultaneously and shows the best schedule can be obtained if clients with large

service time standard deviations are scheduled toward the end of the appointment

session. Furthermore, [Klassen and Rohleder, 2004] demonstrate that in a carve-out

model the best strategy to reduce waiting times is to spread open slots evenly over

the day. [Gupta and Wang, 2008] propose a methodology to decide how to manage

open slots when patients choose between a same-day slot (non-convenient) and a

future appointment (convenient). [Dobson et al., 2011] use the carve-out system to

reduce the average waiting queue for routine patients and the average number of

urgent patients who are not handled during the normal office hours. Their results

show that the carve-out system is the best system when the incurred cost for an

urgent overflow patient is high. [Wang and Gupta, 2011] develop a framework base

on the carve-out model for appointment system which can dynamically use patients’

preferences to improve future schedules. [Koeleman and Koole, 2012] developed a

method to allocate urgent patient to the open slots in order to reduce waiting times

and idle time and overtime. Recently [Cayirli and Gunes, 2014] use the carve-out
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system in order to handle walk-in patients. Their results indicate that leaving some

slots open in order to handle seasonal walk-ins on a weekly or monthly basis will

improve clinic performance in terms of patients’ waiting time and doctors’ idle time.

Open access. Open access scheduling, which is introduced by [Murray and

Tantau, 1999] and [Herriott, 1999], uses the same concept of reserving slots but in

different manner and as reported can improve health care access, patient satisfaction

and reduces health care cost and notably decrease patients’ no-shows rate [Murray

and Tantau, 2000, Murray and Berwick, 2003, OHare and Corlett, 2004, Pierdon

et al., 2004, Armstrong et al., 2004, Bundy et al., 2005, OConnor et al., 2006, Rohrer

et al., 2007]. However, shortage in capacity, physician availability, and high demand

volatility may result in failure in implementation [Murray et al., 2003, Mehrotra et al.,

2008, Phan and Brown, 2009] which show the challenge in implementing open access

scheduling.

In the open access scheduling, sometimes labeled as advanced access or same-day

scheduling, most of the patients can receive an appointment within 12 to 72 hours

regardless of their reasons for the visit [Qu et al., 2007] and routine check-up can be

scheduled weeks in advance to accommodates follow-ups. In most of the literature,

researchers proposed varieties of quantitative or experimental approach to determine

the appropriate open slot percentage and optimal panel size. [Green et al., 2007]

suggests that the ratio of the average daily demand for appointments to the average

daily capacity should be kept below 25% in order to offer same-day appointments

to most of the patients. [Dobson et al., 2011] examine the effect of open-access on

two different service quality measures. First, the average number of urgent patients

that are not handled during normal hours and secondly the average queue of routine

patients. They use a stochastic model to set the appointment scheduling without

considering no-show. Their numerical results show when the demand for same-day is

not high, the optimal policy depends on overtime cost and cost of patients’ waiting
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time. [Qu et al., 2007] present a quantitative approach in order to determine the

optimal percentage of open slots in an advance-access system. They also investigate

the sensitivity of this optimal percentage to provider capacity and no-show rate. [Qu

et al., 2011] propose a hybrid open access system with two time horizons (days-ahead

and same-day appointments) and show the performance of the whole system, in terms

of the maximum expectation and the minimum variance of the patients’ consultation

time, is improved slightly via the hybrid open access policy.

2.2.3 Challenges in Primary Care Scheduling

No-shows, late cancellations, and walk-ins are another sources of uncertainty in

appointment scheduling which should take into account as discussed in Section 1.3.

In this section, we will focus more on these uncertainties in details.

No-shows and late cancellations. Missed appointments and late cancel-

lations (hereafter referred to as no-shows) can create financial, utilization, and

continuity issues in primary care. Lots of studies have investigated the causes

and effects of no-show on primary care performance metrics. Lots of researchers

tried to capture no-shows’ effects in appointment scheduling or at least mitigate its

negative impact on scheduling by developing different strategies like overbooking,

block booking, and ad hoc calling patients which are discussed in Section 2.2.4.

Reasons of no-shows are investigated in literature in various aspects which briefly

described in Table 2.1. The average percentage of no-shows is reported 5% to 40%.

According to [Izard, 2005] the average rate of no-shows nationally in 2000 was 5.5

percent. Average no-show rate reported 30.9% in pediatric clinics [Rust et al., 1995],

33.6% in ENT out-patient clinics [Geraghty et al., 2008], 30.1% in gynecological

practices [Dreiher et al., 2007], 12%-24% in endoscopy [Berg et al., 2013], 29%-42% in

addiction treatment settings [Weisner et al., 2001], and 23.1% in academic outpatient
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Table 2.1 Reasons of No-shows
Reasons Studies Results

Long indirect waiting time [Benjamin-Bauman et al., 1984], Chance of missed appointment

[Bean and Talaga, 1994], increases in intervals between scheduling

[Murdock et al., 2002], an appointment and the actual

[Lee et al., 2005], appointment date.

[Gallucci et al., 2005],

[Norris et al., 2014]

Prior appointment adherence [Dove and Schneider, 1981], Patients who failed to keep appointments

[Bean and Talaga, 1992], usually had such behavior in the past.

[Norman and Conner, 1996],

[Lee et al., 2005],

[Norris et al., 2014]

Psychological or [Goldman et al., 1982], Missed appointment rate is higher than

behavioral problems [Neeleman and Mikhail, 1997], normal no-show rate in primary care

[Mitchell et al., 2007], specially in substance abuse services and

[DuMontier et al., 2013] geriatric psychiatry.

Emotional barriers [Lacy et al., 2004] Negative emotions about going to see

the doctor outweigh the perceived

benefit of keeping the appointment.

Social class [Bean and Talaga, 1992], Patients of lower socioeconomic classes,

[Neal et al., 2001], the poorly educated, and those who lives

[Schectman et al., 2008] in deprived area are most likely to

miss their scheduled appointments.

Age [Dove and Schneider, 1981], Patients age forty-five and younger,

[Bean and Talaga, 1992], especially pediatric patients, generally

[Smith and Yawn, 1994], have a higher rate of broken appointments.

[Lee et al., 2005]

Race [Schectman et al., 2008], The areas’ ethnicity may effect no-show

[Parker et al., 2012], rate (Latinos and African-Americans

[DuMontier et al., 2013] are at highest risk of missing appointments?)

?Kaiser Permanent Diabetes Study of Northern California, 2005-2007, [Parker et al., 2012].
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practice [Parikh et al., 2010]. [Hixon et al., 1999] reported that no-show rate in 33%

of family practice residency clinics is greater than 21%.

Moreover, no-shows not only disrupt the scheduling of the primary care provider

but also reduce overall efficiency, increase operating costs while decreasing revenue,

and waste resources. Most of the patients, who missed their appointments, often

use emergency departments which drives up costs and jeopardize the continuity of

care, particularly in patients with chronic disease, such as diabetes, epilepsy, and

bronchiectasis to list a few.

Walk-ins. Decades ago walk-ins were rarely accepted because the physicians’

schedule were almost full, but recently, especially in the U.S., most of the clinics

are responsible for the patient’s total care. Therefore, walk-ins must be considered

and planned for in the appointment scheduling of clinic sessions. Studies show the

probability of walk-in without an appointment is higher among lower socioeconomic

status [Taylor, 1984, Virji, 1990].

Indirect waiting time for walk-in patients is negligible but direct waiting time

may be longer than patients who reserved an appointment in advance. The presence

of walk-ins in literature is insignificant. In an early study [Rising et al., 1973] analyze

daily arrival patterns in order to schedule more patients during periods of low walk-in

demand. Recently [Cayirli et al., 2012] introduce a procedure for appointment systems

to reduce negative impacts from walk-ins, later they extended their investigation on

developing an appointment system to deal with the feasibility of walk-in [Cayirli and

Gunes, 2014].

Unpunctuality. Unpunctuality usually refers to the difference between an

actual arrival of a patient and time of the reserved appointment. However, based

on different studies patients arrive early more often than late [Klassen and Rohleder,

1996, Lehaney et al., 1999]. According to [White and Pike, 1964] average waiting

time in a primary care clinic with tardy patients does not greatly differ than having
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punctual patients. [Tai and Williams, 2012] demonstrate, through an empirical study,

that optimal appointment intervals are highly related to patients’ unpunctuality

patterns. Recently, [Williams et al., 2014] examine the effects of an intervention

to reduce patient unpunctuality.

2.2.4 Interventions to Manage No-shows

According to Section 2.2.3, the no-show is one of the reasons for low efficiency and

poor quality in primary care. Therefore, lots of researchers suggest primary care

provider to use interventions to reduce no-show rates or considering a backup plan to

mitigate its negative impact. We will discuss different intervention methods in this

section.

Reminders. Generally, primary care providers continue to rely on several

different types of interventions which include telephone reminders, Short Message

Service, and emails, which reported to produce relative reductions in the no-show

rate [Macharia et al., 1992, Almog et al., 2003, Downer et al., 2005, Geraghty et al.,

2008]. Regardless of the type of intervention relied upon, these methods can be

time-consuming and costly when not automated.

No-show fees. Another common practice among primary care providers is

implementing a policy to charge a monetary fine for patients that do not show up for

set appointments in order to recover a proportion of potential revenue. This method

is quite common in primary care. However, it has several downsides which include:

• Legal difficulty, which may prohibit charging a no-show fee.

• Complicated policies for the collection of a no-show fee.

• Assessing an amount for a monetary fee is difficult.

• It may not be appropriate for the elderly or uninsured patients.

• Losing customers who do not approve the no-show fee.
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The impact of the no-show fee is explored in different studies and reports show

it can cause a decrease in no-show rate [Mäntyjärvi, 1994, Lesaca, 1995]. Recently, in

Family Medical Associates of Raleigh in North Carolina, this policy is implemented

and the no-show rate has dropped from 12-15 percent to 6 percent [Lowes, 2005]. In

another report, in primary care clinic of the Geneva University Hospitals, the rate

of missed appointments was evaluated at 22% in 2007 while charging the no-show

fee (20 EUR for each missed appointment) did not reduce the no-show rate [Perron

et al., 2010].

Overbooking. The overbooking strategy has the potential to allow primary

care providers to see more patients and increase the expected profits. The challenge in

overbooking is how to balance the costs of no-shows with the costs of overtime because

overbooking may cause an excessive overtime to serve the overbooked patients.

Overbooking is an accepted practice in the airline industry,hotel industry, and other

services. In Several reports show how this strategy can increase profit and decrease

the relative costs of no-shows [LaGanga and Lawrence, 2007].

In addition, overbooking is taken under consideration in lots of literature as

a powerful strategy to mitigate negative impacts of no-shows. [Muthuraman and

Lawley, 2008] present an overbooking scheduling policy for outpatient clinics in order

to minimize patients’ waiting time and staffs’ overtime. [Kim and Giachetti, 2006],

[Zeng et al., 2010], and [Samorani and LaGanga, 2011] all develop a stochastic

mathematical overbooking model to maximize providers’ expected profits. Lately,

[Zacharias and Armony, 2016] study an overbooking model for scheduling for patients

with different no-show probabilities.

[Robinson and Chen, 2010] compares traditional and open access appointment

scheduling policies for a single physician. Their results indicate that open-access

schedule outperforms the traditional schedule in the wide majority of cases and

traditional scheduling policy will be preferred only when the no-show probability
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is small (less than 5%) or the cost of patients’ waiting is low. In their proposed model

for the traditional scheduling, they assume that the number of patients scheduled for

each day is exogenously given and there are no unscheduled walk-in patients.

In another study, [LaGanga and Lawrence, 2012] develop an analytic appointment

scheduling model with overbooking that balances the benefits of increased revenues

and service with the expected costs of customer waiting and provider overtime. Their

results show that appropriate scheduling in healthcare clinics can significantly improve

patient service and provider productivity. However, they assume that the physician

only served routine patients who reserved their appointment ahead of time.

According to aforementioned studies, overbooking can significantly improve

clinic performance by increasing patient access and improving clinic productivity,

but it may cause complexity in scheduling and can increase patients’ waiting time

and providers’ overtime inevitably. Moreover, overbooking is more helpful when the

no-show rate is high and is not a recommended strategy in an environment with low

no-show rates.

Block-booking. Block-booking is another strategy to reduce the negative

impacts of no-shows which assign patients to different blocks, instead of slots, in

order to maintain utilization of the practitioner in case of no-show. The simplest

format of this strategy is Single-block rule which assigns all patients to one block

at the beginning of the session and serve them base on FIFO system. The primitive

studies used single-block scheduling as their basis, such as [Bailey, 1952] and [Lindley,

1952] knowing that it may lead to excessive waiting times for patients. In another

case called Multiple-block groups of patients are assigned to each appointment slot.

[White and Pike, 1964] and [Soriano, 1966] both use multiple-block rule for their

proposed appointment systems. [Fries and Marathe, 1981] analyze a single physician

variable-size multiple-block system and show how this flexibility can reduce average

25



waiting times and idle times. [Liu and Liu, 1998] develop a block appointment system

for primary care clinic considering doctors’ lateness.

[Shonick and Klein, 1977] and [Millen and Shonick, 1978] develop mathematical

models and suggest to reserve enough number of patients in a block to ensure that

even if some patients do not show up, the physician’s time would be at all times fully

utilized.

Reserving slots for urgent patients. As discussed in Section 2.2.3, one

of the reasons for no-shows is long indirect waiting time which happens when a

patient reserved an appointment in advance, long time ago. Some researchers suggest

switching to advance access appointment system to eliminate delay time between

request and actual appointment in order to reduce no-show rate. Literature on this

arena is previously discussed in Section 2.2.2.

2.3. Scheduling Models and Methodologies

Studies on appointment scheduling can be classified on the basis of the solution

approach and methodology into three categories which will be discussed in the

following.

2.3.1 Queuing Theory and Markov Chain

Queueing models can provide accurate evaluations of system performance. Moreover,

Queuing theory is a useful approach in the health care setting specifically, in

appointment systems which designed to reduce patients’ waiting times and physician

utilization [Fomundam and Herrmann, 2007].

Periodic arrival processes are fundamentally studied within the framework of

queueing systems in primary care, where routine patients arrive in random intervals

and the service time is random. [Bailey, 1952] introduce the application of queuing

theory in health care appointment systems and shows how punctuality of physician

26



can help a primary care clinic to reduce patients’ waiting time. [Taylor and

Templeton, 1980] develop a priority queue in steady state with multiple servers

and two classes of customers in order to reduce patients’ waiting time in an urban

ambulance service. [Brahimi and Worthington, 1991] also design a queuing model for

a primary care clinic in order to reduce patients’ waiting time without increasing

the physicians’ idle time. In another study [Vasanawala and Desser, 2005] use

queuing theory to determine the percentage of open slots reserved for walk-ins or

urgent patients. [Balasubramanian et al., 2007] propose a simulation optimization

model to determine panel design in a primary care environment in order to maximize

continuity of care and reduce patients’ waiting time and staffs’ overtime. [Hassin

and Mendel, 2008] analyzes the scheduling appointment systems with no-shows using

a queue with a single server. [Green and Savin, 2008] and [Green, 2010] develop a

single-server queueing system and compares the performance metrics with a simulated

appointment system. [Qu and Shi, 2011] present a Markov chain model to capture

appointment scheduling in open access clinics. [Patrick, 2012] develop a Markov

Decision Process model and demonstrate that a short booking window is not better

than open access scheduling. [Zacharias and Armony, 2016] study the in-clinic queue

in order to characterize the patients’ waiting times and physicians’ overtime.

2.3.2 Simulation Based Studies

Simulation has the ability to model complex appointment systems and evaluate

the performance of those systems with different performance metrics. Therefore,

lots of researchers developed simulation models to help primary care providers to

assess the efficiency and effectiveness of their appointment systems and find the

best justification. In early studies, [Fetter and Thompson, 1966] and [Vissers and

Wijngaard, 1979] investigate the impact of several factors on appointment system

performance.

27



In later studies, [Ho and Lau, 1992] compare different scenarios for appointment

system using simulation, and demonstrate that none of the rules are optimal in all the

environments. [Klassen and Rohleder, 1996] develop a simulation model for a primary

care environment and find the best scheduling rule combined with the position of open

slots for urgent patients. [Liu and Liu, 1998] design a scheme, based on a simulated

model that provides the optimal schedule for a given scheduling environment. [Harper

and Gamlin, 2003] examine different appointment schedules to identify critical factors

that influence patients’ waiting times. [Giachetti et al., 2005] develop a discrete-event

simulation model to analyze clinic performance and make recommendations for an

open access system. Also, [Kopach et al., 2007] investigate the effects of different

parameters on open access scheduling performance and show how open access can

lead to significant improvements in clinic throughput. [Cayirli and Gunes, 2014] use

simulation to derive solutions for the appointment scheduling problem in order to

reduce patients’ waiting time, physicians’ idle time and overtime.

