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ABSTRACT 

MACHINE LEARNING BASED DIGITAL IMAGE  

FORENSICS AND STEGANALYSIS 

by 

Guanshuo Xu 

The security and trustworthiness of digital images have become crucial issues due to the 

simplicity of malicious processing. Therefore, the research on image steganalysis 

(determining if a given image has secret information hidden inside) and image forensics 

(determining the origin and authenticity of a given image and revealing the processing 

history the image has gone through) has become crucial to the digital society.  

In this dissertation, the steganalysis and forensics of digital images are treated as 

pattern classification problems so as to make advanced machine learning (ML) methods 

applicable. Three topics are covered: (1) architectural design of convolutional neural 

networks (CNNs) for steganalysis, (2) statistical feature extraction for camera model 

classification, and (3) real-world tampering detection and localization.  

For covert communications, steganography is used to embed secret messages into 

images by altering pixel values slightly. Since advanced steganography alters the pixel 

values in the image regions that are hard to be detected, the traditional ML-based 

steganalytic methods heavily relied on sophisticated manual feature design have been 

pushed to the limit. To overcome this difficulty, in-depth studies are conducted and 

reported in this dissertation so as to move the success achieved by the CNNs in computer 

vision to steganalysis. The outcomes achieved and reported in this dissertation are: (1) a 

proposed CNN architecture incorporating the domain knowledge of steganography and 



 

 

steganalysis, and (2) ensemble methods of the CNNs for steganalysis. The proposed CNN 

is currently one of the best classifiers against steganography. 

Camera model classification from images aims at assigning a given image to its 

source capturing camera model based on the statistics of image pixel values. For this, two 

types of statistical features are designed to capture the traces left by in-camera image 

processing algorithms. The first is Markov transition probabilities modeling block-DCT 

coefficients for JPEG images; the second is based on histograms of local binary patterns 

obtained in both the spatial and wavelet domains. The designed features serve as the 

input to train support vector machines, which have the best classification performance at 

the time the features are proposed. 

The last part of this dissertation documents the solutions delivered by the author’s 

team to The First Image Forensics Challenge organized by the Information Forensics and 

Security Technical Committee of the IEEE Signal Processing Society. In the competition, 

all the fake images involved were doctored by popular image-editing software to simulate 

the real-world scenario of tampering detection (determine if a given image has been 

tampered or not) and localization (determine which pixels have been tampered). In 

Phase-1 of the Challenge, advanced steganalysis features were successfully migrated to 

tampering detection. In Phase-2 of the Challenge, an efficient copy-move detector 

equipped with PatchMatch as a fast approximate nearest neighbor searching method were 

developed to identify duplicated regions within images. With these tools, the author’s 

team won the runner-up prizes in both the two phases of the Challenge. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Digital images have become one of the major information carriers in our modern daily 

lives. While people enjoy the efficiency of information exchange, the security and 

trustworthy of digital images have become a crucial issue due to the ease of malicious 

processing, e.g., embedding secret messages for covert communications, altering origin 

and content of images with popular image editing software. These malicious usages could 

give rise to serious problems if they are taken advantage of by terrorist organizations, 

treated as evidence in court, or published by mass media for information dissemination. 

Therefore, the study and research on image steganalysis — determining if a given image 

contains secret information, and on image forensics — determining the origin and 

authenticity of a given image as well as revealing the processing history it has gone 

through, have become crucial to our digital society.  

In this dissertation, steganalysis and forensics of digital images are mainly treated 

as classification problems so as to make advanced machine learning (ML) methods 

applicable. Three topics are covered: (1) architectural design of convolutional neural 

networks (CNNs) for steganalysis; (2) design of statistical features for camera model 

classification; and (3) real-world tampering detection and localization. 
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1.2 Contributions Made in This Dissertation Research 

ML-based steganlaysis aims to distinguish images with secret messages embedded in, 

and their corresponding cover images. Since advanced steganography alters the pixel 

values in the image regions that are hard to detect during embedding, traditional ML-

based steganalysis heavily relied on sophisticated manual feature design has been pushed 

to the limit. To overcome this difficulty, in-depth studies have been conducted by the 

author to move the success achieved by the CNNs from computer vision to steganalysis. 

The outcomes are (1) a proposed CNN architecture incorporating the domain knowledge 

of steganography and steganalysis, and (2) ensemble methods of the designed CNNs for 

steganalysis. The proposed CNN is currently the best classifier against advanced 

steganography; and its size is easily expendable for even better performance when better 

hardware is available. Unlike traditional feature-based methods that have been limited by 

the difficulty of manual feature design, the CNN-based classifiers jointly optimize feature 

extraction and classification; hence, they are expected to be future trend of multimedia 

forensics and steganalysis. 

Camera model classification, aiming at assigning a given image to its source 

capturing device based on the statistics of pixel values, belongs to source identification in 

image forensics. For this, two types of statistical features have been proposed to capture 

the traces left by in-camera image processing algorithms of different makes and models. 

The first type is Markov transition probabilities of the neighboring block-DCT 

coefficients for JPEG images, the second is based on histograms of local binary patterns 

(LBPs) obtained in both the spatial and wavelet domains of images. The designed feature 

sets serve as the input to support vector machines for classification. These works were 
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done in the early stage of the Ph.D. research. While they have been surpassed by more 

recent methods, both of the two features sets achieved top performance at the time they 

were proposed. In the future, all of those feature-based methods are expected to be 

replaced by CNN-based methods. 

The last part of this dissertation documents the solutions delivered by the author’s 

team to The First Image Forensics Challenge organized by the Information Forensics and 

Security Technical Committee of the IEEE Signal Processing Society. In contrast to the 

common image tampering detection dataset created in a fully-controlled manner for pure 

research purposes, all the fake images involved in the challenge had been doctored by 

popular image-editing software to simulate the real-world scenario of tampering detection 

(images have been tampered or not) and localization (which pixels have been tampered); 

hence, the detection algorithms are required to be practical. For image-level tampering 

detection (Phase-1 of the challenge), we migrated advanced steganalysis features for 

tampering detection, which again prove that feature-based tampering detection methods 

work well in practice and features designed for steganalysis are applicable for tampering 

detection. For pixel-level tampering localization (Phase-2 of the challenge), having aware 

of the limitations of existing copy-move detection methods, we developed an efficient 

copy-move detector that employs PatchMatch as a fast approximate nearest neighbor 

searching method to identify duplicated regions for tampering localization. With these 

tools, the author’s team won the runner-up prizes in both the two phases of the Challenge. 

Results show that there is still a lot of room for improvement, particularly for the 

localization problem. 
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1.3 Outline of This Dissertation 

In Chapter 2, the motivation of using convolutional neural networks (CNNs), the 

architectural design of CNNs, and the ensemble study of CNNs for steganalysis are 

described in detail. Chapter 3 elaborates the Markov-based and the LBP-based feature 

sets designed for camera model classification. Chapter 4 documents our 2nd-place 

solutions for The First Image Forensics Challenge hosted by IEEE Signal Processing 

Society. Chapter 5 summarizes this dissertation. 
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CHAPTER 2 

CONVOLUTIONAL NEURAL NETWORKS FOR STEGANALYSIS 

 

2.1 Steganography and Steganalysis 

Modern steganography can be used to embed secret messages into digital media for 

covert communications. Unlike cryptography, steganography hides the existence of the 

secret messages to the public except the intended recipients. This feature, together with 

the popularity of digital media as suitable covers and the huge amount of publicly 

available steganographic software, facilitate steganography for possible illegal and 

malicious usages. Real-life examples include al Qaeda’s plan for attacks hidden in a 

pornographic video 1 , covert communications inside a Russian spy ring in US with 

messages hidden in images using customized steganography software2, the distribution of 

child pornography3 and malicious software4, etc. All the aforementioned examples have 

pointed to the urgent need of the counterpart of steganography – steganalysis. 

As digital images are unarguably one of the most popular forms of multimedia on 

cyberspace, in this chapter, we focus our research on the advancement of steganalysis to 

fight steganography with digital still images. More precisely, we concentrate on detecting 

advanced steganography embedding in the original spatial domain of grayscale images. It 

has been demonstrated that the success of steganalysis on grayscale images in spatial 

domain could be extended to the steganalysis on JPEG format [86, 103] and color images 

[104, 105].  

                                                           
1 http://www.cnn.com/2012/04/30/world/al-qaeda-documents-future (accessed on November 30, 2016) 
2 http://www.justice.gov/sites/default/files/opa/legacy/2010/06/28/062810complaint2.pdf (accessed on November 30, 2016) 
3 http://www.antichildporn.org/steganog.html (accessed on November 30, 2016) 
4 http://www.voanews.com/content/hackers-hiding-malware-in-plain-sight/2913694.html (accessed on November 30, 2016) 

http://www.cnn.com/2012/04/30/world/al-qaeda-documents-future
http://www.justice.gov/sites/default/files/opa/legacy/2010/06/28/062810complaint2.pdf
http://www.antichildporn.org/steganog.html
http://www.voanews.com/content/hackers-hiding-malware-in-plain-sight/2913694.html
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Both steganography and steganalysis have been studied for years, to better focus, 

only aspects of steganography and steganalysis closely related to our research will be 

covered in this dissertation. In Section 2.1.1, the information-theoretic framework of 

content-adaptive steganography will be presented. Feature-based steganalysis will be 

introduced in Section 2.1.2.  

2.1.1 Advanced Steganography 

While steganalysis is the focus in our works, having some knowledge of the data 

embedding methods would benefit the research on steganalysis. 

Steganography aims to maximize the amount of embedded data hidden into 

images while minimizing the chance of being detected by either visual attack or statistical 

attack (steganalysis). As the changes of pixel values during embedding usually happen at 

the lowest bit-planes of pixel values to ensure visual imperceptibility, it is assumed that 

the detectability depends only on steganalysis, which relies on statistics of pixel values. 

Steganography has been formalized as a rate-distortion problem [1, 2]. Given a n-

pixel cover image  
1

nn

i i
x


 x , where  0,..., 255ix   for 8-bit grayscale images5, 

the corresponding stego (message embedded) image  
1

n

i i
y


 y  is treated as a 

random variable    ~ Pr |p YY y y x , where 1 2 ... n     is the set of all 

possible n-pixel image y that x can be transformed to. In this dissertation, only ternary 

embedding6 (±1 embedding) is considered, i.e.,  1, , 1i i i ix x x   .  

As is customary in research, the size of embedded message (payload) is fixed 

beforehand, and the most secure (the least detectable) steganography is desired with the 

                                                           
5 For simplicity of notation, one-dimensional representation is used here for images. 
6 The saturation conditions when xi = 0 or 255 are not considered here. 
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fixed payload. Previous research works have demonstrated that a promising approach to 

quantize detectability is to design a distortion function measuring how much the stego 

image differs from the original cover. Given that the distortion of the transformation from 

x to y is    ,D Dy x y , embedding m bits into x on average while minimizing the 

average distortion can be formalized as 

 

  minimize ( ) ( )p
p

E D p D



y

y y  (2.1) 

 
2subject to  ( ) ( )log ( )H p p p m



  
y

y y . 

 

Note that this rate-distortion formulation depends on fixed cover image x, for simplicity 

of notation, x is not displayed in the equations. It has been proved in [1] that the optimal 

distribution ( )p y  has the form of Gibbs distribution 

 

 
exp( ( ))

( )
exp( ( ))

D
p

D










y

y
y

y
, (2.2) 

 

where the parameter 𝜆 can be searched to achieve the average embedding rate of m bits. 

To facilitate implementation of embedding, the distortion function is approximated with a 

pixel-wise additive form [1, 2] 

 

    
1

n

i i

i

D d y


y   (2.3) 
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where ( )i id y  is the distortion for each pixel by changing xi to yi during embedding, while 

keeping all the other pixels in x unchanged, i.e., for  1,...,i n , ( ) ( )i id y D y , such that 

 1 1 1,..., , , ,...,i i i nx x y x x y . The additive approximation assumes independence between 

distortions caused by changing each one of the pixels in x. Under this assumption, 

according to Equation 2.2, the optimal probability distribution i  for every pixel after 

embedding can be approximately by 

 

  
1 1

exp( ( ))
( )

exp( ( ))
ii

n n
i i

i i

i i i i

y

d y
p y

d y




 




 


 


y   (2.4) 

 

where   is searched to achieve 21
( ) log ( )

ii

n

i i i ii y
y y m 

 
    derived from 

Equation 2.1. Based on the information-theoretic framework formulated above, the 

design of ( )D y  is the key issue left. Most of the researches in steganography under this 

formulation focus on the distortion design, e.g., all of the stegaonographic methods: 

HUGO [27], S-UNIWARD [3], HILL [34], and WOW [32] to be mentioned in the 

following text are characterized by their distinct definitions of the distortion functions.  

This rate-distortion formulation enables simulation of embedding by changing 

each pixel i with i  in Equation 2.4 to test the performance of the distortion functions. 

Note that this formulation is not the actual implementations of message embedding and 

extraction schemes. In practice, steganography with performance close to the additive 

rate-distortion bound could be realized with the syndrome-trellis coding [2]; but it is not 

the concern in this research. 
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Recall that the distortion function is used here to quantize the detectability 

(security) of steganography. The design of it often relies on heuristics and experience 

gained from steganalysis research. Numerous steganalysis works [11-14, 38, 39] have 

indicated that changes of pixel values in smooth regions are more detectable than changes 

made in high-frequency regions, i.e., textures, edges, etc. The reason is that steganalysis 

relies on statistics of pixel values; therefore, it is less accurate on modeling high-

frequency regions which are less populated in images. This experience suggests higher 

embedding distortions in smooth regions and lower distortions in high-frequency regions. 

In our works, the S-UNIWARD (universal wavelet relative distortion in spatial domain) 

[3], a representative content-adaptive distortion function, is employed to test our 

steganalysis system. The S-UNIWARD distortion function is defined as 

 

 

( ) ( )

( )
,

( ) ( )
( )

( )

k k

uv uv

k
k u v uv

w w
D

w







x y
y

x
. (2.5) 

  

Here the cover image x and the stego (data embedded) image y are treated as two 

dimensional. The 
( ) ( )k

uvw x  and 
( ) ( )k

uvw y  (  1,2,3k ) denote the first-level undecimated 

wavelet LH, HL, and HH directional decomposition of x and y, respectively, where u and 

v are the indices in the corresponding subband. Parameter  serves as the stabilizing 

constant. The pixel-wise distortion ( )i id y  can then be derived from ( )D y  one by one by 

changing ix  to  1, , 1i i i iy x x x   , while keeping all the other pixels in x unchanged. 

Based on the denominator in Equation 2.5, the S-UNIWARD distortion assigns higher 



 

10 

distortion values to a pixel when its corresponding values in the high-frequency wavelet 

subband is lower; therefore, S-UNIWARD encourages embedding in high-frequency 

regions. More details can be found in [3].  

Figure 2.1 gives a simulation example using S-UNIWARD7 with 0.4 bit per pixel 

(bpp) embedding rate. The cover image is of size 512 × 512; hence, the payload (m) is 0.4 

× 512 × 512 bits. Figure 2.1 (Left) shows the cover image and Figure 2.1 (Center) is the 

corresponding stego image, which is visually of no difference from the cover image. The 

embedding changes are displayed in Figure 2.1 (Right), in which the bright white pixels 

have been changed by +1 to the original pixel values in the cover image during 

embedding, the dark pixels have been changed by -1, and the gray pixels are unchanged. 

Although the embedding rate is 0.4 bpp, the actual change rate in this example is about 

0.07 bpp, i.e., only 7% of the cover pixels values have been changed by either +1 or -1 to 

generate the stego image. We emphasize here that the changes made on the cover in 

Figure 2.1 (Right) are the actual signal of interest for steganalysis. 

To summarize, advanced steganography has three strong points: (1) few changes 

are made on the least significant bits of cover pixels compared with the embedding rate; 

                                                           
7 Source code available at http://dde.binghamton.edu/download/stego_algorithms/ 

 

Figure 2.1 An example of simulated embedding using S-UNIWARD with 0.4 bpp 

embedding rate. (Left) cover image. (Center) stego image. (Right) embedding changes. 
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(2) the locations of changes, depending on  
1

n

i i



 for simulation of embedding, are not 

fixed even with the same cover image; (3) changes strongly dependent on content of 

covers are made on locations less statistically detectable. Nevertheless, there are still two 

weak points: 1) the design of distortion functions in turn rely on heuristics and experience 

learned from steganalysis; 2) the additive assumption of distortions also compromises the 

optimality of data embedding.  

2.1.2 Feature-based Steganalysis 

To counter steganography, the goal of steganalysis is to identify if secret messages exist 

in given images. In this dissertation, steganalysis is treated as a binary (two-class) 

classification problem. Owning to the complex structures of natural images, classification 

with traditional methods in statistics that relies on accurate distribution modeling of 

images could hardly be applied. By contrast, machine learning (ML) methods skip the 

data modeling process and directly mine complex patterns with algorithmic models [4]. 

When combating with advanced steganography, ML-based steganalysis are generally 

more effective.  

ML-based steganlaysis is data-driven and follows the general classification 

frameworks8. Let  
1

,
N

i i i
y


x  denote an image dataset with N data, each have n pixels, we 

have n

i x , where  is the data sampling subspace and  0,..., 255  for 8-bit 

grayscale images;  cover, stegoiy    is the corresponding label. For regression-

based classifiers such as neural networks,  0,1  is commonly used. Theoretically, we 

look for a mapping function :h   using the given dataset so that the class labels of 

                                                           
8 The notations in this section is not related to those used in 2.1.1. 
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newly observed data new x  will be predicted as  newh x . In practice, h is determined 

using part of the existing dataset, often called training set, so that the goodness of the 

selected h could be empirically evaluated by the error rate on the other part of the dataset, 

often called testing set. Denote the testing set as  and let the size of it be M, our goal is 

to select h to minimize the testing error: 

 

  
1

minimize ( )
i

i i
h

I h y
M 


x

x .  (2.6) 

 

This error rate, under the assumptions of equal priors and same error costs for the two 

classes, is the major performance evaluation metric used in our steganalysis research. 

Conventional ML-based steganalysis can be decomposed into two steps: feature 

extraction and pattern classification. The feature extraction step is applying a manually 

designed function f to transform every image data ix  into a k-dimensional real feature 

vector iz , namely, ( ) :i i

kf z x . The dataset is then transformed from  
1

,
N

i i i
y


x  

to  
1

,
N

i i i
y


z . The feature vectors 

1

N

i i
z  serve as the inputs instead of  

1

N

i i
x  to some 

mathematically optimized (using the training set) generic classifier g, which maps the 

feature vectors to labels, namely, ( ) :i

kg z . Therefore, the mapping function h is a 

combined function of f and g:     i ih g fx x . While those well-developed generic 

classifiers such as support vector machines (SVMs) [5, 6] are the real strength of machine 

learning, their power could not be fully exerted without sophisticated feature extraction, 

particularly when the inputs are raw images pixels. In this dissertation, the machine 
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learning frameworks that heavily rely on manually designed features are called feature-

based methods. 

