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ABSTRACT 

OPTIMIZATION OF HEADWAY, STOPS, AND TIME POINTS  

CONSIDERING STOCHASTIC BUS ARRIVALS 

 

by 

Liuhui Zhao 

 

With the capability to transport a large number of passengers, public transit acts as an 

important role in congestion reduction and energy conservation. However, the quality of 

transit service, in terms of accessibility and reliability, significantly affects model choices 

of transit users. Unreliable service will cause extra wait time to passengers because of 

headway irregularity at stops, as well as extra recovery time built into schedule and 

additional cost to operators because of ineffective utilization of allocated resources.   

This study aims to optimize service planning and improve reliability for a fixed bus 

route, yielding maximum operator’s profit. Three models are developed to deal with 

different systems. Model I focuses on a feeder transit route with many-to-one demand 

patterns, which serves to prove the concept that headway variance has a significant 

influence on the operator profit and optimal stop/headway configuration. It optimizes stop 

spacing and headway for maximum operator’s profit under the consideration of demand 

elasticity. With a discrete modelling approach, Model II optimizes actual stop locations 

and dispatching headway for a conventional transit route with many-to-many demand 

patterns. It is applied for maximizing operator profit and improving service reliability 

considering elasticity of demand with respect to travel time. In the second model, the 

headway variance is formulated to take into account the interrelationship of link travel time 

variation and demand fluctuation over space and time. Model III is developed to optimize 

the number and locations of time points with a headway-based vehicle controlling approach. 



 

 

 

 

It integrates a simulation model and an optimization model with two objectives - 

minimizing average user cost and minimizing average operator cost. With the optimal 

result generated by Model II, the final model further enhances system performance in terms 

of headway regularity.  

Three case studies are conducted to test the applicability of the developed models 

in a real world bus route, whose demand distribution is adjusted to fit the data needs for 

each model. It is found that ignoring the impact of headway variance in service planning 

optimization leads to poor decision making (i.e., not cost-effective). The results show that 

the optimized headway and stops effectively improve operator’s profit and elevate system 

level of service in terms of reduced headway coefficient of variation at stops. Moreover, 

the developed models are flexible for both planning of a new bus route and modifying an 

existing bus route for better performance.  
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1 

CHAPTER 1 

1.INTRODUCTION 

 

 

To transport a large number of passengers within a given time period, public transit acts as 

an important role in congestion reduction and energy conservation. In urban areas with 

high population density, high market shares of public transit especially during peak periods 

significantly improves urban mobility. The Texas Transportation Institute’s 2012 Annual 

Urban Mobility Report indicated that public transportation reduced travel delay by 865 

million hours, equivalently a 21-billion-dollar congestion cost savings, based on the 

statistics of 498 urban areas in 2011. Additionally, public transportation saved more than 

4 billion gallons of gasoline consumption (equivalent to 10 million dollars) and reduced 37 

million metric tons of carbon dioxide emissions annually, according to American Public 

Transportation Association (2015). Besides all its savings, the return on investment in 

public transportation is high – 4 dollars in economic returns are generated for every 1 dollar 

invested in public transportation, and 1 billion U.S. dollars investment in transit 

infrastructure could create as many as 36 thousand jobs, according to American Public 

Transportation Association (2012). With its role in increasing mobility, reducing 

environmental impacts, and improving social equity status, an efficient and attractive 

transit system is critical for the physical structure and long-term socioeconomic 

development of a city and its surrounding area.  

Despite reduced ridership and declining service quality in public transit, there is a 

growing realization that more attention should be given to efficient transit systems. Aging 
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population, rising fuel prices, increasing traffic congestion – the problems associated with 

continuous urbanization and the increasing sizes of cities – justify the need for more 

reliance on transit systems (Litman, 2014). Therefore, research has been conducted to 

investigate the determinant factors of transit ridership. Many factors were found 

contributing to bus ridership decline, including internal factors (e.g., service quantity, 

pricing, and service quality factors) and external factors (e.g., socio-economic, spatial, and 

transit subsidy factors) (Taylor and Fink, 2003). 

Among the internal factors, service reliability, which has enormous impact on 

passengers and operators, was found more influential to transit ridership than service 

frequency and price (Cervero, 1990; Abdel-Aty and Jovanis, 1995; Syed and Khan, 2000; 

Krizek and El-Geneidy, 2007; Daraio et al., 2016). Unreliable service has great negative 

impacts on both passengers and operators. For passengers, extra time needs to be added to 

their trip planning to account for possible delays and ensure on-time arrival due to travel 

time variation (Furth and Muller, 2006). For operators, a certain amount of recovery time 

built into the schedules is necessary to absorb the variation of vehicle travel times, resulting 

in longer round-trip travel time and increased fleet size requirement.  

However, conventional surface transit systems (e.g., buses), sharing the right-of-

way with other vehicles, are inevitably suffering from service irregularity. The bus 

arrival/departure time deviating from a posted schedule is sometimes unavoidable because 

of various factors, such as temporal and spatial boarding/alighting demand fluctuation, 

traffic conditions, and irregular departure headways at the terminals/upstream stops. 

Especially under congested traffic conditions, it is difficult for buses to return to the driving 

lane after picking-up/dropping-off passengers at stops, leading to longer dwell time.  
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The vehicle travel time variation dominated by traffic congestion levels often leads 

to transit service uncertainty, and growing congestion further raises a burden to both transit 

agencies and users. Although extensive research attention has been given to vehicle control 

strategies for improving service reliability performance (e.g., Barnett, 1974; Wirasinghe, 

1993; O’Dell and Wilson, 1999; van Oort et al., 2010; Cats et al., 2011; Delgado et al., 

2012; van Oort et al., 2012), the fact that a majority of transit networks were planned 

without consideration of stochasticity limits the efficiency of these countermeasures. 

Recent studies pointed out that well-located stops have the potential to alleviate the 

impact of traffic congestion (El-Geneidy et al., 2006; Delmelle et al., 2012; Ibarra-Rojas 

et al., 2015). However, thorough investigation of the influence of service planning on 

system performance is needed, especially under the situation where passengers are 

sensitive to service accessibility and reliability. Considering the potential of a cost-efficient 

bus system in maintaining service reliability and attracting patronage, it is critical to design 

a bus route under congestion condition in order to achieve a high level of service. 

 

  Problem Statement 

Due to inherent stochastic nature, buses tend to travel in pairs in spite of evenly scheduled 

headways. Even starting from a small upstream disturbance, headway deviation could be 

magnified due to stochastic link travel times and passenger boarding/alighting activities at 

downstream stops. Although it is recognized that temporal demand fluctuation, roadway 

geometry, and traffic congestion affect service reliability (Woodhull, 1987; Strathman and 

Hopper, 1993; Chien et al., 2007; Chen et al., 2009; Lin and Ruan, 2009; Islam and 
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Vandebona, 2010; El-Geneidy et al., 2011), the investigation of the impact of stochastic 

bus arrivals on the optimal service planning for a given bus route has not been carried out. 