Application of simulation in capturing the tradeoff between no-shows and

system performance is significant. Using simulation, [LaGanga and Lawrence, 2007]

show that overbooking provides greater utility when clinics serve larger numbers of

patients with high no-show rates, and service variability is low. [Huang and Zuniga,

2012] use simulation optimization to find optimal overbooking scheduling in primary

care clinics with high no-show rates. [Berg et al., 2013] develop a discrete event

simulation model to determine improved overbooking scheduling policies and examine

the effect of no-shows on providers’ utilization. If the reader is interested more in this

topic, comprehensive reviews on computer simulation modeling in health care delivery

can be found in [Fone et al., 2003] and [Günal and Pidd, 2010].

28



2.3.3 Stochastic Optimization

Stochastic programming is a framework for modeling optimization problems that

involve uncertainty. In particular, in primary care, managers are dealing with lots

of uncertainty, such as random demand, no-shows, walk-ins, random service time,

tardiness and etc. Therefore, stochastic optimization is a useful method to capture the

effect of these uncertainties and find the optimal solution i.e., appointment scheduling.

The literature on stochastic optimization because of its difficulties is sparse.

[Denton and Gupta, 2003] formulate the appointment scheduling problem as a two-

stage stochastic linear program to determine optimal appointment times. [Dobson

et al., 2011] formulate a stochastic model of appointment scheduling in a primary

care practice to minimize the average number of urgent patients that are not handled

during normal hours and the average queue of routine patients. [Kim and Giachetti,

2006] develops a stochastic mathematical overbooking model maximize providers’

expected profits. [Qu et al., 2007] present a quantitative approach to determine

the optimal percentage of appointments held open in a session. [Muthuraman and

Lawley, 2008] present a stochastic overbooking model for appointment scheduling in

outpatient clinics to reduce patients’ waiting time and staffs’ overtime.

Recently, [Wang and Gupta, 2011] presents a stochastic model for appointment

system using updated patients’ preferences, in order to improve providers’ revenues,

serve more patients, and increase continuity of care. [Samorani and LaGanga,

2011] present a stochastic program to find the optimal schedule with the presence

of no-show. [Luo et al., 2012] develop a framework which can be utilized in

determining the optimal appointment policy to balance the trade-off between the

patients’ waiting times and providers’ utilization. [Tsai and Teng, 2014] develop

a stochastic overbooking model to enhance the service quality and increase the

providers’ utilization. [Mak et al., 2014] formulate a stochastic appointment

scheduling problem to minimize the worst-case expected waiting time and overtime
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costs. [Samorani and LaGanga, 2015] use stochastic dynamic programming to develop

a dynamic appointment scheduling method which can be used in real time to schedule

appointment requests.
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CHAPTER 3

SINGLE PHYSICIAN APPOINTMENT SCHEDULING

We develop a stochastic model for the appointment planning and scheduling of a single

primary care provider to optimize the social welfare, which includes the provider’s

profit and the cumulative waiting time of the patients. A carve-out appointment

system is adopted in order to serve two different types of patients, the routine patients

who have reserved their appointments in advance and the urgent ones who need to

be served on the day of calling.

Moreover, we find the optimal number of slots reserved for both routine and

urgent patients in one session and develop heuristics to estimate them in an accurate

manner. We also derive a daily schedule for a physician in which, certain slots, among

reserved slots for routine patients, are allowed to be double-booked; while the rest of

the available slots are left open for same-day requests. Finally, in a special case where

only one slot is left open and just one slot is double-booked, we obtain the conditions

under which a certain schedule is optimal. Then, we generalize results of this special

case into other cases.

In the next chapter, we extend our model to a joint panel appointment system,

which consists two physicians who have separate routine patients but will serve same-

day requests jointly.

3.1. Scheduling Modeling

The main goal in this section is to find the optimal appointment schedule that

balances the interests of the provider and patients while assisting the provider with

capacity planning decisions. To this end, we develop a stochastic analytical model that

maximizes a weighted sum of the performance metrics, which include the provider’s

revenue, the cost of lost sales, overtime cost, and patients’ waiting times. The
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provider’s planning decisions consist the daily number of appointments reserved for

urgent patients, for routine patients as well as the maximum number of slots allowed

to double book. The provider’s schedule specifies where these reserved slots are

located. We also characterize the optimal schedules and demonstrate that an efficient

heuristic procedure can be used find near optimal schedules.

The demand for the routine patients follows a probability mass function (p.m.f.)

qri for i = 0, 1..., Ur and the demand for urgent patients follows a p.m.f. qsi for

i = 0, 1..., Us. Further, the probability functions are independent of each other.

Because the majority of the service can be finished within a fixed time interval, we

assume that the service times for both types of patient are deterministic and equal.

Thus, the daily appointment schedule can be divided into N intervals of equal length.

Let i (i = 1, ..., N) represents the ith time slot counted from the beginning of the day.

The provider needs to determine the number of slots allocated to the routine patients,

Nr. Further, let Ns denote the number of slots allocated to the same-day requests,

Ns = N −Nr.

The provider receives revenue of p for each patient served, regardless of the

type. We normalize the operating cost during the regular hours to be zero. If either a

routine patient or a same-day request cannot be accommodated, the provider incurs

a cost of lost sales (cl). We further assume that with probability γ, a routine patient

would not show up for the appointment. All urgent patients, however, show up for

sure.

These assumptions are made based on the data we obtained from a clinic, which

has an average no-show rate of 8% for routine patients, but less than 0.1% for urgent

patients. In order to mitigate the negative impacts associated with no-shows, the

provider allows certain time slots to be double booked. However, all booked patients,

if shown, must be served on the same day. The provider thus needs to work overtime

if there are un-served patients by the end of the day. In this case, the provider incurs
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an overtime cost of cv for each patient. Moreover, since double-booking all of the

slots assigned to routine patients may not be optimal, we introduce another decision

variable, A, to represent the maximum number of slots that can be double booked.

Thus, the maximum number of routine patients can be served is Nr + A. See Table

3.1 for a summary of notation.

Table 3.1 Single Physician Model’s Notation

Parameters:

p: Revenue per patient

cl: Cost of lost sales per patient

cw: Waiting cost per slot per patient

cv : Cost of overtime per slot

γ: No-show rate for routine patient

N : Number of slots available during the regular session

Decisions:

Nr: Number of slots assigned to routine patients

A: Maximum number of double-booked patients

xi: Maximum number of patients allowed to be assigned to slot i,

i = 1, ..., N and xi = 0, 1, 2

Variables:

Dr: Demand for routine patients, follows pmf : qri for i = 0, 1..., Ur

Ds: Demand for urgent patients, follows pmf : qsi for i = 0, 1..., Us

Ns: Number of slots assigned to same-day patients, Ns = N −Nr

ki: Number of routine patients that showed up, follows pmf : B(k;n, γ)

wi: Number of patients waiting at the end of slot i, wi = 0, 1, ..., i

Provider’s Appointment Schedule. Aside from determining the number of

slots allocated to the routine patients (Nr) and the maximum number of slots that

can be double booked (A), the provider also needs to specify which time slots are

designated for urgent patients, which are for routine patients, and which ones can be

double-booked. Let xi denote the maximum number of patients allowed to be assigned

to time slot i. If xi = 0, time slot i is reserved for urgent patients and no routine

33



patients is booked for that slot. If xi = 1, time slot i is reserved for routine patients

and no double-bookings is allowed. If xi = 2, time slot i can be double-booked if all

other routine slots have been booked. Thus, the number of patients showed up at

slot i, ki can be computed as follows:

ki|{xi = 1} =


0 B(0; 1, γ);

1 B(1; 1, γ).

and ki|{xi = 2} =


0 B(0; 2, γ);

1 B(1; 2, γ);

2 B(2; 2, γ).

(3.1)

where γ = 1 − γ is the probability that a routine patient shows up. The term

B(k;n, p) =
(
n
k

)
pk(1− p)n−k is the binomial distribution, when n = 0, B(k;n, p) = 0.

Given a pre-determined schedule, {xi}i=1,...,N , the provider can expect nr routine

patients, where

nr =
N∑
i=1

xi∑
ki=0

ki ·B(ki;xi, γ). (3.2)

Because the provider also cares about the waiting times of the patients, let cw be the

waiting cost per time slot for each patient. Let wi represent the number of patients

waiting at the end of time i. Then, the probability of having j patients waiting at

the end of slot i, P (wi = j), can be derived using the following recursive function:

P (wi = j) = P (wi−1 = j + 1) · P (ki = 0|xi) + P (wi−1 = j) · P (ki = 1|xi)

+P (wi−1 = j − 1) · P (ki = 2|xi).
(3.3)

The first term in Eq. (3.3) corresponds to the situation where j + 1 patients are

waiting at the end of slot i− 1, and no patients show up for slot i. The second term

captures the case where j patients are waiting at the end of slot i−1 and one patient

shows up for slot i . The last term captures the situation where j − 2 patients are

waiting at the end of slot i − 1 and two new patients who are both booked for slot
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i show up. In all three cases, only one patient is served in slot i and all remaining

patients would wait.

Provider’s Revenue. For each patient served, regardless of the type, the

provider obtains a revenue p. Thus, the provider’s expected revenue depends on the

realized demands (Dr, Ds) of both routine and urgent patients, and their allocated

capacities (Nr, Ns, and A). Let us first define an operating function, φ(·), as follows:

φ (x, lr, ur, ls, us) =
ur∑

Dr=lr

us∑
Ds=ls

(x) qsDs
qrDr

, (3.4)

where lr and ur are the lower and upper bounds of the demand for routine patients,

and ls and us are the lower and upper bounds of the demand for same-day requests.

Given a pair of capacity allocations for the routine patients (Nr) and the urgent

patient (Ns) as well as a maximum number of slots that can be double-booked (A),

the provider’s expected revenue, denoted by Π(Nr, A), can be computed by

Π(Nr, A) = p · φ (Drγ + min{Ds, N −Dr}, 0, Nr, 0, Us)

+p · φ (nr + min{Ds, Ns}, Nr, Nr + A, 0, Us)

+p · φ (nr + min{Ds, Ns}, Nr + A,Ur, 0, Us) .

(3.5)

The first term in Equation (3.5) refers to the case where the demand for routine

patients is less than the allocated capacity. There are N − Dr un-utilized slots,

which can be assigned to the same-day requests. The second term corresponds to

the situation where all demand for routine patients can be accommodated with up

to A slots double-booked. Finally, the last term refers to the case where all capacity

(Nr + A) for routine patients is used up and the remaining routine patients are not

served.

Provider’s Lost Sales. Once the capacity planning decisions are made, the

provider can only serve up to Nr+A routine patients and Ns urgent patients in a day.

If any of the demands exceeds the capacity, the provider incurs a lost sale cost. Let
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L(Nr, A) denote the provider’s expected cost from lost sales, and it can be computed

by

L(Nr, A) = cl · φ (Ds − (N −Dr), 0, Nr, N −Dr, Us)

+cl · φ (Ds −Ns, Nr, Nr + A,Ns, Us)

+cl · φ (Dr − (Nr + A), Nr + A,Ur, 0, Us)

+cl · φ (Dr +Ds − (N + A), Nr + A,Ur, Ns, Us) .

(3.6)

The first two terms in Equation (3.6) corresponds to the case where there are more

urgent patients than available open slots (N−Dr) if the number of routine patients is

less than capacity or Ns otherwise), and thus the urgent patients must be referred to

other providers. The third term refers to the scenario where the demand for routine

patients is over the maximum capacity (Nr +A) with double-booking, and thus some

of the routine patients would not be served. The last term refers to the situation

where both types of demand exceed their respective capacities.

Provider’s Overtime Cost. While adopting the double-booking strategy can

mitigate the negative effects of no-shows, it may require the provider and other clinic

stuff to work overtime. Consider the following situation, slot i is double-booked.

When both patients show up, only one can be served during the scheduled time

interval. Because clinics often operate in a first come first serve basis, the other

patient will be seeing the provider in slot i+ 1. If any patient who is booked for slot

i+ 1 shows up, that patient will also be delayed by at least one slot. These delays are

easily concatenated and may result in some un-served at the end of the day, i.e. slot

N . The provider’s expected overtime cost thus depends on the appointment schedule

{xi}i=1,...,N . Let O(Nr, A, {xi}) denote the provider’s overtime cost, and it can be

calculated as follows:

O(Nr, A, {xi}) = cv · φ
(∑min{Dr−Nr,A}

j=0 j · P (wN = j), Nr, Ur, 0, Us

)
. (3.7)
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where P (wN = j) in Equation (3.7) is derived using Equation (3.3) recursively. Note

that delays at the end of the day only occurs when there are double-booked patients,

thus we only need to consider the scenario where the demand for routine patients

exceeds its allocated capacity, and thus the number of patients at the end of slot N

will not exceed min{Dr −Nr, A}.

Patients’ Waiting Cost. Similar to the provider’s overtime cost, the appoint

schedule {xi}i=1,...,N with double-booking strategy highly affects the waiting times

for patients. Let W (Nr, A, {xi}) denote the aggregated patient overtime cost, and it

equals to

W (Nr, A, {xi}) = cw · φ

 N∑
i=1

min{i,Dr−Nr,A}∑
j=0

j · P (wi = j), Nr, Ur, 0, Us

 . (3.8)

In Equation (3.8), the number of patients waiting (j) at slot i should exceed neither

i nor the total number of double-booked patients min{Dr −Nr, A}.

Provider’s Utility. The provider’s utility, denoted by U(Nr, A, {xi}), can be

derived by combining the revenue and cost functions:

U(Nr, A, {xi}) = Π(Nr, A)− L(Nr, A)−O(Nr, A, {xi})−W (Nr, A, {xi}). (3.9)

Let (N∗r , A
∗, {xi}∗) be the joint optimal decisions on the number of slots allocated

for routine patients, the maximum number of slots allowed to be double-booked and

the appointment schedule, respectively that maximize the provider’s utility function,

that is,

(N∗r , A
∗, {xi}∗) = max

Nr,A,{xi}
U(Nr, A, {xi}). (3.10)

3.2. Analytical Solutions

In this section, we present the general form of the optimal solution under different

scenarios. We start from the simplest case where it is optimal to double book exactly

one patient and leave only one open slot for a same-day request. Let TO,D be the
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schedule in which, the open slot (O) is placed before the double-booked slot (D).

Also, TD,O be the schedule in which, the open slot is placed after the double-booked

slot. Therefore, all possible schedules can be divided into two general scenarios:

• TO,D: the open slot is placed before the double-booked slot.

• TD,O: the open slot is placed after the double-booked slot.

In order to make a better visualization, we can exhibit each schedule as shown

in Figure 3.1. Each square represents one slot, which is assumed to have the same

length as other slots (see Section 3.1 for further information). The light gray squares

present open slots and dark gray ones represent slots which allocated to the routine

patients. We also demonstrate double-booked slots with two dark gray squares on

top of each other.

Figure 3.1 General scenarios for optimal schedule.

Both of these schedules are too general to argue. Therefore, first we focus on

TO,D to narrow down all possible forms of it, and then we discuss TD,O.

Schedule TO,D. In this schedule, the open slot can be anywhere before the

double-booked slot since it does not affect the expected waiting and overtime costs.

Consequently, The probability of having one patient waiting at the end of slot i,

P (wi = 1) are:

P (wi<j = 1) = 0

P (wj = 1) = (1− γ)2

P (wi>j = 1) = (1− γ)i−j+2

(3.11)

Note that, the probability of having more than one patient waiting is always

zero, since we assume that the schedule has only one double-booked slot. As a result
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the expected cost of waiting in this schedule is
∑N

i=j (1− γ)i−j+2 and also the expected

overtime cost is cv(1− γ)N−j+2. Although, the double-booked slot can be anywhere,

in this schedule, we can concisely express a condition in which a certain form of this

schedule is optimal.

Proposition 1. Among all schedules which contain an open slot prior to the double-

booked slot, the schedule in which the second slot is double-booked is better than the

schedule with a double-booked slot at the end if and only if cwγγ
−1 ≤ cv.

The proof of this proposition and all subsequent propositions can be found in

Appendix A. This proposition drastically reduces the number of schedules, which are

derived from TO,D, into just two schedules. Lets T 1,2
O,D be the schedule which has a

double-booked slot at the second slot and T 1,N
O,D the one with double-booked slot at

the end which are demonstrated in Figure 3.2.

Figure 3.2 Optimal schedules with TO,D.

Schedule TD,O. In this schedule the open slot is after the double-booked

slot and consequently, its position affect the expected waiting time and overtime.

Similarly, we can present a condition in which a particular form of this schedule is

optimal.

Proposition 2. It is optimal to place the open slot right after the double-booked slot

if and only if qs0 ≥ γ; otherwise, the open slot should be at the end of schedule (far

from the double-booked slot).

This proposition divides TD,O into two general forms. Let T j,j+1
D,O denote the

schedule in which the open slot is right after the double-booked slot and T j,ND,O the
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schedule in which the open slot is at the end. However, these two schedules (Shown

in Figure 3.3) are still general cases and need more exploration.

Figure 3.3 Optimal schedules with TD,O.