In feature-based steganalysis, given an image, the feature extraction procedure 

generally includes three essential steps: (1) generate the so-called noise residual images 

(called ‘residual’ in the following text) through high-pass filtering; (2) for each residual 

encode each pixel and its neighbors into a descriptor, and (3) statistically aggregate the 

descriptors to form final feature vectors.  

Unlike most of the pattern recognition tasks, in steganalysis, the signals of interest 

are the embedding changes [Figure 2.1 (right)] mainly lying in the noise parts of cover 

image pixels, and the interference is the cover image content. In other words, steganalysis 

is a classification problem with extremely low signal-to-interference ratio (SIR). To boost 

the SIR, certain types of high-pass filtering are commonly performed in early stages of 

the feature extraction process to suppress the image content irrelevant to classification. In 

the literature, examples of high-pass filtering include but are not limited to taking high 

frequency wavelet subbands [7, 8], calibration in the JPEG domain [9, 10], and spatial 

mask filtering [11–14], etc.  

The following descriptor generation and statistical aggregation steps that work on 

the residuals are inspired by the fact that the embedding changes made even in the least 

significant bits of pixel values would alter the complex dependencies of neighboring 

pixels. Typical methods in spatial domain work by obtaining either the high-order co-

occurrence matrices of neighboring pixel values or histograms of random local linear 

projections on a rich and diverse set of noise residuals [12, 14].  
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The feature extraction of the SRM [12] (spatial rich model) is a good example that 

follows the typical procedure. Given an image, a rich and diverse set of residuals are first 

generated by mask filtering. Examples of the masks used are shown below: 

 

 

0 0 0 0 0.5 0 0.25 0.5 0.25

0.5 1 0.5 0 1 0 0.5 1 0.5

0 0 0 0 0.5 0 0.25 0.5 0.25

      
     

  
     
           

  

 

The residual generated from the above masks are called SPAM residuals, which could be 

further processed to generate MINMAX residuals by element-wise taking the minimum 

or maximum of the corresponding pixel values in multiple residuals. Next, the residuals, 

denote one of them as  ,i jrr , will then be element-wise quantized and truncated with 

the equation 

 

 ( )trunc round
q

 
  

 

r
r   (2.7) 

where  

 

T a T

trunc a T a T

a otherwise




   



. 

 

The combined effect of truncation and quantization is essentially equivalent to 

performing binning to the residuals to facilitate the generation of histograms (or co-

occurrence matrices) for accurate statistical modeling. Truncation also reduced the 
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interference caused by cover image content by limiting the large values in the residuals. 

Both the truncation threshold T and quantization q are empirically determined to be T = 2 

and  1,2,3q . Then, each element in r , denoted as ,i jr , will be represented by a 

descriptor comprising the values of its four consecutive neighbors (including the pixel 

itself) in horizontal or vertical directions, followed by the statistically aggregation step of 

counting the co-occurrences of the descriptors across the whole residual map, e.g., for the 

horizontal 4-pixel neighborhoods, the co-occurrence values are calculated by  

 

    , , 1 , 2 , 30 1 2 3 0 1 2 3

,

, , , , , ,i j i j i j i j

i j

C k k k k I r k r k r k r k         (2.8) 

  

where  0 1 2 3, , , ,...,k k k k T T   . The formation of co-occurrence matrices discards the 

location information in one shot, thereby preventing the following generic classifiers to 

memorize the locations of embedding. To reduce the dimensionality and generate more 

concise and robust features, both the symmetric natures of co-occurrences and signs of 

residual values have been considered, i.e.,  0 1 2 3, , ,C k k k k ,  3 2 1 0, , ,C k k k k  and 

 0 1 2 3, , ,C k k k k     are merged into one value, nevertheless, the feature dimensionality 

has still been boosted to more than 30,000 obtained from a total of 78 residuals, and yet, 

the classification performance is still not satisfactory. To further improve the steganalysis 

performance in face of the ever more sophisticated steganography algorithms, more 

discriminative statistical features are in demand. However, the manual feature design 

heavily relies on heuristics of steganalysis experts seems to have been pushed to the limit.  
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2.2 Motivation 

Steganalysis is not the only research field in which the feature extraction is difficult. In 

the field of image classification — determining what kind of object is presented in each 

image, one of the topics of broad interest in computer vision, feature extraction is also 

regarded as the key portion of the classification task and very difficult to improve. With a 

finite number of training samples, well-designed features must be robust to various cases 

of the objects, including scales, viewing angles, and occlusions; be robust to within-class 

diversities, e.g., different postures and breeds of animals; as well as be robust to complex 

backgrounds. Hence, the performance of classification with manual feature design would 

be far from optimal because of the aforementioned complexity. Popular approaches to 

feature extraction for image classification include a dense transform-invariant descriptor 

generation step to encode each pixel into a discriptor, e.g., scale-invariant feature 

Input image
Descriptor  

generation

Statistical 

aggregation 
features

Pre-

processing

Dense SIFT, 

SURF, HOG, etc

BOVW, FV, 

LLC, etc.

 

(a) 

High-pass 

filtering
Input image

Descriptor 

generation

Statistical 

aggregation 
features

neighboring pixel values, 

linear projection of pixel 

neighborhoods, etc.

Histograms, Markov 

transition probabilities, 

co-occurrences, etc.

 

(b) 

Figure 2.2 Feature extraction for (a) image classification and (b) steganalysis. 
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transform (SIFT) [15], speeded up robust features (SURF) [16], the histogram of oriented 

gradients (HOG) [17], followed by a statistical aggregation step on the descriptors, e.g., 

bag of visual words (BOVW) [18, 19], fisher vectors (FV) [20], locality-constrained 

linear encoding (LLC) [21]. The framework of feature extraction for image classification 

is summarized in Figure 2.2 (a); for comparison, the feature extraction for steganalysis is 

shown in Figure 2.2 (b). It is straightforward to realize that the feature extraction flow of 

steganalysis and that of image classification in computer vision are very similar.   

In year 2012, at the famous computer vision competition9, a convolutional neural 

network (CNN) capable of learning features through mathematical optimization instead 

of manual feature extraction is designed by the winners [23] (main convolutional 

structure proposed early in the 1990s [22]). It surprisingly outperformed all the 

conventional feature-based methods adopted by other teams by a large margin [23, 24]. 

Since then, CNNs have been dominating in computer vision and an explosive amount of 

researches on CNNs are undergoing. In a short period of time, the routine to invest huge 

efforts for manual feature extraction has been replaced by the architectural design of 

CNNs capable of learning features. 

The structure of CNN is characterized by its convolutional and pooling layers. In 

traditional neural networks, each of the output neuron in a hidden layer is fully connected 

with all the elements of the input. In contrast, in the convolutional layers, each of the 

output neuron is connected only within a predefined local region of input, and the 

parameters associated with the local connections are shared for all the output neurons. 

These constraints force the neural networks to focus on mining local spatial patterns, 

thereby capturing the essence of the input data — the strong spatial local-correlations in 

                                                           
9 http://image-net.org/ (accessed on November 30, 2016) 

http://image-net.org/


 

18 

images. The other merit of the local connections and parameter sharing in convolutional 

layers is that the number of parameters to be optimized in the classifier is greatly reduced. 

The pooling layers aggregate local regions into more concise and informative 

representation. When the convolutional and pooling layers are alternately placed, the 

CNN learns optimized hierarchical features through gradients back-propagation [25]. 

Figure 2.3 gives a comparison of the traditional feature-based framework and the CNN-

based framework. More details of the layer functions will be introduced along with the 

presentation of our designed CNN architecture in Section 2.3. 

Due to the similarity between the classification frameworks of steganalysis and 

image classification, and their same difficulty in feature design, we believe that the CNNs 

could potentially learn more effective features to boost the performance of steganalysis. 

feature extraction input images classifier trainingfeatures

mathematical optimization

 error (loss)

Hand-designed using heuristics 

and domain knowledge

provide little guidance to 

feature extraction process

 
(a) 

CNN optimizes the whole classification process

input images classification  error (loss)

       feature learning 

   within convolutional 

            structure

features

mathematical optimization (gradient back-propagation)

accomplished by fully-connected layers 

and pass the optimization information 

to the lower convolutional structures

Learned through layer-wise 

convolutional structure

 
(b) 

Figure 2.3 Frameworks of feature extraction and classifier training for (a) feature-based 

and (b) CNN-based methods. 
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2.3 Architectural Design of CNN 

The success of CNN in computer vision and the similarity of classification frameworks of 

steganalysis and image classification have aroused the interest of us in seeking the way to 

use CNNs for steganalysis. Nevertheless, recent studies conducted by other researchers 

[26, 37] have indicated that the architectures of CNNs tailored for computer vision may 

not be best suited to image steganalysis. After all, image classification and steganalysis 

are different research topics. Some comparative analysis is necessary to understand the 

difference. 

For any classification problems, we need to be clear what the signal of interest is 

and what the noise or interference is. The task of image classification is to recognize the 

type of major objects, which are part of image content and the signals of interest; the 

interference is the rest of image content, e.g., backgrounds. In contrast, the signals of 

interest in steganalysis are the changes made to pixels, e.g., ±1 to pixel values for ternary 

embedding [see Figure 2.1 (Right)]; the interference is the content of cover images. 

According to steganography introduced in Section 2.1.1, the signal and interference are 

very dependent and the signal-to-interference ratio (SIR) is extremely low. The within-

class diversities for classification are also different. For image classification, possible 

within-class diversities include variations of scales, viewing angles, spatial locations in 

images, occlusions, etc. For steganalysis, the variation of image content is a within-class 

difficulty for both the cover and stego classes; the unfixed embedding locations and 

changes of pixel values even with fixed covers is another difficulty for the stego class. 

Aware of the difference between steganalysis and image classification, successful 

CNN architecture for steganalysis should (1) enhance the SIR, (2) weaken the 
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interference brought by the content of cover images, (3) prevent memorizing the exact 

locations of embedding changes from the training set, and (4) learn from feature 

extraction in traditional feature-based steganalysis. 

Before the publications of our works, two pieces of works have been published by 

other researchers in this field. In their pioneering work, Tan and Li [26] proposed a CNN 

which comprises three stages of alternating convolutional layers with sigmoid non-linear 

activations, and max-pooling layers with stride equals 4 (4×4 down-sampling). When 

detecting HUGO [27], which is an earlier version of content-adaptive steganography, at 

embedding rate of 0.4 bpp on the BOSSbase [28], the CNN had an error rate of 48% with 

random parameter initialization; after involving a high-pass convolutional kernel [12, 27] 

into parameter initialization of the first convolutional layer, and pre-training all of the 

parameters with unsupervised learning, they managed to reduce the error rate to 31%, 

still far away from the 14% achieved by the SRM [12] and FLD-ensemble (fisher linear 

discriminants as weaker leaners) [30]. The major weaknesses of their proposed CNN are 

the max-pooling operation, which relies heavily on the image content; the stride-4 down-

sampling rate (in contrast to stride-2 commonly used) during pooling, which causes too 

much information loss; and the 5×5 convolution kernel size in deeper convolutional 

layers that may overly model pixel neighborhoods.   

A few months later, Qian et al. [31] reported a CNN equipped with a high-pass 

filtering layer, Gaussian non-linear activations, and average pooling for steganalysis. The 

reported detection error rates are 2% to 5% higher than those achieved by the SRM on the 

BOSSbase when detecting three content-adaptive steganography — HUGO [27], WOW 

[32], and S-UNIWARD [3]. This is a significant boost in performance, but it is still 
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inferior to the SRM. The improvements could be mainly attributed to the average-pooling 

and the high-pass filtering layer adopted. However, it is rather difficult to reproduce the 

reported results due to the multi-layer stack of Gaussian activation which makes training 

extremely difficult without proper initialization. 

Studies in these two pieces of works have indicated that taking into account the 

domain knowledge in steganography and steganalysis, e.g., using high-pass kernel to 

generate noise residuals, improves the classification performance of the CNNs. In 

feature-based steganalysis, the domain knowledge is embedded in the manual feature 

extraction step. Analogously, as the CNNs embrace the feature extraction step into the 

networks, the domain knowledge should be reflected in the network architectures.  

Along this direction, we propose a CNN that tries to incorporate the knowledge of 

steganalysis. In the detailed architecture, we take absolute values of elements in the 

feature maps generated from the first convolutional layer to facilitate and improve 

statistical modeling in the subsequent layers; to weaken the interference caused by image 

content, we constrain the range of element values at early stages of the networks; to 

prevent overfitting, the strength of modeling is reduced by using 1×1 convolutions in 

deeper layers; besides, as have been proved effective in the previous works [26, 31], the 

proposed CNN learns from noise residuals to improve the SIR and uses average pooling. 

Although the proposed CNN is neither large nor deep, and currently learns from 

only one type of noise residual, the results have verified that its performance is 

comparable with that of the SRM. This initial-stage work has confirmed that deep 

learning with CNNs is indeed a powerful machine learning tool for steganalysis. The 
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results have also implied that a well-designed CNN would have the potential to provide a 

better detection performance compared with the traditional feature-based steganalysis. 

In this section, first, the overall architecture of the proposed CNN is directly given 

in Section 2.3.1. Then, in Sections 2.3.2, 2.3.3, and 2.3.4, we discuss about our design 

considerations. All the experimental results to support the design appeared in Section 

2.3.2, 2.3.3, and 2.3.4 were obtained using cross-validation on the training set. Details of 

the dataset, software platforms, data splits, and hyper-parameters involved in the CNN 

are covered in Section 2.3.5. Results on the testing set are presented in Section 2.3.6. 

Conclusions are drawn in Section 2.3.7. 

2.3.1 Overall Architecture 

In this section, the entire layer functions involved in our proposed CNN are elaborated. 

These layer functions constitute the forward function of the entire CNN, enough for 

understanding the ideas of design for steganalysis; the optimization (training) of the CNN 

is enabled by gradient back-propagation [25]. We would like to emphasize that our 

contribution is the whole architectural design for steganalysis, not the layer functions as 

components in the CNN. 

Figure 2.4 illustrates the overall architecture of our CNN. Inside boxes are the 

layer functions and hyperparemeters. Data sizes are displayed on the two sides. Sizes of 

convolution kernels in the boxes follow (number of kernels) × (height × width × number 

of input feature maps). Sizes of data follow (number of feature maps) × (height × width). 

Same as in [31], a high-pass filtering (HPF) layer is placed at the very beginning 

to transform original images to noise residuals ( 512 512 512 512  , the input images are  
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Figure 2.4 The proposed CNN architecture.  
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of size 512×512)10 in order to boost the SIR. The HPF kernel is one that commonly used 

in steganalysis research shown below:  

 

 

1 2 2 2 1

2 6 8 6 2
1

2 8 12 8 2
12

2 6 8 6 2

1 2 2 2 1

W

     
 
    
 
      
 
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      

  (2.9) 

 

The parameters in this 5×5 kernel are fixed and not optimized during training. Therefore, 

the actual inputs to the CNN are noise residuals, not the original images. 

The whole CNN can be divided into a convolutional module followed by a linear 

classification module. The convolutional module transforms the noise residuals to 128-

dimensional (128-D) feature vectors. The linear classification module, equivalent to 

logistic regression for two-class classification problem, composed of a fully-connected 

(FC) layer and a softmax layer, and routinely transforms the feature vectors to posterior 

probabilities for each class. Final class labels are determined by choosing the class 

corresponding to the larger posterior. In this work, we focus on the design of the 

convolutional module. 

  The convolutional module comprises five groups of layers (displayed as Group-1 

to Group-5 in Figure 2.4), each starts with a convolutional layer which generates feature 

maps, and ends with an average pooling layer which performs local averaging (except 

Group 5) as well as subsampling on the feature maps.  

                                                           
10 Throughout the presentation in this section, we always assume proper padding is applied wherever is necessary. 
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Both the inputs and outputs of convolutional layers are three-dimensional (except 

the convolutional layer in Group-1). Let the input to a convolutional layer be of size 

H×W×C, where H and W are the sizes of two spatial dimensions and C is the number of 

input feature maps (sometimes called channels), the output of this convolutional layer has 

size H×W×K, where the two spatial dimensions are same as those of the input and the 

output has K feature maps. The convolutional kernels containing parameters are of size 

MH×MW×C, where MH and MW (MH ≤ H, MW ≤ W) are the spatial sizes11 of the kernels 

and the third dimension equals the number of input feature maps. Functionally, sliding 

window dot-product is first performed across spatial dimensions of the input datum with 

the kernel so that C maps are generated, which are then element-wise summed; therefore, 

one output feature map of size H×W can be generated by a single kernel. To generate K 

output feature maps, K kernels of size MH×MW×C are needed in the convolutional layer. 

For example, the convolutional layer in Group-2 of Figure 2.4 has input size of 

256×256×8 (H = W = 256, C = 8), output size of 256×256×16 (K = 16); therefore, there 

are 16 kernels of size 3×3×8 (MH = MW = 3) in this convolutional layer. Apart from the 

convolutional kernels, each output feature map is element-wise added by a single bias 

value. Values in the kernels as well as biases are the parameters in the convolutional layer 

to be optimized. Let  , ,i j cxx  be the three-dimensional input to the convolutional layer, 

where  1,...,i H  and  1,...,j W  are the spatial indices in the c-th (1 ≤ c ≤ C) feature 

map, and let    ( )

, ,

k k

u v cww  be the k-th (1 ≤ k ≤ K) kernel, where  1,..., Hu M  and 

 1,..., Wv M  are its spatial indices and c corresponds to the same feature map as the 

                                                           
11 Assume both MH and MW are odd numbers. 
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input datum, and further let  k
b  be the bias element-wise added to the k-th output feature 

map12, the corresponding output element 
 
, ,

k

i j cy  of the convolutional layer is calculated by  

 

 
 ( ) ( )

, , , , /2 , /2 ,
1 1 1

WH

H W

MMC
kk k

i j c u v c i M u j M v c
c u v

y b w x
        

  

    (2.10) 

 

The corresponding matrix form is 

 

      

1

C
k k k

c c

c

b


  y w x ,  (2.11) 

 

where cx is the c-th input feature map of size H×W, 
 k

cw  of size MH×MW is the 2-D mask 

applied on cx in the k-th kernel, 
 k

y  of size H×W is the k-th output, and the operator ‘ ’ 

denotes the usual spatial convolution in image processing. 

To enhance the power of statistical modeling, our CNN is equipped with the 

hyperbolic tangent (TanH) [Figure 2.5 (left)] non-linear activations for Group-1 and 

Group-2, and the rectified linear unit (ReLU) [35] activations [Figure 2.5 (right)] for 

Group-3, Group-4, and Group-5. Inside Group-1, an absolute activation (ABS) layer is 

inserted to force the statistical modeling to take into account the (sign) symmetry [12][14] 

existed in noise residuals. To prevent the CNN training from falling into poor local 

minima, immediately before each non-linear activation layer, the feature maps are 

normalized with batch-normalization (BN) [36].  

