
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

SPARSITY BASED METHODS FOR TARGET LOCALIZATION IN
MULTI-SENSOR RADAR

by
Haley H. Kim

In this dissertation, several sparsity-based methods for ground moving target indicator

(GMTI) radar with multiple-input multiple-output (MIMO) random arrays are

proposed. MIMO random arrays are large arrays that employ multiple transmitters

and receivers, the positions of the transmitters and the receivers are randomly chosen.

Since the resolution of the array depends on the size of the array, MIMO random

arrays obtain a high resolution. However, since the positions of the sensors are

randomly chosen, the array suffers from large sidelobes which may lead to an increased

false alarm probability. The number of sensors of a MIMO random array required

to maintain a certain level of peak sidelobes is studied. It is shown that the number

of sensors scales with the logarithm of the array aperture, in contrast with a ULA

where the number of elements scales linearly with the array aperture. The problem

of sparse target detection given space-time observations from MIMO random arrays

is presented. The observations are obtained in the presence of Gaussian colored

noise of unknown covariance matrix, but for which secondary data is available for

its estimation. To solve the detection problem two sparsity-based algorithms, the

MP-STAP and the MBMP-STAP algorithms are proposed that utilizes knowledge

of the upper bound on the number of targets. A constant false alarm rate (CFAR)

sparsity based detector that does not utilize any information on the number of targets

referred to as MP-CFAR and MBMP-CFAR are also developed. A performance

analysis for the new CFAR detector is also derived, the metrics used to describe the

performance of the detector are the probability of false alarm and the probability

of detection. A grid refinement procedure is also proposed to eliminate the need



for a dense grid which would increase the computational complexity significantly.

Expressions for the computational complexity of the proposed CFAR detectors are

derived. It is shown that the proposed CFAR detectors outperforms the popular

adaptive beamformer at a modest increase in computational complexity.
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CHAPTER 1

INTRODUCTION

Ground moving target indication (GMTI) radar [1]–[5] is an airborne radar tasked

with detecting the presence of moving targets in an environment where the inter-

ference due to ground clutter can be severe. GMTI radars therefore is expected to

be able to perform target detection while suppressing the interference due to ground

clutter. The ground clutter as seen by the airborne radar, exists at every angle, in

addition, due to the platform velocity of the aircraft, the ground clutter also exists

for all Dopplers. Adaptive array processing techniques that perform only spatial or

Doppler filtering is therefore unsuited for GMTI radar. Viewed in the two dimensional

angle-Doppler map, the clutter response exhibits a response in what is known as the

clutter ridge [6], [7] illustrated in Figure 1.1.

Figure 1.1 Illustration of the clutter ridge in the angle-Doppler map.

To take advantage of the structure of the clutter ridge, researchers have

considered space-time adaptive processing (STAP) [8]–[10], which performs joint
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processing in both spatial and temporal domains simultaneously. Since the clutter

does not occupy the entire angle-Doppler map, separating the target from the clutter

is possible with STAP, assuming that the target is sufficiently far from the clutter

ridge on the angle-Doppler map. However, slow moving targets that lie in regions

close to the clutter ridge may be masked by the ground clutter. Hence, GMTI radars

may experience difficulties discriminating a slow moving target from the clutter.

One approach to improving the detection of slow moving targets is to employ

an array with a large aperture length [11]. This can be achieved by the use of a

large uniform linear array (ULA) where the inter-element spacing of the array is λ/2

where λ is the radar operating carrier wavelength. The large ULA offers improved

angle-Doppler resolution, this improved resolution causes the clutter ridge to become

narrower therefore improving the ability to discriminate between the clutter and slow

moving targets. In addition, large ULAs offers the radar low sidelobes levels [12]–[14]

which allows the radar to maintain a constant false alarm rate (CFAR). Unfortunately,

since the inter-element spacing of the array is fixed to λ/2, the number of elements

required to fill a ULA scales linearly with the aperture of the array. This means that

large ULAs require a large number of elements and are expensive and often infeasible

to employ for GMTI radars due to constraints on the equipment size, weight, and

power.

Instead of using a large ULA and localizing targets by beamforming [15], one

may consider a smaller ULA, but use more sophisticated localization algorithms, such

as Capon’s method [16], MUSIC [17]–[19], or ESPRIT [20]–[22]. All three methods are

capable of resolving targets within the Rayleigh resolution limit, whereas conventional

beamformering cannot. MUSIC and ESPRIT however, require knowledge of the

number of targets. This information is rarely known to a radar and must be obtained

by other means, such as using the Akaike information criteria (AIC) or the minimum

description length (MDL) [23]–[25]. Unfortunately, such methods do not allow one
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to control the false alarm rate, a basic requirement in radar. In addition, all three

methods require multiple observations of each resolution cells which is typically not

available in STAP applications.

To reduce the number of elements needed for a high resolution radar one may

use a multiple-input multiple-output (MIMO) radar [26]–[31]. In MIMO radar, one

uses M transmitters to transmit M orthogonal waveforms, the returns from the M

waveforms are collected by N receive elements generating MN measurements. It

is known that if the N receive elements are spaced by λ/2 and the M transmitters

are space by Nλ/2 the radar behaves as if it was a ULA with MN elements. Since

the MIMO radar behaves like a ULA, the sidelobes of the array beampattern are

small, in addition, the MIMO radar depends on the product MN instead of just N .

Unfortunately, the MIMO radar suffers from the same drawbacks of a large ULA, the

number of elements MN scales linearly with the aperture of the array.

An alternative approach to increasing the resolution of a radar without using a

large number of sensors is to use a large random array. In random arrays [32]–[35], one

randomly position sensors across a large array aperture. Since the resolution of the

radar depends mostly on the size of the aperture [32] this allows the radar to achieve

high angular resolution while employing a small number of sensors. Unfortunately, the

random array does not come without drawbacks. Due to the spatial undersampling,

the array beampattern suffers from high sidelobes. In particular, in [32], it was shown

that the sidelobe that the average sidelobe level of the array is inversely proportional

to the number of elements. Since the goal of a random array is to utilize a small

number of elements, for most cases of interest, the average sidelobe level is typically

quite large.

In this dissertation, a radar architecture is formed by combining the MIMO

array with the random array, this radar architecture is referred to as a MIMO random

array [36], [37]. In MIMO random arrays, one randomly positions both transmit and
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receive sensors across a large array aperture. By employing multiple transmit elements

along with the receive elements of a random array, one may increase the number of

measurements available to the radar from N to MN . The increase in the number of

measurements may potentially decrease the sidelobe level. Unfortunately, even with

the increased number of measurements from a MIMO random array, high sidelobes

are an unavoidable characteristic. During the beamforming stages of STAP, these

higher sidelobes may cause a significant increase in false alarms [38].

Interestingly however, in [36], [37] the authors show that compressive sensing

(CS) techniques [39], [40] tailored for sparse localization can cope with the spatial

undersampling of a MIMO random array. This allows the user to reap the full

benefits of a large MIMO random array without worrying that the high sidelobes

will unnecessarily increase the false alarm rate. In addition, CS techniques applied

to localization was shown to be capable of resolving targets within the Rayleigh

resolution limit [41]–[43]. The goal of all CS techniques is to recover the signal of

interest x given the received data vector y which is expressed as y = Ax + e, where

A is the measurement matrix and e is an interference vector. If the signal x is known

to be sparse (i.e. contains few nonzero elements), CS states that to find the sparsest

solution one needs to solve the nonconvex optimization problem

min
x
‖y −Ax‖22 + λ‖x‖0

where ‖x‖0 counts the numbers of nonzeros in x. The term λ governs the trade-off

between minimizing the term (‖y −Ax‖22) and the term that reduces the sparsity of

the solution (‖x‖0).

Unfortunately, since the above optimization problem is nonconvex, only

approximate solutions can be obtained. One approach to obtaining an approximate

solution is to apply a convex relaxation, this approach is referred to as basis pursuit
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(BP). Algorithms such as those in [39], [44]–[48] approximate the nonconvex penalty

term ‖x‖0 with the convex penalty term ‖x‖1. The result is a convex optimization

problem which can be solved by using various solvers in polynomial time. In [41],

[49] the authors use this approach to solve the sparse localization problem. In doing

so, the authors were able to show that BP is able resolve targets within the Rayleigh

resolution limit like MUSIC and ESPRIT, but doesn’t require multiple snapshots.

Unfortunately, the authors were unable to explain how to design a constant false

alarm rate (CFAR) radar using BP. The authors in [50] argued that a CFAR radar

can be obtained by properly designing the parameter λ. However, in [51] the authors

point out that the output noise distribution is unknown and unpredictable which

makes BP unsuitable for CFAR radars.

On the other hand algorithms such as those in [52]–[56] are greedy algorithms

that iteratively search for targets one by one. These greedy algorithms are often

referred to as matching pursuit (MP) algorithms. Although MP generally has weaker

guarantees than BP, it has been shown empirically that it often performs similarly

to that of BP and in some cases even outperforms BP [57]. The most substantial

advantage in using MP algorithms as opposed to BP algorithms is their computational

complexity [?] which is comparable to that of the beamformer [58]. Although an

enormous amount of papers have considered the use of MP algorithms for radar,

only the authors in [55] have considered a detection algorithm using MP to design a

CFAR radar. However, the detection algorithm in [55] only considers the case where

measurements are corrupted by white Gaussian noise and requires knowledge on the

number of targets. In particular, although the number of targets is not available, the

authors in [55] assumes that an upper bound on the number of targets K is available.

The authors then use MP to find K angle-Doppler cells to test for the presence of a

target and uses a CFAR detector to perform the test for the K cells. However, the

computational complexity of MP increases as K increases [52, 36]. This increase in
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computational complexity may be unsuitable for STAP where the dimensions of the

data can range from several hundred to several thousands depending on radar system

being used [6].

In addition to these short comings, the authors in [55] assumed that the targets

comply with a grid of discretized points. However, in STAP, target parameters are

specified in a two-dimensional continuous domain, not a discretized one. In reality,

targets almost never comply with a grid of discretized points and targets often lie

off the grid regardless how fine the granularity of the grid becomes. When targets

do not comply with the discrete grid of angle-Doppler points it was shown that the

performance of both BP and MP based algorithms may degrade significantly [59]–[61].

Numerous techniques have been proposed in literature [62]–[68] to mitigate the effects

of off-grid targets. The most straightforward method to handle off-grid targets is to

simply increase the number of grid points sampled on the angle-Doppler map. This

method, although simple, increases the computational complexity of MP algorithms

since the computational complexity increases linearly with the number of grid points.

Additionally, the use of very fine grids may lead to numerical instability issues. In

[62, 65, 66] the authors propose approximate the nonconvex penalty term ‖x‖0 with

the convex penalty term ‖x‖A where ‖x‖A refers to the atomic norm (more details

on the atomic norm can be found in [69]). The resulting optimization problem is

convex and can be solved by a convex solver in polynomial time. Similar to BP,

the computation time required to solve the optimization problem proposed in [62] is

too large for radar applications. The authors in [63] proposed a matrix completion

algorithm to mitigate the effects of off-grid targets. However, the authors noted

that the matrix completion algorithm requires the same computation time as the

optimization problem in [62] and therefore impractical for radar applications.

This dissertation focuses on the detection of targets for GMTI radar using a

large MIMO random array. The large MIMO random array allows one to obtain
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a high resolution radar with a low number of transmitters and receivers. The high

resolution of the array allows one to detect slow moving targets but comes at the cost

of high sidelobes. CS techniques are utilized to cope with the high sidelobes of the

MIMO random array. In particular, a sparsity based CFAR detector is developed that

iteratively finds targets one by one and removes detected targets from the observations

for the detection subsequent targets to reduce the interference between targets. The

CFAR detector is then modified with a grid refinement procedure so that it may

handle targets that lie off the grid. An analysis of the computational complexity of

the proposed CFAR detector is also presented.

The contributions of this dissertation are the following:

1. Show that the number of elements of a MIMO random array required to

maintain a certain level of peak sidelobes scales with the logarithm of the array

aperture, in contrast with a ULA where the number of elements scales linearly

with the array aperture.

2. Formulate the problem of sparse target detection given space-time observations

from random arrays. The observations are obtained in the presence of Gaussian

colored noise of unknown covariance matrix, but for which secondary data is

available for its estimation.

3. Extend the detector in [55] for GMTI radar. The detector removes contributions

from previously detected targets from the observations to reduce interference

between targets. The detector is given knowledge of the upper bound on the

number of targets.

4. Develop a new CFAR detector such that previously detected targets are removed

from the observations to reduce interference between targets. The developed

CFAR detector does not require any information about the number of targets.
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5. Develop the performance analysis for the new sparsity-based radar detector

including expressions for the probability of false alarm and the probability of

detection.

6. Propose a grid refinement procedure to handle off-grid targets. The grid

refinement procedure also prevents the need to the generate a dense grid which

would increase the computational complexity significantly.

7. Develop expressions for the computational complexity of the proposed CFAR

detectors.

This dissertation is organized as follows: Chapter 2 presents the signal model,

the properties of the clutter is reviewed, and properties of the MIMO random array is

presented. In Chapter 3, a sparsity-based radar that utilizes an upper bound on the

number of targets is presented. In Chapter 4, a new sparsity-based CFAR detector

is presented, the expressions for the probability of false alarm and the probability of

detection for the proposed CFAR detector is derived. In Chapter 5, a grid refinement

procedure for the proposed detector is presented to handle targets that lie off the

grid. The computational complexity of the proposed sparsity-based CFAR detectors

are analyzed. In Chapter 6 conclusions are made.

The following notation will be used: boldface is used for matrices (uppercase)

and vectors (lowercase); ‖y‖p denotes p-norm; (·)T is the transpose operator, (·)∗

is complex conjugate and (·)H is the complex conjugate transpose operator; given a

set S, and a matrix A, |S| denotes the cardinality of the set, AS is the sub-matrix

obtained by the columns of A indexed in S; similarly, if x is a vector, the vector

xS consists of the components of x indexed by S; ⊗ marks the Kronecker product

; E [·] denotes the expectation operator; ∼ CN (m,R) indicates the complex-valued

multivariate Gaussian distribution with mean m and covariance matrix R.
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CHAPTER 2

MIMO RANDOM ARRAYS IN STAP

In this chapter, the signal model that will be used throughout this dissertation

is introduced. In addition, some properties of the MIMO random array will be

presented. In particular, the array pattern of the MIMO random array and the

statistics of the sidelobe level is reviewed. The expressions for the average peak

sidelobe level of a MIMO random array are also developed. It will be shown that the

average peak sidelobe level scales logarithmically with the aperture size of the array.

In contrast, the number of sensors required in a ULA must scale linearly with the

array aperture.

The clutter response of MIMO random arrays is also reviewed. It is seen in this

chapter that the clutter ridge becomes narrow due to the high resolution obtained

from a MIMO random array. This high resolution however comes at the cost of

multiple spurious clutter ridges due to the high sidelobes of the MIMO random array.

The clutter rank of the MIMO random array is also presented. It is seen that the

clutter rank for the MIMO random array is roughly the same as the clutter rank

of a filled ULA of the same aperture size. Since the MIMO random array typically

has less degrees of freedom (DOF) available compared to the large filled ULA this

means that the MIMO random array will have less DOF available to provide gain for

target detection. Finally, the SINR of the MIMO random array is considered, it is

seen in this chapter that the high resolution of a MIMO random array allows one to

discriminate slow moving targets.