Proposition 3. The schedule in which the first slot is double-booked and followed by

an open slot is better than the schedule with double-booked at slot N − 1 and an open

slot at the end if and only if cwγγ
−1 ≤ cv.

Proposition 3 reduces number of schedules, which are derived from T j,j+1
D,O , into

just two schedules. Lets T 1,2
D,O be the schedule which has a double-booked slot at

the beginning followed by an open slot and TN−1,N
D,O denote the schedule which has a

double-booked slot at slot N −1 and an open slot at the end. Both of these schedules

are demonstrated in Figure 3.4.

Figure 3.4 Optimal schedules with T j,j+1
D,O .

Proposition 4. The schedule in which the first slot is double-booked and has an open

slot at the end is better than the schedule with double-booked at slot N − 1 and an

open slot at the end if and only if cw

(
γ−γ(1−qs0)

γ(1−qs0)

)
≤ cv.

Proposition 4 reduces number of schedules, which are derived from T j,ND,O, into

two distinct schedules. Lets T 1,N
D,O be the schedule which has a double-booked slot at
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Figure 3.5 Optimal schedules with T j,ND,O

Figure 3.6 Flowchart for optimal schedule selection.

the beginning and an open slot at the end of the schedule, which is demonstrated in

Figure 3.5.

Figure 3.6 summarizes the propositions stated above. The most dominant factor

in determining the position of the double-booked slot in the optimal schedule is the

ratio of the overtime cost and the waiting cost. If the waiting cost is relatively small

( cw
cv
≤ γγ−1), then the double-booked slot should be placed at the beginning of the

session. The advantage of such as schedule is that any slot opened up due to a no-show

after the double-booked slot can be used to serve the patient that is double-booked.

As a result, the chance that there is a need for overtime is minimized. Conversely, if
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the waiting cost is relatively high ( cw
cv
≥ qs0q

s−1

0 ), then the double-booked slot should

be pushed toward the end of the session to shorten the overall waiting time.

The relative position of the open slot, however, is being driven primarily by the

relationship of having zero same-day requests (qs0) and the probability of no-show of

the routine patients (γ). If qs0 ≥ γ, then the open slot should be placed right after the

double-booked slot. This allows the service provider to use any of the un-utilized slot

due to the lack of same-day requests. On the other hand, qs0 ≤ γ, then the position of

the open slot depends on the ratio of the waiting cost and overtime cost. If the ratio

is lower than qs0q
s−1

0 , then the open slot should be placed at the end of the session

because the overall waiting time is small. Otherwise, it is optimal to place the open

slot anywhere prior to the double-booked slot.

3.3. Computational Solutions

Due to the combinatorial characterization of the no-shows in each scheduled or double

booked slots, the traditional approach of solving newsvendor problems does not apply.

We thus investigate two solution methods: complete enumeration (in Section 3.3.1)

and heuristic schedules (in Section 3.3.2).

We adopted a two steps procedure to find the optimal schedule through complete

enumeration algorithm. In the first step, for each set of capacity planning decisions

(Nr, Ns and A), we select the best schedule which generates the highest expected

utility. Then in the second step , we select the highest expected utility, U∗(N∗r , N
∗
s , A

∗)

amongst the best schedules obtained from step one.

At the end of this chapter in Section 3.3.2, we introduce three heuristics, which

can instantly estimate the optimal capacity planning decisions (N∗r , N∗s and A∗) and

as a result reduces the time of complete enumeration computations drastically.
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3.3.1 Characterizations of Optimal Schedules

We first use the complete enumeration algorithm to find the optimal schedules along

with the optimal capacity planning decisions (N∗r , N∗s and A∗). Because the maximum

number of patients allowed for each slot i, xi, can take three integer values: 0, 1 and

2, the runtime of this algorithm is exponential (O(3N)). Therefore, we only use this

method for smaller capacity (N ≤ 15). Results for larger capacity are derived using

heuristics and presented afterward.

Case 1: low no-show rate, low waiting cost (γ ≤ qs0 and cwγγ
−1 ≤ cv). The

optimal capacity decisions (N∗r , N∗s and A∗) and the optimal schedules generated

using the following parameters N = 15, γ = 8%, p = 50, cl = 50, cv = 45, cw = 3

and Dr ∼ U [0, 14] are demonstrated in Table 3.2 and Figure 3.7, respectively. We use

two different examples with different distributions (Ds ∼ U [0, 4] and Ds ∼ U [0, 5])

for same-day requests to examine the general pattern in the optimal schedule.

Table 3.2 Optimal Capacity Planning Decisions in Case 1

Ds N∗r N∗s A∗ U∗

U [0, 4] 11 4 3 414.8

U [0, 5] 10 5 4 434.7

Table 3.2 shows that as the demand for the same-day requests increases, the

optimal number of open slots (N∗s ) and optimal double-booked slots (A∗) increase.

This indicates that the optimal schedules tends to accommodate urgent patients by

assigning as much open slots as needed.

Recall that in the case where only one double booked slot and one open slot are

assigned, it is optimal to place a double-booked slot at the beginning of the session

followed by an open slot and a series of single slots when the waiting cost is low.

The optimal schedule (T 1,2
D,O) allows the physician to serve one of the double-booked
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Figure 3.7 Optimal schedule in Case 1 (Top: Ds ∼ U [0, 4], Bottom: Ds ∼ U [0, 5]).

patients if the number of same-day requests is low. If the number of same-day requests

is high, however, the physician can still serve the patient in a single booked slot if any

of the reserved patients is a no-show. The optimal schedule, in this case, exhibits a

similar pattern with a block appended at the beginning and at the end of the session,

respectively. Because the probability of one or more same-day requests is relatively

high (75% and higher), open slots are placed at the beginning of the session to increase

the physician’s utilization. Several pairs of a double-booked slot followed by an open

slot are allocated at the end of the session. In the case of low same-day demands, the

open slots can be used to serve double-booked patients. Otherwise, these patients

will be served during overtime.

Case 2: low no-show rate, moderate waiting cost (γ ≤ qs0 and cwγγ
−1 ≥ cv ≥

cwq
s
0q
s−1

0 ). The optimal capacity decisions (N∗r , N∗s and A∗) and the optimal schedules

generated using the following parameters N = 15, γ = 8%, p = 50, cl = 50, cv = 45,

cw = 6 and Dr ∼ U [0, 14] are demonstrated in in Table 3.3 and Figure 3.8. We use

two different examples with different distributions (Ds ∼ U [0, 3] and Ds ∼ U [0, 4])

for same-day requests to examine a general pattern in the optimal schedule.

Similar to the case 1, the optimal schedule inclines to accommodate urgent

patients as much as needed by increasing the number of open slots. As a result, the

number of slots assigned to routine patients decreases and the number of double-

booked slots increases.
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Table 3.3 Optimal Capacity Planning Decisions in Case 2

Ds N∗r N∗s A∗ U∗

U [0, 3] 12 3 2 392.6

U [0, 4] 11 4 3 412.5

Figure 3.8 Optimal schedule in Case 2 (Top:Ds ∼ U [0, 3], Bottom:Ds ∼ U [0, 4]).

The optimal schedule, in this Case, is similar to that of Case 1 at first glance.

However, as one can see the optimal schedule in Case 1 assigns a double-booked slot

at the beginning of the session while all of the double-booked slots are pushed toward

the end of the session in the optimal schedule in Case 2. The main differences from

the high waiting cost (cw). Therefore, the optimal schedule tries to minimize the

overall expected waiting times by placing the double-booked slots at the end of the

session.

Case 3: low no-show rate, high waiting cost (γ ≤ qs0 and cwq
s
0q
s−1

0 ≥ cv).

The optimal capacity decisions (N∗r , N∗s and A∗) and the optimal schedules generated

using the following parameters N = 15, γ = 8%, p = 50, cl = 50, cv = 45, cw = 13

and Dr ∼ U [0, 14] are demonstrated in Table 3.4 and Figure 3.9. We use two different

examples with different distributions (Ds ∼ U [0, 4] and Ds ∼ U [0, 6]) for same-day

requests to examine a general pattern for the optimal schedule.

Comparing to the optimal capacity planning decisions of Case 2, the optimal

schedule allocates fewer open slots to urgent patients and reserve more capacity for
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Table 3.4 Optimal Capacity Planning Decisions in Case 3

Ds N∗r N∗s A∗ U∗

U [0, 4] 12 3 2 410.2

U [0, 6] 11 4 3 441.1

routine patients due to the combination of a high waiting cost (cwq
s
0q
s−1

0 ≥ cv) and

a low no-show rate of the routine patients. This allows the provider to minimize the

required double-booked slots and thus avoid prolonged waiting times. On the other

hand, some same-day requests will be turned away.

Figure 3.9 Optimal schedule in Case 3 (Top:Ds ∼ U [0, 4], Bottom:Ds ∼ U [0, 6]).

We previously show that the optimal schedule (T 1,N
O,D) in the special case, where

only one double booked slot and one open slot are assigned, places an open slot at

the beginning and assign the double-booked slot at the end of the session. When the

waiting cost is high, this arrangement minimizes the overall expected waiting time.

The optimal schedule, in this case, exhibits a similar pattern accompanied by several

pairs of a double-booked slot followed by an open slot at the end of the session. The

rationale of the last block is that, in the case of low same-day demands, the open

slots can be used to serve double-booked patients. Otherwise, these patients will be

served during overtime.

Case 4: high no-show rate, moderate waiting cost (γ ≥ qs0 and cwγγ
−1 ≤ cv ≤

cwq
s
0q
s−1

0 . The optimal capacity decisions (N∗r , N∗s and A∗) and the optimal schedules

46



generated using the following parameters N = 15, γ = 30%, p = 50, cl = 50, cv = 45,

cw = 13 and Dr ∼ U [0, 14] and are demonstrated in Table 3.5 and Figure 3.10. We

use two different examples with different distributions (Ds ∼ U [0, 4] and Ds ∼ U [0, 5]

) for same-day requests to examine a general pattern for the optimal schedule.

Table 3.5 Optimal Capacity Planning Decisions in Case 4

Ds N∗r N∗s A∗ U∗

U [0, 4] 11 4 3 338.7

U [0, 5] 10 5 4 358.7

Due to high no-show rate amongst routine patients, the optimal schedule inclines

to accommodate urgent patients as much as needed by increasing the number of open

slots.

Figure 3.10 Optimal schedule in Case 4 (Top:Ds ∼ U [0, 4], Bottom:Ds ∼ U [0, 5]).

Recall that in the case where only one double booked slot and one open slot

are assigned, it is optimal to place an open slot at the beginning followed by a

double-booked slot when the waiting cost is moderate and the no-show rate is high.

The optimal schedule (T 1,2
O,D) allows the physician to serve one of the double-booked

patients in a single booked slot if any of the reserved patients is a no-show. The

optimal schedule in this case, though looks different, follows a similar logic from the

special case. Because the probability of having more than one same-day request is

high, the schedule allocates a couple of open slots at the beginning of the session
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to maximize the physician’s utilization. The second block consists a double booked

slot followed by an open slot and a series of single booked slots to serve one of the

double-booked patients in the highly likely case of no shows from routine patients.

The third block has a similar structure as the second block except the number of single

booked slots is much lower, as the overall utility is higher to serve these patients during

overtime rather than having double-booked patients wait for a long time.

Case 5: high no-show rate, low waiting cost (γ ≥ qs0 and cwq
s
0q
s−1

0 ≤ cv).

The optimal capacity decisions (N∗r , N∗s and A∗) and the optimal schedules generated

using the following parameters N = 15, γ = 30%, p = 50, cl = 50, cv = 45, cw = 3 and

Dr ∼ U [0, 14] are demonstrated in Table 3.6 and Figure 3.11. We use three different

examples with different distributions (Ds ∼ U [0, 3], Ds ∼ U [0, 4] and Ds ∼ U [0, 5])

for same-day requests to examine a general pattern for the optimal schedule.

Table 3.6 Optimal Capacity Planning Decisions in Case 5

Ds N∗r N∗s A∗ U∗

U [0, 3] 12 3 2 319.2

U [0, 4] 11 4 3 343.2

U [0, 5] 10 5 4 366.5

As one can see, the optimal schedule tends to accommodate urgent patients

by assigning as much as open slots needed. Due to the high no-show rate of the

routine patients the optimal schedule assigns fewer slots to routine patients and uses

double-booking if routine patient’s demand rises.

The optimal schedule, in this case, carries the same structure as the optimal

schedule in Case 4. However, due to a low waiting cost, it assigns double-booked slots

earlier in the session and reserves a series of single booked slots for routine patients at

the end of the session. The single booked slots can be used to serve the double-booked

patients in the highly likely case of no-shows from routine patients.
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Figure 3.11 Optimal schedule in Case 5 (Top: Ds ∼ U [0, 3], Middle:Ds ∼ U [0, 4]
Bottom:Ds ∼ U [0, 5]).

3.3.2 Heuristic Schedules

We used a complete enumeration algorithm to obtain the optimal schedule in Section

3.3.1. Since this method is an exhaustive search, it only can be applicable in small

scales. Therefore, in this section, we develop three heuristics to reduce the search

space for the optimal schedule considerably. To this end, we evaluate the performance

of these heuristics in the estimation of optimal capacity decisions (N∗r , N∗s and

A∗). Hence, once the optimal capacity decisions are estimated, we can apply step

two of our presented complete enumeration algorithm to find the optimal schedule

respectively. Therefore, the required time for the exhaustive search, given optimal

capacity decisions, decreases drastically and we are able to obtain the near-optimal

schedule in large scales.

The back loading schedule (H-SCH 1) allows up to Ns urgent patients to be

taken care of first before any of the routine patients show up. If the realized demand

for urgent patients is less than Ns, however, the physician will be idle during the time

allocated for urgent patients. Moreover, if the demand for routine patients is higher

than Nr, double-booking is scheduled toward the end of the day. It is thus more likely

that the physicians would work overtime. The optimal schedule using this heuristic

for the Case 4 (Ds ∼ U [0, 4]) is shown in Figure 3.12.
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Figure 3.12 Optimal schedule using back loading heuristic for Case 4.

The front loading schedule (H-SCH 2) allocates all appointment slots for routine

patients (Nr) at the beginning of the day and those for urgent patients (N∗s ) toward

the end of the day. Double-booking is only exercised if the demand for routine patients

is higher than Nr. In this case, up to A slots can be double booked at the beginning

of the day. This schedule accommodates urgent patients at a later time of the day.

Any un-used open slots can then be used to serve overflow routine patients. The

optimal schedule using this heuristic for the Case 4 (Ds ∼ U [0, 4]) is shown in Figure

3.13.

Figure 3.13 Optimal schedule using front loading heuristic for Case 4.

The evenly spaced schedule (H-SCH 3) starts with alternating between an open

slot for the urgent patients and a slot for the routine patients. This pattern continuous

until all slots for urgent patients (Ns) have been allocated. All remaining slots, if

applicable, are then assigned to routine patients. Up to A slots can be double booked.

Pairing a double booked slot with an open slot helps to mitigate the no-shows and in

the case where same-day requests are low, the open slot can be used to reduce patient

waiting time if both patients booked in the same slot show up. The optimal schedule

using this heuristic for the Case 4 (Ds ∼ U [0, 4]) is shown in Figure 3.14.

Tables 3.7 and 3.8 compare the three heuristic schedules against the optimal

schedule generated by complete enumeration under three different values of patients’

waiting cost (cw) and low no-show rate (γ = 8%).
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Figure 3.14 Optimal schedule using evenly spaced heuristic for Case 4.

Table 3.7 Complete Enumeration (γ = 8%)

cw
Optimal Schedule

N∗r N∗s A∗ U∗ Schedule

3 11 4 3 414.8

6 11 4 3 412.5

13 12 3 2 410.2

Table 3.8 Performance of Heuristics (γ = 8%)

cw

H-SCH1 H-SCH2 H-SCH3

N∗
r N∗

s A∗ U1 U∗−U1

U∗ N∗
r N∗

s A∗ U2 U∗−U2

U∗ N∗
r N∗

s A∗ U3 U∗−U3

U∗

3 13 2 1 410.0 1.17% 12 3 2 411.3 0.85% 11 4 3 414.4 0.10%

6 13 2 1 409.8 0.66% 13 2 1 409.1 0.82% 12 3 2 410.7 0.45%

13 13 2 1 409.4 0.19% 14 1 0 408.7 0.37% 14 1 0 408.7 0.37%

Tables 3.9 and 3.10 compare the three heuristic schedules against the optimal

schedule generated by complete enumeration under three different values of patients’

waiting cost (cw) and high no-show rate (γ = 30%). As one can see, in the case of high

no-show rate, H-SCH 3 outperforms the other two heuristics. Moreover, it allocates

the same amount of slots to urgent patients (Ns) and routine patients (Nr) as well

as the maximum number of slots allowed to be double-booked (A). As a result, the

expected profit is close to optimal (less than 0.5% error).