                                                           
12 Biases are fixed to be zeros in the Group 1 which will be covered in section 2.3.2. 
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The BN layer first normalizes elements in each feature map of the input to zero-

mean and unit-variance to ensure that the initial input to the following TanH activations 

falls in the quasi-linear region, as shown in Figure 2.5 (Left), so that the gradient back-

propagation would not fall into poor local minima. Unlike the other layer types, the BN 

layer only works when there are more than one data presented. The input to a BN layer 

should have N (N > 1) data, each have dimensions H×W×K. Let n denotes the n-th input 

data (1 ≤ n ≤ N), k denotes the k-th feature map (1 ≤ k ≤ K), and let i and j (1 ≤ i ≤ H, 1 ≤ j 

≤ W) be the spatial indices in the feature maps, the normalization for input elements in 

the k-th feature maps of the n-th data can be written as 

 

 

( ) ( )
( )

, ,
, ,

( )

k k
k

n i j
n i j
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x
x


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where ( ) ( )

, ,

, ,

1k k

n i j

n i j

x
NHW

    and  
2

( ) ( ) ( )

, ,

, ,

1k k k

n i j

n i j

x
NHW

   . To recover the power 

of modeling, the BN layer then scales and shifts the normalized data with a scaling factor 

( )k and a bias 
( )k , both optimized, for each normalized feature map, and generates an 

output element of 
( )

, ,

k

n i jy which can be calculated by 

 

 
( )

( ) ( ) ( )
, ,, ,

k
k k k

n i jn i jy x     (2.13) 

 

Since all the normalization, scaling and shifting processing in the BN layer are 

identical within each feature map and differ across feature maps, the spatial correlations 
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within feature maps are well preserved, and optimal scaling and shifting parameters could 

be learned for each feature map. The output feature maps from the BN layer are then 

element-wise mapped by the TanH activation into three regions, as shown in Figure 2.5 

(Left), and the output are well-prepared for further modeling. 

The pooling layers in Group 1–4 of Figure 2.4 perform local averaging on every 

other input element (stride = 2) in the spatial dimensions, for each input feature map 

independently. Therefore, the outputs of the pooling layers have the same number of 

feature maps and are of half the sizes in the two spatial dimensions, i.e., input of size 

H×W×K are reduced to (H/2)×(W/2)×K after pooling. Let the spatial region sizes for 

averaging be MH×MW (MH = MW = 5 in our work), output elements of the pooling layers 

can be expressed as 
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Figure 2.5 The two non-linear activation functions. (Left) TanH. (Right) ReLU. 
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Finally, through global averaging, the pooling layer in Group 5 merges each 

spatial map to a single element (128 feature maps of size 32 × 32 to a 128-D feature 

vector), i.e.,  

 

    
,

,

1k k

i j

i j

y x
HW

    (2.15) 

 

where H = W = 32 and  1,...,128k  according to Figure 2.4. In this way, the whole 

CNN is constraint to perform the same operations to every pixel in the original images 

(or the noise residuals), thereby preventing the statistical modeling from grasping the 

location information of embedded pixels from the training data. 

2.3.2 Layer Designs for Statistical Modeling 

The exact modeling procedure in the CNN is hard to interpret when the layer-wise 

computation goes deeply. Therefore, we stand a better chance to improve the 

performance by focusing more on the design of the first layer group (Group-1 in Figure 

2.4), where the functionality of the CNN is still traceable. 

Group-1 starts with a convolutional layer that takes as input the noise residuals 

generated from the HPF layer. This convolutional layer explores relations of neighboring 

pixels in the residuals with optimized kernels 
  

1

K
k

k
w , and generates feature maps for 

statistical modeling. Unlike the three-dimensional input of the other convolutional layers, 

since the HPF layer only generates one residual for each data, the input to the 

convolutional layer in Group-1, denoted as x , is two-dimensional, i.e., the number of 
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input feature map C equals 1. To assist the statistical modeling of the CNN, we disable 

the default bias learning in this convolutional layer, namely, the biases  k
b  (  1,...,k K ) 

in Equations 2.10 and 2.11 are forced to be zeros, so that the output feature maps are 

symmetric with respect to zeros13.Thus, according to Equation 2.11, for  1,...,k K , the 

convolutional layer in Group-1 has a simplified function: 

 

    k k
 y w x   (2.16) 

 

Then, we insert an ABS layer right after this convolutional layer to discard the 

signs of the elements in the feature maps, denoted as 
 k

y ,  1,...,k K , where ...  

stands for taking element-wise absolute values. The output of the ABS layer is thereafter 

fed into a BN layer, which performs optimized scaling and shifting on each of the 
 k

y  

for  1,...,k K . The output of the BN layer would then be element-wise truncated by 

the saturation regions [see Figure 2.5 (Left)] in the following TanH activation function. 

Denote 
 k

z  as the corresponding output map of the TanH function, the joint function of 

the BN layer and TanH activation is 

 

 
        k k k k

TanH m n z y   (2.17) 

 

                                                           
13 The sign-symmetry [12][14] is brought by natural image statistics and the equally treated ±values in the distortion function of 

steganography (see Equation 2.5).  
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where 
 

 

 

k
k

k
m




  and 

   
   

 

k k
k k

k
n

 



   according to Equations 2.12 and 2.13 are the 

optimized scale and bias for the k-th output feature map. In fact, the TanH function can 

be considered as an approximation of the truncation function introduced in Equation 2.7, 

 

 ( ) ( )

T a T

TanH a trunc a T a T

a otherwise




    



  (2.18) 

 

The functionality of Equations 2.17 and 2.18 bears some similarity with the quantization 

and truncation steps in the SRM feature extraction. Some minor difference is (1) the hard 

quantization and truncation in SRM (Equation 2.7) is replaced by the softer scaling → 

shifting → TanH operation chain, with both the scaling and shifting values 

mathematically optimizable; (2) encoding of pixel neighborhood happens earlier by linear 

projection with optimized kernels 
  

1

K
k

k
w , whereas in SRM the encoding is performed 

later by considering the four neighbors during generation of the co-occurrence matrices. 

Note that the second difference point is more similar to another feature-based method 

called PSRM [14], in which the projection kernels are not optimized but randomly 

generated. The more different here is the following statistical aggregation step, which, in 

the SRM, is achieved with a one-shot generation of co-occurrence matrices, whereas in 

the CNN, is performed by layer-wise stacking of convolutional and pooling layers, and is 

therefore, expected to be more powerful, but in the meantime, much more difficult to 

interpret.  
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To obtain some intuitive understanding of the functionality, we drawn in Figure 

2.6 the distributions of a validation image after it went through the convolutional layer, 

ABS layer, BN layer, and TanH activation in Group 1 of a trained CNN (only the first 

two feature maps are displayed). As we disabled bias learning in the first convolutional 

layer, the output distributions, in Figure 2.6 (a), are symmetric with respect to zeros. The 

outputs of the ABS layer, with the distributions shown in Figure 2.6 (b), are first 

normalized following Equation 2.13 (with the global statistics stored during training). 

The normalized feature maps are then scaled and shifted (with bias) following Equation 

2.11 for optimal statistical modeling, the distributions after this step are displayed in 

Figure 2.6 (c). Table 2.1 records the optimized scaling and shifting values for all the eight 

feature maps in the first BN layer. The output of the BN layer are then mapped and 

bounded by the TanH activation, as shown in Figure 2.6 (d).  

Because of the bias terms introduced in the BN layer, without the ABS layer, the 

sign-symmetry of elements in the output feature maps of the first convolutional layer 

would no longer hold, causing interference between feature values at early stages of 

statistical modeling. Recall that in the SRM feature extraction, this symmetry is used by 

merging the bins in co-occurrence matrices. However, in the CNN, the statistical 

aggregation step is replaced by hierarchical local convolution and pooling in the deeper 

layers; there is nowhere else suitable to inject this symmetry. This problem could be 

solved once the sign information is discarded by the ABS layer. In Figure 2.7, both the 

training and validation results are reported along with the iterative training processes with 

a five-fold cross-validation on the training set. We observe worse results for both training 

and validation once the ABS layer is removed from the proposed CNN. 
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The other feature in our proposed CNN is the use of TanH non-linear activation 

function rarely seen in modern neural networks, which, almost exclusively use ReLU [23, 

24, 36, 45, 46]. The major reason is that the saturation regions on the two sides of TanH 

make gradient back-propagation less efficient in deep neural networks, while the ReLU 

with only one side saturated does not have such a problem. Nevertheless, the TanH 

activations miraculously return in our CNN, and have made two significant contributions: 

(1) they provide efficient truncation function for statistical modeling as mentioned earlier; 

(2) they effectively limit the range of data values [illustrated in Figure 2.5 (Left) and 

Figure 2.6 (d)] and prevent the deeper layers from modeling large values more related to 

Table 2.1 Optimized Scales and Biases in The BN Layer after The Normalization Step 

k 1 2 3 4 5 6 7 8 

γk 1.20 1.24 1.15 1.61 0.91 0.93 1.04 1.10 

βk 0.29 0.51 0.50 0.55 0.25 0.33 0.58 0.40 
 

 

 

 

 

 

 

 
(a)                             (b)                              (c)                           (d) 

Figure 2.6 Distributions of the first feature map (first row) and second feature map 

(second row) after going through (a) convolutional layer, (b) ABS layer, (c) BN layer, (d) 

TanH layer, in Group-1. 
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image content. In fact, in our CNN designed for steganalysis, a hybrid of TanH and ReLU 

non-linear activations are employed to embrace the strong points in both of them. Figure 

2.8 compares the results when the two TanH activations in Group-1 and Group-2 of the 

proposed CNN are replaced by the ReLUs. Again, we observe performance drop on both 

the training and validation set. However, it has also been discovered that results became 

worse when more ReLUs in deeper layers were replaced by the TanH, likely due to the 

difficulty of gradient back-propagation with TanH [37]. More results are provided in the 

Appendix.  

2.3.3 Constraining the Power of Modeling  

In this section, we describe our considerations on some other parts of the CNN design, 

including spatial sizes of convolutional kernels, and selection of pooling types. 

Traditional feature-based steganalysis models patterns of pixel correlations in a 

small local region of the residual maps, and adopts one-shot histogram pooling or co-

occurrence pooling to prevent modeling larger regions [11-14, 38, 39]. In contrast, the 

CNN works by modeling (with alternating convolutional and pooling layers) 

relationships of residual elements over the whole images. On the one hand, such type of 

modeling is one of the root strengths of the CNN, on the other hand, without effective 

control, overfitting (fitting the stego noise in training data too well to generalize to testing 

data) could occur for steganalysis. Having realized this potential issue, in the proposed 

CNN, we limit the sizes of convolutional kernels in deeper layers, i.e., the spatial sizes of 

the convolutional layers in the last three groups are limited to 1×1 so as to constrain the 

strength of modeling. The function in convolutional layer is simplified to Equation 2.19 

when the kernel size become 1×1×C, i.e., the 1×1 convolution in essence gives up the 
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convolution operation for modeling spatial relations in feature maps in the deeper layers, 

but only perform dot product across feature maps. 

 

      

1

C
k k k

c c

c

b


 y w x   (2.19) 

 

Figure 2.9 presents the training and validation errors when replacing the 1×1 

convolutions with 3×3 and 5×5 convolutions. It is observed that with the growth of the 

spatial dimensions of the kernels, training errors reduces significantly but validation 

errors are just slightly worse, which indicates fitting training data too well so that the 

generalization suffer. Note that the selection of 1×1 convolution should not be taken for 

granted. It is expected that with more training data larger convolutional sizes would be 

preferred. 

Same as proposed in [31], the proposed CNN also favors average pooling over 

max pooling, which output the maximum value of a local region compared with the mean 

value as shown in Equation 2.14, or convolution with strides, which performs regular 

convolution spatially with step size equals 2 [40]. Our understanding is that, in essence, 

max pooling is a competing method within the pooling region, therefore, the output of 

max pooling depends heavily on image content as well as the locations of stego noise in 

training data, which would harm the generalization ability of the CNN. In contrast, 

average pooling aggregates information by low-pass filtering with fixed kernels, and 

hence is conservative in terms of modeling and less likely to overfit. Figure 2.10 clearly 
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demonstrate the benefit of using average pooling compared with the other two possible 

competitors. 

2.3.4 Additional Cross-Validation Results  

In this section, some additional cross-validation results to support the CNN design in 

Section 2.3 are presented.  

 In Section 2.3.1, we mentioned that the HPF layer was initialized with a 

sophisticated 5×5 kernel whose parameters were not updated during training. Figure 2.11 

shows that without this HPF layer, the training errors does not decrease, which indicates 

unsuccessful learning caused by the overwhelming interference of cover content 

(extremely low SIR). Therefore, adding the HPF layer generating residuals to boost SIR 

would be an essential move towards success. If the parameters in HPF kernel are 

initialized with the sophisticated kernel but also being updated during the training process, 

as shown in Figure 2.12, the CNN experienced difficulty in convergence during roughly 

half of the earlier iterations of training, and then converged to a worse result compared 

with the CNN with the HPF parameters fixed. Most likely, the unoptimized parameters in 

the other parts of the CNN caused ‘incorrect’ updates of the well-initialized HPF kernels, 

which in return produced ‘noisy’ residuals made the training too noisy to converge; this 

problem disappeared after all of the parameters in the CNN were relatively optimized, yet 

the optimization results were still worse. 

 Figures 2.13 and 2.14 demonstrates the selection of pooling sizes and non-linear 

activation functions, respectively. 
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Figure 2.7 Training errors and validation errors: proposed CNN vs. the CNN without the 

ABS layer. 
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Figure 2.8 Training errors and validation errors: proposed CNN vs. the CNN replacing 

TanH with ReLU in Group-1 and Group-2. 
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Figure 2.9 Training errors and validation errors: proposed CNN vs. the CNNs replacing 

1×1 convolutions with 3×3 and 5×5 convolutions in Group-3 – Group-5. 
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Figure 2.10 Training errors and validation errors: proposed CNN vs. the CNNs replacing 

average-pooling with max-pooling and convolutional layers with stride = 2. 
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Figure 2.11 Training errors and validation errors: proposed CNN vs. the CNN without 

the HPF layer. 
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Figure 2.12 Training errors and validation errors: proposed CNN vs. the CNN without 

fixing the parameters in the HPF layer during training. 
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Figure 2.13 Training errors and validation errors: proposed CNN vs. the CNN with 

pooling sizes of 3×3 and 7×7. 
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Figure 2.14 Training errors and validation errors: proposed CNN vs. the CNN with TanH 

only in Group-1 and the CNN with TanH in Group-1 – Group-3. 
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2.3.5 Dataset and Experimental Methods 

We performed experiments using our designed CNN to detect two spatial domain 

content-adaptive steganographic algorithms: S-UNIWARD [3] and HILL [34], with 

embedding rates of 0.1 bpp and 0.4 bpp. The corresponding performance achieved by the 

SRM is used as reference. All of the experiments using the CNN reported here were 

performed on a modified version of Caffe toolbox [33]. 

The dataset used is the BOSSbase v1.01 [29] containing 10000 cover images of 

size 512×512. This dataset is the most widely used for the steganalysis and 

steganography research. The cover images are initially taken by seven cameras in the 

RAW format, and transformed to 8-bit grayscale images, then cropped to obtain the size 

of 512×512. Image data of the other class (stego) were generated through data embedding 

into the cover images. Hence, for each steganographic method and embedding rate, the 

dataset contains 10000 pairs of images.  

Out of the 10000 pairs of images, 5000 pairs were set aside for testing to verify 

the performance (refer to Equation 2.7). These 5000 testing pairs were not touched in the 

whole training phase. The architectural design of the CNNs and selection of the 

components were done by performing a five-fold cross-validation on the training set. 

Once the optimal CNN architecture is determined, the corresponding five optimized CNN 

models, each of them trained on 4000 pairs in the training set and validated on the other 

1000 pairs, form ensembles to classify the 5000 testing data. During the training process, 

the performance on the validation set was monitored from time to time, and the model 

that corresponds to the lowest validation error was saved and used for testing (the polyak 

averaging [119] was used to create the model for testing). More specifically, in the testing 
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stage, the 10000 testing images (5000 testing pairs) went through all the five trained 

CNNs one by one, and the output class-posterior probabilities were averaged for each test 

image to make the final prediction.  

Mini-batch gradient descent was used to train all the CNNs in experiments. The 

momentum was fixed to 0.9. The learning rate was initialized to 0.001, and scheduled to 

decrease 10% for every 5,000 iterations, for all the parameters. A mini-batch of 64 

images (32 cover/stego pairs) was input for each iteration. All of the CNNs were trained 

for 120,000 iterations. Parameters in convolution kernels were initialized by random 

numbers generated from zero-mean Gaussian distribution with standard deviation of 0.01; 

bias learning were disabled in convolutional layers and fullfilled in BN layers. 

Parameters in the last fully-connected (FC) layers were initialized using ‘Xavier’ 

initialization [37]. Except for the FC layer, weight decay (L2 regularization) was not 

enabled so that we could focus on designing the CNN architecture. For the same reason, 

no ‘dropout’ [106] was used.  

2.3.6 Results 

The experiments using the SRM (with ensemble classifiers [30]) were conducted on the 

same 5,000/5,000 train/test split as for the CNNs.  

To evaluate the performance, we used the average accuracies recorded in Table 

2.2, and the receiver operating characteristic (ROC) curves together with the 

corresponding area under ROC curves (AUC) illustrated in Figure 2.15. The ROC curves 

imply treatment of this classification problem as a signal detection problem, where cover 

images belong to the negative classes and the stegos belong to the positive classes. The 

average errors reported in Table 2.2 were obtained by comparing the averaged class-
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posterior probabilities with the threshold equals 0.5; the ROC curves were empirically 

obtained through moving the threshold. 

Overall, the CNN has better performance at relatively higher embedding rate 

compared with the SRM and ensemble classifier, and competitive performance at lower 

embedding rate. Table 2.3 reports the means and standard deviations of the testing 

accuracy obtained from the five single CNN models. Note that the results reported in 

Table 2.2 are ensemble results, whereas what is reported in Table 2.3 is the individual 

CNN results. 

 

Table 2.2 Accuracies (in %) of CNN and SRM against S-UNIWARD and HILL 

 0.1 bpp 0.4 bpp 

 CNN SRM CNN SRM 

S-UNIWARD 57.33 59.25 80.24 79.53 

HILL 58.44 56.44 79.24 75.47 

 

 

 

 

 

 

 

Table 2.3 Means and STDs of Single CNN Model Accuracies (in %) 

 SUNIWARD HILL 

 0.1 bpp 0.4 bpp 0.1 bpp 0.4 bpp 

MEAN 56.85 79.03 57.55 77.58 

STD 0.91 0.67 0.68 0.30 
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Figure 2.15 ROC curves. (Up) against S-UNIWARD. (Down) against HILL.  
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2.3.7 Conclusion 

In this work, it has been shown that a well-designed CNN is a good steganalytic tool, and 

would have the potential, in the future, to provide a better detection performance. 

