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ABSTRACT 

 

REGULATION OF VOLTAGE-GATED K+ CURRENTS IN MOTOR NEURONS: 
ACTIVITY-DEPENDENCE AND NEUROMODULATION 

 

by 
Dalia Salloum 

Neuronal output is shaped by extrinsic modulation as well as modulation of intrinsic 

properties of individual neurons, mediated by activity-dependent changes in the 

expression levels of voltage-gated ionic currents.  Activity-dependent regulation of ionic 

currents is a mechanism by which electrical output of a neuron feeds back onto the 

expression of its own ion channels to alter cellular excitability in response to stimuli.  

Neurons alter their intrinsic properties to achieve long lasting changes involved in 

development, learning and memory formation and vital functions of organ systems such 

as locomotion and digestion. At the same time, plasticity of neuronal excitability driven 

by previous experience requires mechanisms to promote stability to maintain 

physiological function, and many examples of this type of homeostatic plasticity changes 

have been reported. At the same time, neuromodulation can alter electrical output 

indirectly via ligand-gated receptors and second messenger pathways and potentially 

affect activity-dependent effects. Activity-dependent regulation of ionic currents 

functions to allow neurons to track their own electrical activity and adjust their intrinsic 

properties in response to changing synaptic drive or other inputs to maintain their 

functional output.  This phenomenon has been demonstrated to occur over the course of 

minutes and is a relatively fast process.  Neuromodulators exert long-term effects on 

ionic currents via activation of cellular signaling pathways that do not directly affect 
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ionic current levels. Neuromodulation and activity-dependent effects can alter neuronal 

networks on different time scales, e.g. over several hours to days to accommodate the 

needs of the behaving organism such as in transitions between sleep and waking states. 

However, this is not necessarily so, and the possibility of real-time interactions exist and 

needs to be examined.   

This dissertation demonstrates that activity-dependent regulation of K+ currents is 

gated by the neuromodulatory environment and can be altered depending on the 

activation of a ligand-gated peptide receptor.  This study demonstrates novel findings of 

interactions between metabotropic receptor activation and modulation of highly K+ 

currents after acute changes to activity and neuromodulatory input.    
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this dissertation is to identify a potential interaction between 

neuromodulators and activity-dependent regulation of intrinsic properties of single 

neurons.  The pyloric network of the stomatogastric ganglion (STG) of the Jonah crab, 

Cancer borealis is used as model network to measure intrinsic voltage-gated ionic currents 

in single identified motor neurons. The particular voltage-gated currents measured are 

outward K+ currents, which are involved in regulating membrane excitability and the 

electrical activity of a neuron.  The oscillatory activity of the network is highly dependent 

on modulatory input from anterior ganglia.  Modulators exert long-term effects on the 

expression of ionic currents by regulating their coordinated expression.   

Activity-dependent regulation and neuromodulation function at different time 

scales and on different molecular targets yet they both have the ability to change the 

output of a neuron and the entire network in which it functions. In particular, it is known 

that removal of neuromodulators leads to a cessation of rhythmic activity, which slowly 

recovers in what has been thought to be an activity-dependent process of regulation of ion 

channel expression. At the same time, neuromodulators are known to regulate the 

expression of ion channels as well. Therefore, it is probable that some interaction 

between the regulation of ionic currents by activity and neuromodulators exists to 

promote stability of ion channel expression and ultimately of activity itself.  
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This thesis is based on the general hypothesis that neuromodulators gate activity 

dependent regulation of ionic currents in pyloric neurons.  The aim is to first characterize 

and quantify activity-dependent regulation by stimulating isolated neurons with patterned 

electrical stimulation.  To test if and how an interaction occurs, different modulatory 

substances will be applied and the magnitude and direction of change induced by 

electrical stimulation will be quantified in different modulatory environments.  

 

1.2 Significance 

Neurons integrate many different inputs to maintain a stable output that is appropriate for 

the environment the network is exposed to at any given time.  The particular output of the 

neuronal networks we study is a rhythmic motor pattern comparable in many ways to a 

broad class of patterns that control vital behaviors, like respiration, locomotion and 

digestion. The networks responsible for the generation of such patterns are called central 

pattern generators (CPGs).  Oscillatory activity is seen across a wide variety of neuronal 

behaviors other than motor patterns, such as learning and memory, sleep and 

wakefulness, addiction and fear (Nanou, Scheuer et al. 2016). An essential characteristic 

that many of these vital activity patterns must have is certain degree of stability that 

guarantees continued function and ultimately the survival of the organism. However, a 

defining quality of all nervous systems is the ability to adapt to change thanks to their 

multiple mechanisms of cellular plasticity.  With flexibility arises the need for stability. 

Otherwise, how would neuronal activity be able to control vital behaviors consistently 

throughout the lifetime of an organism?  To accomplish both flexibility and stability, the 

component neurons in a network must constantly alter their firing properties, synaptic 
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strengths and membrane properties in response to physiological changes according to 

specific regulatory rules (Mee, Pym et al. 2004, Bucher, Prinz et al. 2005, Hengen, 

Lambo et al. 2013, Butz, Steenbuck et al. 2014, Felix-Oliveira, Dias et al. 2014, Frank 

2014, Korotchenko, Cingolani et al. 2014).    Stability requires that even with all the 

incoming stimuli component neurons respond to, the emergent behavior of each 

individual neuron and the network as a whole is within a prescribed physiological range.   

Like long-term synaptic plasticity, long lasting changes in cellular excitability 

(termed intrinsic plasticity) facilitate learning and memory formation (Turrigiano, Abbott 

et al. 1994, Marder, Abbott et al. 1996, Daoudal and Debanne 2003, Dityatev, Schachner 

et al. 2010, Porro, Rosato-Siri et al. 2010, Felix-Oliveira, Dias et al. 2014, Nanou, 

Scheuer et al. 2016).  It is currently almost impossible to discuss neurophysiology 

without mentioning plasticity. The concept of plasticity has been widely explored and 

characterized across a large array of cell types, networks and model organisms (Du, Feng 

et al. 2000, Cudmore and Turrigiano 2004, Tully and Bolshakov 2010, Naude, Paz et al. 

2012, Butz, Steenbuck et al. 2014, Felix-Oliveira, Dias et al. 2014, Lee, Soares et al. 

2014, Wenner 2014, Karunanithi and Brown 2015, Fauth and Tetzlaff 2016).  In STG 

neurons, plasticity of neuronal excitability has been demonstrated from the cellular level 

to the network level, rendering this network an excellent model system to explore more 

complex questions regarding how plasticity is controlled to avoid destabilization of the 

system by runaway excitation or inhibition.  Homeostatic plasticity is a feedback 

mechanism neurons often use to counteract over excitation or prolonged suppression of 

neuronal activity (Pozo and Goda 2010).   
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Homeostatic plasticity is a mechanism that allows neurons to regulate their 

intrinsic properties based on their own activity output.  In injury and lesion studies, 

recovery of function after disruption is highly dependent on cell-autonomous 

mechanisms.  In STG neurons, for example, modification of the intrinsic properties of 

individual neurons contributes to recovery of function after removal of modulatory input 

that is required for oscillatory behavior (Luther, Robie et al. 2003, Zhang and Golowasch 

2007, Zhang, Khorkova et al. 2009, Zhang and Golowasch 2011).  Several studies in the 

STG have demonstrated that neuromodulators exert long-term control on the expression 

level of ionic currents as well as directly coordinating expression of different types of 

ionic currents (Thoby-Brisson and Simmers 2002, Temporal, Desai et al. 2012).  Ionic 

current expression is regulated by neuromodulators at the gene level and 

neuromodulatory input is required to maintain expression levels over long periods of time 

(Haedo and Golowasch 2006, Khorkova and Golowasch 2007, Temporal, Desai et al. 

2012).  Because network activity is dependent on modulatory input, many efforts have 

gone into separating the mechanisms that are directly regulated by activity and those 

directly dependent on modulatory input.  

 

1.3 The Pyloric Network 
 

The pyloric network of the Jonah crab Cancer borealis is an excellent model system to 

study activity-dependent plasticity.  With relatively few component neurons, well-known 

synaptic connections and well characterized modulatory input from anterior ganglia this 

system can produce complex outputs and is a useful tool in understanding complex 

systems. The pyloric network consists of a group of 11 neurons that innervate muscles in 
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the pylorus which is responsible for the filtration of macerated food in the crab’s foregut.  

The rhythm produced by this network is a triphasic rhythm involving the alternate 

bursting of its component neurons (Hooper, O'Neil et al. 1986, Bucher, Prinz et al. 2005, 

Grashow, Brookings et al. 2009).  The pyloric rhythm oscillates at a frequency of 1 Hz in 

vivo and in vitro (Hedrich, Diehl et al. 2011). It is driven by the pacemaker kernel which 

includes one interneuron, the anterior burster (AB), and two motor neurons, the pyloric 

dilators (PDs)  which are all electrically coupled via gap junctions(Selverston, Russell et 

al. 1976).  

The pyloric neurons are located in the stomatogastric ganglion (STG) along with 

neurons of two other CPGs, the cardiac sac and gastric mill (Buchholtz, Golowasch et al. 

1992).  All of these neurons receive modulatory input from projection neurons in three 

anterior ganglia; the esophageal ganglion (OG) and the paired commissural ganglia 

(CoG) (Swensen, Golowasch et al. 2000, Goldman, Golowasch et al. 2001).  These four 

ganglia along with motor and sensory nerves make up the stomatogastric nervous system 

(STNS) which controls swallowing, chewing, digestion and filtering of food in the crab’s 

foregut.  Although the pyloric rhythm can produce stable rhythmic output without timed 

sensory feedback, it does depend on modulatory input from the projection neurons which 

descend down the main input nerve, the stomatogastric nerve (stn) (Luther, Robie et al. 

2003).  Removal of this input by blocking action potential transmission down the stn via 

sucrose block or cutting the nerve results in a cessation of rhythmic activity (Thoby-

Brisson and Simmers 1998, Luther, Robie et al. 2003). 

 
1.4 Voltage-gated K+ Currents 
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The activity of a nervous system, from the single neuron to the behaving organism is 

governed by the abundance and combination of voltage-gated ion channels.  While 

synaptic and other chemical signals drive activity, the inherent excitability of a cell is 

largely determined by the balance of inward and outward movement of charged particles 

through transmembrane channel proteins and the resulting activity depends on their 

relative abundances.  More specifically, for the purposes of this work we focus and will 

discuss voltage-gated K+ channels and their crucial role in neuronal activity and function.   

Pyloric neurons express a variety of distinct outward currents.  We focus on three 

of those currents: the calcium-activated (IKCa), the delayed rectifier (IKd) and the transient 

(IA) potassium current.  Each current is encoded by a different gene.  IKCa and IKd are 

encoded by the BK-KCa and shab genes, respectively.  IA is encoded by the shal gene.  

Each current possesses distinct kinetics and temporal dynamics.  Therefore, they each 

play a different role in shaping the electrical identity of a neuron.   

IA is a rapidly inactivating current and controls the latency to first spike in a 

bursting neuron (Baro, Cole et al. 1996, Baro, Coniglio et al. 1996).  It is a highly 

modulated current and the channel proteins can interact with many different intracellular 

components (An, Bowlby et al. 2000, Holmqvist, Cao et al. 2002, Rhodes, Carroll et al. 

2004, Monaghan, Menegola et al. 2008).  The delayed rectifier has been characterized 

across many preparations.  It is a non-inactivating current responsible for fast 

repolarization following an action potential in spiking neurons (Clark, Mangoni et al. 

2004, Bocksteins, Raes et al. 2009).  Mammalian studies of the Kv2.1 channels which 

mediate IKd suggest that they play a major role in regulating somatodendritic excitability 

in cortical and hippocampal neurons (Golowasch and Marder 1992, Bekkers 2000, 
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Misonou, Mohapatra et al. 2004, Mohapatra, Misonou et al. 2009). IKCa is a voltage- and 

calcium- gated current.  It contributes to the afterhyperpolarization (AHP) current 

following and action potential (Gu, Vervaeke et al. 2007).  Due to its gating properties, it 

has been suggested as a molecular link between neuronal activity and Ca2+ -targeted 

processes such as gene expression (Li, Jie et al. 2014).  

Across many cell types in mammalian nervous systems, K+ channel dysfunction is 

associated with disease states such as ischemia, epilepsy, stroke and general 

dysregulation of cellular metabolism.  Voltage-gated K+ currents generally function to 

repolarize the membrane potential following an action potential.  It is therefore crucial to 

understand the mechanisms which regulate expression levels of these currents in a 

behaving nervous system. 
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1.5 Neuromodulation 

Neuromodulation allows nervous systems to produce different behaviors using the same 

set of neurons (Grashow, Brookings et al. 2009). Without the presence of 

neuromodulators nervous systems would not be able to respond appropriately and 

generate the behavior required to sustain and adapt to a changing environment. 

Neuromodulators have a wide range of targets some of these being ionic channels which 

can regulate the excitability of the cell. Neuromodulators can directly target synapses 

such that there is an increased flexibility in the motor pattern (Marder and Thirumalai 

2002). Neuromodulators are present in different concentrations at different stages of the 

developing nervous system and their role and function may change depending on the 

expression levels of their targets.  

Neuromodulation plays an important role in shaping the motor output of CPGs.    

Unlike classical neurotransmission, neuromodulation involves the release of multiple 

chemical signaling molecules onto a group of targets.  Where neurotransmitters are 

released in a small space between the pre- and post-synaptic neuron, neuromodulators 

diffuse through large areas in the nervous system.  Neuromodulation functions in shaping 

and fine tuning neuronal activity.  It allows a circuit with a small number of neurons and 

synaptic connections to produce many complex behaviors beyond the output of each 

individual neuron (Marder 2012).   Distinct motor patterns in the pyloric network, and 

other CPGs, result from selective recruitment of cell types by neuromodulators (Meyrand 

and Marder 1991, Weimann, Meyrand et al. 1991, Meyrand, Simmers et al. 1994).  It is 

possible then, for the motor pattern of a CPG to adjust its output in response to the 
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behavioral state of the animal. In respiratory control, bioamines such as 5-HT and 

norepinephrine (NE) modulate activity during development, normal breathing and 

gasping (Viemari and Tryba 2009).  Modulators can change the output of a network by 

altering the strength of a synapses (Akcay, Bose et al. 2014), intrinsic membrane 

properties of single neurons (Golowasch and Marder 1992, Johnson, Peck et al. 1995, 

Swensen and Marder 2000), firing activity of a neuron (Buchholtz, Golowasch et al. 