Seemingly, the presented heuristics estimate the optimal capacity decisions (N∗r ,

N∗s and A∗) accurately in most of the cases. However, the results demonstrated that

the H-SCH3 outperforms the other two heuristics when waiting cost (cw) is low. On

the other hand, H-SCH1 perform best when the waiting cost is high. Results also
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Table 3.9 Complete Enumeration (γ = 30%)

cw
Optimal Schedule

N∗r N∗s A∗ U∗ Schedule

3 11 4 3 343.2

6 11 4 3 341.8

13 11 4 3 338.7

Table 3.10 Performance of Heuristics (γ = 30%)

cw

H-SCH1 H-SCH2 H-SCH3

N∗
r N∗

s A∗ U1 U∗−U1

U∗ N∗
r N∗

s A∗ U2 U∗−U2

U∗ N∗
r N∗

s A∗ U3 U∗−U3

U∗

3 11 4 3 336.8 1.87% 11 4 3 342.0 0.37% 11 4 3 343.0 0.07%

6 12 3 2 336.3 1.62% 11 4 3 339.2 0.77% 11 4 3 341.2 0.17%

13 12 3 2 335.2 1.03% 12 3 2 335.7 0.88% 11 4 3 337.1 0.48%

indicate that the H-SCH2 only outperforms the other heuristics when the waiting

cost is negligible (cw ≈ 0).

Next, we evaluate the performance of the three heuristics in two dimensions:

the waiting cost and the no-show rate. We use the following common parameters for

all cases: the following parameters capacity: N = 15, revenue: p = 50, cost of loss

sales: cl = 50, cost of overtime: cv = 45 and the demand for routine patients follows

Dr: U ∼ [5, 18]. We also uses Ds: U ∼ [0, 5] as the same-day requests distribution.

We also consider three different patients’ waiting costs: c0
w = 0, cLw = 3, and cHw = 6,

as well as two no show rates: γL = 8% and γH = 30%.

As shown in Table 3.11, when the physician has no regard of the patient waiting

time (cw = 0), the front loading schedule (H-SCH 2) always generates the same utility

as the optimal schedule does. Because this schedule tends to double-book at the

beginning of the day, it minimizes the chance of the physician being idle, and as a

result, more routine patients are served. Overflow patients can be cared for during

open slots later of the day if the same-day requests are low or during overtime. This
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schedule may result in really long delays for some of the routine patients that are

double-booked, and as a result, it only performs well when patient waiting time is

not considered.

The back loading schedule (H-SCH 1) performs the best when the patient waiting

cost is high, the no-show rate is low. When compared to the optimal schedule, the

back loading schedule tends to assign more slots to routine patients while allowing

fewer slots to be double-booked, and consequently, the physician is able to better

accommodate high demand. Moreover, because only the slots toward the end of the

day are allowed to be double-booked, patient waiting time is reduced and overflow

patients from the double-booked slots can be served during overtime.

The evenly spaced schedule (H-SCH 3) takes the lead in under two scenarios: 1)

when the patients’ waiting cost is low, or 2) when the patient waiting cost is high and

the no-show rate is high. Pairing an open slot for urgent patient with a double-booked

slot for routine patient is a key advantage of this schedule as it helps the physician

mitigate the negative impact of both no-shows and low same-day requests.

Table 3.11 Heuristics Efficiency Comparison

Cost of waiting Low no-show rate High no-show rate

Zero H-SCH2 H-SCH2

Low H-SCH3 H-SCH3

High H-SCH1 H-SCH3

3.4. Managerial Insight

The implications of the results from our analysis in Sections 3.2 and 3.3 are

summarized in the following.

In the case where it is optimal to double book exactly one patient and leave

only one open slot for a same-day request, the optimal schedule highly depends on
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the no-show rate (γ), the probability of having no same-day request (qs0) and the ratio

of the waiting cost to the overtime cost ( cw
cv

). Our analysis shows that if the ratio

of the waiting cost to the overtime cost is small, then the double-booked slot should

be placed at the beginning of the session to increase physician’s utilization. On the

other hand, if the ratio is large, then the double-booked slot should be placed at the

end of the session to shorten the overall waiting time.

Moreover, if receiving zero same-day request is more likely than a no-show, then

the open slot should be placed right after the double-booked slot. This allows the

physician to use the un-utilized open slot due to the lack of same-day requests. On

the other hand, if the no-show rate is higher than having zero same-day request and

the ratio of the waiting cost to the overtime cost is small, then the open slot should be

placed at the end of the session because the overall waiting time is small. Otherwise,

it is optimal to place the open slot anywhere prior to the double-booked slot.

Our numerical results indicate that in the case of low waiting cost, the provider

should accommodate urgent patients by assigning as many open slots as needed and

allows more slots to be double-booked for routine patients to increase the overall

utilization. On the other hand, in the case of high waiting cost combined with low

no-show rate, the provider should allocate fewer open slots to urgent patients and

reserve more capacity for routine patients to minimize the required double-booked

slots and thus avoid prolonged waiting times.

Furthermore, if the probability of having one or more same-day requests is

relatively high, then a proportion of open slots should be placed at the beginning of

the session to increase the physician’s utilization.

We also observe that the combination of a double-booked slot followed by an

open slot at the end of the session can be very effective since it allows the physician

to serve double-booked patients in the case of low same-day demands. The same
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reasoning holds, in the case of high no-show rate where a series of single-booked slots

acts like an open slot and can be used to serve double-booked patients.

Finally, our proposed heuristics schedules are fast and efficient in order to

estimate optimal capacity planning decisions (N∗r , N∗s and A∗), thus one can perform

the complete enumeration algorithm based on these estimated decisions and largely

reduces the time needed to find the optimal schedule. When the patient waiting time

is negligible, the front loading schedule (H-SCH 2) is the optimal schedule. The back

loading schedule (H-SCH 1) performs the best when the patients’ waiting cost is high,

the no-show rate is low and the evenly spaced schedule (H-SCH 3) takes the lead in

all other cases.
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CHAPTER 4

JOINT PANEL SCHEDULING

Most literature has focused on single-server systems for appointment scheduling in

primary care. However, in practices in most of the clinics, there are several primary

care physicians (PCP) who may have their own list of patients [Gupta and Denton,

2007]. Many researchers suggest a single common queue for all physician, which has

short waiting time, as the proper appointment system. These kinds of appointment

systems, mostly assign the patient to the first available doctor and jeopardize the

continuity of care, which is one of the main goals of primary care. These system

makes the optimal policy more complicated and also results in lower revenues [OHare

and Corlett, 2004]. Thus, in this study, we propose an approach which allows primary

care providers to use independent queues for each doctor as been suggested by few

other researchers [Rising et al., 1973, Cox et al., 1985].

On the other hand, some public clinics do not give appointments to urgent

patients, sending them to the first available doctor. This is the case in clinics

studied by [Babes and Sarma, 1991] in Algeria and [Liu and Liu, 1998] in Hong

Kong. Similarly, in our proposed model the same-day requests will be sent to the

first available open slot regardless of the patients’ preferred PCP.

4.1. Joint Panel Scheduling Modeling

Similar to the presented model in Section 3.1, the main goal in this section is to

find the optimal appointment schedule which minimizes patients’ waiting time while

maximizing providers’ expected utility. Therefore, we develop a stochastic model that

maximizes a weighted sum of provider’s revenue, cost of lost sales, overtime cost, and

patients’ waiting cost. The provider’s planning decisions consist the daily number of

open slots for urgent patients and maximum numbers of slots allowed to be double
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booked for all physicians who are working in a joint panel. The provider’s schedule

specifies where these reserved slots are located.

Both single physician scheduling and joint panel scheduling systems are depicted

in Figure 4.1. The main difference between these two systems is handling same-day

requests. In the joint panel scheduling, urgent patients (same-day requests) will be

assigned to the first open slot regardless of the physician; while in the single physician

scheduling, each doctor receives his/her own same-day request.

Figure 4.1 Joint panel scheduling vs. single physician scheduling.

Initially, we assume a particular case where we have just two physicians who

have their own routine patients but they serve urgent patients based on first in first

serve order. Later, we generalize our finding to characterize the general pattern in

the optimal schedule in the case of multiple physicians. The demand for the routine

patients follows a probability mass function (p.m.f.) q1r
i for i = 0, 1..., U1

r for first

physician and q2r
i for i = 0, 1..., U2

r for the second one. The demand for urgent

patients follows a p.m.f. qsi for i = 0, 1..., Us which is shared between both physician.

We also assume the probability functions are independent of each other. Similar to
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the previous model we assume that the service times for both types of patient are

deterministic and equal. Thus, the daily appointment schedule can be divided into

N intervals of equal length for each physician. Let i (i = 1, ..., N) represents the ith

time slot counted from the beginning of the day. The provider needs to determine

the number of slots allocated to the routine patients for each physician, N1
r and

N2
r . Further, let N1

s denote the number of slots allocated to the same-day requests,

N1
s = N −N1

r and N2
s = N −N2

r .

The provider receives revenue of p for each patient served, regardless of the

type. If either a routine patient or a same-day request cannot be accommodated, the

provider incurs a cost of lost sales (cl). We further assume that with probability γ, a

routine patient would not show up for the appointment. All urgent patients, however,

show up for sure.

All the aforementioned assumptions are made based on the data we obtained

from a clinic, which has an average no-show rate of 8% for routine patients, but less

than 0.1% for urgent patients. In order to mitigate the negative impacts associated

with no-shows, the provider allows certain time slots to be double booked for each

physician. However, all booked patients, if shown, must be served on the same day.

The provider thus needs to work overtime if there are un-served patients by the end

of the day. In this case, the provider incurs an overtime cost of cv for each patient.

Moreover, since double-booking all of the slots assigned to routine patients may not

be optimal, we introduce another decision variables, A1 and A2, to represent the

maximum number of slots that can be double booked for the first and the second

physician. See Table 4.1 for a summary of notation.

Joint Panel Appointment Schedule. In this appointment schedule the provider

not only need to determine the number of slots allocated to the routine patients (N1
s

and N2
s ) and the maximum number of slots that can be double booked (A1 and A2),

But also needs to specify which time slots are designated for urgent patients, which
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Table 4.1 Joint Panel Scheduling Model’s Notation

Parameters:

p: Revenue per patient

cl: Cost of lost sales per patient

cw: Waiting cost per slot per patient

cv : Cost of overtime per slot

γ: No-show rate for routine patient

N : Number of slots available during the regular session for both physicians

Decisions:

Nh
r : Number of slots assigned to routine patients for physician h = 1, 2

Ah: Maximum number of double-booked patients for physician h = 1, 2

xhi : Maximum number of patients allowed to be assigned to slot i for physician h = 1, 2,

i = 1, ..., N and xi = 0, 1, 2

Variables:

Dh
r : Demand for routine patients, follows pmf : qri for i = 0, 1..., Uh

r for physician h = 1, 2

Ds: Demand for urgent patients, follows pmf : qsi for i = 0, 1..., Us

Nh
s : Number of slots assigned to same-day patients, Nh

s = N −Nh
r for physician h = 1, 2

khi : Number of routine patients that showed up, follows pmf : B(k;n, γ) for physician h = 1, 2

wh
i : Number of patients waiting at the end of slot i, wi = 0, 1, ..., i for physician h = 1, 2

are for routine patients, and which ones can be double-booked. Let xhi denote the

maximum number of patients allowed to be assigned to time slot i for physician h. If

xhi = 0, time slot i is reserved for urgent patients and no routine patients is booked for

that slot. If xhi = 1, time slot i is reserved for routine patients and no double-bookings

is allowed. If xhi = 2, time slot i can be double-booked if all other routine slots have

been booked. Thus, the number of patients showed up at slot i, khi can be computed

as follows:

khi |{xhi = 1} =


0 B(0; 1, γ);

1 B(1; 1, γ).

and khi |{xhi = 2} =


0 B(0; 2, γ);

1 B(1; 2, γ);

2 B(2; 2, γ).

(4.1)
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where γ = 1 − γ is the probability that a routine patient shows up. The term

B(k;n, p) =
(
n
k

)
pk(1− p)n−k is the binomial distribution, when n = 0, B(k;n, p) = 0.

Given a pre-determined schedule, {x1
i }i=1,...,N and {x2

i }i=1,...,N , the provider can expect

n1
r routine patients for the first physician and n2

r routine patients for the second one,

where

n1
r =

∑N
i=1

∑x1i
k1i =0

k1
i ·B(k1

i ;x
1
i , γ),

n2
r =

∑N
i=1

∑x2i
k2i =0

k2
i ·B(k2

i ;x
2
i , γ).

(4.2)

Because the provider also cares about the waiting times of the patients, let cw

be the waiting cost per time slot for each patient. Let whi represent the number of

patients waiting at the end of time i for physician h. Then, the probability of having

j patients waiting at the end of slot i, P h(whi = j) for physician h, can be derived

using the following recursive function:

P h(whi = j) =P h(whi−1 = j + 1) · P (khi = 0|xhi ) + P h(whi−1 = j) · P (khi = 1|xhi )

+ P h(whi−1 = j − 1) · P (khi = 2|xhi ). (4.3)

The first term in Equation (4.3) corresponds to the situation where j+1 patients

are waiting at the end of slot i − 1 for physician h = 1, 2, and no patients show up

for slot i. The second term captures the case where j patients are waiting at the end

of slot i− 1 and one patient shows up for slot i. The last term captures the situation

where j − 2 patients are waiting at the end of slot i − 1 and two new patients who

are both booked for slot i show up. In all three cases, only one patient is served in

slot i and all remaining patients would wait.

Provider’s Revenue. For each patient served, regardless of the type, the

provider obtains a revenue p. Thus, the provider’s expected revenue depends on the

realized demands (D1
r , D

2
r , D

1
s , D

2
s) of both routine and urgent patients for both

physician, and their allocated capacities (N1
r , N2

r , N1
s , N2

s , A1 and A2). Let us first
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define an operating function, ψ(·), as follows:

ψ
(
x, l1r , u

1
r, l

2
r , u

2
r, ls, us

)
=

u1r∑
D1

r=l1r

u2r∑
D2

r=l2r

us∑
Ds=ls

(x) qsDs
qrD2

r
qrD1

r
, (4.4)

where l1r and u1
r are the lower and upper bounds of the demand for routine patients

for the first physician, l2r and u2
r are the lower and upper bounds of the demand

for routine patients for the second physician and ls and us are the lower and upper

bounds of the demand for same-day requests. Given a pair of capacity allocations

for the routine patients (N1
r and N2

r ) and the urgent patient (N1
s and N2

s ) as well as

a maximum number of slots that can be double-booked (A1 and A2), the provider’s

expected revenue, denoted by Π(N1
r , N

2
r , A

1, A2), can be computed by:

Π(N1
r , N

2
r , A

1, A2) = p · ψ
(
(D1

r +D2
r)γ + min{Ds, 2N −D1

r −D2
r}, 0, N1

r , 0, N
2
r , 0, Us

)
+ p · ψ

(
D1
rγ + n2

r + min{Ds, N −D1
r +N2

s }, 0, N1
r , N

2
r , N

2
r + A2, 0, Us

)
+ p · ψ

(
D1
rγ + n2

r + min{Ds, N −D1
r +N2

s }, 0, N1
r , N

2
r + A2, U2

r , 0, Us
)

+ p · ψ
(
n1
r +D2

rγ + min{Ds, N
1
s +N2

s }, N1
r , N

1
r + A1, 0, N2

r , 0, Us
)

+ p · ψ
(
n1
r + n2

r + min{Ds, N
1
s +N2

s }, N1
r , N

1
r + A1, N2

r , N
2
r + A2, 0, Us

)
+ p · ψ

(
n1
r + n2

r + min{Ds, N
1
s +N2

s }, N1
r , N

1
r + A1, N2

r + A2, U2
r , 0, Us

)
+ p · ψ

(
n1
r +D2

rγ + min{Ds, N
1
s +N2

s }, N1
r + A1, U1

r , 0, N
2
r , 0, Us

)
+ p · ψ

(
n1
r + n2

r + min{Ds, N
1
s +N2

s }, N1
r + A1, U1

r , N
2
r , N

2
r + A2, 0, Us

)
+ p · ψ

(
n1
r + n2

r + min{Ds, N
1
s +N2

s }, N1
r + A1, U1

r , N
2
r + A2, U2

r , 0, Us
)
. (4.5)

The first term in Equation (4.5) refers to the case where the demand for routine

patients for both physicians is less than the allocated capacity. Consequently, there

are 2N −D1
r −D2

r un-utilized slots, which can be assigned to the same-day requests.

The second term corresponds to the situation where all demand for routine patients

of the second physician can be accommodated with up to A2 slots double-booked.

The third term refers to the case where all capacity of the second physician (N2
r +A2)
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for routine patients is used up and the remaining routine patients are not served.

Similarly, the next three terms represent the situation where the demand of routine

patients for the first physician exceeds N1
r . Finally, the last three terms refer to the

situation where all the available capacity for routine patients, for both physicians, is

used up.