2.1 Signal Model

Consider a MIMO radar system mounted on an aircraft, in which Nr sensors collect

echos from Nt transmitters, each transmitter transmits a finite train of Np-pulse
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coherent waveforms with pulse-repetition-interval Tr. It is assumed that the Nt

waveforms are orthogonal to each other. The radar operating carrier wavelength

is λ, and the airborne platform velocity is vp, where the velocity vector is assumed

aligned with the array axis. The Nr receive sensor positions in wavelength units

are given by the sequence Zr = [z1, z2, . . . , zNr ]
T . Similarly, the positions of the Nt

transmitters in wavelength units are given by the sequence Zt = [t1, t2, . . . tNt ]. Let

the aperture size of the receive array and the transmit array be given by Zr and Zt

respectively, where Zr = zNr − z1 and Zt = tNt − t1. Then the size of the array is

defined by Z = Zt + Zr. In this dissertation, a MIMO random array is considered

where the positions of receive and transmit elements are distributed across the array

according to the uniform random variables U ∼ [0, Zr] and U ∼ [0, Zt]. An example

of a MIMO random array is illustrated in Figure. 2.1.

Figure 2.1 Example of a MIMO random array.

Let u = sin(φ) denote the spatial frequency associated with the azimuth angle

measured with respect to the normal to the array. The Nr× 1 receive steering vector
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c(u), which represents the baseband response of the Nr receive sensors to a target at

spatial frequency u, is given by

c(u) =
[
ej2πz1u, ej2πz2u, . . . , ej2πzNru

]T
. (2.1)

Similarly, the Nt × 1 transmit steering vector g(u), which represents the response of

the target at spatial frequency u, by the Nt transmitters is given by

g(u) =
[
ej2πt1u, ej2πt2u, . . . ej2πtNtu

]T
. (2.2)

Define the NtNr × 1 spatial steering vector d(u),

d(u) = g(u)⊗ c(u) (2.3)

where ⊗ is the Kronecker product. Similarly, the Np × 1 temporal steering vector

v(f) for a target with Doppler frequency f is given by

v(f) =
[
1, ej2πfTr , . . . , ej2π(Np−1)fTr

]T
. (2.4)

For notational convenience, let N = NrNtNp, then the N × 1 space-time steering

vector for a target with spatial frequency u and Doppler f is given by

a(u, f) = v(f)⊗ d(u)/
√
N. (2.5)

The term
√
N appearing in (2.5) is a normalization term and ensures that aH(u, f)a(u, f) =

1.

The N × 1 received baseband signal y at the array from a target at spatial

frequency u, Doppler frequency f and with complex amplitude x is given by
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y = xa(u, f) + ec + ew (2.6)

where ec is the interference vector of ground clutter and ew is a vector of complex

white Gaussian noise representing the thermal noise.

In later chapters, optimization algorithms that operate on a discretized grid of

points are discussed. To this end, the angle-Doppler map is discretized into G = G
2

grid points, where G is the number of grid points in each of the two domains. Using

this grid, the baseband response y at the array from K targets is given by

y = Ax + ec + ew. (2.7)

Here, A = [a(u1, f1) a(u1, f2), . . . , a(uG, fG)] is a N × G matrix of steering vectors

associated with possible target locations on the angle-Doppler map, x is a G × 1

vector of target gains that is sparse, in the sense that is has K � G nonzero entries.

The targets are assumed to comply with the discretized grid.

In this dissertation, the ground clutter and thermal noise are treated as

uncorrelated processes, and therefore the N × N interference covariance matrix is

given by

R = E
[
(ec + ew)(ec + ew)H

]
= Rc + Rw. (2.8)

Here Rw is the covariance matrix of the thermal noise given by Rw = σ2I where σ2

is the power of thermal noise. A typical model for the clutter covariance matrix Rc

[?] is

Rc =

∫ 1

−1
s(ui)a (ui, βui) aH (ui, βui) du (2.9)
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where si is the power of the clutter scatterer at spatial frequency ui with the

normalized Doppler frequency f(ui) = βui where β = 4vpTr/λ. In this dissertation,

it is assumed that β = 1.

2.2 MIMO Random Arrays

In MIMO random arrays, a low number of receive and transmit antenna elements

are placed at random between the end points of a large array. Since the goal is to

obtain a thinned array, the average spacing between receive elements is larger than

half-wavelength, similarly, the average spacing between transmit elements is larger

than half-wavelength. Note that the beam pattern of a filled ULA with aperture Z

and uniform illumination is given by

βULA (ω) = (sin (πZω) / [Z sin (πω)])2 .

From this expression, it is easy to see that the main beam is the region |ω| ≤ 1/Z,

while the sidelobes are |ω| > 1/Z. The number of sidelobes in the visible region |ω| < 1

is 2 (Z − 2). Of interest are sufficiently large values of the aperture Z, such that, for

notational convenience, the number of sidelobes may be approximated by 2Z. For

reference, the peak sidelobe of a filled ULA is approximately –13 dB relative to the

mainlobe [13].

It has been shown in [29] that a MIMO array with Nt transmitters and Nr

receivers behaves like large random array with NtNr sensors. The position of the NtNr

sensors are obtained by convolving the locations of the transmit and receive antennas

Zt and Zr. Given an array of NtNr elements placed at random over an aperture of

Z it has been shown that the shape of the mainbeam β (ω), |ω| ≤ 1/Z, follows that

of a filled ULA with little variation between instantiations of array elements. Thus

with significantly fewer elements, a MIMO random array provides the advantage
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of a narrow and stable mainbeam of a filled array. While there is no impact on

the mainbeam, random arrays have higher sidelobes than filled arrays illustrated in

Figure 2.2.

Figure 2.2 Beampattern of a ULA with an array aperture of Z = 4λ and Z = 8λ.
The beampattern of a MIMO random array with an array aperture Z = 8λ using
Nt = 2 transmit elements and Nr = 4 receive elements is also shown.

By the central limit theorem, for a sufficiently large number of elements NtNr

and a fixed value ω,

β(ω) = |b(ω)|2 = | 1

NtNr

dH(u− ω)d(u)|2. (2.10)

The term b(ω) in (2.10) can also be expressed as

b(ω) =
1

NtNr

dH(u− ω)d(u)

=
1

NtNr

Nt∑
m=1

Nr∑
n=1

ej2π(zn+tm)ω

(2.11)
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Examining (2.11), b(ω) is the sum of NtNr random variables. By the central limit

theorem, for sufficiently large NtNr and a fixed value ω, the random variable (2.11)

is a complex Gaussian random variable with mean

φ(ω) =
1

NtNr

Nt∑
m=1

Nr∑
n=1

E
[
ej2π(zn+tm)ω

]
= E

[
ej2π(zn+tm)ω

]
and variance

var
[
|b(ω)|2

]
= E

[
|b(ω)|2

]
− |φ(ω)|2.

It is shown in [32] that in the sidelobe region,

E
[
Re(b(ω))2

]
≈ E

[
Im(b(ω))2

]
≈ 1

2NtNr

and that, in the sidelobe region |ω| > 1/Z, the term |φ(ω)|2 is negligible relative to

1
2NtNr

. Therefore, the mean level of the beam pattern sidelobes is

E
[
|b(ω)|2

]
= E [β(ω)] ≈ 1

NtNr

.

Thus, the sidelobes of a MIMO random array are dominated by the term 1
NtNr

rather

than the sidelobes of the associated filled array. The mainlobes and sidelobes of an

4λ, 8λ ULA and an 8λ random array with Nt = 2 transmitters and Nr = 4 receive

sensors are illustrated in Figure 2.2. Note that the random array achieves with half

the number of sensors the same mainlobe as the 8λ ULA. In contrast, the random

array sidelobes are higher.

The statistics of the peak sidelobe, µ = max|ω|>1/Z β(ω) are also of great interest.

Viewed as a function of ω, the array pattern β(ω) is a stochastic process. In the

sidelobe region, the stochastic process is approximately ergodic, meaning that the
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statistical averages may be gleaned from averages across the spatial frequency variable

ω [32]. Furthermore, values of the stochastic process β(ω) become independent

when the values of the spatial frequency ω are separated by a sidelobe or more.

As previously discussed, the number of sidelobes is approximately 2Z. To find the

cumulative distribution function (CDF) of the peak sidelobe, let

β̃ (ω) , 2NtNrβ (ω) = 2NtNr |b (ω)|2

and µ̃ , 2NtNrµ. Since b (ω) ∼ CN (0, 1/NtNr) , it follows that β̃ (ω) is a chi-square

random variable with 2 degrees of freedom. It is easy to verify that the CDF of β̃ (ω)

is given by

Φβ̃ (t) = 1− e−t/2. (2.12)

It follows that the CDF of the peak sidelobe variable µ̃ is

Φµ̃ (t) = Pr{β (ω1) ≤ t, ..., β (ω2Z) ≤ t} =
(

Φβ̃ (t)
)2Z

(2.13)

Using a known relation for non-negative random variables,

E [µ̃] =

∫ ∞
0

(1− Φµ̃(t)) dt (2.14)

Substituting (2.12) and (2.13) in (2.14),

E [µ̃] =

∫ ∞
0

(
1−

(
1− e−t/2

)2Z)
dt. (2.15)

The integration in (2.15) is solved in [70], where it is shown

∫ ∞
0

(
1−

(
1− e−t/2

)2Z)
dt = 2

2Z∑
k=1

1

k
. (2.16)
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For large Z, the sum
∑2Z

k=1
1
k

asymptotically approaches ln 2Z+γE, where γE = 0.577

is Euler’s constant [70]. Since, ln(2Z) � γE, the following approximation is made∑2Z
k=1

1
k
≈ ln(2Z). Substituting this back into (2.15), E [µ̃] = 2 ln 2Z. Finally, recalling

that the peak sidelobe µ is related to the random variable µ̃ as µ = µ̃/2NtNr, the

mean peak sidelobe is given by

E [µ] =
ln (2Z)

NtNr

Figure 2.3 shows a beampattern of an 8λ MIMO random array. The peak and average

sidelobe levels are also shown. It is observed that the mean peak sidelobe is larger

than the mean sidelobe by the factor ln (2Z) . Also, to maintain a fixed mean peak

sidelobe level, the product NtNr has to scale with the logarithm of the aperture

length. This is contrast with a filled ULA in which the number of elements scales

with Z. The beampattern of a MIMO random array along with the average sidelobe

and average peak sidelobe level is illustrated in Figure 2.3.

Figure 2.3 Beampattern of a MIMO random array with an array aperture Z = 8λ
using Nt = 2 transmit elements and Nr = 4 receive elements. The average sidelobe
level and the average peak sidelobe level is also displayed.
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Another point of view that demonstrates that the number of necessary elements

in a random array scales with lnZ rather than Z, is to compute the number of

elements for which the peak sidelobe µ is lower than a level η, with probability α,

α = Pr {µ ≤ η} = Φµ(η). The CDF of the peak sidelobe Φµ(t) can be computed from

(2.13) and (2.12). Recalling the relation µ = µ̃/2NtNr,

α = Φµ̃(2NtNrη) =
(
1− e−NtNrη

)2Z
(2.17)

Taking ln of both sides, and noting that the expected result is such that NtNrη � 1,

the ln function is approximated with the first term in its Taylor expansion

ln
(
1− e−NtNrη

)
≈ −e−NtNrη (2.18)

Using (2.18) and after a little algebra, obtain

NtNr =
1

η

(
ln 2Z − ln lnα−1

)
which links between the number of elements and confidence level that the sidelobes

do not exceed a set value. A similar result without proof has been presented in [34].

2.3 Clutter Response

STAP relies on the fact that the rank of the clutter covariance matrix Rc (often

referred to as clutter rank) is much lower than the dimensionality of the signal space.

As a result, whitening of the clutter interference does not result in significant loss of

target SNR. In a filled ULA, the clutter map (defined as aH(u, v)Rca(u, v), with u

and v sweeping through their domains |u| < 1, |v| < 1), forms a diagonal ridge above

the uv plane. The width of the ridge along the spatial frequency u axis equals the

beamwidth of the array. Thus the clutter ridge of a random array is expected to be

narrower than the clutter ridge of a filled ULA with the same number of elements.

This is illustrated in Figure 2.4. The panel on the left of Figure 2.4 shows the clutter
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map of a ULA with Nr = 8 elements, while the panel on the right shows the clutter

map of a random array of the same number of receive elements (8) spread over 8λ

(rather than the 4λ ULA aperture). It is noticed that the clutter ridge of the random

array is narrower, which leads to a lower MDV. Note that the clutter map of the

sparse array also exhibits multiple, spurious clutter ridges due to higher sidelobes of

the beampattern.

Figure 2.4 (Left figure): Clutter map using a ULA with Nr = 8 elements, Np = 16
pulses, and β = 1. (Right figure): Clutter map using a random array with Nr = 8
elements, Np = 16 pulses, and β = 1. The elements of the sparse random array are
spread across an array of size 8λ.

The clutter map of a MIMO random array is illustrated in Figure 2.5, the

number of transmitter is Nt = 2 and the number of receivers is Nr = 4, the aperture

size of the array is given by Z = Ztx + Zrx = 8λ. Comparing the clutter map of the

random array to the MIMO random array, it is noticed that the width of the clutter

ridge has a similar width. This suggests that by using a MIMO random array one

can reduce the number of sensors compared to that of the random array and obtain

similar performance in terms of the resolution.

Next, a comparison between the ULA, random array, and a MIMO random

array from the point of view of the clutter rank is now presented. The rank of the

clutter is a measure of the degrees of freedom (DOF) captured by the clutter, and thus

lost in the process of suppressing the clutter. To avoid confusion, let Rc represent
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Figure 2.5 Clutter map using a MIMO random array with Nr = 4 elements, Nt = 2
transmitters, P = 16 pulses, and β = 1. The MIMO random array has an aperture
size of Z = 8λ.

the clutter covariance matrix for the ULA, and Rc represent the clutter covariance

matrix for the random array. From Brennan’s rule [71], the clutter rank of a ULA is

given by the

rc = rank(Rc) = Na + (Np − 1)β. (2.19)

Now, given a or MIMO random array with aperture size Z, let N full
a represent

the number of sensors required to fill the array with a ULA configuration. Then, from

[9], the clutter rank of a random array is

rc ≈ N full
a + (Np − 1)β. (2.20)

It is noticed that the clutter rank of a MIMO random array and the random

array depends on the aperture size Z, which controls the value of Nfull. Figure 2.5

displays the clutter rank of four different array configurations: ULA’s with 8 and 16
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elements, a random array with 8 elements spread over 8λ, and a MIMO random array

with Nt = 2 transmitters and Nr = 4 receivers with array aperture 8λ. From the

figure it is clear that the ULA with N = 8 has the smallest rank, while the ULA

with N = 16, the random array, and the MIMO random array have similar clutter

rank when they have an aperture of 8λ. This means the MIMO random array and

the random array will require the same number of DOF to suppress the clutter as

a large ULA. Hence, the number of DOF left for target gain will generally be lower

than the ULA. This discussion points to a trade-off between resolution on one hand,

and signal to interference and noise ratio (SINR) on the other hand.

Figure 2.6 Eigenspectra of the clutter and noise covariance matrix for a ULA with
Nr = 8 elements and Nr = 16 elements, random array Nr = 8 elements and a MIMO
random array with Nt = 2 and Nr = 4, the aperture size of the random array and the
MIMO random array is Z = 8λ. The number of pulses Np for each array configuration
is Np = 16.

To further illustrate the performance differences between the ULA, random

array and the MIMO random array in Figure 2.7 is shown the SINR for various array

configurations. The array configurations considered are the following: ULA’s with

8 and 16 elements, a random array with 8 elements spread over 8λ, and a MIMO
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random array with Nt = 2 transmitters and Nr = 4 receivers with array aperture 8λ.

