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ABSTRACT

ONLINE ALGORITHMS FOR CONTENT CACHING: AN ECONOMIC

PERSPECTIVE

by

Ammar Gharaibeh

Content Caching at intermediate nodes, such that future requests can be served

without going back to the origin of the content, is an effective way to optimize the

operations of computer networks. Therefore, content caching reduces the delivery

delay and improves the users’ Quality of Experience (QoE). The current literature

either proposes offline algorithms that have complete knowledge of the request profile

a priori, or proposes heuristics without provable performance. In this dissertation,

online algorithms are presented for content caching in three different network settings:

the current Internet Network, collaborative multi-cell coordinated network, and future

Content Centric Networks (CCN). Due to the difficulty of obtaining a prior knowledge

of contents’ popularities in real scenarios, an algorithm has to make a decision whether

to cache a content or not when a request for the content is made, and without

the knowledge of any future requests. The performance of the online algorithms

is measured through a competitive ratio analysis, comparing the performance of

the online algorithm to that of an omniscient optimal offline algorithm. Through

theoretical analyses, it is shown that the proposed online algorithms achieve either

the optimal or close to the optimal competitive ratio. Moreover, the algorithms have

low complexity and can be implemented in a distributed way. The theoretical analyses

are complemented with simulation-based experiments, and it is shown that the online

algorithms have better performance compared to the state of the art caching schemes.
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CHAPTER 1

INTRODUCTION

Recently, content retrieval has dominated the Internet traffic. Services like Video on

Demand account for 54% of the total Internet traffic, and the ratio is expected to grow

to 71% by the end of 2019 [1]. Serving all requests for contents from the origin server

leads to server overload and high delays for the users. Content Delivery Network

(CDN) uses content replication schemes at dedicated servers to bring the contents

closer to the requesting customers. This has the effect of offloading the traffic from

the origin servers, reducing content delivery time, and achieving better performance,

scalability, and energy efficiency [2, 3]. Akamai, for example, is one of the largest

CDNs deployed, delivering around 30% of web traffic through globally-distributed

platforms [4]. The problem with CDN is the necessity of dedicated servers and that

content replication is done offline. Content Caching at intermediate nodes is an effective

way to optimize the operations of computer networks and to overcome the dedicated

servers issues, so that future requests can be served without going back to the origin

of the content, thus reducing the server overload, the delivery delay, and improving the

users Quality of Experience (QoE). To overcome the second issue of offline caching,

we propose different online caching algorithms for different network settings. The

difference between offline and online algorithms is explained in the next section.

In this dissertation, we study the problem of content caching under a framework

that brings incentives for the nodes to cache the contents. In this framework, Content

Providers (CPs) are required to pay charges to the Internet Service Provider (ISP) in
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Figure 1.1 Economic framework for caching.

exchange of caching their contents. These charges can include, but not limited to, the

price of the storage required by the content providers, the power consumption of the

storage devices, among other charges. The definition of these charges is left to the ISP

and is beyond the scope of this dissertation. The ISP in return is required to provide

some form of Quality of Service (QoS) guarantees by not replacing the contents of

the content providers in the future, if the ISP decides to cache their contents. The

economic framework is illustrated in Figure 1.1. We propose three different online

caching algorithms that take the charges paid by the content providers into consideration

in order to achieve their respective objectives of either maximizing the traffic savings

(Chapter 3) or minimizing the total cost paid by the content providers (Chapters 4 and

5).

1.1 Definitions

1.1.1 Offline vs. Online Algorithms

The main difference between the offline and the online algorithms is that the offline

algorithm has a complete knowledge of the future. In our work, offline means that

2



the algorithm knows when, where, and how many times a content will be requested.

This knowledge leads to the optimal content distribution strategy that maximizes the

performance. Conversely, online algorithms do not possess such knowledge. Online

algorithms have to make a caching decision for a content based on the available

information at the time of the request arrival. Due to this difference, the offline

algorithm’s performance is typically better than or the same as that of the online

algorithm.

In the online version of the problem, the users’ requests for contents are revealed

one by one. The online algorithm has to make a decision of which content to cache

and where to cache it. The algorithm’s decisions cannot be changed in the future,

and the decisions must be made before the next request is revealed, so the online

algorithm works without the knowledge of future users’ requests as opposed to the

offline algorithm.

1.1.2 Competitive Ratio

To compare the performance of an online algorithm to that of the optimal offline

algorithm, we use the concept of competitive ratio. We define the competitive ratio

as the worst-case ratio of the performance achieved by the online algorithm to the

performance achieved by the optimal offline algorithm. Depending whether the

problem is a maximization problem (Chapter 3) or a minimization problem (Chapters 4

and 5), the definition of the competitive ratio is slightly different. Let the performance

of the online algorithm be denoted by Pon, and the performance of the offline algorithm

3



be denoted by Poff , then for a maximization problem, the competitive ratio is:

sup
all input
sequences

Poff

Pon
.

while for a minimization problem, the competitive ratio is defined as:

sup
all input
sequences

Pon

Poff
.

As the ratio gets closer to 1, the online performance gets closer to the offline

performance, and the better the online algorithm’s performance is.

1.2 Dissertation’s Outline

We start by presenting an online caching algorithm in Chapter 3 for the current Internet

network. In the current Internet network, a request for a content is forwarded along

a single path to the content origin server. Our proposed online Cost-Reward Caching

(CRC) algorithm decides which nodes along this path are to cache the content with

the objective of maximizing the traffic savings. The caching decision is based on a

comparison between the value of a cost function that is exponentially proportional to

the relative load of the caching node and the expected traffic savings achieved if the

content is to be cached. Although estimating the traffic savings requires an estimation of

the contents’ popularities, we show that knowing the contents’ popularities alone is not

enough to obtain an optimal solution. The order in which the requests for contents arrive

makes a big difference. Our algorithm is easily implemented in the current Internet

networks in a distributed way, and we show analytically that our algorithm achieves the

optimal competitive ratio in the asymptotic sense. We also propose several extensions

4



to the CRC algorithm. In the first extension, the CRC algorithm is modified in order

to consider content replacement. In the second extension, the objective is to minimize

the energy consumed by the network due to caching and transferring contents. The

third extension is a combination of the previous two extensions. Our simulation results

show that the CRC algorithm and its extensions outperform heuristic methods that are

deployed in the current networks such as Cache All and Random caching.

The difficulty of obtaining a prior knowledge of contents’ popularities in real

scenarios motivated us to design online algorithms that do not require a prior knowledge

of the contents popularities. In Chapter 4, we present the Online Collaborative

Caching (OCC) algorithm for the Multi-cell coordinated networks that does not

require a prior knowledge of the contents’ popularities. The network consists of the

Mobility Management Entity (MME) of the cellular network which acts as a centralized

controller, and multiple base stations that can collaborate with each other to satisfy

requests for contents made by the users of the cellular network. The execution of the

algorithm is done by the MME. The algorithm works on a per-request basis, where upon

the arrival of a request for a content, the MME updates the value of a potential function

of each base station, decides to cache the content if the value of the potential function

exceeds the caching cost, and relays its decision to the base stations. The potential

function is a measure of how beneficial it is to cache at a base station. Our algorithm

decides which base stations are to cache the contents and from which base station a

user’s request is satisfied with the objective of minimizing the total cost paid by the

content providers. We also show that our algorithm achieves a competitive ratio that

is close to the optimal. Through extensive simulations, we show that the collaborative

5



caching schemes provide higher savings than the non-collaborative caching scheme,

which means that applying the simple online algorithm is better than solving the

non-collaborative optimization problem.

Having a centralized controller may introduce some operational issues such

as overloading the controller or security concerns. This motivated us to design an

algorithm that can be implemented in a distributed way in Chapter 5, where we consider

content caching in Content Centric Networks (CCN). Routing in CCN is different from

routing in the current networks in that the routing in CCN is based on the content’s

name instead of the IP address of the content’s source, which means that a content can

be retrieved from nodes that are not on the path to the content’s origin server. For

the CCN network, we present Online algorithm for Caching in CCN (OC3N) that

decides where to cache a content and from which node a user’s request is satisfied

in order to minimize the total cost paid by the content providers. The algorithm does

not require a prior knowledge of the contents’ popularities and can be implemented

in a distributed way. Upon the arrival of a request for a content at a node, that node

becomes responsible of executing the algorithm. This is done by exchanging messages

with other nodes within the vicinity in order to collect the necessary information to

execute the algorithm. The node calculates the value of a potential function of each of

the participating nodes, and depending on the caching costs, decides whether to cache

the content at a new location or not. The node then relays the caching decision and

other information to the participating nodes in order for these nodes to update their

own potential function. Through theoretical analysis, we show that OC3N achieves a

constant competitive ratio when the caching cost changes periodically, and the content
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items are evicted at the end of the period. For the cases where the caching cost does

not change, we propose a heuristic based on OC3N where the content items are cached

for a fixed time. We complement the theoretical analysis with simulations and show

that our algorithm can achieve up to 65% less cost than widely used caching schemes

in CCN such as Leave Copy Down (LCD) and Leave Copy Everywhere (LCE).

Table 1.1 presents a summary of the proposed algorithms.

The dissertation is finally concluded in Chapter 6.

Table 1.1 Summary of The Proposed Online Algorithms

Algorithm

Network

Type

Competitive

Ratio

Lower

Bound

Centralized/

Distributed

CRC

Algorithm

(Chapter 3)

Current

Internet

Network

O(log(N)) 1 Ω(log(N)) Distributed

OCC

Algorithm

(Chapter 4)

Multi-cell

Coordinated

Network

O(log(n)) 2 Ω( log(n)
log log(n)

) Centralized

OC3N

Algorithm

(Chapter 5)

Content

Centric

Network

O(1) – Distributed

1N here represents the number of nodes in the network
2n here represents the number of requests for contents
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CHAPTER 2

RELATED WORK

Content caching has been extensively studied in the literature from different perspectives

and several techniques for content caching have been proposed. Caching from an

economical perspective has been studied, but the studies are limited to offline solutions

[5–12], or do not provide provable guarantees for the proposed online solution [13].

Looking at caching from other perspectives, either offline approximation algorithms are

proposed [14,15], online algorithms without provable guarantees are proposed [16–22],

or online algorithms with provable performance guarantees [23]. This dissertation is

different from all the above-mentioned work is that we study caching from an economic

perspective and propose online algorithms with provable performance guarantees. In

the following, we present a brief discerption of the most related works.

Looking from an economic perspective, the works in [5] and [6] consider

incentives for nodes to cache. However, they provide high level solutions in an offline

fashion. The authors in [6] consider a special case with only 3 ISPs. the work

in [7] proposes an optimization problem to minimize the total cost of content retrieval

given content items’ popularities, cache sizes, and links’ capacities. The optimization

problem is solved in an offline fashion, where the exact content items’ popularities are

known. The work of [8] considers maximizing the profit of the clouds provider through

caching in an offline fashion. A game theoretic model between the ISP and the CP

is proposed in [9] to fairly split the caching cost/profit between the ISP and the CP.

The work in [24] provides simulation-based analysis showing that in-network caching
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provides cost savings compared to caching in data centers only. The work in [25]

proposes an offline optimization problem that requires the knowledge of contents’

popularities in order to maximize the hit ratio given a price for caching.

In [10], the authors study collaborative caching among small base stations

deployed in a single macro-cell. The objective of the study is to minimize the

cellular network operational cost, given the cache size at each small base station and

the bandwidth of the backhaul links. The authors also propose a combined offline

algorithm and Least Frequently Used (LFU) replacement policy for in-network cache

management, and prove that the ratio of the performance of the offline algorithm to

the optimal offline algorithm is within a factor of β, which is linear in terms of the

product of the number of potential collaborators, the number of requests for each user,

and the number of cached contents at each small base station. Our work is different

in that we propose an online caching algorithm that achieves a better performance

ratio when compared to the optimal offline algorithm. The authors in [11] propose

an offline caching scheme to maximize the reward gained by the cellular network

operator when the cache of each base station is limited. An optimal offline greedy

algorithm is proposed in [12, 26] to minimize the cost of the ISP. However, the authors

only consider link costs and do not consider caching costs. The work in [27] studies

content pre-staging (i.e., offline caching) through a Stackelberg game model between

the mobile wireless operator, the content provider, and the mobile users, where the

content providers are charged for using the mobile users devices as storage, and the

mobile users are paid for the use of their devices. The work in [28] also proposes a

game theoretic approach between the ISP and the CP with the objective of minimizing

9



the ISP’s operational costs. The game is performed in an offline fashion where the

contents’ popularities are known and the cost of accessing a content is set depending on

its popularity. All the above-mentioned studies consider caching in an offline fashion.

The work in [13] proposes online algorithms for minimizing caching and traffic

costs. The work in [29] proposes an online algorithm for video caching in cellular

networks, where the decision are: 1) which video to cache and 2) at which bit rate

(in order to enhance Adaptive BitRate (ABR) streaming technology) to minimize the

network backhaul cost. In all of these studies, the authors propose online algorithms for

caching. However, the authors do not provide any analysis regarding the performance

guarantees of their algorithms.

The most related work to this dissertation is the work in [30]. The authors study

caching from an economic perspective under a stochastic framework and propose three

schemes for contract negotiation between the ISP and the CP. Depending on which

scheme is deployed, the negotiation happens when either a cache miss or a cache hit

occurs. All three schemes aim to negotiate the period of time the content is to be

cached. upon a cache miss (or a cache hit), the CP negotiates (or renegotiates) its

contract with the ISP to determine how long to cache the requested content with the

objective of maximizing the profit of the CP. Under this stochastic framework, the

authors characterize the optimal strategy (in terms of how long to cache the content)

for the CP to choose based on the chosen scheme and the pricing policy set by the ISP.

However, the choice of the optimal strategy depends on having the knowledge of the

distribution of the inter-arrival time of the requests. Our work is different in that we

propose online algorithms that do not require such knowledge.
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Looking from other perspectives (i.e., other than economic perspective), the

work in [14] presents an offline solution through dynamic programming for content

placement for en-route caching, while the work in [15] provides approximation

algorithms to minimize the number of requests served by the main base station in a

cellular network enhanced with Small Base Stations (SBS). These works provide offline

solutions to the caching problem.

As for an online point of view, the work in [16] presents Always Cache, where a

node caches every new piece of content under the constraint of cache capacity. Most

Popular Caching caches a content at neighboring nodes when the number of requests

exceeds some threshold [17]. The work of [18] presents an online solution but with

no efficiency or optimality proofs. The authors in [19] study caching in CCN by

formulating an optimization problem with the objective of minimizing the inter-ISP

traffic or the average access latency, and also proposes an online algorithm that caches

the content items on the en-route path. The work in [20] improves upon the work in [17]

by always caching new content items when the cache is underutilized. When the cache

is full and the counter of a content reaches a certain threshold, the content is cached

using LRU replacement policy. Otherwise, the content will not be cached. The work

in [21,22] provides an online caching scheme to minimize the total energy consumption

of CCN. In all these works, the authors do not provide any analysis regarding the

performance guarantees of the proposed algorithms. In [23], caching is studied in a

network where all users are connected to a single server via a shared backhaul link.

An online algorithm with provable performance guarantees is proposed that minimizes
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the traffic sent over the shared link. The work in [31] proposes an online algorithm for

video caching with the objective of maximizing the hit ratio.

Different from the above-mentioned works, other studies have investigated

caching in an offline fashion to achieve different objectives. The authors in [32] provide

a push-pull model to optimize the joint latency-traffic problem by deciding which

contents to push (cache) on intermediate nodes, and which contents to pull (retrieve)

from the origin server. ProbCache aims to reduce the cache redundancy by caching

contents at nodes that are close to the destination [33]. A cooperative approach in [34]

leads to a node’s caching decision that depends on its estimate of what neighboring

nodes have in their cache. A collaborative caching mechanism in [35] maximizes cache

cooperation through dynamic request routing. In [36], nodes try to grasp an idea of

other nodes’ caching policies through requests coming from those nodes.

The objective of the work in [37] is to minimize the delay through content

popularity estimation in a single base station, while [38] uses caching helpers to achieve

the same objective. The authors in [39–41] consider hierarchical caching in cellular

backhaul networks, while [42, 43] take an information-theoretic approach to study

hierarchical caching.

The authors in [44] propose a proactive offline caching scheme, and develop a

heuristic algorithm to minimize the content access delay of all users. The authors

assume that content popularity is the same across different base stations. The work

in [45] studies collaborative caching with the objective of minimizing either the inter

ISP traffic, the intra ISP traffic, or the overall user delays, using a proactive offline

caching scheme and a heuristic algorithm.

12



The work in [46] provides an optimal caching strategy to minimize the average

latency experienced by end users in a CCN when the nodes either coordinate or do

not coordinate with each other to reach an optimal caching decision. The work in

[47] proposes an energy consumption model for CCN and formulates an optimization

problem to minimize the total power consumption of CCN given the content items’

popularities and the cache sizes. The work in [48] analyzes the impact of caching on

the energy efficiency of cellular networks. All of the above-mentioned studies require

the exact knowledge of content items’ popularities, which leads to offline solutions,

in which the content items are cached in the network before the content items are

requested.

Table 2.1 provides a summary of the related work.

Table 2.1 Summary of The Related Work

References
Economic

Perspective

Online

Algorithm

Provable

Performance

Guarantees

This work, [30] • • •

[13, 29] • •

[10–12, 27, 28] • •

[23, 31] • •

[5–9, 24–26] •

[14, 15] •

[16–22] •

[32–48]
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CHAPTER 3

ONLINE ALGORITHM FOR CACHING IN THE CURRENT INTERNET

NETWORK

3.1 Introduction

In this chapter1, we present an online caching algorithm for the current Internet network.

In the current Internet network, a request for a content is forwarded along a single path

to the content origin server. Our proposed online algorithm decides which nodes along

this path are to cache the content with the objective of maximizing the traffic savings.

This chapter provides a provably-optimal online solution for the first time under a

setting that brings incentives for the nodes to cache. In order to provide incentives for

the nodes to cache, nodes have to charge content providers for caching their contents.

Adopting such charging policies forces the caching node to provide quality of service

guarantees for content providers by not replacing their contents in the future, if the node

decides to cache their contents. Since the number of contents far exceeds the nodes’

cache capacities, and assuming that the charging price for every piece of content is the

same, then the node has no preference in caching one content over the other, forcing the

node to cooperate and apply our policy that achieves asymptotic optimality.