Provider’s Lost Sales. Once the capacity planning decisions are made, the

provider can only serve up to N1
r +N2

r +A1 +A2 routine patients and N1
s +N2

s urgent

patients in a day. If any of the demands exceeds the capacity, the provider incurs

a lost sale cost. Let L(N1
r , N

2
r , A

1, A2) denote the provider’s expected cost from lost

sales, and it can be computed by

L(N1
r , N

2
r , A

1, A2) = cl · ψ
(
Ds − (2N −D1

r −D2
r), 0, N

1
r , 0, N

2
r , 2N −D1

r −D2
r , Us

)
+ cl · ψ

(
Ds − (N −D1

r −N2
s ), 0, N1

r , N
2
r , N

2
r + A2, N −D1

r +N2
s , Us

)
+ cl · ψ

(
D2
r − (N2

r + A2), 0, N1
r , N

2
r + A2, U2

r , 0, N −D1
r +N2

s

)
+ cl · ψ

(
D2
r +Ds − (2N − 2N2

s + A2 −D1
r), 0, N

1
r , N

2
r + A2, U2

r , N −D1
r +N2

s , Us
)

+ cl · ψ
(
Ds − (N1

s +N −D2
r), N

1
r , N

1
r + A1, 0, N2

r , N −D2
r +N1

s , Us
)

+ cl · ψ
(
Ds − (N1

s −N2
s ), N1

r , N
1
r + A1, N2

r , N
2
r + A2, N1

s +N2
s , Us

)
+ cl · ψ

(
D2
r − (N2

r + A2), N1
r , N

1
r + A1, N2

r + A2, U2
r , 0, N

1
s +N2

s

)
+ cl · ψ

(
D2
r +Ds − (N2

r + A2 +N1
s −N2

s ), N1
r , N

1
r + A1, N2

r + A2, U2
r , N

1
s +N2

s , Us
)

+ cl · ψ
(
D1
r − (N1

r + A1), N1
r + A1, U1

r , 0, N
2
r , 0, N −D2

r +N1
s

)
+ cl · ψ

(
Ds +D1

r − (2N − 2N1
s + A1 −D2

r), N
1
r + A1, U1

r , 0, N
2
r , N −D2

r +N1
s , Us

)
+ cl · ψ

(
D1
r − (N1

r + A1), N1
r + A1, U1

r , N
2
r , N

2
r + A2, 0, N1

s +N2
s

)
+ cl · ψ

(
Ds +D1

r − (N1
r + A1 +N1

s +N2
s ), N1

r + A1, U1
r , N

2
r , N

2
r + A2, N1

s +N2
s , Us

)
+ cl · ψ

(
D1
r +D2

r − (N1
r + A1 +N2

r + A2), N1
r + A1, U1

r , N
2
r + A2, U2

r , 0, N
1
s +N2

s

)
+ cl · ψ

(
Ds +D2

r +D2
r − (2N + A1 + A2), N1

r + A1, U1
r , N

2
r + A2, U2

r , N
1
s +N2

s , Us
)
.

(4.6)
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The first two terms in Equation (4.6) correspond to the case where there are

more urgent patients than available open slots, and thus the urgent patients must be

referred to other providers. The third term refers to the scenario where the demand

for routine patients, from the second physician’s list, is over the maximum capacity

(N1
r + A1) with double-booking, and thus some of the routine patients would not be

served. Similarly, all the other terms represent the situation where demand (either

routine patients or same-day request) exceed the provider’s capacities.

Provider’s Overtime Cost. While adopting the double-booking strategy can

mitigate the negative effects of no-shows, it may require the provider and other clinic

staff to work overtime. Consider the following situation, slot i is double-booked for

one of the physicians. When both patients show up, only one can be served during

the scheduled time interval. Because clinics regularly operate based on “first come,

first serve”, the other patient will be seeing the provider in slot i+ 1. If any patient

who is booked for slot i+1 shows up, that patient will also be delayed by at least one

slot. These delays are easily concatenated and may result in some un-served at the

end of the day, i.e. slot N . The provider’s expected overtime cost thus depends on the

appointment schedules {xhi }i=1,...,N and h = 1, 2. Let O(N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i })

denote the provider’s overtime cost, and it can be calculated as follows:

O(N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i }) = cv · ψ(

min{D2
r−N2

r ,A
2}∑

j=0

j · P (w2
N = j), 0, N1

r , N
2
r , U

2
r , 0, Us)

+ cv · ψ(

min{D1
r−N1

r ,A
1}∑

j=0

j · P (w1
N = j), N1

r , U
1
r , 0, N

2
r , 0, Us)

+ cv · ψ(

min{D1
r−N1

r ,A
1}∑

j=0

j · P (w1
N = j) +

min{D2
r−N2

r ,A
2}∑

j=0

j · P (w2
N = j), N1

r , U
1
r , N

2
r , U

2
r , 0, Us). (4.7)

where P (w1
N = j) and P (w2

N = j) in Equation (4.7) is derived using Equation (4.3)

recursively. Note that delays at the end of the day only occurs when there are

double-booked patients, thus we only need to consider the scenarios where the demand
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for routine patients exceeds its allocated capacity, and thus the number of patients

at the end of slot N will not exceed min{D1
r − N1

r , A
1} for the first physician and

min{D2
r −N2

r , A
2} for the second one.

Patients’ Waiting Cost. Similar to the provider’s overtime cost, the

appointment schedules {x1
i }i=1,...,N and {x2

i }i=1,...,N with double-booking strategy

highly affects the waiting times for patients. LetW (N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i }) denote

the aggregated patients’ waiting cost, and it equals to

W (N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i }) = cw · ψ(
N∑
i=1

min{i,D2
r−N2

r ,A
2}∑

j=0

jP (w2
i = j), 0, N1

r , N
2
r , U

2
r , 0, Us)

+ cw · ψ(
N∑
i=1

min{i,D1
r−N1

r ,A
1}∑

j=0

j · P (w1
i = j), N1

r , U
1
r , 0, N

2
r , 0, Us)

+ cw · ψ(
N∑
i=1

min{i,D1
r−N1

r ,A
1}∑

j=0

j · P (w1
i = j) +

min{i,D2
r−N2

r ,A
2}∑

j=0

j · P (w2
i = j), N1

r , U
1
r , N

2
r , U

2
r , 0, Us).

(4.8)

In Equation (4.8), the number of patients waiting (j) at slot i should exceed neither

i nor the total number of double-booked patients min{Dh
r −Nh

r , A
h} where h = 1, 2.

Provider’s Utility. The provider’s utility can be derived by combining the

revenue and cost functions. Let U(N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i }) denote the provider’s

utility:

U(N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i }) =Π(N1
r , N

2
r , A

1, A2)− L(N1
r , N

2
r , A

1, A2)

−O(N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i })

−W (N1
r , N

2
r , A

1, A2, {x1
i }, {x2

i }). (4.9)

Let (N1∗
r , N

2∗
r , A

1∗, A2∗, {x1∗
i }, {x2∗

i }) be the joint optimal decisions on the number

of slots allocated for routine patients, the maximum number of slots allowed to be

double-booked and the appointment schedule respectively for both physicians, that
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maximize the provider’s utility function, that is,

(N1∗
r , N

2∗
r , A

1∗, A2∗, {x1∗
i }, {x2∗

i }) = max
N1

r ,N
2
r ,A

1,A2,{x1i },{x2i }
U(N1

r , N
2
r , A

1, A2, {x1
i }, {x2

i }).

(4.10)

4.2. Analytical Solutions

In this section, we start with the simplest case where it is optimal to double book

exactly one routine patient and leave only one slot open for each physician. Let

TO,D be the schedule in which, the open slot (O) is placed before the double-booked

slot (D). Also, TD,O be the schedule in which, the open slot is placed after the

double-booked slot. Therefore, all possible schedules can be divided into three general

scenarios:

• TO,D + TO,D: the open slots are placed before the double-booked slot for both

physicians.

• TD,O + TD,O: the open slots are placed after the double-booked slot for both

physicians.

• TD,O + TO,D: one open slot is placed after the double-booked slot for first

physicians and the other one is placed before the double-booked slot for the

second physician.

In order to make a better visualization, we can exhibit each schedule as shown

in Figure 4.2. Each square represents one slot, which has the same length as the

other slots (see Section 3.1 for further information). The light gray squares present

open slots and dark gray ones represent slots which allocated to the routine patients.

We also demonstrate double-booked slots with two dark gray squares on top of each

other. Moreover, the top schedule demonstrates the schedule of first physician and

the bottom one shows the second physician’s schedule.

65



Figure 4.2 General scenarios for joint panel scheduling.

These schedules are too general to argue and be compared. Therefore, first, we

focus on TO,D + TO,D to narrow down all possible forms of it.

Schedule TO,D + TO,D. In this schedule, the open slot can be anywhere before

the double-booked slot and its placement does not affect the total expected waiting

time and overtime costs. Although, in this schedule, the double-booked slot can be

anywhere, but we can concisely express a condition in which a certain form of this

schedule is optimal.

Proposition 5. Among all possible schedule TO,D + TO,D, if cw

(
1−γ
γ

)
≤ cv then the

schedule which has an open slot at the beginning followed by a double-booked slot right

after that for both physicians is the best. on the other hand, if cw

(
1−γ
γ

)
≥ cv the

schedule which has an open slot at the beginning and a double-booked slot at the end

of the session for both physician is the best.

The proof of this proposition and all subsequent propositions can be found

in Appendix B. Proposition 5 drastically reduces the number of schedules, which

are derived from TO,D + TO,D, into three schedules. These three schedules are

demonstrated in Figure 4.3.

Schedule TD,O + TD,O. In this schedule, the placement of the open slot affects

the expected waiting time and overtime costs since it is after the double-booked slot.

Similarly, we can present a condition in which a particular form of this schedule is

optimal.
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Figure 4.3 Optimal schedule with TO,D + TO,D.

Proposition 6. Among all TD,O + TD,O schedules (the open slot can be anywhere

after the double-booked slot), if γ ≤ qs0 + qs1 then schedule T j,j+1
D,O + T h,h+1

D,O is the best

amongst all the other schedules. Otherwise, schedule T j,ND,O + T h,ND,O is the best. The

schedule T j,ND,O + T h,h+1
D,O is never optimal.

Figure 4.4 Optimal schedule with TD,O + TD,O.

This proposition divides TD,O + TD,O into three general forms and states that

the third one (T j,ND,O +T h,h+1
D,O ) is always worst than the other two. However, these two

schedules (Shown in Figure 4.4) are still general cases and need more exploration.

Proposition 7. Among all possible schedule T j,j+1
D,O +T h,h+1

D,O (the open slot is right after

the double-booked slot for both physician), if cw

(
1−γ
γ

)
≤ cv then schedule T 1,2

D,O +T 1,2
D,O

is the best. otherwise, schedule TN−1,N
D,O + TN−1,N

D,O is the best. The schedule T 1,2
D,O +

TN−1,N
D,O is never optimal.

This Proposition reduces number of schedules, which are derived from T j,j+1
D,O +

T h,h+1
D,O , into three schedules. All of these schedules are demonstrated in Figure 4.5.

This proposition also states that the third schedule (T 1,2
D,O +TN−1,N

D,O ) is never optimal.
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Figure 4.5 Optimal schedule with T j,j+1
D,O + T h,h+1

D,O .

Proposition 8. Among all possible schedule T j,ND,O + T h,ND,O (the open slot is after the

double-booked slot and at the end of the session for both physician), if cw

(
1−γ

γ(1−qs0)
− 1
)
≤

cv then the schedule T 1,N
D,O + T 1,N

D,O is the best. Moreover, if cw

(
1−γ

γ(1−qs0)
− 1
)
≥ cv then

the schedule TN−1,N
D,O + TN−1,N

D,O is the best. Otherwise, the schedule T 1,N
D,O + TN−1,N

D,O is

the best amongst the others. The schedule TN−1,N
D,O + T 1,N

D,O is never optimal.

Proposition 8 reduces number of schedules , which are derived from T j,ND,O+T h,ND,O,

into four schedules. All of these schedules are demonstrated in Figure 4.6. This

proposition also states that the fourth schedule (TN−1,N
D,O + T 1,N

D,O) is never optimal.

Figure 4.6 Optimal schedule with T j,ND,O + T h,ND,O .

Schedule TD,O + TO,D. In this schedule the placement of the open slot affects

the expected waiting time and overtime costs since it is after the double-booked slot.

Similarly, we can present a condition in which a particular form of this schedule is

optimal.

Proposition 9. Among all TD,O+TO,D schedules, if γ ≤ qs0+qs1, then schedule T j,j+1
D,O +

T h−1,h
O,D is the best amongst all the other schedules. Otherwise, schedule T j,ND,O + T h−1,h

O,D

is the best.
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Figure 4.7 Optimal schedule with TD,O + TO,D .

This proposition divide TD,O +TO,D into two general forms. However, these two

schedules (shown in Figure 4.7) are still general cases and need more exploration.

Proposition 10. Among all possible schedule T j,j+1
D,O + T h−1,h

O,D , it is optimal to place

first open slot, the one which is before the double-booked slot, prior to the open slot

which is after the double-booked slot.

This proposition states that in T j,j+1
D,O + T h−1,h

O,D it is optimal to have j ≥ h− 2.

Therefore, we can divide T j,j+1
D,O + T h−1,h

O,D into four schedules. all these four schedules

are shown in Figure 4.8.

Proposition 11. Among all T j,j+1
D,O +T h−1,h

O,D schedules, if cw

(
1−γ
γ

)
≤ cv, then schedule

T 1,2
D,O + T 1,2

O,D is the best. Otherwise, the schedule TN−1,N
D,O + T 1,N

O,D is the best.

Figure 4.8 Optimal schedule with T j,j+1
D,O + T h−1,h

O,D .

Proposition 11 states that the other two schedules (TN−1,N
D,O + T 1,2

O,D and T 1,2
D,O +

T 1,N
O,D), which are derived from Proposition 10, are never optimal.

Proposition 12. Among all possible schedule T j,ND,O + T h−1,h
D,O , if cw

(
1−γ
γ

)
≤ cv then

the schedule T 1,N
D,O + T 1,2

O,D is the best. Moreover, if cw

(
1−γ

γ(1−qs0−qs1)
− 1
)
≥ cv then the
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schedule TN−1,N
D,O + T 1,N

O,D is the best. Otherwise, the schedule T 1,N
D,O + T 1,N

O,D is the best

amongst the others. The schedule TN−1,N
D,O + T 1,N

D,O is never optimal.

Figure 4.9 Optimal schedule with T j,ND,O + T h−1,h
D,O .

Proposition 12 divide all forms of schedule T j,ND,O + T h−1,h
D,O into four schedules

which are shown in Figure 4.9. It also states that the schedule TN−1,N
D,O +T 1,N

D,O is never

optimal.

Figure 4.10 Flowchart for optimal schedule selection.

Figure 4.10 summarizes all the propositions stated above which conceptually,

provides similar guidelines as the ones presented in Figure 3.6 for the single physician.
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As one can see, the ratio of the overtime cost and the waiting cost highly influences the

position of the double-booked slots in the optimal schedule. If the ratio is relatively

small, then the double-booked slots should be placed at the beginning of the session for

both physicians in order to take advantage of any unutilized slot due to a no-show. In

contrast, if the ratio is +high, then the double-booked slots should be pushed toward

the end of the session to minimize the overall expected waiting time. These findings

are aligned with our previous claims in the single physician scheduling (Section 3.2.)

Furthermore, the relative position of open slots to the double-booked slots are

determined by two major factors: (i) The relationship between the probability of

no-show of routine patients and the probability of having one or fewer same-day

request and (ii) the ratio of the waiting cost to the overtime cost. If γ ≤ qs0 + qs1,

which implies that chance of not having enough same-day requests is higher than that

of the no-show of routine patients, and the ratio of waiting cost to the overtime cost

is low, then the open slot should be placed right after the double-booked slot for both

physicians. This allows both physicians to serve the double-booked patient in the

highly likely case of no same-day request. In addition, if the ratio is moderate, then

the open slot should be placed right after the double-booked slot for one physician

and prior to the double-booked slot for the other physicians. This allows the joint

panel to justifies the usage of unutilized open slot due to lack of requests and the

reduction of overall waiting time. On the other hand, if γ ≥ qs0 + qs1 and the ratio

is less than qs0q
s−1

0 , then the open slot should be placed after the double-booked slot

and at the end of the session for both physicians. Since the possibility of a no-show

is higher than having one or zero same-day request and waiting cost is relatively

small, both physicians are willing to use a block of single-booked slots instead of an

open slot to serve one of the double-booked patients. Also, if the ratio is moderate,

(qs0q
s−1

0 ≤ cw
cv
≤ (qs0 + qs1)(1 − qs0 − qs1)−1), it is optimal to place the open slot prior

to the double-booked slot for one of the physicians and at the end of the session for
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the other one. This allows the joint panel to balance the utilization of any opened-up

single-booked slot, due to high no-shows, and the reduction of overall waiting time

from pushing double-booked slots toward the end of the session. Finally, if the ratio

of the waiting cost and overtime cost is higher than (qs0 +qs1)(1−qs0−qs1)−1, regardless

of no-show rate and same-day requests, it is optimal to place the open slot anywhere

prior to the double-booked slot for both physicians. The high waiting cost forces

both physicians to not relay on unutilized open slot, due to lack of sam-day requests,

and therefore, the open slots are placed prior to the double-booked slots for both

physicians.