The SINR is given by a(u, f)R−1a(u, f). For the figure, the spatial frequency is fixed

and set to u = 0. From the figure, it is seen that the small ULA with 8 elements has

a lowest SINR than the other array configurations close to f = 0 where the clutter

scatterer is located. On the other hand, the remaining array configurations show

nearly identical SINR responses near the clutter scatterer. The width of the SINR

response near the clutter scatterer gives an indication of how low the target’s Doppler

can be while still being detected. This corresponds to how slow a target can move

but still be detected which is often referred to as the minimum detectable velocity

(MDV). The wider SINR response of the small ULA points to a larger MDV whereas

the smaller width of the remaining array configurations points to a smaller MDV.

Figure 2.7 SINR vs Doppler for four array configurations near the clutter scatterer.
Arrays used are: ULA of size 4λ, ULA of size 8λ, random array with N = 8 elements
of size 8λ, and a MIMO random array with M = 4 transmit elements, N = 4 receive
elements of array size 8λ. For all arrays β = 1 and P = 16.

In Figure 2.8, the SINR response is shown for large Doppler for four array

configurations. Again, the array configurations considered are the following: ULA’s

with 8 and 16 elements, a random array with 8 elements spread over 8λ, and a MIMO
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random array with Nt = 2 transmitters and Nr = 4 receivers with array aperture 8λ.

From the figure, for most Dopplers, a negligible loss in SINR is observed for the

MIMO and random array compared to the ULA configurations. The SINR of the

MIMO random array hovers around 16 to 18 dB whereas the random array attains

an SINR of about 18 dB. This 2-4 dB loss occurs because the fraction of DOFs

available to the and MIMO random array is less than that of the ULAs.

Figure 2.8 SINR vs Doppler for four array configurations far from the clutter
scatterer. Arrays used are: ULA of size 4λ, ULA of size 8λ, random array with N = 8
elements of size 8λ, and a MIMO random array with M = 4 transmit elements, N = 4
receive elements of array size 8λ. For all arrays β = 1 and P = 16.

2.4 Concluding Remarks

In this chapter, the signal model that will be used throughout this dissertation is

introduced. In addition, several properties of the MIMO random array has been

analyzed. In particular, the expressions for the average sidelobe level and the average

peak sidelobe level were derived. It was shown that the average sidelobe level is

inversely proportional to the product NtNr where Nr is the number of receive sensors

and Nt is the number of transmitters in the array. The average peakside lobe level
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was shown to be larger than the average sidelobe level by a factor of ln(2Z) where

Z is the array aperture length in wavelength units. This is in contrast with a ULA

where the number of receive sensors scale linearly with the aperture.

The clutter response of a MIMO random array was also presented in this

chapter. It was seen that the high resolution of the MIMO random array causes

the clutter ridge to become narrow at the cost of multiple spurious clutter ridges

due to the high sidelobes of the MIMO random array. In addition, the clutter rank

of the MIMO random array was analyzed. It was seen that the clutter rank of a

MIMO random array is similar to that of a filled array of the same size. Since the

MIMO random array has fewer DOF available to it compared to a large filled ULA,

it must spend a larger portion of its available DOF to cancel the clutter. This means

less DOFs are available to provide gain for target detection which points to a trade

off between the resolution of the radar and the SINR. Although the MIMO random

array experiences a small loss in SINR, the high resolution of the array is capable of

detecting slow moving targets and has a low MDV.
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CHAPTER 3

SPARSITY BASED GMTI RADAR

The goal of GMTI radar is to determine the number of targets present and their

positions on the angle-Doppler map. In this chapter, two approaches to solving this

problem are discussed. The first approach is to divide the angle-Doppler map into

G resolution cells then perform G detection tests, one for each of the G grid points,

for the presence of a target. The number of targets is determined by counting the

number of cells that pass the detection test, and the positions of the targets depend

on the cells that pass the test, this algorithm is referred to as beamforming.

The second approach motivated by advances in compressive sensing (CS), relies

on the sparsity of the targets and solves an optimization problem to determine a small

set of angle-Doppler resolution cells that may contain targets. The resolution cells

obtained from solving the optimization problem are then tested for the presence of

a target. The number of targets is determined by counting the number of cells that

pass the detection test, and the positions of the targets depend on the cells that pass

the test. This approach inspired by [55], is shown to cope with the high sidelobes of

a MIMO random array. This allows one to enjoy the high resolution of the MIMO

random array without suffering a significant increase in false alarms due to the high

sidelobes.

3.1 Adaptive Beamforming

As previously stated, one common approach to solving the detection problem is to

divide the angle-Doppler map into G resolution cells and perform G detection tests,

one for each of the G grid points. The number of targets is determined by counting

the number of cells that pass the detection test, and the locations of the targets are

determined by the cells that pass the test. The binary hypothesis test for any of the
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resolution cells based on the model (2.6) is given by

H0 : x = 0

H1 : x 6= 0.

To recap, the problem of testing a STAP resolution cell for the presence of a target of

unknown amplitude observed in the presence of Gaussian colored noise with unknown

covariance matrix, when secondary data is available for estimating the covariance

matrix is posed. This is a classic GLRT problem that has been solved in [72], where it

is shown that the test statistic has a CFAR property in the sense that it is independent

of the covariance matrix of the interference and noise. As shown in [72], application

of the GLRT procedure when the unknowns are the amplitude x and the covariance

matrix R, results in a test statistic that, under both hypotheses, is dependent on

the primary as well as the secondary data. A simpler approach is suggested in [73],

where the likelihood of the observation is maximized only over the unknown amplitude

(separately for each hypothesis). In this approach, the covariance matrix is assumed

known through the derivation of the test statistic, but is substituted with the sample

covariance matrix of the secondary data in the final expression of the test statistic.

While this procedure is ad-hoc, it is argued in [73] that the resulting test statistic

differs from GLRT statistic in [72] only by a term that vanishes when the set of

secondary data is large. The test for deciding H1 for a resolution cell defined by the

steering vector a is given by [73]

T =
|aHR̂−1y|2

aHR̂−1a
≥ γ. (3.1)

It is noted that the test statistic is essentially a beamfomer aH applied to whitened

observations R̂−1y and normalized by the interference and noise power aHR̂−1a,

hence this approach if referred as adaptive beamforming (ABF).
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3.2 MP-STAP

In this section, a different approach from the ABF is proposed, one that relies on the

sparsity of targets. Detection by beamforming is agnostic to the possible presence

of multiple targets. In contrast, the model (2.7) accounts for multiple targets. As

explained in Chapter 2, the number of rows of A, N, is much smaller than the number

of columns G. The problem of recovering x given y and A is then underdetermined,

and hence does not have a unique solution. However, the following problem does

accept a unique solution,

min
x
‖y −Ax‖22 subject to ‖x‖0 ≤ K (3.2)

where ‖x‖0 denotes the number of nonzero elements of x. In radar, clutter

contributions are typically much stronger than the unknown targets and, if not

suppressed, may severely interfere with target detection. A whitening operation is

applied to the observed data and to the measurement matrix A. Specifically, let

z = R̂−1/2y and B = R̂−1/2A, then optimization (3.2) becomes

min
x
‖z−Bx‖22 subject to ‖x‖0 ≤ K. (3.3)

Unfortunately, to solve (3.3) one requires the knowledge of number of targets K, which

of course is unknown apriori. Although the number of targets is K is unknown, it

is assumed that an upper bound on the number of targets K is known as in [55].

To develop a radar that exploits sparsity, a two stage detection algorithm that can

approximate the solution to (3.3) utilizing the upper bound on the number of targets

K referred to as MP-STAP is presented. In the first phase, K candidate targets are

localized using MP; in the second phase, the K localized targets are tested for the

presence of a target. If one or more of the localized targets do not pass a detection

test, the upper bound on the number of targets is decreased by one and the algorithm

is rerun with the new value of K. This process continues until all K targets pass the
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detection test or when K = 0. A block diagram of the MP-STAP algorithm is shown

in Figure 3.1.

Figure 3.1 Block diagram of the MP-STAP algorithm

3.2.1 Stage 1: Target Localization

The inputs to MP-STAP are whitened data z = R̂−1/2y, whitened steering vectors

bj = R̂−1/2aj, j = 1, ..., G, and the upper bound on the number of targets K. The

first target is localized by the index m1 of the vector bj that has the largest data

projection,

m1 = arg max
j

|bHj z|2

bHj bj
(3.4)

for j = 1, ..., G. The index m1 localizes the target in the angle-Doppler domains.

Next, the localization of the k-th candidate target is described, given that k−1

targets have already been localized. The steering vectors are processed to cancel

the contributions of previously detected targets. Let a matrix B be formed with

the columns bj. Let Sk−1 be the set of indices of columns of B associated with

localized targets, and let BSk−1
be the matrix formed by the columns indexed by

Sk−1. The projection matrix orthogonal to the detected targets is given by P⊥BSk−1
=

I − BSk−1

(
BH
Sk−1

BSk−1

)−1
BSk−1

. The steering vectors orthogonal to the detected

targets are formed as follows: wj = P⊥BSk−1
bj, for all j /∈ Sk−1. The k-th target is
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localized according to

mk = arg max
j

|wH
j z|2

wH
j wj

(3.5)

This process continues until K targets have been localized.

3.2.2 Stage 2: Detection

The detector used to test the K targets obtained in the first stage is now detailed.

Let SK be a set of indicies that correspond to the resolution cells obtained in Stage

1. The signal model is then given by the expression

z = BSk
xSk

+ n. (3.6)

Let mk be the k-th element in the set SK and the resolution cell that is under test.

From [55], the test statistic used for detection is given by

T =
|x̂mk
|2

bkσ̂2
≥ γ. (3.7)

Here, x̂mk
is defined as

x̂mk
= uHk B†Sk

z,

σ̂2 is defined as

σ̂2 = ‖P⊥BS
K

z‖22/(N −K),

and bk is defined as

bk = uHk
(
BH
Sk

BSk

)−1
uk

29



where uk is a K×1 vector where the k-th entry is equal to 1 and the remaining entries

are equal to zero. The detection test is performed for k = 1, . . . , K. If all K targets

pass the detection test, SK is declared the set of targets, otherwise, K is decremented

by one and the MP-STAP is reran with the new value of K. The pseudocode for the

MP-STAP algorithm is listed in Algorithm 1.

Algorithm 1 MP-STAP

1: Input: y,A, R̂, K, γ.

2: Initialize: S0 = ∅, r = R̂−1/2y, B = R̂−1/2A, W = B, k = 1.

3: Find: Search for the index l that maximizes the metric maxj |wH
j r|2/wH

j wj.

4: Update set of targets: Sk = Sk−1
⋃
l.

5: Generate: P⊥BSk
= I−BSk

(
BH
Sk

BSk

)−1
BH
Sk

.

6: Remove found targets: W = P⊥BSk
B.

7: Renormalize: If ‖wi‖2 = 0, set wi = 0.

8: If k < K Return to step 3, otherwise, continue to step 9

9: Check: If T ≥ γ for all si ∈ Sk Terminate. Otherwise, set K = K−1 and return

to step 2.

3.3 MBMP-STAP

The MP-STAP algorithm localizes the first target according to (3.4), namely, finds

the column of the whitened measurement matrix with the largest projection on the

whitened data z. A false alarm (localizing the target in the wrong resolution cell)

increases the chance of further false alarms downstream, since according to (3.5),

localizing subsequent candidate targets depends on the location of the first target

(3.4). A more robust approach is to hedge bets by finding multiple candidates for

the location of the first target. Each such candidate target serves as seed to the

localization and detection of subsequent targets. When the process is completed, a
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metric is used to select the set of targets that provides the best fit to the data. This

algorithm, which generalizes MP-STAP is referred to as MBMP-STAP.

Some notation is introduced that facilitates the presentation of MBMP-STAP.

A localization solution is referred to as a branch. The set D = {d1, d2, ..., dk} contains

the number of branches per target. A path is a sequence of branches specified by their

index numbers. For example the path (i1, i2, ..., ik) , 1 ≤ i1 ≤ d1, ..., 1 ≤ ik ≤ dk. A

localization solution 1 ≤ m
(i1,i2,...,ik)
k ≤ G, where G is the number of resolution cells

(see (2.7)), consists of a path and the index number of the resolution cell. The set

S
(i1,...,ik)
k =

{
m

(i1)
1 ,m

(i1,i2)
2 , ...,m

(i1,...,ik)
k

}
contains the localization solution associated

with path (i1, i2, ..., ik) . For k candidate targets, MBMP-STAP maintains d1 × d2 ×

... × dk such sets. The matrix BSk
was defined to consist of the whitened steering

vectors bj indexed by Sk.

3.3.1 Stage 1: Target Localization

The inputs to MBMP-STAP are the whitened measurement vector z = R̂−1/2y,

whitened steering vectors bj = R̂−1/2aj, for j = 1, ..., G, the upper bound on

the number of targets K, and a set of positive integers D = {d1, d2, . . . , dK}.

To localize the candidates for the first target, the algorithm finds the d1 indices

m
(1)
1 ,m

(2)
1 , . . . ,m

(d1)
1 that produce the d1 largest projections of steering vectors bj on

the data z. Specifically, the resolution cell index that localizes the first branch of the

first target is found from

m
(1)
1 = arg max

j

|bHj z|2

bHj bj
(3.8)

The i-th branch of the first target, 1 ≤ i ≤ d1, is found from

m
(i)
1 = arg max

j /∈{m1,...,mi−1}

|bHj z|2

bHj bj
(3.9)
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To generate the d2 branches associated with the second target, define the

modified steering vectors w
(i)
j = P⊥b

m
(i)
1

bj, for 1 ≤ i ≤ d1. The resolution cell index

associated with the first branch of the second target is given by

m
(1,1)
2 = arg max

j

|w(1)H
j z|2

w
(1)H
j w

(1)
j

(3.10)

whereas the index of branch i2, 1 ≤ i2 ≤ d2 of the second target, given the path

(i1, i2),

m
(i1,i2)
2 = arg max

j /∈{m1,...,mi2−1}
|w(i1)H

j z|2

w
(i1)H
j w

(i1)
j

(3.11)

Generalizing to k targets and the path (i1, i2, ..., ik) , define the vector w
(i1,...,ik)
j =

P⊥B
S
(i1,...,ik−1)
k−1

bj. The index associated with the k-th target is given by

m
(i1,...,ik)
k = arg max

j /∈{m1,...,mik−1}

∣∣∣w(i1,...,ik−1)H
j z

∣∣∣2
w

(i1,...,ik−1)H
j w

(i1,...,ik−1)
j

. (3.12)

An example of MBMP-STAP with D = {2, 2, 1, . . .} is illustrated in Figure 3.2.

Figure 3.2 Graph of MBMP algorithm for a branch vector d = [2, 2]T .

Intuitively, the MBMP-STAP algorithm generalizes the MP-STAP by allowing

the consideration of resolution cells that do not maximize the metric in (3.5). By

allowing the algorithm the freedom to test more resolution cells the probability of false
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alarm associated with the algorithm localizing an incorrect resolution cell decreases.

‘

3.3.2 Stage 2: Detection

The MBMP localization processing yielded d1 × . . .× dK target sets that contain K

targets. The residual along the path (i1, i2, ..., ik) is computed from

R(i1,...,iK) =

∥∥∥∥∥∥P⊥BS
(i1,...,iK)
K

z

∥∥∥∥∥∥
2

2

.

The path that yields the lowest residual is given by

(i1, i2, ..., iK) = arg min
(j1,...,jK)

R(j1,...,jK).

The set SK is then set to SK = i1, i2, ..., iK . The targets in the set SK is then tested

for the presence of a target using (3.7) for k = 1, . . . , K. If all K targets pass the

detection test SK is declared the set of targets, otherwise, K is decremented by one

and the MBMP-STAP is reran with the new value of K.