Previous studies on developing strategies to improve system reliability were often 

on the operational level via adjusting operations to promote schedule adherence, whereas 

the research on the planning level has been rarely conducted (Guihaire and Hao, 2008; 

Kepaptsoglou and Karlaftis, 2009; van Oort et al., 2012; Ibarra-Rojas et al., 2015). In fact, 

optimal stops, headway and time points (i.e., control points) could offset small disturbances 

and mitigate headway variations, without imposing additional financial burdens.  

To optimize service planning, the trade-off between service accessibility and 

efficiency always needs to be considered. In general, shorter stop spacing and headway 

provide greater level of accessibility, whereas larger stop spacing and longer headway 

lower the operating cost. Under the circumstances of stochastic vehicle arrivals, the 

research problem becomes even more complicated, since the interactions of the decision 

variables (i.e., stops and headway), traffic conditions, and passenger boarding/alighting 

activities also need to be considered for a proper planning. 

Hence, for optimal service planning for a given bus route under stochastic vehicle 

arrivals, a sound model that can handle the interrelationship between multiple decision 

variables and model parameters is necessary. Since traditional exact algorithms are not 

capable of solving such a complicated problem, heuristic/metaheuristic algorithms should 

be applied to search for the optimal solutions. 

Due to consideration of the interactions of decision variables and travel time 

variability, as well as model applicability in a real world bus route, traditional mathematic 
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algorithms are not capable of solving such problems. Thus, heuristic/Metaheuristic 

algorithms could be adapted to the models. 

 

  Objectives and Work Scope 

The objective of this study is to develop optimization models for the planning of a fixed 

bus route considering the impact of stochastic bus arrivals, which could improve service 

reliability with maximized operator’s profit considering demand elasticity. Considering the 

impact of headway variation, the proposed models will determine the optimal number and 

locations of bus stops, headway, and time points. The discrete approach for stops and time 

points and the continuous variable of headway under consideration of travel time elasticity 

of demand increase the complexity of the problem. Therefore, metaheuristic algorithms 

need to be applied for problem solving.  

The contributions of this study compared to previous studies are as follows:  

1) incorporating the headway variance in the optimization model reflecting more realistic 

bus operation conditions, 2) providing the guidelines for profit maximum service planning 

considering travel time variation under different scenarios, 3) analyzing the trade-off 

between users (i.e., passengers) and the operator with multi-objective optimization models, 

which offers a broader view of the service planning problem, 4) optimizing time point 

locations with a headway-based control strategy and developing a dedicated simulation-

based optimization algorithm, which can be easily implemented in the advance of ITS 

technology, 5) integrating strategic and tactic of strategies for tackling the service 

variability issue, which provides a basis for greater reliability improvement at the 

operational level. 
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It is expected that the proposed models are capable of maximizing operator profit 

and achieving high level of reliability with optimized stop, headway, and time points. Also, 

the proposed models should outperform the traditional models neglecting service 

variability, in terms of system efficiency and cost effectiveness. Therefore, to prove the 

concept that consideration of stochastic vehicle arrivals will impose great influence on bus 

service planning, a basic model with simplified network is developed. Two advanced 

models are proposed based on the first model to conduct further analysis. In particular, the 

first model (Model I – the basic model) deals with a many-to-one/one-to-many uniform 

distributed demand pattern along a feeder bus route. To incorporate the concept of 

stochastic vehicle arrivals, the headway variance at stops is integrated in the model. 

Without detailed analysis of the determinant factors, the functional form of headway 

variance is assumed dependent on stop sequence based on the results from previous 

simulation studies. With continuum modelling approach, the analysis is conducted to show 

the comparison between Model I and previous models.  

To enhance Model I and deal with a general transit route with many-to-many 

heterogeneous demand attributes, the second model (Model II) is proposed, in which the 

influencing factors of headway variance (i.e., both at-stop and en-route variation factors) 

are analyzed and formulated. Although the continuum approach in Model I could 

efficiently explore the relationship between decision variables and the objective function, 

converting stop spacing to actual locations may be a problem, especially under 

heterogeneous demand, traffic and geometric condition. Therefore, instead of finding the 

optimal stop spacing of a route, Model II considers feasible stop locations as decision 

variables and determines the optimal set of stops and headway to maximize operator profit. 
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Finally, Model III (the extended model) optimizes time points with a headway-

based control strategy, and investigates the impact of time points on the service reliability. 

It is acknowledged that time points could prevent small variation from propagating to 

greater variation; however, where and how many time points should be selected for a bus 

route remains a problem. The discrete variables for time points exponentially enlarge the 

body of feasible solutions, which increases the complexity of the problem. With the 

headway-based control strategy, Model III is solved with a simulation-based metaheuristic 

solution algorithm. For evaluating the potential change in system performance with 

proposed models, the comparison between the new model and other traditional models is 

also presented in this dissertation.  

The differences among the three models are illustrated in Table 1.1, where the 

planning parameters are listed in the left panel of the table, and the model capability of 

handling these parameters is marked in the right panel of the table.  

 

Table 1.1 Characteristics of the Proposed Models 

PARAMETERS 
MODEL 

I II III 

Demand 

Pattern 

Uniform (Many-to-one) √ √ √ 

Heterogeneous (Many-to-many)  √ √ 

Decision 

Variables 

Headway √ √  

Stop Spacing √   

Stop Locations  √  

Time Points   √ 

Stochastic 

Factors 

At-stop Factors √ √ √ 

En-route Factors  √ √ 
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 Research Approach  

After defining the research objective and work scope, a comprehensive literature review 

on related topics is conducted for the dissertation. Three optimization models with different 

emphases are formulated. Due to the characteristics of model formulation approaches and 

the complexity of the problems, dedicated solution algorithms are developed for solving 

the developed models. With the developed models and solution algorithms, three case 

studies are conducted to test the model capability and applicability. Finally, all findings are 

summarized with a discussion of future research following the dissertation. The study 

approach is illustrated in Figure 1.1. 

 

 
Figure 1.1 Study approach.  

 

 Dissertation Organization 

This dissertation is organized into six chapters. Chapter 1 introduces the research 

background, identifies the research problem, as well as defines the research objective and 

Define the 
problem

Specify reseach 
objective and work 

scope

Conduct literature 
review

Formulate the first 
model - Basic

Model

Develop the 
second model -

Enhanced Model

Propose the third 
model - Extended

Model

Develop Solution 
Algorithms

Conduct Case 
Studies

Summarize 
Findings and  
Conclude the 

Study
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work scope. The proposed study approach is also represented in Chapter 1. Chapter 2 

summarizes a comprehensive review of related studies and solution algorithms applied to 

solve the developed models. Chapter 3 presents three models developed for a single bus 

route under consideration of travel time variability, each of which has its own emphasis 

and serves specific planning purposes. Chapter 4 describes the solution algorithms applied 

to solve the models developed in Chapter 3. Chapter 5 presents the case studies in Chengdu, 

China with the model discussed in Chapter 3 and solution algorithms presented in Chapter 

4. The optimal results are compared with those generated from the traditional models 

without considering travel time variability, and the influence of model parameters on the 

objective values are investigated with sensitivity analyses. Finally, Chapter 6 summarizes 

the findings from the case studies and proposes future research directions.  
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CHAPTER 2 

2.LITERATURE REVIEW 

 

 

As discussed earlier in the introduction, ridership is influenced by both external (e.g. social 

economic characteristics) and internal (e.g., service quality) factors of a bus transit system. 