3.1.1 Settings

A network is represented by a graph G(V,E), where each node i ∈ V has a caching

capacity of Di. If the node does not have caching capability, its caching capacity is set

1The work of this chapter has been published in [49]
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to 0. Weights can be assigned to each link e ∈ E, but we consider all links to have

the same weight. The input consists of a sequence of contents β1, β2, ..., βm, the j-th

of which is represented by βj = (Sj , rj, Tj(τ)), where Sj is the source for content βj ,

rj is the size of βj , and Tj(τ) is the effective caching duration in which more requests

are expected for βj when a request appears at time slot τ . For simplicity, we assume a

slotted time system and that Tj(τ) is an integer multiple of slots.

For each content, we define the following values:

1. bi(j): Number of hops on the path from node i to Sj for βj .

2. Wi(τ, j): The expected number of requests for βj to be served from the cache at

node i at time slot τ , if all of the caching nodes cache βj .

3. t0(i, j): The time when a request for βj appears at node i.

4. Ei(τ, j): The total expected number of requests for βj to be served from the cache

at node i per time slot τ . We assume that Ei(τ, j) is fixed ∀τ ∈ {t0, . . . , t0 +
Tj(t0)}.

5. τ0(i, j): The time when βj is cached at node i. For simplicity, we denote this

value hereafter by τ0 since the values of (i, j) can be inferred from the context.

6. di(τ, j): Number of hops from node i to the first node caching βj along the path

to Sj at time τ . We assume that if node i caches βj at time τ0, then di(τ, j) =
di(τ0, j), ∀τ ∈ {τ0, . . . , τ0 + Tj(τ0)}.

Figure 3.1 shows a simple network to illustrate the aforementioned definitions.

In this example, we have two contents β1 and β2, originally stored on v1 and v2,

respectively. The triangles in this figure represent the subnetworks containing the set of

non-caching nodes connected to the caching node. The values of Wi(τ, j) represent the

expected number of requests for βj coming from the set of non-caching nodes in the

subnetwork connected to node i.

15



v1

v2

v3

v4

SubTree1

SubTree2

SubTree3
b3(1)=2, W3(τ, 1)=4
b3(2)=1, W3(τ, 2)=2

SubTree4
b4(1)=3, W4(τ, 1)=2
b4(2)=2, W4(τ, 2)=1

S1

S2

b1(2)=1, W1(τ, 2)=2

b2(1)=1, W2(τ, 1)=3

Figure 3.1 Simple caching network.

Before any requests for βj appears at any node, each node i will send its Wi(τ, j)

to all nodes on the path from node i to the source of βj , Sj . This process will lead to

the calculation of the initial values of Ei(τ, j).

For example, in Figure 3.1, before any request for β1 appears at any node,

E3(τ, 1) = W3(τ, 1) + W4(τ, 1), to a total value of 6. This is because, starting from

the initial configuration while investigating the caching of content β1 on node v3, all

the requests for β1 coming from the subnetworks connected to v3 and v4 will be served

from the cache of v3, if we decide to cache β1 on v3. Similarly, E2(τ, 1) = 9. Later

on, if v4 decides to cache β1, then W4(τ, 1) will be subtracted from all nodes along the

path to S1, until the first node caching β1 is reached. This is because none of these

nodes will serve the requests for β1 coming from the subnetwork connected to v4 after

this point. In Sections 3.2 and 3.3.3, we provide details for the dynamic calculation and

initialization of Ei(τ, j), respectively.
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We define the total traffic savings of caching in the time interval [0,t] as:

t
∑

τ=0

n
∑

i=1

m
∑

j=1

Ei(τ0, j)di(τ0, j)I(ai(τ, j)), (3.1)

where I(.) is the indicator function and ai(τ, j) is the event that βj exists at node i at

time τ . For example, referring to Figure 3.1, caching β1 on v3 alone for a single time

slot will yield a saving of E3(τ, 1)× d3(τ, 1) = (4 + 2)× 2 = 12.

We define the relative load on a caching node i at time τ when βj arrives as

λi(τ, j) =
∑

k:k<j
k∈Cachei(τ)

rk
Di

,

where k < j refers to the indices of all βk that are in the cache of node i at the time

when considering βj to be cached at node i. We use k ∈ Cachei(τ) to represent the

existence of βk in the cache of node i at time τ .

As we mentioned in Section 3.1, charging content providers for caching their

contents will provide the nodes with the necessary incentives to cache. In return, the

nodes have to guarantee quality of service for content providers by keeping their content

cached for the required time period. We assume that content providers are charged the

same to prevent the node from preferring contents with a higher prices. To this end, we

consider non-preemptive caching to represent our system model, i.e., once βj is cached

at node i, it will stay cached ∀τ ∈ {τ0, . . . , τ0 + Tj(τ0)} time slots. We elaborate more

on Tj(τ) in Section 3.3.4.
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3.1.2 Motivation

We motivate the design of our online algorithm by the following reasoning; knowing

the contents’ popularities alone does not guarantee an optimal solution. The order in

which the contents arrive makes a big difference.

Referring to Figure 3.1, consider the existence of two contents named X and Y ,

originally located at v1. Assume that W3(τ,X) = W4(τ,X) = 1, W3(τ, Y ) = 1,

and W4(τ, Y ) = 10. Assume that all nodes have enough residual cache capacity for

one content except node v3, which is full and cannot cache any content. Furthermore,

assume that X and Y will be both requested twice by v4 at different time slots. Consider

the following two scenarios:

• En-Route Caching: If the first request for content X , followed by the first request

for content Y , arrives at v4, then v4 will cache the first content X and v2 will

cache content Y , achieving a traffic saving at v4 for the next pair of requests of

(1× 3) + (10× 1) = 13. Later on, if requests for X and Y appear at v3, then v3
will get content X from v1 and content Y from v2, gaining an additional savings

of (1× 0) + (1× 1) = 1.

Alternatively, if a request for Y is followed by a request for X at v4, then v4 will

cache the first content Y and v2 will cache content X , achieving a traffic saving

at v4 for the next pair of requests of (10×3)+ (1×1) = 31. Later on, if requests

for X and Y appear at v3, then v3 will get content X from v2 and content Y from

v1, gaining an additional savings of (1×1)+(1×0) = 1. So the online algorithm

will achieve an average traffic savings of 23.

The offline algorithm knows in advance that content Y will be requested and can

reject the caching of content X at v4 and cache it at v2 to achieve a traffic saving

of (10× 3) + (1× 1) + (1× 1) + (1× 0) = 32.

• Routing to the Closest Caching Node: If the first request for content X , followed

by the first request for content Y , arrives at v4, then v4 will cache the first content

X , and v2 will cache content Y , achieving a traffic saving at v4 for the next pair of

requests of (1×3)+(10×1) = 13. Later on, if requests for X and Y appear at v3,

then v3 will get content X from v4 and content Y from v2, gaining an additional

savings of (1× 1) + (1× 1) = 2.

Alternatively, if a request for Y is followed by a request for X at v4, then v4 will

cache the first content Y and v2 will cache content X , achieving a traffic saving
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at v4 for the next pair of requests of (10×3)+ (1×1) = 31. Later on, if requests

for X and Y appear at v3, then v3 will get content X from v2 and content Y from

v4, gaining an additional savings of (1 × 1) + (1 × 1) = 2. Because of this, the

online algorithm will achieve an average traffic savings of 24.

The offline algorithm knows in advance that content Y will be requested and can

reject the caching of content X at v4, and will cache it at v2 to achieve a traffic

saving of (10× 3) + (1× 1) + (1× 1) + (1× 1) = 33.

The above examples show that the online algorithm cannot guarantee an optimal

solution. In fact, we show that there is an upper bound on the savings achieved by the

online algorithm when compared to the offline algorithm, and we develop an online

algorithm that achieves that bound under realistic settings.

3.2 Algorithm

In this section, we present the Cost-Reward Caching (CRC) algorithm that achieves the

optimal competitive ratio, along with some practical issues. We introduce the proof of

optimality in the next section.

3.2.1 CRC Algorithm

CRC takes advantage of en-route caching, i.e., a request for a content is forwarded

along the path to the content’s source, up to the first node that has the content in its

cache. The content then will follow the same path back to the requester.

In CCN, when an interest packet for a new content arrives at a node on a certain

interface, the node will send the interest packet using all other interfaces. For example,

Figure 3.2 shows a single node in CCN, where the numbers represent the interfaces of

the node. When a request for βj arrives at the node through interface number 2, and a

match is not found in neither the cache nor the Pending Interest Table (PIT), the node
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Figure 3.2 A single node in CCN.

will send the request on all interfaces except interface number 2. Our algorithm uses

en-route caching, so the new interest packet is only forwarded on the single interface

along the path to the content’s source.

When a request for a content βj appears at a node i at time t0, node i sends a

small control message up to the first node caching βj along the path to the source of the

content. Let w be that first node, then node w replies with a message containing rj and

the ID of node w. Every node u in the path from node w to node i stores a copy of the

message, computes du(t0, j), and forwards the message to the next node along the path

to node i. When Node i receives the message, it makes a caching decision according

to Algorithm 2. If node i decides to cache βj , it initializes a header field in the request

packet to the value of Ei(τ, j). If node i decides not to cache, it initializes the header

field to 0.

The request packet is then forwarded to the parent node z. The parent first

subtracts the value stored in the header field from its own value of Ez(τ, j). Based on

the new value of Ez(τ, j), if node z decides to cache βj , it adds its Ez(τ, j) to the value

in the header field. Otherwise, node z adds 0. The request packet is then forwarded

to node z’s parent, and the whole process is repeated until the request reaches the first

node that has the content in its cache. The content then will follow the same path back
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to the requester, and every node in the path that decided to cache the content will store

a copy in its cache. We describe the operation of our algorithm in Algorithm 1.

Algorithm 1 En-Route Caching

1: A request for βj appears at node i at time t0.
2: header = 0
3: if βj ∈ Cachei(t0) then
4: Reply back with βj

5: else
6: Send a control message to retrieve rj , di(t0, j)
7: w ← first node on the path to Sj , where βj ∈ Cachew(t0)
8: Node w replies with rj and ID
9: ∀u ∈ Path(w, i), store rj , du(t0, j)

10: for uk ∈ Path(i, w), k = 1 : Length(Path(i, w)) do
11: Euk

(t0, j) = Euk
(t0, j)− header

12: Run Cost-Reward Caching algorithm
13: if Caching Decision = TRUE then
14: header = header + Euk

(t0, j)

For example, Figure 3.3 shows a simple network where a content β1 is originally

stored at S1. We removed the triangles representing the set of non-caching nodes for the

sake of clarity. If a request for β1 appears at v0, node v0 will send a control message up

to the first node caching β1, which is S1, and retrieves the values of r1 and d0(t0, 1) = 1.

Based on these values, if v0 decides to cache β1, it will send the request for β1 to

its parent, which is S1, with the header field initialized to E0(t0, 1) = 14. Node S1

will simply reply with a data packet containing β1, and v0 will cache β1. Later on, if

another request for β1 appears at v5 while β1 is still cached at v0, node v5 will send a

control message up to the first node caching β1, which is v0. Node v0 sends a message

containing the values of r1 and its ID to node v2. Node v2 will store the value of r1, sets

d2(t0, j) = 1, and forwards the message to v5. Node v5 in turn will store the value of r1

and set d5(t0, j) = 2. Based on these values, if v5 decides to cache β1 it will send the

request for β1 to its parent, which is v2, with a header field initialized to E5(τ, 1) = 2.
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When the request reaches v2, it will first subtract the value in the header field from its

own E2(τ, 1), so the new value of E2(τ, 1) is E2(τ, 1) = E2(τ, 1)−header = 4− 2 = 2.

The reason that node v2 has to subtract the header field from its own E2(τ, 1) is because

the requests for β1 coming from the subnetwork connected to node v5 will not be served

from the cache of node v2 since v5 decided to cache β1. Based on these values, if v2

decides not to cache β1, it will add 0 to the header field and forward the request to its

parent v0. Node v0 will simply reply with a data packet containing β1, and only v5 will

cache β1.

v0

v1 v2

v3 v4 v5 v6

S1

W6(τ, 1) = 1

W5(τ, 1) = 2W4(τ, 1) = 1

W3(τ, 1) = 3

W2(τ, 1) = 1W1(τ, 1) = 2

W0(τ, 1) = 4

E6(τ, 1) = 1

E5(τ, 1) = 2E4(τ, 1) = 1

E3(τ, 1) = 3

E2(τ, 1) = 4E1(τ, 1) = 6

E0(τ, 1) = 14

Figure 3.3 Simple caching network 2.

The core idea of the Cost-Reward Caching algorithm is to assign an exponential

cost function for each node in terms of the node’s relative load. If the cost of caching

a content is less than the traffic savings achieved by caching the content, the algorithm

decides to cache. The choice of an exponential cost function guarantees that the node’s

capacity constraints are not violated. We show that in the next section.

We define the cost of caching at a node i at time τ as:

Ci(τ, j) = Di(µ
λi(τ,j) − 1),
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where µ is a constant defined in Section 3.4. The algorithm for Cost-Reward Caching

is presented in Algorithm 2.

Algorithm 2 Cost-Reward Caching (CRC)

1: New request for βj arriving at node i at time t0
2: ∀τ ∈ {t0, . . . , t0 + Tj(t0)}, Compute λi(τ, j), Ci(τ, j)

3: if
∑t0+Tj(t0)

τ=t0
Ei(τ, j)di(t0, j) ≥

∑t0+Tj(t0)
τ=t0

rj
Di
Ci(τ, j) then

4: Cache βj on node i
5: τ0(i, j) = t0(i, j)
6: ∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λi(τ, j) +

rj
Di

7: else
8: Do not cache

In the algorithm, when new content that is not currently cached by node i arrives

at time t0, node i computes the relative load (λi(τ, j)) and the cost (Ci(τ, j)) for every

τ ∈ {t0, . . . , t0 + Tj(τ)}. This is because a currently cached content may be flushed

before t0 + Tj(t0), thus the relative load and the cost should be adjusted for each time

slot thereafter.

For example, Figure 3.4 shows the relative load at a node for the next 10 time

slots starting from t0, which is the arrival time of a new content β4. The node has

three cached contents, β1, β2, and β3 that are going to be flushed at times τ1 = t0 + 3,

τ2 = t0 +9, and τ3 = t0 +7, respectively. When a β4 arrives at this node at τ = t0 with

T4(t0) = 10, the cost calculation should include three cached contents for 3 time slots,

two cached contents for 4 time slots, one cached content for 2 time slots, and 0 cached

content for 1 time slot. If the total savings for caching β4 is greater than the aggregated

cost, then β4 will be cached on node i, and the relative load is updated to include the

effect of β4.
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λi(τ, j)

τ

1

t0+1 t0+2 t0+3 t0+4 t0+5 t0+6 t0+7 t0+8 t0+9 t0+10

Flushing Time of β1

Flushing Time of β3

Flushing Time of β2

Figure 3.4 Relative load calculation example. The figure shows the state of the cache
in one node when it considers a new content β4 for caching at time t0 and T4(t0) = 10.
We have three contents, β1, β2, and β3, that are to be flushed at times τ1 = t0 + 3,
τ2 = t0 + 9, and τ3 = t0 + 7, respectively.

3.3 Practical Issues

So far, we developed a fully distributed algorithm that achieves asymptotic optimality

in terms of traffic savings under some realistic assumptions. Before providing the

optimality proof, we discuss in this section the practical issues that make the algorithm

easy to implement. The major issues in our algorithm include providing incentives

for the caching nodes and QoS guarantees for the content providers, the adoption of

en-route caching, calculating the popularity expectation of each content, and updating

the effective caching duration.

3.3.1 Providing Incentives and QoS Guarantees

In this work, the QoS measure is to guarantee the existence of the content in the cache

for a certain period of time, so the content will be delivered quickly. In other words,

once a caching node decides to cache a certain content, the content will not be replaced

during the effective caching time of the content. Providing such a guarantee along with

adopting an equal pay charging policy for all contents will provide the caching nodes
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with the necessary incentive to cache. Figure 3.5 shows the interaction between the ISP

and the content provider.

Figure 3.5 Interaction between ISP and content provider.

We assume that the caching nodes should adopt charging policies, where every

content provider is charged the same. This will prevent the caching node from

preferring one content over the other. Moreover, such charging policies will enforce

the caching nodes to cooperate and apply our CRC algorithm

3.3.2 En-Route Caching

In en-route caching, a request for βj will be sent to the parent along the traditional

path to the content’s source, until the request reaches the first node caching the content

or the content’s source. The adoption of this en-route caching reduces the amount of

broadcasted Interest packets as opposed to the currently deployed schemes in CCN,

where the interest packets are broadcasted to all neighbors. Moreover, using en-route

caching prevents the reception of multiple copies of the requested content as opposed

to CCN. Furthermore, our algorithm can be easily implemented in the current Internet

architecture.
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3.3.3 Calculating the Initial Content Expectation Values

For each content, we start by building a caching tree rooted at the source of the content.

The caching tree is the union of the traditional paths from the source of the content to

all other nodes. We calculate the initial expectation value at a caching node for a certain

content, when only node Sj holds the j-th content, based on the content’s popularity

and the number of end nodes in the subnetwork connected to that node. For example, in

Figure 3.1, W3(τ, j) at node v3 for content βj is proportional to the content’s popularity

and the number of end nodes in the subnetwork connected to node v3.

Algorithm 3 shows how to calculate Ei(τ, j) for each content at each caching

node before the appearance of any request at any node. The expectations are calculated

in a distributed way, where each node only needs to know the expectation values of its

children in the caching tree. In the simulation, we investigate the effect of having error

margins in the expectation calculation.

Algorithm 3 Initial Content Popularity Expectation Calculation

1: for each content βj = {Sj , rj, Tj(τ)} do
2: CachingTree(j)← build the traditional path tree rooted at Sj

3: for each caching node i ∈ CachingTree(j) do
4: Calculate Wi(τ, j)
5: Initialize Ei(τ, j)←Wi(τ, j)
6: for each node z ∈ Ancestor(i) in CachingTree(j) do
7: Ez(τ, j) = Ez(τ, j) +Wi(τ, j)

For example, referring back to Figure 3.3, and before a request for β1 appears

at any node, the values of Ei(τ, j) are calculated as described in Algorithm 3. Take

node v2 for example, then E2(τ, 1) = W2(τ, 1) + W5(τ, 1) + W6(τ, 1) = 4. The final

expectation values for the rest of the nodes are shown in Figure 3.3.
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3.3.4 Effective Caching Duration

The effective caching duration of a content depends on its arrival time. For example,

most people read the newspaper in a period of two hours, so the caching duration should

be two hours beginning at the arrival of the first request. However, if a new request

for the newspaper arrives at a node in the middle of the range and was cached by the

algorithm, then the caching duration should be one hour. This requires the broadcast of

the first arrival time to all other nodes in the network. The additional overhead incurred

by such broadcasting is negligible compared to the reduction of the Interest packet

broadcasting we achieve through the adoption of en-route caching.