4.3. Computational Solutions

Due to the combinatorial characterization of the no-shows in each scheduled or double

booked slots, the traditional approach of solving newsvendor problems does not apply

and we uses complete enumeration algorithm to solve this problem.

4.3.1 Characterizations of Joint Panel Optimization

We use the complete enumeration algorithm to find the optimal schedules along with

the optimal capacity planning decisions (N∗r , N∗s and A∗). Because the maximum

number of patients allowed for each slot i, x1
i and x2

i , can take three integer values:

0, 1 and 2, the runtime of this algorithm is exponential (O(32N)). Therefore, we only

use this method for smaller capacity (N ≤ 7).

Additionally, Since the same-day requests will be assigned to both physicians,

in order to maintain similarity of demand with the single physician schedules, we use

a symmetric discrete triangular distribution T [a, b, c] for same-day requests which is

shown in Figure 4.11.

Case 1: low no-show rate, low waiting cost (γ ≤ qs0 + qs1 and cwγγ
−1 ≤ cv).

The optimal capacity planning decisions (N1∗
r , N2∗

r , N1∗
s , N2∗

s , A1∗ and A2∗) along
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Figure 4.11 Different types of symmetric discrete triangular distributions.

with optimal expected utilities (U∗) and the optimal joint panel generated using the

following parameters N = 7, γ = 8%, p = 50, cl = 50, cv = 45, cw = 3, Dr ∼ U [0, 7]

for both physicians, and Ds ∼ T [0, 6] are provided in Table 4.2 and Figure 4.12.

Table 4.2 Optimal Capacity Planning Decisions - Case 1

N∗r N∗s A∗ U∗

Single Physician 4 3 3 219.9

Joint Panel
6 1 1

448.8
6 1 1

The joint panel schedule provides same-day access with less waiting time for

urgent patients. As a result, as demonstrated in Table 4.2, the joint panel schedule

allocates fewer slots for urgent patients compared to the single physician schedule

and consequently fewer number of slots are allowed to be double-booked.

Figure 4.12 Optimal schedules: single physician vs. joint panel - case 1.
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The optimal joint panel schedule assigns only one double booked slot and one

open slot for each physician, which resembles the same assumption we made in Section

4.2. Therefore, it is optimal to place a double-booked slot at the beginning of the

session followed by an open slot for the first physician and leave one slot open at the

beginning of the session followed by a double-booked slot for the second physician.

Case 2: low no-show rate, high waiting cost (γ ≤ qs0 + qs1 and cw

(
1−qs0−qs1
qs0+qs1

)
≥

cv). The optimal capacity planning decisions (N1∗
r , N2∗

r , N1∗
s , N2∗

s , A1∗ and A2∗) along

with optimal expected utilities (U∗) and the optimal joint panel generated using the

following parameters N = 7, γ = 8%, p = 50, cl = 50, cv = 45, cw = 13, Dr ∼ U [0, 7]

for both physicians, and Ds ∼ T [0, 6] are provided in Table 4.3 and Figure 4.13.

Table 4.3 Optimal Capacity Planning Decisions - Case 2

N∗r N∗s A∗ U∗

Single Physician 5 2 1 200.8

Joint Panel
6 1 1

445.5
6 1 1

In this case, both schedules (single physician and joint panel) leave two open

slots in the session. However, the joint panel schedule can serve more routine patients

than single physician schedule due to urgent patient sharing among both physicians.

Figure 4.13 Optimal schedules: single physician vs. joint panel - case 2.
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Similar to the previous case, the optimal joint panel schedule assigns only one

double booked slot and one open slot for each physician. Therefore, as shown in Figure

4.10, The optimal schedule assigns one open slot at the beginning of the session and

places the double-booked slot at the end of the session for both physicians in order

to minimize the waiting time.

Case 3: high no-show rate, low waiting cost (γ ≥ qs0 + qs1 and cw

(
1−qs0
qs0

)
≤ cv).

The optimal capacity planning decisions (N1∗
r , N2∗

r , N1∗
s , N2∗

s , A1∗ and A2∗) along

with optimal expected utilities (U∗) and the optimal joint panel generated using the

following parameters N = 7, γ = 30%, p = 50, cl = 50, cv = 45, cw = 3, Dr ∼ U [0, 7]

for both physicians, and Ds ∼ T [0, 6] are provided in Table 4.4 and Figure 4.14.

Table 4.4 Optimal Capacity Planning Decisions - Case 3

N∗r N∗s A∗ U∗

Single Physician 4 3 3 177.3

Joint Panel
5 2 2

382.6
5 2 2

Due to the high no-show rate, in this case, the joint panel schedule allocates

more open slots compared to the single physician schedule to provide more access for

urgent patients and uses even fewer number of double-booked slots.

Figure 4.14 Optimal schedules: single physician vs. joint panel - case 3.
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Recall that in the case where only one double booked slot and one open slot

are assigned, it is optimal to place a double-booked slot at the beginning of the

session and leave an open slot at the end of the session for both physicians when

the waiting cost is low and the no-show rate is high. The optimal schedule (T 1,N
D,O +

T 1,N
D,O) allows the physician to serve one of the double-booked patients in a single

booked slot if any of the reserved patients is a no-show. The optimal joint panel

schedule in this case, though looks different, follows a similar logic from the special

case. Because the probability of having more than one same-day request is high,

the schedule allocates one open slot at the beginning of the session to maximize the

physician’s utilization. The rest of the optimal schedule is similar to the special

case with one extra double-booked slot. The extra double-booked slot is placed

closely after the first double-booked slot for both physicians to take advantage of

high no-show rate and low waiting cost at the same time.

Case 4: high no-show rate, moderate waiting cost (γ ≥ qs0 + qs1 and

cw

(
1−qs0−qs1
qs0+qs1

)
≤ cv ≤ cw

(
1−qs0
qs0

)
). The optimal capacity planning decisions (N1∗

r , N2∗
r ,

N1∗
s , N2∗

s , A1∗ and A2∗) along with optimal expected utilities (U∗) and the optimal

joint panel generated using the following parameters N = 7, γ = 30%, p = 50, cl = 50,

cv = 45, cw = 6, Dr ∼ U [0, 7] for both physicians, and Ds ∼ T [0, 6] are provided in

Table 4.5 and Figure 4.15.

Table 4.5 Optimal Capacity Planning Decisions - Case 4

N∗r N∗s A∗ U∗

Single Physician 4 3 3 175.9

Joint Panel
5 2 2

379.2
5 2 2

Similar to the Case 3, the joint panel schedule allocates more open slots that

the single physician schedule due to the high no-show rate.
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Figure 4.15 Optimal schedules: single physician vs. joint panel - case 4.

The optimal joint panel schedule, in this case, carries the same structure as the

one in the Case 3. However, due to higher waiting cost, the optimal joint schedule

pushes the extra double-booked slots toward middle of the session to justifies the

moderate overall expected waiting time.

Case 5: high no-show rate, high waiting cost (γ ≤ qs0 +qs1, and cw

(
1−qs0−qs1
qs0+qs1

)
≥

cv). The optimal capacity planning decisions (N1∗
r , N2∗

r , N1∗
s , N2∗

s , A1∗ and A2∗) along

with optimal expected utilities (U∗) and the optimal joint panel generated using the

following parameters N = 7, γ = 30%, p = 50, cl = 50, cv = 45, cw = 13, Dr ∼ U [0, 7]

for both physicians, and Ds ∼ T [0, 6] are provided in Table 4.6 and Figure 4.16.

Table 4.6 Optimal Capacity Planning Decisions - Case 5

N∗r N∗s A∗ U∗

Single Physician 4 3 3 172.9

Joint Panel
6 1 1

375.1
6 1 1

Similar to the special case which we discussed in Section 4.2, the optimal joint

panel schedule, in this case, assigns only one open slot at the beginning of the session

followed by a double-booked slot for both physicians. The rest of the schedule is

filled with single-booked routine patients which allows the physician to serve one of

the double-booked patients if any of the reserved patients is a no-show.
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Figure 4.16 Optimal schedules: single physician vs. joint panel - case 5.

4.4. Efficiency of Joint Panel Scheduling

In this section, we compare the joint panel scheduling with single physician scheduling

to investigate the efficiency of this approach.

The efficiency can be measured in terms of improvement in expected provider’s

utility (U∗). In order to do a fair comparison, we compared the joint panel’s expected

utility with the sum of expected utilities of two individual physicians. The results

show that the joint panel scheduling can improve provider’s expected utility up to 7%

which is a significant improvement in efficiency because it causes less waiting time for

patients as well as higher utilization for provider.

Figure 4.1 shows the difference between both schedules. As one can see, in the

joint panel scheduling urgent patients (same-day requests) will be assigned to the

first open slot; while in the single physician scheduling each doctor receives his/her

own same-day request and it causes long waiting time for the whole system. On

the other hand, single physician scheduling may results in lower physician utilization

since the physician may stay idle in an open slot because of lack of same-day requests

since it should leave more open slots compared to the joint panel schedule. Moreover,

in the single physician scheduling some urgent patient may be turned away due to

appointment unavailability; however, in the joint panel scheduling, urgent patients

have higher chance to get the same-day appointment.

Let U∗Joint be the optimal expected utility generated using joint panel scheduling,

and U∗Single be the optimal expected profit for single physician scheduling. Therefore,
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efficiency improvement (Λ) can be calculated as follow:

Λ =
U∗Joint − 2U∗Single

U∗Joint
× 100 (4.11)

Remarkably, we can claim that the joint panel scheduling not only reduces

patients’ waiting time and increase physicians’ utilization but also provides more

accessibility to patients. Results of numerical cases in Section 4.3 demonstrate the

efficiency improvement of joint panel scheduling. The summary of results is shown in

Table 4.7.

Table 4.7 Joint Panel Scheduling Efficiency Comparison

Low No-show Rate (γ = 8%) High No-show Rate (γ = 30%)

U∗
Single U∗

Joint Λ U∗
Single U∗

Joint Λ

Low
236.4 488.0 3.1% 207.8 425.5 2.4%

Waiting Cost

High
214.4 462.5 7.3% 193.0 404.8 4.6%

Waiting Cost

According to Table 4.7 joint panel scheduling has higher expected utility in all of

the scenarios. However, it is evident that the joint panel scheduling is more effective

when the provider expects low no-show rate among routine patients.

4.5. Managerial Insight

The implications of the results from our analysis in Sections 3.2 and 3.3 are

summarized in the following.

In the case where it is optimal to double book exactly one patient and leave

only one open slot for both physicians, the optimal schedule depends on the no-show

rate (γ), the probability of having one or less same-day request (qs0 and qs1 ) and the

ratio of the waiting cost to the overtime cost ( cw
cv

). Our analysis confirm our previous
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findings in single physician scheduling (Section 3.4) that if the ratio of the waiting

cost to the overtime cost is small, then the double-booked slot should be placed at

the beginning of the session for both physicians and if the ratio is large, then the

double-booked slot should be placed at the end of the session for both physicians.

Furthermore, the relative position of open slots to the double-booked slots are

determined by two major factors: (i) The relationship between the probability of

no-show of routine patients and the probability of having one or fewer same-day

request and (ii) the ratio of the waiting cost to the overtime cost. If receiving one or

less same-day request is more likely than a no-show and the ratio of waiting cost to

the overtime cost is low, then the open slot should be placed right after the double-

booked slot for both physicians to increase the utilization. In addition, if the ratio is

moderate, then the open slot should be placed right after the double-booked slot for

one physician and prior to the double-booked slot for the other physicians to enable

provider in reduction of overall waiting time and utilization of un-occupied open slot

simultaneously. On the other hand, if receiving one or less same-day request is less

likely than a no-show and the ratio is small, then the open slot should be placed after

the double-booked slot and at the end of the session for both physicians. Also, if the

ratio is moderate then the open slot should be placed after the double-booked slot

and at the end of the session for both physicians. Finally, if the ratio of the waiting

cost to the overtime cost is high, regardless of no-show rate and same-day requests,

it is optimal to place the open slot anywhere prior to the double-booked slots.

Comparing joint panel scheduling with two physicians who are using individual

schedules, we can point out two major differentiations. (i) The joint panel scheduling

assigns fewer open slots for urgent patients. This allows both physicians to serve

more routine patients and utilize fewer double-booked slots which results in lower

expected waiting time. (ii) The joint panel scheduling results in higher efficiency and
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higher expected utility because it not only causes less waiting time for patients but

also reduces physician’s idle time.
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CHAPTER 5

CONCLUSION AND FUTURE EXTENSIONS

In this dissertation, we develop an innovative stochastic model combined with a

Newsvendor framework that calculates the probability of the number of patients

waiting at the end of each appointment slot in order to find the provider’s joint optimal

capacity allocation and scheduling decisions that maximize the social welfare. The

optimal curve-out schedule stipulates the optimal capacity allocation among urgent

patients and routine patients, the maximum number of appointment slots that can be

double-booked, as well as where are the different types of slots located in the schedule.

We also develop heuristic schedules for single physician scheduling and compare

their performances against the one optimal schedule generated from the complete

enumeration algorithm. Furthermore, we extend our model to a joint panel to examine

the efficiency of such systems and extract guidelines for primary care providers.

We analyze both the single physician scheduling and the joint panel scheduling

in a case where it is optimal to double book exactly one patient and leave only one

open slot for a same-day request for each physician and characterize the optimal

schedule under specific circumstances. Our analysis indicates that the optimal

schedule is determined by two factors (i) the ratio of waiting cost to the overtime cost

and (ii) the relation between no-show rate and distribution of same-day requests.

In addition, through several numerical illustrations, we demonstrate that in

the case of low waiting cost, the provider should accommodate urgent patients by

assigning as many open slots as needed. On the other hand, in the case of high

waiting cost combined with low no-show rate, the provider should allocate fewer

open slots to urgent patients and reserve more capacity for routine patients.
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Furthermore, we investigate both single physician scheduling and the joint panel

schedule and show that sharing the same-day requests can increase the efficiency of

the clinic. Our analysis shows that the joint panel is more effective in the cases where

the provider expects low no-show rate and consider a high cost for patients’ waiting

time.

This dissertation has laid the groundwork for several future research opportu-

nities. We assume that the service time is deterministic and has an equal length

for all patients. However, the effect of random service time on optimal schedule can

be one direction to expand the following model. Furthermore, we assume that all

physicians and patients are punctual while this assumption is not practical and may

need to be relaxed. In addition, we did not consider a constraint on overtime hours

which can be taken into account in a future extension of the model. Moreover, we

assume that the no-show rate is homogenous among routine patients. However, the

no-show probability can be different among patients.
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APPENDIX A

PROOF OF PROPOSITIONS (SINGLE PHYSICIAN)

Since we assumed the optimal schedule has only one open slot and one double-booked

slot, then the expected profit and lost sales are all the same in all schedules. Therefore,

we compare only the expected cost of schedules.

Proof of proposition 1. Let TCSCH1
1,j

be the expected cost of schedule SCH1
1

which has the double-booked slot at slot j.

TCSCH1,j ≤ TCSCH1,j+1

⇒ cw

N∑
i=j

(1− γ)i−j+2 + cv(1− γ)N−j+2 ≤ cw

N∑
i=j+1

(1− γ)i−j+1 + cv(1− γ)N−j+1

⇒ cw(1− γ)N−j+2 ≤ γcv(1− γ)N−j+1 ⇒ cw ≤ cv

(
γ

1− γ

)

Proof of proposition 2. Let TCSCH1
2,j

be the expected cost of schedule SCH1
2

which has the double-booked slot at slot j.

TCSCH1
2,j
≤ TCSCH1

2,j+1

⇒ cw

(
j−1∑
i=1

(1− γ)i+1 + (1− qs0)
N∑
i=j

(1− γ)i

)
+ cv(1− qs0)(1− γ)N

≤ cw

(
j∑
i=1

(1− γ)i+1 + (1− qs0)
N∑

i=j+1

(1− γ)i

)
+ cv(1− qs0)(1− γ)N

⇒
j−1∑
i=1

(1− γ)i+1 + (1− qs0)
N∑
i=j

(1− γ)i ≤
j∑
i=1

(1− γ)i+1 + (1− qs0)
N∑

i=j+1

(1− γ)i

⇒
j−1∑
i=1

(1− γ)i+1 + (1− qs0)
N∑
i=j

(1− γ)i ≤
j∑
i=1

(1− γ)i+1 + (1− qs0)
N∑

i=j+1

(1− γ)i

⇒ (1− qs0)(1− γ)j ≤ (1− γ)j+1 ⇒ qs0 ≥ γ
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Proof of proposition 3. Let TCSCH1
2−1,j

be the expected cost of schedule

SCH1
2−1 which has the double-booked slot at slot j.