Currently, the proposed CNN is not fed with the probability maps of embedding derived 

in a similar manner as steganography like methods in [111–114]. Nevertheless, it would 

not be difficult to achieve this in the middle of the CNN architecture to further enhance 

the performance against content-adaptive steganography. For example, the embedding 

probability maps could be used in the pooling layers to perform weighted (by 

probabilities) average pooling. How to apply the CNN in the best way to defeat 

steganography in the JPEG domain [103, 115] would be another important future work. 

We would like to emphasize that by no means should the architecture proposed in 

this work be deemed as optimal, e.g., using TanH right after the first two convolutional 

layers may not be the best choice when the other parts of the network change. Due to the 

strong coherence between network components, the best architecture always needs to be 

adjusted, but the philosophy of the design, holds. As the architectural design of neural 

networks is flexible, it is expected that in the future research better structures would be 

designed to further boost the performance of the CNN for steganalysis.  

One of the drawbacks of the current CNNs is the fixed HPF kernel for noise 

residual generation. Learning from residuals instead of original images is itself 

suboptimal, as the high-pass filter which is not jointly optimized during training have 

caused information loss. It would also be of value to study how to let the CNNs learn 

from original images. 
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2.4 Ensemble of CNNs for Steganalysis 

When performance is highly concerned, ensemble learning has been arguably one of the 

most widely adopted techniques to improve machine learning performance since the 

invention of boosting [42, 43], bootstrap aggregation [41] and random forest [4]. It is 

well-known that the neural networks, including the convolutional neural networks 

(CNNs), which have achieved great success in the fields of computer vision [23, 24, 36, 

45, 46], are suitable to serve as base learners and form ensembles. In computer vision, the 

most prominent research studies focus on designing efficient CNN architectures, and 

seeking ways to improve the optimization efficiency of deep neural networks [45, 46]. 

Nevertheless, ultimate performance is always brought by ensembles of multiple CNNs. 

For example, all the winning solutions in the ImageNet Large Scale Visual Recognition 

Challenge [24, 45, 46] from year 2012 to 2015, are ensembles of multiple CNNs. 

Inspired and encouraged by the success of CNNs in computer vision, the forensics 

society have started devoting research efforts on migrating the CNNs to solve forensics 

and steganalysis problems [26, 31, 47]. In [47], the proposed CNN boosted accuracy on 

detecting median filtering processing in images by 1% – 8% compared with previous 

works. In [26] and [31], attempts were made in applying CNNs to image steganalysis, 

although the reported performances are still worse than the traditional feature-based 

methods [12, 14, 48, 49]. All of those works perform classification using only a single 

CNN for each individual experiment. In [50], the architectural design of CNNs for 

steganalysis was discussed, and the ensemble (five CNNs) performance of the proposed 

CNN is competitive compared with that achieved by the SRM and FLD-ensemble [12]. 
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The ensemble method used in [50] is the simple model averaging (averaging the output 

class-posterior probabilities of each CNN).  

In this work, we go beyond model averaging, and test the performance of second-

level classifiers trained on the feature vectors generated from base learners (CNNs). The 

feature vectors come from  

1) the output posterior probabilities of the trained CNNs; 

  

2) the output posterior probabilities of the CNNs with offsets in the spatial 

subsampling step of pooling layers; 

  

3) the output vectors of the convolutional modules in CNNs.  

 

The second one aims at recovering the information loss caused by spatial subsampling.  

The performance of all the proposed ensemble methods is evaluated on 

BOSSbase [28] by detecting S-UNIWARD [3] at 0.4 bpp embedding rate. Results have 

indicated that both the recovery of the information loss caused by subsampling, and 

learning from features representations within CNNs instead of output probabilities, have 

led to performance improvement. While only tested on one dataset with a special 

steganalysis problem, the proposed ensemble methods should be generically applicable to 

most of the image steganalytic and forensic tasks using CNNs.  

The rest of this chapter is organized as follows. In Section 2.4.1, we briefly 

review the CNN architecture used to build base learners, more details of the CNN design 

can be found in Section 2.3.1. All the ensemble methods we have studied are listed in 

Section 2.4.2. Dataset and settings for experiments are given in Section 2.4.3. 

Experimental results and discussions are presented in Section 2.4.4. Conclusions are 

drawn in Section 2.4.5.  
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Figure 2.16 The CNN architecture for training of base learners. Inside boxes are the 

layer functions. Data sizes are displayed on the two sides. Sizes of convolution kernels in 

the boxes follow (number of kernels) × (height × width × number of input feature maps). 

Sizes of data follow (number of feature maps) × (height × width). 
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2.4.1 The CNN as Base Learner 

The CNN architecture used in this work is almost same as that proposed in Section 2.3.1 

except that we append one more group of layers (Group-6 in Figure 2.16) to the end of 

the convolutional module, and increase the pooling sizes of the last two pooling layers 

from 5×5 to 7×7. This work aims at studying strategies for ensemble learning instead of 

designing CNNs. To make this work self-contained, we briefly review the CNN 

architecture used for generating base learners. More details have been presented in 

Section 2.3.1. 

The overall architecture is illustrated in Figure 2.16. A high-pass filtering (HPF) 

layer using the previously developed high-pass kernel [12] is placed at the very beginning 

to transform original images to noise residuals. The parameters in the HPF layer are not 

optimized during training; this CNN actually learns from the generated noise residuals 

instead of from the original images. Hence, in the rest of this work, the training data 

refers to the obtained residuals from the original images. The whole CNN contains a 

convolutional module responsible to transform the images/residuals to 256-dimensional 

(256-D) feature vectors, which serves as input to the linear classification module that 

generates a posterior probability output for each of the two classes given an image datum. 

Note that for binary classification problem, only one of the probability values is needed. 

The convolutional module comprises six groups of layers (“Group-1 – Group-6” in 

Figure 2.16), each of them starts with a convolutional layer, which doubles the number of 

spatial maps (often be referred to as the ‘width’ of a layer in CNN), and ends with an 

average pooling layer which performs local averaging as well as subsampling on the 

spatial maps (except Group-6). The CNN is equipped with the hyperbolic tangent (TanH) 
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as non-linear activations for Group 1 and Group 2, and the rectified linear unit (ReLU) 

activations for Group 3 – Group 6. An absolute activation (ABS) layer is inserted in 

Group 1 to force the CNN to take into account the (sign) symmetry existed in noise 

residuals. Immediately before each non-linear activation layer, the feature maps are 

normalized with batch-normalization (BN) [36].  

Through global averaging, the pooling layer in Group 6 merges each spatial map 

to a single element: 256 maps of size 16×16 to 256-D features. In this work, we represent 

the size of the CNN by the output size of the last pooling layer (in Group 6), hence, we 

call the CNN in Figure 2.16 as ‘SIZE 256’; ‘SIZE 128’ refers to a CNN with only half 

the widths for each layer and has roughly one quarter of the total number of parameters 

existed in ‘SIZE 256’.  

2.4.2 Ensemble Methods 

In this section, we discuss in detail all the ensemble methods we have studied in this 

chapter.  

Let  
1

,
N

i i i
y


x  denote the training dataset, where N is the total number of training 

data which are the residuals generated by the HPF layer, ix  represents the i-th residual of 

the training set, and iy  is the corresponding binary label. Note that, for  1,...,i N , we 

have H W

i

x  and {0,1}iy  . The total number of CNNs trained and used as base 

learners is T, in this work, we choose T = 16. Denote the k-th CNN as kh , which maps 

each residual image to a probability value, and is represented by 

 ( ; ) : 0,1H W

k kh h p  x w , in which the parameters kw  is optimized by minimizing 
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the log loss denoted generally by  ,L L h y . The procedures to generate base learners 

(CNNs) are summarized below: 

 

 

1. for k = 1 to T do 

2. Generate a random permutation   
1

N

i
i


 of  1,..., N . 

3. Train kh  specified by its parameters kw :      arg min ; ,k i i
L h y

 


w

w x w , where  i 

= 1,…,Ntr, and Ntr is the size of the training set such that Ntr < N. 

4. end for 

5. Collect all trained CNNs  
1

T

k k
h


 as base learners. 

 

 

Note that this process is almost same as bootstrap aggregation [41], in which each base 

learner is trained on a subset randomly drawn by sampling with replacement from the 

original training set. In this work, sampling without replacement is used instead. 

Once the training of CNNs is completed, the most straightforward and commonly 

used ensemble strategy is to average the output probabilities from each CNN and 

compare the result with th = 0.5 to determine the corresponding class label which is 

equivalent to choosing the larger class posterior, i.e., for each test data tx , its label  can 

be estimated by 
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This is the basic ensemble method performed in our experiments. Note that this basic 

model averaging strategy does not require further learning. Next, we will show that 

besides simple model averaging, more can be dug out from the CNNs for steganalysis 

tasks. 

CNNs usually adopt several subsampling steps to reduce the spatial dimensions 

and facilitate classification. These subsampling steps are fulfilled in pooling layers or 

convolutional layers with strides (subsampling rate) set larger than 1. In computer vision 

and other related research areas, the subsampling steps may not have negative effect, 

because they discard irrelevant information and help the optimization in deeper layers 

focus. However, as steganalysis relies on statistics, spatial subsampling could cause 

information loss, even after the information of skipped pixels have been encoded into 

neighboring pixels through, e.g., averaging. The dilemma is, it seems that the spatial 

subsampling is unavoidable, because without it, the statistical modeling in CNN would 

grasp the location information of embedded pixels from the training data. To help 

alleviate this issue, one possible solution is, given a trained CNN, we generate probability 

output with every possible subsampling offset so that every skipped pixel location could 

be covered once, as illustrated in Figure 2.17 (b – e). To make the explanation easy to 

follow, we assume the pooling regions to be 2×2 and the stride equals 2 for both 

horizontal and vertical direction. During training [Figure 2.17 (a)], the pooling layer 

sticks to only one set of spatial subsamples, i.e., a11, a13, a31, a33… For average pooling, 

the output of this pooling layer is calculated as b11 = (a11 + a12 + a21 + a22) / 4. Because of 

the fixed offsets, the skipped locations, e.g., b12 = (a12 + a13 + a22 + a23) / 4, is never used 

in training. The solution is to output probability values of all the four constellations of 
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subsampling for ensembles, as demonstrated in Figure 2.17 (b–e). Following this, given P 

pooling layers in a CNN, and assume stride equals 2, the total number of output 

(probabilities), M, generated from each trained CNN equals 4P, for the CNN illustrated in 

Figure 2.17, we have P = 5 (in Group-1 – Group-5), and therefore M = 1024. In this 

scenario, using the averaging strategy, the class label is estimated as: 
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Figure 2.17 Pooling with local size 2×2 and stride 2. (a) Forward and backward passes of 

a pooling layer with fixed sampling locations in the training stage of the CNNs. (b) – (e) 

The four possible sampling when transforming image data with CNNs into feature 

vectors for ensemble learning. 
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One might realize that only 1 out of M cases is fully optimized during training [Figure 

2.17 (a)] for each CNN, the others are close to the optimized because of the strong spatial 

correlations but are still suboptimal. In this case, it would be beneficial to map the 

original training data by the CNNs into a new feature representation and train second-

level classifiers for optimal performance, as summarized:  

 

1. Map the original training data  
1

N

i i
x  with base learners into  

1

N

i i
z , where 

      1 2

1
, ,...,

T
M

i k i k i k i k
h h h


z x x x , for  1,...,i N . 

2. Build a classifier using  
1

,
trN

i i i
y


z . 

 

 

In this work, the ensemble classifiers using fisher linear discriminant as base learners 

(FLD-ensemble) [17] developed specifically for steganalysis is used as the second-level 

classifier because of its good performance and efficiency. We have also tested linear 

support vector machines whose performance is roughly on par with the FLD ensemble. 

The last ensemble strategy we are to test is to gather from each CNN the output of 

the last pooling layer, which is also the output of the convolutional module and input of 

the classification module as displayed in Figure 2.16. The intuition is that the FLD-

ensemble are stronger compared with the linear classification module in the CNN. 
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Therefore, concatenating intermediate representations from every base learner CNNs 

before performing classification potentially increases the chance of mining more 

discriminative patterns. Let ( ; ) : H W Q

k kf f  x w denote the function of the 

convolutional module in the k-th CNN, Q is the output dimension of the convolutional 

modules, this ensemble method can be summarized as: 

 

 

1. Map the original training data  
1

N

i i
x  with base learners into  

1

N

i i
z , where

  
1

T

i k i k
f


z x , for  1,...,i N . 

2. Build a classifier using  
1

,
trN

i i i
y


z . 

  

 

2.4.3 Dataset and Settings 

Training of the CNNs was performed on a modified version of Caffe toolbox [33]. 

Performance of the ensemble methods was evaluated by detecting S-UNIWARD [3] at 

0.4 bpp embedding rate only, due to the long training time of CNNs and the long feature 

mapping time. It took about three weeks to run all the experiments using two NVIDIA 

Geforce GTX 980Ti graphics cards. The dataset used was BOSSbase v1.01 [28] 

containing 10,000 cover images of size 512×512. Image data of the other class (stego) 

were generated through data embedding into the cover images. Hence, the dataset 

contains 10,000 pairs of images. Out of the 10,000 pairs of images, 5,000 pairs were set 

aside for testing to verify the performance; the rest 5,000 pairs were used as the training 

set. To train each CNN as base learner, 4,000 out of the 5,000 training data were 
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randomly drawn, the rest 1,000 data were used as validation set to prevent the neural 

networks from overtraining. Two groups of CNNs with different network sizes were 

obtained: ‘SIZE 256’ and ‘SIZE 128’, the numbers refer to the output size of the 

convolutional module as explained in Section 2.4.1. A total of 16 CNNs were trained and 

used as base learners for both the two network sizes.  

For reproducibility, information of the hyperparameters and settings used during 

training is summarized here. The learning rate was initialized to 0.001, and scheduled to 

decrease 10% for every 5,000 iterations. The momentum was set to 0.9. A mini-batch of 

64 images (32 cover/stego pairs) was input for each iteration. All of the CNNs were 

trained for 120,000 iterations (960 epochs). Weight decay was not enabled except for the 

FC layers. 

2.4.4 Results 

In the first experiment, we study how the number of CNNs (as base learners) used for 

ensemble affect the performance. For simplicity, the basic model averaging strategy was 

adopted. For every fixed number of CNNs used for ensemble, we tested all the 

combinations (out of 16), and recorded the box plot for both of the two networks sizes. 

From Figure 2.18, we can conclude that increasing the number of CNNs for ensemble 

reduces variance, and consistently reduces detection errors. Comparing the performance 

of the two networks with different sizes, we observe that ‘SIZE 256’ has both better 

acuuracies and lower variance, which indicates that the width of a CNN is very important 

for steganalysis. 
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Table 2.4 records all the results using the ensemble strategies proposed in Section 

2.4.2. In Table 2.4, the number of features for each ensemble scenario is presented. In 
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Figure 2.18 Box plots reflecting overall performance with different number of combined 

CNN models for both ‘SIZE 128’ and ‘SIZE 256’. Red lines are the median values; the 

upper and lower bounds correspond to the 25 and 75 percentiles. 
 

Table 2.4 Feature Dimensionality of Different Ensemble Scenarios  

 SIZE 128 

 

SIZE 256 

 

 Ensemble Methods Ensemble Methods 

 AVE ENS AVE ENS 

PROB 16 16 16 16 

PROB_POOL 16384 16384 16384 16384 

FEA N/A 2048 N/A 4096 
 

 

 

Table 2.5 Error Rates of Different Ensemble Scenarios  

 SIZE 128 

 

SIZE 256 

 

 Ensemble Methods Ensemble Methods 

 AVE ENS AVE ENS 

PROB 0.2039 0.1973 0.1899 0.1897 

PROB_POOL 0.2018 0.1954 0.1918 0.1871 

FEA N/A 0.1906 N/A 0.1844 
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Tables 2.4 and 2.5, PROB refers to the direct CNN probability output. PROB_POOL 

refers to the subsampling method with offsets in the pooling layers for each CNN. FEA 

corresponds to the output features of the convolutional modules in CNNs. AVE means 

simple model averaging, and ENS is the FLD-ensemble [30]. From Table 2.5, we can 

summarize that the second-level learning consistently yielded better performance 

compared with model averaging. When the ensemble learning method was fixed to AVE, 

PROB_POOL did not always have better performance over PROB, probably due to the 

suboptimal probabilities output discussed in Section 2.4.2. The best performance was 

always achieved by learning from the concatenated features as output of the 

convolutional modules, which indicates that for performance, it might be preferred to 

abandon the linear classification modules in CNNs. To have some idea of where the 

presented ensemble performance are, the 34671-D SRM model [12] with the FLD-

ensemble [30] on the same train/test split, has an error rate of 0.2047. 

2.4.5 Conclusion 

In this section, we study different ensemble strategies using CNNs as base learners for 

steganalysis. Results suggest that both the recovery of the lost information caused by 

spatial subsampling, and learning from intermediate feature representation in CNNs 

instead of output probabilities, improve the performance. While only tested on one 

dataset with a special steganalysis, the proposed ensemble methods should be generic and 

could be performed in most of the image forensic tasks using CNNs. 
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2.5 Potentials 

Through sophisticated architectural design, our proposed CNN tailored for image 

steganalysis has begun to take the lead when compared with the most popular feature-

based methods; by forming ensemble, the CNNs as base learners further expended the 

lead. So far, no published CNN design has performance near ours for steganalysis, 

though the improvement over traditional feature-based methods is not as significant as 

that has been reported in the field of computer vision. The performance of our CNN in its 

current form would naturally be improved by simply increasing the number of 

convolutional kernels (the ‘width’ of CNN), as has been shown in Figure 2.18, but at the 

cost of more memory consumption. To make this potential clear, we show in Figure 2.19 

the steganalysis performances with different ‘width’ of the proposed CNN. Another 1–2% 

lower error rates would be expected if the ‘width’ can be further doubled and probably 

even more with ensemble learning, when better hardware is available. Besides, the 

performance would boost in favor of CNN-based steganalysis compared with feature-

based methods, as can be already seen in [31], when more training data is available.  