3.3.5 Imperfect Knowledge of the Input Parameters for CRC

Our CRC algorithm achieves asymptotic optimality under the assumption of having

exact knowledge of the values of the content popularity expectation, Ei(τ, j), and the

effective caching duration time, Tj(τ). Nevertheless, we show the resiliency of our

algorithm with respect to errors in the values of Ei(τ, j) and Tj(τ) through simulations.

3.4 Performance Analysis

In this section, we show that any online algorithm has a competitive ratio that is lower

bounded by Ω(log(n)), then we show that our algorithm does not violate the capacity

constraints, and achieves a competitive ratio that is upper bounded by O(log(n)) under

realistic settings.

Proposition 1. Any online algorithm has a competitive ratio which is lower bounded

by Ω(log(n)).
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Proof. We show this proposition by giving an example network, such that the best

online algorithm competitive ratio is lower bounded by Ω(log(n)). Consider a network

which consists of n + 2 nodes, as shown in Figure 3.6. All contents are originally

placed at node S, and node C is the only node with caching capability with a unit

cache capacity. All other nodes can request the contents. We consider a 2 time slots

system where all contents are to be requested at the beginning of each time slot, though

sequentially. Sequentially means that the algorithm has to make a caching decision for

a content before considering the next one.

v0 v1 vn

S

C

Figure 3.6 Network for lower bound proof.

Consider a log(n) + 1 phases of contents. For each phase 0 ≤ i ≤ log(n), we

have 1/α identical contents, each with size α ≪ 1 and a caching time equal to 2 time

slots. Contents in the same phase are destined for the same 2i nodes. The reason behind

considering a 2 time slots system is that when a node caches a content, the traffic saving

is considered for future requests.

Let xi be the fraction of contents stored from phase i and Gi be the traffic saving

of the online algorithm gained from phase i, then

Gi = xi2
i
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Consider the first k phases, then the online traffic saving of these k phases, denoted by

G(k), is

G(k) =
∑

Gi =

k
∑

i=0

xi2
i

The offline algorithm will cache the contents from phase k only, gaining a traffic saving

of 2k

Now consider the ratio of the online traffic saving to the offline traffic saving:

logn
∑

k=0

G(k)

2k
=

logn
∑

k=0

k
∑

i=0

xi2
i

2k
=

logn
∑

i=0

logn
∑

k=i

xi2
i−k

=

logn
∑

i=0

xi

logn
∑

k=i

2i−k ≤ 1 ∗ 2 ≤ 2

Hence, there exist some k such that G(k)
2k
≤ 2

logn
. This means that the saving of the

offline algorithm is at least within a log n factor of the savings achieved by any online

algorithm.

Before we start the proof of satisfying the capacity constraints and the upper

bound, we need to state the following two assumptions:

1 ≤
1

n
.
Ei(τ, j)bi(j)

rjTj(τ)
≤ F ∀j, ∀i 6= Sj , ∀τ, (3.2)

and

rj ≤
minDi

log(µ)
∀j, (3.3)

where F is any constant large enough to satisfy the assumption in (3.2), µ = 2(nTF +

1), n is the number of caching nodes, and T = max(Tj), ∀j. The assumption in (3.2)

states that the amount of traffic savings for a content scales with the content’s size and
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caching duration. The assumption in (3.3) requires that the caching capacity of any

node should be greater than the size of any content, which is a practical condition to

assume.

We start by proving that the CRC algorithm does not violate the capacity

constraints. After that, we show that CRC achieves a O(log(n)) competitive ratio.

In all of the subsequent proofs, τ ∈ {t0(i, j), . . . , t0(i, j) + Tj(t0(i, j))}, where t0(i, j)

is the arrival time of βj at node i.

Proposition 2. The CRC algorithm does not violate the capacity constraints.

Proof. Let βj be the first content that caused the relative load at node i to exceed 1. By

the definition of the relative load, we have

λi(τ, j) > 1−
rj
Di

using the assumption in (3.3) and the definition of the cost function, we get

Ci(τ, j)

Di

= µλi(τ,j) − 1 ≥ µ
1−

rj

Di − 1

≥ µ1− 1
log µ − 1 ≥

µ

2
− 1 ≥ nTF

Multiplying both sides by rj and using the assumption in (3.2), we get

rj
Di
Ci(τ, j) ≥ nTFrj ≥ Ei(τ, j)bi(j) ≥ Ei(τ, j)di(t0, j)

From the definition of our algorithm, βj should not be cached at node i. Therefore, the

CRC algorithm does not violate the capacity constraints.
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The next lemma shows that the traffic saving gained by our algorithm is lower

bounded by the sum of the caching costs.

Lemma 1. Let A be the set of indices of contents cached by the CRC algorithm, and k

be the last index, then

2 log(µ)
∑

i,j∈A,τ

[Ei(τ, j)di(t0, j)] ≥
∑

i,τ

Ci(τ, k + 1) (3.4)

Proof. By induction on k. When k = 0, the cache is empty and the right hand side of

the inequality is 0. When βj is not cached by the online algorithm, neither side of the

inequality is changed. Then it is enough to show, for a cached content βj , that:

2 log(µ)
∑

i,τ

[Ei(τ, j)di(t0, j)] ≥
∑

i,τ

[Ci(τ, j + 1)− Ci(τ, j)]

since summing both sides over all j ∈ A will yield (3.4).

Consider a node i, the additional cost incurred by caching βj is given by:

Ci(τ, j + 1)− Ci(τ, j) = Di[µ
λi(τ,j+1) − µλi(τ,j)]

= Diµ
λi(τ,j)[µ

rj

Di − 1]

= Diµ
λi(τ,j)[2

log µ
rj

Di − 1]

Since 2x − 1 ≤ x for 0 ≤ x ≤ 1 and using the assumption in (3.3)
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Ci(τ, j + 1)− Ci(τ, j) ≤ Diµ
λi(τ,j)[

rj
Di

log µ]

≤ rj log µ[
Ci(τ, j)

Di

+ 1]

≤ log µ[
rj
Di

Ci(τ, j) + rj ]

Summing over τ , i, and the fact that βj is cached, we get

∑

i

∑

τ

[Ci(τ, j + 1)− Ci(τ, j)]

≤ log µ
∑

i

∑

τ

[
rj
Di

Ci(τ, j) + rj ]

≤ log µ[
∑

i

Ei(τ, j)di(t0, j) +
∑

i

∑

τ

rj]

≤ 2 logµ
∑

i

Ei(τ, j)di(t0, j)

In the next lemma, di(τ, j) is defined for the online algorithm.

Lemma 2. Let Q be the set of indices of contents cached by the offline algorithm, but

not the CRC algorithm. Let l = argmaxj∈Q(Ci(τ, j)). Then

∑

i

∑

j∈Q

∑

τ

[Ei(τ, j)di(t0, j)] ≤
∑

i

∑

τ

Ci(τ, l)
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Proof. Since βj was not cached by the online algorithm, we have:

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

τ

rj
Di

Ci(τ, j)

≤
∑

τ

rj
Di

Ci(τ, l)

∑

i

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

i

∑

τ

rj
Di

Ci(τ, l)

Summing over all j ∈ Q

∑

i

∑

j∈Q

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

i

∑

τ

Ci(τ, l)
∑

j∈Q

rj
Di

≤
∑

i

∑

τ

Ci(τ, l)

Since any offline algorithm cannot exceed a unit relative load,
∑

j∈Q
rj
Di
≤ 1.

Combining Lemma 1 and Lemma 2, we have the following lemma.

Lemma 3. Let A∗ be the set of indices of the contents cached by the offline algorithm,

and let k be the last index. Then:

∑

i,j∈A∗,τ

Ei(τ, j)di(t0, j) ≤ 2 log(2µ)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)
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Proof. The traffic savings of the offline algorithm is given by:

∑

i,j∈A∗,τ

Ei(τ, j)di(t0, j)

=
∑

i,j∈Q,τ

Ei(τ, j)di(t0, j) +
∑

i,j∈A∗/Q,τ

Ei(τ, j)di(t0, j)

≤
∑

i,j∈Q,τ

Ei(τ, j)di(t0, j) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤
∑

i,τ

Ci(τ, l) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤
∑

i,τ

Ci(τ, k + 1) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤ (2 logµ+ 1)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤ 2 log(2µ)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

Note that di(τ, j) in the previous lemmas is defined by the online algorithm. In

order to achieve optimality using this proof technique, di(τ, j) of the online algorithm

should be equal to di(τ, j) of the offline algorithm. In the next two corollaries, we show

cases where di(τ, j) of the online algorithm is equal to di(τ, j) of the offline algorithm.

Corollary 1. When there is only one caching node in every path, then di(τ, j) of the

online algorithm is equal to di(τ, j) of the offline algorithm, and our algorithm achieves

asymptotic optimality.

Corollary 2. When every node in the path shares the same caching decision, then

di(τ, j) of the online algorithm is equal to di(τ, j) of the offline algorithm, and our

algorithm achieves asymptotic optimality.
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3.5 Extensions to CRC Algorithm

In this section, we provide some extensions to the CRC algorithm. We show the

efficiency of these extensions with respect to currently deployed caching schemes

through extensive simulations.

3.5.1 Energy-CRC

The basic CRC algorithm measures the traffic savings for caching a content based on the

number of hops. In this section, we provide an extension for the basic CRC algorithm

where the savings are measured based on the energy saved on the upstream path from

the caching node up to the first node that already has the content in its cache.

The settings for the Energy-CRC algorithm are the same for the basic CRC

algorithm except for the definitions of bi(j) and di(τ, j), where we define bi(j) as the

energy consumption from Sj to node i, and di(τ, j) as the energy consumption on the

path from the first node that is currently caching βj to node i along the path to Sj at

time τ .

Specifically, let α(u,v) denote the energy consumption to transfer a unit-size

content from node u to node v via a direct link, then the energy consumption to transfer

βj at time τ from node w to node i, where w is the first node along the path from node

i to Sj that is currently caching βj , is given by:

di(τ, j) =
∑

(u,v):
(u,v)∈Path(w,i)

(rjα(u,v)).

Based on the values of di(τ, j), we apply the basic CRC algorithm.
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In the case where renewable energy is used to power the caching nodes, the

objective will be to reduce the amount of the consumed non-renewable energy.

Therefore, the definition of di(τ, j) changes to reflect the new objective. We measure

the traffic savings based on how much non-renewable (brown) energy is saved.

Specifically, let gru(τ) denotes the amount of available renewable energy at node

u at time τ , then:

di(τ, j) =
∑

(u,v)
(u,v)∈Path(w,i)

(max {rjα(u,v) − gru(τ), 0}).

We assume that every caching node has a prior estimation of how much renewable

energy will be available in the near future.

3.5.2 Replacement-CRC

The basic CRC algorithm provides quality of service guarantees for content providers

by not replacing their contents once they are cached. Content providers, in return,

are charged to provide incentives for the caching nodes based on the caching policy

discussed in Section 3.3.1. In this section, we present an extension for the basic CRC

algorithm that allows content replacement.

The settings for Replacement-CRC are the same as for the basic CRC algorithm.

However, there is no restriction on keeping a content βj in the cache of node i for the

whole effective caching duration time Tj(τ), as βj may be replaced by another content.

We present the details of the Replacement-CRC algorithm in algorithm 4.

Algorithm 4 states that if the traffic savings gained by caching a new content βj is

greater than the caching cost at node i, then the algorithm decides to cache. Otherwise,

36



Algorithm 4 Replacement-CRC

1: A new request for βj appears at node i at time t0
2: ∀τ ∈ {t0, . . . , t0 + Tj(t0)}, Compute λi(τ, j), Ci(τ, j)
3: if

∑

τ Ei(t0, j)di(t0, j) ≥
∑

τ
rj
Di
Ci(τ, j) then

4: Cache βj at node i
5: τ0(i, j) = t0(i, j)
6: ∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λi(τ, j) +

rj
Di

7: else
8: ∀βk ∈ Cachei(t0) ∪ βj, ∀τ ∈ {t0, . . . , t0 + Tk(t0)}, Compute

9: λk
i (τ, j) = λi(τ, j) +

rj
Di
− rk

Di

10: Ck
i (τ, j) = Di[µ

λk
i (τ,j)−1]

11: if λk
i (τ, j) ≤ 1 then

12: Diff(k) =
∑

τ Ei(τ0, k)di(τ0, k)−
∑

τ
rj
Di
Ck

i (τ, j)

13: l = argmink(Diff)
14: if l 6= j then
15: Replace βl with βj

16: ∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λl
i(τ, j)

we compare the difference between the traffic savings and the caching costs for every

βk ∈ Cachei(τ), if it is replaced by βj without violating the capacity constraints. We

then choose the content with the minimum difference to replace with βj .

3.5.3 Energy-CRC with Replacement

This extension combines Energy-CRC with Replacement-CRC, where the traffic

savings are measured based on the brown energy savings, and where content replacement

is allowed. We show the efficiency of this extension against currently deployed caching

schemes such as Least Recently Used (LRU) through extensive simulations.

3.6 Simulation Results

In this section, we compare our CRC algorithm to some of the existing caching

schemes.
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3.6.1 Settings

We simulate the following caching schemes:

1. CRC: This scheme represents our basic algorithm.

2. CRC Version 2: This is similar to the CRC scheme, Version 1, except that we

retrieve the content from the closest node that has the content in its cache, not

necessarily along the path to the content’s source.

3. Cache All: This scheme caches every new content arriving at a caching node, as

long as there is enough residual capacity to cache the new content.

4. Random Caching Version 1: In this scheme, when a request for a content

arrives at node i, the caching probability of the content depends on the content’s

popularity at node i. The popularity of a content βj at node i denoted by Popj , is

defined as the ratio of the number of requests for βj coming from the subnetwork

connected to node i denoted by N j
i , to the total number of non-caching nodes in

the subnetwork connected to node i denoted by Ni. Mathematically speaking,

Popj = N j
i /Ni. If we choose a uniform random number x between [0,1], and

x ≤ Popj , then the content βj is cached if there is enough room for it in the

cache. Otherwise, the content is not cached.

5. Random Caching Version 2: This is similar to Random Caching Version 1, except

that the caching probability of the content depends on the content’s popularity

at node i, scaled by the fraction of the available residual capacity to the total

capacity in the cache of node i denoted by fi, i.e., if we choose a uniform random

number x between [0,1], and x ≤ fi×Popj , then the content βj is cached if there

is enough room for it in the cache. Otherwise, the content is not cached.

For every caching node i in the network, we assign a cache capacity Di that is

uniformly chosen in the range of [750, 1000] GB. The number of the non-caching nodes

connected to the caching node i is chosen uniformly at random in the range of 10 to 90

nodes.

For every content, we randomly chose one of the nodes to act as the source. Each

content has a size chosen randomly in the range of [100, 150] MB. The starting effective

time of the content is chosen randomly. The end time is also chosen randomly within

a fixed interval from the starting time. If the end time exceeds the end time of the
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simulation, it is adjusted to be equal to the end time of the simulation. The simulation

interval is chosen to be 1000 time slots.

3.6.2 Results on Random Topologies

We start our evaluation on random backbone topologies, in which the caching nodes

are generated as a random topology.

We simulate the effect of the number of caching nodes n in the network for three

cases, n = 30, n = 50, and n = 100 nodes. For each case we use 10 random topologies,

and report the average performance. We fix the effective caching duration to 150 slots

and the number of contents to 10000 contents to solely show the effect of increasing

the number of nodes on the performance of the CRC algorithm. The results are shown

in Figure 3.7(a).

As can be seen from this figure, increasing the number of the caching nodes

will result in better performance in all schemes since more contents can be cached.

Another observation from the figure is that the performance of CRC schemes increases

at a higher rate than other schemes as we increase the number of the nodes in the

network. This shows that our scheme greatly benefits from adding more caching nodes

to the network. It is also aligned with the property of asymptotic optimality of our

scheme. Conversely, not much improvement can be seen from the other schemes when

the number of nodes is increased in the network.

We simulate the effect of changing the number of contents from 2000 to 10000.

The results are averaged over 10 runs and are shown in Figure 3.7(b). The reason that

the performance of the Cache All, Random 1, and Random 2 schemes increases and
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Figure 3.7 Effects of different factors on the performance of the random topologies.

then decreases is that there is a saturation point after which the caches of the network

cannot handle the requests. Contrariwise, Our scheme reserves the cache capacity for

contents with higher traffic savings, and achieves an improvement of 2 to 3-fold in terms

of traffic savings.

Figure 3.7(c) shows the effect of the maximum effective caching duration for

three cases, 50, 100, and 150 time slots. In this scenario, the difference between the start

and end times for each content is drawn randomly from {1, . . . ,max .caching duration}.

The reason that the traffic savings decrease as the maximum effective caching duration

increases after a certain point is that contents are cached for a longer period, so future

contents are less likely to find enough residual capacity at the caching node.

In all of the results in Figure 3.7, the performance of CRC Version 2 is always

less than the performance of CRC Version 1. This is because CRC Version 2 deviates

from the settings under which we achieve optimality.

So far our performance measure was the traffic saving. In Figure 3.8, we measure

the cost in terms of total number of hops to satisfy all of the requests. The results in

Figure 3.8 are for a random topology with 100 caching nodes, the number of contents
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Figure 3.8 Traffic cost.

is 10000, and the maximum effective caching duration is 150 slots. The results in the

figure show that even when we measure the performance in terms of the total cost, our

scheme reduces the cost by the range of 30% to 50%.

In Figure 3.9 we measure the per topology improvement for all schemes with

respect to Random Caching Version 2 scheme. Here, we measure the performance

of all schemes for 100 different random topologies. For each topology, we normalize

the performance of all schemes with respect to the performance of Random Caching

Version 2. Denote the performance of the CRC scheme and Random Caching Version

2 scheme for topology s as PCRC(tops) and PRandom2(tops), respectively. We compute

the normalized performance of CRC scheme with respect to Random Caching Version

2 scheme for topology s as RCRC(tops) = PCRC(tops)/PRandom2(tops). After that, the

empirical CDF of the vector RCRC = [RCRC(top1), RCRC(top2), . . . , RCRC(top100)]

for the 100 random topologies is plotted. We do the same process for the other two

schemes. The results in this figure show that our scheme experiences about 4 times the

improvements as that by Random Caching Version 2.
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Figure 3.9 Empirical CDF of the per topology improvement for random topologies
with respect to random caching version 2.
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Figure 3.10 Effects of different factors on the performance of the small-world
topologies.