1992) and even at the level of a whole network (Sharples, Almeida et al. 2014, Sharples, 

Koblinger et al. 2014).   

 In the case of the pyloric network, actions of over 20 modulatory substances that 

project onto these neurons have been studied extensively at the aforementioned levels 

(Swensen and Marder 2001) although almost 100 modulatory substances in this system 

have been identified.  It is known that normal function of the pyloric network requires 

continuous modulatory input and that removal of this input results in a cessation of 

oscillatory activity (Thoby-Brisson and Simmers 1998, Luther, Robie et al. 2003).  One 

mechanism for production of oscillations in pyloric neurons that has been extensively 

studied is the convergence of multiple peptides onto one inward current, the modulatory 

inward current (IMI) (Golowasch and Marder 1992, Swensen and Marder 2000).  This 

current has been shown to be sufficient to produce bursting behavior in pyloric neurons 

that are isolated from modulatory input (Zhao, Golowasch et al. 2010).   

While the anatomical composition of a neuronal network is relatively rigid in that 

new neurons do not extensively grow after development and maturation, 

neuromodulators have the profound ability to alter the identity, connectivity, and 

functional output of a network.  As mentioned before, they can selectively recruit neurons 
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to participate in different networks or silence an entire circuit of neurons (Weimann and 

Marder 1994).  They can have acute effects on voltage-gated currents and change the 

electrophysiological properties of a neuron.  Harris-Warrick and colleagues have done 

extensive studies on amine modulation in STG neurons (Beltz, Eisen et al. 1984, Harris-

Warrick and Kravitz 1984).  They demonstrated how amines can modulate network 

output by targeting single voltage-gated currents.  They provide an elegant mechanism 

for how aminergic modulation changes the activity of a neuron by reducing or enhancing 

the ionic currents that shape its firing activity (Peck, Nakanishi et al. 2001).  

Neuromodulators also have long-term effects on intrinsic properties of pyloric neurons.  

Khorkova & Golowasch (2007) demonstrated that neuromodulators regulate intrinsic 

properties of these neurons by coordinating the expression of ionic currents (Khorkova 

and Golowasch 2007).   They showed that coordinated expression of ionic currents 

depends on continuous modulatory input and that removal of the input results in a loss of 

co-regulation, while the reintroduction of a single neuromodulator, proctolin, was 

sufficient to prevent the loss of this co-regulation.    Neuromodulators have even also 

been shown to control the co-regulation of ion channels at the gene expression level 

(Temporal, Desai et al. 2012).   

 
1.6 Activity-Dependent Regulation of Cellular Excitability 

Studies in vertebrate and invertebrate model systems have shown that the conductances 

of voltage-gated ion channels are quite variable between cell types as well as within the 

same cell types across different animals (Golowasch, Abbott et al. 1999, Golowasch, 

Casey et al. 1999, Goaillard, Taylor et al. 2010).  Although there is variability, there also 

must be a level of stability allowing neurons to produce stable output, or maintain certain 
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levels of plasticity to respond to dynamic inputs. The role of activity-dependent plasticity 

has been studied extensively at the synaptic level, especially as a cellular paradigm of 

learning and memory.  Here, however, I propose to explore plasticity of a regulatory 

mechanism: activity-dependent regulation of ionic currents.  Even for learning and 

memory, plasticity of intrinsic excitability has been suggested as a cellular correlate of 

learning (Marder, Abbott et al. 1996, Daoudal and Debanne 2003).  For example, the 

conditioning of the phototactic response in the marine mollusk Hermissenda crassicornis, 

is associated with a reduction of the transient potassium current, IA, and the calcium-

dependent potassium current, IKCa in photoreceptor cells (Alkon 1984).  These changes in 

neuronal excitability outlasted the stimulus and were seen only in animals that had 

learned the conditioning response.  There are many examples in the literature where 

changes in ionic current densities have been associated with regulating neuronal output in 

response to changing inputs (Haedo and Golowasch 2006, Paz, Mahon et al. 2009) In 

fact, the classical publication that first described long-term synaptic potentiation in 

granule cells of the hippocampus prominently reported a modification of granule cell 

excitability together with synaptic potentiation (Bliss & Lomo, 1973) 

Golowasch et al. (1999) showed that patterned stimulation regulates voltage-gated 

potassium currents in isolated STG neurons where neuromodulatory input and activity 

had been removed.  Their results show a reversible increase in the transient potassium 

current (IA) and a decrease in the high threshold potassium current (IHTK), a current 

composed of both the IKCa and the IKd in these cells, while having no effect on the leak 

current (ILEAK) in the inferior cardiac (IC) neuron (Golowasch, Abbott et al. 1999).  In 

cultured neurons that have been dissociated from synaptic and modulatory inputs, STG 
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neurons transition from tonic firing to  bursting activity similar to their endogenous 

activity and the transition is suggested to be facilitated by up-regulation and down-

regulation of ionic currents (Thoby-Brisson and Simmers 1998).  

These observations raise two fundamental questions: 

1) Are changes in intrinsic currents in decentralized preparations due to a change 
in activity or the loss of neuromodulation? Or a combination of the two?  
 

2) If so, how do neuromodulation and activity-dependent mechanisms interact to 
facilitate these changes? 

 

  It seems, as suggested from the studies we have discussed here, that removal of 

either of the signals, activity or neuromodulators, results in a system that is susceptible to 

regulation independent of the absent signal.  In other words, neurons isolated from 

modulatory input are capable of changing their intrinsic properties in response to activity 

changes.  In other examples, such as the experiments conducted by Zhao et al. (2010), 

neurons devoid of activity can transition back to oscillatory behavior simply my 

reintroduction of the modulatory current, IMI.   

The novel aspect of this study, where few examples exist, is the effect of the 

interaction of the two regulatory mechanisms.  It is unclear how the signaling pathways 

activated by activity-dependent mechanisms and neuromodulators converge to regulate 

voltage-gated currents. In visual cortex, for example, activity-dependent plasticity is 

gated by neuromodulation from cholinergic and adrenergic input.  In this type of 

plasticity, spike-timing-dependent plasticity (STDP), timing of pre- and post-synaptic 

spikes results in long-term depression (LTD) or long-term potentiation (LTP).  Whether 
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LTP or LTD occurs depends on which of the modulatory pathways is activated (Seol, 

Ziburkus et al. 2007).   Regulation of ionic conductances has also been shown to depend 

on activation of a metabotropic membrane receptor such as the TrkB receptor in cortical 

neurons (Turrigiano, Abbott et al. 1994, Desai, Rutherford et al. 1999).   

In this study, we aim to test how neuromodulators affect activity-dependent 

regulation of intrinsic properties.  Our hypothesis is that neuromodulators gate activity-

dependent regulation of ionic currents.  We aim to understand what actions different 

modulatory inputs exert on activity-dependent regulation of ionic currents.  Specifically, 

we are interested in how activity-dependent regulation and neuromodulation interact to 

regulate expression levels of ionic currents in neurons of a CPG.   
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CHAPTER 2 

METHODS: SULFATE AS AN ELECTRODE FILLING SOLUTION CAUSES A 
DECAY IN PEAK IHTK IN PD NEURONS 

 

2.1 Reliable Methods in Electrophysiology 

In order to ask questions about how nervous systems function and attempt to uncover the 

answers, we ensure that experimental techniques are reliable to quantify parameters of 

neuronal excitability and behavior.  Using sharp electrode electrophysiology enables 

intracellular recording of the electrical activity of single neurons.  The two electrode 

voltage clamp (TEVC) method allows us to measure voltage-gated ionic currents.  Many 

studies exploring drug therapies for an array of diseases use ion channels as a target since 

ion channel dysfunction is associated with many diseases including epilepsy, ischemia, 

and stroke (Du, Haak et al. 2000, Monaghan, Menegola et al. 2008, Butz, Steenbuck et al. 

2014, Frank 2014, Pribiag, Peng et al. 2014, Swann and Rho 2014). It is, therefore, 

critical that the physiology of these channels can be accurately and reliably measured. 

Coincidentally, Hooper and colleagues (2015) also demonstrated that electrodes 

filled with high salt concentration caused changes in intrinsic properties of lobster and 

leech neurons (Hooper, Thuma et al. 2015). Multiple solutions with different salt 

concentrations were tested and it was found that ion leak into the cell due to high 

concentrations in the electrode cause a change in neuron properties. In this chapter, we 

discuss general methods for electrophysiology as well as how we reliably measured K+ 

currents in pyloric neurons.  
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2.2 General Methods 

In Chapter 2, general preparation methods used for all experiments discussed in this 

dissertation are presented.  Methods pertaining to specific experiments and statistical 

analysis are described further in each chapter. 

2.2.1 Preparation of the Stomatogastric Nervous System 

Jonah crabs, Cancer borealis, were obtained from local seafood markets in Newark, NJ 

and kept in salt water tanks maintained at 10 – 13°C.  Prior to dissection of the foregut, 

animals were anesthetized on ice for 30-40 minutes.   The stomatogastric nervous system 

(STNS) was dissected and pinned to a Sylgard-lined Petri dish as described by 

(Selverston, Russell et al. 1976).   Briefly, the STNS was dissected out of the foregut 

which included the stomatogastric ganglion (STG), the paired commissural ganglia 

(CoGs), the esophageal ganglion (OG) and the lower motor nerves.  Motor nerves 

included the medial (mvn) and lateral (lvn) ventricular nerves as well as the pyloric 

dilator (pdn) nerves.   

Typically, dissections were completed and stored in the fridge overnight at ~10°C 

on the day before the experiment was performed.  Immediately before beginning 

experiments, a sheath of tissue over the STG was removed to expose somata for 

intracellular recording.    Preparations were perfused with cold physiological saline (10-

13° C) at 6-10 ml/min depending on the ambient temperature.  Temperature around the 

STG was recorded with a thermometer probe placed near the ganglion (~1 cm) and for all 

experiments the temperature was regulated to 10-13° C.   
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Normal Cancer saline had the following composition (in mM): 11.0 KCl, 440.0 

NaCl, 13.0 CaCl2, 26.0 MgCl2, 11.2 Trizma base, 5.1 Maleic acid; pH= 7.4-7.5   

Tetrodotoxin (TTX) obtained from Sigma-Aldrich was added to the saline at a 

concentration of 10-7M to block action potentials and remove endogenous activity.  

Unless otherwise stated, TTX was bath perfused for at least 30 minutes prior to any 

experimental manipulations.   

2.2.2 Electrophysiology 

Extracellular recordings were obtained using stainless steel electrodes placed into 

Vaseline wells built around motor nerves.  Extracellular recordings were amplified using 

A-M Systems differential amplifiers (Carlsborg, WA).  Data were recorded on a 

computer hard drive using Clampex 10.2 software and Digidata 1322 digitizer boards 

(Molecular Devices).  Intracellular recordings were made using glass microelectrodes 

filled with 1M KCl or 0.6M K2SO4 + 20 mM KCl.  For two electrode voltage clamp 

(TEVC) experiments, voltage recording electrodes were 18-25 MΩ and current injection 

electrodes were typically 12-18 MΩ.  TEVC was performed using an Axoclamp 2B 

amplifier (Molecular Devices).  At the end of each experiment, if an electrode offset 

larger than +5mV was observed, the experiment was discarded.   

2.2.3 Stimulation Protocols 

Depolarization stimulations were square step voltage pulses (from -60mV to -10mV) 

injected into the neurons using TEVC at a rate of 1 Hz with a 50% duty cycle.  

2.2.4 Voltage-gated Current Protocols 
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The total potassium current (IK) is defined as the total outward current measured from a 

holding potential of -80mV.   To measure total IK, neurons were held at -80mV for 

500msec to deinactivate outward currents, then voltage steps from -60mV to +20mV 

were applied for 1sec in +10mV increments.  The high threshold potassium current (IHTK) 

was measured with the same voltage steps from a holding potential of -40mV and leak 

subtracted.  IHTK can be pharmacologically separated into two currents:  calcium activated 

potassium current (IKCa) and the delayed rectifier current (IKd)(Golowasch and Marder 

1992).  Because the experimental protocols involved repeated measurements of different 

currents, no pharmacology was used to separate these two components.  Rather, they 

were separated into an inactivating transient component, peak IHTK, and a steady state 

component, steady state IHTK, measured in the last 100msec of the test pulse.  The 

transient potassium current (IA) is calculated by digital subtraction of IHTK from total IK.   

2.2.5 Statistical Analyses 

Current-voltage plots were created using Matlab, OriginLab 8.5, and Corel Graphics 

Suite X8 software.  Sigmaplot 12 software was used to perform statistical tests.   
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Figure 2.1 The pyloric network.  Left: Connectivity diagram of the pyloric network of the 
crab Cancer borealis. Right: Examples of intracellular recordings from the three neuron 
types in this study.  Inferior cardiac (IC), lateral pyloric (LP), and pyloric dilator (PD) 
neurons. 
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2.3 Results 

In this dissertation, we explored the interaction between neuromodulation and activity-

dependent regulation of ionic currents in pyloric neurons of the crab stomatogastric 

ganglion (STG).   However, we were unable to measure activity-dependent effects on 

IHTK and IA due to an artifact in the measurement technique in our first attempts to 

characterize the phenomenon. We measured and quantified four currents: Peak IHTK, -

steady state IHTK, IA, and total IK (Figure 2.2). 

We found that peak IHTK decayed over time when sulfate filled electrodes were 

used but not when KCl filled electrodes were used. In control experiments, K+ currents 

were measured in PD neurons before and after holding the membrane potential at -60 mV 

to establish the effect of measurement over time.  We found that the peak of IHTK, which 

is predominantly IKCa, disappeared with or without stimulation. Figure 2.5 shows IHTK and 

IA current recordings after 30 minutes of holding at -60 mV.  The peak current of IHTK 

disappears while the peak of IA is unaffected.   

After discovering the decay of IHTK due to sulfate, we began measuring currents 

using KCl filled electrodes.  Stimulation experiments were usually conducted over 120 

minutes.  However, it was found that the stimulation induced change in the currents 

occurred after 30 minutes and did not change further in both IHTK and IA (Figure 2.4).  In 

KCl experiments, IHTK decreased in neurons that were stimulated with depolarizing 

square steps (Figure 2.3) and not in neurons that were clamped at -60 mV (Figure 2.6). 