 The other interesting function of the CNN is that the binary classification problem 

for steganalysis we are solving now can be extended to classify data embedding on pixel 

level of a given image. In computer vision, this extension corresponds to using the pre-

trained CNN on image classification to achieve image segmentation [46, 120–124], 

which is rather straightforward. For steganalysis, this would mean from reporting if a 

given image has been data-embedded to precisely locating the pixel changes during 

embedding, which is a function that the feature-based methods does not have. 
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Figure 2.19 Training errors and validation errors: proposed CNN vs. the CNN with a half 

of the ‘width’ (conv4) and the CNN with a quarter of the ‘width’ (conv2). 
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CHAPTER 3 

FEATURE-BASED CAMERA MODEL CLASSIFICATION 

 

3.1 Introduction 

Digital image producing devices such as cameras, cell-phones, camcorders and scanners 

are nowadays popular. As digital images are sometimes used as evidence in court, 

knowing the source and authenticity of the images used as evidence is important. 

However, the development of image editing software enables manipulation of both the 

contents and source information of digital images with ease, thereby compromising the 

credibility of them as evidence. Although embedding watermarks during image 

production to detect tampering is a possible solution, so far, they are not widely 

implemented by manufacturers of image producing devices. Hence, in most cases, we 

have to rely on blind and passive forensics on content of digital images for source 

identification and authentication.  

In this chapter, we are to address the problem of source digital camera model 

classification, i.e., given an image, we need to figure out the source camera model that 

produced the image through a feature extraction and pattern recognition process that 

relies solely on the image content.  

3.1.1 Literature Review 

Figure 3.1 gives us an overview of a common imaging pipeline inside digital cameras. 

When light comes in, it first goes through a lens system that can cause straight lines to be 

rendered as curved lines in images. The fact that different lens system differs in this kind 

of geometrical distortion was used by Choi et al. [51] for camera model classification. In 



 

66 

[51], the three-camera classification accuracy reaches more than 91%. The drawback of 

this method is that detection accuracy depends highly on the existence and positions of 

straight lines in images.  

After light comes out of the lens system, it goes through a filter system which 

consists of infra-red and anti-aliasing filters and possibly other types of filters. The output 

of the filter system is then input into a CCD or CMOS sensor by which it is transferred to 

electric signals. Filler et al. [52] considered the photo-response non-uniformity noise 

(PRNU) defined as different sensitivity of each pixel to the same light caused by the 

inhomogeneity of silicon wafers and imperfections during the sensor manufacturing 

process. In [52], seventeen different camera models from eight different brands were 

tested. The average classification rate is about 87%.  

As sensors are of high cost, most digital cameras use only one sensor instead of 

three to record color images and a color filter array (CFA) that forms a checkerboard 

pattern is used in front of the sensor. By doing this, each pixel of an image only records 

one color component instead of three, and the other two color components can be 

recovered from nearby pixels by so-called demosaicing algorithms which are basically 

interpolations. Although the CFA usually adopts Bayer pattern [53], there is no standard 

Natural 
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Figure 3.1 A common digital image producing pipeline. 
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demoisaicing algorithms. Hence, camera manufactures design demosaicing algorithms 

for their own cameras. Inspired from the fact that different camera models adopt different 

CFAs and demosaicing algorithms, Swaminathan et al. [54], Long et al. [55], and Bayram 

et al. [56] make use of traces left by CFAs and interpolation (demosaicing) algorithms 

during image formation for camera model classification. In [54], linear interpolation 

coefficients are estimated through singular value decomposition and used as features for 

classification. Their algorithm can classify camera brands with an overall average 

accuracy of 90% for nine brands. Long et al. [55] compute autocorrelation of the 

modeling error by also assuming a linear interpolation model followed by a principle 

component analysis to find out the most important components of the coefficient matrices 

to serve as features. Five cameras from five different brands were tested, and the 

classification accuracy is over 95%. Bayram et al. [56] propose to estimate the color 

interpolation kernel using expectation–maximization algorithm, which was previously 

designed for image resampling (resizing) detection by Popescu et al. [57]. The average 

brand classification accuracy of three different cameras considered in [56] can reach 96% 

by assuming a 5x5 interpolation kernel. As most cameras output images in the JPEG 

format, besides color interpolation, the digital image processor also fulfils the task of 

JPEG image compression. Choi et al. [58] proposed to use the bit per pixel and the 

percentage of non-zero integers in each DCT coefficient as features for camera model 

identification. The average accuracy of classifying four camera models is about 92%.  

Compared with the methods just mentioned, Kharrazi et al. [59] provided a more 

universal feature-based method which takes the whole image formation pipeline into 

consideration. From each image, 34 features including color features, image quality 
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metrics and wavelet coefficient statistics are extracted. The performance of a combination 

of the features proposed in [59] and six proposed camera white balancing features was 

thoroughly evaluated by Gloe et al. in [60] using a carefully designed dataset for 

benchmarking camera identification methods: the ‘Dresden image database’ [61]. In their 

experiments, 44 cameras spanning 11 camera models from the ‘Dresden Image Database’ 

were used. Based on carefully designed experiments, they draw the conclusion that this 

feature-based method does capture model information and is both practical and reliable. 

In [61], 96.42% average accuracy was reported using the same feature set with 18 camera 

models in the ‘Dresden Image Database’.  

In this dissertation, two advanced statistical feature-based camera model 

classification methods are presented in Chapter 3.2 and Chapter 3.3. Both of the two 

methods employ non-linear support vector machines (SVM) for classification, and 

effective statistical feature set are proposed as input for SVMs. The first statistical feature 

set is composed of Markov transition probabilities capturing the dependency between 

neighboring pixel values on the difference block DCT coefficients [62]. Elements of the 

transition probability matrices are directly used as features to build multi-class SVMs. 

The effectiveness of the proposed Markov feature set was verified by classifying eight 

camera models with a total of 40,000 images. The second feature set are composed of 

uniform gray-scale invariant local binary patterns [63] calculated from pixel values in 

both spatial and wavelet domains. Multi-class support vector machines were built for 

classifying eighteen camera models from the ‘Dresden Image Database’. Classification 

performance showed that our proposed features outperformed feature set used in [61] and 

achieved state-of-the-art performance.  
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3.2 Markov Features in Block-DCT Domain 

Since camera manufactures adopt different JPEG quantization matrices as well as 

different image processing algorithms within their camera models, which could result in 

statistical difference of the final JPEG quantized Block DCT coefficients, we propose a 

new set of statistical features capable of capturing the statistical difference of the 

quantized block DCT coefficients of JPEG images. Elements of Markov probability 

transition matrices are used here as the statistical features. Instead of directly calculating 

the probability transition matrices from the block DCT coefficients, we focus on the 

difference JPEG 2-D arrays which are actually the difference of the magnitude of the 

quantized block DCT coefficients. By taking difference, it is assumed that the statistical 

difference between camera models can be enlarged. For simplicity, in this work, only 

one-step Markov Process is considered and transition probabilities corresponding to large 

difference values are merged to prevent modeling less populated statistics as well as to 

achieve a great feature-size reduction. YCbCr is used as the color model in this work, 

where Y is the luminance component; Cb and Cr are the blue-difference and red-

difference chrominance components. Probabilities in Markov probability transition 

matrix from four directions are extracted from the Y component and the Cb component of 

each JPEG image. Those features will then be used as the input of the classifiers.  

The rest of this Section is organized as follows. In Section 3.2.1, details of 

Markov feature extraction together with the whole classification workflow are presented. 

Experimental results and some more empirical studies are reported in Section 3.2.2 and 

Section 3.2.3 respectively. Conclusions are drawn in Section 3.2.4. 
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3.2.1 Markov Features 

In this section, we first consider where to extract effective statistical features in order to 

capture the statistical difference for camera models classification purpose.  

Instead of extracting statistical features directly from quantized block DCT 

coefficients, features are extracted from the difference JPEG 2-D array. JPEG 2-D array 

can be calculated by taking the absolute value of each quantized block DCT coefficient. 

Because the contents of all the images vary a lot and differ from each other, which are not 

desired for camera model classification, to reduce the influence of image content, we 

introduce the difference JPEG 2-D array, which is defined by finding the difference 

between an element and one of its neighbors in the JPEG 2-D array. All the four 

directions are considered, namely, horizontal, vertical, main diagonal and minor diagonal, 

as shown in Figure 3.2. Denote the JPEG 2-D array generated from a given test image by 

X, and the element of it by Xi,j,  1,...,i H  and  1,...,j W , where H and W are the 

height and width of the JPEG 2-D array. Difference arrays are generated from the four 

directions. For example, elements in the horizontal difference JPEG array ,

h

i jY  can be 

calculated as 

 

 , , , 1

h

i j i j i jY X X     (3.1) 

                    

Figure 3.2 The four directions considered for Markov transitions. 
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The other three difference arrays can be calculated in the same way. 

It is expected that the image content influence can be reduced largely by 

considering the difference between an element and one of its neighbors in the JPEG 2-D 

array, in the meantime, the statistical difference caused by different camera pipelines is 

increased, resulting in better discrimination. The negative points of this operation are that 

it inevitably enhances the interference brought by high-frequency regions which heavily 

depend on individual image content, as well as increase camera noise that does not reflect 

camera model information, neither might be ideal to characterize camera models; 

fortunately, results show that the positive part dominate in the performance, furthermore, 

we have also include a truncation step to limit values of large magnitude in the difference 

maps to weaken the negative points. 

We would like to emphasize that those four difference arrays are not calculated 

directly from the quantization block DCT coefficients, but from the JPEG 2-D arrays, 

which consists of the magnitudes of quantized block DCT coefficients. There are three 

reasons that we take absolute values (element-wisely) before calculating the difference: 

  

 The magnitudes of the DCT coefficients decrease along the zig-zag scanning; this 

characteristic can be more easily captured by taking absolute before calculating 

difference.  

 

 Taking absolute value before calculating difference can to some extent reduce the 

dynamic range of the output 2-D arrays compared with the 2-D arrays generated 

by calculating difference from the original block DCT coefficients directly. 

 

 The signs of DCT coefficients mainly carry information of the outlines and edges 

of the original spatial domain image. Note that the outlines and edges are related 

only with the contents of images, they carry little useful information for camera 

model classification.  
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Hence, by taking absolute values, we keep the information regarding camera models and 

suppress the influence of image contents. 

Now we talk about how to extract effective features from difference JPEG 2-D 

arrays. It is known that the BDCT coefficients have been de-correlated. However, there 

still exists intra-block correlation [64] within a local block. Therefore, we propose to 

model the difference JPEG 2-D arrays using Markov process, which takes into 

consideration the correlations among the coefficients. Markov process can be specified 

by the transition probabilities. For simplicity, here we only consider one-step Markov 

process, i.e., only one direct neighbor for each element within difference JPEG 2-D 

arrays is considered. As there are four difference JPEG 2-D arrays calculated from four 

directions, the transition probability matrices are calculated from their corresponding 

difference JPEG 2-D. Thus, totally we can generate four transition probability matrices 

from each JPEG 2-D array. Those transition probabilities are used as features for 

classification. 

The size of a transition probability matrix depends on the number of different 

values. In the difference JPEG 2-D array, the number of possible different values is very 

large, resulting in a huge amount of sparsely populated transition probabilities, which is 

not ideal for the following pattern recognition process because of the high dimensionality 

and less accurate (due to the sparsity of the probability statistics) features. Figure 3.3 

shows the normalized average histograms of horizontal difference JPEG 2-D arrays on 

the Y components calculated from 40,000 images; this roughly tells us the distribution of 

the values within a difference JPEG 2-D array. Since the distribution is Laplacian-like,  
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we merge the big values with truncation to limit the range of values from –T to +T with 

the following equation:  

 

  

T x T

trunc x T x T

x otherwise




   



  (3.2) 

 

Those values that are either smaller than –T or large than +T are forced to be –T and +T, 

respectively, so as to keep as much information as possible. This truncation step achieves 

balance between complexity and performance, and results in a transition probability 

matrix of dimensionality (2T+1)2. The conditional probabilities generated from a 

difference JPEG 2-D array in horizontal direction, e.g., the probability of the right 

neighbor , 1

h

s tX n   when the current pixel ,

h

s tX m  are calculated by 

 
Figure 3.3 Distribution of horizontal difference arrays. 
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  (3.3) 

 

where m,n ϵ {-T,-T+1,…,0,…T-1,T}. Note that the directions of Markov modeling and 

difference JPEG arrays are kept same. Again, probability values for the other three 

directional difference JPEG 2-D array can be calculated in the same way. 

When images are compressed inside cameras, the first step is to convert images 

from RGB color model to YCbCr model. Therefore, it is natural to extract features from 

YCbCr representation. The proposed feature set considers transition probability matrices 

of all the four directional difference JPEG 2-D arrays from Y component. There is also 

some useful information for classification in Cb and Cr color components. Since Cb and 

Cr color components are usually processed in the same way in cameras, features 

generated from Cb and Cr are heavily correlated. In our work, only Cb component is 

considered in the feature extraction process. Furthermore, since both of the two color 

components have been downsampled during compression, only horizontal and veritcal 

directions of difference JPEG arrays are considered for Cb component, resulting in further 

reduction of complexity. In summary, from Y component, four transition probability 

matrices are generated, each corresponds to one direction. Given that the truncation 

threshold are set to T = 4 (detailed study of selecting the proper threshold will be shown 

in the section of empirical studies), there are (2T+1)×(2T+1) = 81 probability features in 

each of these four transition probability matrices. In total, we have 

4×(2T+1)×(2T+1)=324 probability features from Y component of an image. As we only 
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consider two directions for Cb component, 2×(2T+1)×(2T+1)=162 probability features 

are generated from Cb component. Combining all the features generated from Y and Cb 

components together, totally 324+162=486 probability features are generated from each 

image. The block diagram of the feature extraction process is given in Figure 3.4. 

3.2.2 Results 

Before large-scale experiments, a light-weight study has been carried on to show the 

discriminative ability of the proposed Markov features with image data taken by the 

author in controlled manner. Nikon Coolpix L18 and Nikon Coolpix S50 were selected as 

two camera models for study. Each camera took 75 images; all the images form pairs that 

recorded exactly the same scenes by the two cameras. This guarantees that classification 

would not be affected by different image content but focuses on characterizing camera 

models. Transition probability matrices of horizontal and vertical difference directions 

from Y component were considered. All the probabilities corresponding to the same data 
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Figure 3.4 Block diagram for feature extraction. 
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values were scaled and averaged together. Figure 3.5 gives us a visual comparison of the 

shapes of the transition probability matrices along horizontal and vertical directions of 

these two cameras. U and V axes are values in the difference JPEG arrays and P axis is 

the probability values. The difference of the shapes can be easily observed in both the 

horizontal and vertical directions, which proves the effectiveness of our proposed model. 

This kind of observation is an important motivation to large scale experiments.  

For large-scale experiments, all the classification was accomplished by support 

vector machines (SVM) equipped with polynomial kernel, and the proposed Markov 

features serve as input to the SVMs.  

 

Figure 3.5 A visual comparison of the transition probabilities for the two camera models. 
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In the literature, such as in [51, 55, 56, 58], each camera model was represented 

by only one camera. This is not ideal for the ‘model’ identification in practice, because 

the images produced by only one signal camera of each model might contain information 

of the individual camera besides the model information, therefore, the trained classifiers 

might not be able to correctly classify images produced by different cameras of the same 

models. In this work, the dataset were prepared in a more practical and rational way. We 

collected 5,000 images from each camera model. For each model, 5,000 images from 30 

to 40 different cameras were used for experiments. Through this careful data collection, 

Table 3.1 Confusion Matrix Using the Proposed Markov Features 

 

 
Kodak 

6490 

Kodak 

Z740 

Nikon 

D40 

Nikon 

3200 

Nikon 

4600 

Sony 

P200 

Canon 

350D 

Canon 

SD750 

Kodak 6490 81.5 17.2 * * * * * * 

Kodak Z740 14.4 84.6 * * * * * * 

Nikon D40 * * 95.7 * * * * * 

Nikon 3200 * * * 93.7 4.3 * * * 

Nikon 4600 * * * 4.4 93.1 * * * 

Sony P200 * * * * * 98.4 * * 

Canon 350D * * * * * * 95.7 * 

Canon SD750 * * * * * * * 97.5 

 

 
 

Table 3.2 Confusion Matrix for Camera Brand Classification Using The Proposed 

Markov Features 

 

 Kodak Nikon Sony Canon 

Kodak 98.9 * * * 

Nikon * 98.2 * * 

Sony * * 98.4 * 

Canon * * * 97.0 
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we eliminated the chance of capturing the characteristics of a specific camera rather than 

the characteristics of a camera model. For each camera model, 4,000 out of 5,000 images 

were used for training classifiers, and the rest 1,000 for testing. There were totally eight 

different camera models from four manufacturers in the dataset, hence, totally there were 

40,000 images. All these images were downloaded from www.flickr.com.  

The classification results are given in Table 3.1 in the form of a confusion matrix. 

Each row in the confusion matrix corresponds to the actual camera models and each 

column corresponds to the predicted camera models. Percentages in the diagonal line 

marked in bold are the correct classification rate for each camera model. To make the 

form concise, we omit all the percentages smaller than 2%, this applies to all the 

confusion matrices in this section. By taking average along the diagonal lines, the 

average model classification accuracy is 92.5%. It can also be observed that most of the 

wrongly classified are within same camera brand (maker). This is reasonable because 

camera models with the same makers generally have similar hardware and image 

processing pipelines. Table 3.2 captures the confusion matrix for camera brand 

classification, the average brand classification accuracy reaches over 98%.  

3.2.3 More Empirical Studies  

In the proposed feature extraction approach, large values in difference JPEG 2-D were 

bounded and merged when calculating Markov probabilities, thereby avoiding modeling 

sparsely populated probabilities and reducing dimensions. To perform the truncation, a 

decent threshold is necessary to achieve the balance of performance and information loss. 

In this section, experiments have been conducted on how different threshold values affect 

the average model classification results as well as the information loss (proportions of the 

http://www.flickr.com/
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values in the difference JPEG 2-D array that fall out of the thresholding range). For 

simplicity, only features from horizontal difference JPEG 2-D array of Y component are 

considered, and feature size is (2T+1)2. In Table 3.3, relationship between feature 

dimensions, average classification accuracies and information loss is shown. Note that 

dimensions of feature vectors grow quadratically with the increase of the threshold value. 

Comparing the cases T = 4 and T = 5, the corresponding dimensions differ by 40, while 

the classification accuracies differed by less than 1% and only 0.5% more values of 

coefficients fell out of the threshold range. Therefore, T = 4 is a proper choice.  

The next study is about the correlation between Markov probabilities extracted 

from two color components. In Section 3.2.1, it is mentioned that features extracted from 

Cb component and Cr component have strong correlation so that only one of them is 

included in our work. To demonstrate this, the average correlation coefficient values and 

the classification accuracies of different combination of color components are given in 

Table 3.4. From each component, 162 features from horizontal and vertical directions are 

extracted. It is observed that the correlation between Cb and Cr component is almost two 

times the correlation between Y and Cb or Y and Cr. Combing features from Y and Cb 

together, the classification accuracy was 91.1%. We went further and added features from 

Table 3.3 Relationship between Feature Dimensions, Average Classification Accuracies 

and Information Loss 

 

 Feature Dimension Average Accuracy Information Loss 

T=1 9 49.1% 19.1% 

T=2 25 72.1% 14.1% 

T=3 49 77.8% 11.4% 

T=4 81 80.3% 9.2% 

T=5 121 81.4% 8.7% 
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Cr component in, the accuracy was 91.4%, which is negligible but with the cost of more 

dimensions (from 324-D to 486-D). Based on these observations, we decided to use only 

Y and Cb component in this work.  