3.6.3 Results on a Small-world Generated Topology

In [50] it is shown that the Internet topology exhibits a small-world structure defined

in [51]. In this section, we perform simulations based on the small world-structure.

Figure 3.10 is similar to Figure 3.7, but for the small-world topologies. The

results follow the same trend as the results for the random topologies except for

two differences. The first difference is that is that CRC Version 1 achieves better

performance than CRC Version 2 as we increase the number of nodes. The second

difference is that all of the schemes performances increase with increasing the effective

caching time. One of the reason is due to the sparsity of the small-world topologies,

which results in the fact that the requests are distributed over multiple domains inside

the topology.
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Figure 3.11 Effects of different factors on the performance of different replacement
schemes.

3.6.4 Results for Replacement-CRC

We compare the performance of Replacement-CRC against the following schemes:

1. Least Recently Used (LRU): In this scheme, when a request for a content βj

appears at node i, Least Recently Used replacement is performed at all nodes

along the path from node i to the source of the content βj .

2. Random Replacement: In this scheme, when a request for a content βj appears at

node i, every node along the path from node i to the source of the content βj will

randomly choose a cached content to be replaced with βj , as long as the capacity

constraints are satisfied.

3. CCN: This scheme represents the Content Centric Network as described in [16],

where a request for a content is broadcasted until the closest node with a copy

of the content in its cache is found. The content then follows the path from the

closest node to the requester, and all nodes along that path caches the content as

long as the capacity constraints are satisfied, or performs replacement using LRU

if content replacement is needed.

We use the same settings as described in Section 3.6.1, and we simulate the effect

of increasing the number of caching nodes in the network, the effect of increasing the

number of contents, and the effect of increasing the cache capacity of the caching nodes.

The results are shown in Figure 3.11.

Figure 3.11(a) shows the performance of all schemes as we increase the number

of the caching nodes in the network. From this figure, the performance of all schemes
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increases with increasing the number of caching nodes. This is because adding more

caching nodes will increase the overall caching capacity of the network, which results

in more cached contents. Moreover, as the topology grows with adding more nodes, the

average distance between the nodes in the network increases. This figure also shows

that Replacement-CRC outperforms the existing replacement schemes by 30% to 60%.

Figure 3.11(b) shows the performance of all schemes as we increase the number

of contents. As we increase the number of contents, the performance of all schemes

increases since more contents are available for caching. Replacement-CRC achieves

better performance than the other schemes, since it is able to identify the contents

with higher traffic savings and the replacement is done less frequently than the other

schemes.

In Figure 3.11(c), we investigate the effect of increasing the caching size of the

caching nodes on the performance of all schemes. We increased the caching size of each

node until we reach a saturation point, where all of the nodes are able to cache all of the

contents without the need for replacement. At this saturation point, all schemes achieves

the same traffic savings. Another observation from this figure is that the performance

of Replacement-CRC at 500GB is similar to the performance of the other schemes at

1500GB. This means that Replacement-CRC can achieve the same performance of the

other schemes with only 30% of the cache capacity.

3.6.5 Energy-CRC with Replacement vs. Cache Size

We investigate the effect of varying the cache size on the performance of Energy-CRC

with replacement algorithm as well as currently deployed caching schemes. The
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Figure 3.12 Performance of CRC algorithm vs. cache size.

simulation was run on a world-wide topology consisting of 41 nodes spanning 41

different cities around the world as reported in [52]. The distances between the

nodes were taken from [53] and the energy consumption for transferring data was

taken from [54]. The amount of renewable energy available at each node were taken

from [55]. Figure 3.12 shows the brown energy consumption for the Energy-CRC with

replacement, Least Recently Used (LRU), and Random replacement vs. the average

cache size. As we increase the average cache size of the caching nodes, the caching

nodes can cache more contents and achieve lower brown energy consumption, until we

reach a point where every caching nodes can cache all the contents and reach the lowest

brown energy consumption. From this figure, we see that our algorithm achieves a

maximum gain of 60% over other schemes when the average cache size is 500 GB. This

is because our algorithm reserves the cache space for contents with high brown energy

consumption. This means that our algorithm can lower the brown energy consumption

without the necessity of excessive increment in the cache size.
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Figure 3.13 Performance of CRC algorithm vs. errors in expectation values.

3.6.6 CRC vs. Error Margins in Input Parameters

We investigate the effect of having error margins in estimating the expectation values

and in estimating the maximum effective caching time on the performance of the basic

CRC algorithm. Although data mining techniques or stochastic process modeling

based on the history [37] can be used to provide good expectation values, we run the

simulation as the error margin is changed from 0% to 100%. Denote the error margin

by ǫ, then the new values of the expectation Êi(τ, j) is chosen randomly from a uniform

distribution in the range [(1 − ǫ) × Ei(τ, j), (1 + ǫ) × Ei(τ, j)], and the new values

of the effective caching time T̂j(τ) is chosen randomly from a uniform distribution in

the range [(1 − ǫ) × Tj(τ), (1 + ǫ) × Tj(τ)]. Since the basic CRC algorithm achieves

asymptotic optimality when having perfect knowledge of the expectation and effective

caching time values, introducing errors in these values will cause the performance of

the CRC algorithm to decrease.

Figure 3.13 shows the performance of the CRC algorithm versus error margins

in estimating the expectation values, while Figure 3.14 shows the performance of the

CRC algorithm versus error margins in estimating the effective caching time. From

these figures, we see that our algorithm is more sensitive to error margins in estimating
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Figure 3.14 Performance of CRC algorithm vs. errors in effective caching time.

the effective caching time. We believe this is due to the adaptability of our algorithm

to error margins in estimating the expectation values, that even with such errors, the

actual number of requests will still be served. However, error margins in estimating

the effective caching time have greater effect on the performance of the basic CRC

algorithm, since once a content is cached, the content has to stay in the cache for the

whole effective caching duration time.

3.7 Conclusion

Caching at intermediate nodes has the advantage of bringing the contents closer to

the users, which results in traffic offloading from the origin servers and lower delays.

To achieve this, caching schemes such as en-route caching and CCN have been

investigated. Unlike CCN, the use of en-route caching does not require major changes

to the TCP/IP model. Previous works have studied en-route caching under offline

settings to achieve the optimal content placement strategy. In this work, we study the

framework of en-route caching under online settings.

Under this framework, we characterize the fundamental limit for the ratio of the

performance of the optimal offline scheme to that of any online scheme. The offline
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scheme has a complete knowledge of all of the future requests, while the online scheme

does not possess such knowledge. We also design an efficient online scheme and prove

that the developed online scheme achieves optimality as the number of nodes in the

network becomes large. Moreover, we introduce some extensions to the algorithm. Our

simulation results affirm the efficiency of our scheme and its extensions.
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CHAPTER 4

ONLINE ALGORITHM FOR CACHING IN MULTI-CELL COORDINATED

SYSTEMS

4.1 Introduction

The proliferation of content delivery services in the recent years motivated changes to

the operations of cellular networks, as the current infrastructure cannot cope with this

increase. One way to handle this challenge is to introduce caching at the base stations.

Caching at the base stations can reduce the data traffic going through the backhaul links,

reduce the time required for content delivery, and help in smoothing the traffic during

peak hours. Thus, providing good caching techniques is of high importance. Note

that the price of data storage devices is dramatically decreasing year by year. In this

chapter1, we present an online algorithm for content caching in Multi-cell coordinated

networks, where the network consists of multiple base stations that can collaborate with

each other to satisfy requests for contents made by the users of the cellular network.

We consider collaborative caching at the base stations from a different perspective.

Our objective is to minimize the overall cost paid by the Content Providers (CPs). We

assume that caching a content at a base station incurs two types of costs. The first

type is the storage cost, where CPs have to pay to the Cellular Network Operator

(CNO) in exchange for caching their contents. This is motivated by the increasing

trend of using in-network cloudlets, services, and middleboxes, in which the storage

and computations are performed at small clouds installed in the routers or the base

1The work of this chapter has been published in [56]
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stations of the network [57–60]. Moreover, the caching costs paid by the CPs motivate

the CNOs to perform caching by providing them with an extra source of income.

The second type of cost is what we call User Attrition (UA) cost [61]. This cost

represents the expected cost of losing users that are switching to other CPs because the

users are not getting their desired Quality of Service (QoS). This is caused by the fact

that the requested content is cached far away from the users. For example, users who are

experiencing high delays when streaming a video from one CP may switch to another

CP, which causes losses for the former CP. These two types of costs yield a tradeoff on

where the CPs choose to cache their contents in order to minimize the total cost. In this

chapter, we formulate the problem of caching in a multi-cell coordinated system as an

optimization problem that minimizes the overall cost paid by the CPs, while satisfying

the users’ demands.

In the formulated optimization problem, we assume the exact knowledge of

the contents popularities. Based on this knowledge, a proactive offline algorithm for

collaborative caching can achieve the optimal solution, similar to [10,11,44,45]. Since

in real life scenarios this knowledge is unavailable, an online algorithm is needed

for caching at the base stations. In the online algorithm, a decision for caching at a

base station is made when a content is requested, and the caching decision cannot be

changed in the future because the CP has already paid the caching cost. To measure

the performance of the online algorithm, we use the concept of competitive ratio.

The competitive ratio is the ratio of the performance of the online algorithm to the

performance of the optimal offline algorithm. In this chapter, we present an online

algorithm with a competitive ratio ofO(log(n)), where n is the total number of requests
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in the cellular network. The competitive ratio we obtain is close to the lower bound of

Ω( log(n)
log log(n)

) which we prove in Section 4.4.6, since log log(n) is small even when n is

large (i.e., log log(106) ≈ 4.3).

4.2 Settings

We consider a cellular network consisting of a set K = {1, 2, . . . , k, . . . , K} of cache-

capable base stations connected to each other via backhaul links. The backhaul links

also serve as a connection to the Internet through the cellular system gateway. In the

rest of the chapter, we use the words base station and cache interchangeably. Let K +1

denote the index of the contents providers servers located in the Internet. Figure 4.1

provides an example of our system model. We have M = {1, 2, . . . , j, . . . ,M}

contents with sizes S = {s1, s2, . . . , sj , . . . , sM} that can be requested by the users

connected to the base stations. Let γij denote the number of requests for the j-th content

generated by users in the i-th base station.

Due to the dramatic decrease in data storage prices, we assume that the cache

capacity of each base station is unlimited. However, there is a unit cost fkj associated

with caching the j-th content at the k-th base station. Having a caching cost will limit

the number of contents cached at a base station. Moreover, as explained in Section 4.1,

there is an increasing trend of using in-network cloudlets in which the base station itself

becomes a small cloud. Also, due to the fast development and cost reduction of storage

devices, the cache size can be very large with low cost.

Let T k
ij denote the UA cost associated when the i-th base station retrieves the j-th

content from the k-th base station, and let TK+1
ij denote the UA cost associated when
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Figure 4.1 Collaborative multi-cell coordinated system.

the i-th base station retrieves the j-th content from the Internet. If we associate a cost

between any two directly connected base stations, then for any two base stations i, k,

T k
ij can be computed using the minimum cost path between i and k, and thus satisfies

the triangle inequality (i.e., T k
ij ≤ T k′

ij + T k
k′j).

Our objective is to find a caching setup that minimizes the aggregated caching

and UA costs while satisfying the users’ demands. We introduce the formulation of the

optimization problem in the next section.

4.3 Problem Formulation

In this section, we formulate the problem of collaborative multi-cell coordinated

system, followed by the proof of the problem’s NP-completeness.

4.3.1 The Formulation

Before presenting our formulation, we introduce the following variables:
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Ykj =































1 if the j-th content is cached

at the k-th base station.

0 otherwise.

Xk
ij =































1 if the i-th base station retrieves the

j-th content from the k-th base station.

0 otherwise.

XK+1
ij =































1 if the i-th base station retrieves the

j-th content from the Internet.

0 otherwise.

We formulate the problem as the following Integer Linear Program (ILP):

min

K
∑

i=1

K+1
∑

k=1

M
∑

j=1

T k
ijX

k
ijγijsj +

K
∑

i=1

M
∑

j=1

fkjYkjsj

Subject to

Xk
ij ≤ Ykj, ∀i, j, k (4.1)

K+1
∑

k=1

Xk
ij ≥ 1{γij>0} ∀i, j (4.2)

In the objective function of the above problem, the first term is the total UA cost,

and the second term is the total caching cost. The first set of constraints ensures that

a content can be retrieved from a base station only if the content is in the cache of

that base station. The second set of constraints ensures that if a content is requested,
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then the content is served either from the cache of the local base station, the cache of a

neighboring base station, or from the Internet.

In the following section, we present the proof of the problem’s NP-completeness.

4.3.2 NP-Completeness Proof

In this section, we show that the ILP optimization problem presented in the previous

section is NP-complete by proving the following theorem:

Theorem 1. The ILP optimization problem is NP-complete.

Proof. Since we have M(K2 + K) constraints, we can easily check the feasibility of

any given solution in polynomial time by checking that the set of constraints (4.1)-(4.2)

are not violated, thus the problem is in NP.

To prove that the problem is NP-hard, we reduce the set cover problem, which

is known to be an NP-complete problem, to an instance of our problem. The set cover

problem is defined as follows: Given a set of elements U = {u1, u2, . . . , uN} called the

universe, and a family of subsets of the elements in the universe B = {b1, b2, . . . , bL},

where each subset bk has a cost ak. The objective is to find a collection of subsets of B,

whose union is the universe, and its total cost is minimized.

The reduction from the set cover problem to our problem is done as follows:

(1) The number of contents in our problem is set to 1. (2) Each element ui in the set

cover problem is mapped to a base station requesting the content in our problem. (3)

The caching cost of the k-th base station fk is set to ak. (4) The demand γi is set to 1 for

all base stations. (5) The UA cost T k
i is set to 0 if ui ∈ bk and is set to 2ak otherwise.
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Note that due to the reduction from the set cover problem to our problem, all the

elements in the set cover problem are covered iff the total UA cost of the solution to our

problem is 0. Now we prove that there exists a solution to the set cover problem of cost

no greater than A iff there exists a solution to our problem with a cost no greater than

A.

The first direction is easy to see. If there exists a solution to the set cover problem

with cost A, then the sets form the caches and the total cost of our problem is A. To

prove the other direction, suppose we have a solution to our problem with a cost of

A = ACaching + UAtotal , where ACaching is the total caching cost and UAtotal is the

total UA cost. Then we have the following two cases:

• The total UA cost is equal to 0. In this case, the selected caches yield the

collection of sets for the set cover problem with cost A.

• The total UA cost is greater than 0. This means that there are some elements in

the corresponding set cover problem that are still not covered. In this case, for

each base station i whose incurring a non-zero UA cost, we cache the content at

a new cache k (i.e., select a new subset bk) such that T k
i = 0. Since fk + T k

i =
ak + 0 ≤ 2ak, the new total cost A′ < A. Then go back to case 1.

4.4 Online Algorithm

Before we present the online algorithm, we point out the following observation. Due

to the assumption that the cache capacities of the base stations are unlimited, the

decision of caching a content at a base station is independent from the other contents,

so we can view our problem as M independent caching subproblems. Even with this

decomposition, the proof of NP-completeness presented in Section 4.3.2 still holds for
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every subproblem, since we reduce the set cover problem to an instance of our problem

that has one content. In the sequel, we only consider the j-th content, and hence, the

content-index j is omitted in the subscript of the notations throughout the rest of the

chapter. Moreover, in the online algorithm and in the proof of the competitive ratio,

every term will be multiplied by the content size sj , and hence, we set sj = 1.

4.4.1 The Algorithm

The Online Collaborative Caching (OCC) algorithm is presented in Algorithm 5. We

note that Algorithm 5 is for a specific content. For multiple contents, each content will

have its own instance of the algorithm.

Throughout the algorithm, the following notations are used:

• W : the set of base stations already caching the content.

• V : the set of requests processed so far by the algorithm.

• p(k): the potential function of the k-th base station.

• For a cache u and a request v arriving at the i-th base station, d(u, v) = T u
i

• For a set of caches X and a request v arriving at the i-th base station, d(X , v) ≡
mink∈X d(k, v).

• [x]+ ≡ max{x, 0}.

The functions initializePotentials(), updatePotentials(), and computeNewPotentials()

used in Algorithm 5 are presented in Algorithm 6.

The intuition behind Algorithm 5 is the following: we define a potential function

for each base station. When a new request for a content arrives at a base station, the

algorithm updates the potential function of each base station, which represents the total
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Algorithm 5 Online Collaborative Caching (OCC)

1: W ← {K + 1}, V ← φ, Cost = 0, initializePotentials()
2: for each new request v arriving at the i-th base station do
3: if The i-th base station is already caching the content then
4: Satisfy the request
5: else
6: V ← V ∪ {v}
7: updatePotentials(W, v)
8: w ← argmaxk(p(k)− fk)
9: if p(w)− fw > 0 then

10: W ← W ∪ {w}
11: Cost = Cost+ fw
12: computeNewPotentials(W,V )
13: assign v to α = argmink∈W d(k, v)
14: Cost = Cost+ T i

α

Algorithm 6 Functions used in Algorithm 5

1: initializePotentials()
2: for all k ∈ K ∪ {K + 1} do
3: p(k) = 0
4:
5: updatePotentials(W, v)
6: for all k ∈ K ∪ {K + 1} do
7: p(k) = p(k) + [d(W, v)− d(k, v)]+

8:
9: computeNewPotentials(W,V )

10: for all k ∈ K ∪ {K + 1} do
11: p(k) =

∑

v∈V [d(W, v)− d(k, v)]+
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UA cost of the requests seen so far when that base station retrieves the content from the

base station with the lowest UA cost (probably itself). The algorithm decides to cache

the content at a base station when the potential of that base station exceeds its caching

cost.

4.4.2 Implementation and Complexity

The execution of Algorithm 5 is done by the Mobility Management Entity (MME) of

the cellular network, which acts as a centralized controller [62]. Different architectures

for cellular networks like Software-Defined Cellular Networks [63] take advantage of

the centralized controller. The MME has access to the topology of the cellular network

as well as the contents cached at each base station. The content providers pay the

operators for running the caching algorithm at the MMEs and storing the contents at

the base stations.