The sulfate- induced decay in IHTK did not occur in LP or IC neurons (Figure 2.7).  We 

therefore concluded that this effect was a cell-type specific effect.   
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2.4 Discussion 

Voltage-gated ion channels are major targets for drug therapies in treating many diseases 

such as epilepsy, heart attacks, stroke and ischemia.  It is therefore crucial to understand 

how experimental techniques affect reliability of measurements.  While this was not the 

main goal of this dissertation, we were unable to test our hypotheses about activity-

dependent regulation of ionic currents without first establishing control measurements.  

 K+ currents were measured using K2SO4 filled electrodes under many different 

conditions.  Qualitatively, we noticed that IHTK did not have a peak current.  At first, we 

suspected a contamination issue.  Experimental setups were cleaned thoroughly and 

experiments were repeated.  In more cases than not, we could not measure the HTK 

current reliably.  We tried measuring currents with KCl electrodes and found that the 

current was no longer showing decay.  We were able to reliably measure all four currents 

in PD, LP, and IC neurons for 120 minutes in normal saline during an ongoing rhythm.  

We were also able to measure stable currents over this same time course in TTX-treated 

preparations.  Coincidentally, Hooper el al. (2015) published their findings that high ionic 

concentrations in sharp electrode physiology affected passive properties of neurons in the 

STG and leech.   

 Since both electrode filling solutions we used contained relatively high ionic 

concentrations, we suggest that the mechanism of action on IHTK is more specific.  We did 

not directly test this hypothesis but comparing results between the two solutions suggests 

that sulfate could be blocking either IKCa or the underlying ICa in PD neurons. Many of the 

results we obtained using sulfate filled electrodes are not presented in this study because 

of the artifact we discovered.  Further experimentation on the effect of sulfate could 
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reveal a novel pharmacological agent to selectively block IKCa. Golowasch et al (1999) 

used both solutions and stated that no significant differences were observed. However, in 

those experiments, the amount of current inject was controlled because neurons were 

stimulated using current clamp, whereas our experiments did not control for current 

injection but rather the voltage of the membrane.  Using TEVC allows large amounts of 

current to be injected into neurons to achieve the desired voltage commands.   The results 

of this study definitely raise many important questions about how physiological 

measurements are made in this system and many other model systems.  We did not 

observe any alarming changes in measurements using KCl electrode fill.  Hooper et al. 

(2015) demonstrate that one electrode fill which does not result in any changes to passive 

properties is squid axoplasm, which closely resembles ionic concentrations of lobster 

STG neurons.  A more comprehensive study on crab STG neurons will be required to 

establish the effect of ionic concentrations on passive properties.    
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Figure 2.2 Voltage-gated K+ currents measured in pyloric neurons.  
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Figure 2.3 Depolarizing stimulation voltage trace.  

 

 
Figure 2.4 Stimulation induced changes in IHTK and IA occur in 30 minutes in PD 
neurons. Mean current amplitude ±SEM (n = 9) in response to +10 mV test pulse.  One-
way Repeated Measures ANOVA shows both IHTK (p = 0.02) and IA (P = 0.04) change 
after 30 minutes. 
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Figure 2.5 K2SO4 filled electrodes cause a decay in peak IHTK.  Left: IHTK before (black 
traces) and after (gray traces) clamping the neuron at -60mV.  The peak current 
disappears completely after 30 minutes of voltage clamp.  Right:  IA before and after 
voltage clamping. The peak is unaffected.  
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Figure 2.6 Sulfate filled electrodes effect Peak IHTK in PD neurons independent of 
stimulation.  IHTK measured over time in PD neurons using two electrode filling solutions. 
Mean current amplitude ±SEM. Two-way RM ANOVA with Friedman post hoc analysis 
reveals decrease occurs as a result of time (P < 0.001) and not whether neurons were 
stimulated or not (P = 0.13).    In KCl filled electrode measurements, results show 
decrease in peak IHTK in stimulated neurons (n = 9), but not held neurons (n= 11) an 
activity-dependent manner.   Neurons clamped at -60mV showed no change over time 
while stimulated neurons decreased significantly (P = 0.04, 2-way ANOVA with Holm-
Sidak post hoc analysis).  
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Figure 2.7 K2SO4 filled electrodes cause a decay in Peak IHTK in a cell-type specific 
manner. Mean current amplitude ±SEM in PD (n = 6), LP (n = 5), and IC (n = 6).   
Neurons voltage clamped at -60mV for 60 minutes.  Effect of time is significant in PD (P 
= 0.003) revealed by One Way ANOVA but not in LP (P = 0.5) or IC (P = 0.2). 
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CHAPTER 3 

ACTIVITY-DEPENDENT REGULATION OF K+ CURRENTS ACROSS 
IDENTIFIED CELL TYPES 

 

3.1 Introduction 

Nervous systems produce a wide variety of activities that allow organisms to respond to 

changing environments.  With the capacity to be plastic, neuronal networks must also be 

able to have some rigidity or constraint on neuronal firing.  Incoming stimuli can drive 

neurons to become more or less excitable, depending on whether the input is an 

excitatory or inhibitory one.  Neurons are capable of tracking their history of activation 

and adjusting their levels of excitability in order to maintain their output within a stable 

physiological range.   One of the most prominent mechanisms that neurons use to alter 

their excitability is to alter K+ conductances (Turrigiano, Abbott et al. 1994, Turrigiano, 

LeMasson et al. 1995, Debanne, Daoudal et al. 2003, Misonou, Mohapatra et al. 2004).  

The variety and localization of K+ channels allows neuronal networks to target changes in 

their excitability to specific compartments and functions of the network.  In hippocampal 

and pyramidal neurons, for example, the KV2 channel, which carries the delayed rectifier 

current, IKd, has been shown to suppress neuronal excitability after glutamate stimulation 

(Mohapatra, Misonou et al. 2009) in the somatodendritic region of these neurons.  

 In the last decade, many studies have investigated the mechanisms employed by 

neurons to promote stability after periods of increased activity.  Long-term changes in 

activity of neuronal circuits as a result of long-term potentiation (LTP), facilitation (LTF) 

and neuromodulation act to drive neurons to a state of activity different than their 

baseline.  The concept of homeostatic plasticity has been characterized as a driving factor 
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that targets voltage-gated channels to alter cellular excitability and drive neuronal activity 

back to baseline (Ransdell, Nair et al. 2012;Becker, 2014 #118). Homeostatic 

mechanisms allow neurons to track their own output and adjust their intrinsic properties 

in order to increase or decrease excitability (Golowasch, Abbott et al. 1999, Surmeier and 

Foehring 2004, Haedo and Golowasch 2006, Ransdell, Nair et al. 2012).  Increased K+ 

conductance is a widely used mechanism which functions to suppress cellular excitability 

(Ransdell, Nair et al. 2012) across many neuronal cell types (Turrigiano, LeMasson et al. 

1995, Turrigiano, Leslie et al. 1998, Turrigiano and Nelson 2004, Wenner 2014, Whitt, 

Petrus et al. 2014). 

Pyloric neurons have very well characterized intrinsic properties (Golowasch and 

Marder 1992) and exhibit a wide range of variability across animals while maintaining 

the same activity, at least with respect to one crucial activity feature, phase relationships 

(Bucher, Prinz et al. 2005, Goaillard, Taylor et al. 2010, Golowasch 2014).   Each neuron 

produces a distinct activity pattern as a result of the levels of ionic currents it expresses 

(Golowasch, Buchholtz et al. 1992), synaptic input it receives, and chemical receptors it 

expresses (Marder and Thirumalai 2002, Prinz, 2003 #189).   Previously, it was reported 

that pyloric neurons have different sensitivity to activity.  It was demonstrated that IC 

neurons exhibited activity-dependent regulation of K+ currents while LP neurons 

apparently did not (Golowasch, Abbott et al. 1999).  We suggest that the activity profile 

of a particular neuron dictates what activity will trigger homeostatic mechanisms.  We 

define activity profile as the characteristic electrical activity produced by a particular 

neuron as a result of its intrinsic properties and inputs it receives from within the network 

it is a part of.  For example, we hypothesized that PD neurons would respond to the same 
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electrical stimulation as IC neurons and are more sensitive to activity than LP neurons.  

In Chapter 2, we demonstrated a cell-type specific effect of sulfate used as an electrode 

filling solution. PD neurons were sensitive to sulfate and showed decay in peak IHTK 

while LP and IC did not.  PD neurons are distinct in the fact that they are coupled to the 

pacemaker neurons and can oscillate in isolation.  Sensitive and rapidly activating 

homeostatic mechanisms in neurons that drive network frequency could certainly 

promote network stability.  Since each neuron produces a very specific activity pattern 

with tightly regulated temporal properties, and across all individuals, we predicted that 

possess distinct regulatory mechanisms.          

We investigated activity-dependent regulation of K+ currents across three 

different motor neurons within the pyloric network of the crab stomatogastric ganglion 

(STG).  We tested the hypothesis that regulation of intrinsic excitability may be a cell-

type specific mechanism and that neurons possess different sensitivity to the same 

electrical activity.  In cultured STG neurons for example, activity-dependent regulation of 

K+ conductance was observed in neurons that underwent a change in activity (Haedo and 

Golowasch 2006).  Subpopulations of neurons were able to adjust their K+ conductance in 

response to hyperpolarizing stimulation while others were not.   In the present 

experiments, we applied the same electrical stimulation on isolated pyloric dilator (PD), 

lateral pyloric (LP) and inferior cardiac (IC) neurons (i.e. in the absence of synaptic and 

modulatory input) to establish to what extent they all adjusted their K+ currents and how 

they differed in this capability.    
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3.2 Methods 

Methods for preparation and electrophysiology of the stomatogastric nervous system are 

described in Chapter 2.  

3.2.1 Statistical Analysis 

Current-voltage plots were created using Matlab and OriginLab 8.5 software.  Sigmaplot 

12 software was used to perform statistical tests.  Statistical analyses involved comparing 

ionic current parameters using Student’s paired t-tests.   Two-way repeated measures 

ANOVA were used to compare current-voltage relationships (I-V curves) before and 

after stimulation.  We adjusted I-V plots to obtain ionic current parameters by fitting the 

current-voltage values obtained experimentally to the Boltzmann equation  

୏ୀ ௚೘ೌೣܫ
݉ஶ( ௠ܸ − ܧ௄) 

where ݃௠௔௫is the maximal conductance, ௠ܸ is the membrane potential in the test pulse 

and ܧ௄is the reversal  potential of K+ (set at -80 mV). ݉ஶ is the steady state of activation 

gate described by 

݉ஶ  =
ଵ

ଵା௘
ష (౒ౣషೇభ

మ
)/ೖ , 

where V!/2 is the voltage of half-maximal activation and k a measure of the slope of m∞. 
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3.3 Results 

All three different pyloric neurons altered their K+ currents in response to depolarizing 

stimulation similarly.  In each neuron type, K+ currents were measured before and after 

30 minutes of patterned stimulation consisting of a 50% duty cycle depolarization at 1 Hz 

from -60 to -10 mV..  We refer to the control measurement as the ‘before’ condition. The 

measurement was taken after preparations were perfused with 10-7M TTX  for 30 minutes 

and before stimulation began.  In the control condition, neurons were isolated from 

activity and modulatory input.  The ‘after’ measurement was taken immediately after 30 

minutes of depolarizing stimulation.    

In PD neurons, all four currents measured were affected by stimulation (results 

shown in Figure 3.1 and Tables 3.1- 3.4).  Figure 3.1 shows the four currents measured 

before and after stimulation in 9 PD neurons.  Each row contains an example of a raw 

trace (left panels) and a current-voltage plot (right panels).   These data confirmed our 

hypothesis that PD neurons adjust their K+ current levels after being exposed to 

depolarizing stimulation.   Both peak IHTK (P < 0.001, n = 9) and steady state IHTK (P < 

0.001, n = 9) showed significant reduction in amplitude between the ‘before’ and ‘after’ 

conditions as determined by a Two-way RM ANOVA.  Unless indicated otherwise, 

statistical significance of changes in current amplitudes was determined using 2-way RM 

ANOVA with Holm-Sidak post hoc analysis.  IA on the other hand, showed a significant 

increase (P < 0.001, n = 8), which we predicted since IA and IHTK
 have been shown to be 

co-regulated in a compensatory manner in these neurons (Golowasch, Abbott et al. 1999, 

Ransdell, Nair et al. 2012).   We measured total IK to demonstrate that changes in IHTK 
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and IA were indeed compensating for each other and that there were no changes in total 

K+ current levels of the cell.  Surprisingly, a significant decrease in IK was observed (P < 

0.001, n = 8).  This suggests that the effect of stimulation is dominated by IHTK.  

Secondly, a decrease in total IK could mean that this stimulation protocol may be a 

inducing an increase cellular excitability.  

We tested LP neurons with the prediction that they would be insensitive to 

activity.  LP neurons responded similarly to PD neurons.  Results for current 

measurements and activation parameters before and after LP stimulation are reported in 

Figure 3.2 and Tables 3.5-3.8.  A significant decrease in peak IHTK was observed at 

voltages where the current was activated (P <0.001, n = 9).  The activation parameters we 

obtained from fitting the I-V plots changed significantly in response to stimulation.  The 

maximal conductance decreased from 1.24 + 0.07 to 1.08 + 0.06 us (P = 0.0004, n = 9, 

paired Student’s t-test).  The voltage dependence of activation was affected by 

stimulation, V1/2 increased significantly to a more depolarized voltage (P = 0.002, n = 9, 

paired Student’s t-test).  IA amplitude showed a significant increase across the voltage 

range it is activated after stimulation (P = 0.045, n = 8). Total IK also decreased 

significantly after stimulation at 0 mV, +10 mV and +20 mV (P < 0.001, n = 8).   

 Results from IC neurons are reported in Figure 3.3 and Tables 3.9-3.12.  IC 

neurons responded similarly to PD neurons.  Peak and steady state IHTK amplitude 

decreased significantly (p < 0.001, n = 5) after stimulation (Figure 3.3).  IA increased 

(Figure 3.3) after stimulation (p = 0.04, n = 5).  Unlike in PD neurons, total IK (Figure 

3.3) was not affected by stimulation in IC neurons (p = 0.084, n = 5).   
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To test whether there were differences in sensitivities to activity across cell types, 

and considering that each cell types expresses different levels of each current 

(Golowasch, Abbott et al. 1999), we quantified the percent change for each current after 

stimulation (Figure 3.4).  Each panel in Figure 3.4 shows the mean percent change +SEM 

for one current in each cell type.  We compared the three means of peak IHTK (P = 0.7) 

and IA (P = 0.7) using a One-way ANOVA.  All three neurons adjusted their K+ currents 

similarly and with the same magnitude in response to stimulation.   