Under the circumstances where a fixed-route bus transit is given, the population and social 

economic profiles in the service area will not change drastically within a given time period. 

Therefore, considering the decision-making process of bus users, the quality of service, 

including service availability (e.g., frequency, service coverage, and access) and comfort 

/convenience (e.g., passenger load, reliability, and travel time), is the major influencing 

internal attribute, which reflects the passenger’s perception of service performance 

(Kittelson & Associates et al., 2013).  

Regarding passengers’ attitudes towards the service quality of transit systems, For 

Transit Cooperative Research Program (TCRP) project B-11, dedicated surveying 

techniques were developed and pilot studies were conducted at three transit agencies 

(Morpace International, Inc., 1999). Among nine categories (i.e., comfort, nuisances, 

scheduling, fares, cleanliness, in-person information, passive information, safety, and 

transfers) and 46 attributes identified and surveyed for the transit systems, it was found that 

the attributes relating to scheduling were among the top area of both existing and potential 

concerns. For another project of National Cooperative Highway Research Program 

(NCHRP), a survey was conducted among customers of five different transit agencies 

around US about the satisfaction of these transit systems (Dowling, 2008). It was identified 
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that passengers consistently considered frequency the most important factor, with 

reliability and waiting time (which relates to frequency and reliability) consistently stated 

as the major contributors to passengers’ satisfaction. 

Besides the analysis of passengers’ reception of transit service quality through 

descriptive surveys, other studies also quantified the value of passengers’ transit travel time. 

TCRP Report 95 showed that the value of walking/initial waiting time (waiting time under 

regular headways) was about double the value of in-vehicle time (Evans and Pratt, 2004). 

Moreover, the unreliable transit service increased the average waiting time (i.e., additional 

waiting time because of stochastic bus arrivals), which could be converted to a monetary 

valuation of service variability. It was found that such value of excess waiting time under 

service variability was typically 2 to 3 times higher than normal value of waiting time  

(Bly, 1976). Another study in Auckland (Vincent, 2008) also found the value of excess 

waiting time was 3 to 5 times in-vehicle time. The TCRP Report 165 also indicated that 

ridership elasticity as respect to travel time is second to the highest: just lower than facility 

expanding and improvement (Kittelson & Associates, Inc., 2013). These previous studies 

indicated that unreliable service leads to increased waiting and in-vehicle time, which 

significantly reduces system attractiveness to passengers. Therefore, the system reliability 

should be considered to retain current patron and further stimulate ridership.  

 

 Bus Transit Service Reliability 

Service reliability has been referred as one of key indicators of transit system performance 

(Evans and Pratt, 2004; Dowling, 2008; Kittelson & Associates, Inc., 2013). Several 

stochastic factors contribute to the uncertainty of transit services, including dispatching 
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time from the terminal, en-route travel time, and dwell time at stops, all of which are 

correlated with each other: a late bus will pick up more passengers at a certain stop, leading 

to much longer headway with its preceding bus, whereas a following bus may have less 

passengers to pick up and catch up with the late bus easily, causing bus bunching.  

Stochastic traffic conditions and spatially/temporally fluctuated demand cause 

variations in vehicle travel times, which lead to increased waiting times and delays for the 

passengers as well as inefficient vehicle and personnel utilization for the operators. Under 

such stochastic conditions, additional buffer time needs to be planned in average passenger 

travel time to ensure on-time arrivals. Such buffer time is considered as an important 

portion of passenger travel cost, which is highly sensitive to service reliability (Turnquist 

and Bowman, 1980; Furth and Muller, 2006) and will ultimately affect mode choice 

decisions. Moreover, passengers boarding at a downstream stop, in general, would 

experience longer wait time and planned travel time than those boarding at upstream stops, 

since minor upstream variations may easily propagate to downstream locations, especially 

under congestion conditions.  

On the other hand, from the perspective of the operators, unreliable service means 

more recovery time built into schedules and more resources needed to satisfy the demand. 

As improved reliability helps the operator optimize resource usage and maximize 

production, considering the reliability in the design phase is critical to ensuring a successful 

service planning.  
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2.1.1 Influencing Factors 

A number of endogenous and exogenous factors (Woodhull, 1987) cause unreliable bus 

services. Endogenous factors include passenger boarding profiles, route configuration, stop 

spacing, and driver behavior. Exogenous factors mainly include traffic congestion and 

accidents, traffic signalization, on-street parking, and weather conditions. Considering bus 

running and dwelling along the journey, these factors can be categorized into two groups: 

the factors related to roadway geometry and traffic condition along the route – en-route 

factors, and the factors related to boarding profile – at-stop factors (Levinson, 1983; 

Strathman et al., 2000; Bertini & El-Geneidy, 2004; Lin and Bertini, 2004; Dueker et al., 

2004).  

To model the variation along the route, Adebisi (1986) formulated headway 

variance in terms of boarding demand and travel time variation caused by traffic conditions. 

The model was effective to describe the service disturbance along the route and yet 

simplified by neglecting the detailed roadway geometry. As indicated in the study, the 

travel time and its variance on a link between two adjacent stops are influenced by the 

traffic conditions as well as the frequency of delay-producing elements, such as 

intersections and narrow bridges. Later, Adamski (1991) analyzed dwell time variability at 

bus stops due to different passenger handling types. Stochastic boarding and alighting times 

were assumed, and different types of distributions were tested to represent the parallel and 

series passenger handling processes at stops.  

Investigating service reliability at urban bus stops, Chien et al. (2000) found that 

headway variance increased when the stop location was further away from the beginning 

of a route. Lin and Ruan (2009) proposed a probability-based headway regularity measure 
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to investigate the factors influencing service performance. In their study, service reliability 

was defined as the probability that buses arrive at a stop within a tolerable interval, which 

was a function of bus dwell time, stop sequence, maximum anticipated headway, and 

numbers of boarding/alighting passengers.  