When a request for content arrives at a base station, the base station responds with

the requested content if it already has a copy of the content in its cache. Otherwise, the

base station sends a message indicating the requested content to the MME to execute

the algorithm. Based on the available information to the MME (i.e., the topology of the

cellular network as well as the contents cached at each base station), the MME runs the

algorithm and decides whether the content has to be cached at a new base station w or

not. The MME then relays to the new base station w (if any) the decision to cache the

requested content and relays to the requesting base station the decision of which base

station to retrieve the content from.
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Next, we analyze the complexity of Algorithm 5. Recall that K denotes the

number of base stations. The initializePotentials() subroutine is executed once and

has a complexity of O(K). For every new request, executing the updatePotentials()

subroutine, finding the base station with the maximum difference between the value

of the potential function and the caching cost (line 5 in Algorithm 5), and executing

the computeNewPotentials() subroutine each has a complexity of O(K). Note that the

computeNewPotentials() subroutine is executed only when the content is cached at a

new cache, and hence is executed at most K times. Therefore, for n total number of

requests, the overall complexity of implementing the algorithm is O(Kn+K2).

In order to execute the algorithm, the MME needs to maintain two tables. The

first table includes the value of the potential function of each base station. For the

second table, it suffices to store the number of requests that arrived at each base station,

since the value of [d(W, v)− d(k, v)]+ in the computeNewPotentials() subroutine is the

same for requests arriving at the same base station. Therefore, the storage requirement

needed at the MME is of order O(K). Note that the size of the tables is independent

of the content’s size. Therefore, as the size of the content becomes larger, which is the

case for future content delivery traffic, the size of the tables will not grow.

4.4.3 Preliminaries

To compute the competitive ratio of the algorithm, we compare the algorithm’s cost

with the cost of the offline optimal solution. In the optimal offline solution, let W ∗

denote the set of base stations caching the content. Then, the cost of the offline optimal
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solution is given by:

C∗ =
∑

w∈W ∗

fw +
∑

v∈V

d(W ∗, v) (4.3)

Let the optimal solution W ∗ consist of l caches c1, c2, . . . , cl. In the optimal

offline solution, each request is satisfied by retrieving the content from a cache. Hence,

W ∗ divides the requests into optimal clusters C1, C2, . . . , Cl. For example, if the

optimal solution decides to cache a content on three caches c1, c4, and c5, then the

first cluster C1 consists of c1 and all the base stations retrieving the content from c1, the

second cluster C2 consists of c4 and all the base stations retrieving the content from c4,

and so on.

4.4.4 Proof Outline

We start by proving that OCC algorithm maintains the invariant p(k) ≤ fk for all

k ∈ K ∪ {K + 1} (Lemma 4). Based on Lemma 4 and the triangle inequality, we

show that after j requests from cluster Ci, there is a cache where the UA cost from the

optimal cache ci is 1
j
[fci + 2

∑

v∈Ci
d(W ∗, v)] (Corollary 3). This is used to show that

the UA cost of OCC is within a logarithmic factor of the total optimal cost C∗ (Lemma

5).

For each new request v, we define a credit ĉ(v). We show that ĉ(v) =

min{d(W, v),mink{fk − p(k) + d(k, v)}} (Lemma 6). We then show that the

algorithm’s total caching cost never exceeds the total credit of the requests in V (Lemma

7). Using Corollary 3, we show that the total credit is within a logarithmic factor of the

total optimal cost C∗ (Lemma 8).
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4.4.5 The Proof

Lemma 4. p(k) ≤ fk, ∀k ∈ K ∪ {K + 1}.

Proof. We prove this lemma by induction on the number of requests considered by

the online algorithm. For the first request, the invariant holds since p(k) = 0 for all

k ∈ K ∪ {K + 1}. We inductively assume that the invariant holds just before a new

request v arrives and prove that the invariant holds after v is assigned to retrieve the

content from a cache.

Let W be the set of caches that have cached the content, and let V be the set of

requests considered so far by the algorithm. Let p(k) =
∑

v′∈V [d(W, v′)−d(k, v′)]+ ≤

fk be the potential of cache k just before the new request v arrives. Let p′(k) be the

potential after the subroutine updatePotentials() in the algorithm is executed. Finally,

let p′′(k) be the potential of cache k after the request v is assigned to a cache. We want

to prove that p′′(k) ≤ fk for all k.

We have two cases:

• If the new request v does not change W (i.e., the new request did not cause the

content to be cached at a new cache), then from the algorithm:

p′(k)− fk ≤ 0 ∀k

and p′′(k) = p′(k). Therefore, p′′(k) ≤ fk for all k.

• If the new request v causes the content to be cached at a new cache w, then

0 < p′(w)− fw = [d(W, v)− d(w, v)]+ + p(w)− fw

≤ [d(W, v)− d(w, v)]+

where the first inequality holds because the content is cached at w, the next

equality holds from the definition of p′(w), the last inequality holds from the

induction hypothesis p(w) ≤ fw. Therefore, [d(W, v)−d(w, v)]+ ≥ p′(w)−fw >
0. This implies that d(W, v) > d(w, v), which means that v will be assigned to w
and

d(W ∪ {w}, v) = d(w, v) (4.4)

From here, we have two cases:
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– For all caches k where d(k, v) < d(w, v), we have [d(W ∪ {w}, v) −
d(k, v)]+ = d(w, v)− d(k, v).

Using (4.4), we get that

d(W, v)− d(w, v)

≥ p′(w)− fw

≥ p′(k)− fk

= [d(W, v)− d(k, v)]+ + p(k)− fk

≥ d(W, v)− d(k, v) + p(k)− fk

where the second inequality follows from the fact that the content is cached

at w, and the first equality follows from the definition of p′(k). Therefore,

d(W, v)− d(w, v) ≥ d(W, v)− d(k, v) + p(k)− fk. Rearranging the terms

we get

0 ≥d(w, v)− d(k, v) + p(k)− fk

≥d(w, v)− d(k, v) +
∑

v′∈V

[d(W, v′)− d(k, v′)]+ − fk

≥d(w, v)− d(k, v)

+
∑

v′∈V

[d(W ∪ {w}, v′)− d(k, v′)]+ − fk

≥p′′(k)− fk

where the last inequality follows from the definition of p′′(k).

– For all caches k where d(k, v) ≥ d(w, v), we have [d(W ∪ {w}, v) −
d(k, v)]+ = 0. Therefore,

p′′(k) =
∑

v′∈V ∪{v}

[d(W ∪ {w}, v′)− d(k, v′)]+

=
∑

v′∈V

[d(W ∪ {w}, v′)− d(k, v′)]+

≤
∑

v′∈V

[d(W, v′)− d(k, v′)]+

= p(k) ≤ fk

where the first equality holds from the definition of p′′(k), the second

equality follows since [d(W ∪ {w}, v)− d(k, v)]+ = 0, the third inequality

follows since d(W ∪ {w}, v′) ≤ d(W, v′), ∀v′, and the last equality follows

from the definition of p(k) before the request v appears.
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Corollary 3. Let V be the request set, and W the set of caches caching the content

after all requests in V have been considered. Then for every optimal cluster Ci with

cache ci,

|V ∩ Ci|d(W, ci) ≤ fci + 2
∑

v∈Ci

d(W ∗, v)

Proof. for cache ci we have:

p(ci) =
∑

v∈V

[d(W, v)− d(ci, v)]
+

≥
∑

v∈V ∩Ci

[d(W, v)− d(ci, v)]

≥
∑

v∈V ∩Ci

[d(W, ci)− d(ci, v)− d(ci, v)]

≥
∑

v∈V ∩Ci

d(W, ci)− 2
∑

v∈V ∩Ci

d(ci, v)

≥
∑

v∈V ∩Ci

d(W, ci)− 2
∑

v∈Ci

d(ci, v)

where the second inequality is obtained by using the triangle inequality (i.e., d(W, v) ≥

d(W, ci)− d(ci, v)).

Using the invariant fci ≥ p(ci) from Lemma 4 and rearranging the terms, we get:

|V ∩ Ci|d(W, ci) ≤ fci + 2
∑

v∈Ci

d(W ∗, v)

where d(W ∗, v) = d(ci, v) for all v ∈ Ci follows from the definition of cluster Ci.

In the next lemma, we use Corollary 3 to bound the UA cost incurred by OCC

algorithm.
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Lemma 5. Let
∑

v∈V d(W, v) denote the total UA cost incurred by OCC algorithm.

Then

∑

v∈V

d(W, v) ≤ log(n + 1)
∑

w∈W ∗

fw + (2 log(n + 1) + 1)
∑

v∈V

d(W ∗, v)

Proof. Let Ci be an optimal cluster with cache ci. Let ni ≡ |Ci| be the number of

requests in Ci, and let v1, v2, . . . , vni
be the requests in Ci in the order considered by

the algorithm.

For each request vj , let Wvj be the set of caches caching the content at vj’s

assignment time. Then, using triangle inequality we have

d(Wvj , vj) ≤ d(Wvj , ci) + d(ci, vj)

From Corollary 3, we have

d(Wvj , ci) ≤
1

j
[fci + 2

∑

v∈Ci

d(W ∗, v)]

Therefore

d(Wvj , vj) ≤
1

j
[fci + 2

∑

v∈Ci

d(W ∗, v)] + d(ci, vj)

Summing over all vj ∈ Ci we get that
∑ni

j=1 d(Wvj , vj)

≤[fci + 2
∑

v∈Ci

d(W ∗, v)]

ni
∑

j=1

1

j
+

ni
∑

j=1

d(ci, vj)

≤ log(ni + 1)fci + (2 log(ni + 1) + 1)

ni
∑

j=1

d(ci, vj)

The lemma follows by summing over all clusters.
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The next 3 lemmas are used to bound the caching cost incurred by OCC

algorithm. To do this, we define a credit ĉ(v) to each new request v. We show that

ĉ(v) = min{d(W, v),mink{fk−p(k)+d(k, v)}}. Then we show that the total caching

cost is upper bounded by the total credits of all requests, which in turn is within a

logarithmic factor of the optimal offline cost C∗.

Lemma 6. For each new request v, ĉ(v) = fw − p(w)+ d(w, v) if v causes the content

to be cached at w, and ĉ(v) = d(W, v) otherwise.

Proof. Let p(k) denote the potential function of the cache k just before a new request

v arrives, and let p′(k) = p(k) + d(W, v) − d(k, v) be the potential function after the

subroutine updatePotential() is executed.

On the one hand, if the new request v causes the content to be cached at w, then

from the algorithm,

0 < p′(w)− fw = p(w) + [d(W, v)− d(w, v)]+ − fw

= p(w) + d(W, v)− d(w, v)− fw

≥ p(k) + [d(W, v)− d(k, v)]+ − fk

≥ p(k) + d(W, v)− d(k, v)− fk

The first inequality holds because the content is cached at w. The first equality follows

from the definition of p′(w). The second equality follows by using (4)(see the proof of

Lemma 4). The second inequality holds because p′(w)− fw ≥ p′(k)− fk, ∀k and from

the definition of p′(k). Therefore, p(w) + d(W, v)− d(w, v)− fw ≥ p(k) + d(W, v)−

d(k, v)−fk. Rearranging the terms we get that fw−p(w)+d(w, v) ≤ fk−p(k)+d(k, v).
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We also have p(w)+d(W, v)−d(w, v)−fw > 0. Therefore, ĉ(v) = fw−p(w)+d(w, v)

if v causes the content to be cached at w.

On the other hand, if the new request v does not cause an additional copy of the

content to be cached, then from the algorithm,

p′(k)− fk ≤ 0 ∀k

p(k) + d(W, v)− d(k, v)− fk ≤ 0 ∀k

d(W, v) ≤ fk − p(k) + d(k, v) ∀k

Therefore, ĉ(v) = d(W, v).

In the next lemma, we show that the total caching cost incurred by OCC algorithm

is upper bounded by the total credit of the requests in V .

Lemma 7. Let V be the set of requests, and let W be the set of caches caching the

content after all requests in V have been considered. Then

∑

w∈W

fw ≤
∑

v∈V

ĉ(v)

Proof. We prove this lemma by a potential function argument. We define the potential

function Φ =
∑

v∈V d(W, v) and calculate the change ∆Φ in the value of the potential

function when a new request v is considered. Let p(k) be the potential of each cache k

just before the new request v arrives.

If the new request v does not cause the content to be cached at a new cache (i.e.,

W is not changed), then ∆Φ = d(W, v) = ĉ(v) by Lemma 6. Otherwise, if v causes

the content to be cached at w, then d(W ∪ {w}, v) = d(w, v) (recall (4.4) in Lemma 4)
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for all v ∈ V , and d(W, v)− d(W ∪ {w}, v) = [d(W, v)− d(w, v)]+. Therefore,

∆Φ = d(w, v)−
∑

v′∈V

[d(W, v′)− d(W ∪ {w}, v′)]

= d(w, v)−
∑

v′∈V

[d(W, v′)− d(w, v′)]+

= d(w, v)− p(w)

From Lemma 6, we have ĉ(v) = fw − p(w) + d(w, v) = fw + ∆Φ. Therefore,

∑

v∈V ĉ(v) = Φ +
∑

w∈W fw. The lemma follows since Φ ≥ 0.

In the next lemma, we use Corollary 3 to upper bound the total credit of the

requests in V .

Lemma 8. Let V be the set of requests. Then

∑

v∈V

ĉ(v) ≤ (log(n) + 1)
∑

w∈W ∗

fw + (2 log(n) + 1)
∑

v∈V

d(W ∗, v)

Proof. Let Ci be an optimal cluster with cache ci and ni ≡ |Ci| be the number of

requests in Ci. For each request vj ∈ Ci, let Wvj be the set of caches caching the

content just before vj arrives. Note that d(W ∗, vj) = d(ci, vj), ∀vj ∈ Ci.

The credit of each request vj is ĉ(vj) ≤ min{d(Wvj , vj), fci + d(W ∗, vj)} (using

Lemma 6). For the first request, ĉ(vj) ≤ fci + d(W ∗, vj). For the remaining requests

vj , j ≥ 2, we use Corollary 3 to get

ĉ(vj) ≤ d(Wvj , vj)

≤ d(Wvj , ci) + d(ci, vj)

≤
1

j − 1
[fci + 2

∑

vj∈Ci

d(W ∗, vj)] + d(ci, vj)
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Summing over all vj , we get

ni
∑

j=1

ĉ(vj) ≤ fci + [fci + 2
∑

vj∈Ci

d(W ∗, vj)]

ni
∑

j=2

1

j − 1

+

ni
∑

j=1

d(W ∗, vj)

≤ (log(ni) + 1)fci + (2 log(ni) + 1)

ni
∑

j=1

d(W ∗, vj)

The lemma follows by summing over all clusters.

Now we are ready to prove the algorithm’s competitive ratio

Theorem 2. The competitive ratio of OCC algorithm is no more than 4 log(n+1)+ 2.

Proof. From Lemma 5, we have

∑

v∈V

d(W, v) ≤ log(n + 1)
∑

w∈W ∗

fw + (2 log(n + 1) + 1)
∑

v∈V

d(W ∗, v)

and from Lemmas 7 and 8, we have

∑

w∈W

fw ≤ (log(n) + 1)
∑

w∈W ∗

fw + (2 log(n) + 1)
∑

v∈V

d(W ∗, v)

Combining the two bounds we get

∑

w∈W

fw +
∑

v∈V

d(W, v) ≤ (2 log(n+ 1) + 1)
∑

w∈W ∗

fw

+ (4 log(n + 1) + 2)
∑

v∈V

d(W ∗, v)

≤ (4 log(n+ 1) + 2)C∗
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4.4.6 Lower Bound

To prove the lower bound of the competitive ratio of any online algorithm under our

settings, we measure the competitive ratio of the online algorithm against an oblivious

adversary. For a deterministic algorithm, the adversary knows how the algorithm works,

so the adversary can always generate an input sequence such that the deterministic

algorithm performs worst on that input. For a randomized algorithm, the adversary

knows the algorithm’s code, but does not know the randomized result of the randomized

algorithm, so the performance of the randomized algorithm is not worse than the

performance of the deterministic algorithm against the same adversary. This means

that a lower bound on the competitive ratio of the randomized algorithm is also a lower

bound on the competitive ratio of the deterministic algorithm. In the next theorem, we

show that the competitive ratio of any randomized online algorithm is lower bounded

by Ω( log(n)
log(log(n))

).

The proof of the lower bound is done by showing an example, such that any online

algorithm executed on this example cannot get a competitive ratio less than
log(n)

log(log(n))
.

Therefore, the best competitive ratio achieved by any online algorithm is
log(n)

log(log(n))
.
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Moreover, the performance we consider is the worst-case performance, so one counter-

example is sufficient.

Theorem 3. Under our settings, the best competitive ratio achieved by any randomized

online algorithm against an oblivious adversary is lower bounded by Ω( log(n)
log(log(n))

).

Proof. We prove the theorem through an example. Let T be a complete binary tree of

height H such that:

• Each vertex represents a base station.

• Each edge between two vertices represent the UA cost between the corresponding

directly-connected base stations.

• The UA cost from the root to each of its children is D.

• On every path from the root to a leaf, the cost drops by a factor of m on every

step.

• The UA cost from vertex i to vertex k is the aggregated cost of the edges from i
to k.

• The caching cost of every non-leaf vertex is set to infinity, while the caching cost

of the leaves is set to f .

The height of a vertex is the number of edges on the path to the root. The cost

from a vertex of height h to each of its children is D
mh . The tree is shown in Figure 4.2.

For a vertex z, let Tz denote the subtree rooted at vertex z. We observe the

following:

• The cost from a vertex of height h to any vertex in Tz is at most mD
(m−1)mh , which

is the UA cost from vertex z to a leaf in Tz.

• The cost from a vertex z of height h to any vertex not in Tz is at least D
mh−1 , which

is the cost from a vertex z to its parent.
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According to Yao’s principle [64], it suffices to show that there is a probability

distribution over the request sequence, for which the ratio of the expected cost of any

deterministic online algorithm to the expected optimal cost is Ω( log(n)
log(log(n))

).

To define an appropriate probability distribution, we divide the request sequence

into H + 1 phases. Phase 0 consists of 1 request located at the root. After the end

of phase h, 0 ≤ h ≤ H , if zh is not a leaf, the adversary selects zh+1 uniformly at

random and independently between the two children of zh. Phase h + 1 consists of

mh+1 requests located at zh+1.

The total number of requests is at most m
m−1

mH , which must not exceed n. The

optimal solution is to cache the content at zH , and each phase h except for the last one,

incurs a UA cost of at most mD
m−1

. Therefore, the optimal total cost is at most f +H mD
m−1

.