 

3.4 Discussion 

The results of this study demonstrate cell-autonomous regulation of intrinsic properties 

across cell types within an oscillatory motor network.  K+ currents in PD, LP and IC 

neurons are regulated by depolarizing activity in the absence of synaptic and modulatory 

input.  In all three cell types, IHTK (peak and steady state) decreased while IA increased 

after thirty minutes of depolarizing patterned stimulation.  These findings indicate that 

neurons possess the capability of tracking their activity and adjusting intrinsic membrane 

properties in response to their own electrical output.  We also demonstrate that the three 

cell types regulate K+ currents with similar sensitivity to the same activity pattern (Figure 

3.4).    The opposing changes in these two outward currents have been describes as a 

compensatory homeostatic mechanism (Ransdell, Nair et al. 2012).   

 While we did not test membrane excitability directly, our results suggest that 

when a neuron begins to oscillate in an excitatory manner, K+ current levels change in 

response.  We propose that the mechanisms which drive changes in K+ currents involve 

both homeostatic and Hebbian plasticity.  The homeostatic force which acts on multiple 
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voltage-gated currents to stabilize cellular excitability allows neurons to respond to 

destabilizing inputs rapidly to control intrinsic excitability.  Depolarizing voltage steps 

may be activating calcium-dependent reduction in IHTK (Misonou, Mohapatra et al. 2004) 

which then leads to a compensatory increase in IA.  When neurons are isolated in TTX, 

current levels are sitting at some steady state as a result of lack of activity.  Once 

depolarization begins, calcium-activated pathways (Liu, Golowasch et al. 1998, Misonou, 

2006 #192, Misonou, 2004 #89) lead to reduction in IHTK.  The transition from silent to 

either tonic or bursting activity has been shown to be accompanied by a reduction in K+ 

conductance in STG neurons (Haedo and Golowasch 2006, Turrigiano, 1994 #70).  

Interestingly, our results demonstrate that this process occurs at a very short time scale.  

Studies investigating activity-dependent regulation of neuronal properties have involved 

chronic changes that occur on the magnitude of hours to days (Thoby-Brisson and 

Simmers 2002, Temporal, 2014 #224, Desai, 1999 #225, Roceri, 2004 #226).  The effect 

of electrical stimulation we observed occurred in 30 minutes.   

We also observed a decrease in the total K+ current which suggests an increase in 

excitability of the membrane. Hebbian plasticity drives changes in nervous systems with 

a positive feedback from experience while homeostatic mechanisms generally involve a 

negative feedback on intrinsic currents in response to increased activity.  The 

compensatory shift between IHTK and IA has been suggested to be a homeostatic response 

to changes in cellular excitability (Ransdell, Nair et al. 2012).  While our results do not 

directly demonstrate, the change in current levels in opposite directions in response to 

electrical stimulation does not contradict the theory of compensation. The decrease 

observed in total K+ current suggests an increase in cellular excitability and a 
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nonhomeostatic response.  Nonhomeostatic or Hebbian mechanisms(Toyoizumi, Kaneko 

et al. 2014) which rely heavily on presynaptic scaling result in increased excitability in 

response to excitatory inputs. Periods of increased activity lead to increased Kv 2.1 (IKd) 

via dephosphoryaltion of channel proteins and suppression of excitability in mammalian 

neurons (Misonou, Menegola et al. 2006).   Indeed, many studies have demonstrated an 

overall increase in K+ conductance in response to increased activity especially in disease 

models such as seizure and stroke (Bekkers 2000, Du, 2000 #288).   Since there were 

changes in activation of K+ currents (Tables 3.1-3.12), it is likely that changes in current 

amplitude were due to changes in voltage dependence due to changes in phosphorylation 

states.  It is unlikely that channel density was altered since the effect occurred at such a 

short time scale.   

In this study, we performed the first measurements in isolated or activity-deprived 

neurons and the second measurement in neurons which were driven at a frequency 

similar to their endogenous activity.  We suggest that the two measurements represent 

very different physiological conditions that the neurons sense.  The activity-deprived 

state involves a blockade of Na+ channels.  Little is known about the regulation of these 

fast channels in these neurons since their kinetics render them difficult to measure.  After 

stimulation, it can be assumed that activation of calcium currents and calcium-dependent 

pathways occurs.      

The fact that all three neuron types responded similarly to the same activity was 

surprising. Golowasch et al (1999) showed that IC neurons were sensitive to depolarizing 

patterned stimulation while LP neurons were not.  We suspect that this discrepancy may 

be due to the experimental technique used to stimulate the cells.  Using TEVC to 
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stimulate neurons rather than current clamp may be more effective in changing 

membrane potential and causing cells to adjust their intrinsic properties. Our original 

hypothesis was that activity-dependent regulation is cell-type specific.  However, one 

major caveat in our experiments is the fact that the neurons were all isolated from 

synaptic input and tested in the absence of their endogenous activity.  It is possible that 

isolating the neurons removed any cell-type specific differences that exist and could 

explain why they all had similar responses to the same electrical stimulation.   

Our observations raised the question of whether different types of activity drove 

the current levels in a different direction.  The square step pulses we used to stimulate 

were meant to be proxies for endogenous activity.  Do the neurons sense these voltage 

changes as similar to their endogenous activity? Do different types of activity patterns 

have the same effect?  Understanding how neurons deal with changes in electrical 

activity and how they regulate voltage-gated currents which can either cause or 

compensate for these changes can lead to valuable insight on the contribution of different 

regulatory mechanisms working to stabilize neuronal function. This will be the focus of 

the next chapter.  
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Figure 3.2 Depolarizing stimulation affects K+ currents in LP neurons.  Left 
panels: examples of current responses to      +10mV test pulses before (black 
trace) and after (gray trace) depolarizing stimulation.  Currents are (from top to 
bottom) Peak IHTK, steady state IHTK, IA and total IK.  Right panels: current-
voltage plots of the four currents before (solid square symbols) and after (open 
circle symbols) depolarizing stimulation.  Statistical analysis was done by 
performing pairwise multiple comparisons using a 2-way RM ANOVA and 
Holm-Sidak post hoc analysis. **P < 0.01 ***P < 0.001 
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Figure 3.3 Depolarizing stimulation in IC neurons affects K+ currents.  Left 
panels: examples of current responses to +10mV test pulses before (black 
trace) and after (gray trace) depolarizing stimulation.  Currents are (from top 
to bottom) Peak IHTK, steady state IHTK, IA and total IK.  Right panels: current-
voltage plots of the four currents before (solid square symbols) and after (open 
circle symbols) depolarizing stimulation 
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Table 3.2 Ionic Current Parameters for Steady State IHTK in Depolarized PD 
Neurons.    

 Mean SEM    
Before After Before After 

Gmax 0.76 0.59 0.12 0.12    
V1/2 -3.2 -1.9 1.02 0.9    
Slope Factor 12.4 12.1 0.8 0.6    
Input Resistance 11.2 16.5 2.1 4.4    

Table 3.1 Ionic Current Parameters for Peak IHTK in Depolarized PD 
Neurons.   

 Mean SEM    
Before After Before After 

Gmax 1.5 1.2 0.16 0.15    
V1/2 -5.9 -0.9 1.0 1.8    
Slope Factor 8.69 9.94 0.51 0.87    

Table 3.4 Ionic Current Parameters for Total IK in Depolarized PD Neurons.   

 Mean SEM    

Before After Before After 
Gmax 2.2 2.0 0.18 0.13    
V1/2 -4.02 -2.2 0.8 1.6    
Slope Factor 10.3 11.6 0.73 1.3    

Table 3.3 Ionic Current Parameters for IA in Depolarized PD Neurons.   

 Mean SEM    
 

Before After Before After  
Gmax 0.6 0.7 0.08 0.1     
V1/2 -1.7 -4.9 1.9 2.08     
Slope Factor 11.2 11.8 1.3 1     



` 

  42 

  

  

Figure 3.4 Activity-dependent change in K+ currents across pyloric neurons.  Changes in K+ 

currents in response to depolarizing stimulation are similar in PD, LP and IC neurons.  
Current measurements taken from data shown in Figures3.1-3.3.  Plots show mean percent 
change in current amplitude (measured at +10mV) + SEM after 30 minutes of stimulation.  
Numbers in parenthesis represent sample sizes.  No significant differences in sensitivty 
across the three cell types were observed using a one-way ANOVA (IHTK, P = 0.7, IA, P = 
0.7).  
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Table 3.5 Ionic Current Parameters for Peak IHTK in Depolarized LP Neurons.  

 Mean SEM    
Before After Before After 

Gmax 1.2 1.1 0.07 0.06    
V1/2 -3.5 3.1 1.2 1.8    
Slope Factor 8.4 11.6 0.4 0.7    

Table 3.8 Ionic Current Parameters for Total IK in Depolarized LP Neurons.   

 Mean SEM    
Before After Before After 

Gmax 1.7 1.63 0.12 0.09    
V1/2 -0.6 2.6 0.5 0.6    
Slope Factor 9.1 10 0.5 0.4    

Table 3.7 Ionic Current Parameters for IA in Depolarized LP Neurons.  

 Mean SEM    
Before After Before After 

Gmax 0.4 0.5 0.05 0.05    
V1/2 5.8 3.5 0.6 0.98    
Slope Factor 6.02 7.4 0.43 0.5    

Table 3.6 Ionic Current Parameters for Steady State IHTK in Depolarized LP 
Neurons.    

 

 Mean SEM     
Before After Before After  

Gmax 0.6 0.5 0.03 0.04     
V1/2 -1.6 0.36 1.2 0.6     
Slope Factor 12.4 11.7 1.01 0.2     
Input Resistance 17.1 24 2.7 4.3    
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Table 3.9 Ionic Current Parameters for Peak IHTK in Depolarized IC Neurons 

 Mean SEM    
Before After Before After 

Gmax 1.1 0.99 0.05 0.09    
V1/2 -6 -0.5 1.2 1.7    
Slope Factor 9.3 10.6 0.4 0.4    

Table 3.10 Ionic Current Parameters for Steady State IHTK in Depolarized IC 
Neurons.    

 Mean SEM    
Before After Before After 

Gmax 0.5 0.4 0.04 0.05    
V1/2 -0.99 1.8 1.7 1.2    
Slope Factor 13.7 13.7 0.6 0.2    
Input Resistance 7.9 9.6 1.7 2.01    

Table 3.12 Ionic Current Parameters for Total IK in Depolarized IC Neurons.    

 Mean SEM    
Before After Before After 

Gmax 1.4 1.4 0.05 0.09    
V1/2 -1.5 0.5 1.1 2.04    
Slope Factor 11.5 11.6 0.5 0.97    

Table 3.11 Ionic Current Parameters for IA in Depolarized IC Neurons 

 Mean SEM      
Before After Before After   

Gmax 0.2 0.3 0.02 0.05      
V1/2 3.2 -0.3 1.03 2.4      
Slope Factor 4.9 6.6 0.3 0.5      
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CHAPTER 4 

K+ CURRENTS ARE REGULATED BY DEPOLARIZING PATTERNS 
OF ACTIVITY IN RHYTHMIC MOTOR NEURONS OF THE 

PYLORIC NETWORK 

 

4.1 Introduction 

Plasticity and long-lasting changes in strength and structure of synapses have 

been extensively characterized. These studies have demonstrated that growth, 

development, learning and memory require that intrinsic properties of neurons 

also be plastic in order to respond to changing synaptic drive.  The response 

and subsequent output of a neuron depends highly on the intrinsic membrane 

properties.  The combination and balance between inward and outward 

voltage-gated currents plays a big role in regulation of excitability and 

providing neurons the capability to be both flexible and stable in a history and 

experience-dependent manner (Turrigiano, LeMasson et al. 1995, Golowasch, 

Abbott et al. 1999, Misonou, Menegola et al. 2006, Fauth and Tetzlaff 2016).  

The cellular mechanisms driving this cell-autonomous regulation are not well 

understood.  Many  phenomena involving neurons producing a reliable output 

by adjusting levels of voltage-gated currents to compensate for decreased 

synaptic excitation have been observed (Golowasch, Abbott et al. 1999, 

Marder, 2002 #335, Karunanithi, 2015 #308, Nelson, 1998 #218, Turrigiano, 

2004 #334).  

Much of the experimental evidence demonstrating regulation of 

voltage-gated currents suggest that states of electrical activity are tracked by 
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cell autonomous mechanisms that allow neurons to sense their electrical output 

and modify intrinsic properties to maintain stable output(Desai, Rutherford et 

al. 1999, Thoby-Brisson and Simmers 2000, Haedo and Golowasch 2006).  

One example of this occurs in seizures in rats in vivo.  Increased neuronal 

activity induced by glutamate excitation leads to modifications in the voltage 

activated potassium channel, Kv2.1, which carries the delayed rectifier current, 

IKd (Misonou, Mohapatra et al. 2004, Misonou, Menegola et al. 2006) and 

facilitates suppression of action potential firing.  Increased activity for 

extended periods of time is destabilizing to neuronal networks. Therefore, 

activity-dependent regulation of voltage-gated currents allows neurons to link 

intrinsic excitability to synaptic excitation. In many studies of activity-

dependent changes to intrinsic currents, drastic changes in neuronal activity 

have been demonstrated to activate these pathways, such as in extended 

periods of activity deprivation (Hengen, Lambo et al. 2013, Felix-Oliveira, 

Dias et al. 2014) or extended excitation (Leslie, Nelson et al. 2001, Swanwick, 

Murthy et al. 2006).  Activity-dependent phosphorylation of Kv2.1 channels in 

rat hippocampal neurons has been shown to be bidirectional and sensitive to 

both excitation and suppression of neuronal activity (Misonou, Menegola et al. 