3.4 Numerical Results

In this section, numerical results on the MP-STAP and MBMP-STAP algorithms

are presented and compared to against the ABF. Unless stated otherwise, in figures

presented in this section, the aperture of the MIMO random arrays is 8λ (Z = 8,

where recall that Z is expressed in units of wavelength). The number of transmit

elements in the random array is Nt = 2, and the number receive elements is given by

Nr = 4. The number of coherent pulses used by all arrays is Np = 16. The SNR,

defined as |x|2/σ2 is set to SNR = 18 dB unless stated otherwise, the clutter-to-noise

ratio (CNR) is set to 30 dB. The number of training samples used to estimate the

covariance matrix for the random array is L = 2N . The number of resolution cells
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on the angle-Doppler map is given by G = (2Z + 1)2 = 289. A random realization of

a MIMO random array is generated and remains fixed throughout the Monte Carlo

simulations. Let St be the true set of resolution cells that contain targets, and let Ŝ

be the set of resolution cells found by a detector to have targets. A false alarm event

occurs is Ŝ \ St 6= ∅, and a detection event occurs if Ŝ
⋂
St 6= ∅.

In Figure 3.3 are shown the ROC curves for a single target in field of view for

the ABF and the MP-STAP algorithms. The target in the field of view is a slowly

moving target. The target is placed at (u = 0, f = 1/Np), near the clutter ridge in the

angle-Doppler map. From the figure, it is seen that the ABF experiences a high false

alarm rate due to the high sidelobes of the MIMO random array. In particular, to

obtain a probability of detection of about 0.9, the ABF must tolerate an unacceptable

probability of false alarm of about 0.1. On the other hand, MP-STAP performs

well even in the presence of high sidelobes, for the MP-STAP algorithm to obtain

a probability of detection of about 0.9 the MP-CFAR must tolerate a reasonable

probability of false alarm of about 10−3.

In Figure 3.4 is shown the ROC curves for two targets in field of view for the

ABF and the MP-STAP algorithms. Two targets with spatial frequency u = 0 are

placed on the angle-Doppler map. Both targets are slowly moving, one target has a

Doppler 1/Np while the other has a Doppler of −1/Np. Not surprisingly, the ABF fails

to obtain acceptable performance and still experiences a high false alarm rate due the

high sidelobes of the MIMO random array. The ROC curve of the MP-STAP moves

slightly to the right compared to the ROC of MP-STAP in Figure3.3. This slight

degradation in performance occurs because the probability that MP-STAP incorrectly

localizes a target slightly increases as the number of targets increase. MBMP-STAP

shows an improvement in performance compared to MP-STAP. Since MBMP-STAP

has additional target sets available for localization estimation the probability that

MBMP-STAP incorrectly localizes a target is less than or at worst, equal to the
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Figure 3.3 ROC curve for the ABF and MP-STAP with a Z = 8λ MIMO random
array with Nt = 2 and Nr = 4. The target has the angle-Doppler pair (u = 0, f =
1/Np). Parameters used: K = 1, SNR=18dB, CNR = 30dB

probability that MP-STAP incorrectly localizes a target and hence an improvement

is observed.

In Figure 3.5 is shown the probability of detection vs the product NtNr for two

targets in the field of view for the MP-STAP and MBMP-STAP algorithms. Two

targets with spatial frequency u = 0 are placed on the angle-Doppler map. Both

targets are slowly moving, one target has a Doppler 1/Np while the other has a

Doppler of −1/Np. The threshold for both MP-STAP and MBMP-STAP is set to

γ = 16, which is the value of γ that achieves a detection probability of about 0.92

for the MBMP-STAP algorithm in Figure 3.4. To generate the figure, the result

of 103 Monte Carlo simulations are averaged, for every Monte Carlo simulation, a

new realization of a MIMO random array is drawn. From the figure, is it seen that

the probability of detection for MBMP-STAP is higher than the MP-STAP for all

values of NtNr. The increase in the probability of detection for MBMP-STAP can be

attributed to the multiple localization solutions that is obtained by MBMP-STAP.
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Figure 3.4 ROC curve for the ABF and MP-STAP with a Z = 8λ MIMO random
array with Nt = 2 and Nr = 4. There are two targets, one target has the angle-
Doppler pair (u = 0, f = 1/Np) the other target has the angle-Doppler pair (u =
0, f = −1/Np). Parameters used: K = 2, SNR=18dB, CNR = 30dB

3.5 Concluding Remarks

In this chapter three detection algorithms the ABF, MP-STAP, and the MBMP-STAP

were considered. The ABF, a popular method for GMTI radar divides the

angle-Doppler map into G resolution cells and performs G detection tests, one for

each resolution cell for the presence of a target. The number of targets is obtained

by counting the number of cells that pass the detection test, and the positions of the

targets depend on the cells that pass the test. The detection test that was considered

for the beamformer was the AMF. While simple to implement, the beamformer

suffers from the high sidelobes of the MIMO random array causing the algorithm

to experience a high false alarm rate.

On the other hand, MP-STAP relies on the sparsity of the targets which allows

one to cope with the high sidelobes of the MIMO random array while taking advantage

of the high resolution of the MIMO random array. The MP-STAP localizes K

candidate target locations by using a MP algorithm where K is the upper bound
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Figure 3.5 Probability of detection vsNtNr for MP-STAP and MBMP-STAP with a
Z = 8λ MIMO random array. There are two targets, one target has the angle-Doppler
pair (u = 0, f = 1/Np) the other target has the angle-Doppler pair (u = 0, f =
−1/Np). Parameters used: K = 2, SNR=18dB, CNR = 30dB

on the number of targets. The K target locations are then tested for the presence

of a target, if one or more target locations fails the detection test, K is decreased by

one and the algorithm is reran with the new value of K. If all the target locations

obtained by MP passes a detection test, the algorithm terminates and outputs all K

target locations as the solution.

The MBMP-STAP generalizes the MP-STAP algorithm and considers multiple

candidates for the first target as opposed to just one candidate as in MP-STAP.

MBMP-STAP also considers multiple candidates for the second and subsequent

targets. This generalization decreases the probability of false alarm caused by

localizing a target in the wrong resolution cell. This generalization was demonstrated

to improve the performance of the radar when multiple targets exist on the

angle-Doppler map. Numerical examples demonstrate that both MP-STAP and

MBMP-STAP significantly outperform the ABF when a MIMO random array is

employed. In particular, numerical results indicate that MBMP-STAP can achieve
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the same detection performance as the ABF but experiences roughly 10−2 times less

false alarms than the ABF.
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CHAPTER 4

CFAR SPARSITY BASED GMTI RADAR

In the previous chapter, a sparsity based radar based on [55] was presented. More

specifically, the detection algorithm presented in [55] was modified for airborne radar

using STAP. Numerical examples showed that sparsity based radar outperform the

ABF when a MIMO random array is utilized. However, there are two drawbacks to

both the MP-STAP and the MBMP-STAP algorithms. First, both sparsity based

algorithms require some knowledge of the number of targets. More specifically, both

algorithms require an upper bound on the number of targets, in radar applications

this information may be unavailable. Another drawback is the detector specified in

[55] was designed for an interference background of white Gaussian noise. When this

assumption holds, the statistics of the detector are well specified. In STAP however,

the interference covariance matrix is colored and unknown. This causes difficulties in

analyzing the statistics of the detector making a CFAR detector difficult to obtain.

In this chapter, new detection algorithms for airborne radar are proposed which

combine the strengths of MIMO random arrays with the ability of sparsity based

algorithms to handle undersampling effects. Two sparsity-based CFAR detection

algorithms are proposed in this chapter, referred to as matching pursuit-CFAR

(MP-CFAR) and multibranch MP-CFAR (MBMP-CFAR), respectively. MP-CFAR

consists of a target localization stage followed by a target detection stage. MBMP-

CFAR generalizes MP-CFAR by maintaining and updating multiple sets of candidate

targets. The new detectors do not require any knowledge on the number of targets

and the statistics of the new detectors are derived in this chapter. As its name

suggests, both MP-CFAR and MBMP-CFAR are CFAR detectors, in the sense that

the statistics of the new detectors do not depend on the interference covariance matrix.

39



4.1 Detection by Adaptive Beamforming

In this section, the statistics of the ABF is reviewed, it will later be used as a

benchmark for the proposed detectors. Recall that the test statistic of the ABF

for a resolution cell specified by the steering vector a is given by

T =
|aHR̂−1y|2

aHR̂−1a
≥ γ. (4.1)

An alternative form of the test statistic that will be useful later for performance

evaluation can be found applying an approach from [72] and [73]. In particular, it is

shown in [73] that the test for deciding H1 (4.1) may be expressed as the ratio of two

independent random variables

T =
|ζ|2

ψ
≥ hγ. (4.2)

Where ζ is distributed CN (0, 1) when a target is not present and CN
(√

hρ, 1
)

when

a target with steering vector at is present, where the target’s SINR is given by

ρ =

∣∣xaHR−1at
∣∣2

aHR−1a
. (4.3)

The test statistic (4.2) tests for the presence of a target by applying a steering vector

a, but the actual steering vector of the target is at. The denominator of (4.2), ψ, is a

chi-squared random variable with 2(L+ 1−N) degrees of freedom. Since the factor

(L + 1 − N) appears in several expressions in the sequel, for notational brevity, let

M , (L+ 1−N). The factor h, first proposed in [74] is a loss factor 0 ≤ h ≤ 1 that

captures the effect of estimating the covariance matrix from the secondary data. It is

shown in [75] that in the absence of a target, the probability density function (PDF)

of the loss factor is the beta PDF

p(h) = pβ(h;M + 1, N − 1) =
(N +N − 1)!

M !(N − 2)!
hM(1− h)N−2. (4.4)
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When a target is present, it was shown in [76] the PDF of the loss factor is given by

p(h) =e−Ch
M+1∑
m=0

(
M + 1

m

)
(N +M − 1)!

(N +M − 1 +m)!

× Cmpβ(h;M + 1, N − 1 +m).

(4.5)

Where the term C is defined as

C = |x|2aHt R−1at

(
1− |aHR−1at|2

(aHR−1a)(aHt R−1at)

)
. (4.6)

The numerator |ζ|2 of the test statistic (4.2) is the squared magnitude of

a complex-valued Gaussian random variable with zero mean or non-zero mean,

depending on whether a target is present or not. It follows that |ζ|2 is a central or

non-central chi-squared random variable with 2 degrees of freedom. The test statistic

T is then the ratio of two independent chi-square random variables. Normalizing the

numerator and the denominator by the respective degrees of freedom and adjusting

the threshold accordingly yields the test

T =
|ζ|2/2
ψ/2M

≥ hMγ. (4.7)

Conditioned on the loss factor h, when there is no target present, the test statistic

follows the central F distribution with parameters 2 and 2M , denoted F (2, 2M) .

When there is a target present, the test statistic follows the non-central F distribution

with parameters 2 and 2M , and non-centrality parameter hρ, denoted F (2, 2M,hρ).

From the previous discussion, the probability of false alarm conditioned on the

loss factor h, is given by

Pr{T ≥ hγ|h} = 1− ΦF (2,2M)(hMγ|h), (4.8)
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where ΦF (·,·) denotes the CDF of the F distribution F (·, ·). The unconditioned

probability of false alarm is obtained by averaging Pr{T ≥ hγ|h} over h

PFA = 1−
∫ 1

0

ΦF (2,2M)(hMγ|h)p(h)dh (4.9)

where p(h) is given by (4.4). Note that the system has a CFAR property in the sense

that the probability of false alarm is a function of the number of degrees of freedom

M and N , but is not dependent on the clutter or noise (it is not a function of the

interference and noise covariance matrix R)

The conditional probability of detection of a target with SINR ρ (4.3) is given

by

Pr{T ≥ hγ|h} = 1− ΦF (2,2M,hρ)(hMγ|h), (4.10)

The unconditional probability of detection is

PD = 1−
∫ 1

0

ΦF (2,2M,hρ)(hMγ|h)p(h)dh (4.11)

where p(h) is given by (4.5). These expressions will be used in the numerical results

section to evaluate performance and compare it with the proposed sparsity based

CFAR radar.

As previously discussed , a typical application of STAP is to perform test (4.2)

for each of the resolution cells of interest. A STAP system designed as described

in this section is CFAR because its false alarms are independent of the clutter and

noise. Moreover, the CFAR property relies on the assumption that targets do not

cause false alarms due to energy leaked through the sidelobes. This is equivalent to

assuming that the numerator term in (4.3), aHR−1at is negligible when a 6= at. For

ULAs, this assumption is valid since the peak sidelobe of a ULA (the steering vector

a with a 6= at that maximizes (4.3)) is roughly –13 dB relative to the mainlobe (when

a = at). However, this assumption breaks down in a MIMO random array in which
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the beampattern sidelobes cannot be assumed to be negligible. Such a system is not

CFAR anymore. In the next section, an approach that preserves the CFAR property

even for MIMO random arrays is proposed.

4.2 MP-CFAR Radar

In the previous section, it was noted that a traditional detection approach in which

resolution cells are tested for target presence ignoring possible interference from other

resolution cells, may fail when applied to MIMO random arrays STAP. In this section,

an approach that relies on the sparsity of targets. It is also shown that it is well suited

to handle data collected by MIMO random arrays.

Recall from Chapter 3 that MP-STAP approximates the solution to the

optimization problem

min
x
‖z−Bx‖22 subject to ‖x‖0 ≤ K. (4.12)

Recall that to solve (4.12) one requires the knowledge of number of targets K, which

of course is unknown apriori. To circumvent this issue in the previous chapter, K,

the upper bound on the number of target was used in conjunction with a detector.

This procedure creates a produces a sparsity based radar that unfortunately, requires

an upper bound on the number of targets. In addition the statistics for the radar is

unavailable making the design of a CFAR sparsity based radar difficult.

To implement a CFAR radar that exploits target sparsity, a two-stage detection

algorithm is proposed and is referred to as the MP-CFAR detection algorithm.

Candidate targets are localized in the first phase; in the second phase, the candidate

targets are tested for detection. A detected target is canceled from the data.

The cancellation of detected targets from the data is intended to remove mutual

interference between targets and thus address one of the flaws of detection by ABF,
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as discussed in the previous section. A block diagram of the MP-CFAR algorithm is

shown in Figure 4.1.

Figure 4.1 Block diagram of the MP-CFAR algorithm.

Note that in MP-STAP one localizes K targets then performs detection. It then

updates the upper bound K if the detector finds that one or more of the K targets do

not pass the detection test. In MP-CFAR, once a target is localized it is immediately

tested by a detector. The algorithm terminates whenever a localized target does not

pass a detection test therefore bypassing the need for K.

4.2.1 Stage 1: MP Localization

The first pass of the MP localization algorithm uses whitened data z = R̂−1/2y and

whitened steering vectors bj = R̂−1/2aj, j = 1, ..., G. The first candidate target is

localized by the index m1 of the vector bj that has the largest data projection,

m1 = arg max
j

|bHj z|2

bHj bj
(4.13)

for j = 1, ..., G. The index m1 localizes the target in the angle-Doppler domains. This

information is subsequently used by the detection stage, as described in relation with

Stage 2 below. Unlike in MP-STAP however, the detection stage occurs immediately

after the localization of a target.

The localization of the k-th candidate target is described, given that k−1 targets

have already been localized and passed the detection test. The steering vectors are
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processed to cancel the contributions of previously detected targets. Let a matrix

B be formed with the columns bj. Let Sk−1 be the set of indices of columns of B

associated with detected targets, and let BSk−1
be the matrix formed by the columns

indexed by Sk−1. The projection matrix orthogonal to the detected targets is given

by P⊥BSk−1
= I−BSk−1

(
BH
Sk−1

BSk−1

)−1
BSk−1

. The steering vectors orthogonal to the

detected targets are formed as follows: wj = P⊥BSk−1
bj, for all j /∈ Sk−1. The k-th

target is localized according to

mk = arg max
j

|wH
j z|2

wH
j wj

(4.14)

This process continues until a candidate target fails the detection test.