Now, let Alg be any deterministic online algorithm, and let h, 0 ≤ h ≤ H − 1,

be any phase except for the last one. We fix the adversary’s random choices z0, . . . , zh

up to the end of phase h, and consider the expected cost paid by Alg for requests and

caches not in Tzh+1
.

If Alg did not cache the content at any cache located in Tzh at the moment the first

requests in zh+1 arrives, then the content was cached at a cache located in T /Tzh from

a previous phase. Therefore, the UA cost for the requests located at zh ∈ Tzh/Tzh+1
is

at least mhD
mh−1 = mD, since these requests has to retrieve the content by going through

the parent zh. Otherwise, since zh+1 is selected uniformly at random and independently

between zh’s children, then, with a probability of at least 1/2, there is at least one

cache located in Tzh/Tzh+1
that cached the content. Therefore for every fixed choice of
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z0, . . . , zh, the expected cost paid by Alg for requests and caches not in Tzh+1
is at least

min{mD, f/2}, in addition to the costs for requests and caches not located in Tzh .

Hence, at the beginning of phase h, 0 ≤ h ≤ H , the expected cost paid by Alg

for requests and caches not in Tzh is at least hmin{mD, f/2}. For the last phase, Alg

incurs an additional cost of at least min{mD, f} for requests and caches in TzH .

For m = H and f = HD, the total expected cost of Alg is at least

hmin{HD,HD/2}+min{HD,HD} ≤ hHD
2

+HD = HD h+2
2

, while the optimal

cost is at most HD 2H−1
H−1

. Hence the competitive ratio is lower bounded by Ω(H). We

also have the constraint that the total number of requests, which is at most HH+1

H−1
must

not exceed n. Setting H = ⌊ log(n)
log log(n)

⌋ yields the claimed lower bound.

4.5 Simulation Results

4.5.1 Settings

In this section, we compare three caching schemes: the online collaborative scheme

(OCC) described in Section 4.4, the optimal offline collaborative caching scheme

represented by the ILP formulation described in Section 4.3 and computed using

CPLEX [65], and the optimal offline non-collaborative caching scheme, which does

not allow collaboration among the base stations, and can be formulated in a similar way

to our ILP formulation.

The simulations are run on a random topology, where the base stations are

uniformly distributed in a square area of size 50×50 square kilometers and there is a link

between two base stations if the distance between them is less than a certain threshold.

If we associate a UA cost between any two directly connected base stations, then for
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Figure 4.3 Total cost of all schemes.

any two base stations i, k, T k
ij can be computed using the path with the minimum UA

cost between i and k. We set the number of contents M to 20, where each content has

a size chosen uniformly at random from the set {10, 11, . . . , 20}MB. The popularity

of each content at each base station is chosen according to a Zipf distribution [66],

with parameter ζ , where the popularity of a content of rank j is given as 1/jζ
∑M

m=1 1/m
ζ
.

We assume that content ranking in a base station is different and independent from the

ranking in other base stations (i.e., content j may be ranked first in a base station but

ranked fifth in another base station). The results in all of the figures are the average of

100 runs.

4.5.2 Results with Accurate Estimation of Content Popularities

We study the effect of changing different parameters on the cost of all schemes. In

Figure 4.3(a), we study the effect of changing the number of base stations. As can

be observed from this figure, the cost of the non-collaborative scheme is at least 4

times and 3 times that of the cost of the offline and the online collaborative schemes,

respectively. We also observe that the offline non-collaborative scheme cost increases

at a higher rate than the collaborative schemes when we increase the number of base
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stations. The reason behind the above observations is that a base station in the non-

collaborative scheme has to retrieve the content from the Internet, if the base station

did not cache the content. Alternatively, the base station in the collaborative scheme

can retrieve the content from a nearby base station that has the requested content. This

shows the scalability of the collaborative caching schemes. Therefore, it is crucial to

enable collaboration among the base stations, which is not done in most of the previous

work.

In Figure 4.3(b), we study the effect of changing the Zipf distribution parameter ζ .

First, we observe that the cost of the non-collaborative scheme is at least 3 times the cost

of the offline collaborative scheme, and varies between 1 to 3 times the cost of the online

collaborative scheme, as the non-collaborative scheme cannot retrieve a content from a

nearby base station. Second, we observe that the offline non-collaborative scheme cost

decreases as ζ increases. This is because as ζ increases, less number of contents are

requested more often, and the non-collaborative scheme caches the most popular files.

Third, we observe that the offline collaborative scheme cost does not change much as

ζ increases. This is because the offline collaborative scheme can retrieve contents from

nearby base stations.

In Figure 4.3(c), we study the effect of changing the average caching cost. First,

we observe that the cost of the non-collaborative scheme is at least 2 times the cost

of both of the offline and the online collaborative schemes. Second, we observe

that the total cost of the non-collaborative scheme increases at a higher rate than the

collaborative schemes as the average caching cost increases. The reason behind both

observations is that the non-collaborative scheme does not allow content retrieval from
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nearby base stations, which means that each content may be cached at more than one

base station, which increases the total caching cost. Contrariwise, the collaborative

schemes tend to cache each content at a single base station, and all other base stations

can retrieve the content without caching an additional copy of the content or retrieve it

from the Internet.

Moreover, in Figure 4.3(c), we start with a caching cost that is less than the

attrition cost (i.e., fkj < T k
ij), then we increase the caching cost until it becomes larger

than the attrition cost (i.e., fkj > T k
ij). We can see a tradeoff between the caching

cost and the attrition cost in this figure for the non-collaborative caching scheme. In the

non-collaborative scheme, the content is either cached or retrieved from the Internet. On

the one hand when the caching cost is low, all base stations tend to cache the content

and thus achieving low cost. As the caching cost increases, the base stations tend to

retrieve the contents from the Internet instead of caching. However, retrieving from the

Internet is costly. On the other hand, when the caching cost is large, the collaborative

caching scheme tends to retrieve from nearby base stations. Thus the collaborative

caching scheme achieves lower cost than the non-collaborative caching scheme.

From all of the plots in Figure 4.3, we note that enabling collaboration among

base stations has a significant impact on the cost reduction. We also note that the

cost of the online collaborative scheme is very close to the cost of the optimal offline

collaborative scheme, with a maximum degradation of three folds, and that the online

collaborative scheme can achieve a cost reduction of four folds over the cost of the

offline non-collaborative scheme.

75



20 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14
x 10

5

Average Number of Users

T
o
ta

l 
C

o
st

 

 

Offline Collaborative

Offline Non−Collaborative

Online Collaborative

Figure 4.4 Total cost of all schemes vs average number of users.

In Figure 4.4, we study the impact of increasing the average number of users at

each base station on the cost of each scheme. As can be seen from this figure, the cost

of the online collaborative scheme is less than that of the cost of the non-collaborative

caching scheme. This is due to the collaborative property of the online collaborative

scheme, where a content can be retrieved from a nearby base station.

In Figure 4.5, we measure the per demand cost savings percentage of the

collaborative schemes with respect to the non-collaborative scheme. Here, we measure

the cost of the collaborative schemes for 100 different sets of demands. For each

set of demand, we normalize the cost of the collaborative schemes with respect to

the cost of the non-collaborative scheme, and then subtract it from 1. Denote the

cost of the offline collaborative and the offline non-collaborative for the r-th set of

demands as Ccol(r) and Cnon(r), respectively. We compute the per demand cost

savings as Rcol(r) = (1 − Ccol(r)
Cnon(r)

) × 100%. After that, the empirical CDF of the

vector [Rcol(1), Rcol(2), . . . , Rcol(100)] for the 100 sets of demands is plotted. We do

the same process for the online collaborative scheme. From this figure, we observe

that the relative cost savings between the offline collaborative scheme and the online
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Figure 4.5 Empirical CDF of the per demand cost savings percentage with respect to
the non-collaborative scheme.

collaborative scheme is similar among all sets of demands. We also observe that the

online collaborative cost savings varies between 65% to 75%. The reason is that the

non-collaborative scheme cannot retrieve cached contents from another base station.

4.5.3 Results with Errors in Estimating the Contents Popularities

In Figure 4.6, we repeat the simulations as in Figure 4.3, when a 50% error margin

is introduced to the popularity estimation. Formally speaking, we generate two

sets of requests, the estimated requests set and the actual requests set, where the

estimated requests γ̂ij are chosen randomly from a uniform distribution in the range

[0.5γij, 1.5γij]. We use the set of estimated requests to solve the collaborative and the

non-collaborative caching optimization problems, then we calculate the total cost based

on the answer of the optimization problem and the set of actual requests. In the online

collaborative scheme, the total cost is calculated using the actual requests, since the

online collaborative scheme works when a new request for a content arrives at a base

station.
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Figure 4.6 Total cost of all schemes with 50% error margin in popularity estimation.

In Figure 4.6(a), we study the effect of changing the number of base stations.

As can be observed from this figure, the offline and online collaborative schemes

can achieve a cost reduction of at least 500% and 100% over the cost of the non-

collaborative scheme, respectively. We also observe that the offline non-collaborative

scheme cost grows at a higher rate than the collaborative schemes as the number of base

stations increases. The reason is that an error in estimating the contents popularities

may cause the non-collaborative scheme not to cache the correct contents, in which case

the contents are retrieved from the Internet. Alternatively, the collaborative scheme can

retrieve the contents from a nearby base station that has the requested contents.

In Figure 4.6(b), we study the effect of changing the Zipf distribution parameter

ζ . First, we observe that the cost of the non-collaborative scheme is increased by at

least 3 folds compared to the cost of the offline collaborative scheme, and the cost

of the non-collaborative scheme can increase up to 10 folds compared to the cost of

the online collaborative scheme. This is because the non-collaborative scheme cannot

retrieve a content from a nearby base station. Second, we observe that the offline non-

collaborative scheme cost decreases as ζ increases. This is because as ζ increases, less
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number of contents are requested more often, and the non-collaborative scheme caches

the most popular files. Last, we observe that the offline collaborative scheme cost does

not change much as ζ increases. This is because the offline collaborative scheme can

retrieve contents from nearby base stations.

In Figure 4.6(c), we study the effect of changing the average caching cost.

First, we observe that the cost of the non-collaborative scheme is at least 3 times

the cost of both of the offline and the online collaborative schemes. Second, we

observe that the total cost of the non-collaborative scheme increases at a higher rate

than the collaborative schemes as the caching cost increases. The reason behind both

observations is that the non-collaborative scheme prohibits retrieving the contents from

nearby base stations, which means that each content may be cached at more than one

base station, which increases the total caching cost. Conversely, the collaborative

schemes tend to cache each content at a single base station, and all other base stations

can retrieve the content without caching an additional copy of the content or retrieve it

from the Internet.

In Figure 4.7, we repeat the simulation as in Figure 4.5, when a 50% error margin

is introduced to the popularity estimation. We observe that due to the error margin

in popularity estimation, there is a small variance in the cost savings of the offline

collaborative scheme over the offline non-collaborative scheme. We also observe that

the online collaborative scheme cost savings varies between 71% to 76% over the cost

of the non-collaborative scheme in all sets of demands.

Figure 4.8 shows the per demand cost savings percentage of the online collabo-

rative schemes with respect to the offline collaborative scheme when the number of base
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Figure 4.7 Empirical CDF of the per demand cost savings percentage with respect to
the non-collaborative scheme with 50% error margin in popularity estimation.
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Figure 4.8 Empirical CDF of the per demand cost savings percentage of the online
collaborative scheme with respect to the offline collaborative scheme with 50% error
margin in popularity estimation.
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stations is set to 10, the Zipf distribution parameter ζ is set to 1.1, the average caching

cost is set to 200, and a 50% error margin in popularity estimation is introduced. The per

demand cost savings percentage is calculated in a similar manner to that in Figure 4.5.

From this figure, we note that the online collaborative scheme can outperform the offline

collaborative scheme in 40% of the demand sets, and it can achieve around 22% of cost

savings over the offline collaborative scheme. This is because the offline collaborative

scheme may consider an unpopular content to be popular due to the inaccuracies

in estimating the contents popularities, while the online collaborative scheme is not

affected by the inaccuracies in estimating content popularities, as it makes a caching

decision when a new request for a content arrives at a base station.

In Figure 4.9, we repeat the simulations as in Figure 4.3 when we introduce errors

in estimating the contents ranking. The results are averaged over 20 runs. In Zipf

popularity distribution, lower ranking number means higher popularity. To introduce

the errors in estimating contents ranking, we generate two sets of requests, the estimated

requests set and the actual requests set. The estimated requests set is generated by

changing the contents ranking at each base station randomly. For example, if the actual

ranking of a content at a base station is fifth, then the estimated ranking of the same

content at the same base station may be first.

From this figure, we note that the total cost of the non-collaborative scheme varies

between 2 times to 9 times of the total cost of the collaborative schemes as the number

of base station increases (Figure 4.9(a)). As we change the Zipf distribution parameter,

the total cost of the non-collaborative scheme is at least twice the total cost of the

collaborative schemes (Figure 4.9(b)). Finally, as the average caching cost increases,

81



5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of Base Stations
(a)

T
o
ta

l 
C

o
st

 

 

Offline Collaborative

Offline Non−Collaborative

Online Collaborative

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
x 10

5

Zipf Distribution Parameter
(b)

T
o
ta

l 
C

o
st

 

 

Offline Collaborative

Offline Non−Collaborative

Online Collaborative

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5

Average Caching Cost
(c)

T
o
ta

l 
C

o
st

 

 

Offline Collaborative

Offline Non−Collaborative

Online Collaborative

Figure 4.9 Total cost of all schemes with errors in content ranking estimation.

the total cost of the non-collaborative scheme varies between 100% to 400% of the

total cost of the collaborative schemes (Figure 4.9(c)). The reason behind all these

observations is that the collaborative schemes have a lower total UA cost since the

collaborative schemes can retrieve the content from a nearby base station.

Figure 4.10 is similar to Figure 4.7 when we introduce errors in estimating the

contents ranking. The results are for 20 different sets of demands. From Figure 4.10,

we note that the relative cost savings of the offline collaborative scheme varies between

87% to 92% over all sets of demands, while the relative cost savings of the online

collaborative scheme varies between 62% to 92% over all sets of demands.

In Figure 4.11, we measure the relative cost savings of the online collaborative

scheme to the offline collaborative scheme over 20 different sets of demands, when we

introduce errors in estimating the contents ranking. From this figure, we note that in

30% of the demand sets, the total cost of the online collaborative scheme is less than

the total cost of the offline collaborative scheme. This is mainly due to the inaccuracies

in estimating the contents ranking.
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Figure 4.10 Empirical CDF of the per demand cost savings percentage of the online
collaborative scheme with respect to the offline collaborative scheme with errors in
content ranking estimation.
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Figure 4.11 Empirical CDF of the per demand cost savings percentage of the online
collaborative scheme with respect to the offline collaborative scheme with errors in
content ranking estimation.
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4.6 Conclusion

In this chapter, we study the problem of content caching in a collaborative multi-cell

coordinated system, with the objective of minimizing the total costs paid by the content

providers. We formulate the problem of collaborative caching as an optimization

problem, and we prove that it is NP-complete. We also provide an online algorithm

for the problem. The online algorithm does not require any knowledge about the

content popularities. Through extensive simulations, we show that the collaborative

caching schemes provide higher savings than the non-collaborative caching scheme,

which means that applying the simple online algorithm is better than solving the

non-collaborative optimization problem. The simulations also show that our online

caching scheme can also outperform the optimal offline collaborative scheme when

there are inaccuracies in estimating the contents popularities.
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CHAPTER 5

ONLINE ALGORITHM FOR CACHING IN CONTENT CENTRIC

NETWORKS

5.1 Introduction

With the proliferation of multimedia content (video, audio, images, ...) generation

and sharing, the Internet is becoming more into a content distribution system. As the

Internet architecture is based on a host-to-host communication, it is not suitable for

content distribution. Recently, Content Centric Networking (CCN), a new paradigm for

content delivery in the Internet, has been proposed [16].

Since Internet users are interested in the content itself and not its location, routing

in CCN is based on the content’s name instead of the IP address of the content’s

source, which means that a content can be retrieved from nodes that are not on the

path to the content’s origin server. Content items are given hierarchical names that

are understood by the intermediate nodes, and the nodes apply longest prefix match on

the content’s name for routing decisions [16]. More importantly, nodes in CCN are

deployed with storage capabilities that allow the nodes to cache popular content items

in order to satisfy future requests. This leads to bandwidth savings as well as latency

reduction [16]. Therefore, adopting a well-designed caching policy has a big impact

on the performance of CCN. In this chapter1, we consider content caching in Content

Centric Networks (CCN).

1The work of this chapter has been published in [67]
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We consider caching in CCN from an economical point of view. Our objective

is to minimize the overall cost paid by the Content Provider (CP) by introducing a

realistic economical model for the Internet Service Provider (ISP) and the CP. In this

model, retrieving the content incurs two costs. The first type of cost is the caching

cost, where the CP has to pay to the ISP in exchange for caching its content items.

This is motivated by the increasing trend of using in-network cloudlets, services, and

middleboxes, in which the storage and computations are performed at small clouds

installed in the nodes of the network [57–60]. Note that previous work on CCN caching

do not consider caching costs, and thus do not provide incentives for the ISP to cache.

By introducing caching costs, we consider a realistic model that provides incentives for

the ISP to cache.

The second type of cost is what we call the retrieval cost. This cost represents the

cost of retrieving the content from other nodes. The retrieval cost can be either a user

attrition cost (i.e., the expected cost of losing users to other CPs), or the cost of using

the links’ bandwidth. These two types of costs yield a tradeoff on where the content

items are cached in order to minimize the total cost paid by the CP.

5.2 Settings

We consider a network consisting of I = {1, 2, . . . , i, . . . , I} of cache-capable nodes.

In the rest of the chapter, we use the words node and cache interchangeably. We have

J = {1, 2, . . . , j, . . . , J} content items with sizes S = {s1, s2, . . . , sj, . . . , sJ} that can

be requested by K = {1, 2, . . . , k, . . . , K} users.
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We assume that the cache size of each node is very large, and instead of imposing

cache capacity constraints, we associate a cost fij with caching the j-th content at the

i-th node. Due to the fast development and cost reduction of storage devices, the cache

size can be very large with low cost. Moreover, having a caching cost will limit the

number of content items cached at a node, and the cache capacity will not be violated.