2006).  These changes represent a cell autonomous response after a dramatic 

change to overall change in excitability and functional output.  Here, we ask 

whether neurons have the capacity to sense subtle changes in activity, such as a 

modification of the polarity of oscillatory behavior.   
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To examine these processes we measured activity-dependent regulation 

of K+ currents in single motor neurons of the crab pyloric network of the 

stomatogastric ganglion (STG).  The electrical output of these neurons is very 

reliable; they fire bursts of action potentials with a constant phase at a similar 

network frequency across many preparations (Bucher, Prinz et al. 2005, 

Hamood and Marder 2014).    The same constancy is observed for each 

identified neuron in the network across many preparations and the network 

activity is similar to that in the intact animal.   These observations suggest that 

the stability of activity output is very tightly regulated.  In crustacean cardiac 

neurons, pharmalogical blockade of each of the two outward currents, IKCa and 

IA, resulted in increased excitability of the neurons. However, over time 

excitability returned to baseline and it was shown that IA and IKCa rapidly 

compensate for each other to maintain stable neuronal output (Ransdell, Nair et 

al. 2012).      

   In the present study, we tested whether K+ current regulation was 

sensitive to patterned voltage changes with different polarity and temporal 

properties.  We predicted that K+ currents are tuned to respond to a range of 

activity patterns thus giving the neuron flexibility to vacillate between different 

electrical outputs yet remain within a functional physiological range.  By 

driving the membrane potential of a neuron with an imposed activity and 

measuring intrinsic currents, we can infer what the effects of different synaptic 

drives are on cellular excitability in the absence of modulatory input.  
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4.2 Methods 

Preparation and electrophysiology of the stomatogastric nervous system is 

described in Chapter 2.  

4.2.1 Stimulation Protocols 

We exposed pyloric neurons to four different modes electrical stimulation: 

 1) Depolarization 2) Hyperpolarization 3) Holding (or no stimulation) 4) 

Realistic waveforms.  Depolarizing stimulations consisted of square step pulses 

injected into the neurons using TEVC.  The membrane potential was clamped 

from -60mV to -10mV at a rate of 1 Hz with a 50% duty cycle.  

Hyperpolarization stimulations consisted of square step pulses from -60mV to -

110mV.  Holding involved continuously clamping the membrane potential at -

60mV. Realistic waveforms were injected into PD neurons using prerecorded 

intracellular activity obtained from a PD neuron that had a slow wave 

oscillation from -60mV to -40mV and bursts of action potentials reaching -

30mV.  All experiments using realistic waveforms utilized the same PD 

recorded waveform.   All stimulation protocols were applied for 30 minutes 

followed by current measurements.   

4.2.2 Statistical Analyses 

Current-voltage plots were created using Matlab, OriginLab 8.5, and Corel 

Graphics Suite software.  Sigmaplot 12 software was used to perform statistical 

tests.  Two-way repeated measures ANOVA were used to compare current 

amplitudes across different voltages before and after stimulation.  Post hoc 

tests are indicated in figure legends.  For normally distributed data, the Holm-
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Sidak method was used to determine where differences occurred for significant 

differences in treatments.  For data that was not normally distributed, usually in 

small sample sizes, we used a nonparametric test for an analysis of variance.    

 

  



` 

  50 

4.3 Results    

The prediction was that K+ current levels were tuned to respond to activity 

within a certain voltage range.  It was expected that realistic waveforms would 

produce similar or more enhanced changes in current levels as depolarizing 

square steps.  Whether or not hyperpolarizing steps would produce the opposite 

changes was not determined a priori.  Figure 4.1 shows the four currents 

measured before and after stimulation in 9 PD neurons which were presented 

previously (see Chapter 3).  Briefly, our findings showed that IHTK (peak and 

steady state) decreased significantly (P< 0.001, n = 9) while IA increased (P < 

0.001, n = 8) in response to depolarizing stimulation.  The total K+ decreased 

as well (P < 0.001, n = 8).  To control for time in these experiments and test 

whether changes were observed in ‘resting’ neurons, we measured currents 

before and after holding the membrane potential at -60 mV.  Preparations were 

treated with 10-7 M TTX for 30 minutes before the first measurement.  After 

the first measurement, the membrane potential was clamped at -60 mV 

continuously for 30 minutes.  Figure 4.2 shows raw traces (left panels) and I-V 

plots (right panels) of K+ currents recorded before and after clamping at -

60mV.  No significant changes were observed in peak IHTK (P = 0.96, n = 12), 

steady state IHTK (P = 0.56, n = 12), IA (P = 0.41, n = 10) and IK (P = 0.6, n = 

10).   

Figure 4.3 shows current responses to depolarizing stimulation in LP 

neurons (discussed in Chapter 3). When LP neurons were held at -60 mV, K+ 

currents remained stable (Figure 4.4).  Statistical comparisons showed no 
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significant difference before and after holding the membrane potential at -60 

mV: Peak IHTK (P = 0.8, n = 8), steady state IHTK (P = 0.2, n = 8), IA (P = 1, n = 

8), IK (P = 0.7, n = 8).  In IC, we observed similar results (statistical results for 

Figure 4.5 discussed in Chapter 3).   Currents remained stable when the 

membrane potential was clamped at -60 mV (Figure 4.6): Peak IHTK (P = 1, n = 

4), steady state IHTK (P = 0.5, n = 4), IA (P = 0.35, n = 4), IK (P = 0.5, n = 4).   

In order to test the main hypothesis of this study, PD neurons were 

stimulated with two other patterns of activity: hyperpolarizing square steps and 

prerecorded realistic waveforms.  Hyperpolarizing square steps were applied (-

60 mV to -110 mV) at a rate of 1 Hz.  Current levels did not change after 30 

minutes of hyperpolarizing.  Figure 4.7 shows the four currents measured 

before and after stimulation: Peak IHTK (P = 0.9, n = 11), steady state IHTK (P = 

1, n = 11), IA (P = 0.09, n = 11), total IK (P = 0.9, n = 11).  In neurons 

stimulated with a prerecorded PD waveform (Figure 4.8), no significant change 

in current levels was observed after 30 minutes of stimulation:  Peak IHTK (P = 

0.9, n = 9), steady state IHTK (P = 0.7, n = 9), IA (P = 0.24, n = 9), total IK (P = 

1, n = 9).   
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4.4 Discussion       

In the present study, we characterized how single neurons regulate voltage-

gated ionic currents under different voltage fluctuation conditions, or electrical 

activity output. Numerous studies have demonstrated that neurons can 

transition between different states of electrical activity (i.e., single spikes, tonic 

firing, bursting, etc.) as a consequence of shifts in expression levels of ionic 

currents (Haedo and Golowasch 2006, O'Leary, 2014 #337). To examine how 

ionic current levels respond to experimentally induced changes in electrical 

activity we subjected multiple populations of PD neurons to distinct activity 

patterns. We found that PD neurons express stable levels of K+ currents under 

three different conditions: patterned hyperpolarization, realistic waveforms and 

holding.  Only depolarizing pulses had an effect on the currents. It is 

interesting that certain paradigms exist where there is robustness of current 

levels.   

Our results demonstrate that K+ currents are very sensitive to changes 

in the electrical activity of a neuron with a very high resolution.    These results 

demonstrate that neurons isolated from modulatory and synaptic input can 

maintain stable levels of ionic currents.    In all the experiments, currents were 

measured with the same starting conditions and the only variable that changed 

in each condition was the membrane potential over time.  The activity pattern 

we imposed on the neurons effectively caused a transition from a silent to 

oscillatory-like state.  In the realistic waveform experiments, PD neurons were 

indeed oscillating as they would in an intact preparation.  My observations 
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indicate that neurons are capable of distinguishing temporal properties in 

patterns of activity with great acuity.  In square step pulses the voltage change 

from the resting potential is virtually instantaneous.  When stimulating with 

realistic waveforms, the depolarization of the membrane happens with a slower 

time course.     This result demonstrates that neurons can track their activity 

with precision that is sensitive to how slow or fast voltage fluctuations occur 

within a cycle of an oscillation, or the period of the oscillation. K+ currents 

only change when the membrane potential is driven with depolarizing square 

step pulses in all three cell types measured.   we suggested in Chapter 3 that 

depolarizing square steps maybe activating both homeostatic mechanisms and 

Hebbian plasticity simultaneously.  Within one cycle of the step, the membrane 

potential spends a considerable amount of time (500 msec) at a depolarized 

voltage (-10 mV) where calcium currents are activated (Fisher, Gray et al. 

1990, Johnson, Kloppenburg et al. 2003, Catterall 2011).  During realistic 

waveforms on the other hand, the membrane potential is not as depolarized (-

40 mV) and firing bursts of action potentials during that depolarization (to -30 

mV).  Although we did not measure calcium currents, we suspect that 

increased Ca2+ during square steps mediated changes in current levels.  This is 

conclusion is consistent with previous findings in STG neurons as well as 

mammalian neurons (Turrigiano, Abbott et al. 1994, Liu, Golowasch et al. 

1998, Golowasch, Abbott et al. 1999, Misonou, Mohapatra et al. 2004, Haedo 

and Golowasch 2006, Misonou, Menegola et al. 2006). Since changes in 

current levels are calcium-dependent (Golowasch, Abbott et al. 1999), it is 
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possible could be that realistic waveforms do not activate this pathway.  More 

interestingly, we suspect that the information encoded in the realistic waveform 

(i.e., slope of the voltage change, bursts of action potentials, etc.) promotes 

robustness or suppresses the need for homeostatic mechanisms.    

 The fact that we did not observe changes in K+ current levels in 

response to hyperpolarizing pulses does not necessarily mean that intrinsic 

properties were unaffected by this activity.  In hyperpolarizing the membrane 

potential (-110 mV) with the same time course as depolarizing pulses (500 

msec), it is likely that inward currents, such as Ih or ICa, which are  active in this 

voltage range, were either upregulated or downregulated.  If homeostatic rules 

apply, then we predict that inward currents were upregulated (O'Leary, 

Williams et al. 2013) during hyperpolarizing pulses.   In PD neurons, Ih is very 

small and difficult to detect therefore we did not measure it.   Since it was 

established that the effect of stimulation occurs after 30 minutes, in future 

experiments, inward currents can be pharmacologically isolated and measured 

to examine whether they are involved in homeostatic, activity-dependent 

mechanisms.   

The fact that current levels did not change in holding experiments was 

exactly what was predicted.  The hypothesis was that currents are regulated in 

an activity-dependent manner. Therefore, holding experiments were performed 

as a time-dependent control.  These experiments demonstrate how acute 

changes of inputs to oscillatory neurons can still result in stability of intrinsic 

properties. Changes in intrinsic properties after removal of neuromodulation 



` 

  55 

has been demonstrated to occur of the course of several days in STG neurons 

(Thoby-Brisson and Simmers 2000, Thoby-Brisson and Simmers 2002, Zhang, 

Khorkova et al. 2009, Zhang and Golowasch 2011).  Moreover, this study was 

limited to the functional consequences of changes in activity and only 

measured a small sample of voltage-gated currents.  It is interesting that a 

certain range, or repertoire, of activity patterns that these currents are tuned to 

exists.  The three oscillatory patterns tested in these experiments all had a 

similar frequency (1 Hz) and duty cycle (50%).  To explore the effect of 

activity patterns on K+ currents, frequencies and spiking behaviors different 

than those tested here need to be examined, such as high frequency repetitive 

spiking.    Comparing Ca2+ currents in these different protocols may reveal 

more about activity-dependent regulation.   

  



` 

  56 

 

 

Figure 4.1 Depolarizing stimulation affects four K+ currents in PD neurons.  Right panels: 
examples of current responses to +10mV test pulses before (black trace) and after (gray trace) 
stimulation.  Currents are (from top to bottom) Peak IHTK, steady state IHTK, IA, and total IK.  
Left panels:  current-voltage (I-V) plots of the four currents.  Solid square symbols are control 
currents measured 30 minutes after TTX treatment and before stimulation begins.  Open circle 
symbols are currents measured after 30 minutes of depolarizing stimulation.   Statistical 
analysis was done by performing pairwise multiple comparisons using a 2-way RM ANOVA 
and Holm-Sidak post hoc analysis (n = 9). **P < 0.01 ***P < 0.001 
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Figure 4.2 K+ currents do not change after holding PD neurons at -60 mV. Right 
panels: examples of current responses to +10mV test pulses before (black trace) 
and after (gray trace) holding.  Currents are (from top to bottom) Peak IHTK, 
steady state IHTK, IA and total IK.  Right panels:  I-V plots of the four currents.  
Solid square symbols are currents measured 30 minutes after TTX treatment.  
Open circle symbols are currents measured after 30 minutes of voltage clamping 
at -60mV.  Two-way RM ANOVA reveals no significant differences occur. 
Total IK and IA( n=10). Peak and steady state IHTK (n= 12) 
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   Figure 4.3 Depolarizing stimulation affects K+ currents in isolated LP neurons.  Mean 
current amplitude ±SEM. I-V plots of the four currents before (solid square symbols) 
and after (open circle symbols) depolarizing stimulation on LP neurons (n= 9).  
Statistical analysis was done by performing pairwise multiple comparisons using a 2-
way RM ANOVA and Holm-Sidak post hoc analysis. **P < 0.01 ***P < 0.001   
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Figure 4.4 K+ current levels do not change in isolated LP neurons clamped at -
60 mV.   Mean current amplitude ±SEM ( n = 8). I-V plots of the four currents 
before (solid square symbols) and after (open circle symbols) holding the 
membrane potential at -60 mV in LP neurons.  Two-way RM ANOVA reveals 
no significant differences.  
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Figure 4.5 Depolarizing stimulation in isolated IC neurons affects K+ currents. Mean current 
amplitude ±SEM (n = 4). I-V plots of the four currents before (solid square symbols) and after 
(open circle symbols) depolarizing stimulation.  Statistical analysis was done by performing 
pairwise multiple comparisons using a 2-way RM ANOVA and Holm-Sidak post hoc analysis. 
**P < 0.01 ***P < 0.001   
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Figure 4.6 K+ currents do not change in isolated IC neurons. Mean current 
amplitude ±SEM (n = 4). I-V plots of the four currents before (solid square 
symbols) and after (open circle symbols) holding the membrane potential at -
60 mV in IC neurons. 
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Figure 4.7 K+ currents do not change in response to hyperpolarizing 
stimulation in PD.  Mean current amplitude ±SEM (n = 11). I-V plots of the 
four currents before (solid square symbols) and after (open circle symbols) 
hyperpolarizing stimulation. 
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Figure 4.8 PD Neurons stimulated with realistic waveforms do not change K+ 
current  levels before and after stimulation.   Mean current amplitude ±SEM (n 
= 10).  I-Vplots of the four currents before (solid square symbols) and after 
(open circle symbols) stimulation with realistic waveforms. 
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Figure 4.9 IHTK before and after three different stimulation protocols. IHTK peak 
current only decreases after depolarizing stimulation and not holding or 
hyperpolarizing. Bars represent current amplitude at +10 mV before (left bar) 
and after (right bar) 30 minutes of stimulation. P values are results of a paired 
t-test. 
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CHAPTER 5 

THE NEUROMODULATOR PROCTOLIN GATES ACTIVITY-
DEPENDENT REGULATION OF IONIC CURRENTS IN PYLORIC 

NEURONS  

 

5.1 Introduction 

Neuronal activity, that is the electrical output of a neuron, is the result of the 

interaction of many ionic currents and their relative expression levels.  Neurons 

can produce many different patterns of electrical output and maintain a stable 

function because of their ability to control and modify these intrinsic currents.  