4.2.2 Stage 2: Detection

The derivation of the CFAR detector that is applied to candidate targets localized

in Stage 1 is now derived. The first candidate target is detected according to (4.1),

rewritten here for convenience

T =
|aHm1

R̂−1y|2

aHm1
R̂−1am1

≥ γ, (4.15)

where m1 is the index found in Stage 1. Note that the test (4.15) may also be

expressed in terms of the whitened steering vectors bm1 = R̂−1/2am1 ,

T =
|bHm1

z|2

bHm1
bm1

≥ γ. (4.16)

Next the detection of candidate target k, given that k − 1 targets have been

already localized and passed the detection test is described. The signal model is given

by the expression

z = bmk
xmk

+ BSk−1
xSk−1

+ n

= BSk
xSk

+ n (4.17)
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where mk is the index of the resolution cell of the k-th candidate target found in

Stage1 (4.14), Sk is formed by adding mk to the set Sk−1, Sk = Sk−1
⋃
mk, the

matrix BSk
=
[
bmk

,BSk−1

]
is the matrix formed by columns with indices in Sk,

xSk
=
[
xmk

,xTSk−1

]T
, and n = R̂−1/2e. This signal model leads to the following

detection test:

H0 : xmk
= 0

H1 : xmk
6= 0

Here, the following problem is posed: detect a target located at a specified whitened

steering vector bmk
and having unknown amplitude, observed in the presence of

interference and noise. The interference is of unknown gain xSk−1
, but belonging to a

known subspace BSk−1
. The noise is Gaussian colored noise for which the covariance

matrix is unknown, but secondary data is available for its estimation.

As in the discussion leading to (4.1), the covariance matrix is replaced with the

sample covariance matrix R̂ of the secondary data, thus z = R̂−1/2y is modeled as

having a covariance matrix equal to the identity matrix. It follows that under H0,

the likelihood is

p (z|H0) =
1

πN
e−(z−BSk−1

xSk−1)
H

(z−BSk−1
xSk−1),

while under H1 the likelihood is

p (z|H1) =
1

πN
e−(z−BSk

xSk)
H

(z−BSk
xSk).

The GLRT for deciding H1 is given by

T = ln

(
maxxSk

p(z|xSk
)

maxxSk−1
p(z|xSk−1

)

)
≥ γ (4.18)
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To obtain a more convenient form of the test, note that under hypothesis H0,

the MLE of the gain vector xSk−1
is found from

x̂Sk−1
= min

xSk−1

‖z−BSk−1
xSk−1

‖22. (4.19)

Minimizing (4.19) with respect to the vector of complex gains xSk
yields

x̂Sk−1
= (BH

Sk−1
BSk−1

)−1BH
Sk−1

z. (4.20)

Similarly,

x̂Sk
= (BH

Sk
BSk

)−1BH
Sk

z. (4.21)

Inserting (4.20) and (4.21) into (4.18),

T = ‖z−BSk−1
x̂Sk−1

‖22 − ‖z−BSk
x̂Sk
‖22

= zH
(
PBSk

−PBSk−1

)
z (4.22)

where PB = B
(
BHB

)−1
B is a projection matrix that projects onto the subspace

spanned by B. Note that the decision statistic is a difference between two quadratic

forms, where the quadratic form zHPBSk−1
z is an interference term that is canceled.

The test statistic (4.22) may be further simplified, which will be useful to obtain

expressions for performance evaluation of the MP-CFAR detector. To do so, the

following result from [77] and [78] is used. Let D and E be two subspaces, and let

PD and P[D,E] be projection matrices that project onto the subspaces spanned by

the matrices D and [D,E] , respectively. Let F = P⊥DE, then the difference between

projection matrices P[D,E] −PD is given by [78]

P[D,E] −PD = PF. (4.23)
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Now, identify D = BSk−1
and E = bmk

(whitened steering vector). Then F =

P⊥DE = P⊥BSk−1
bmk

is a vector, and let fk , P⊥BSk−1
bmk

. Note that f1 = bm1 . Since by

design, fk−1 is already orthogonal to all previous vectors f1, ..., fk−2, one obtains the

following recurrent relations

fk = P⊥fk−1
bmk

. (4.24)

From this expression, fk is the projection on the whitened steering vector bmk

orthogonal to the previous k − 1 targets. Applying (4.23), yields

P[BSk−1
,bmk

] −PBSk−1
= Pfk (4.25)

where Pfk = fkf
H
k /f

H
k fk. Noting that BSk

=
[
BSk−1

,bmk

]
and substituting (4.25) into

(4.22), the test for deciding H1 on the detection of the k-th target can be expressed

T =
|fHk z|2

fHk fk
≥ γ (4.26)

For k = 1, f1 = bm1 , and (4.26) reverts to (4.16) as it should.

The test statistic (4.26) is applied to every candidate target included in the set

Sk. If any of the k tests fails to exceed the threshold γ, the algorithm terminates

and outputs the set Sk−1, the set of k − 1 target locations. Otherwise, MP CFAR

increments the number of targets k by one and reruns MP with the new value of k.

The psuedocode for the MP CFAR algorithm is listed in Algorithm 2.

4.2.3 Performance of the MP-CFAR Detector

In this part, the analytical expressions for the probability of false alarm and

probability of detection of the MP-CFAR detector for some simple cases are

developed. To obtain an expression for the probability of false alarm when no target

is present in the field of view, the test statistic (4.26) is manipulated to express it in

the form (4.7). By assumption, no target has been detected yet, hence the test is for
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Algorithm 2 MP-CFAR

1: Input: y,A, R̂, γ.

2: Initialize: S0 = ∅, r = R̂−1/2y, B = R̂−1/2A, W = B, k = 1.

3: Find: Search for the index l that maximizes the metric maxj |wH
j r|2/wH

j wj.

4: Update set of targets: Sk = Sk−1
⋃
l.

5: Check: If Tsi ≥ γ (test statistic to decide if xsi is nonzero) for all si ∈ Sk

continue. Otherwise output Sk−1 as solution and terminate.

6: Generate: P⊥BSk
= I−BSk

(
BH
Sk

BSk

)−1
BH
Sk

.

7: Remove found targets: W = P⊥BSk
B.

8: Renormalize: If ‖wi‖2 = 0, set wi = 0.

9: Return to step 3

target index k = 1. For k = 1, and based on notation developed previously, the vector

fs1 = bm1 = R̂−1/2am1 and z = R̂−1/2y. Now recall that m1 is the index obtained

from (4.14). It follows that (4.26) may be written

T = max
j

|aHj R̂−1y|2

aHj R̂−1aj
(4.27)

Other than the max operator, the test statistic in (4.27) is of the form (4.1), hence it

can be reduced to the form (4.7),

T = max
j

Γj, (4.28)

where

Γj =
|ζj|2/2
ψj/2M

. (4.29)

The probability of false alarm is given by

PFA = 1− Pr

{
max
j

Γj ≤ hMγ

}
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Since the random variables Γj (4.29) are independent and identically distributed,

PFA = 1− (Pr {Γj ≤ hMγ})G

As discussed in relation with (4.8), Γj follows an F distribution with CDF ΦF (2,2M),

from which the expression for the probability false alarm

PFA = 1−
(∫ 1

0

ΦF (2,2M)(hMγ|h)p(h)dh

)G
(4.30)

The probability of detection of the first target is given by the same expression as for

the ABF, (4.11).

4.3 MBMP CFAR

The MP-CFAR algorithm localizes the first target according to (4.13), namely, finds

the column of the whitened measurement matrix with the largest projection on the

whitened data z. A false alarm (localizing the target in the wrong resolution cell)

increases the chance of further false alarms downstream, since according to (4.14),

localizing subsequent candidate targets depends on the location of the first target

(4.13). As with MBMP-STAP, a more robust approach is to hedge bets by finding

multiple candidates for the location of the first target. Each such candidate target

serves as seed to the localization and detection of subsequent targets. When the

process is completed, a metric is used to select the set of targets that provides the

best fit to the data. This algorithm, which generalizes MP-CFAR is referred to as

MBMP-CFAR.

Recall from the previous chapter, a localization solution is referred to as a

branch. The set D = {d1, d2, ..., dk} contains the number of branches per target. A

path is a sequence of branches specified by their index numbers. For example the path

(i1, i2, ..., ik) , 1 ≤ i1 ≤ d1, ..., 1 ≤ ik ≤ dk. A localization solution 1 ≤ m
(i1,i2,...,ik)
k ≤ G,

where G is the number of resolution cells (see (2.7)), consists of a path and the
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index number of the resolution cell. The set S
(i1,...,ik)
k =

{
m

(i1)
1 ,m

(i1,i2)
2 , ...,m

(i1,...,ik)
k

}
contains the localization solution associated with path (i1, i2, ..., ik) . For k candidate

targets, MBMP-CFAR maintains d1 × d2 × ... × dk such sets. The matrix BSk
was

defined to consist of the whitened steering vectors bj indexed by Sk.

4.3.1 Stage 1: MBMP Localization

The inputs to MBMP-CFAR are the whitened measurement vector z = R̂−1/2y,

whitened steering vectors bj = R̂−1/2aj, j = 1, ..., G, and a set of positive integers

D = {d1, d2, . . . , dG}. Similar to MP-CFAR, the MBMP-CFAR algorithm proceeds in

two stages. To localize the candidates for the first target, the algorithm finds the d1

indices m
(1)
1 ,m

(2)
1 , . . . ,m

(d1)
1 that produce the d1 largest projections of steering vectors

bj on the data z. Specifically, the resolution cell index that localizes the first branch

of the first target is found from

m
(1)
1 = arg max

j

|bHj z|2

bHj bj
(4.31)

The i-th branch of the first target, 1 ≤ i ≤ d1, is found from

m
(i)
1 = arg max

j /∈{m1,...,mi−1}

|bHj z|2

bHj bj
. (4.32)

Once all d1 indicies are obtained MBMP-CFAR tests the resolution cell m
(i)
1 is tested

for the presence of a target. If the target at m
(i)
1 passes the detection test, MBMP-

CFAR continues to localize the second target. To generate the d2 branches associated

with the second target, define the modified steering vectors w
(i)
j = P⊥b

m
(i)
1

bj, for

1 ≤ i ≤ d1. The orthogonal projection prevents interference from a target at m
(i)
1 .

The resolution cell index associated with the first branch of the second target is given

51



by

m
(1,1)
2 = arg max

j

|w(1)H
j z|2

w
(1)H
j w

(1)
j

(4.33)

whereas the index of branch i2, 1 ≤ i2 ≤ d2 of the second target, given the path

(i1, i2),

m
(i1,i2)
2 = arg max

j /∈{m1,...,mi2−1}
|w(i1)H

j z|2

w
(i1)H
j w

(i1)
j

(4.34)

Generalizing to k targets and the path (i1, i2, ..., ik) , define the vector w
(i1,...,ik)
j =

P⊥B
S
(i1,...,ik−1)
k−1

bj. The index associated with the k-th target is given by

m
(i1,...,ik)
k = arg max

j /∈{m1,...,mik−1}

∣∣∣w(i1,...,ik−1)H
j z

∣∣∣2
w

(i1,...,ik−1)H
j w

(i1,...,ik−1)
j

(4.35)

The process of MBMP localization continues until the detection test fails, as explained

in relation with Stage 2.

4.3.2 Stage 2: Detection

The MBMP localization processing yielded d1 candidate locations for the first target.

The largest score relative to the objective function |bHj z|2/bHj bj is obtained by the

steering vector indexm
(1)
1 , because maxj |bHj z|2/bHj bj ≥ maxj /∈{m1,...,mi−1} |bHj z|2/bHj bj

(see (4.31) and (4.32)). Note that the choice of m
(1)
1 also minimizes the residual of

the objective function ‖z − Bx‖22 (see (4.12)), m
(1)
1 = arg minj ‖P⊥bj

z‖22. The test to

determine whether a target is present in the resolution cell m
(1)
1 is given by (see (4.26))

T =
|bH
m

(1)
1

z|2

bH
m

(1)
1

b
m

(1)
1

≥ γ (4.36)

If the test (4.36) is met, d1 target sets are updated as follows S
(i1)
1 =

{
m

(i1)
1

}
,

1 ≤ i1 ≤ d1.
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To test for the detection of the k-th target, assume that k−1 targets have been

detected. The residual along the path (i1, i2, ..., ik) is computed from

R(i1,...,ik) =

∥∥∥∥∥P⊥BS
(i1,...,ik)
k

z

∥∥∥∥∥
2

2

The path that yields the lowest residual is given by

(i1, i2, ..., ik) = arg min
(j1,...,jk)

R(j1,...,jk)

The test to determine whether a target is present in the resolution cell m
(i1,...,ik)
k is

given by

T =
|f (i1,...,ik)k z|2

f
(i1,...,ik)H
k f

(i1,...,ik)
k

≥ γ (4.37)

If the test (4.37) is met, d1 × ... × dk target sets are updated as follows S
(i1,...,ik)
k ={

m
(i1)
1 ,m

(i1,i2)
2 , ...,m

(i1,...,ik)
k

}
, 1 ≤ i1 ≤ d1, ..., 1 ≤ ik ≤ dk. The MBMP-CFAR

algorithm proceeds to the localization and detection of the (k + 1) target. If the

detection test fails, MBMP-CFAR outputs as solution the path

(i1, i2, ..., ik−1) = arg min
(j1,...,jk−1)

R(j1,...,jk−1).

Similar to MBMP-STAP, the MBMP-CFAR algorithm generalizes the MP-

CFAR by allowing the consideration of resolution cells that do not maximize the

metric in (4.14). By allowing the algorithm the freedom to test more resolution cells

the probability of false alarm due to localizing target in the incorrect resolution cell

decreases.
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4.4 Numerical Results

In this section, numerical results on the MP-CFAR and MBMP-CFAR algorithms

are presented and compared to against the ABF. Unless stated otherwise, in figures

presented in this section, the aperture of the MIMO random arrays is 8λ (Z = 8,

where recall that Z is expressed in units of wavelength). The number of transmit

elements in the random array is Nt = 2, and the number receive elements is given by

Nr = 4. The number of coherent pulses used by all arrays is Np = 16. The SNR,

defined as |x|2/σ2 is set to SNR = 100/N = −1.0721 dB unless stated otherwise,

where N = NtNrNp, the clutter-to-noise ratio (CNR) is set to 30 dB. The number

of training samples used to estimate the covariance matrix for the random array

is L = 2N . The number of resolution cells on the angle-Doppler map is given by

G = (2Z + 1)2 = 289. For all figures, a random realization of a random array is

generated and remains fixed throughout the Monte Carlo simulations. Let St be the

true set of resolution cells that contain targets, and let Ŝ be the set of resolution cells

found by a detector to have targets. A false alarm event occurs is Ŝ \ St 6= ∅, and a

detection event occurs if Ŝ
⋂
St 6= ∅.

The probability of false alarm of the MP-CFAR detector is plotted vs. the

detection threshold in Figure 4.2 for two scenarios. The first scenario is when no

targets are present anywhere in the angle-Doppler map, the second scenario is when

a single target is present at an arbitrary, fixed location with SNR = 20 dB. To obtain

the curves the results of 104 Monte-Carlo simulations were averaged. The analytical

probability of false alarm of the MP-CFAR obtained from (4.30) is also shown for

reference. The figure illustrates that (4.30) accurately represent the probability of

false alarm for the MP-CFAR detector and that the presence of targets in the field

of view does not affect the probability of false alarm. In other words, MP-CFAR

preserves its CFAR capability in spite of the higher sidelobes associated with the

random array.
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Figure 4.2 Probability of false alarm vs the detection threshold of the MP-CFAR
detector. The number of next to the label in the legend corresponds to the number of
targets that interfere with the detection test. The SNR of all targets is SNR=20dB.