Let T k
ij denote the retrieval cost associated with retrieving the j-th content for the

k-th user from the i-th node. If we associate a cost between any two directly connected

nodes, then T k
ij can be computed using the minimum cost path between the i-th node

and the k-th user.

5.3 Online Algorithm

In the online version of the problem, the decision of whether to cache a content or not

is made when the content is requested. The online algorithm has to make a decision

of whether to cache the content at a node or not, and from which node the content is

retrieved in order to satisfy the request.

In this section, we present our online algorithm for caching in CCN (OC3N). The

algorithm takes advantage of inherent CCN features such as broadcasting of requests

for content items. The difference is that the objective of OC3N is to minimize the

total cost paid by the content provider. The algorithm is lightweight in that it can be

implemented with small overhead. Moreover, OC3N is implemented in a distributed

way, and does not require the knowledge of the network topology or content items’

popularities. The algorithm works as follows:

1. When a request vj for the j-th content is generated by the k-th user, the user sends

the request to next-hop nodes, with initial Time-to-Live (TTL) value.
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2. At the node that received the request, if the content is not found and TTL value

is greater than 0, the node decreases the TTL value by 1, and sends the request

to next-hop nodes. The process continues until the content is found or TTL value

reaches 0.

3. If vj is the first request for the j-th content received by the i-th node, the

i-th node initializes a potential function p(i, j) = 0. Otherwise, p(i, j) =
∑

v′∈V j
i
[d(W j

v′ , v
′) − d(i, v′)]+, where V j

i is the set of requests for the j-th

content received by the i-th node excluding the current request vj , d(i, v′) = T k′

ij

where k′-th user has generated request v′, W j
v′ is the set of nodes caching the

j-th content when request v′ is satisfied, d(W j
v′ , v

′) ≡ mini′∈W j

v′
d(i′, v′), and

[x]+ , max{x, 0}.

4. If TTL value reaches 0 and the content is not found, feedback messages are sent

back to the k-th user indicating that the content is not found, along with the

current value of p(i, j), the caching cost fij , and retrieval cost T k
ij of each node

i on the path of the feedback messages. The k-th user then increases the initial

TTL value and resend the request. The process is repeated until the content item

is found.

5. When the content item is found (possibly at multiple nodes), the feedback

messages indicate where the content item was found, along with the current

values of p(i, j), fij , and T k
ij of each node i on the path of the feedback messages

that did not relay their corresponding values to the k-th user in previous feedback

messages before the k-th user increased the TTL value.

6. The k-th user identifies the node w ← argmaxi(p(i, j)+[d(W j
v , v

j)−d(i, vj)]+−
fij).

7. If p(w, j)+ [d(W j
v , v

j)−d(w, vj)]+−fwj ≤ 0, the k-th user decides not to cache

the content at a new node, and sends the value of d(W j
v , v

j) to all nodes in order

for each node i to update its potential function according to p(i, j) = p(i, j) +
[d(W j

v , v
j) − d(i, vj)]+. Otherwise, the k-th user sends a message to all nodes

indicating that node w will cache the content, the node w′ ← argmini′∈W j
v
d(i′, v)

from which node w should retrieve the content, and the value of d(W j
v ∪{w}, v

j)
in order for each node to recompute its potential function.

8. Node w then retrieves the content from w′ and caches a copy of the content.

9. The k-th user then retrieves the j-th content from the node caching the j-th

content and from which the retrieval cost is minimum.

The OC3N algorithm is presented in Algorithm 7
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Algorithm 7 Online Algorithm for Caching in CCN (OC3N)

1: V j
i ← φ, Cost(j) = 0, p(i, j) = 0, ∀i ∈ I, j ∈ J

2: for each new request vj for the j-th content generated by the k-th user do
3: Start Exploration Phase
4: tvj ← initial TTL
5: W j

v ← φ
6: while W j

v = φ do

7: broadcast request vj to all nodes within tvj hops from k-th user
8: W j

v ← set of nodes caching the j-th content
9: if W j

v = φ then
10: increase tvj
11: End Exploration Phase
12: for all nodes i within tvj hops from vj do

13: V j
i ← V j

i ∪ {v
j}

14: updatePotentials(W j
v , v

j){
15: p(i, j) = p(i, j) + [d(W j

v , v
j)− d(i, vj)]+

16: w ← argmaxi(p(i, j)− fij)
17: if p(w, j)− fwj > 0 then
18: w′ ← argmini′∈W j

v
d(i′, v)

19: Cost(j) = Cost(j) + fwj + d(w′, w)
20: W j

v ← W j
v ∪ {w}

21: for all nodes i within tvj hops from vj do

22: computeNewPotentials(V j
i , w){

23: p(i, j) =
∑

v′∈V j
i
[d(W j

v′ ∪ {w}, v
′)− d(i, v′)]+

24: Start Assignment Phase
25: assign vj to α = argmini′∈W j

v
d(i′, vj)

26: Cost(j) = Cost(j) + d(α, vj)
27: End Assignment Phase
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We note that there is an overhead required when executing the OC3N algorithm

(we explain the required overhead in details in Section 5.5). However, this overhead is

independent of the content’s size. Therefore, as the size of the content becomes larger,

which is the case for future content delivery traffic, the overhead will not grow.

5.4 Performance Analysis

Before we present the performance analysis, we point out the following observation.

The decision of caching a content at a node and updating the potential function for a

content is independent from the other content items. so we can view our problem as J

independent caching subproblems. In the sequel, we only consider a single content, and

hence, the content-index j is omitted in the subscript of the symbols used throughout the

rest of the chapter. Moreover, in the online algorithm and in the proof of the competitive

ratio, every term will be multiplied by the content size sj . For simplicity, we set sj = 1.

This will not affect the final result of the proof.

To characterize the competitive ratio achievement of the algorithm, we compare

the algorithm’s cost with the cost of the optimal offline solution. In the optimal offline

solution, let W ∗ denote the set of nodes caching the content. Then, the cost of the

offline optimal solution is given by:

C∗ =
∑

w∈W ∗

fw +
∑

v∈V

d(W ∗, v) (5.1)

5.4.1 Proof Outline

Let the optimal offline solution W ∗ consist of L caches c1, c2, . . . , cl, . . . , cL. In the

optimal offline solution, each request is satisfied by retrieving the content from a
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cache. Hence, W ∗ divides the requests into optimal clusters C1, C2, . . . , Cl, . . . , CL.

For example, if the optimal solution decides to cache a content in three caches c1, c2,

and c3, then the first cluster C1 consists of all requests retrieving the content from c1,

the second cluster C2 consists of all requests retrieving the content from c2, and so on.

We start by proving that OC3N maintains the invariant p(i) ≤ fi for all i (Lemma

9). Based on Lemma 9 and the triangular inequality, we show that the sum of the costs

between the optimal cache cl and the online cache in Wv with the minimum d(Wv, v)

for all requests v ∈ Cl is less than fcl + 2
∑

v∈Cl
d(cl, v). This is used to show that the

retrieval cost incurred by OC3N is within a constant factor of the total optimal cost C∗

(Lemma 10).

For each new request v, we define a credit ĉ(v) = min{d(Wv, v),mini{fi−p(i)+

d(i, v)}}. We show that ĉ(v) = fw−p(w)+d(w, v), if v causes the content to be cached

at w, and ĉ(v) = d(Wv, v) otherwise (Lemma 11). We then show that the total caching

cost incurred by OC3N is bounded by the total credit for all requests, which in turn is

within a constant factor of the optimal offline cost C∗. (Lemma 12).

Lastly, using Lemma 10, Lemma 12 and the triangular inequality, we show that

if the algorithm decides to cache at a new cache w, then the cost of transferring the

content from the old cache to the new cache is within a constant factor of the total

optimal cost C∗ (Lemma 13). By combining the bounds from Lemma 10, Lemma 12,

and Lemma 13, we show that the competitive ratio of OC3N is O(1).

5.4.2 The Proof

Lemma 9. p(i) ≤ fi, ∀i ∈ I.
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Proof. We prove this lemma by induction on the number of requests considered by the

online algorithm. For the first request, the invariant holds since p(i) = 0 for all i ∈ I.

We inductively assume that the invariant holds just before a new request v arrives and

prove that the invariant holds after v is assigned to retrieve the content from a cache.

Let Wv be the set of caches caching the content found after the exploration phase

in OC3N , and let V be the set of requests considered so far by OC3N . By definition,

p(i) =
∑

v′∈Vi
[d(Wv′ , v

′) − d(i, v′)]+ is the potential of cache i just before the new

request v arrives, and by the induction hypothesis, p(i) ≤ fi, ∀i. Let p′(i) be the

potential after the subroutine updatePotentials() in OC3N is executed. Finally, let p′′(i)

be the potential of cache i after the request v is assigned to a cache. What remains to

prove is that p′′(i) ≤ fi for all i.

We have two cases:

• First case: If the new request v does not change Wv (i.e., the new request did

not cause the content to be cached at a new cache), then from OC3N , p′(i) −
fi ≤ 0, ∀i, and p′′(i) = p′(i) since the subroutine computeNewPotentials() is not

executed. Therefore, p′′(i) ≤ fi for all i.

• Second case: If the new request v causes the content to be cached at a new cache

w, then

0 < p′(w)− fw = [d(Wv, v)− d(w, v)]+ + p(w)− fw

≤ [d(Wv, v)− d(w, v)]+

where the first inequality holds because the content is cached at w, the next

equality holds from the definition of p′(w), and the last inequality holds from

the induction hypothesis p(w) ≤ fw. Therefore,

[d(Wv, v)− d(w, v)]+ ≥ p′(w)− fw > 0 (5.2)

This implies that d(Wv, v) > d(w, v), which means that v will retrieve the content

from w and

d(Wv ∪ {w}, v) = d(w, v) (5.3)

From here, we have two subcases:
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– First subcase: For all caches i where d(i, v) < d(w, v), we have [d(Wv ∪
{w}, v)− d(i, v)]+ = d(w, v)− d(i, v). Therefore,

d(Wv, v)− d(w, v)

≥ p′(w)− fw

≥ p′(i)− fi

= [d(Wv, v)− d(i, v)]+ + p(i)− fi

≥ d(Wv, v)− d(i, v) + p(i)− fi

where the first inequality follows from (5.2), the second inequality follows

since w ← argmaxi(p
′(i) − fi), and the first equality follows from the

definition of p′(i). Therefore, d(Wv, v) − d(w, v) ≥ d(Wv, v) − d(i, v) +
p(i)− fi. Rearranging the terms we get

0 ≥d(w, v)− d(i, v) + p(i)− fi

≥d(w, v)− d(i, v) +
∑

v′∈Vi

[d(Wv′ , v
′)− d(i, v′)]+ − fi

≥d(w, v)− d(i, v)

+
∑

v′∈Vi

[d(Wv′ ∪ {w}, v
′)− d(i, v′)]+ − fi

=p′′(i)− fi

where the second inequality follows from the definition of p(i), the third

inequality follows from the fact that d(Wv′ , v
′) ≥ d(Wv′ ∪ {w}, v

′) for all

v′, and the last inequality follows from the definition of p′′(i) and using

(5.3).

– Second subcase: For all caches k where d(i, v) ≥ d(w, v), we have [d(Wv∪
{w}, v)− d(i, v)]+ = 0. Therefore,

p′′(i) =
∑

v′∈Vi∪{v}

[d(Wv′ ∪ {w}, v
′)− d(i, v′)]+

=
∑

v′∈Vi

[d(Wv′ ∪ {w}, v
′)− d(i, v′)]+

≤
∑

v′∈Vi

[d(Wv′ , v
′)− d(i, v′)]+

= p(i) ≤ fi

where the first equality holds from the definition of p′′(i), the second

equality follows since [d(Wv ∪ {w}, v)− d(i, v)]+ = 0, the third inequality

follows since d(Wv′ ∪ {w}, v
′) ≤ d(Wv′ , v

′), ∀v′, and the last equality

follows from the definition of p(i) before the request v appears.
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In the next lemma, we bound the retrieval cost incurred by OC3N .

Lemma 10. Let V be the set of requests, and let
∑

v∈V d(Wv, v) denote the total

retrieval cost incurred by OC3N . Then

∑

v∈V

d(Wv, v) ≤ 3C∗

Proof. Let Cl be an optimal cluster with cache cl. For each request v̂ ∈ Cl, let Wv̂ be

the set of caches caching the content at the end of the assignment phase of request v̂ in

OC3N . Then, using triangular inequality we have

d(Wv̂, v̂) ≤ d(Wv̂, cl) + d(cl, v̂)

Summing over all v̂ ∈ Cl, we get

∑

v̂∈Cl

d(Wv̂, v̂) ≤
∑

v̂∈Cl

d(Wv̂, cl) +
∑

v̂∈Cl

d(cl, v̂) (5.4)

Now for the optimal cluster Cl with cache cl we have:

p(cl) =
∑

v∈Vcl

[d(Wv, v)− d(cl, v)]
+

≥
∑

v∈Cl

[d(Wv, v)− d(cl, v)]

≥
∑

v∈Cl

[d(Wv, cl)− d(cl, v)− d(cl, v)]

≥
∑

v∈Cl

d(Wv, cl)− 2
∑

v∈Cl

d(cl, v)

where the second inequality is obtained by using the triangular inequality (i.e.,

d(Wv, v) ≥ d(Wv, cl)− d(cl, v)).
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Using the invariant fcl ≥ p(cl) from Lemma 9 and rearranging the terms, we get:

∑

v∈Cl

d(Wv, cl) ≤ fcl + 2
∑

v∈Cl

d(cl, v) (5.5)

Substituting (5.5) into (5.4) we get

∑

v̂∈Cl

d(Wv̂, v̂) ≤ [fcl + 3
∑

v∈Cl

d(cl, v̂)]

≤ 3[fcl +
∑

v̂∈Cl

d(cl, v̂)]

The lemma follows by summing over all clusters.

We bound the total caching cost incurred by OC3N in the next two lemmas.

First, we show that the credit ĉ(v) = fw − p(w) + d(w, v), if v causes the content to be

cached at w, and ĉ(v) = d(Wv, v) otherwise. Then we show that the total caching cost

is bounded by the total credit for all requests, which in turn is within a constant factor

of the optimal offline cost C∗.

Lemma 11. For each new request v, let Wv be the set of caches caching the content seen

by request v after the exploration phase in OC3N . Then ĉ(v) = fw − p(w) + d(w, v)

if v causes the content to be cached at w, and ĉ(v) = d(Wv, v) otherwise.

Proof. Let p(i) denote the potential function of the i-th cache just before a new request

v arrives, and let p′(i) = p(i) + [d(Wv, v)− d(i, v)]+ be the potential function after the

subroutine updatePotential() in OC3N is executed.
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Now, if the new request v causes the content to be cached at w, then from the

algorithm,

0 < p′(w)− fw = p(w) + [d(Wv, v)− d(w, v)]+ − fw

= p(w) + d(Wv, v)− d(w, v)− fw

≥ p(i) + [d(Wv, v)− d(i, v)]+ − fi

≥ p(i) + d(Wv, v)− d(i, v)− fi

The first inequality holds because the content is cached at w. The first equality follows

from the definition of p′(w). The second equality follows by using (5.3). The second

inequality holds because p′(w) − fw ≥ p′(i) − fi, ∀i and from the definition of p′(i).

Therefore, p(w)+d(Wv, v)−d(w, v)−fw ≥ p(i)+d(Wv, v)−d(i, v)−fi. Rearranging

the terms we get that fw − p(w) + d(w, v) ≤ fi − p(i) + d(i, v). We also have from

the second inequality that p(w) + d(Wv, v) − d(w, v) − fw > 0. Therefore, ĉ(v) =

fw − p(w) + d(w, v) if v causes the content to be cached at w.

On the other hand, if the new request v does not cause an additional copy of the

content to be cached, then from the algorithm,

0 ≥ p′(i)− fi ∀i

= p(i) + [d(Wv, v)− d(i, v)]+ − fi ∀i

≥ p(i) + d(Wv, v)− d(i, v)− fi ∀i

where the first equality follows from the definition of p′(i). Therefore, d(Wv, v) ≤

fi − p(i) + d(i, v), ∀i, and ĉ(v) = d(Wv, v).
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In the next lemma, we show that the total caching cost incurred by OC3N is

upper bounded by the total optimal cost C∗.

Lemma 12. Let V be the set of requests, and let Wv be the set of caches caching the

content seen by request v after the exploration phase in OC3N . LetW denote the set

of caches caching the content after all the requests in V have been considered and let

∑

w∈W fw denote the total caching cost incurred by OC3N . Then

∑

w∈W

fw ≤ 3C∗

Proof. We first show that the total caching cost incurred by OC3N is upper bounded by

the total credit for all requests. We do this by a potential function argument. We define

the potential function Φ =
∑

v∈V d(Wv, v) and calculate the change ∆Φ in the value of

the potential function when a new request v is considered. Let p(i) be the value of the

potential function of the i-th cache just before the new request v arrives.

If the new request v does not cause the content to be cached at a new cache (i.e.,

Wv is not changed), then ∆Φ = d(Wv, v) = ĉ(v) by Lemma 11. Otherwise, if v causes

the content to be cached at w, then d(Wv∪{w}, v) = d(w, v) (recall (5.3) in Lemma 9),
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and d(Wv′ , v
′)− d(Wv′ ∪ {w}, v

′) = [d(Wv′ , v
′)− d(w, v′)]+ for all v′ ∈ V . Therefore,

∆Φ =
∑

v′∈V ∪{v}

d(Wv′ ∪ {w}, v
′)−

∑

v′∈V

d(Wv′ , v
′)

= d(w, v)−
∑

v′∈V

[d(Wv′ , v
′)− d(Wv′ ∪ {w}, v

′)]

= d(w, v)−
∑

v′∈V

[d(Wv′ , v
′)− d(w, v′)]+

≤ d(w, v)−
∑

v′∈Vw

[d(Wv′ , v
′)− d(w, v′)]+

= d(w, v)− p(w)

where the last equality follows from the definition of p(w). From Lemma 11, we have

ĉ(v) = fw − p(w) + d(w, v) ≥ fw +∆Φ. Therefore,
∑

v∈V ĉ(v) ≥ Φ +
∑

w∈W fw ≥

∑

w∈W fw since Φ ≥ 0.

Now we use (5.5) in Lemma 10 to show that the total credit of the requests in V

is within a constant factor of the total optimal cost C∗. Let Cl be an optimal cluster with

cache cl. Let nl ≡ |Cl| be the number of requests in Cl, and let v1, v2, . . . , vn, . . . , vnl
be

the requests in Cl in the order considered by OC3N . For each request vn ∈ Cl, let Wvn

be the set of caches caching the content at the end of the assignment phase of request

vn in OC3N .