In Section 3.2.1, we explained why it is beneficial to take absolute value of 

quantized DCT coefficients before calculating the difference array. Here, we compare the 

classification results of the two cases, i.e., taking absolute values and without taking 

absolute values to the quantized DCT coefficients. For simplicity, we extracted features 

from horizontal difference JPEG 2-D array of Y component only. The confusion matrix of 

not taking absolute values is given in Table 3.5. Table 3.6 displays the confusion matrix 

with taking absolute values. Comparing these two confusion matrices, we find that the 

average classification accuracy increased by around 1% (although not very significant) if 

we take absolute values before calculating difference.  

In our work, features are only extracted from difference JPEG 2-D arrays instead 

of from quantized block DCT coefficient arrays because we believe that by taking 

difference, the statistical difference can be enlarged. This assumption is empirically 

verifies in our experimental work too. Table 3.7 gives us the classification result of the 

Table 3.4 Correlations between Color Components and Classification Accuracies 

 

Color 

Components 

Correlation 

Coefficients 

Feature 

Dimension 

Classification 

Accuracy 

Y  162 85.4% 

Cb  162 80.9% 

Cr  162 81.0% 

YCb 0.4605 324 91.1% 

YCr 0.4642 324 90.7% 

CbCr 0.9043 324 85.0% 

YCbCr  486 91.4% 
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features generated from block DCT coefficient arrays. To make it comparable with Table 

3.6, we extracted features from horizontal difference JPEG 2-D array of Y component 

only. The average classification accuracy was 82.8%, obviously lower than the result in 

Table 3.6, which proved our assumption.  

Table 3.5 Confusion Matrix Using Features Extracted from The Difference Arrays of 

The Original Quantized Block-DCT Coefficient Arrays  

 

 
Kodak 

6490 

Kodak 

Z740 

Nikon 

D40 

Nikon 

3200 

Nikon 

4600 

Sony 

P200 

Canon 

350D 

Canon 

SD750 

Kodak 6490 75.0 22.0 * * * * * * 

Kodak Z740 21.0 76.7 * * * * * * 

Nikon D40 * * 90.9 2.1 * * * * 

Nikon 3200 * * * 75.3 20.2 * * * 

Nikon 4600 * * * 20.4 75.7 * * * 

Sony P200 * * * * * 97.1 * * 

Canon 350D * * 2.4 2.2 * * 91.4 * 

Canon SD750 * * * * * * * 95.0 

 

Table 3.6 Confusion Matrix Using Features Extracted from The Difference Arrays of 

Magnitudes of JPEG 2-D Arrays 

 

 
Kodak 

6490 

Kodak 

Z740 

Nikon 

D40 

Nikon 

3200 

Nikon 

4600 

Sony 

P200 

Canon 

350D 

Canon 

SD750 

Kodak 6490 75.3 22.8 * * * * * * 

Kodak Z740 20.2 78.5 * * * * * * 

Nikon D40 * * 90.2 2.4 * * 3.6 * 

Nikon 3200 * * * 78.4 18.5 * * * 

Nikon 4600 * * * 18.2 77.9 * * * 

Sony P200 * * * * * 96.2 * * 

Canon 350D * * 3.2 * * * 91.2 * 

Canon SD750 * * * * * * * 95.0 
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In order to find out how much every transition probabilities calculated along 

different directions and from different color components contribute to our complete 

statistical features, we conducted several experiments in which every part of our 

statistical model were tested separately. The results are shown and compared in Figure 

3.6. The horizontal axis in Figure 3.6 represents different parts or combined parts. We use 

h,v,d,m to denote horizontal, vertical, main diagonal and minor diagonal, respectively. It 

Table 3.7 Confusion Matrix Using Features Extracted from The Original Quantized 

Block-DCT Coefficient Arrays  

 

 
Kodak 

6490 

Kodak 

Z740 

Nikon 

D40 

Nikon 

3200 

Nikon 

4600 

Sony 

P200 

Canon 

350D 

Canon 

SD750 

Kodak 6490 75.0 21.8 * * * * * * 

Kodak Z740 25.4 72.0 * * * * * * 

Nikon D40 * * 88.4 * 2.0 * 2.9 3.1 

Nikon 3200 * * * 74.4 20.5 * * * 

Nikon 4600 * * * 20.6 74.8 * * * 

Sony P200 * * * * * 95.4 * * 

Canon 350D * * 3.5 * * * 89.2 3.0 

Canon SD750 * * 3.0 * * * * 92.8 

 

 
Figure 3.6 Classification ability by directions and color components. 
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is observed that the discrimination power of features generated along four different 

directions within one color component does not differ much. The performance of features 

calculated from Y component is generally better than features from Cb component. Hence, 

the number of features from Cb component in our statistical model is only half the 

number of features from Y component. The red bar (rightmost) is the final classification 

result of our proposed model.   

3.2.4 Conclusion 

Markov transition probability matrix is used in this work to build a statistical feature set 

that captures statistical difference of difference JPEG 2-D arrays. In total, 486 features 

are extracted from each image along four directions from Y component and along two 

directions from Cb component. The results of large-scale experiments have demonstrated 

the effectiveness of our proposed features.  

 

3.3 Local Binary Patterns in Spatial and Wavelet Domain 

In this work, uniform gray-scale invariant local binary patterns (LBP) [63] originally 

designed for texture classifications were used to generate statistical features for camera 

model classification. By counting the occurrences of gray-level binary patterns for each 

pixel against its eight neighbors, 59 LBP features are extracted, respectively, from 

original red and green color channels in spatial domain, their corresponding prediction-

errors and wavelet subband, of each image. Multi-class support vector machines (SVM) 

were built for successful classification of 18 camera models from the Dresden Image 

Database [61], a database specifically designed for research in camera identification and 

other forensic researches. Compared with the results in the literature, the proposed 
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statistical features outperformed both the Markov features presented in Section 3.2 and 

another popular feature set for camera classification [60], and achieved the state-of-the-

art performance at the time of publication. 

This section is structured as follows. In Section 3.3.1, details of the feature 

extraction is introduced. Experimental results and some discussions are presented in 

Section 3.3.2. Summary is given in Section 3.3.3.  

3.3.1 Feature Extraction 

In [14], local binary patterns (LBP) are of circular neighborhood are introduced. The 

LBP-encoding of each pixel can be described by 

 

  
1

,

0

2
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p

P R p c

p

LBP s g g




    (3.4) 

 

where R is the radius of a circularly symmetric neighborhood used for LBP calculation 

and P is the number of samples around the circle, gc and gp denote gray levels of the 

center pixel and its neighbor pixels, and s(x) is defined as 

 

Figure 3.7 (Left) Constellation of neighborhood. (Right) Examples of ‘uniform’ and 

‘non-uniform’ local binary patterns. This figure is partially borrowed from [63]. 
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In this work, we set R = 1 and P = 8. The constellation of the circular neighborhood we 

use for local binary pattern calculation is shown in Figure 3.7 (Left).  

According to Equation 3.4, gray-level difference is first calculated between the 

center pixel and its eight neighbors. The difference will then be binary quantized and 

coded, and in the end transformed to a decimal integer value. After performing the LBP-

coding to every pixel in the image, a LBP map will be generated, and the statistics of it 

will be collected by forming a histogram with a total number of 2
p
 bins, e.g., 256 bins 

when P = 8. In addition, in [63], the concept of ‘uniform’ local binary patterns is 

introduced. The ‘uniformity’ is satisfied when the number of binary transitions over a 

whole neighborhood circle is equal to or smaller than 2. Readers are referred to Figure 

3.7 (Right) for some examples. As ‘uniform’ LBPs occupy the majority of the histogram 

bins [63], those ‘non-uniform’ local binary patterns are merged to one bin, thereby 

suppressing the number of bins from 256 to 59 when P = 8.  

Inspired by the fact that quite a lot of image processing algorithms, such as 

demosaicing, filtering, JPEG compression, are patch-wise (e.g., low-pass filtering with a 

5×5 Gaussian mask) implemented inside cameras, it is reasonable to consider that some 

localized characteristics or artifacts have been generated. These characteristics or artifacts 

could be effectively captured by the uniform gray-scale invariant local binary patterns. 

Grayscale invariance is achieved by binarizing the difference between center and 

neighbor pixels’ gray-levels, which to some extent suppresses the influence of image 
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content. The ‘uniform’ local binary patterns have merged less populated LBP histogram 

bins into one bin, which is a natural dimensionality reduction advantageous for pattern 

classification algorithms. Therefore, we propose to use the uniform gray-scale invariant 

LBP histograms as statistical features to capture camera model characteristics. 

As most of the camera image processing algorithms work in spatial domain, a 

natural choice would be extracting features directly from gray-levels of each color 

channel in spatial domain. From each color channel, a 59-dimensional (59-D) LBP 

histogram is generated when R = 1 and P = 8. Each 59-D LBP feature set are normalized 

to eliminate the influence of different image resolution. Besides, the same set of LBP 

features are also extracted from the prediction-error (PE) image. PE image is obtained by 

subtracting a predicted image from the original image. Considering a 2×2 image pixel 

block, prediction of a pixel value is achieved by [65] 

 

 

max( , )    min( , )

min( , )    max( , )

c         otherwise

a b c a b

x a b c a b

a b




 
  

  (3.5) 

 

where a is the immediate right neighbor of x; b is the immediate neighbor below x; c is 

the diagonal neighbor (right and below) of x; and x  is the prediction value of x. As some 

image processing algorithms have special treatment at edges and boundaries such as 

demosaicing and filtering methods, the prediction error image, which is in essence a 

spatial domain high-pass filtered image that emphasizes edges and boundaries, is another 

ideal choice to extract features from. 
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One of the side-effects of the binary encoding feature of LBP is its insensitivity to 

monotonic gray-level transform in spatial domain. Although this could be a good feature 

for some applications, it is not desired for camera model identification, as some in-

camera image processing algorithms such as gamma correction has spatial domain 

monotonic nature and thus the difference of these algorithms could not be captured by 

our LBP features. To enhance the discrimination ability, in addition to the spatial domain, 

wavelet domain is considered and we propose to extract another 59-dimensional LBP 

feature set from diagonal subband (HH subband) of 1st-level Haar wavelet transform. 

To conclude, from each color channel, we extract LBP histogram features from 

original image, its prediction-error 2D array, and its 1st-level diagonal wavelet subband, 

resulting in a total of 59×3=177 features. The feature extraction framework of one color 

channel is shown in Figure 3.8. Considering the fact that red and blue color channels 

usually share the same image processing algorithms, we only use green and red channels. 

Therefore, the final feature dimensions extracted from a color image is 177×2=354 

dimensional (354-D).  
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Figure 3.8 LBP feature extraction framework for one color channel. 
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3.3.2 Experiments 

In this section, some simulation results are presented to demonstrate that our proposed 

features are able to capture traces caused by different algorithms at a couple of typical 

image processing tasks insides cameras. We used 20 raw images from Nikon D70 as our 

basic simulation dataset. All of them are from ‘Dresden Image Database’. The dcraw14 

and Matlab are tools we use to mimic the image processing inside cameras. Five different 

kinds of image processing algorithms are considered, i.e., demosaicing, color space 

conversion, gamma correction, filtering, and JPEG compression, for each of them, three 

different algorithms or parameter settings are implemented, displayed in Figure 3.9: (a) 

Demosaicing algorithms, including bilinear interpolation, VNG: Variable Number of 

Gradients [107], and PPG: Patterned Pixel Grouping15; (b) Color spaces conversion in 

which images are converted from the original raw space to Adobe RGB16 and sRGB17; (c) 

Gamma correction, where BT709 18  has gamma=2.4; (d) Image filtering algorithms, 

including spatial neighborhood averaging, median filtering, and Laplacian of Gaussian 

(LoG); (e) JPEG compression with QF (quality factor) equals 60, 80 and 100. After 

feature extraction and projection with linear discriminant analysis, high-dimensional 

features are projected to two-dimensional space with linear discriminant analysis (note 

that the two axes have no real meaning). The processing output are clearly clustered 

according to different algorithms instead of image contents because all the processings 

are done on the same 20 images, thereby demonstrating the discrimination ability of our 

proposed features on different in-camera image processing algorithms. 

                                                           
14 https://www.cybercom.net/~dcoffin/dcraw/ (accessed on November 30, 2016) 
15 https://sites.google.com/site/chklin/demosaic (accessed on November 30, 2016) 
16 http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf (accessed on November 30, 2016) 
17 https://webstore.iec.ch/publication/6169 (accessed on November 30, 2016) 
18 http://www.itu.int/rec/R-REC-BT.709/en (accessed on November 30, 2016) 

https://www.cybercom.net/~dcoffin/dcraw/
https://sites.google.com/site/chklin/demosaic
http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
https://webstore.iec.ch/publication/6169
http://www.itu.int/rec/R-REC-BT.709/en
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Figure 3.9 2-D projection results from the whole feature set by linear discriminant 

analysis.  
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For large-scale experiments, we picked the same 18 camera models from 

‘Dresden Image Dataset’ as used in [61]. The number of camera devices for each model 

ranges from 2 to 5. The number of images per model ranges from 405 to 2087. All the 

images are direct camera JPEG outputs which are captured with various camera settings. 

Details are given in Table 3.8.  

In all of our experiments, multi-class support vector machines (SVM) [66] are 

trained and used as the classifiers for testing. From the whole dataset, we randomly 

selected one camera from each model, and used all the images taken by the selected 

cameras for testing. Images from the rest of the cameras formed the training data. This 

random selection procedure was performed 20 times for each experiment. Involving 

images from more than one camera of each model (except those have only two cameras) 

Table 3.8 Experimental Dataset. 

 

Camera Model # devices # images Abbr. 

Canon Ixus 70 3 567 CAN 

Casio EX-Z150 5 925 CAS 

Fujifilm FinePix J50 3 630 FUJ 

Kodak M1063 5 2087 KOD 

Nikon Coolpix S710 5 925 NIK1 

Nikon D70/D70s 2/2 736 NIK2 

Nikon D200 2 752 NIK3 

Olympus MJU 5 1040 OLY 

Panasonic DMC-FZ50 3 931 PAN 

Pentax Optio A40 4 638 PEN 

Praktica DCZ 5.9 5 1019 PRA 

Ricoh Capilo GX100 5 854 RIC 

Rollei RCP-7325XS 3 589 ROL 

Samsung L74 3 686 SA1 

Samsung NV15 3 645 SA2 

Sony DSC-H50 2 541 SY1 

Sony DSC-T77 4 725 SY2 

Sony DSC-W170 2 405 SY3 
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for training greatly reduced the chance of overfitting to a specific camera instead of a 

camera model. Using the cameras that were not involved in the training procedures for 

testing made the experiments more practical.   

In each random split, images for both training and testing were cut into six sub-

images from centers. The final decision in the testing stage was made for each image by 

majority voting of the six individual decisions. Ties were broken by random assignments. 

This cropping and voting procedure not only increased the number of samples for 

training, but also brought robustness against the regional anomalies in testing images. A 

block diagram is shown in Figure 3.10 which includes both the training and testing stages 

(only one image is shown in the testing stage).  

The classification results with our proposed features are reported in Table 3.9, 

which provides the confusion matrix averaged over 20 splits. The average identification 

accuracy reached more than 98% for 18 camera models. Note that in [61], average 

accuracy of 96.42% is reported using the same camera models in the ‘Dresden Image 

Database’. Although the proposed method identification accuracy was higher by only
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Figure 3.10 Block diagram of training and testing stages. FE: feature extraction. 
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Table 3.9 Average Confusion Matrix (in %). 

average 

accuracy 

= 98.1 

predicted camera model 

CAN CAS FUJ KOD NIK1 NIK2 NIK3 OLY PAN PEN PRA RIC ROL SA1 SA2 SY1 SY2 SY3 
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CAN 100 – – – – – – – – – – – – – – – – – 

CAS – 99.52 – – – – – – – 0.48 – – – – – – – – 

FUJ – – 100 – – – – – – – – – – – – – – – 

KOD – – – 100 – – – – – – – – – – – – – – 

NIK1 – – – – 100 – – – – – – – – – – – – – 

NIK2 – – – – – 100 – – – – – – – – – – – – 

NIK3 – – – – – 2.39 97.58 – – – – – – – – – – – 

OLY – – – – – – – 100 – – – – – – – – – – 

PAN – – – – – – – – 100 – – – – – – – – – 

PEN – – – – – – – – – 100 – – – – – – – – 

PRA – – – – – – – – – – 100 – – – – – – – 

RIC – – – – – – – – – – – 100 – – – – – – 

ROL – – – – – – – – – – – – 100 – – – – – 

SA1 – – – – – – – – – – – – – 100 – – – – 

SA2 – – – – 0.28 – – – – – – – – – 99.72 – – – 

SY1 – – – – – – – – – – – – – – – 93.76 – 6.24 

SY2 – – – – – – – – – – – – – – – – 100 – 

SY3 – – – – – – – – – – – – – – – 25.10 – 74.90 

9
2
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about 1.5%, it actually reduced the error rate by more than 40%. For comparison, we also 

tested the Markov features proposed in Section 3.2. Figure 3.11 displays the results by 

comparing the classification accuracy model by model between features proposed in this 

work and those proposed in Section 3.2 using a bar graph. We can see that our proposed 

LBP-based features outperform the Markov features for most of the camera models.  

Although the average detection rate is high, we note that the detection rates for 

Nikon D200, Sony H50 and Sony W170 are 97.58%, 93.76% and 74.90%, respectively, 

which are relatively low. From Table 3.8, we can see that the number of individual 

cameras of these three camera models is two, which means only one camera per model is 

involved in training. In this case, there exist two possibilities that cause the low detection 

accuracies for these three models. Either the LBP features could not capture model 

characteristics for these three camera models well, or they actually capture more 

individual camera characteristics. In order to clear up this issue, we did some additional 

 
Figure 3.11 Comparison of classification results using LBP-based features and Markov-

based features. 
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experiments by classifying images produced by cameras of the same model; these 

experiments could test within-model discrimination ability of our features. A higher 

identification rate here implies more chance of overfitting to specific camera devices; the 

ideal classification rate would be random guess. Results are given in Tables 3.10 – 3.12. 

In Table 3.10, it is shown that the detection accuracy between two Nikon D200 cameras 

is almost 80%, which is much higher than random guess (50%). Therefore, overfitting 

could be the cause of lower detection accuracy. This could possibly be solved by adding 

more devices of Nikon D200 to make the classifiers more difficult to overfit to specific 

cameras. For the other two Sony camera models, results in Tables 3.11 and 3.12 

demonstrate low intra-model similarity, thus eliminating the possibility of overfitting. 