The probabilities of false alarm of the MP-CFAR and ABF detectors are further

studied in Figure 4.3, which plots the probability of false alarm against the SNR of

a target present at an arbitrary resolution cell. The detection threshold for the ABF

detector is set using (4.9), such that PFA = 10−3. Applying (4.30), the detection

threshold for the MP-CFAR detector is also set to PFA = 10−3. Also plotted is

the probability of false alarm of an ABF detector implemented by an 8λ ULA. For

all scenarios, the results of 104 Monte-Carlo experiments were averaged to obtain

the curves, the ABF tested every resolution cell on the angle-Doppler map. The

probability of false alarm of a true CFAR detector should not change as a function of

SNR of a target present somewhere in the search area. It is observed from the figure

that the 8λ ULA ABF and the random array MP-CFAR detectors have probabilities

of false alarm that are little changed as a function of the SNR of a target. More

specifically, at low SNR the MP-CFAR experiences a probability of false alarm of

about 2× 10−3 instead of PFA = 10−3. This slight increase in the probability of false
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alarm occurs because at low SNR, the probability of correct recovery (the probability

that MP-CFAR recovers the correct resolution cell to test) is less than one. As

the SNR of the target increases, the probability of correct recovery increases, and the

false alarm probability of MP-CFAR decreases to PF = 10−3 as intended. It is noticed

that the ABF using a 8λ ULA experiences a slight increase in the probability of false

alarm as the SNR of the interfering target increases. This is because although the

peak sidelobe of a ULA is small, it is not zero and therefore will ultimately affect the

probability of false alarm. In contrast, a random array ABF cannot cope with energy

leaked by high sidelobes, and as the strength of the target increases, the probability

of false alarm increases.

Figure 4.3 Probability of false alarm vs the SNR of a target in a different resolution
cell for the ABF using a ULA with Z = 4λ and Z = 8λ and the detector of MP-CFAR
using a random array. The number of next to the label (if present) in the legend
corresponds to the number of targets that interfere with the detection test. The SNR
of all targets is SNR = 20 dB.

In Figure 4.4, the probability of detection of the MP-CFAR detector is plotted

against the SNR for one and two targets, respectively. The threshold parameter

is set such that the probability of false alarm of the detector is PFA = 10−3. In
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the first experiment, a single target is placed at an arbitrary fixed location in the

angle-Doppler map. In the second experiment, to the first target is added a second

target at a location that changes randomly between Monte Carlo runs. From the

figure, it is seen that the probability of detection in the absence of an interfering

target is slightly higher at higher SNRs. This slight decrease in performance when

two targets are present in the field of view is attributed to the orthogonal projection

performed when generating the steering vector in (4.24).

Figure 4.4 Probability of detection vs the SNR of a target in a different resolution
cell for the MP-CFAR detector

In Figure 4.5 are shown the receiver operating curves (ROC) for a single target

in the field of view and four cases: (1) 4λ ULA with ABF, (2) 8λ ULA with ABF,(3)

8λ random array (RA) with ABF, (4) 8λ RA with MP-CFAR. The target is placed

at (u = 0, f = 1/Np), near the clutter ridge in the angle-Doppler map. To obtain

a fair comparison, the normalization term in equation (2.5) is discarded so that the

effect of the processing gain of each array is present. From the figure, it is observed

that the 4λ ULA and 8λ RA using ABF perform significantly worse than the 8λ

ULA using ABF. Since the 8λ ULA has sufficient resolution capability to resolve
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target and clutter, it performs well as expected. The 4λ ULA cannot provide the

angle-Doppler resolution required to resolve the target and clutter. Put it another

way, the lower resolution array cannot discriminate between the target and the clutter

ridge. The 8λ RA is hampered by the sidelobes of the random array, which lead to

increased false alarms, and therefore has poor performance. In contrast, a significant

performance gain is observed using the proposed random array MP-CFAR detector.

The performance gain is attributed to the interference cancellation performed by the

MP-CFAR detector compensating for the effect of the high sidelobes of the random

array. Note that for PF ≥ 10−3, the performance of the MP-CFAR detector is close to

that of the 8λ ULA ABF detector despite the fact that the random array uses half the

number of elements than that of the 8λ ULA. This demonstrates the savings without

loss of performance that are gained by random arrays and the proposed MP-CFAR

detector.

Figure 4.5 ROC curve for the ABF with a Z = 4λ ULA, ABF with a Z = 8λ
random array, MP-CFAR with a Z = 8λ random array and the ABF with a Z = 8
ULA for the random arrays the number of sensors used was N = 8. The target has
the angle-Doppler pair (u = 1/Z, f = 0). Parameters used: K = 1, SNR=20dB,
CNR = 30dB
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Figure 4.6 presents the ROC curve for two targets are present in the angle-

Doppler map associated with a range cell. Five cases are shown: (1) 4λ ULA with

ABF, (2) 8λ ULA with ABF, (3) 8λ random array (RA) with ABF, (4) 8λ RA with

MP-CFAR, (5) 8λ RA with MBMP-CFAR. The normalization term in equation (2.5)

is again discarded for a fair comparison. The number of branches for the MBMP-

CFAR detector is given by D = {5, 1, 1, . . .}. Two targets with spatial frequency

u = 0 are placed on the angle-Doppler map. Both targets are slowly moving, one

target has a Doppler 1/Np while the other has a Doppler of −1/Np. As in the

single target case, the 8λ ULA with ABF performs well, while the 4λ ULA and

the 8λ RA with ABF perform poorly. The MP-CFAR and MBMP-CFAR detectors

significantly outperform the smaller ULA and the RA with ABF. The MBMP-CFAR

also outperforms the MP-CFAR in terms of the false alarm probabilities.

Figure 4.6 ROC curve for the ABF with a Z = 4λ ULA, ABF with a Z = 8λ
random array, MP-CFAR with a Z = 8λ random array, MP-CFAR with a Z = 8λ
random array, and the ABF with a Z = 8 ULA for the random arrays the number of
sensors used was N = 8. Parameters used: K = 1, SNR = -1.0721 dB, CNR = 30dB.
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4.5 Concluding Remarks

In this chapter, three CFAR detection algorithms using a MIMO random array were

considered. The first detector considered was the well-known adaptive beamformer.

The statistics of the ABF were reviewed, it was then shown that since the ABF does

not remove the contributions of detected targets it suffers from the high sidelobes of

the MIMO random array. This means that in the presence of a target, the ABF is no

longer a CFAR detector.

The second CFAR detector, is the proposed MP-CFAR algorithm. Similar to

the MP-STAP algorithm presented in the previous chapter, the MP-CFAR relies on

the sparsity of the targets which allows one to cope with the high sidelobes of the

random array while taking advantage of the high resolution of the random array.

Critically however, the MP-CFAR algorithm does not assume any knowledge of the

number of targets. Instead, the MP-CFAR localizes the first target by finding the

whitened steering vector that has the largest projection with the whitened data.

The target is then tested by the proposed CFAR detector, if the target passes the

test, the whitened steering vectors are modified to remove the contribution from that

target. Subsequent targets are found in a similar fashion using the modified whitened

steering vectors and are tested using the CFAR detector. The process continues until

a target fails the detection test. This iterative process bypasses the need to know any

knowledge on the number of targets. In contrast, recall that the MP-STAP algorithm

first localizes K targets before performing detection and hence required knowledge

of K, where K is the upper bound on the number of targets. The MP-CFAR avoids

dealing with the high sidelobes of a random array by eliminating the contributions

from target that has been detected. The MP-CFAR has two major advantages over

the MP-STAP detection algorithm. Unlike MP-STAP, MP-CFAR does not require

any information on the number of targets, in addition, the statistics of MP-CFAR

can be analyzed, hence a CFAR radar can be designed using MP-CFAR .
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The MBMP-CFAR generalizes the MP-CFAR algorithm and considers multiple

candidates for the first target as opposed to just one candidate as in MP-CFAR.

MBMP-CFAR also considers multiple candidates for the second and subsequent

targets. This generalization provides a higher probability of correct recovery than

the MP algorithm, which leads to an improved detection performance. Numerical

results confirms that MBMP-CFAR improved the detection performance of the radar

when multiple targets exist on the angle-Doppler map.
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CHAPTER 5

COMPUTATIONAL COMPLEXITY

In the previous chapter, the MP-CFAR and MBMP-CFAR algorithms were introduced

and was shown to improve the radar’s performance in terms of the detection and

false alarm probabilities. Although a significant improvement was observed, it is

unclear how computationally intensive the MP-CFAR and MBMP-CFAR algorithms

are. Since GMTI radar is potentially ran in real time, these algorithm cannot be too

computationally intensive.

In this chapter, the computational complexity of the MP-CFAR and MBMP-

CFAR is analyzed and compared to the beamformer. It will be shown that MP-

CFAR is roughly k times more computationally intensive than the beamformer and

MBMP-CFAR is roughly ND(k − 1) times more computationally intensive than the

beamformer where k is the number of targets detected by MP-CFAR and ND(k − 1)

is the number of localization solutions with at most k− 1 targets that MBMP-CFAR

generates. Since k is assumed to be small this increase in computational complexity

is a modest increase considering the significant increase in performance shown in the

previous chapter.

In addition, in this chapter off-grid targets are also considered. To handle the

detection of off-grid targets a grid refinement procedure such as the one used in [41]

is presented. By combining the MP-CFAR and the MBMP-CFAR algorithms with a

grid refinement procedure the Grid-refined MP-CFAR and the Grid-refined MBMP-

CFAR algorithms are developed respectively. The computational complexity of both

Grid-refined MP-CFAR and Grid-refined MBMP-CFAR algorithms are considered.

It will be shown that the Grid-refined MP-CFAR algorithm is roughly k2 times
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more computationally complex than the ABF and the Grid-refined MBMP-CFAR

is roughly N2
D(k) times more computationally more complex than the ABF.

5.1 Beamforming

In this section, the computational complexity of the adaptive beamformer is reviewed.

The computational complexity of the beamformer will serve as a benchmark for

comparison with MBMP-CFAR. Recall that the beamformer digitally steers an array

for all points on an angle-Doppler map, and calculates the output of the AMF test

statistic for each resolution cell. For convenience the AMF test statistic for the i-th

resolution cell is reproduced

Ti =
|aHi R̂−1y|2

aHi R̂−1ai
≥ γ. (5.1)

Here, ai is the N × 1 steering vector of the i-th resolution cell, y is the N × 1

measurement vector, γ is a threshold parameter set from false alarm considerations,

and R̂ is the N ×N scaled estimate of the covariance matrix. Let wi = R̂−1ai, then

(5.1) can be rewritten as

Ti =
|wH

i y|2

aHi w
≥ γ. (5.2)

To obtain the number of flops required to compute the numerator, one can first

compute how many flops are required to obtain wi and then how many flops are

required to perform the two inner products |wH
i y|2 and aHi w. The vector w is

obtained by performing a product between a N ×N matrix and a N × 1 vector and

requires O(N2) flops. Both the numerator and denominator of (5.2) then becomes

an inner product between two N × 1 vectors which requires O(N) flops. Therefore,

the computation of a single resolution cell requires O(N2 + N) ≈ O(N2) flops. If G
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resolution cells are being tested then O(N2G) flops are required to compute the test

statistic for the entire angle-Doppler map.

5.2 CFAR Compressed Sensing Radar

Recall from the previous chapter, CS radar solves the optimization problem

min
x
‖z−Bx‖22 subject to ‖x‖0 ≤ K (5.3)

Where z = R̂−1/2y and B = R̂−1/2A is the whitened data vector and the whitened

set of steering vectors respectively. The MP-CFAR and the MBMP-CFAR algorithms

were proposed to find an approximate solution to the above optimization problem. In

this section, the computational complexity of both the MP-CFAR and MBMP-CFAR

is analyzed.

5.2.1 MP-CFAR

Recall that the inputs into the MP-CFAR are the measurement vector y, the matrix

of steering vectors A, the estimate of the covariance matrix R̂, and a threshold

parameter γ. The MP-CFAR begins by computing the matrix of whitened steering

vectors B = R̂−1/2A and the whitened data z = R̂−1/2y. Computing the whitened

the N×1 data vector requires O(N2) flops. Similarly, computing a whitened steering

vector also requires O(N2) flops and whitening G steering vectors requires O(N2G)

flops. MP-CFAR then searches for the index of the whitened steering vector bj that

has the largest projection with the whitened data z.

m1 = max
j

|bHj z|2

bHj bj
(5.4)

for j = 1, . . . , G. Computing |bHj z|2/bHj bj requires O(N) flops. If G inner products

are performed, O(NG) are required to compute the inner product for all G steering
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vectors. Recall that the index m1 localizes the target in the angle-Doppler domains.

It then tests the m1-th resolution cell using the CFAR detector in Chapter 3.2 for

the presence of a target. For the first target, the test statistic was shown to be the

same as (5.1) and requires O(N2) operations. If the detection test fails, the algorithm

terminates, otherwise the algorithm accepts m1 as a target and continues to localize

the next target.

From the above argument, to detect one target with MP-CFAR, one needs to

perform whitening of the steering vectors which requires O(N2G) flops, whitening

the data vector which requires O(N2) flops, localizing a target requires O(NG) flops

and finally, performing the detection test requires O(N2) flops. Since the number of

resolution cells G is assumed to be much larger than the number measurements N ,

the computational complexity is dominated by O(N2G). Therefore, the detecting the

first target using MP-CFAR requires approximately O(N2G) flops.

The computational complexity for the localization of the k-th target using MP-

CFAR is now discussed. Let Sk−1 be the set of indicies of columns of B associated

with detected targets. Then, MP-CFAR computes the N ×N orthogonal projection

matrix orthogonal to the detected targets reproduced here for convenience

P⊥BSk−1
= I−BSk−1

(
BH
Sk−1

BSk−1

)−1
BH
Sk−1

. (5.5)

Computing (5.5) directly requires about O(11N3) flops [79] however, a faster

alternative way to compute (5.5) is through the use the modified Gram-Schmidt

method, which requires O(2(k − 1)N2) flops instead. MP-CFAR then uses this

projection matrix to remove the contributions of the target from the whitened steering

vectors. The modified steering vectors that are orthogonal to the detected targets are

formed ωj = P⊥BSk−1
bj/‖P⊥BSk−1

bj‖2 for all j /∈ Sk−1.
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Computing a normalized steering vector orthogonal to the detected targets

also requires O(N2) flops. Then, computing G − k + 1 normalized steering vectors

orthogonal to the detected targets requires O((G − k + 1)N2) ≈ O(GN2) flops for

k � G. The k-th target is then localized

mk = max
j
|ωHj z|2 (5.6)

which requires O(GN) flops. Finally, the detection test for the k-th target discussed

in Chapter 3 is given by

Tmk
(mk, Sk) =

|fHmk
z|2

fHmk
fmk

≥ γ (5.7)

where Sk = Sk−1
⋃
mk and fmk

= P⊥BSk\mk
bmk

. To obtain the ‘cleaned’ steering

vector fmk
one must perform the product between the N×N matrix P⊥BSk\mk

and the

N×1 steering vector bmk
which requires O(N2) flops. Then, obtaining all k ‘cleaned’

steering vectors requires O(kN2) flops. The test statistic (5.7) is a ratio of two inner

products of N×1 vectors requiring O(N) flops each and therefore computing the test

statistic for a single target requires O(N) flops. Computing the test statistic for all

k targets require O(kN) flops.