Besides the above mathematical formulations proposed by various studies  

(i.e., Adebisi, 1986; Adamski, 1991; Chien et al., 2000; Lin and Ruan, 2009), the 

widespread implementation of Automatic Vehicle Location systems (AVL) and Automatic 

Passenger Counters (APC) in the transit industry has enhanced the ability of system 

monitoring and reliability analysis. Several studies have employed collected data from 

AVL/APC to evaluate different aspects of system performance and to investigate the 

causes for service variability (Strathman et al., 1999, 2000, 2002; Furth et al., 2003; 

Hammerle et al., 2005; Furth, 2006; Mazloumi et al., 2008). Based on these studies, 

distance between time points, route length, number of stops, and boarding/alighting 

profiles were found significantly related to service reliability.  

Although the studies revealed that many factors could affect service reliability 

(Woodhull, 1987; Strathman and Hopper, 1993; Chien et al., 2007; Chen et al., 2009;  

Lin and Ruan, 2009; Islam and Vandebona, 2010; El-Geneidy et al., 2011), the relationship 

between unstable services and stop/headway optimization have not been thoroughly 

investigated in the previous research (Wirasinghe and Ghoneim, 1981; Kuah and Perl, 1988; 

Furth and Rahbee, 2000; Chien and Qin, 2004).  
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2.1.2 Improvement Strategies 

Considering the en-route and at-stop factors of bus service disturbance, there are two major 

categories of countermeasures to improve bus performance (Adebisi, 1986). When the en-

route factors predominate the cause of variability, the redesign of bus routes, such as 

reducing route length, modifying bus stops or introducing bus transit priority scheme, could 

improve service reliability. If the passenger loading factors are the major reason for the 

variability, bus control strategies, such as introducing holding strategies and bus 

monitoring schemes, are effective for better system performance. 

Similarly, as discussed by van Oort and van Nes (2008), service reliability can be 

improved strategically (e.g., via network design), tactically (e.g., via timetable planning), 

and operationally (e.g., via vehicle controlling). Although the most popular approach to 

elevating schedule/headway adherence is at the operational level, greater reliability can be 

achieved at the tactical and strategic levels.  

To fill in the research gap, this study optimizes the service planning variables 

including bus stops, dispatching headway, and time points for a given bus route for better 

service reliability, where the en-route and at-stop factors are considered for modelling 

headway variance. Therefore, the following section briefly introduces two categories of 

countermeasures, with detailed related studies reviewed in Sections 2.2 and 2.3. 

 

Bus Route Planning  

Turnquist (1981) analyzed different scenarios with the combinations of headways, travel 

time variations, and route densities. The simulation results revealed that two interactions, 

namely frequency-demand and demand-travel time variations, took vital parts in the 
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network reliability. van Oort and van Nes (2008) investigated the impacts of timetable 

planning and network design on service reliability, and identified driving ahead of schedule 

as a source of increased waiting times. With the field data collected in the Netherlands, 

their study showed that the route length, line coordination, and stop spacing contributed to 

the deviation of travel times. The authors suggested that possible route design strategies to 

improving service reliability included splitting route into two separate routes, enhancing 

route coordination, or determining stop spacings under the consideration of dwell time 

variation caused by demand fluctuation.  

Later, with a newly designed transit route, van Oort and van Nes (2009b) analyzed 

the impacts of infrastructure improvements and vehicle control strategies on the service 

performance in the route with enhanced right of way, improved vehicle and station design, 

real-time information, and well-planned timetables. Significant improvements on quality 

of service were observed after the introducing of new route, including reduced dwell time 

variation, improved schedule adherence, and shorter passenger waiting time.  

Recently, El-Geneidy et al. (2011) assessed the quality of service in a bus route in 

Minneapolis, Minnesota, and identified that many bus stops were underutilized, while stop 

consolidation could possibly lead to substantial improvement of performance (El-Geneidy 

et al., 2006). Through analyzing the empirical data collected from modified bus routes, 

their studies confirmed that stop redundancy and inefficient resource allocation were 

common issues in existing bus systems, and that proper changes in the route configuration 

could lead to service performance improvement in terms of reliability.  
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Bus Operational Control  

A number of strategies aiming at controlling headway variability have been proposed and 

evaluated. Among vehicle control approaches to improving service reliability, holding 

strategies are widely applied, which reduce service disturbance by regulating departure 

time from stops according to predefined criteria.  

Holding strategies can be classified into two categories: schedule-based and 

headway-based. Schedule-based strategies define bus departure time based on the 

scheduled departure time, while a headway-based strategy regulates the departure time 

based on the headways between consecutive buses. Since both passenger boarding profile 

and traffic condition factors affect service variability, the interactions between passenger 

activity, transit operations, and traffic dynamics need to be modeled for impact analysis of 

holding strategies on bus performance (Cats et al., 2011).  

 

 Bus Route Planning 

The evaluation of transit network is always related to the vehicle requirements on each 

route, such that the problem of network design and frequency setting are mostly addressed 

at the same time (Ceder and Wilson, 1986). In terms of service planning for a given bus 

route, stop spacing and headway were usually jointly optimized in previous studies. The 

following sections briefly describe other major components in the planning process, 

including objectives, network settings, and demand patterns. 
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Objectives 

Different objectives could be set in bus service planning process. As a result, significant 

differences in the attractiveness and performance of an optimized network can be observed 

depending on the objectives (van Nes and Bovy, 2000). Considering different stakeholders 

in the process of bus route planning, major objectives could be grouped into three 

categories. From the passengers’ point of view, a good bus route is featured with high 

accessibility/low in-vehicle time and commonly used objectives favoring passengers 

include maximizing passenger surplus or minimizing total user cost. From the operator’s 

point of view, however, a good bus route should be profitable or featured by low operating 

cost/high ridership and level of service, with the objectives such as maximizing operator 

profit and minimizing operator cost in favor of the transit operators. Considering the 

passengers and the transit operators in the entire system, objectives such as maximizing 

social welfare or minimizing total system cost are mostly commonly investigated.  

With different perspectives, previous studies optimized bus route planning either 

focusing on single objective (e.g., maximizing profit, minimizing total passenger travel 

time) or balance the benefits of passengers and operators with the objective of maximizing 

social welfare or minimizing system cost.  

 

Network Settings 

Early studies optimized stop spacing and headway with simplified topographic structures, 

and analyzed relationships among decision variables, model parameters and objective 

functions. Recent research focused more on model applicability to a real world system, 

considering realistic conditions and practical constraints.  
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Demand Patterns 

The demand patterns for a bus route could be generally categorized into many-to-one and 

many-to-many patterns. A many-to-one demand pattern involves multiple origins and one 

destination, which is likely the demand of a feeder bus route connecting a residential area 

and a CBD (or a major terminal). A many-to-many demand pattern represents travel flows 

from multiple origins to multiple destinations. Considering demand sensitivity to service 

quality and quantity, fixed demand (i.e., demand is assumed to be stable) and elastic 

demand (i.e., demand is sensitive to fare and/or quality of service) are usually studied in 

bus route planning.  