Modification of intrinsic currents can occur in an activity-dependent 

(Turrigiano, Abbott et al. 1994, Turrigiano, LeMasson et al. 1995, Golowasch, 

Abbott et al. 1999, Misonou, Mohapatra et al. 2004, Temporal, Lett et al. 2014, 

Gainey, Tatavarty et al. 2015) or activity-independent (Khorkova and 

Golowasch 2007, Temporal, Desai et al. 2012) manner.  Activity-dependent 

mechanisms usually involve calcium-mediated modifications (Liu, Golowasch 

et al. 1998, Haedo and Golowasch 2006, Frank 2014, Nanou, Scheuer et al. 

2016) and can be either homeostatic (Felix-Oliveira, Dias et al. 2014, Frank 

2014, Howard, Rubenstein et al. 2014, Korotchenko, Cingolani et al. 2014, 

Swann and Rho 2014, Whitt, Petrus et al. 2014) or nonhomeostatic (Daoudal 

and Debanne 2003, Sourdet, Russier et al. 2003, Cudmore and Turrigiano 

2004, Turrigiano 2004, Kim, Jung et al. 2007, Temporal, Desai et al. 2012, 

Toyoizumi, Kaneko et al. 2014).    While nonhomeostatic or Hebbian plasticity 

drives excitability away from baseline, it can result in a new baseline but can 
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also be destabilizing if left unconstrained.  Homeostatic plasticity functions to 

drive neuronal excitability back to some set-point value after a perturbation. 

Ionic current density describes the amount of electrical current in a 

given area of plasma membrane.  Homeostatic plasticity promotes stability by 

changing current densities to decrease cellular excitability in response to an 

excitatory stimulus by changing the abundance or voltage-dependence of 

depolarizing or hyperpolarizing channels (Mee, Pym et al. 2004, Temporal, 

Lett et al. 2014). Conversely, increased excitability can cause the opposite 

response and activate pathways which perpetuate increased excitability, such 

as in long-term potentiation (LTP) models (Froemke, Debanne et al. 2010, 

Wiltgen, Royle et al. 2010, Lee and Chung 2014, Wenner 2014). Numerous 

studies have demonstrated how changes in ionic current densities occur after 

perturbations, such as activity blockade(Konishi 1994, Golowasch, Abbott et 

al. 1999, Golowasch, Casey et al. 1999, Brackenbury and Djamgoz 2006, 

Haedo and Golowasch 2006, Kim, Jung et al. 2007, Hammond, Lin et al. 2008, 

Ben Fredj, Hammond et al. 2010, Temporal, Lett et al. 2014, Zhang, Picton et 

al. 2015),  thus implying that the regulatory mechanisms are not necessarily 

dependent on synaptic input and can be cell autonomous. 

We have previously examined activity-dependent regulation of intrinsic 

currents in pyloric neurons of the crustacean stomatogastric ganglion (STG) 

and demonstrated that K+ currents change in response to depolarizing electrical 

stimulation in three cell types, but not in response to hyperpolarizing 

stimulation (see Chapter 4). We demonstrated that activity-dependent 
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mechanisms are not cell-type specific (see Chapter 3) or dependent on polarity 

of the stimulus (see Chapter 4) in the STG. It has been demonstrated that 

neuromodulators can regulate ionic currents over the course of several days: 

removal of modulatory input results in a change in five different voltage-gated 

currents in PD neurons (none of which are directly activated or inhibited by 

proctolin) after 5 days, and the effect could be prevented by exogenous 

application of proctolin (Khorkova and Golowasch 2007). This result 

demonstrates, along with others (Thoby-Brisson and Simmers 2002, Zhang, 

Khorkova et al. 2009), that neuromodulators such as proctolin can have very 

complex effects on neuronal activity and activity regulation in the STG.   

Proctolin is a pentapeptide (Arg-Tyr-Leu-Pro-Thr) located in neuronal 

somata and axons of commissural ganglia (CoG) and esophageal ganglion 

(OG) neurons but not pyloric neurons (Marder, Hooper et al. 1986).  It is 

released onto the neuropil of the STG and elicits a pyloric rhythm in quiescent 

preparations (Nusbaum and Marder 1989, Nusbaum and Marder 1989) by 

activating an inward current carried mainly by Na+  (Golowasch and Marder 

1992, Swensen and Marder 2000).  The current activated by proctolin is also 

activated by at least 5 other modulators that are released onto the STG and it is 

expressed by all pyloric neurons (Swensen and Marder 2000).  Proctolin 

targets all three pyloric neurons we studied: lateral pyloric (LP), pyloric dilator 

(PD), and inferior cardiac (IC) neurons (Swensen and Marder 2001).  We used 

proctolin to test the effects of modulators on regulation of ionic currents 

because it activates the same current as many other modulators and was shown 
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to prevent changes due to removal of the endogenous modulatory input 

(Khorkova and Golowasch 2007).  The modulatory inward current (IMI) 

activated by proctolin was demonstrated to be sufficient to induce oscillatory 

activity in pyloric neurons (Zhao, Golowasch et al. 2010).   

While there may be many several players influencing how neuronal 

activity regulates intrinsic properties, neuromodulators likely play a major role 

in gating activity-dependent regulation of ionic currents (Thoby-Brisson and 

Simmers 2002, Zhang, Khorkova et al. 2009). It has been shown that the 

transient potassium current (IA) is modulated by amines in lobster pyloric 

neurons (Zhang, Rodgers et al. 2010).  Overexpression of IA via injection of 

Shal mRNA regulates the expression of the separate voltage-gated ionic 

current, Ih, via an activity-independent mechanism (MacLean et al., 2003). 

Since both activity-dependent mechanisms, activity-independent mechanisms 

and neuromodulators have the propensity to alter neuronal excitability via 

changes in intracellular calcium concentrations, it is plausible that the two 

mechanisms converge onto a single point along the two signaling pathways. 

Here, we explore whether neuromodulators can alter the way activity 

regulates ionic currents. Specifically, we asked whether proctolin would 

oppose or enhance the effects of activity on K+ current levels in PD neurons of 

the pyloric network of the STG. We focused on PD neurons for the reason that 

they exist as identical pairs in each preparation, which allows one to be used as 

control for manipulations of the other, and because they are electrically 

coupled to the anterior burster (AB) neuron, which is the pacemaker of the 
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pyloric network (Marder 1984). To examine the interaction between 

neuromodulators and activity, we manipulated the two by either applying the 

peptide proctolin in isolated neurons from endogenous activity and modulatory 

input using TTX, or using the intact preparation (control). By performing these 

treatments in each preparation, we could observe if those acute changes had 

any effect on current levels.  By applying TTX to the bath, neurons are 

deprived of activity due to direct blockade of Na+ channels, and isolated from 

modulators by cessation of activity from modulator releasing neurons.  We 

predicted that modulators can gate activity-dependent regulation and that the 

interaction depends on the modulatory input.  

We performed depolarizing stimulations (described in Chapter 3) after 

treatment with, proctolin.   Then, we conducted experiments in preparations in 

normal Cancer saline (Control), i.e., without applying any modulators or ion 

channel blockers, and measured currents in PD neurons every thirty minutes 

while the pyloric rhythm was active. Next, we tested how a more naturalistic 

stimulation affected currents by stimulating with prerecorded waveforms from 

PD neurons.  Square step pulses have been used as imposed activity protocols 

because it is generally agreed that they are good approximations of normal 

pyloric activity in two main parameters, frequency and amplitude of the slow 

wave.     
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5.2 Methods 

Preparation and electrophysiology of the stomatogastric nervous system is 

described in Chapter 2.  

5.2.1 Experimental Conditions 

We tested effects of activity on K+ currents in PD neurons in several different 

conditions which we describe as follows: (1) Depolarizing stimulation:  As 

described in previous studies (see Chapter 3 and Chapter 4), 10-7 M TTX was 

applied for 30 minutes then neurons were depolarized using square step pulses 

from -60mV to -10mV for 30 minutes at a rate of 1 Hz.  (2) Holding in TTX:  

10-7 M TTX was applied for 30 minutes to functionally isolate PD neurons by 

abolishing endogenous activity and the release of modulators, then neurons 

were voltage clamped at -60 mV continuously for 30 minutes. (3) 

Depolarizing stimulation plus proctolin:  the same condition as (1) with 10-7 

M proctolin was added to the bath at the same time TTX treatment was started.  

(4) Holding plus proctolin:  the same condition as (2) with 10-7 M proctolin 

added at the same time as TTX. (5) Realistic waveform stimulation: 10-7 M 

TTX was applied for 30 minutes and neurons were stimulated for 30 minutes 

using prerecorded waveforms from a control PD neuron.  Neurons were 

stimulated with realistic waveforms rather than square step pulses to test how a 

more naturalistic voltage fluctuation regulated currents.  (6) Realistic 

waveforms plus proctolin:  same condition as (5) with 10-7 M proctolin added 

at the same time as TTX. (7) Normal saline:  Currents were measured during 

an ongoing rhythm in an intact preparation in PD, LP, and IC neurons. (8) 
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Hyperpolarization in normal saline:  both PD neurons were clamped at -

60mV to abolish bursting activity typically observed in an intact preparation in 

normal saline.  During this hyperpolarization, network activity was monitored 

by recording from the lower motor nerves. The voltage of both neurons was 

monitored closely so that the membrane potential was hyperpolarized enough 

to sufficiently abolish bursting activity.      

5.2.2 Statistical Analyses 

Current-voltage plots were created using Matlab and OriginLab 8.5 software.  

Sigmaplot 12 software was used to perform statistical tests.  Statistical analyses 

involved comparing ionic current parameters using Student’s paired t-tests.  

Two-way repeated measures ANOVA were used to compare current 

amplitudes before and after stimulation.  Post hoc tests are indicated in figure 

legends.  For normally distributed data, the Holm-Sidak method was used.  To 

compare current changes across time, we used a one-way RM ANOVA.  For 

data that was not normally distributed, usually in small sample sizes, we used a 

nonparametric test for an analysis of variance.  One-way Repeated Measures 

ANOVA was used to compare current amplitudes over time.  To compare 

results of depolarization experiments with and without proctolin application, 

we used the respective dataset from Chapter 3.  The percent change at +10mV 

was quantified for each current in both conditions.  A Student’s t-test corrected 

for multiple hypothesis testing was used to compare groups.  The significance 

reported in Figure 5.2 uses adjusted significance level of α = 0.025 (Sigmaplot 

12.0).   
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5.3 Results 

We tested the hypothesis that neuromodulators gate activity-dependence 

directly by adding the peptide modulator proctolin to isolated preparations 

treated with TTX and stimulating the cells with square step depolarizations.  

We compared these results to those obtained in Chapter 3 where only TTX was 

used.  For comparison purposes, TTX treated preparations are referred to as 

control experiments here.  Figure 5.1 (left) shows depolarizing patterned 

stimulations caused a 28.6% ± 7.1 decrease in peak IHTK, a 13.9% ± 4.7 

decrease in steady state IHTK and a 22.0% ± 9.4 increase in IA. Total IK 

decreased 13.9% ± 3.3 in control experiments.  In proctolin treated 

preparations (Figure 5.1, right), the effect of stimulation was strengthened in 

three currents: peak IHTK (49.3% ± 8.3), steady state IHTK (41.4% ± 4.7) and IK 

(27.7% ± 5.4). The increase in IA was not enhanced significantly by proctolin. 

Figure 5.2 more clearly illustrates this effect of the neuromodulator for each 

ionic current.  Statistical significance was measured using a Student’s t-test 

with power corrected for multiple comparisons (α = 0.025) (Curran-Everett 

2000).  Significant difference in treatment was observed in peak IHTK (P = 

0.04), steady state IHTK (P <0.001), and IK (P = 0.02).  The effect of stimulation 

on IA was not enhanced by proctolin (P = 0.44). 

We performed a control experiment to confirm the hypothesis that 

during ongoing rhythmic activity, interactions between endogenous activity 

and neuromodulators regulate intrinsic properties to maintain stable levels of 

K+ currents.  We measured current levels for 120 minutes in LP, PD, and IC 
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neurons in normal saline and without the use of Na+ blockers. This did not 

affect our ability to accurately record the K+ currents (Figure 5.3).  We 

observed no significant changes in current amplitude at +10mV over the 90-

120 minutes time period (Figure 5.4-5.6) using One-way RM ANOVA tests in 

any of the three cell types (see figure legends).  Figures 5.5 and 5.6 show 90 

minutes of measurement due to the fact that some cells died or the voltage 

clamp failed at 120 minutes.   

Next, to attempt to separate the effects of activity from those of 

neuromodulators on K+ currents, we abolished rhythmic activity by 

hyperpolarizing both PD neurons and left modulatory inputs intact by avoiding 

the use of TTX.  We voltage clamped both PD neurons to a hyperpolarized 

level of -60mV simultaneously, which was sufficient to abolish rhythmic 

network activity.  Inhibiting pyloric activity for 30 minutes in this way in an 

otherwise intact preparation did not have a significant effect on current 

amplitudes.  All K+ currents measured remained unchanged before (Peak IHTK: 

98.5 ± 10.6 nA, steady state IHTK: 42.5 ± 6.2 nA, IA: 46.9 ± 5.4 nA, totak IK: 

149.1 ± 12.9 nA) and after hyperpolarization (Peak IHTK: 99.1 ± 10.6 nA, 

steady state IHTK: 43.3 ± 6.04 nA, IA: 49.6 ± 5.7 nA, total IK: 151.1 ± 13.3 nA). 