To recap, to localize the k-th target with MP-CFAR, one needs to first compute

the orthogonal projection matrix P⊥BSk−1
which requires O(2(k − 1)N2) flops. MP-

CFAR then projects the whitened steering vectors away from the detected targets

which requires O(N2G) flops. Localizing the k-th target requires O(N) flops and

finally, computing the detection test for all k targets requires O(kN2) flops. Again,

the computational complexity of localizing the k-th target is dominated by O(N2G).

Therefore, detecting the k-th target using MP-CFAR requires O(N2G) flops. Since

it takes O(GN2) to detect a target it requires O(kGN2) flops to detect k targets.
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Comparing the computational complexity of MP-CFAR to the adaptive beamformer

it is seen that the MP-CFAR is k times more computational complex than the adaptive

beamformer. It is noted that the computational complexity of MP-CFAR scales

linearly with the number of targets. Since the number of targets is assumed to be

sparse k is relatively small value and the additional computational burden on the

processor using MP-CFAR is a modest increase.

5.2.2 MBMP-CFAR

The computational complexity of implementing the MBMP-CFAR algorithm is now

analyzed. Recall that the strategy of the MBMP-CFAR algorithm is to generate

multiple candidates for the location of the first target. Each candidate target then

serves as a seed to the localization and detection of subsequent targets. When the

process is completed, a metric is used to select the set of targets that provide the

best fit to the data. The inputs into the MBMP-CFAR are the measurement vector

y, the matrix of steering vectors A, the estimate of the covariance matrix R̂, a

set of G positive integers D, and a threshold parameter γ. MBMP-CFAR begins

by initializing a node with an empty set, it then computes the matrix of whitened

steering vectors B = R̂−1/2A and the whitened data z = R̂−1/2z. From the previous

section, computing the whitened data z requires O(N2) and whitening all G steering

vectors requires O(GN2) flops. MBMP-CFAR then proceeds to find the d1 indicies

m1,m2, . . . ,md1 , that produce the d1 largest projections of steering vectors bj on the

whitened data z. Specifically, the resolution cell index that localizes the first branch

of the first target is found from

m
(1)
1 = arg max

j

|bHj z|2

bHj bj
(5.8)

for j = 1, 2, . . . , G. The i-th branch of the first target, 1 ≤ i ≤ d1, is found from
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m
(i)
1 = arg max

j /∈m1,...mi−1

|bHj z|2

bHj bj
. (5.9)

All d1 branches can be obtained by computing |bHj z|2/bHj bj for j = 1, 2, . . . , G. From

the previous section, computing the inner product |bHj z|2/bHj bj requires O(N) flops.

If G inner products are performed, O(NG) are required to compute the inner product

for all G steering vectors.

MBMP-CFAR then tests the m
(1)
1 -th resolution cell for the presence of a target.

From the previous section, computing the test statistic for a single target requires

O(N2) flops. If the test statistic does not exceed the threshold γ, MBMP-CFAR

declares that no targets are present and the algorithm terminates. Otherwise, MBMP-

CFAR updates d1 target sets as follows S
(i)
1 = {m(i)

1 } for 1 ≤ i ≤ d1.

To detect the presence of a single target with MBMP-CFAR, one needs to

perform whitening of the steering vectors which requires O(N2G) flops, whitening

the data vector which requires O(N2) flops, localizing a target which requires O(NG)

flops, and finally, performing the detection test requires O(N2) flops. Therefore,

detecting a single target using MBMP-CFAR requires approximately O(N2G) flops.

The computational complexity for the detection of the k-th target using

MBMP-CFAR is now discussed. Let the S
(i1,...,ik−1)
k−1 be a localization solution

generated by MBMP-CFAR. MBMP-CFAR then computes the orthogonal projection

matrix P⊥B
S
(i1,...,ik−1)

k−1

which requires O(2(k − 1)N2) flops. MBMP-CFAR then uses

this matrix to determine a new set of normalized steering vectors orthogonal to the

detected targets wj = P⊥B
S
(i1,...,ik−1)

k−1

bj for j /∈ B
S
(i1,...,ik−1)

k−1

. Computing the steering

vectors orthogonal to the detected targets wi for i /∈ Sj requires O((G− k+ 1)N2) ≈

O(GN2) flops. The algorithm then proceeds to find the dk indicies i1, i2, . . . , idk from

m
i1,...,ik−1

k = arg max
j /∈m1,...,mk−1
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which requires O(GN) flops to generate dk localization solutions. This process is

repeated for all Dk−1 =
∏k−1

i=1 di localization solutions with k − 1 targets. MBMP-

CFAR then computes the path that minimizes the residual

(i1, i2, ..., ik) = arg min
(j1,...,jk)

R(j1,...,jk)

where

R(i1,...,ik) =

∥∥∥∥∥P⊥BS
(i1,...,ik)
k

z

∥∥∥∥∥
2

2

.

Computing the residual for a single path requires one to compute the 2-norm of a

matrix-vector product. The matrix-vector product requires O(N2) and computing

the 2-norm requires O(N) flops, therefore computing the residual for a single path

requires O(N2) flops. Computing the residual for all Dk paths therefore requires

O(DkN
2) flops. The path that minimizes the residual is then tested for the presence

of a target. From the previous section, it requires O(kN2) flops to perform the

detection test for all k targets.

To recap, to detect the k-th target with MBMP-CFAR, for every localization

solution generated by MBMP-CFAR with k − 1 targets, MBMP-CFAR computes an

orthogonal projection matrix which requires O(2(k−1)N2) flops for each localization

solution. Therefore, O(Dk−12(k−1)N2) flops are required to compute the orthogonal

projection matrix for all Dk−1 localization solutions. MBMP-CFAR then projects

the steering vectors orthogonally to the detected targets which requires O(GN2)

flops per localization solution. Therefore, O(Dk−1GN
2) flops are required to project

the steering vectors orthogonally to the detected targets for all Dk−1 localization

solutions. Localizing the k-th target requiresO(Dk−1GN) flops and finally, computing

the test statistic requires O(kN2) flops. The computational complexity of detecting

the k-th target is dominated by step where MBMP-CFAR modifies the steering
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vectors which requires O(Dk−1N
2G) flops, hence detecting the k-th target with

MBMP-CFAR requires O(Dk−1N
2G) flops. Therefore, detecting all k targets requires

O(ND(k − 1)N2G) flops, where

ND(k − 1) =
k−1∑
l=1

Di. (5.10)

Notice that Dl is the number of localization solutions with l targets. Hence, (5.10)

represents the total number of localization solutions obtained by MBMP-CFAR with

at most k− 1 targets. Comparing the computational complexity of MBMP-CFAR to

the adaptive beamformer it is seen that the MBMP-CFAR is ND(k − 1) times more

computational complex than the adaptive beamformer. Therefore, the computational

complexity of MBMP-CFAR scales linearly with the number of localization solutions

obtained. This points to a trade off between computational complexity on one hand,

and the probability of correct recovery on the other. Notice that when Di = 1 for

all i the MBMP-CFAR simplifies to the MP-CFAR and requires the same number of

flops.

5.3 Grid Refinement Techniques

So far in this dissertation, it was assumed that all the targets comply with the

discretized grid of angle-Doppler points. In reality, targets almost never comply

with a grid of discretized points and targets often lie off the grid regardless how

fine the granularity of the grid becomes. When targets do not comply with the

discrete grid of angle-Doppler points it was shown that the performance of both BP

and MP based algorithms may degrade significantly [59, 61]. In radars that use CS,

these degradations present itself as a loss in SNR and as a significant increase in the

probability of false alarm.
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Numerous techniques have been proposed in literature [62]–[66] to mitigate

the effects of off-grid targets. The most straightforward method to handle off-grid

targets is to simply increase the number of grid points sampled on the angle-Doppler

map. This method, although simple, increases the computational complexity of MP

algorithms since the computational complexity increases linearly with the number of

grid points G additionally, the use of very fine grids may lead to numerical instability

issues. In [62, 65, 66] the authors propose approximate the nonconvex penalty term

‖x‖0 in (5.3) with the convex penalty term ‖x‖A where ‖x‖A refers to the atomic norm

(more details on the atomic norm can be found in [69]). The resulting optimization

problem is convex and can be solved by a convex solver in polynomial time. Similar

to BP, the computation time required to solve the optimization problem proposed

in [62] is too large for radar applications. The authors in [63] proposed a matrix

completion algorithm to mitigate the effects of off-grid targets. However, the authors

noted that the matrix completion algorithm requires the same computation time as

the optimization problem in [62] and therefore impractical for radar applications.

In this dissertation, a simple grid refinement technique is used to handle off-

grid targets. Grid refinement was most notably used in [41] and utilizes a very

simple heuristic. The motivation behind grid refinement is intuitive: if the number

of grid points G is chosen such that the grid spacing matches the requirement for

target’s location accuracy δ, and if δ is small, then G becomes large. Instead, the

grid-refined starts with a coarse grid with spacing δ0 > δ, which generates a grid

of G0 < G points. MP or MBMP are ran on this coarse grid to obtain an initial

estimate of target locations, the grid is then refined locally for the grid points that

correspond to target locations and the remaining grid points are discarded. The

algorithm that utilizes MP to obtain an initial estimate of target locations is referred

to as Grid-refined MP-CFAR. Similarly, the algorithm that utilizes MBMP to obtain

an initial estimate of target locations is referred to as Grid-refined MBMP-CFAR. In
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this section the Grid-refined MP-CFAR and Grid-refined MBMP-CFAR is detailed

and the computational complexity of running both algorithms is discussed.

5.3.1 Grid-refined MP-CFAR

Grid-refined MP-CFAR can be thought of as a three stage algorithm. In the first

stage, the algorithm searches for an initial estimate of k target locations using MP,

where k is the iteration counter for the algorithm. In the second stage, Grid-refined

MP-CFAR refines the grid locally around the k target locations obtained in the first

stage and generates a new finer grid. Finally, in the last stage MP-CFAR is ran using

the new refined grid. If MP-CFAR declares that at least k targets are present on

the new refined grid, the algorithm increments k by one and reiterates the process,

otherwise, the algorithm terminates and outputs the set Sk−1, where Sk−1 is the set

of detected targets on the (k − 1)-th iteration. A block diagram of MP-CFAR with

the grid refinement procedure is shown in Figure 5.1

Figure 5.1 Block diagram of MP-CFAR with a grid refinement procedure.

The inputs into Grid-refined MP-CFAR are the measurement vector y, the

matrix of steering vectors A, the estimate of the covariance matrix R̂, a threshold

parameter γ, and a desired accuracy δ. Let the number of initial grid points be G

and let the spacing between grid point be given by δ0 the algorithm begins by setting

a counter k to k = 1. The first candidate target is localized by the index m1 of the

vector bj that has the largest data projection,
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m1 = arg max
j

|bHj z|2

bHj bj
(5.11)

for j = 1, ..., G. The index m1 becomes the initial estimate of the target in the

angle-Doppler domains. The estimate of the k-th target location is now described

given that k− 1 target locations have been determined. Let the matrix B be formed

with the columns bj. Let Sk−1 be the set of indices of columns of B associated with

detected targets, and let BSk−1
be the matrix formed by the columns indexed by

Sk−1. The projection matrix orthogonal to the detected targets is given by P⊥BSk−1
=

I − BSk−1

(
BH
Sk−1

BSk−1

)−1
BSk−1

. The steering vectors orthogonal to the detected

targets are formed as follows: wj = P⊥BSk−1
bj, for all j /∈ Sk−1. The k-th target is

localized according to

mk = arg max
j

|wH
j z|2

wH
j wj

. (5.12)

Once all k estimates of target locations is obtained, Grid-refined MP-CFAR

proceeds to refine the grid locally around all k resolution cells. Let ml be one of

the resolution cells obtained in the first stage of Grid-refined MP-CFAR and let the

resolution cell be associated with the spatial frequency ul and Doppler fl. Then, all

angle-Doppler pairs associated to spatial frequencies

[ul − δ0, ul − δ0 + δ, . . . , ul + δ0 − δ, ul + δ0]

and Doppler

[fl − δ0, fl − δ0 + δ, . . . , fl + δ0 − δ, fl + δ0]
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Figure 5.2 Illustration of the grid refinement procedure in one dimension.

are used to form a new grid. Note that (2∆ + 1)2 where ∆ = δ0/δ points are formed

for the new grid. This process is repeated for all k grid points generating a new grid

with Gk = k(2∆ + 1)2 grid points. Once the new grid is constructed, Grid-refined

MP-CFAR uses the newly formed grid as an input into the MP-CFAR algorithm.

If MP-CFAR localizes and detects k targets, Grid-refined MP-CFAR increments the

counter k by one and reiterates the process. This continues until MP-CFAR fails to

detect at least k targets. The refinement procedure in one dimension is illustrated in

Figure 5.2

The computational complexity of the Grid-refined MP-CFAR is now analyzed.

First, consider the computational complexity of the k-th iteration of the Grid-refined

MP-CFAR. From the previous section, the localization of k targets requires O(kGN2)

flops. A new grid is then generated, with Gk grid points and MP-CFAR is ran using

the new grid. From the previous section, O(kGkN
2) flops are required to execute

MP-CFAR with Gk grid points. Therefore, the computational complexity of the k-th

iteration of Grid-refined MP-CFAR is given by
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O(kGN2 +GkN
2) = O(kN2(G+ (2∆ + 1)2))

If the desired accuracy is chosen such that G ≈ (2∆+1)2 the above expression can be

simplified to O(kGN2). Therefore, the computational complexity of Grid-refined MP-

CFAR for the k-th iteration can be approximated as O(kGN2). The computational

complexity required to run k iterations of Grid-refined MP-CFAR is then given by

k∑
m=1

O(mN2G) = O(
k(k + 1)

2
N2G)

≈ O(k2N2G).

Notice that the computational complexity Grid-refined MP-CFAR is about k times

more computationally expensive than the MP-CFAR. Since the number of targets k

is small this is a modest increase in computational complexity.

5.3.2 Grid-refined MBMP-CFAR

The Grid-refined MP-CFAR algorithm obtains an estimate of the first target

according to (5.11), namely, finds the column of the whitened measurement matrix

with the largest projection on the whitened data z. As with MP-CFAR, the

performance of Grid-refined MP-CFAR is negatively impacted if Grid-refined MP-

CFAR localizes the target in the wrong resolution cell since localizing subsequent

candidate targets depends on the location of the first target. A more robust approach

is to find multiple candidate targets for location of the first target.

To this end, the MP algorithm is replaced with the MBMP algorithm to obtain

an initial estimate of target locations. At the end of the MBMP algorithm, ND(k)

localization solutions each with k targets is obtained. Grid-refined MBMP-CFAR

then refines the grid locally around all kND(k) resolution cells obtained by MBMP in
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the same fashion as the Grid-refined MP-CFAR. Once the new grid is generated,

MBMP-CFAR uses the newly formed grid as an input to the MBMP-CFAR

algorithm. If MBMP-CFAR localizes and detects k targets, Grid-refined MBMP-

CFAR increments the counter k by one and reiterates the process. This continues

until MBMP-CFAR fails to detect at least k targets.

The computational complexity of the Grid-refined MBMP-CFAR is now

analyzed. First, consider the computational complexity of the k-th iteration of

the Grid-refined MBMP-CFAR. From the previous section, the localization of k

targets requires O(ND(k − 1)GN2) flops. A new grid is then generated, with

Gk = kND(k)(2∆+1)2 grid points and MBMP-CFAR is ran using the new grid. From

the previous section, O(ND(k− 1)GkN
2) flops are required to execute MBMP-CFAR

with Gk grid points. Therefore, the computational complexity of the k-th iteration

of Grid-refined MBMP-CFAR is given by

O(ND(k − 1)GN2 +ND(k − 1)GkN
2) = O(ND(k − 1)N2(G+Gk)).