 

Previous Studies 

Early research often focused on simplified network to investigate the relationship between 

decision variables, model parameters and objective values in the bus route planning. Most 

of the earlier studies applied analytic approaches for optimizing simplified bus networks, 

where demand was assumed equally distributed over study area and bus lines/stops were 

aligned with equal length/spacing. Usually, fixed many-to-one demand pattern without 

spatial or temporal changes was analyzed. Among them, Vuchic and Newell (1968) 

developed an analytic model to optimize the stop spacing for a rapid transit system, which 

minimized total travel time. Mohring (1972) developed an analytic model to optimize 

service frequency for a given bus route based on the minimization of total system cost (i.e., 

sum of user waiting cost and operator cost). With the assumption of fixed demand, it was 

found that service frequency provided on a route should be proportional to the square root 

of demand density (i.e., ridership per unit distance or time).  
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Later, Kuah and Perl (1988) presented a mathematic model for jointly optimizing 

route spacing, headway and stop spacing for a feeder bus system in a rectangular network, 

where both constant and variable stop spacings along the routes were analyzed. Ceder et 

al. (1983) proposed a mathematical model to find smallest number and location of bus stops 

so that no passenger was further away than the maximum allowable walking distance. In 

their study, the network was represented by arc and node, with nodes representing 

community locations and stops to be located along the arcs or on nodes. Ghoneim and 

Wirasinghe (1987) developed a mathematical model in order to determine the optimum 

zone configuration for a commuter rail line for minimizing total system cost, in which 

many-to-one/one-to-many demand pattern was considered. By simplifying the demand 

pattern, the investigations could be emphasized on the other model parameters to be studied. 

However, such fixed and many-to-one/one-to-many demand assumption has its limits and 

does not fit in a network with many-to-many or elastic demand patterns. 

Some studies optimized bus route planning taking into account temporal demand 

variations and demand elasticity. For instance, Furth and Wilson (1981) optimized 

headways over time and route for maximizing net social benefit (i.e., sum of operator’s 

benefit and user wait time savings), considering demand elasticity with respect to wait time. 

Considering time-dependency and fare elasticity of demand, Chang and Schonfeld (1991) 

optimized route spacing, headways and fares for a feeder bus system (i.e., many-to-one or 

one-to-many demand pattern). Later, Spasovic et al. (1994) optimized route length and fare 

considering travel time and fare elasticity of demand for a feeder bus system. Although 

temporal variation was taken into consideration, these studies still dealt with many-to-one 

demand patterns that were only suitable for feeder bus systems. 
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Recognizing that many-to-one/one-to-many demand patterns were not applicable 

for service areas with heterogeneous demand distributions, some other studies have 

incorporated spatial variation of demand into the bus route planning models. Wirasinghe 

and Ghoneim (1981) optimized stop spacing for a single bus route considering many-to-

many demand pattern, where the objective function was to minimize total system cost in a 

simplified local street network. In order to incorporate spatial characteristics, Chien and 

Schonfeld (1997) investigated a grid bus transit system in a heterogeneous urban 

environment. Their study assumed varying demand distribution over the irregular service 

area, and optimized the route, stop locations and operating headways for total cost 

minimization. Later, Chien and Spasovic (2002) introduced fare elasticity of demand into 

model development for bus route planning. Considering many-to-many demand patterns, 

zonal demand variation and route costs, and vehicle capacity constraints, route and stop 

locations, headways, and fare were optimized which maximized operator profit and social 

welfare.  

The majority of the above studies typically assumed that bus stops could be 

allocated anywhere along the routes, and therefore treated stop spacing as a continuous 

variable. This continuum modelling approach yields optimal stop spacing that could be 

converted to actual stop locations later. For instance, Li and Bertini (2009) optimized the 

bus stop spacing with archived stop-level demand data, where travel demand was 

considered uniformly distributed over the bus route. The authors converted the optimal 

stop spacing into stop locations according to the actual street grid. Although the continuum 

approach could effectively demonstrate the sensitivity of optimal stop spacing to various 

route design parameters (e.g., demand distribution, vehicle capacity), it does have its 
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disadvantages. One of the major shortcomings is the difficulty to apply the stop spacing to 

a realistic street network, within which stops are usually located at intersections and 

restricted to geographical conditions. Another concern is that the continuum approach was 

often applied with the assumption of smooth and continuous distributed demand, which 

were not able to represent heterogeneous demand distributions.  

Therefore, considering passenger boarding/alighting entry points, Chien and Qin 

(2004) optimized number and locations of bus stops for improving transit accessibility. In 

their study, the demand was assumed concentrated at several entry points on a segment of 

bus route. Chien et al. (2003) determined the locations of bus route and stops considering 

realistically geographic variations and heterogeneous demand distributions, where the 

irregular shaped area was cut into small rectangular zones and the corners of each zone 

were treated as candidate stop locations. Furth and Rahbee (2000) applied the discrete 

approach to optimize bus stop spacings for a given bus route. The intersections along the 

bus route were treated as candidate stops and a simple geographic model was applied to 

distribute collected demand data to the route service area. Later with a parcel-level 

geographic database, Furth et al. (2007) investigated the impact of stops to access distance, 

riding time, and operating cost considering various sets of stop locations, where the demand 

was estimated based on land use type and development intensity. Recently, DiJoseph and 

Chien (2013) optimized the number and locations of bus stops, headway and fare for a 

feeder bus route to maximize total operator’s profit considering realistic networks, where 

the demand elasticity with respect to fare and service quality were considered. 

The aforementioned studies, however, did not consider the variance of bus travel 

times, and thus the impacts of such variation on the design of stop spacing and headways 
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were unable to assess (Orloff and Ma, 1975; Chang and Hsu, 2001). They typically 

assumed that buses travel at a constant speed along the route, which is not influenced by 

the number of bus stops and traffic conditions. However, as the study by Levinson (1983) 

suggested, bus travel times and speed were derived as a function of stop frequency, stop 

duration, as well as bus dwell times. The survey conducted in his study showed that 

reducing the number of bus stops and dwell times lead to greater travel time saving than 

that achieved by eliminating traffic congestion. Based on these findings, Saka (2001) 

addressed the significance of bus stop spacing as an operational parameter under 

interrupted traffic conditions, where the delay time caused by traffic signals was captured. 

The sensitivity analysis with different stop spacing scenarios demonstrated that proper stop 

spacing could significantly improve the service quality, decrease travel time, and reduce 

the fleet size.  

Not until recently, few studies have focused on the interaction of congestion and 

bus stop spacing. Ibeas et al. (2010) and Moura et al. (2012) optimized bus stop locations 

with a bi-level model where a mode choice model for passengers was applied. Although 

their work took into account the possible variations in demand due to different bus stop 

locations in the network, headway variation was not studied. Tirachini and Hensher (2011) 

investigated the impact of bus bunching on the optimal design of bus stop spacing, fare 

collection system, bus operating speed and headway, with emphasis on bus congestions at 

high demand bus stops. Without considering heterogeneous demand distribution along the 

route, two geographic areas were applied based on the level of demand. Within each of the 

areas, demand was assumed uniformly distributed. The objective of the optimization model 

was to minimize total cost without considering demand elasticity. With same network 
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settings, Tirachini (2014) optimized stop spacing for minimum total cost operation of an 

urban route considering the impacts of bus stop size on bus congestion at stops. Their study 

suggested that with the consideration of bus bunching, if the operating speed could be 

optimized, there was a range in which the number of stops decreased with demand to reduce 

the acceleration and deceleration delay, as opposed to what suggested by the traditional 

models. 