Figure 5.7 shows I-V plots for currents before and after hyperpolarizing 

stimulation. Two-way RM ANOVA was used to test for differences across 

voltages:  Peak IHTK (P = 0.9, n = 7), steady state IHTK (P = 0.8, n = 7), IA (P = 

0.8, n = 7), IK (P = 0.9, n = 7).  
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Finally, to test how currents respond to acute changes in activity and 

the modulatory environment, and to evaluate if the square step stimulation 

indeed resembles natural stimuli that the cells may receive, K+ current levels 

were measured in PD neurons that were functionally isolated by applying 10-7 

M TTX. Only results for peak IHTK and IA are shown.  Next, neurons were 

stimulated in the absence and in the presence of 10-7 M proctolin with realistic 

waveforms prerecorded from PD neurons.  Surprisingly, neither realistic 

waveforms nor proctolin application had an effect on current amplitudes of any 

of the K+ currents recorded (Figure 5.8). 

 
5.4 Discussion 

Activity-dependent regulation of ionic currents allows neurons to regulate their 

intrinsic excitability in response to changing environments.  In some instances, 

increased neuronal activity can drive a positive feedback mechanism, such as 

Hebbian synaptic plasticity, which causes cells to become more excitable in 

response to an excitatory input such as in long-term potentiation (LTP) (Felix-

Oliveira, Dias et al. 2014).  In other cases, increased electrical activity can 

drive a negative feedback mechanism where neurons modify intrinsic ionic 

currents to decrease cellular excitability, called homeostatic plasticity, to 

promote neuronal stability. Our prediction was that changes in response to 

activity or electrical stimulation would drive current levels in a direction to 

promote a homeostatic decrease in excitability.  We observed a decrease in the 

total potassium current, suggesting an increase in excitability.  If neurons are 

driven to increase excitability, what prevents this phenomenon from causing 
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runaway excitation and destabilizing the network?  We hypothesized that 

neuromodulators play a role in constraining this phenomenon.   

 In the present study, we tested the hypothesis that neuromodulators 

gate activity-dependent regulation of ionic currents in STG neurons.  We 

predicted that neuromodulators promote stability in the network by adjusting 

the strength of the effect of activity-dependent regulation.  We found that K+ 

currents are robust to acute changes in activity and neuromodulatory input and 

that proctolin enhances the effect of stimulation on both IHTK and the total IK in 

PD neurons.  Interestingly, proctolin had no significant effect on activity-

dependent regulation of IA. 

In order to test the hypothesis that modulators gate activity-dependent 

regulation of ionic currents, preparations were treated with 10-7 M proctolin 

and then neurons were stimulated with depolarizing square step pulses.  These 

results were compared to results obtained in Chapter 3 where PD neurons were 

stimulated in preparations treated with TTX.  We found that the effect of 

depolarizing stimulation on PD neurons was significantly enhanced by 

proctolin application on peak IHTK, steady state IHTK and IK but not on IA. 

Proctolin activates a mixed cation inward current, IMI.  Our findings that acute 

application of proctolin enhances the activity-dependent decrease in IHTK in PD 

neurons suggest an interaction between neuromodulators and activity-

dependent plasticity.  This mechanism is a novel interaction between two 

independent pathways that may alter neuronal excitability.  Proctolin activates 

a G-protein coupled receptor and activates intracellular signaling cascades that 
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are calcium dependent (Johnson, Garczynski et al. 2003, Gray and Golowasch 

2016). In fact, Gray and Golowasch showed evidence that Ca-dependent 

pathways, involving Ca++ influx and activation of calmodulin dependent 

kinases (Gray and Golowasch 2016), and earlier Haedo and Golowasch (Haedo 

and Golowasch 2006)and Golowasch et al(1999) showed that intracellular Ca++ 

is clearly involved in activity-dependent regulatory mechanisms of activity and 

neuromodulation. IHTK is the result of activation of voltage- and calcium-gated 

ion channels.  The underlying calcium current activated by depolarizing the 

membrane potential induces elevation of intracellular calcium.  It is likely that 

the bridge between the two signaling pathways involves a signaling molecule 

that is activated downstream of intracellular calcium release.  Modifications to 

delayed rectifier channels, Kv2.1, occur via the calcium-dependent 

phosphatase calcineurin in hippocampal neurons (Misonou, Mohapatra et al. 

2004, Misonou, Menegola et al. 2006).  If Ca++ mediates the activity-dependent 

effects as well as the effects of activating IMI the delayed rectifier current may 

then also be target of activity and neuromodulator-mediated regulation. 

Because the square pulses used in this study for stimulation are clearly 

a rough approximation to the endogenous oscillatory activity, we tested several 

combinations of stimulation involving realistic activity patterns.  To test the 

most realistic patterns, we measured currents in pyloric neurons expressing 

their endogenous activity.  We measured K+ currents in three different pyloric 

STG neurons during ongoing network activity (normal saline) over a period of 

two hours in order to determine how ionic current levels are regulated across 
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time in a functioning nervous system. We expected that transient changes over 

the 120 minute period as a functional consequence of homeostatic regulatory 

mechanisms of these channels would be observed.  However, K+ current 

amplitude in all four voltage-gated currents remained stable over the course of 

the experiment.  In subsequent experiments, we manipulated activity of PD 

neurons without blocking endogenous activity.  Therefore, we wanted to 

establish a reliable control of how current levels were maintained in a 

condition with minimal experimental manipulation. It has been suggested by 

many studies in the STG that the maintenance of intrinsic excitability is due to 

long-term effects of neuromodulators and feedback from activity.  In this set of 

experiments, we demonstrated that in the presence of both the descending input 

from anterior ganglia and the activity of the network interact to maintain stable 

levels of ionic currents.   

After observing consistent levels of ionic currents during an ongoing 

pyloric rhythm, we tested whether abolishing network activity by 

hyperpolarizing both PD neurons would cause a change in current levels.  This 

experiment was crucial in separating the effects of neuromodulators and 

activity. By abolishing network activity and voltage clamping PD neurons, 

changes due to patterned fluctuations in membrane potential were abolished 

and the input due to neuromodulators could be assessed.   Surprisingly, while 

the pyloric rhythm was inhibited for 30 minutes, no changes in current levels 

were observed.  If this change in activity followed homeostatic rules, a 

decrease in IK would have been expected to facilitate an increase in cellular 
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excitability.  It is possible that 30 minutes of suppression was not sufficient to 

induce a homeostatic response.  It was demonstrated by many studies that 

neurons respond to long-term activity deprivation by altering their intrinsic 

properties to promote increased membrane excitability over the course of 

several days to weeks (Turrigiano, Abbott et al. 1994, Desai, Rutherford et al. 

1999, Cummings and Belluscio 2010, Felix-Oliveira, Dias et al. 2014, 

Mendoza Schulz, Jing et al. 2014, Gainey, Tatavarty et al. 2015).  In one study, 

activity deprivation via removal of descending modulatory input for 5 days in 

culture caused a decrease in outward currents and an increase in an inward 

current in STG neurons (Thoby-Brisson and Simmers 2002). Whether activity-

deprivation occurs via removal of a permissive signal, such as the descending 

modulatory input from anterior ganglia in the STG, or it occurs via blockade of 

Na+ channels, seems to result in the same shift in ionic conductances to 

promote neuronal excitability. Results of long-term decentralization studies do 

suggest that intrinsic currents are regulated by neuromodulators (Thoby-

Brisson and Simmers 2002, Sourdet, Russier et al. 2003, Khorkova and 

Golowasch 2007).   

  The fact that current levels remained unchanged after the neurons are 

inhibited from oscillating suggests that the neuromodulators provide an active, 

complex and continuous input to maintain expression of intrinsic properties of 

target neurons. It also demonstrates that suppression of activity has no 

consequence on K+ current levels and, by extension, cellular excitability. 

However, this clearly contradicts the result reported in Chapters 3 and 4, which 
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demonstrated a clear effect of activity on current amplitude. We think that it is 

also possible that 30 minutes is simply not a long time period for neurons to 

activate or deactivate homeostatic mechanisms when activity is inhibited.  It is 

likely that these neurons remain silent for 30 minutes or longer on numerous 

occasions throughout an animal’s life as a consequence of neuromodulation of 

the network (Weimann, Meyrand et al. 1991). By contrast, strong square 

depolarizing pulses appears to be an effective enough stimulus to override the 

safety margins built into the STG neurons. It was demonstrated that changes in 

intrinsic properties of pyloric neurons after removal of modulatory input occurs 

on the order of days (Turrigiano, Abbott et al. 1994, Thoby-Brisson and 

Simmers 2000, Thoby-Brisson and Simmers 2002, Luther, Robie et al. 2003).  

This long time scale of modulators on ionic currents makes activity-dependent 

regulation a good substrate for neuromodulation to alter intrinsic currents more 

quickly.      

It was surprising that acute changes in activity and application of 

proctolin had no effect on current levels.   Again, it is likely that 30 minutes 

was not long enough to induce a homeostatic response.  However, it is also 

possible that K+ channels are more robust to perturbations than what was 

expected, and that square depolarizing pulses are an overwhelming stimulus.  

Functionally, isolating PD neurons by applying TTX and blocking Na+ 

channels had no effect on K+ current levels.  This is surprising because it is 

generally agreed that different ion channels are regulated in a compensatory 

fashion (Ransdell, Nair et al. 2012, Temporal, Desai et al. 2012, Temporal, Lett 
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et al. 2014) and that neuronal identity arises from a consistent difference across 

cell types in the balance between inward and outward currents (Schulz, Baines 

et al. 2006)despite variability of expression levels from animal to animal 

(O'Leary, Williams et al. 2013, Marder, O'Leary et al. 2014, O'Leary, Williams 

et al. 2014). Stimulating with realistic waveforms had no effect on K+ current 

levels even after application of proctolin.  In the case of the experiments in this 

study, PD neurons were stimulated with their natural activity pattern.  Yet, 

when depolarizing stimulations were used, a decrease in IHTK was likely the 

result of calcium influx which was amplified by proctolin.   
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Figure 5.1. Proctolin enhances activity-dependent regulation of K+ currents in PD 
neurons.   Left panels: I-V relationships measured in 10-7 M TTX.  Right panels: I-V 
relationships of currents measured in 10-7 M TTX + 10-7 M proctolin before (solid 
squares) and after (open circles) depolarizing stimulation.  Currents are (from top to 
bottom) Peak IHTK, steady state IHTK, IA and total IK.  Stars indicate comparisons from a 
two-way RM ANOVA. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 5.2. Proctolin enhances the effect of depolarizing stimulation in PD 
neurons. Mean + SEM percent change of ionic current amplitudes measured at 
+10 mV after depolarizing stimulation in preparations treated with proctolin 
(white bar) and preparations treated only with TTX (gray bar).  Increase in IA 

after stimulation was not further enhanced by proctolin.  Sample sizes are 
shown in parenthesis in bars.  Statistics: Student’s t-test beetween TTX-treated 
and TTX+Proctolin-treated conditions. * P<0.05, *** P<0.001.  Values insides 
boxes indicate sample numbers. 



` 

  83 

 

  

 

 
Figure 5.3. IHTK recorded in PD neurons in normal saline.  Currents can be 
appropriately recorded in the absence of Na+ current blockers.  Bottom: 
Voltage steps from -40mV to +20 mV in 10 mV increments. Bottom: Current 
responses to test pulses. 
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Figure 5.4 K+ currents are stable in PD neurons in an intact preparation.  Mean 
amplitudes at +10mV of the 4 K+ current measurements over two hours.  
Results from 8 PD neurons.  Error bars represent SEM.  P values obtained from 
One-way Repeated Measures ANOVA on each separate current. 
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Figure 5.5. LP Currents in Normal Saline.  K+ current levels are stable in LP 
neurons over 90 minutes while pyloric rhythm is ongoing (n = 9). Symbols 
represent mean current amplitude + SEM at +10mV measured every 30 
minutes.  Statistical comparisons were performed using a One way RM 
ANOVA on each of the currents (Peak IHTK, p = 0.8. steady state IHTK, P = 0.5, 
IA, P = 0.7, total IK, P = 0.9). 
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Figure 5.6. IC Currents in Normal Saline.  K+ current levels are stable in IC 
neurons over 90 minutes during an ongoing pyloric rhythm (n = 5). Symbols 
represent mean current amplitude ± SEM at +10mV measured every 30 
minutes.  Statistical significance of effect of time determined using a One-way 
RM ANOVA.  
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Figure 5.7. Currents in PD neurons hyperpolarized in normal saline 
remain stable after 30 minutes of activity-deprivation.   Mean 
current amplitude ±SEM (n= 11). Currents are (from top to bottom): 
Peak IHTK, steady state IHTK, IA, IK.   
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Figure 5.8.  K+ currents in PD neurons stimulated with realistic waveforms.  
Mean current amplitude ±SEM. Currents measured in normal saline + 10-7 M 
TTX, after 30 minutes of stimulation with realistic waveforms (TTX + Wave), 
after 30 minutes of stimulation with waveforms and treatment with TTX + 10-7 

M proctolin.  No significant differences were observed in any of the conditions 
as determined by a One way RM ANOVA (IHTK, P = 0.7, IA, P= 0.1).  Numbers 
in parenthesis indicate sample sizes.   
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CHAPTER 6 

CONCLUSION 

 

6.1 Significance  

Neurons and networks can maintain stable electrical outputs despite constantly 

changing inputs.  Electrical activity of a single neuron can change drastically 

depending on extrinsic inputs such as neuromodulators and synaptic feedback.  

While responding to these inputs involves changes in intrinsic excitability, 

neurons must also be able to maintain some stability to return to a 

predetermined set point so that they can remain functional.  For example, 

thalamocortical neurons transition from bursting to spiking activity during slow 

wave sleep and waking states, respectively (Steriade, McCormick et al. 1993).  

A growing body of evidence supports the hypothesis that neurons change their 

intrinsic ionic currents in response to altered activity levels and the most direct 

evidence of this was demonstrated in cortical (Turrigiano, Abbott et al. 1994) 

and STG neurons (Golowasch, Abbott et al. 1999).   

Central pattern generating networks that control vital behaviors such as 

respiration and locomotion must be able to return to a predetermined level of 

activity after injury or perturbation to ensure an organism’s survival. 

Therefore, it is crucial to identify what mechanisms these networks use to track 

their own activity and how these mechanisms regulate intrinsic properties of 

component neurons to maintain robust behavior.  
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6.2 Summary of Results 

The goal of this dissertation was to investigate regulation of voltage-gated 

ionic currents via activity-dependent mechanisms and to characterize how 

neuromodulators gate this mechanism.   Since activity of the pyloric network is 

dependent on modulatory input, and neuronal activity regulates ionic current 

levels, it was the primary focus of this investigation to determine how and 

whether an interaction between the two mechanisms exists on the same time 

scale.   