If the desired accuracy is chosen such that G ≈ (2∆ + 1)2 the above expression can

be simplified to O(ND(k − 1)GkN
2). Therefore, the computational complexity of

Grid-refined MP-CFAR for the k-th iteration can be approximated as

O(ND(k − 1)GkN
2) ≈ O(N2

D(k − 1)kGN2).

The computational complexity required to run k iterations of Grid-refined MP-

CFAR is then given by

k−1∑
m=1

O(N2
D(m)kGN2)
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From the above equation, the computational complexity of the Grid-refined MBMP-

CFAR depends on the square of the number of localization solutions obtained

by MBMP-CFAR. Hence, again pointing to a trade off between computational

complexity on one hand, and the probability of correct recovery on the other.

5.4 Numerical Results

In this section, numerical examples are presented to compare the performance and

computational complexity of ABF, Grid-refined MP-CFAR and the Grid-refined

MBMP-CFAR algorithms. For all algorithms, the number of receive elements is

Nr = 4, the number of transmit elements is Nt = 2, and the number of coherent

pulses is given by Np = 16 and the array length is given by Z = Zt + Zr = 8λ.

The SNR of the target is set to 20 dB and the CNR is set to 30 dB. The number

of training samples used to estimate the covariance matrix for the random array

is L = 2N . The number of resolution cells on the angle-Doppler map is given by

G = (2Z + 1)2 = 289. For all figures, a random realization of an array is drawn

and remains fixed throughout the Monte Carlo simulations. Let St be the true set of

resolution cells that contain targets, and let Ŝ be the set of resolution cells found by

a detector to have targets. Let (û, f̂) be the estimate of a target’s parameters where

the true parameters of the target is given by the angle-Doppler pair (u, f). Then, the

RMSE is defined as RMSE =

√
(u− û)2 + (f − f̂ 2). A target is considered detected

correctly if RMSE ≤
√

1/2Z2.

In Figure 5.3 the RMSE is plotted as a function of the desired accuracy

for the MP-CFAR algorithm. From the figure, as expected the RMSE is seen to

decrease as the spacing between grid points decreases. Once the spacing between

grid points decrease to about 1/8Z (recall that 1/Z is the approximate beamwidth)

the RMSE levels off and further refinement of the grid does not decrease the RMSE

and improvements to the RMSE cannot be made due to the presence of noise. From
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the figure, a refinement factor of about ∆ ≥ 8 achieves a RMSE of about 0.025. Note

that ∆ = 8 corresponds to generating a new grid of Gk = (2∆ + 1)2 = G and satisfies

the assumption that G ≈ Gk that was made in this chapter.

Figure 5.3 RMSE vs the grid spacing of the refined grid.

In Figure 5.4, the ROC curves for the ABF and MP-CFAR are plotted when a

target comply with the discretized grid of points. The target is placed at (u = 0, f =

1/Np), near the clutter ridge in the angle-Doppler map. In addition, the ROC for

the Grid-refined MP-CFAR is also plotted. The refinement factor ∆ is set to 8. The

target is placed at (u = δ, f = 1/Np+δ) where δ is drawn from a uniform distribution

δ ∼ [0, 1/Z]. From the figure, ABF again performs the worst since it cannot cope

with the high sidelobes of the MIMO random array and MP-CFAR performs the

best. The grid-refined MP-CFAR still outperforms the ABF but performs worse

than the MP-CFAR when the target lies on the grid point. In particular, the false

alarm probability of the Grid-refined MP-CFAR is about 3 times larger than the

probability of false alarm experienced by MP-CFAR. This increase in the probability

of false alarm is attributed to the fact that the target does not comply with the grid of
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discretized points. With very high probability, the target will not comply with a grid

of discretized points no matter how fine the grid becomes. Since the algorithm cannot

pinpoint the exact location of the target on the angle-Doppler map, it cannot remove

all of the target’s contributions using successive interference cancellation. This causes

a small amount of energy to still leak into the sidelobes and increase the probability

of false alarm.

Figure 5.4 ROC curves for the ABF, MP-CFAR, and Grid-refined MP-CFAR
algorithms. All algorithms utilize a MIMO random array with Nt = 2, Nr = 4,
Np = 16 with an array of size Z = 8λ. Parameters used: SNR= 20 dB, CNR= 30
dB, K = 1

In Figure 5.5 are shown the ROC curves for the ABF and MP-CFAR are plotted

when targets comply with the discretized grid of points. Two targets with spatial

frequency u = 0 are placed on the angle-Doppler map. Both targets are slowly moving,

one target has a Doppler 1/Np while the other has a Doppler of −1/Np. In addition,

the ROC for the Grid-refined MP-CFAR and Grid-refined MBMP-CFAR are also

plotted. The targets are placed at (u = δ, f = 1/Np+δ) and (u = −δ, f = −1/Np−δ)

where again, δ is drawn from a uniform distribution δ ∼ [0, 1/Z]. The refinement

factor ∆ is again set to 8. The number of branches used by Grid-refined MBMP-CFAR
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is given by D = {5, 1, . . . , 1}. From the figure, ABF again performs the worst out of

the four methods and the MP-CFAR algorithm shows a significant performance gain.

Also from the figure, it is seen that the Grid-refined MP-CFAR again experiences

a higher false alarm rate than the MP-CFAR as expected. Interestingly, the Grid-

refined MBMP-CFAR algorithm performs very similarly to the MP-CFAR algorithm

even though the targets lies off the grid for the Grid-refined MBMP-CFAR and the

targets lie on the grid for MP-CFAR. From Figure 5.4 it is clear that Grid-refined

MBMP-CFAR will experience an increase in the probability of false alarm because it

cannot completely remove the contributions of the target. However, since Grid-refined

MBMP-CFAR has access to multiple target sets it has an improved probability of

correct recover that is not available to MP-CFAR. This improved probability of correct

recovery allows Grid-refined MBMP-CFAR to remain competitive to MP-CFAR even

when the targets are off the grid.

Figure 5.5 ROC curves for the ABF, MP-CFAR, Grid-refined MP-CFAR, and
Grid-refined MBMP-CFAR algorithms. D = {5, 1 . . . , 1}. All algorithms utilize a
MIMO random array with Nt = 2, Nr = 4, Np = 16 with an array of size Z = 8λ.
Parameters used: SNR= 20 dB, CNR= 30 dB, K = 2
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In Figure 5.6, the average runtime of the ABF, Grid-refined MP-CFAR and

the Grid-refined MBMP-CFAR is plotted against the desired accuracy. The targets

are placed at (u = δ, f = 1/Np + δ) and (u = −δ, f = −1/Np − δ) where again, δ

is drawn from a uniform distribution δ ∼ [0, 1/Z]. The number of branched used

by Grid-refined MBMP-CFAR is given by D = {5, 1, . . . , 1}. From the figure, the

ABF has the least average runtime, in addition since the ABF cannot discriminate

targets within a beamwidth a refinement procedure is unnecessary and therefore not

employed. Hence, the average runtime of the ABF in the figure remains constant.

From the figure, the average runtime of the Grid-refined MP-CFAR increases as the

spacing between grid points decreases. This is consistent, since a smaller grid spacing

corresponds to a larger set of grid points in the refined grid. Note that for ∆ = 8 (or

a grid spacing of 1/8Z) the average runtime of the Grid-refined MP-CFAR is roughly

7 times longer than that of the beamformer. This increase in runtime is considered

an acceptable increase in computational complexity compared to the performance

gain Grid-refined MP-CFAR provides. Similarly to the Grid-refined MP-CFAR, the

average runtime of the Grid-refined MBMP-CFAR is seen to increase as the spacing

between grid points decreases. Also as expected, the runtime of Grid-refined MBMP-

CFAR is higher than that of the MP-CFAR due to the extra localization solutions it

generates.

5.5 Concluding Remarks

In this chapter, the computational complexity of the ABF, MP-CFAR and the

MBMP-CFAR was analyzed. The computational complexity of the MP-CFAR

algorithm was shown that roughly k times more computationally complex than the

ABF where k is the number of targets detected by MP-CFAR. This slight increase in

computational complexity is a modest increase considering the significant performance

increase that was observed in the previous chapter. Similarly, MBMP-CFAR was

81



Figure 5.6 Average runtime time vs the grid spacing of the refined grid for the
ABF, Grid-refined MP-CFAR, and Grid-refined MBMP-CFAR algorithms. The set
D used by Grid-refined MBMP-CFAR is D = {5, 1 . . . , 1} All algorithms utilize a
MIMO random array with Nt = 2, Nr = 4, Np = 16 with an array of size Z = 8λ.
Parameters used: SNR= 20 dB, CNR= 30 dB, K = 2

shown to be ND(k − 1) times more computationally complex than the ABF where

ND(k − 1) is the number of localization solutions obtained by MBMP-CFAR that

contains at most k − 1 targets. This points to a trade off between computational

complexity on one hand, and the performance of the radar on the other.

In addition, the detection of targets that lie off the grid of discretized set of

angle-Doppler points were considered. To handle off-grid targets a grid refinement

procedure was used with both MP-CFAR and MBMP-CFAR algorithms to develop

the Grid-refined MP-CFAR and the Grid-refined MBMP-CFAR algorithms. Grid-

refined MP-CFAR searches for an initial estimate of target locations using MP, it

then refined the grid locally around the initial estimates and finally performs target

detection on the new grid. Grid-refined MBMP-CFAR works similarly, but replaces

the MP algorithm with MBMP and replaces the MP-CFAR with the MBMP-CFAR.

The computational complexity of Grid-refined MP-CFAR and Grid-refined MBMP-
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CFAR were also presented. It was shown that the Grid-refined MP-CFAR is k2 times

more computationally complex than the ABF. Since the number of targets is assumed

to be small, this is still a relatively modest increase in computational complexity.

The Grid-refined MBMP-CFAR was shown to be about N2
D(k) more computationally

complex than the ABF. Note that the computational complexity depends on the

number of localization solutions obtained by MBMP ND(k), hence again pointing to

a design trade off between the performance of the algorithm and its computational

complexity. Numerical examples show that grid refinement improves the estimation

accuracy of the target on the angle-Doppler map the smaller the spacing between

grid points are up to a point. When the spacing between grid points is smaller than

about 1/8Z, no improvement in the RMSE was seen. A small performance decrease

was observed when detecting of off-grid targets with Grid-refined MP-CFAR and

Grid-refinend MBMP-CFAR compared to when targets comply with the discretized

grid of angle-Doppler points.

83



CHAPTER 6

CONCLUSIONS

In this dissertation, detection algorithms using concepts in space-time adaptive

processing (STAP) were presented for the detection of potentially slow moving

targets for ground moving target indicator (GMTI) radar using a large multiple-input

multiple-output (MIMO) random array. The performance of two sparsity based

detection algorithms, the matching pursuit - STAP (MP-STAP) and the multibranch

matching pursuit STAP (MBMP-STAP) were presented. In addition, two sparsity

based detection algorithms that maintains the desired constant false alarm rate

(CFAR) property, matching pursuit - CFAR (MP-CFAR) and multibranch matching

pursuit - CFAR (MBMP-CFAR) algorithms were also presented as improvements

upon the MP-STAP and MBMP-STAP algorithms. The performance of both the

MP-CFAR and MBMP-CFAR algorithms were analyzed in terms of the probability

of detection and the probability of false alarm. An analysis of the computational

complexity of both MP-CFAR and MBMP-CFAR were also presented. Lastly, to

allow the detection algorithms to handle targets that lie off the grid of discretized

angle-Doppler points a grid refinement procedure was added to MP-CFAR and

MBMP-CFAR to develop the Grid-refined MP-CFAR and Grid-refined MBMP-CFAR

algorithms respectively.

In Chapter 2, the signal model that was used throughout this dissertation was

introduced. In addition, properties of the MIMO random array were presented. In

particular, the array pattern of the MIMO random array was studied. In doing so,

the statistics for the average sidelobe level and the average peak sidelobe level was

derived. It was shown that the average sidelobe level is inversely proportional to the

number of sensors in the array. The average peak sidelobe level is shown to be larger
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than the average sidelobe level by a factor that scales logarithmically with the array

aperture. The clutter response of MIMO random arrays were also presented. The

resolution of the MIMO random array depends on the array aperture and therefore

can support a lower minimum detectable velocity (MDV) than a uniform linear array

(ULA) with the same number of elements. However, due to the spatial undersampling

introduced by the MIMO random array, the rank of the clutter increases and the array

must spend more degrees of freedom (DOF) canceling the clutter and therefore, must

spend less DOF on providing gain for target detection compared to a ULA with the

same number of elements.

In Chapter 3, the adaptive beamforming detection test is reviewed. In addition,

two sparsity based detectors were developed, the MP-STAP and the MBMP-STAP

algorithms. By using information on an upper bound on the number of targets, both

sparsity based detectors obtain a set of resolution cells that are declared as target

candidates. Since the algorithm obtains an upper bound on the number of targets

there are likely to be false alarms present in the set of obtained sets of targets.

To remove the false alarms from the solution, all target candidates are tested by a

detector.

In Chapter 4, the statistics of the adaptive beamformer (ABF) were reviewed.

It was shown that the ABF is unable to cope with the large sidelobes of a MIMO

random array. New detection algorithms for airborne radar were proposed which

combine the strengths of MIMO random arrays with the ability of sparsity based

algorithms to handle undersampling effects. In particular, two sparsity-based CFAR

detection algorithms were proposed, the matching pursuit-CFAR (MP-CFAR) and

multibranch MP-CFAR (MBMP-CFAR), respectively. MP-CFAR consists of a target

localization stage followed by a target detection stage. The target localization stage

exploits the sparsity of the number of targets to cope with the undersampling of the

MIMO random array. The target detection stage tests the localized targets obtained
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from the first stage using a CFAR detector. MBMP-CFAR generalizes MP-CFAR

by maintaining and updating multiple sets of candidate targets. The new detectors

do not require any knowledge on the number of targets. The statistics of the new

detectors were derived. As its name suggests, both MP-CFAR and MBMP-CFAR are

CFAR detectors, in the sense that the statistics of the new detectors do not depend

on the interference covariance matrix.

In Chapter 5, the computational complexity of the MP-CFAR and MBMP-

CFAR is analyzed and compared to the beamformer. It was shown that MP-CFAR

is roughly k times more computationally intensive than the beamformer and

MBMP-CFAR is roughly ND(k − 1) times more computationally intensive than the

beamformer where k is the number of targets detected by MP-CFAR and ND(k − 1)

is the number of localization solutions with at most k targets that MBMP-CFAR

generates. In addition, off-grid targets were considered, to handle off-grid targets a

grid refinement algorithm was proposed. Although numerous sophisticated algorithms

that handle the off-grid problem for CS algorithms have been proposed in literature,

they often require the use of a convex solver and has high computational complexity.

Grid refinement techniques as in [41], are less accurate than algorithms that make use

of a convex solver, but require significantly less computational complexity allowing it

to be ran in quasi-real time.

The main focus of this work was on the development of a sparsity based CFAR

detector for GMTI radar. It was shown that the detection algorithms presented in

this dissertation can maintain a desired false alarm probability even in the presence

of a strong interferer. In addition, using grid-refinement techniques these algorithms

are not constrained to a discretized grid of angle-Doppler points. The detection

algorithms are also shown to competitive in computational complexity compared

to the ABF while being able to provide a significant performance gain. Critically,

since the computational complexity of the CFAR detection algorithms is low and
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comparable to that of the ABF the proposed algorithms can be ran in quasi-real

time.
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