Table 2.1 summarizes major studies conducted on the optimization of bus service 

planning. 

 

 Bus Control Study 

The procedure of timetable design mainly includes three steps: first is to decide the proper 

headway to satisfy route demand and level of service, which is usually optimized together 

with stop locations. Then, the number and locations of time points are determined where 

operational control strategies are to be applied. Finally, bus departure times for each time 

point need to be scheduled based on various control strategies (Liu and Wirasinghe, 1995a).  

The major questions in the timetable design are to determine the number and 

locations of time points, as well as the amount of slack time allocated to each time point, 

since these factors have significant effects on the system cost as well as service reliability. 

Excessive time points reduce bus operating speed and increase the waiting time of through 

passengers, while inadequate time points are not able to mitigate the variation of travel 

time. Similarly, upstream time points may not be effective to prevent disturbance 

propagating to the rest of the route, while only a few passengers will benefit from 

downstream time points although most of the large headway deviations occur there. 
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Therefore, it is critical to select proper objective functions in the planning of time points to 

incorporate the aforementioned trade-offs and improve system performance. 

There are mainly two types of holding strategies: schedule-based and headway-

based strategies. The schedule-based strategies regulate bus departure time relative to the 

posted schedule, whereas the basis of the headway-based strategies is headways between 

consecutive vehicles. Since it is difficult to mathematically optimize time points and 

associated slack time simultaneously with schedule-based strategies, most of the previous 

studies focused on the determination of slack times associated with predefined time points 

(e.g., Liu and Wirasinghe, 2001; Mazloumi et al., 2012). With real-time information often 

required in a headway-based control strategy, the majority of previous studies on headway-

based strategies applied simulation models to study the impact of control strategies without 

optimization of number and locations of time points. 

 

Schedule-based Strategies 

Focusing on schedule-based strategies, an early study conducted by Newell (1977) 

proposed a lower boundary of the slack time for a many-to-one/one-to-many bus route 

based on a set of simplified assumptions. It was found that the slack time was related to the 

standard deviation of bus travel time between time points, average passenger 

arrival/boarding rates, and the dispatching headway. 
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Table 2.1 Selected Studies on Optimal Bus Service Planning 

Year Author Objectives 
Decision 

Variables 
Demand 

Solution 

Algorithm 

1968 
Vuchic & 

Newell 

User Cost 

Minimization 
Stop Spacing Many-to-One 

Dynamic 

Programming 

1981 
Wirasinghe 

& Ghoneim 

Total Cost 

Minimization 
Stop Spacing Many-to-Many 

Traditional 

Derivative 

1986 
Ceder & 

Wilson 

Total Cost 

Minimization 
Route, Headway Many-to-Many Heuristic 

1988 
Kuah & 

Perl 

Total Cost 

Minimization 

Route, Stop 

Spacing, 

Headway 

Many-to-One 
Traditional 

Derivative 

1997 
Chien & 

Schonfeld 

Total Cost 

Minimization 
Route, Headway Many-to-Many 

Traditional 

Derivative 

2000 
van Nes & 

Bovy 

Multiple 

Objectives 

Route and Stop 

Spacing 
Many-to-One 

Traditional 

Derivative 

2000 
Furth & 

Rahbee 

Total Cost 

Minimization 
Stop Spacing Many-to-Many 

Dynamic 

Programming 

2001 Saka 
Total Travel Time 

Minimization 
Stop Spacing Many-to-Many 

Traditional 

Derivative 

2003 Chien et al. 
Total Cost 

Minimization 
Route, Headway Many-to-One 

Exhaustive 

Search 

2004 
Chien & 

Qin 

Total Cost 

Minimization 
Stop Spacing Many-to-Many 

Exhaustive 

Search 

2006 
Dell’Olio et 

al. 

Total Cost 

Minimization 

Stop Spacing, 

headway 

User 

Equilibrium 
Heuristic 

2009 Li & Bertini 
User Cost 

Minimization 
Stop Spacing Many-to-Many 

Traditional 

Derivative 

2010 Ibeas et al. 
Total Cost 

Minimization 
Stop Spacing Many-to-Many 

Pattern 

Search 

2011 
Tirachini & 

Hensher 

Total Cost 

Minimization 

Five Decision 

Variables 

Including Stop 

Spacing 

Many-to-Many Heuristic 

2012 Moura et al. 
Total Cost 

Minimization 
Stop Spacing Many-to-Many Heuristic 

2013 
DiJoseph & 

Chien 

Total Profit 

Maximization 

Stop Spacing, 

Headway, Fare 
Many-to-One Heuristic 
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Later, considerable research has been conducted on optimizing slack times at 

predefined time points for reliability improvement and total cost minimization (Barnett, 

1974; Wirasinghe, 1993; O’Dell and Wilson, 1999; Eberlein et al., 2001; Hickman, 2001; 

Zhao et al., 2006; Furth, 1995; Furth and Muller, 2007, 2009; van Oort et al., 2010;  

Cats et al., 2011; Delgado et al., 2012; van Oort et al., 2012). Most of these studies 

investigated the impacts of holding strategies on bus on-time performance with predefined 

time points, which were mainly determined by several practical rules, such as terminals, 

stops with high boarding demand and low through passengers, etc. Although some studies 

stated that the best location for a time point was dependent on the demand distribution and 

network configuration, the optimal number and locations of time points were not 

theoretically determined.  

Lesley (1975) related the locations of time points to headway coefficient of 

variation, and suggested that time points should be placed at bus stops with coefficient of 

variation greater than twice route-level average coefficient of variation. Abkowitz and 

Engelstein (1984) suggested that time point locations should be determined based on the 

standard deviation of bus travel times to a stop and the ratio of boarding passengers to 

through passengers. Later, Abkowitz et al. (1986) developed an algorithm to optimize the 

threshold headway for high frequency bus control. Their study revealed that the optimal 

locations were sensitive to the passenger boarding profile along the route.  

Furth and Muller (2007) analyzed the cost impacts of number of time points and 

showed that increasing the time points led to higher benefit for the bus system with 

diminishing returns. However, the locations of time points were not optimized in their 

study. Considering the trade-off among different cost components in bus operation by 
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introducing time points, Wirasinghe and Liu (1995b) developed an analytical model to 

determine the number and locations of time points as well as the amount of slack times for 

a bus route with a single bus run considered. A number of assumptions were applied, 

including long bus headway, no missing passengers, and independent successive bus runs.  