Therefore, we can conclude that our feature set could not reliably identify those two Sony 

camera models. 

The testing results of discrimination abilities of LBP features extracted from 

spatial domain, prediction-errors, and wavelet subbands of both red and green channels 

Table 3.10 Confusion Matrix between Two Nikon D200 Cameras 

 

average accuracy = 79.81 
Predicted 

D200-1 D200-2 

Actual 
Nikon D200-1 78.68 21.32 

Nikon D200-2 19.07 80.93 

 

Table 3.11 Confusion Matrix between Two Sony H50 Cameras 

 

average accuracy = 53.64 
Predicted 

H50-1 H50-2 

Actual 
Sony H50-1 54.93 45.07 

Sony H50-2 48.32 51.68 
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are shown in Figure 3.11, from which we can see that the combined LBP features do 

improve the overall identification performance. 

3.3.3 Conclusion 

We propose in this work the uniform gray-scale local binary patterns as features for 

camera model identification. By combining features extracted from the original image, its 

prediction-error image, and the HH subband of the image’s 1st level wavelet transform, 

the proposed scheme has demonstrated improved performance in camera model 

classification.  

Table 3.12 Confusion Matrix between Two Sony W170 Cameras 

 

average accuracy = 58.21 
Predicted 

W170-1 W170-2 

Actual 
Sony W170-1 60.57 39.43 

Sony W170-2 40.45 59.55 

 

 
Figure 3.12 Classification accuracy using LBP features extracted from different image 

2-D arrays and the combined features proposed. 
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3.4 Discussion 

For camera model classification, two effective feature sets have been proposed in this 

chapter. These features, particularly the LBP-based, had the best classification 

performance at the time when they were proposed. Since these researches have been 

completed in the early stage of the Ph.D., some more recent studies [108] have shown 

that feature subsets carefully selected from the SRM [12] originally proposed for 

steganlaysis have marginal performance improvement over our proposed LBP-based 

features. Nevertheless, all the feature-based methods can be and will be replaced by 

CNN-based methods (see Chapter 2) for camera model classification. In fact, some 

results have emerged recently that shows the potential power of CNN-based methods 

[109, 110]. It would be interesting future works to apply the sophisticated CNN, proposed 

in Chapter 2 for steganalysis, to camera model classification.  
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CHAPTER 4 

IMAGE TAMPERING DETECTION IN REAL WORLD 

 

4.1 Introduction  

Due to the ever increasing power of image editing software, such as Photoshop and Gimp, 

creating fake images have never been easier. This could give rise to serious problems 

whenever images are treated as important evidence, or published by mass media to 

disseminate important information, as one can never take for granted the authenticity of 

those images. Figures 4.1 and 4.2 show two examples of famous forgery. In 2004, a 

picture of John Kerry and Jane Fonda at an anti-war rally during the early 1970’s 

surfaced on the Internet for some political motivations, which is the left image of Figure 

4.1. It was reported later that this picture was created by merging the center and right 

images in Figure 4.1. Figure 4.2 (Left) is an image about Israel air striking Beirut, 

Lebanon in August 2006. This image was later found altered by the photographer and the 

original authentic image is displayed in Figure 4.2 (Right). Compared with the authentic 

image, the altered image has made smoke darker by some image processing software. 

This forged picture caused Reuters to withdraw 920 pictures taken by the photographer 

from sale. By searching through the internet, we can find such kinds of ‘fake’ photos 

everywhere. Our society is in urgent need of advanced forensic technology to catch the 

‘image tampering’ and recover the credibility of digital images in real-world.   
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Blind and passive digital image tampering detection [67, 68, 92] (tampering 

detection in short), as one of the biggest research areas in image forensics, aims at finding 

evidence of image forgery without relying on any side information or watermarking, as 

they can be either unreliable or not available. Its main task is to decide if an image under 

investigation has been tampered or not, and if possible, to locate the tampered regions. 

Detection of tampered images can be considered as basic forensics, while locating the 

tampered regions is considered more advanced function that can reveal more important 

evidence, such as telling what object has been added in, or something of certain size and 

at certain location has been removed. 

           

Figure 4.2 (Left) An altered image. (Right) The original image. 
 

Source: http://news.bbc.co.uk/2/hi/middle_east/5254838.stm 

 

   

Figure 4.1 (Left) A spliced image. (Center and Right) The two original images that 

formed the sliced image. 
 

Source: http://www.snopes.com/photos/politics/kerry2.asp 
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In the last years, lots of tools and algorithms have been developed by researchers 

and forensics experts to interpret the authenticity of digital images. In Digital Image 

Forensics Database19, over 600 papers have been published over the past ten years, and 

most of them are related to tampering detection. However, the diversity of the sub-fields 

in tampering detection, and the fact that existing public database [69] overlooks real-

world conditions, call for a practical benchmark and common comparison protocol of 

published algorithms.  

To actively move the research on image tampering detection ahead, the Technical 

Committee of Information Forensics and Security at IEEE Signal Processing Society had 

successfully organized a competition on Image Tampering Detection in the summer and 

fall of 201320. The competition was worldwide and consisted of two phases: Phase-1 and 

Phase-2.  

In Phase-1, 1500 labeled (authentic or fake) training images were provided for the 

participated teams to build models, which would then be used to predict the labels for 

5713 testing images to evaluate the performance of the models, as illustrated in Figure 

                                                           
19 http://www.cs.dartmouth.edu/~farid/dfd/index.php/publications (accessed on November 30, 2016) 
20 http://ifc.recod.ic.unicamp.br/fc.website/index.py (accessed on November 30, 2016) 

Pristine 

or Fake?

Generate 

a Mask

 

(a)                                                                          (b) 

Figure 4.3 An illustration of (a) tampering detection and (b) tampering localization.  

http://www.cs.dartmouth.edu/~farid/dfd/index.php/publications
http://ifc.recod.ic.unicamp.br/fc.website/index.py
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4.3 (a). Among the 1500 training images, there are 1050 authentic images (the negative 

class) and 450 tampered images (the positive class). This is an imbalanced binary (two-

class) classification problem. The evaluation metric used was the balanced accuracy 

defined as  

 

accuracy = 
TNR + TPR

2
,                                               (4.1) 

 

where TNR denotes true negative rate obtained by dividing total number of correctly 

classified authentic images by the total number of authentic images, TPR stands for true 

positive rate which can be obtained by dividing the total number of correctly classified 

fake images by the total number of fake images. Our team got the runner-up prize with 

the balanced accuracy of 93.72%, lost by merely 0.48% to the first prize winner. 

Compared with the image-level classification task required in Phase-1, Phase-2 

was a more challenging task. A total of 700 tampered images (no authentic images) with 

various spatial resolutions were given by the organizer. The participants were asked to 

submit a binary mask for each image to point out the tampered region pixel-wisely, as 

illustrated in Figure 4.3 (b). This is a binary classification problem to output binary 

prediction for each pixel. Tampering localization performance is measured by averaging 

F-score ∈ ℝ[0,1] across all the testing images. The F-score can be expressed as 

 

Fscore = 2 × 
precision × recall

precision + recall
,                                          (4.2) 
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where  

precision = 
TP

TP + FP
  ,    recall = 

TP

TP + FN
 . 

 

Here TP is the total number of tampered pixels that are correctly detected in the image, 

FN is the total number of miss-detected tampered pixels, FP is the total number of pixels 

falsely detected as tampered. Hence, precision is the ratio that a pixel detected as 

tampered is truly a tampered pixel, and recall is the ratio that a tampered pixel is detected. 

The author of this dissertation again got the runner-up prize, however, with an average F-

score of only 0.2678. The winner achieved 0.4071 which is also far from satisfactory 

comparing with the results from Phase-1. The results of Phase-2 indicate unsatisfactory 

localization performance of tampering detection technologies when facing real-world and 

modern forgeries, and encourage more practical and valuable works in the future to boost 

the performance of tampering localization.  

In this chapter, we first report what we have tried in Phase-1 of the competition 

and the final solution, i.e., an image-level tampering detection method based on advanced 

statistical features for advanced steganalysis with some modification to drastically reduce 

feature dimensionality while boosting the detection accuracy. Then, a fast block-based 

copy-move detector exploiting PatchMatch for block matching was proposed. This block-

based copy-move detector, together with a very basic feature-based copy-move detector 

using scale-invariant feature transform (SIFT), form our main solution to forgery 

localization in Phase-2 of the competition. Because of the tight competition schedule, 

many of the existing advanced techniques have not been tested, it is expected that by 
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exploring the newest technologies developed in image tampering detection as well as a 

summary for the past research along this direction, the results can be further improved. 

The rest of this chapter is organized as follows. In Section 4.2, we discuss our 

solution to image-level tampering detection in Phase-1 of the competition. In Section 4.3, 

given that all the provided images had been tampered, the solution to pixel-level 

tampered region localization is presented, which corresponds to Phase-2 of the 

competition. The methodology comparisons with the winner are given in Section 4.4. 

 

content-based 

(by analyzing image 

data only)
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+ machine learning)
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Figure 4.4 Approaches to tampering detection.  

Training Stage
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Figure 4.5 A general framework of statistical feature-based tampering detection.  
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4.2 Solution to Phase-1: Tampering Detection 

Potential approaches to solve the tampering detection problem in Phase-1 of the 

competition include format-based [70-77, 102], camera-based [78-81], statistical feature-

based [82-85], etc. In our solutions, statistical feature-based methods were used to tackle 

this binary classification problem, because of their less limited applicability. The 

assumption is that tampering operations result in unnatural pixel statistics and possible 

inconsistency along the tampered regions. Feature-based methods focus on designing 

suitable features to train the following machine learning based classifiers which rely 

heavily on mathematical optimization. A general framework of statistical feature-based 

tampering detection is illustrated in Figure 4.5. Three feature sets as input of classifiers 

have been developed in a row by our team. It turns out that the best performer among the 

three was a subset of high-dimensional feature set originally designed and used for 

steganalysis. Support vector machines (SVM) and the ensemble classifiers of fisher linear 

discrimant (FLD-ensemble) [30] have been adopted for classification. Details of the three 

feature sets and their performance on testing data are covered in Sections 4.2.1, 4.2.2, and 

4.2.3.  

4.2.1 Pure LBP-based features 

Local Binary Patterns (LBP) [63] was proposed as an effective texture classification 

technology, and has been utilized for face recognition and image forensics, including 

steganalysis [86] and camera model classification [87]. In Phase-1 of the competition, 

LBP were used to model original pixel values in spatial domain, and the LBP histograms 

extracted are used as the statistical features. Note that most of the images provided by the 
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organizers of the competition were color images; before we start the feature extraction 

process, color images were transferred to grayscale images. 

In the training set, 1050 images in ‘authentic’ (negative) class and 450 images in 

‘fake’ (positive) class were provided by the organizers. SVM with polynomial kernel 

served as the classifiers for the experiments in this section. Balanced accuracies on the 

training set are reported in Tables 4.1 and 4.2. In Table 4.2, all of the 256-dimensional 

(256-D by assuming number of neighbors equals eight) LBP features were used, while in 

Table 4.1, only the so-called ‘uniform’ [63] features of LBP were considered and the 

dimensionality was reduced from 256-D to 59-D. However, a significant performance 

drop was observed comparing with the original 256-D. Therefore, we chose to use the 

classifier trained by 256-D LBP to predict the testing dataset. The accuracy feedback 

provided by the online system was around 85%. This first trying was encouraging. Later 

we got better results in our attempts.  

4.2.2 Hybrid Feature Sets 

Encouraged by the initial success with the LBP and SVM, it is natural to enhance the 

performance by building more advanced and hence complicated statistical models. In [84] 

Table 4.1 Confusion Matrix (in %) Using Uniform LBP  
 

Accuracy = 71.4 Predicted Negative Predicted Positive 

Actual Negative 94.37 5.63 

Actual Positive 51.33 48.67 

 

 

Table 4.2 Confusion Matrix (in %) Using Original LBP  
 

Accuracy = 91.2 Predicted Negative Predicted Positive 

Actual Negative 94.91 5.09 

Actual Positive 12.47 87.53 
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and [85], the moments of 1-D and 2-D characteristic functions (moments-based) and 

probability elements in Markov transition probability matrices (Markov-based) extracted 

from multi-size block DCT coefficients of images are combined together. This statistical 

feature set has previously achieved excellent results on tampering detection in the 

Columbia dataset [69], another existing dataset for splicing detection. Inspired by the 

success of [84] and [85], we managed to fuse various feature set by vector concatenation 

and came up with a diverse and more powerful feature set. Specifically, besides LBP-

based features, moments-based and Markov-based features were calculated from 

coefficients arrays generated by block-DCT transforms with block sizes equal 2×2, 4×4 

and 8×8, and the Local Derivative Patterns (LDP) [88] which improved LBP by capturing 

directional changes of derivatives of neighboring pixels against central pixel were also 

included. As the feature size is large, only horizontal and vertical directions of LDP were 

considered, resulting in 2×256 = 512-D features. Components of involved in our hybrid 

feature model are summarized below: 

 256-D basic LBP-based features calculated from original spatial domain. 

 512-D LDP-based features calculated from original spatial domain. 

 168-D moments-based features calculated from original image and multi-block 

DCT 2D arrays. 

 

 972-D Markov-based features calculated from multi-block DCT 2D arrays. 

Table 4.3 Confusion Matrix (in %) Using The Combined Feature Sets 
 

ACC = 94.9 Predicted Negative Predicted Positive 

Actual Negative 97.26 2.74 

Actual Positive 7.47 92.53 
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Figure 4.6 shows the block diagram of this statistical feature extraction. The final 

feature vectors were combined through vector concatenation and reached dimensionality 

of 1,908-D. We used the same training process as in our first attempt using LBP-based 

features alone. Result is shown in Table 4.3. The training accuracy boosted from 91.2% 

to 94.9%, which gives us confidence that the accuracy should also improve for testing set. 

However, surprisingly, the feedback result is only around 81%. Most likely, this 

abnormality was caused by a bug in testing score calculation which was reported by some 

of the participants and fixed later on by the organizers.  
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Figure 4.6 Feature extraction framework of the proposed hybrid feature set.  
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4.2.3 SRM-based Features 

Through the experiments reported above, we realized that features derived from spatial 

domain could have more classification capability for tampering happened in spatial 

domain. In [21], Fridrich and Kodovský proposed to combine high-order co-occurrence 

probabilities extracted from various noise residuals (obtained by high-pass filtering) of 

the original images to break the most secure spatial-domain steganographic algorithms, 

hence it is often called the spatial rich model (SRM). While steganalysis and tampering 

detection are different research areas, it is recognized that both steganalysis and feature-

based tampering detection rely on the change of statistics of pixel-neighborhood caused 

by secrete message embedding and the tampering operation, respectively. Previous works 

[84, 85] have shown that methods designed for steganalysis can work well for tampering 

detection, given that the corresponding classifiers are trained by the samples of image 

tampering. Furthermore, the statistical features proposed in [12] contain the desired high-

order statistical features (co-occurrence of four consecutive pixels is considered), i.e., 

more powerful statistical modeling in the spatial domain. Hence, we applied the SRM 

features in this competition, more accurately, the SRMQ1 [12] feature set which has only 

one-third of the features compared with the full-version of SRM, even so, the total feature 

dimensionality reaches 12,753-D.  

Some changes were made in the experimental settings this time. From the results 

in Tables 4.1 to 4.3, we noticed that the accuracies for the positive and negative classes 

were imbalanced. Very likely the imbalance was caused by not having enough training 

data for the positive class (tampered images). As there was no mandatory requirement on 

using only the provided training set for training purpose, we added all the 700 testing 
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images in Phase-2 of this competition to positive class for training because all of them 

were claimed to be fake. Therefore, we had more data for positive class and the training 

set became much more balanced — 1050 negative samples and 1150 positive samples. 

The FLD-ensemble classifiers [22] used in [21] for classification was also inherited to 

replace the SVMs because of the higher feature dimensionality.  

The FLD-ensemble classifiers require a validation set to optimize two 

hyperparameters. In all the following experiments, we set the training/validation ratio to 

0.8/0.2 of the training set, and the number of random training/validation splits to 13. The 

FLD-ensemble classifiers also require equal number of training sample for both classes; 

hence, data ensemble was applied. As there were 100 more image data in positive class, a 

random selection of 1050 out of 1150 positive samples was carried on before the start of 

training process. The data ensemble made sense because the competition adopted 

balanced accuracy for evaluation, and therefore, there was no reason to have bias on the 

number of training sample for either class. The number of data ensemble we made was 

also 13, so during the training process, 13×13 = 169 classifiers were built from the 

training set and ready to be applied to the testing set containing 5,731 images. The final 

decisions made on the testing images were obtained by majority voting the 169 decisions. 

Validation errors were generated along with the classifier training process. Using the 

12,753-D SRMQ1 feature set, the average validation error rates calculated by 0.5 × (FPR 

+ FNR), where FPR and FNR stand for the false positive rate and false negative rate, 

Table 4.4 Average Validation Error Rate (in %) Using SRMQ1 Feature Set 
 

Average Error False Negative False Positive 

3.66 3.83 3.49 
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equaled 3.66%, equivalent to 96.34% in accuracy, as shown in Table 4.4, and the online 

feedback testing result reached 91.7%. 

So far, the full SRMQ1 feature set works quite well. In spite of this success, there 

was still doubt that some features in the SRMQ1 might have negative contribution, after 

all, operation made on images with tampering and steganography were different, thus, the 

original features designed for steganalysis might not be optimal for tampering detection. 

Having realized this issue, we took one step further and selected a subset of the 12,753-D 

SRMQ1 feature set, aiming at improving accuracy. Unlike general feature selection that 

Table 4.5 Average Validation Errors (in %) and the STDs for Every Residual Type in 

SRMQ1 
 

Residual Type Dimension STD AVG ERR FN FP 

S1_minmax 3250 6.30 5.03 3.97 6.08 

S2_minmax 1625 3.60 4.47 4.34 4.60 

S3_minmax 3250 4.97 4.42 4.44 4.39 

S3x3_minmax 1300 3.45 4.38 4.17 4.59 

S5x5_minmax 1300 3.71 4.37 3.49 5.24 

S1_spam 338 2.99 6.59 6.61 6.56 

S2_spam 338 2.63 6.40 6.98 5.82 

S3_spam 338 2.75 5.59 5.14 6.04 

S35_spam 338 2.88 6.77 6.30 7.25 

S3x3_spam 338 2.54 5.26 4.39 6.14 

S5x5_spam 338 2.73 5.79 4.97 6.61 

 

 

Table 4.6 Average Validation Errors (AVG ERR) (in %) 
 

 AVG ERR FN FP 

without S3x3_minmax22h 3.92 3.86 3.97 

without S3x3_minmax22v 3.97 4.02 3.92 

without S3x3_minmax24 3.76 3.97 3.55 

without S3x3_minmax41 4.50 3.97 3.55 
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element-wise select a subset, our feature selection worked on group of features to reduce 

the complexity. Steps of our feature selection are roughly described below: 

1. Divide the whole set of SRMQ1 features into groups based on the residual types. 

2. Perform experiments to find validation errors and the standard deviations (STD) 

for every residual type calculated on training data. 