TCSCH1
2−1,j
≤ TCSCH1

2−1,j

⇒ cw((1− γ)2 + (1− qs0)

N−j+1∑
i=2

(1− γ)i) + cv(1− qs0)(1− γ)N−j+1

≤ cw((1− γ)2 + (1− qs0)

N−j∑
i=2

(1− γ)i) + cv(1− qs0)(1− γ)N−j

⇒ cw(1− qs0)(1− γ)N−j+1 ≤ γcv(1− qs0)(1− γ)N−j ⇒ cw ≤ cv

(
γ

1− γ

)

Proof of proposition 4. Let TCSCH1
2−2,j

be the expected cost of schedule

SCH1
2−2 which has the double-booked slot at slot j.

TCSCH1
2−2,j
≤ TCSCH1

2−2,j

⇒ cw(

N−j+1∑
i=2

(1− γ)i + (1− qs0)(1− γ)N−j+1 + cv(1− qs0)(1− γ)N−j+1

≤ cw(

N−j∑
i=2

(1− γ)i + (1− qs0)(1− γ)N−j + cv(1− qs0)(1− γ)N−j

⇒ cw ≤ cv
γ(1− qs0)

(1− γ)− γ(1− qs0)

In order to create the presented flowchart, we need to compare the identical

schedules which are introduced after each proposition. Lets assume qs0 ≥ γ and
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cw ≤ cv

(
γ

1−γ

)
.

TCSCH1
1−1
≤ TCSCH1

2−1−1

⇒ cw

N∑
i=2

(1− γ)i + cv(1− γ)N

≤ cw

(
(1− γ)2 + (1− qs0)

N∑
i=2

(1− γ)i

)
+ cv(1− qs0)(1− γ)N

⇒ cvq
s
0(1− γ)N ≤ cw

(
(1− γ)2 − qs0

N∑
i=2

(1− γ)i

)

⇒ cvq
s
0(1− γ)N−2 ≤ cw

(
1− qs0

N−2∑
i=0

(1− γ)i

)

⇒ cv ≤ cw

(
γ + qs0(1− γ)N−1

γqs0(1− γ)N−2
− 1

γ(1− γ)N−2

)

However, we can prove that this inequality is never valid:

qs0 ≥ γ ⇒ γ

qs0
≤ 1

⇒ γ

qs0
+ (1− γ)N−1 − 1 ≤ (1− γ)N−1

⇒ γ + qs0(1− γ)N−1

γqs0(1− γ)N−2
− 1

γ(1− γ)N−2
≤ (1− γ)N−1

γ(1− γ)N−2

⇒ γ + qs0(1− γ)N−1

γqs0(1− γ)N−2
− 1

γ(1− γ)N−2
≤ 1− γ

γ

Therefore, given cw

(
1−γ
γ

)
≤ cv, the schedule SCH1

1−1 is always worst than SCH1
2−1−1.

Now lets move the next comparison. Lets assume qs0 ≥ γ and cw ≥ cv

(
γ

1−γ

)
.

TCSCH1
1−2
≤ TCSCH1

2−1−2

⇒ cw(1− γ)2 + cv(1− γ)2 ≤ cw
(
(1− γ)2 + (1− qs0)(1− γ)2

)
+ cv(1− qs0)(1− γ)2

⇒ cvq
s
0(1− γ)2 ≤ cw

(
(1− qs0)(1− γ)2

)
⇒ cv ≤ cw

(
1− qs0
qs0

)
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The next comparison is between schedule SCH1
1−1 and SCH1

2−2−1. Lets assume qs0 ≤ γ

and cw ≤ cv

(
γ

1−γ

)
also cw ≤ cv

γ(1−qs0)

(1−γ)−γ(1−qs0)
.

TCSCH1
1−1
≤ TCSCH1

2−2−1

⇒ cw

N∑
i=2

(1− γ)i + cv(1− γ)N

≤ cw

(
N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N

)
+ cv(1− qs0)(1− γ)N

⇒ cvq
s
0(1− γ)N ≤ cw

(
(1− qs0)(1− γ)N

)
⇒ cv

(
qs0

1− qs0

)
≤ cw

Finally, lets assume qs0 ≤ γ and cw ≥ cv

(
γ

1−γ

)
also cw ≤ cv

γ(1−qs0)

(1−γ)−γ(1−qs0)
.

TCSCH1
1−2
≤ TCSCH1

2−2−1

⇒ cw(1− γ)2 + cv(1− γ)2

≤ cw

(
N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N

)
+ cv(1− qs0)(1− γ)N

⇒ cv
(
(1− γ)2 − (1− qs0)(1− γ)N

)
≤ cw

(
N∑
i=3

(1− γ)i + (1− qs0)(1− γ)N

)

⇒ cv

(
(1− γ)2 − (1− qs0)(1− γ)N∑N
i=3 (1− γ)i + (1− qs0)(1− γ)N

)
≤ cw
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However, we can prove that this inequality is always satisfied and consequently,

schedule SCH1
1−2 is always better than SCH1

2−2−1.

qs0 ≤ γ ⇒ qs0
1− qs0

≤ γ

1− γ

⇒ γ(1− qs0)(1− γ)N−3 ≤ qs0(1− γ)N−2

⇒ −(1− γ)N−2 + γ(1− qs0)(1− γ)N−3 ≤ −(1− qs0)(1− γ)N−2

⇒ γ

(
1− (1− γ)N−2

γ

)
+ γ(1− qs0)(1− γ)N−3 ≤ 1− (1− qs0)(1− γ)N−2

⇒ γ
N−3∑
i=0

(1− γ)i + γ(1− qs0)(1− γ)N−3 ≤ 1− (1− qs0)(1− γ)N−2

⇒ γ
N∑
i=3

(1− γ)i + γ(1− qs0)(1− γ)N ≤ 1− (1− qs0)(1− γ)N+1

⇒ γ
N∑
i=3

(1− γ)i + γ(1− qs0)(1− γ)N ≤ (1− γ)3 − (1− qs0)(1− γ)N+1

⇒ γ

1− γ
≤ (1− γ)2 − (1− qs0)(1− γ)N∑N

i=3 (1− γ)i + (1− qs0)(1− γ)N
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APPENDIX B

PROOF OF PROPOSITIONS (JOINT PANEL)

Proof of proposition 5. Let U(T i,jO,D + T i,hO,D) be the expected cost of TO,D + TO,D

which has the double-booked slot at slot j for first physician and slot h for the second

physician and i ≤ j.

U(T i,jO,D + T i,hO,D) ≤ U(T i,j+1
O,D + T i,h+1

O,D )

⇒ cw(

N−j+2∑
i=2

(1− γ)i +
N−h+2∑
i=2

(1− γ)i) + cv((1− γ)N−j+2 + (1− γ)N−h+2)

≤ cw(

N−j+1∑
i=2

(1− γ)i +
N−h+1∑
i=2

(1− γ)i) + cv((1− γ)N−j+1 + (1− γ)N−h+1)

⇒ cw((1− γ)N−j+2 + (1− γ)N−h+2)

≤ cv((1− γ)N−j+1 + (1− γ)N−h+1 − (1− γ)N−j+2 − (1− γ)N−h+2)

⇒ cw ≤ cv

(
(1− γ)N−j+1 + (1− γ)N−h+1

((1− γ)N−j+2 + (1− γ)N−h+2)
− 1

)
⇒ cw ≤ cv

(
γ

1− γ

)

U(T i,jO,D + T i,hO,D) ≤ U(T i,j+1
O,D + T i,h−1

O,D )

⇒ cw(

N−j+2∑
i=2

(1− γ)i +
N−h+2∑
i=2

(1− γ)i) + cv((1− γ)N−j+2 + (1− γ)N−h+2)

≤ cw(

N−j+1∑
i=2

(1− γ)i +
N−h+3∑
i=2

(1− γ)i) + cv((1− γ)N−j+1 + (1− γ)N−h+3)

⇒ cw((1− γ)N−j+2 − (1− γ)N−h+3) ≤ cvγ((1− γ)N−j+1 − (1− γ)N−h+2)

⇒ cw ≤ cv

(
γ

1− γ

)
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U(T i,NO,D + T i,NO,D) ≤ U(T i,2O,D + T i,NO,D)

⇒ 2cw(1− γ)2 + 2cv(1− γ)2

≤ cw(
N∑
i=2

(1− γ)i + (1− γ)2) + cv((1− γ)N + (1− γ)2)

⇒ cw

(
(1− γ)2 −

N∑
i=2

(1− γ)i

)
≤ cv

(
(1− γ)N − (1− γ)2

)
⇒ cw

(
1−

N−2∑
i=0

(1− γ)i

)
≤ cv

(
(1− γ)N−2 − 1

)
⇒ cw ≥ cv

(
1− (1− γ)N−2∑N−2

i=1 (1− γ)i

)

⇒ cw ≥ cv

(
γ

1− γ

)

Proof of proposition 6. Let U(T j,j+1
D,O + T h,h+1

D,O ) be the expected cost of the

schedule which has the double-booked slot at slot j and an open slot at slot j + 1 for

first physician and a double-booked slot at h and open slot at h + 1 for the second

physician.

U(T j,j+1
D,O + T h,h+1

D,O ) ≤ U(T j,j+1
D,O + T h,h+2

D,O )

⇒

(
2(1− γ)2 + (1− qs0)

N−j+1∑
i=2

(1− γ)i + (1− qs0 − qs1)
N−h+1∑
i=2

(1− γ)i

)

≤

(
2(1− γ)2 + (1− γ)3 + (1− qs0)

N−j+1∑
i=2

(1− γ)i + (1− qs0 − qs1)
N−h+1∑
i=3

(1− γ)i

)

⇒

(
(1− qs0 − qs1)

N−h+1∑
i=2

(1− γ)i

)
≤

(
(1− γ)3 + (1− qs0 − qs1)

N−h+1∑
i=3

(1− γ)i

)

⇒ (1− qs0 − qs1) ≤ (1− γ)

⇒ γ ≤ qs0 + qs1

Proof of proposition 7. Let U(T j,j+1
D,O + T h,h+1

D,O ) be the expected cost of the

schedule which has the double-booked slot at slot j for first physician and slot h for
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the second physician.

U(T 1,2
D,O + T 1,2

D,O) ≤ U(TN−1,N
D,O + TN−1,N

D,O )

⇒ cw

(
2(1− γ)2 + (1− qs0)

N∑
i=2

(1− γ)i + (1− qs0 − qs1)
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)
≤ cw

(
2(1− γ)2 + (1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
⇒ cw

(
(1− qs0)

N−2∑
i=1

(1− γ)i + (1− qs0 − qs1)
N−2∑
i=1

(1− γ)i

)

+ cv((2− 2qs0 − qs1)(1− γ)N−2) ≤ cv(2− 2qs0 − qs1)

⇒ cw
(
(1− qs0)(1− (1− γ)N−1) + (1− qs0 − qs1)(1− (1− γ)N−1)− γ(2− 2qs0 − qs1)

)
≤ cvγ((2− 2qs0 − qs1)(1− (1− γ)N−2))

⇒ cw(1− γ − (1− γ)N−1) ≤ cvγ(1− (1− γ)N−2)

⇒ cw(1− γ)− γcv ≤ (1− γ)N−2(cw(1− γ)− γcv)
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Therefore, if cw ≤ ( γ
1−γ )cv schedule T 1,2

D,O + T 1,2
D,O is better. Otherwise, schedule

TN−1,N
D,O + TN−1,N

D,O is better.

U(T 1,2
D,O + T 1,2

D,O) ≤ U(T 1,2
D,O + TN−1,N

D,O )

⇒ cw

(
2(1− γ)2 + (1− qs0)

N∑
i=2

(1− γ)i + (1− qs0 − qs1)
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)
≤ cw

(
2(1− γ)2 + (1− qs0)

N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)2

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)2

)
⇒ cw

(
(1− qs0 − qs1)

N∑
i=2

(1− γ)i

)
+ cv

(
(1− qs0 − qs1)(1− γ)N

)
≤ cw

(
(1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2

)
⇒ cw

(
N−2∑
i=1

(1− γ)i

)
+ cv

(
(1− γ)N−2

)
≤ cv

⇒ cw(1− (1− γ)N−1 − γ) ≤ γcv(1− (1− γ)N−2)

⇒ cw(1− γ)− γcv ≤ (cw(1− γ)− γcv)(1− γ)N−2)
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Therefore, if cw ≤ γ
1−γ cv schedule T 1,2

D,O + T 1,2
D,O is better. Otherwise, schedule T 1,2

D,O +

TN−1,N
D,O is better.

U(TN−1,N
D,O + TN−1,N

D,O ) ≤ U(T 1,2
D,O + TN−1,N

D,O )

⇒ cw
(
2(1− γ)2 + (1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
≤ cw

(
2(1− γ)2 + (1− qs0)

N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)2

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)2

)
⇒ cv

(
(1− qs0)(1− γ)2

)
≤ cw

(
(1− qs0)

N∑
i=3

(1− γ)i

)

+ cv
(
(1− qs0)(1− γ)N

)
⇒ cv ≤ cw

N−2∑
i=1

(1− γ)i + cv(1− γ)N−2

⇒ γcv − (1− γ)cw ≤ (γcv − (1− γ)cw)(1− γ)N−2

Therefore, if cw ≥ ( γ
1−γ )cv schedule TN−1,N

D,O + TN−1,N
D,O is better. Otherwise, schedule

T 1,2
D,O+TN−1,N

D,O is better. Consequently, T 1,2
D,O+TN−1,N

D,O is never outperform T 1,2
D,O+T 1,2

D,O

and TN−1,N
D,O + TN−1,N

D,O .

Proof of proposition 8. Let U(T j,ND,O + T h,ND,O) be the expected cost of the

schedule which has the double-booked slot at slot j for first physician and slot h for
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the second physician.

U(T 1,N
D,O + T 1,N

D,O) ≤ U(TN−1,N
D,O + TN−1,N

D,O )

⇒ cw

(
2

N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)
≤ cw

(
2(1− γ)2 + (1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
⇒ cw

(
2
N−2∑
i=0

(1− γ)i + (1− qs0)(1− γ)N−2 + (1− qs0 − qs1)(1− γ)N−2

)

+ cv
(
(1− qs0)(1− γ)N−2 + (1− qs0 − qs1)(1− γ)N−2

)
≤ cw (2 + (2− 2qs0 − qs1)) + cv ((2− 2qs0 − qs1))

⇒ cw
(
2(1− (1− γ)N−1 + γ(2− 2qs0 − qs1)(1− γ)N−2 − 2γ − γ(2− 2qs0 − qs1)

)
≤ cvγ(2− 2qs0 − qs1)(1− (1− γ)N−2)

⇒ cw
(
2(1− γ)(1− (1− γ)N−2)− γ(2− 2qs0 − qs1)(1− (1− γ)N−2)

)
≤ cvγ(2− 2qs0 − qs1)(1− (1− γ)N−2)

⇒ cw (2(1− γ)− γ(2− 2qs0 − qs1)) ≤ cvγ(2− 2qs0 − qs1)

⇒ cw

(
2(1− γ)

γ(2− 2qs0 − qs1)
− 1

)
≤ cv
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Therefore, if cv

(
γ(1−qs0−0.5qs1)

(1−γ)−γ(1−1qs0−0.5qs1)

)
≥ cw then schedule T 1,N

D,O + T 1,N
D,O is better.

Otherwise, schedule TN−1,N
D,O + TN−1,N

D,O is better.

U(T 1,N
D,O + T 1,N

D,O) ≤ U(T 1,N
D,O + TN−1,N

D,O )

⇒ cw

(
2

N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)
≤ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)2

)
⇒ cw

(
N−2∑
i=0

(1− γ)i + (1− qs0 − qs1)(1− γ)N−2

)

+ cv
(
(1− qs0 − qs1)(1− γ)N−2

)
≤ cw(2− qs0 − qs1) + cv ((1− qs0 − qs1))

⇒ cw
(
(1− (1− γ)N−1 + γ(1− qs0 − qs1)(1− γ)N−2 − γ(2− qs0 − qs1)

)
≤ cvγ

(
(1− qs0 − qs1)(1− (1− γ)N−2)

)
⇒ cw

(
(1− γ)(1− (1− γ)N−2 − γ(1− qs0 − qs1)(1− (1− γ)N−2)

)
≤ cvγ

(
(1− qs0 − qs1)(1− (1− γ)N−2)

)
⇒ cw ((1− γ)− γ(1− qs0 − qs1)) ≤ cvγ ((1− qs0 − qs1))

⇒ cw

(
1− γ

γ(1− qs0 − qs1)
− 1

)
≤ cv
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Therefore, if cv

(
γ(1−qs0−qs1)

(1−γ)−γ(1−qs0−qs1)

)
≥ cw then schedule T 1,N

D,O+T 1,N
D,O is better. Otherwise,

schedule T 1,N
D,O + TN−1,N

D,O is better.