The credit of each request vn is ĉ(vn) ≤ min{d(Wvn , v̂), fcl + d(cl, vn)} (using

Lemma 11). For the first request, ĉ(v1) ≤ fcl + d(cl, v1). For the remaining requests

vn, n ≥ 2, we have

ĉ(vn) ≤ d(Wvn , vn) ≤ d(Wvn, cl) + d(cl, vn)

where the second inequality follows from the triangular inequality.

98



Summing over all vn ∈ Cl, we get

ĉ(v1) +

nl
∑

n=2

ĉ(vn) ≤ fcl + d(cl, v1)

+

nl
∑

n=2

[d(Wvn , cl) + d(cl, vn)]

≤ fcl +

nl
∑

n=1

d(Wvn, cl) +

nl
∑

n=1

d(cl, vn)

≤ 2fcl + 3

nl
∑

n=1

d(cl, vn)

≤ 3[fcl +

nl
∑

n=1

d(cl, vn)]

where the third inequality follows by using (5.5) in Lemma 10. Summing over all

clusters we get that

∑

w∈W

fw ≤
∑

v∈V

ĉ(v) ≤ 3C∗

In the next lemma, we use the triangular inequality, Lemma 10 and Lemma 12

to show that the total cost incurred by OC3N when the content is transferred to a new

cache w is within a constant factor of the total optimal cost C∗.

Lemma 13. In OC3N , let V denote the set of requests and let V ′ ⊂ V denote the

subset of requests that caused the content to be cached at a new cache. For all v ∈ V ′,

let Wv denote the set of caches seen by request v after the exploration phase, and let wv

denote the new cache. Then

∑

v∈V ′

d(Wv, wv) ≤ 9C∗
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Proof. Using the triangular inequality, we have

d(Wv, wv) ≤ d(Wv, v) + d(wv, v)

≤ d(Wv, v)− d(wv, v) + 2d(wv, v)

≤
∑

v′∈Vwv

[d(Wv′ , v
′)− d(wv, v

′)]+ + 2d(wv, v)

≤ p(wv) + 2d(wv, v)

≤ fwv
+ 2d(wv, v)

where the fourth inequality follows from the definition of p(wv), and the last inequality

follows from Lemma 9. Summing over all v ∈ V ′ we get

∑

v∈V ′

d(Wv, wv) ≤
∑

v∈V ′

[fwv
+ 2d(wv, v)]

≤
∑

v∈V ′

fwv
+ 2

∑

v∈V

d(wv, v)

≤ 9C∗

where the last inequality follows by using Lemma 10 and Lemma 12.

Now we are ready to prove the competitive ratio of OC3N .

Proposition 3. The competitive ratio of OC3N is O(1).

Proof. From Lemma 10, we have
∑

v∈V d(Wv, v) ≤ 3C∗. From Lemma 12, we have

∑

w∈W fw ≤ 3C∗. Finally, from Lemma 13, we have
∑

v∈V ′ d(Wv, wv) ≤ 9C∗. The

proposition follows by combining the three bounds.

Note that this is the worst case ratio and it does not depend on the problem size,

so it is optimal from the asymptotic sense.

100



5.5 Practical Issues

In this section, we discuss the practical issues concerning the implementation of OC3N .

5.5.1 Broadcasts

For OC3N to be implemented, two broadcasts are required. The first broadcast includes

the request itself, which is a feature of CCN. The second broadcast required is the

broadcast to notify the nodes of whether the content is to be cached at a new node

or not, along with the required information for every node to update their potential

functions. The required information can be included in the broadcast message as three

fields. The first field is a single bit indicating whether the content is cached at a new

cache or not, the second field contains the ID of the new cache or is left empty if the

content is not cached at a new cache, and the third field contains the value of d(Wv, v)

at the beginning of the assignment phase. Note that the size of the second broadcast

is very small when compared to the content’s size, and therefore adds a very small

overhead to the implementation of OC3N .

5.5.2 Retrieving from Multiple Nodes

In OC3N , the user first decides whether to cache the content at a new node or not, and

then retrieves the content. Due to this implementation, only one copy of the content

is sent back to the user. Content retrieval occurs after the second broadcast discussed

previously, and this introduces additional delays to the system.

In order to avoid these delays, OC3N implementation can be changed to retrieve

the content after the first broadcast. This may cause multiple copies of the content to

be sent back to the user along multiple paths, and each node on the path temporarily

101



caches the content until it is informed otherwise. Note that this implementation makes

OC3N more compliant to CCN, since the original implementation of CCN can also

result in retrieving multiple copies of the content due to having a single broadcast

phase. However, this causes the competitive ratio of OC3N to be O(n) as stated in

the following proposition.

Proposition 4. The competitive ratio of OC3N is O(n) if the content is retrieved from

multiple nodes.

Proof. We show this proposition by an example. In this example, the network is

represented by a complete binary tree consisting of n nodes as shown in Figure 5.1.

The content is cached at every leaf of the tree and a request for the content arrives at

the root of the tree. Since there are n/2 leaves, n/2 copies will be sent back to the

user (one copy will be accepted and the rest will be discarded), and each one of those

copies has a retrieval cost that is within a constant factor of the total optimal cost (refer

to Lemma 10 in Section 5.4). Therefore, this implementation will have a competitive

ratio of O(n).

5.5.3 Executing computeNewPotentials() Subroutine

In the case where the content is to be cached at a new cache, the nodes are required to

recompute their respective potential functions by executing the computeNewPotentials()

subroutine. In order to do so, the nodes need to maintain a table containing information

regarding past requests for the content. Specifically, the i-th node needs to store in its

table the values of d(Wv, v) and d(i, v) for every request v ∈ Vi. As the number of

requests increases, the size of the table increases. Nevertheless, note that an individual
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Figure 5.1 Example network used in the proof of Proposition 4.

entry in the table is represented by two numbers. Therefore, the size of an individual

entry in the table is very small when compared to the content’s size, and since we

assume large cache sizes, these information can be easily maintained.

5.5.4 Pricing Model

The pricing model adopted so far for OC3N is one where the caching cost changes

every period of time and the ISP evicts the content items at the end of each period. For

the case where the content items are to be cached for a fixed time T (like 24 hours),

and the caching cost does not change, we propose a heuristic based on OC3N , named

OC3N Fixed. To implement this heuristic, we add an eviction phase to Algorithm 7

after the end of the assignment phase, in order to evict the content items after a fixed

time T .
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5.6 Simulation Results

In this section, we measure the performance of OC3N via simulations. The simulations

are run on a random topology consisting of 100 nodes uniformly distributed in a square

area of size 2000× 2000 square kilometers, and there is a link connecting two nodes if

the distance between them is less than 400 kilometers. We set the number of content

items J to 1000, where each content has a size chosen from the set {10, 11, . . . , 20}MB.

The popularity of each content is chosen according to a Zipf distribution [66], with

parameter ζ = 0.8, where the popularity of a content of rank q is given as
1/qζ

∑J
j=1 1/j

ζ
. For

the retrieval cost, we assume that the cost to transmit 2.7GB of data over a 100km costs

$1 as adopted from [68], and the retrieval cost value T k
i between the i-th node and the

k-th user is computed using the minimum cost path. For the caching cost, we adopt the

pricing from Amazon EC2 [69].

We first compare the performance of OC3N vs. the performance of two

heuristics, Leave Copy Down (LCD) and Leave Copy Everywhere (LCE) [70]. The

results are shown in Figure 5.2, where every point is the average of 100 runs.

First, we measure the effect of increasing the number of users on the total cost of

all schemes. The results are shown in Figure 5.2(a). As can be seen from this figure, as

the number of users increases, the total cost of all schemes increases. This is expected

since increasing the number of users translates into more requests for the content. In

addition, we note that OC3N can cut the total cost incurred by the LCD and LCE

caching schemes by up to 57% and 65%, respectively. This is because the LCD and

LCE caching schemes end up caching the content at all nodes as opposed to OC3N .

Moreover, we note that the total cost of the LCD scheme is greater than the total cost of
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Figure 5.2 Total cost vs. different parameters.

the LCE scheme. This is because LCD scheme incurs more retrieval cost for requests

for the same content generated at the same node, since the content is brought closer one

hop at a time with each request along the path from the content’s source to the user,

while LCE scheme caches the content at every node along the path, so future requests

generated at the same node will not incur any additional costs.

Next, we measure the total cost of all schemes as we change the ratio of the

caching cost to the retrieval cost. This is done by multiplying the caching cost by the

desired ratio. The results are shown in Figure 5.2(b). As shown in this figure, as the

ratio increases, the total cost of all schemes increases since if the content is cached at

a new cache, additional charges are paid by the content provider. We also observe that

increasing the ratio of the caching cost to the retrieval cost has bigger impact on the

total cost of the LCD and LCE caching schemes than on the total cost of OC3N , since

LCD and LCE caching schemes end up caching the content at every node, while OC3N

will rarely cache the content at a new cache as the caching cost increases.

Lastly, we measure the total cost of all schemes vs. the variance of the caching

cost. The caching costs are drawn from a uniform distribution. The results are shown

105



5 10 15 20 25
0

2

4

6

8

10

12
x 10

4

Average Number of Users per Node
(a)

T
o

ta
l 

C
o

st
 (

$
)

 

 

OC
3
N_Fixed

LCD_Fixed

LCE_Fixed

0.10.5 1 2 5 10
0

2

4

6

8

10

12
x 10

4

Ratio of Caching Cost to Retrieval Cost
(b)

T
o

ta
l 

C
o

st
 (

$
)

 

 

OC
3
N_Fixed

LCD_Fixed

LCE_Fixed

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8
x 10

4

Variance of Caching Cost
(c)

T
o

ta
l 

C
o

st
 (

$
)

 

 

OC
3
N_Fixed

LCD_Fixed

LCE_Fixed

Figure 5.3 Total cost vs. different parameters when content items are cached for a fixed
time.

in Figure 5.2(c). We observe from this figure that the caching cost variance does not

have an effect on the LCD and LCE schemes, since both schemes will end up caching

the content at all nodes. However, having a large variance of the caching cost benefits

OC3N , since the content will be cached at the nodes with low caching costs.

Next, we compare OC3N Fixed heuristic proposed in Section 5.5.4 against

modified versions of LCD and LCE schemes, where the content items are cached for a

fixed time. We repeat the same simulations as in Figure 5.2, and the results are shown

in Figure 5.3.

In Figure 5.3(a), we measure the total cost vs. the average number of users. As

can be seen from this figure, increasing the number of users has bigger impact on the

total cost of the LCE scheme than the total cost of OC3N Fixed and LCD schemes ,

since in LCE scheme, multiple nodes evict the content at the same time, and recaching

the content again incurs additional costs. Moreover, OC3N Fixed can cut the cost

incurred by the LCD scheme by up to 70%, since the LCD scheme will end up caching

the content at all nodes, thus increasing the total cost.

In Figure 5.3(b), we measure the total cost of all schemes as we change the ratio

of the caching cost to the retrieval cost. Again, the LCE scheme incurs the highest cost,
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since in this scheme, multiple nodes evict the content at the same time, and recaching

the content again incurs additional costs. Also, as seen from this figure, as the ratio

increases, the total cost of OC3N Fixed slightly increases, since the content will rarely

be cached at a new cache. Lastly, we note that OC3N Fixed can cut the cost incurred

by the LCD scheme by up to 83%.

Lastly, in Figure 5.3(c), we measure the total cost vs. the variance of the caching

cost. The caching costs are drawn from a uniform distribution. We note that the total

cost of OC3N Fixed is minimum when the variance of the caching cost is maximum.

This is because when the variance is large, there are some nodes that have low caching

cost, and OC3N Fixed tends to cache at those nodes only. Contrariwise, the total

cost of the LCD scheme slightly changes, since the LCD scheme ends up caching the

content at all nodes.

5.7 Conclusion

In this chapter, we study the problem of caching in Content Centric Networking from

an economical point of view, where the content provider is charged in exchange for

caching its content items. This is motivated by the increasing trend of using in-network

cloudlets, where the nodes become a small cloud. We propose an online algorithm

(OC3N) that minimizes the total costs paid by the content provider. The algorithm

works on a per-request basis and does not require the exact knowledge of content items’

popularities.

Through detailed analysis, we show that the total cost incurred by OC3N is

within a constant factor of the optimal total cost for the cases where the caching
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cost changes periodically, and the content items are evicted at the end of the period.

For the cases where the caching cost does not change, we propose a heuristic based

on OC3N where the content items are cached for a fixed time. Moreover, through

simulations, we investigate the effect of different parameters on the performance of

the proposed algorithms, and show that the proposed algorithms can cut the total cost

incurred by widely used caching schemes such as Leave Copy Down (LCD) and Leave

Copy Everywhere (LCE) by up to 65%.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

6.1 Summary

Due to the proliferation of content delivery services in the recent years, network

operators need to devise new ways in order to enhance their networks’ performance.

One way to address this challenge is to provide content caching at intermediate nodes.

Content caching at intermediate nodes brings the contents closer to the requesting

customers. This has the effect of offloading the traffic from the origin servers,

reducing content delivery time, and achieving better performance, scalability, and

energy efficiency.

In this dissertation, we studied the problem of content caching under a framework

that brings incentives for the nodes to cache the contents, where content providers

are required to pay the Internet Service Provider (ISP) in exchange of caching their

contents, and the ISP in return is required to provide QoS guarantees by not replacing

the contents of the content providers in the future, if the ISP decides to cache their

contents. We proposed three different online caching algorithms that take the charges

paid by the content providers into consideration in order to achieve their respective

objectives, where the algorithm decides whether to cache a content or not at the time

that content is requested.

First, we presented an online caching algorithm in Chapter 3 for the current

Internet network, where a request for a content is forwarded along a single path to

the content origin server. With the objective of maximizing the traffic savings, our
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proposed online Cost-Reward Caching (CRC) algorithm decides which nodes along

this path are to cache the content. Based on a comparison between the value of a cost

function that is exponentially proportional to the relative load of the caching node and

the expected traffic savings achieved if the content is to be cached, a caching decision is

made. The proposed algorithm is easily implemented in the current Internet networks

in a distributed way. Our theoretical analysis showed that our algorithm achieves the

optimal competitive ratio in the asymptotic sense as the number of caching nodes in

the network increases. We also proposed multiple extensions to the CRC algorithm that

either focus on minimizing the energy consumption, considers replacement, or both.

Our simulation results showed that the CRC algorithm and its extensions outperform

heuristic schemes by at least 30%.

Due to the difficulty of obtaining a prior knowledge of contents’ popularities in

real scenarios, designing an online algorithm that does not require such knowledge is

desirable. To this end, we presented the Online Collaborative Caching (OCC) algorithm

for the Multi-cell coordinated cellular networks in Chapter 4. Collaboration means that

a base station can get the content from another base station through the backhaul links

instead of getting the content form the origin source. Our algorithm decides which

base stations are to cache the contents and from which base station a user’s request is

satisfied with the objective of minimizing the total cost paid by the content providers.

The algorithm works on a per-request basis, where upon the arrival of a request for a

content, the Mobility Management Entity (MME) executes the algorithm, updates the

value of a potential function of each base station, decides to cache the content if the

value of the potential function exceeds the caching cost, and relays its decision to the
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base stations. The potential function is a measure of how beneficial it is to cache at a

base station. We showed that our algorithm achieves a competitive ratio that is close to

the optimal. Our extensive simulations showed that the collaborative caching schemes

provide higher savings than the non-collaborative caching scheme, which means that

applying the simple online algorithm can lead to lower costs (in terms of the monetary

costs paid by the content providers) at very low complexity compared to solving the

non-collaborative optimization problem.

Finally, we considered content caching in Content Centric Networks (CCN) in

Chapter 5. Routing in CCN is based on the content’s name instead of the IP address

of the content’s source. Therefore, a content can be retrieved from surrounding

nodes that are not necessarily on the path to the content’s origin server. For the

CCN network, we presented Online algorithm for Caching in CCN (OC3N) that

decides the content placement in the caches and which cache to satisfy the request

in order to minimize the total cost paid by the content providers. The algorithm

works on a per-request basis, does not require a prior knowledge of the contents’

popularities, and can be implemented in a distributed way. Upon the arrival of a request

for a content at a node, that node becomes responsible of executing the algorithm.

Through exchanging messages with other nodes within the vicinity, the node collects

the necessary information to execute the algorithm. After a decision is made, the node

relays the decision along with necessary information to the participating nodes, which

in turn use those information to update their own potential function. For the case where

the caching cost changes periodically, and the content items are evicted at the end

of the period, our theoretical analysis showed that our algorithm achieves a constant
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competitive ratio. For the cases where the caching cost does not change, we proposed

a heuristic based on OC3N where the content items remain in the cache for a fixed

time. The conducted simulations showed that our algorithm can achieve up to 65% less

cost than widely used caching schemes in CCN such as Leave Copy Down (LCD) and

Leave Copy Everywhere (LCE).

6.2 Future Directions

Some of the future possible directions for this research is to investigate the performance

of the proposed algorithms under different pricing models, where the economic

interaction between the ISP and the content providers can be different depending on

the pricing policy adopted by the ISP. Another possible direction is to investigate the

effect of having different durations for caching different contents and to design online

algorithms with provable performance guarantees to address this case.

Considering content replacement when designing the online algorithms is another

possible direction. Although replacement has been considered in this dissertation

for some of the algorithms, these were heuristics with no provable performance

guarantees. Providing in-depth analysis, considering replacement when designing

online algorithms, and investigating the effects of content replacement on the economic

interaction between the ISP and the content providers are some of the major challenges.

The online algorithms designed in this dissertations focused on minimizing

the total cost. In the case where the algorithms make a decision of not caching a

content at a new location, some of the future requests for the same content may have

to retrieve the content from farther nodes, which introduces extra delays in content
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delivery. Investigating the trade-off between minimizing the total cost and the average

delay experienced by end users and designing online algorithms while considering the

average delay is another possible future research direction.

Although the algorithms proposed in this dissertations are designed for content

caching, these algorithms can be applied to other domains such as cloud resource

management in support of Internet of Things and prioritized data processing in

Vehicular Ad hoc Networks (VANETs), both of which are currently being investigated.

Another application of the proposed algorithms is in the emerging paradigm of Network

Function Virtualization (NFV). Our algorithms can be applied in the case where the

placement of a single virtual network function (i.e., at which node the virtual function

should be instantiated) is to be determined. Handling virtual network function chaining

is another possible future research direction.
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