 To accomplish the goal of this dissertation, ionic current levels were 

measured in three different pyloric neurons to first establish whether cell-type 

specific effects occurred. The three neurons tested were: lateral pyloric (LP), 

pyloric dilator (PD), and inferior cardiac (IC) neurons. We then stimulated 

neurons with different patterns of activity and found that current levels 

changed in response only to depolarizing square step pulses but remained 

stable over time when other patterns were used such as hyperpolarizing and 

realistic waveforms.  Finally, it was found that the neuromodulator proctolin 

enhances the effect of stimulation on two K+ currents.   

 The contribution of this dissertation to the understanding of how 

neurons in a rhythmic network regulate their excitability in response to 

different inputs is outlined in this chapter.   
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6.2.1 Establishing Reliable and Accurate Methods to Investigate Activity-
Dependent Regulation of K+ Currents 

After conducting many experiments to test multiple hypotheses about the 

regulation of K+ currents in PD neurons, we observed that the peak IHTK current 

always decayed.  We found that the results of these experiments were 

unreliable due to an experimental artifact which we suggest was due to the 

electrode filling solution.  Hooper et al (2015) tested the effect of several 

different ionic solutions in lobster STG and leech neurons.  They found that 

high ionic concentrations in filling electrodes caused changes in passive cell 

properties such as resting membrane potential (Vm) and input resistance (Rn).  

With high molarity fills, an outward current was shown to decrease as a 

function of the amount of current injected through the electrodes. These 

changes were suggested to be due to ion leak from the electrode into, and 

volume changes of, the cell.   In our experiments, we were able to measure 

stable level of ionic currents using 1 M KCl electrode filling solution.  Our 

control experiments involved measuring currents over time with little to no 

experimental manipulation (discussed in Chapter 5). Currents were measured 

in normal saline every 30 minutes for 120 minutes.  No changes over time were 

observed.  Given these results we performed all the experiments reported in 

this thesis using the low ionic strength 1 M KCl solution, and conclude, like 

Hooper et al (2015) that all studies using high ionic strength solutions should 

be interpreted with caution. 
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Another observation of this work is that depolarizing patterned 

stimulation caused a change in K+ current levels after 30 minutes of stimulation 

(Chapter 2). At first, we attempted to stimulate neurons for 2 hours.  However, 

when comparing current levels after 30 minutes of stimulation to current levels 

after 60, 90, and 120 minutes, there were no significant differences.  This result 

demonstrates that alterations in current expression levels happen at a relatively 

short time scale.  Many studies that have explored activity-dependent 

regulation used stimulation protocols much longer than 30 minutes and in 

many cases, at least 1 hour stimulations were used to investigate changes in 

cellular excitability (Turrigiano, Abbott et al. 1994, Haedo and Golowasch 

2006). Haedo and Golowasch (2006) demonstrated a clear calcium-dependence 

of the effects of stimulation on ionic current and activity changes. The K+ 

current changes we observed in our study could therefore also be mediated by 

calcium-dependent processes. 

 To test whether this fast effect of stimulation is calcium-dependent, we 

suggest reducing intracellular calcium by using a calcium chelator such as 

BAPTA ((1,2-bis(o-aminophenoxy)ethane-tetra acetic acid) to measure current 

responses to stimulation with reduced intracellular calcium. Intracellular 

calcium-signaling pathways have been demonstrated to regulate ionic channel 

densities in pyramidal neurons (Misonou, Mohapatra et al. 2004, Misonou, 

Menegola et al. 2006).  In STG neurons, voltage-dependent properties of the 

modulator-activated current IMI are suggested to be regulated by calcium via a 

calcium sensing receptor (CaSR) and intracellular calcium-dependent enzymes 
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(Gray and Golowasch 2016). If the decrease observed in IHTK is dependent on 

an increase in intracellular calcium concentration, treating cells with BAPTA 

should reduce the effect of stimulation on ionic current levels. While this 

experiment would not completely explain how proctolin enhances the 

stimulation-induced decrease in IHTK, it could identify a potential target protein 

that would link activity-dependent regulation and neuromodulation. In fact, the 

proctolin-induced current (IMI) has been hypothesized to be at least in part 

carried by calcium itself (Gray and Golowasch 2016) Zhao et al (2011), which 

could then explain a possible role of proctolin in facilitating the activity-

dependent effects on K+ currents. 

6.2.2 Cell-Type Specific Regulation of K+ Currents 

While the phenomenon of activity-dependent regulation was previously tested 

in IC neurons (Golowasch, Abbott et al. 1999), we repeated the experiments to 

compare results we obtained in other STG neurons and test the hypothesis that 

different cell types adjusted their ionic current levels differently in response to 

the same stimulation  protocol.  We were able to replicate the IC results using 

both K2SO4 and KCl electrode fills. LP, PD, and IC neurons were all recorded 

from using both electrode fills. Surprisingly, the only neuron that showed a 

sensitivity to sulfate was PD.  While this was not the main goal of this 

dissertation, this revealed a cell-type specific effect of ionic solutions.   Hooper 

et al. (2015) demonstrated that neuron properties (i.e. Rn, Vm, and transient 

currents) changed as a function of the amount of current injected when using 

the voltage clamp technique.  It is possible that PD neurons required more 
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current injection to clamp at the same voltages as LP and IC neurons.  This is 

plausible since PD neurons appear to be bigger than LP neurons (Golowasch, 

Thomas et al. 2009), exist in electrically coupled pairs and are further gap 

junctionally coupled to at least 3 other cell (AB, and two LPG neurons) 

(Marder 1984).  The mechanism of action of sulfate on current levels is not 

clear.  We did not explore this phenomenon but one important observation is 

that only Peak IHTK, and not IA,was affected.  One possibility is a direct 

modification of the voltage-gated calcium channel.  It is possible that sulfate 

could be interacting with signaling molecules to modify calcium channel 

conductance and thus decreasing calcium influx which would explain a 

decreased calcium-activated potassium current.  Measuring ICa before and after 

stimulation would reveal whether a change in this underlying current cause a 

decrease in IHTK and not IA.  If a decrease in ICa is observed after stimulation, it 

would explain the specific effect on IHTK. Since both ionic solutions used were 

relatively high molarity (0.6 M K2SO4 and 1 M KCl) the decay of peak IHTK is 

likely specific to sulfate. Hooper et al (2015) showed that intrinsic properties 

could be measured accurately with an ionic solution closely matching the 

molarity of neuronal cytoplasm.   

 In our experiments, LP showed a change in both IHTK and IA in response 

to depolarizing stimulation.  This result was not what we expected based on 

what Golowasch et al. (1999) demonstrated.  One major difference between 

our results and those of Golowasch and colleagues is that we used voltage 

clamp to stimulate the cells while they used current clamp.  We suspect that 
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TEVC was a more effective method of controlling membrane potential of the 

cell and that current clamp results simply did not cause a change in currents 

because the membrane potential was not changed sufficiently for activity-

dependent mechanisms to occur.  

6.2.3 K+ Currents Respond to Specific Patterns of Activity  

Hyperpolarizing stimulation did not result in any change in K+ current levels.  

The voltage range that was used to drive the membrane potential does not 

activate any of the currents measured. If we measured an inward current 

activated by hyperpolarizing such as Ih, we would be able to distinguish or 

hypothesize about the response of outward versus inward currents. It has been 

established that long-term changes in neuronal networks associated with 

learning and memory formation occur as a result of both changes in synaptic 

strength (Feldman 2009, Madronal, Gruart et al. 2010, Shouval, Wang et al. 

2010, Tully and Bolshakov 2010, Wiltgen, Royle et al. 2010) and 

modifications to cellular excitability (Lebel, Grossman et al. 2001, Gasque, 

Labarca et al. 2005, Naude, Paz et al. 2012).  In Chapter 2-4, we explored the 

phenomenon of changes in intrinsic excitability by measuring K+ currents after 

exposing motor neurons to patterned electrical stimulation.  By using the 

TEVC method, we drove the membrane potential and imposed a patterned 

activity pattern on the neurons without actually providing a chemical signal.  

Therefore, we were able to test how K+ currents were regulated in response to 

the activity output of the neuron, rather than synaptic or chemical input.    
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The observation that current levels did not respond to hyperpolarizing 

stimulation was surprising.  The fact that current levels in a neuron resting at -

60 mV were similar to current levels in a neuron oscillating from -60 mV to -

110 mV at 1 Hz was puzzling since modeling and experimental studies have 

demonstrated that modifications to ionic current levels are correlated with 

distinct activity outputs.  Here, we only measure one subset of ionic currents 

expressed in pyloric neurons.  A key indicator of activity in neurons is calcium.  

Therefore, measuring Ca2+ currents may reveal more about the regulatory 

mechanisms involved in how neurons utilize activity-dependent regulation.  

Another possibility that was not explored is the idea that hyperpolarizing 

stimulation mimicked the patterned synaptic inhibition these neurons receive in 

the endogenous environment.  Turrigiano et al (1994) demonstrated that 

hyperpolarizing patterned stimulation in cultured STG neurons could in fact 

reverse the long-term effects of removing synaptic input.  In Turrigiano’s work 

neurons were isolated in culture and rhythmic activity ceased.  In two days, the 

neurons transitioned from tonic firing to bursting behavior by adjusting the 

balance of ionic conductances to compensate for the loss of modulatory and 

synaptic input.  This transition could be reversed and bursting activity 

abolished by patterned hyperpolarizing stimulation within 1 hour (see also 

Haedo and Golowasch, 2006). In our experiments, neurons were exposed to 

patterned hyperpolarizations only after blocking endogenous bursting activity.  

If a transition from one type of behavior to another has an effect on current 
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levels, a good experiment may involve testing how neurons respond to 

patterned hyperpolarization without using TTX to block sodium channels.   

In the absence of synaptic drive and modulatory input, current levels 

measured in all three neuron types were stable. Clamping the membrane 

potential at -60 mV for 30 minutes resulted in no changes in ionic current 

levels.  Comparing this result to results obtained from depolarizing stimulation 

demonstrates that this indeed is a mechanism that responds to fluctuations in 

the membrane potential.  To test whether the effect is reversible, we would 

impose these different activity patterns within one experiment i.e. neurons 

would first be stimulated then held at -60 mV to test whether stimulation-

induced changes were reversible.  As discussed earlier, depolarizing patterned 

stimulation involved a brief but sustained depolarization of the membrane 

potential at -10 mV.  This could have allowed a very large calcium influx into 

the cell and thus induced activity-dependent changes in the expression levels of 

the currents we measured. Using realistic waveforms did not involve such 

sustained depolarizations which explains the reason no changes were observed.   

6.2.4 Neuromodulators Gate Activity-Dependent Regulation 

The effects of activity and neuromodulators on intrinsic excitability of neurons 

have been characterized with great distinction.  Many studies have either 

examined activity-dependent (Konishi 1994, Turrigiano, Abbott et al. 1994, 

Turrigiano, Leslie et al. 1998, Golowasch, Abbott et al. 1999, Brackenbury and 

Djamgoz 2006, Swanwick, Murthy et al. 2006, Temporal, Lett et al. 2014) or 

neuromodulator-dependent pathways (Thoby-Brisson and Simmers 1998, 
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Skiebe 2001, Billimoria, DiCaprio et al. 2006, Khorkova and Golowasch 2007, 

Marder 2012, Temporal, Desai et al. 2012, Marder, O'Leary et al. 2014) 

leaving many questions open about the possible interaction between the  two 

mechanisms.  Because neuromodulators generally activate longer lasting and 

slower cellular pathways, it is generally assumed that they function on different 

time scales.  However, in this study we observed a preliminary finding that 

there is a pathway were both the modulatory environment, and activity of a 

neuron converge onto a cellular signal to regulate the expression levels of 

outward K+ currents.  In spike timing dependent plasticity (STDP) it was 

demonstrated that activation of adenylyl cyclase and phospholipase C by 

neuromodulator coupled receptors controls whether neurons will undergo 

potentiation or depression (Seol, Ziburkus et al. 2007).  We also hypothesized 

that the neuromodulatory input would gate activity-dependent plasticity by 

either enhancing or suppressing the effect.  In our experiments, the excitatory 

peptide proctolin enhanced the effect of activity on changes in current levels.  

The enhancement of activity-dependent regulation could be a priming 

mechanism to maintain a longer perpetuation of excitation in response to a 

stimulus. 

How would this phenomenon function in a behaving organism? The 

pyloric network controls the rhythmic movement of the pylorus which filters 

macerated food.  It is plausible to assume that activity-dependent mechanisms 

function to provide a feedback system about what the network is doing during 

feeding on a short and fast time scale.  Neuromodulators on the other hand, 
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could function to change activity-dependent regulation on a longer time scale.  

For example, neuromodulation could function to enhance or suppress activity-

dependent regulation depending on the circadian rhythms of the animal.  In a 

sleeping, non-feeding animal for example, spontaneous activity of the pyloric 

network may need to be suppressed by activity-dependent regulation so that 

feeding behavior is reserved only when the animal needs it.   

 

6.3 Future Directions 

One key to understanding the functional relevance of these experiments would 

be to test how excitability actually changes after these changes occur.  For 

example, the decrease in total IK suggests an increase in excitability yet we 

have not tested that.  To test the functional consequence of such changes in 

response to intrinsic and synaptic plasticity, we would test excitability by 

looking at neuronal responses to current injection either in cultured neurons or 

synaptically isolated neurons.   

Another future set of experiments would be to explore the intracellular 

mechanisms involved in changing current levels.  It is known that ion channel 

activity can be altered in many different ways included phosphorylation and 

dephosphorylation, translocation, and dispersal of ion channel clusters.  These 

processes not only change the amount of current moving through the 

membrane but also the voltage-dependent and temporal properties of the 

channels.  We also aimed to test the effect of acute versus long-term removal 

of neuromodulators.  Since it has been described that neuromodulators provide 
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a continuous signal f or maintaining intrinsic excitability, it would be 

interesting to test how activity feeds back onto neurons that can burst 

independent of modulatory input, such as those in decentralized preparations.  

The work of this dissertation provides many avenues to further this research 

and has established some significant findings such as the existence of an 

interaction between activity and modulatory substances, the short-term action 

of activity and the importance of using proper measurement techniques.  
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