 

3. Select and combine feature subsets by simultaneously considering validation 

errors and the STDs. 

When forming feature subsets, we basically followed the residual types, i.e., first 

order (S1), second order (S2), third order (S3), edge 3×3 (S3×3), edge 5×5 (S5×5), and 

3×3, 5×5 spam (S35_spam). Features calculated from ‘spam’ and ‘minmax’ residuals 

were considered separately. For details of the residual types, please refer to [12]. The 

reason we included the STDs into our feature selection was that all of the features 

generated were co-occurrence probabilities which was basically co-occurrence histogram 

bins. Since the histogram bins within some residuals were very non-uniformly distributed, 

and some even had a lot of empty bins, the statistics could be less stable.  As the means 

of each residual type were equal because of the normalization, it was natural to use the 

standard deviation to measure the uniformity of co-occurrence histograms. Here we 

assumed that lower STD implied more uniform distribution and hence preferred. 

Table 4.5 shows the validation error rates and STD corresponding to each residual 

type. By simultaneously considering these two factors, we chose three groups: S3_spam, 

S3×3_spam and S3×3_minmax, and the total feature dimensionality thus was reduced to 

1,976-D. Since the feature size is still high in S3×3_minmax (1,300D), we performed 

backward selection on all the four co-occurrence matrices included, i.e., each time we 

removed one 325-D co-occurrence histogram based on the validation results and STDs. 

In the end, only one 325-D co-occurrence histogram (S3×3_minmax24) was removed. 
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Details of the results in the backward selection are reported in Table 4.6. The total 

dimensionality now has been reduced to 1,651D from 1,976-D. This 1,651D served as 

our final feature set to build the classifier for Phase-1 of this competition. To make it 

clear, the final set we use is S3_spam (338D) + S3×3_spam (338D) + S3×3_minmax22h 

(325D) + S3×3_minmax22v (325D) + S3×3_minmax41 (325D) = 1,651D. The online 

feedback testing accuracy is around 93.8% – 94.0%. There is about a 2% increase 

compared with the whole 12,753-D SRMQ1 feature set. Although this may not be the 

optimal subset, it is the best we can do within the limited period of time.  

 

4.3 Solution to Phase-2: Tampering Localization 

In Phase-2 of the competition, the participants were required to locate the tampered 

regions pixel-wisely. Before starting the research, an analysis was made based on the 

training data about the major tampering methods. By observing the fake images in 

training data and the corresponding ground truth masks, the tampering methods could be 

classified into two major categories: copy-move (tampered regions replaced by other 

regions from the same images) and splicing (tampered regions replaced by regions from 

other images). Note that these two categories might not cover all the tampering cases, but 

they were definitely the main stream.  

Once we limited the tampering methods to work with, the next step was to design 

corresponding forensic methods. The major idea of our algorithm design was to break big 

problem into smaller problems and design corresponding algorithms to solve each small 

problem. Each of the designed algorithms worked independently and the last step was to 

fuse the outputs.   
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The copy-move problem could be separately into three categories based on the 

content of copied regions, namely, smooth areas, texture areas, and objects. The tampered 

regions could be further processed, e.g., through scaling and rotation. To solve the 

problem that tampered regions were directly copy-moved without any further processing, 

similarity is compared between image blocks (patches). We proposed a new distance 

measure that worked by counting the total hamming distance of LBPs calculated from 

corresponding pixels inside patches. Similarity was measured based on the count of 

hamming distance. This distance measure has the advantage that as long as there is no 

other processing, copied regions can be detected even in smooth regions due to camera 

sensor noise, not to say in textured region and objects. However, it would not work in the 

scenario that the tampered regions were further processed. Fortunately, based on our 

observation and study of popular image editing software, smooth areas, most likely, have 

Table 4.7 Copy-Move Cases vs. Forensic Methods 
 

Forensic Method 

Copy-Move Cases 

Smooth 

(wo) 

Texture 

(wo) 

Object 

(wo) 

Smooth 

(w) 

Texture 

(w) 

Object 

(w) 

Hamming Distance of 

LBP 
YES   YES YES N/A NO NO 

Euclidian Distance of 

SIFT 
NO   YES  YES N/A YES YES 

‘YES’ — The forensic methods can tackle this copy-move case.  

‘NO’ — The forensic methods cannot tackle this copy-move case.   

‘N/A’ — the copy-move case not considered 

‘w’ — with further processing 

‘wo’ — without further processing. 
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Figure 4.7 The general framework of copy-move forgery detection. 
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not gone through any further processing. As most of the images have more than 

1024×768 pixels, the searching process could be rather slow. To speed up the searching 

process, we adopted the PatchMatch algorithm [89, 90] for efficient copy-move detection.  

For copy-move cases that had involved further processing on non-smooth 

tampered regions, we simply performed a brute-force matching between the scale-

invariant feature transform (SIFT) [15] features with Euclidean distance as the similarity 

measure.  

Table 4.7 shows the different copy-move cases versus our forensic methods. As 

we entered the competition rather late, we have only designed algorithms for copy-move 

tampering localization. Splicing localization has to be future work. 

4.3.1 PatchMatch and Hamming Distance of LBP Blocks 

Copy-move forgery detection is one of the most popular topics in image tampering 

detection. The solutions are quite similar and all of them are based on the nature of this 

tampering technique — to find and alarm regions that are similar within an image. There 

are three key elements in almost all of these algorithms, i.e., descriptor generation from 

each block (patch), similarity (distance) measure between the descriptors extracted from 

two blocks, fast searching algorithm for block matching. The approaches to descriptor 

generation have the main impact on the accuracy of block-matching as well as some 

influence on searching speed. The block searching and matching algorithms have also 

some impact on accuracy, but the major concern is to speed up the searching process of 

the duplicated regions. The framework of copy-move detection is displayed in Figure 4.7. 

In [91], an evaluation was given on all the existing copy-move methods proposed by year 

2013 The benchmark results given in Table V of [91] shows that the average descriptor 
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generation time is about one hour for a single image with average size of roughly 

3000×2300, and the average matching time is about one and half hour. Therefore, 

speedup is required for copy-move detection; otherwise they cannot find practical use for 

real world images which may have even more pixels. Before we introduce our descriptor 

generation method and distance measure, we first introduce the PatchMatch algorithm, 

which had served as our tool for block matching.  

PatchMatch is initially proposed as a method that bring revolutionary speedup for 

matching regions in image A with the most similar regions in a different image — image 

B. According to Table 1 in [89], PatchMatch is dozens of times faster than the popular 

tree-based searching method. The algorithm of PatchMatch contains mainly three steps: 

  

1. Determine a patch size around pixels. Typical patch sizes can be 3×3, 5×5, …, 

15×15, depending on the applications.  

 

2. Randomly permute patches in image B, and assign each patch in image A with a 

patch in image B. 

 

3. Loop through patches in image A: for each patch in image A, check its 

neighboring patches to see if they have found a more similar patches in image B, 

if so, look into the corresponding patch and its surrounding patches in original 

image B (not-permuted), and perform update. 

 

Steps 3 are usually performed multiple times with different sequence of looping until 

convergence. 

The adaptation of the original PatchMatch algorithm to the copy-move detection 

is straightforward. In copy-move detection, we need to find duplicated regions within 

same images; the essential step is to find for each region in a given image the most 

similar region within the same image. Hence, the main PatchMatch algorithm was 

inherited, with only three slight changes: 1) in copy-move detection, image B is the same 
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as image A; 2) since the most similar patches are themselves, a minimal similarity 

threshold was set to prevent self-assignment; 3) for each test image, the PatchMatch 

algorithm was run multiple times independently with patch sizes of 5×5, 7×7, 9×9 and 

11×11, the output of each of them were fused. 

Now we discuss the descriptors and the similarity (distance) measure. In the 

original PatchMatch papers [89, 90], the average Euclidean distance of all the pixel 

values in corresponding patches is used as similarity measure. This similarity measure 

was expected to create a lot of false positives in smooth areas because the Euclidean 

distances between patches in smooth regions are all very close. As Barnes et al. in [89, 90] 

mentioned that any distance can be used to replace the Euclidean distance, we proposed 

to encode every pixel in image patches with LBP, which is an 8-bit binary string 

generated by comparing the values of the pixel and its eight neighbors one by one, and 

the similarity measure we used was the Hamming distance between two LBPs of 

corresponding positions of two image patches. Unlike the most common use of LBP that 

convert the encoded binary strings to decimal values and calculate the histogram of those 

decimal values in the whole image, we used the LBP coded map directly so as to keep the 

location information. The hamming distance was a natural choice as a similarity measure 

between binary strings. More specifically, for each pixel in a patch, LBP was calculated 

as an 8-bit binary string and the similarity measure between two patches was the 

summation of the hamming distances at corresponding pixel locations. The reason we 

chose to transform the original image pixel values to binary strings using LBP was that in 

smooth regions, camera sensor noise would likely dominate the pixel-value variations 

within an image patch, which could be well captured by LBP encoding, because LBP 
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encoding considers the relative relationships of 8-neighbors with respect to the central 

pixel. If the copy-moved area is texture or object, LBP should also work. Therefore, the 

hamming distance of LBP encoded patches should work no matter the copy-moved 

regions were in smooth areas, texture areas, or were objects, as long as there was no 

further processing as mentioned at the beginning of Section 4.3. Figure 4.8 shows an 

example to generate LBP binary strings for one patch, the hamming distance calculation 

with another LBP-encoded patch, and the summation of the hamming distances as the 

similarity measure. Besides the sensitivity to post-processing, another drawback we 

discovered was that the proposed LBP-based similarity measure created lots of false 

positives in images with periodic patterns, such as images decoded from JPEG which 

have 8×8 block artifacts. Some examples of the results on the competition dataset are 

LBP encoding
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Figure 4.8 An example of coding pixel values in an image patch to bit strings, and 

calculating the summation of hamming distance as the similarity measure with another 

LBP-coded patch.  
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provided in Figure 4.9 – 4.12. All the detection output with patch size of 5×5, 7×7, 9×9 

and 11×11 are displayed, and the combined output was generated with the following 

post-processing steps: 

 

1. Remove connected components with small areas. 

 

2. Perform dilation on all the rest of the connected components to inrease the chance 

that the output mask covers all of the tampered region.  

 

3. Combined the 5x5, 7x7, 9x9, 11x11 output masks together with pixel-wise OR. 

 

Note that a lot of descriptors and distance measures have been proposed in the 

literature [93-101]; it would be our future work to evaluate their performance on the 

competition dataset.  

4.3.2 A Simple Usage of SIFT 

In this Section, we discuss how we use SIFT [15] to solve the problem when the copy-

moved region has been further processed. We realize that there are a few publications 

that have addressed this problem using SIFT. It would again be our future work to 

evaluate their performance on the competition dataset. For this competition, a simple and 

somewhat naïve usage of SIFT was used. 
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The implementation of SIFT21 was adopted as feature extraction tool. In the SIFT 

algorithm, each detected feature point is coded into a 128-D feature vector. Once all of 

the SIFT vectors have been generated for a test image, a brute force search was 

performed to find the matched points by the Euclidean distance between feature vectors. 

Then, all of the distances were compared with a pre-set threshold to locate the copy-

moved regions. After that, morphological dilations were performed on every detected 

feature points to expend them to regions. Two examples of successful detections are 

given in Figure 4.13. This usage is quite coarse with still acceptable performance. Finally, 

the output of the SIFT-based detector will be combined with the LBP-based detector by 

pixel-wisely applying the logical OR operator.  

                                                           
21 http://www.robots.ox.ac.uk/~vedaldi/code/sift.html 

 

Figure 4.13 Two examples of successful tampering localization with the SIFT-based 

copy-move detector. From left to right: the original images, matched SIFT points, output 

after post-processing, ground truths. 
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Figure 4.9 The first example of copy-move forgery in smooth regions. (a) The original 

image; (b) – (e) detected masks with patch size 5×5, 7×7, 9×9, and 11×11 respectively; 

(f) – (i) corresponding masks after post-processing; (j) the ground truth mask; (k) the 

final fused binary output mask. 
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Figure 4.10 The second example of copy-move forgery in smooth regions. (a) The 

original image; (b) – (e) detected masks with patch size 5×5, 7×7, 9×9, and 11×11 

respectively; (f) – (i) corresponding masks after post-processing; (j) the ground truth 

mask; (k) the final fused binary output mask. 
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Figure 4.11 The first example of copy-move forgery in textural regions. (a) The original 

image; (b) – (e) detected masks with patch size 5×5, 7×7, 9×9, and 11×11 respectively; 

(f) – (i) corresponding masks after post-processing; (j) the ground truth mask; (k) the 

final fused binary output mask. 
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Figure 4.12 The second example of copy-move forgery in textural regions. (a) The 

original image; (b) – (e) detected masks with patch size 5×5, 7×7, 9×9, and 11×11 

respectively; (f) – (i) corresponding masks after post-processing; (j) the ground truth 

mask; (k) the final fused binary output mask. 
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4.4 Methodology Comparisons with the Winner  

In Phase-1 of the competition, the winner team [117] took the strategy of merging two 

tampering detection methods, a statistical feature-based classifier and a copy-move 

detector. Similar to our approach, they also used a subset of the rich model as the features. 

While we used ensemble classifiers and simultaneously considered classification 

performance and standard deviations of features and came up with an efficient subset of 

the original rich model, they used the SVM as classifier and the area under the receiver 

operating curve as the measure for feature selection. They also discovered that tampering 

detection with the feature-based method generated a lot of missed detections. This 

problem was alleviated by introducing a copy-move detector which by their experiments 

could efficiently ‘catch’ the missed detections. Eventually, the two tampering detection 

methods were merged and their testing score in phase-1 boosted to 94.2%. 

In Phase-2 of the competition, the winner team [118] adopted and fused three 

methods, i.e., PRNU-based (photo response non-uniformity) tampering detection, copy-

move detection, and statistical feature-based classification. Comparing with the other two, 

the PRNU-based detector was the most reliable one, when information of the camera 

noise was used. Although the camera information and noise patterns were not provided 

by the organizers, they were successfully uncovered by the winner team using a camera 

noise clustering methods on the training data. However, there were some camera 

mismatch between training and testing dataset, and the PRNU-based methods became 

unreliable at dark, saturated or highly textured regions. Hence, they adopted a copy-move 

detector as the second approach, which, surprisingly, also involved PatchMatch. The 

original version of PatchMatch was used which includes capability of detecting rotated 
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and scaled copy-moved regions. In their statistical feature-based method, the same 

feature set was used as developed during Phase-1 of the competition. Combined with a 

sliding window approach, the feature-based approach specifically targeted at splicing 

detection, although the reliability was deemed by the team as the lowest among the three 

methods. 

In summary, the competition organized by the Technical Committee of 

Information Forensics and Security, IEEE Signal Processing Society has largely boosted 

the capability of image tampering detection by providing a large dataset and organizing 

the competition. The research on image tampering detection has thus been moved a big 

step. Many challenges, in particular how to identify the tampered regions, however, 

remain; and more advanced research is called for.   

  



 

123 

CHAPTER 5 

SUMMARY 

 

5.1 Major Contributions 

In this dissertation, machine learning based (ML-based) methods have been developed to 

solve problems of image steganalysis and forensics.  

In Chapter 2, in-depth studies have been conducted by the author to move the 

success achieved by the CNNs from computer vision to steganalysis. By analyzing the 

difference between steganalysis and computer vision, a CNN architecture incorporating 

knowledge of steganography and steganalysis, which is currently one of the best 

classifiers against advanced steganography, is proposed. This is the first work that 

outperforms traditional feature-based methods on using CNN for steganalysis. It also 

convinced the research society of CNN’s capability and potential on steganalysis.  

In Chapter 3, for camera model classification, two types of statistical features 

have been proposed to capture the traces left by in-camera image processing algorithms 

of different makes and models. The first type is Markov transition probabilities of the 

neighboring block-DCT coefficients for JPEG images, the second is based on histograms 

of local binary patterns (LBPs) obtained in both the spatial and wavelet domains of 

images. The designed feature sets serve as the input to support vector machines for 

classification. Both of the two feature sets achieve the top performance at the time they 

are proposed.  

The last part of this dissertation documents the solutions delivered by the author’s 

team to The First Image Forensics Challenge organized by the Information Forensics and 
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Security Technical Committee of the IEEE Signal Processing Society. In contrast to the 

common image tampering detection dataset created in a fully-controlled manner for pure 

research purposes, all the fake images involved in the challenge had been doctored by 

popular image-editing software to simulate the real-world scenario of tampering detection 

(images have been tampered or not) and localization (which pixels have been tampered); 

hence, the detection algorithms are required to be practical. The author’s team won the 

runner-up prizes in both the two phases of the Challenge.  

 

5.2 Discussion 

The camera model classification addressed in this dissertation is one of the popular topics 

in image forensics and security. Besides its original function as the source identifier, it 

could also be applied to locate tampered regions in tampering detection, whenever the 

tampered region comes from images of different camera models. Moreover, it could also 

be served as pre-forensic steps to narrow down the range of candidate camera models 

when the investigators are looking for the specific camera device which has captured the 

image of interest. It can also be used to find suitable cover images and build a dataset 

which has closer statistical properties for more accurate steganalysis. The limitations of 

current feature-based camera model classification is the assumption that the testing 

images have not been post-processed, and they must all come from the camera models 

that have appeared in the training set. 
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5.3 Future Work 

CNN-based steganalysis is expected to be future trend of steganalysis. Although a CNN 

architecture tailored for steganalysis is proposed, certainly, more sophisticated design is 

called for to further move the research ahead. Note that in this dissertation, we only work 

on steganography in the spatial domain. Since JPEG is the most popular image format, 

research efforts need to be devoted to design CNN against steganography in the JPEG 

domain. Similar to object segmentation in computer vision, in the future, research on 

locating embedding changes using CNNs is expected, and is also worth to be studied. 

Extension of the designed CNN in steganalysis to other research topics in forensics and 

security, e.g., tampering detection and source classification, can be another direction of 

future works. 

The current feature-based camera model classification is not robust to image post-

processing, such as resizing or recompression. This is an urgent issue that prevents 

camera model identification from real-life application. Therefore, more efforts should be 

devoted to solve this weakness. The other issue is that the trained classifiers would be 

guaranteed to deliver an error when the testing image originates from a camera model not 

included in the training set. One of the solutions is to train on all the existing camera 

models. It is unclear whether it is practical or not to take this approach. If not, more 

studies are demanded to overcome this weakness. 
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