Later, Liu and Wirasinghe (2001) applied an optimization model in a simulation 

model to optimize time points and slack times simultaneously. The alternative schedule 

designs were selected based on a set of practical rules and evaluated against the total cost 

associated with the schedule. The exhaustive enumeration method applied in this study 

consumed a massive time to generate a good solution considering a large feasible solution 

pool. Meanwhile, the rules applied to reduce the number of feasible solutions may lead to 

failure in finding the global optimal solution.  

Due to the limitations of the above study, Mazloumi et al. (2012) applied two 

heuristics algorithms (i.e., Ant Colony and Genetic algorithms) to optimize the number and 

locations of time points and associated slack times, with same cost components considered 

in the objective function. The alternative schedules with combinations of time points and 

predefined slack times were evaluated against the generalized total cost. In their study, the 

ant colony and genetic algorithms were compared in terms of efficiency. The time points 

as well as their corresponding slack times were all assumed as integer, with predefined set 

of slack time to be optimized. 

Most of the abovementioned studies focused on the schedule-based strategies, 

which was suggested to fit long-headway services better. Although comparing to long-

headway services, maintaining bus schedules with short headways is considered more 

difficult, due to the complexity of optimization problems with headway-based strategies 
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(which is generally considered to be effective in short-headway services), few studies 

optimized time points for short-headway services.  

 

Headway-based Strategies 

Dealing with headway-based strategies, simulation is commonly applied to analyze vehicle 

controlling, where a random pattern of passenger arrivals and a binomial distribution of 

number of alighting passenger at each stop were typically assumed (Koffman, 1978; 

Andersson et al., 1979, Vandebona and Richardson, 1986; Senevirante, 1990;  

Lin et al., 1995; Fu and Yang, 2002). An early study conducted by Senevirante (1990) 

analyzed the impact of different operating strategies using simulation and showed a 

second-degree polynomial relationship between the standard deviation of headway and the 

number of time points, indicating that either too many or too few time points would have 

a negative effect on headway adherence and on-time performance.  

Recently, Fu and Yang (2002) simulated the scenarios of one-stop control, two-

stop control, and all-stop control with predefined time points. Two different control 

strategies, namely one-headway-based and two-headway-based, were examined with 

selected performance measures (i.e., user waiting and in-vehicle times, and bus travel time). 

They found that two-stop control appeared to be the best among others in terms of system 

performance. The results from these simulation models showed that the more boarding 

demand a stop experienced, the higher possibility it served as a time point.  

To analyze the impact of bus control strategy on short-headway services, Daganzo 

(2009) proposed a headway-based approach to eliminate bus bunching, where an adaptive 

control scheme was developed. The approach dynamically determined bus holding times 
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at the control points based on real-time headway information, assuming buses can be 

controlled everywhere along the route.  

The study conducted by Cats et al. (2011) investigated the impacts of holding 

control strategies on transit performance with a simulation approach, where one scheduled-

based strategy and two headway-based strategies were chosen for control effectiveness 

comparison. The system evaluation focused on the effect of time points on service 

regularity in terms of headway coefficient of variation. The results showed that headway-

based strategies led to shorter passenger waiting times at the cost of longer in-vehicle times, 

compared with schedule-based holding strategies.  

Table 2.2 summarizes major previous studies on optimization of time points and 

slack time. 

 

 Optimization Algorithms 

Based on the number of objectives to be optimized, the optimization models can be 

categorized into two groups: single-objective and multi-objective models. The single-

objective optimization model involves only one objective, whereas in the context of multi-

objective optimization, two or more conflicting objectives are optimized. Dealing with 

different optimization models, a variety of algorithms has been developed and applied in 

the previous studies. In this section, the multi-objective models are reviewed since the 

majority of transit network design problems fall in this category, followed by the common 

solving algorithms. 
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Table 2.2 Selected Studies on Time Points and Slack Time Optimization 

Year Author Approach 
Analysis of Time Points 

Number Location 

1972 
Osuna and 

Newell 
Analytical Single Not Analyzed 

1978 Koffman Simulation Single Terminal 

1986 Abkowitz et al. 
Analytical & 

Simulation 
Single 

Related to Boarding 

Profile 

1990 Senevirante Simulation User-Defined 

Related to the 

Standard Deviation 

of Headway 

1995 
Wirasinghe and 

Liu 
Analytical Optimized (for a single bus run) 

1995 Lin et al. Simulation All-Stop Not Analyzed 

2001 Eberlein et al. Analytical Single Terminal 

2001 Hickman Analytical Single 
Related to Boarding 

Profile 

2001 
Liu and 

Wirasinghe 
Simulation 

Optimized (within limited feasible 

solutions) 

2002 Fu and Yang Simulation 
Single, Two, All-

Stop 

Related to Boarding 

Profile 

2006 Zhao et al. 
Analytical & 

Simulation 
Single Not Analyzed 

2009 
Furth and 

Muller 
Analytical Multiple 

Related to Boarding 

Profile 

2010 van Oort et al. Simulation Single Not Analyzed 

2011 Cats et al. Simulation Multiple Not Analyzed 

2012 Mazloumi et al. Analytical 
Optimized (with predefined set of slack 

times) 

2012 van Oort et al. Analytical Single, Two 
Related to Boarding 

Profile 

2012 Lee et al. Simulation Single Not Analyzed 

2014 Lee et al. Analytical Single Not Analyzed 
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2.4.1 Optimization Modelling Approach 

The goal of multi-objective optimization is to strike a balance among conflicting objectives. 

However, it is not trivial to find an optimal solution for the multi-objective problems 

without iterative interaction with the decision maker, since the optimal solution for one 

objective is not necessarily optimal for another (Miettinen, 1999). To tackle the issue, 

modelling approaches including weighted sum and Pareto-optimality as discussed below 

are commonly applied.  

The weighted sum approach formulates all the conflicting objectives into a 

weighted function. As such, the multiple objective functions are converted into a single 

objective function. Many single-objective optimization problems listed in Section 2.2 can 

be categorized into this group, where two conflicting objectives (e.g., minimizing user cost, 

minimizing operator cost) are combined through weight factors (e.g., Ghoneim and 

Wirasinghe, 1987; Furth and Wilson, 1981; Chang and Schonfeld, 1991; Spasovic et al., 

1994; Chien and Schonfeld, 1997; Li and Bertini, 2009; Furth and Rahbee, 2000; Furth and 

Muller, 2007, 2009; van Oort et al., 2010; Cats et al., 2011). The weighted sum modelling 

approach makes the optimization models easier to solve, however, it only reflects one 

certain relationship between two conflict objectives with a set of weight factors. Moreover, 

although critical, it is often difficult to assign appropriate weight factors for the conflicting 

objectives due to different scales, units and importance involved in these objectives. 