U(T 1,N
D,O + T 1,N

D,O) ≤ U(TN−1,N
D,O + T 1,N

D,O)

⇒ cw

(
2

N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)N

)
≤ cw

(
(1− γ)2 + (1− qs0)(1− γ)2 +

N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− qs0)(1− γ)2

)
⇒ cw

(
N−2∑
i=0

(1− γ)i + (1− qs0)(1− γ)N−2

)

+ cv
(
(1− qs0)(1− γ)N−2

)
≤ cw (1 + (1− qs0)) + cv ((1− qs0))

⇒ cw
(
(1− (1− γ)N−1) + γ(1− qs0)(1− γ)N−2 − γ − γ(1− qs0)

)
≤ cvγ(1− qs0)(1− (1− γ)N−2)

⇒ cw
(
(1− γ)(1− (1− γ)N−2)− (γ(1− qs0))(1− (1− γ)N−2)

)
≤ cvγ(1− qs0)(1− (1− γ)N−2)

⇒ cw ((1− γ)− (γ(1− qs0))) ≤ cvγ(1− qs0)

⇒ cw

(
1− γ

γ(1− qs0)
− 1

)
≤ cv
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Therefore, if cv

(
γ(1−qs0)

(1−γ)−γ(1−qs0)

)
≥ cw then schedule T 1,N

D,O + T 1,N
D,O is better. Otherwise,

schedule TN−1,N
D,O + T 1,N

D,O is better.

U(TN−1,N
D,O + TN−1,N

D,O ) ≤ U(T 1,N
D,O + TN−1,N

D,O )

⇒ cw
(
2(1− γ)2 + (1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
≤ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)2

)
⇒ cw

(
(1− γ)2 + (1− qs0)(1− γ)2

)
+ cv

(
(1− qs0)(1− γ)2

)
≤ cw

(
N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N

)
+ cv

(
(1− qs0)(1− γ)N

)
⇒ cw

(
1 + (1− qs0)−

N−2∑
i=0

(1− γ)i − (1− qs0)(1− γ)N−2

)

≤ cv(1− qs0)((1− γ)N−2 − 1)

⇒ cw
(
(1− γ)((1− γ)N−2 − 1)− γ(1− qs0)((1− γ)N−2 − 1)

)
≤ cvγ(1− qs0)((1− γ)N−2 − 1)

⇒ cw ((1− γ)− γ(1− qs0)) ≥ cvγ(1− qs0)

⇒ cw

(
1− γ

γ(1− qs0)
− 1

)
≥ cv
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Therefore, if cv

(
γ(1−qs0)

(1−γ)−γ(1−qs0)

)
≥ cw then schedule TN−1,N

D,O + TN−1,N
D,O is better.

Otherwise, schedule T 1,N
D,O + TN−1,N

D,O is better.

U(TN−1,N
D,O + TN−1,N

D,O ) ≤ U(TN−1,N
D,O + T 1,N

D,O)

⇒ cw
(
2(1− γ)2 + (1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
≤ cw

(
(1− γ)2 + (1− qs0)(1− γ)2 +

N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− qs0)(1− γ)2

)
⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2

)
≤ cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N

)
+ cv

(
(1− qs0 − qs1)(1− γ)N

)
⇒ cw

(
1 + (1− qs0 − qs1)−

N−2∑
i=0

(1− γ)i − (1− qs0 − qs1)(1− γ)N−2

)

≤ cv(1− qs0 − qs1)((1− γ)N−2 − 1)

⇒ cw
(
γ + γ(1− qs0 − qs1)− (1− (1− γ)N−1)− γ(1− qs0 − qs1)(1− γ)N−2

)
≤ cvγ(1− qs0 − qs1)((1− γ)N−2 − 1)

⇒ cw
(
(1− γ)((1− γ)N−1 − 1)− γ(1− qs0 − qs1)((1− γ)N−2 − 1)

)
≤ cvγ(1− qs0 − qs1)((1− γ)N−2 − 1)

⇒ cw ((1− γ)− γ(1− qs0 − qs1)) ≥ cvγ(1− qs0 − qs1)

⇒ cw

(
1− γ

γ(1− qs0 − qs1)
− 1

)
≥ cv
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Therefore, if cv

(
γ(1−qs0−qs1)

(1−γ)−γ(1−qs0−qs1)

)
≤ cw then schedule TN−1,N

D,O + TN−1,N
D,O is better.

Otherwise, schedule TN−1,N
D,O + T 1,N

D,O is better.

U(T 1,N
D,O + TN−1,N

D,O ) ≤ U(TN−1,N
D,O + T 1,N

D,O)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i + (1− qs0)(1− γ)N

)

+ cv
(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)2

)
≤ cw

(
(1− γ)2 + (1− qs0)(1− γ)2 +

N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− qs0)(1− γ)2

)
⇒ cw

(
(1− qs0 − qs1)(1− γ)2 + (1− qs0)(1− γ)N

)
+ cv

(
(1− qs0)(1− γ)N + (1− qs0 − qs1)(1− γ)2

)
≤ cw

(
(1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)N

)
+ cv

(
(1− qs0 − qs1)(1− γ)N + (1− qs0)(1− γ)2

)
⇒ (cw + cv)

(
(1− qs0 − qs1)(1− γ)2 + (1− qs0)(1− γ)N

)
≤ (cw + cv)

(
(1− qs0)(1− γ)2 + (1− qs0 − qs1)(1− γ)N

)
⇒ (1− qs0 − qs1) + (1− qs0)(1− γ)N−2 ≤ (1− qs0) + (1− qs0 − qs1)(1− γ)N−2

⇒ (1− qs0 − qs1)(1− (1− γ)N−2) ≤ (1− qs0)(1− (1− γ)N−2)

⇒ qs1 ≥ 0

Therefore, all the time schedule T 1,N
D,O + TN−1,N

D,O is better than TN−1,N
D,O + T 1,N

D,O.

Proof of proposition 10. Let U(T j,j+1
D,O + T h−1,h

O,D ) be the expected cost of the

schedule which has the double-booked slot at slot j for first physician and slot h for
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the second physician.

T j≥h−2,j+1
D,O + T h−1,h

O,D ≤ T j≤h−2,j+1
D,O + T h−1,h

O,D

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)

N−j+1∑
i=2

(1− γ)i +
N−h+2∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N−j+1 + (1− γ)N−h+2

)
≤ cw

(
(1− γ)2 + (1− qs0)

N−j+1∑
i=2

(1− γ)i +
N−h+2∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0)(1− γ)N−j+1 + (1− γ)N−h+2

)
⇒ −cw

N−j+1∑
i=2

(1− γ)i ≤ cv(1− γ)N−j+1

Proof of proposition 11. Let U(T j,j+1
D,O + T h−1,h

O,D ) be the expected cost of the

schedule which has the double-booked slot at slot j for first physician and slot h for
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the second physician.

U(T 1,2
D,O + T 1,2

O,D) ≤ U(TN−1,N
D,O + T 1,2

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)

N∑
i=2

(1− γ)i +
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)N

)
≤ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)2 + (1− γ)N

)
⇒ cw

(
(1− qs0 − qs1)

N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N

)
≤ cw

(
(1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2

)
⇒ cw

N∑
i=2

(1− γ)i + cv(1− γ)N ≤ cw(1− γ)2 + cv(1− γ)2

⇒ cw

N−2∑
i=0

(1− γ)i + cv(1− γ)N−2 ≤ (cw + cv)

⇒ cw(1− (1− γ)N−1) + cvγ(1− γ)N−2 ≤ γ(cw + cv)

⇒ cw ≤ cv(
γ

1− γ
)
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U(T 1,2
D,O + T 1,2

O,D) ≤ U(T 1,2
D,O + T 1,N

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)

N∑
i=2

(1− γ)i +
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)N

)
≤ cw

(
(1− γ)2 + (1− qs0 − qs1)

N∑
i=2

(1− γ)i + (1− γ)2

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)2

)
⇒ cw

(
N∑
i=2

(1− γ)i

)
+ cv

(
(1− γ)N

)
≤ cw(1− γ)2 + cv(1− γ)2

⇒ cw

(
N−2∑
i=0

(1− γ)i

)
+ cv

(
(1− γ)N−2

)
≤ cw + cv

⇒ cw ≤ cv(
γ

1− γ
)

U(T 1,2
D,O + T 1,2

O,D) ≤ U(TN−1,N
D,O + T 1,N

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)

N∑
i=2

(1− γ)i +
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)N

)
≤

cw
(
2(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2 + (1− γ)2

)
⇒ cw

N∑
i=2

(1− γ)i + cv(1− γ)N ≤ cw(1− γ)2 + cv(1− γ)2

⇒ cw

N−2∑
i=0

(1− γ)i + cv(1− γ)N−2 ≤ cw + cv

⇒ cw ≤ cv(
γ

1− γ
)

102



U(TN−1,N
D,O + T 1,2

O,D) ≤ U(T 1,2
D,O + T 1,N

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)2 + (1− γ)N

)
≤ cw

(
(1− γ)2 + (1− qs0 − qs1)

N∑
i=2

(1− γ)i + (1− γ)2

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)2

)
⇒ cw

(
(1− qs0 − qs1) +

N−2∑
i=0

(1− γ)i

)
+ cv

(
(1− qs0 − qs1) + (1− γ)N−2

)
≤ cw

(
(1− qs0 − qs1)

N−2∑
i=0

(1− γ)i + 1

)
+ cv

(
(1− qs0 − qs1)(1− γ)N−2 + 1

)
⇒ cw

(
γ(1− qs0 − qs1) + (1− (1− γ)N−1)

)
+ cvγ

(
(1− qs0 − qs1) + (1− γ)N−2

)
≤ cw

(
(1− qs0 − qs1)(1− (1− γ)N−1) + γ

)
+ cvγ

(
(1− qs0 − qs1)(1− γ)N−2 + 1

)
⇒ cw

(
γ(1− qs0 − qs1) + (1− (1− γ)N−1)− (1− qs0 − qs1)(1− (1− γ)N−1)− γ

)
≤ cvγ

(
(1− qs0 − qs1)(1− γ)N−2 + 1− (1− qs0 − qs1)− (1− γ)N−2

)
⇒ cw(qs0 + qs1)

(
1− γ − (1− γ)N−1

)
≤ cvγ(qs0 + qs1)(1− (1− γ)N−2)

⇒ cw ≤ cv

(
γ

1− γ

)
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U(TN−1,N
D,O + T 1,2

O,D) ≤ U(TN−1,N
D,O + T 1,N

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)2 + (1− γ)N

)
≤ cw

(
2(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2 + (1− γ)2

)
⇒ cw

N−2∑
i=0

(1− γ)i + cv(1− γ)N−2 ≤ cw + cv

⇒ cw(1− (1− γ)N−1) + cvγ(1− γ)N−2 ≤ (cw + cv)γ

⇒ cw ≤ cv

(
γ

1− γ

)

U(T 1,2
D,O + T 1,N

O,D) ≤ U(TN−1,N
D,O + T 1,N

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)

N∑
i=2

(1− γ)i + (1− γ)2

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)2

)
≤ cw

(
2(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2 + (1− γ)2

)
⇒ cw

N∑
i=2

(1− γ)i + cv(1− γ)N ≤ cw(1− γ)2 + cv(1− γ)2

⇒ cw

N−2∑
i=0

(1− γ)i + cv(1− γ)N−2 ≤ cw + cv

⇒ cw(1− (1− γ)N−1) + cvγ(1− γ)N−2 ≤ (cw + cv)γ

⇒ cw ≤ cv

(
γ

1− γ

)

Proof of proposition 12. Let U(T j,ND,O+T h−1,h
O,D ) be the expected cost of the schedule

which has the double-booked slot at slot j for first physician and slot h for the second
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physician.

U(T 1,N
D,O + T 1,2

O,D) ≤ U(TN−1,N
D,O + T 1,2

O,D)

⇒ cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N +
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)N

)
≤

cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)2 + (1− γ)N

)
⇒ cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N

)

+ cv
(
(1− qs0 − qs1)(1− γ)N

)
≤ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2

)
⇒ cw

(
N−2∑
i=1

(1− γ)i + (1− qs0 − qs1)(1− γ)N−2

)
+ cv

(
(1− qs0 − qs1)(1− γ)N−2

)
≤ (cw + cv)(1− qs0 − qs1)

⇒ cw(1− (1− γ)N−1 − γ + (1− qs0 − qs1)γ(1− γ)N−2) + cvγ(1− qs0 − qs1)(1− γ)N−2

≤ (cw + cv)γ(1− qs0 − qs1)

⇒ cw(1− (1− γ)N−1 − γ + (1− qs0 − qs1)γ(1− γ)N−2 − γ(1− qs0 − qs1))

≤ cvγ(1− qs0 − qs1)(1− (1− γ)N−2)

⇒ cw(1− γ − γ(1− qs0 − qs1)) ≤ cvγ(1− qs0 − qs1)

⇒ cw

(
1− γ

γ(1− qs0 − qs1)
− 1

)
≤ cv
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U(T 1,N
D,O + T 1,2

O,D) ≤ U(TN−1,N
D,O + T 1,N

O,D)

⇒ cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N +
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)N

)
≤ cw

(
2(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2 + (1− γ)2

)
⇒ cw

(
2
N−2∑
i=0

(1− γ)i + (1− qs0 − qs1)(1− γ)N−2

)
+ cv(1− γ)N−2((1− qs0 − qs1) + 1)

≤ cw(1− qs0 − qs1 + 2) + cv((1− qs0 − qs1) + 1)

⇒ cw
(
2(1− (1− γ)N−1)− 2γ + (1− qs0 − qs1)γ(1− γ)N−2 − γ(1− qs0 − qs1)

)
≤ cvγ((1− qs0 − qs1) + 1)(1− (1− γ)N−2)

⇒ cw

(
2− γ

γ((2− qs0 − qs1)
− 1

)
≤ cv

U(T 1,N
D,O + T 1,2

O,D) ≤ U(T 1,N
D,O + T 1,N

O,D)

⇒ cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N +
N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)N

)
≤ cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N + (1− γ)2

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)2

)
⇒ cw

N∑
i=2

(1− γ)i + cv(1− γ)N ≤ cw(1− γ)2 + cv(1− γ)2

⇒ cw

N−2∑
i=0

(1− γ)i + cv(1− γ)N−2 ≤ cw + cv

⇒ cw(1− (1− γ)N−1) + cvγ(1− γ)N−2 ≤ (cw + cv)γ

⇒ cw(1− γ − (1− γ)N−1) ≤ cvγ(1− (1− γ)N−2)

⇒ cw ≤ cv(
γ

1− γ
)
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U(TN−1,N
D,O + T 1,2

O,D) ≤ U(TN−1,N
D,O + T 1,N

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)2 + (1− γ)N

)
≤ cw

(
2(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2 + (1− γ)2

)
⇒ cw

N−2∑
i=0

(1− γ)i + cv(1− γ)N−2 ≤ cw + cv

⇒ cw(1− (1− γ)N−1) + cvγ(1− γ)N−2 ≤ (cw + cv)γ

⇒ cw ≤ cv(
γ(1− (1− γ)N−2)

(1− γ − (1− γ)N−1)
)

U(TN−1,N
D,O + T 1,2

O,D) ≤ U(T 1,N
D,O + T 1,N

O,D)

⇒ cw

(
(1− γ)2 + (1− qs0 − qs1)(1− γ)2 +

N∑
i=2

(1− γ)i

)

+ cv
(
(1− qs0 − qs1)(1− γ)2 + (1− γ)N

)
≤

cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N + (1− γ)2

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)2

)
⇒ cw

(
(1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2 + (1− γ)N

)
≤ cw

(
(1− qs0 − qs1)(1− γ)N

)
+ cv

(
(1− qs0 − qs1)(1− γ)N + (1− γ)2

)
⇒ cw(1− qs0 − qs1)(1− (1− γ)N−2) ≤ cv(1− (1− γ)N−2)(qs0 + qs1)

⇒ cw ≤ cv

(
qs0 + qs1

1− qs0 − qs1

)
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U(TN−1,N
D,O + T 1,N

O,D) ≤ U(T 1,N
D,O + T 1,N

O,D)

⇒ cw
(
2(1− γ)2 + (1− qs0 − qs1)(1− γ)2

)
+ cv

(
(1− qs0 − qs1)(1− γ)2 + (1− γ)2

)
≤ cw

(
N∑
i=2

(1− γ)i + (1− qs0 − qs1)(1− γ)N + (1− γ)2

)

+ cv
(
(1− qs0 − qs1)(1− γ)N + (1− γ)2

)
⇒ cw

(
1 + (1− qs0 − qs1)−

N−2∑
i=0

(1− γ)i − (1− qs0 − qs1)(1− γ)N−2

)

≤ cv(1− qs0 − qs1)((1− γ)N−2 − 1)

⇒ cw
(
γ + γ(1− qs0 − qs1)− (1− (1− γ)N−1)− (1− qs0 − qs1)γ(1− γ)N−2

)
≤ cvγ(1− qs0 − qs1)((1− γ)N−2 − 1)

⇒ cw (1− γ − γ(1− qs0 − qs1)) ≤ cvγ(1− qs0 − qs1)

⇒ cw

(
1− γ

γ(1− qs0 − qs1)
− 1

)
≥ cv
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