The Pareto optimality approach tries to find a set of non-dominated solutions 

(Miettinen, 1999; Deb, 2001), which achieves a state that any objective cannot be further 

improved without degrading others. In bi-objective problems, the curve formed by this 
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solution set is called Pareto front (or trade-off curve), where the trade-off between the 

conflicting objectives is clearly represented.  

 

2.4.2 Solution Algorithms 

A variety of algorithms have been developed and applied in previous studies for solving 

bus route planning problem with a weighted sum approach, including exact algorithms, 

heuristic and metaheuristic algorithms.  

 

Exact Algorithms 

Through continuum approximation, Wirasinghe and Ghoneim (1981) optimized the stop 

spacing along a local bus route with a non-uniform many-to-many travel demand pattern. 

By separating the total cost function into segments based on transfer point, the stop spacing 

between any two transfer points can be calculated through setting the derivative of each 

cost function with respect to stop spacing equal to zero. Hurdle and Wirasinghe (1980), 

Kuah and Perl (1988) also applied traditional derivative methods to solve the developed 

optimization models for bus route planning. These methods are effective in solving bus 

route optimization but not applicable to the models with discrete variables. Formulating 

the objective function based on discrete stop locations, several algorithms were applied in 

bus stop optimization. The study conducted by Chien and Qin (2004) applied an Exhaustive 

Search algorithm (ES) to determine the optimal number and locations of stops numerically, 

which computed all the possible combinations for any number of stops and found the least-

cost solution.  
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Heuristic Algorithms 

In the studied by Vuchic and Newell (1968) and Furth and Rahbee (2000), Dynamic 

Programming (DP) was applied for the optimization model, which broke down the discrete 

optimization problem into a set of simplified sub-problems and found the solution by 

tracing back through the optimal decisions made in each sub-problem. DP decomposes the 

n-dimensional optimization problem into a set of optimization sub-problems and solves the 

sub-problems starting from the smaller in size, which examines all possible ways to find 

the best solution and may be effective for the problem with high sub-problem overlapping 

rate.  

Chien and Schonfeld (1998) applied the Gradient Descent algorithm (GD) to find 

an optimal/near-optimal solution for the joint optimization problem, where the decision 

variables included rail route length, station spacing and headway, as well as feeder bus 

route and stop spacing, and headway. The gradient vector was derived by setting the first 

order partial derivatives of the total cost function equal to zero. GD allows changes of all 

decision variables in one step to seek a new gradient vector, and thus provides an efficient 

way to find a descent direction in searching optimal solutions by computing the 

components in the gradient vector sequentially and iteratively. 

LeBlanc (1975), Poorzahedy and Turnquist (1982), respectively, developed 

branch-and-bound based heuristic algorithms to solve the proposed bi-level optimization 

model, where the upper level was to minimize total cost and the lower level involved a user 

equilibrium assignment problem. Gao et al. (2004, 2005) designed heuristic solution 

algorithms for the proposed bi-level programming models to solve transit network design 

problems. Ibeas et al. (2010) optimized bus stop spacing with a passenger mode choice-
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assignment model, where the stop spacing varies over zones in the entire network. In their 

study, the Pattern Search algorithm (PS) was applied to solve the bi-level optimization 

model. PS starts from generating an initial feasible stop spacing solution vector and iterates 

to find an optimal/near-optimal solution.  It does not require the derivatives of the problem 

to be optimized, and could be applied to the functions that are not continuous or 

differentiable. Since there is a stage to find a good direction of descent within PS, a pre-

established amount of change in one of the variable is critical to ensure a good local 

direction of movement in the solution space. 

 

Metaheuristic Algorithms 

In large-scale realistic transit network design and scheduling, metaheuristic algorithms 

including Simulated Annealing (SA), Tabu Search (TS), Ant Colony Optimization 

algorithm (ACO), and Genetic Algorithm (GA) are commonly applied to find a good 

solution efficiently (Fan and Machemehl, 2004). GA is an adaptive heuristic search 

algorithm that is based on the evolutionary idea of natural selection and genetics. It is 

applicable widely because of no constraints on the continuity, derivative existence, and 

unimodality of the problems to be solved. SA is a Monte Carlo simulation-based search 

algorithm, derived from the process of heating and then cooling a substance slowly to 

finally arrive at the solid state. The overall concept of TS is to avoid entrainment in cycles 

by forbidding or penalizing moves taking the solution in the next iteration to points in the 

solution space previously visited. ACO is inspired by the behavior of real ants seeking food 

between their colony and a source of food, and the main idea of ACO is the indirect 

communication of a colony of ants based on the pheromone trail.  
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To find a good local (possibly global) solution in a reasonable time domain, these 

algorithms generate a set of local optimums through efficiently reformulating the problem 

and selecting the best solution from the set as the optimal solution based on pre-defined 

stopping criteria. The mechanism behind the above algorithms could avoid being entrapped 

at the local optimum, such as mutation procedure in GA, heating stage in SA, Memory 

function in TS, and pheromone evaporation in ACO. The simplicity of the operations and 

the ability to find good solutions make these metaheuristic algorithms attractive for solving 

bus network design problems.  

A variety of studies were conducted applying different metaheuristic solution 

algorithms. Similar to the solution methods for the discrete stop optimization problem, 

Mazloumi et al. (2012) applied ACO and GA for developing optimal schedules  

(i.e., identifying the optimal number and locations of time points) for a fixed bus route, 

where these two algorithms were compared in terms of accuracy and efficiency in 

providing the optimal solution. Through searching a ‘good’ result from a large set of 

potential schedule designs, it is found that both algorithms were able to find the optimal 

solution, although ACA demonstrated a higher efficiency than GA by evaluating less 

designs. 

Pattnaik et al. (1998), Bielli et al. (2002), Chakroborty and Wivedi (2002), 

Chakroborty (2003), and Tom and Mohan (2003) applied GA to minimize total system cost 

with fixed demand, which generated a set of optimal routes and associated frequencies. 

Fan and Machemehl (2006a, 2006b, and 2008), Fan and Mumford (2010), Szeto and Wu 

(2011) and Nayeem et al. (2014) proposed different solution methods (e.g., SA, GA, TS) 

to optimize transit network design problem with various objectives. Zhao et al. (2005), 
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Zhao (2006), Zhao and Zeng (2006, 2008) applied different algorithms (e.g., SA, TS) for 

optimizing route configuration and associated frequencies. Yang et al. (2007) applied the 

ACO to optimize transit network design. Szeto and Jiang (2014) proposed a bi-level model 

for transit route design and frequency setting, considering passenger transfers and 

congestion effects, a bee colony metaheuristic algorithm (BCO) was applied to solve the 

problem and obtain robust solutions. Apply GA, Arbex and Cunha (2015) solved a multi-

objective transit network design and frequency setting problem with two conflicting 

objectives (i.e., minimizing user cost and minimizing operator cost) to find a set of routes 

and associated frequencies for an urban transit system. With TS, Giesen et al. (2015) solved 

the multi-objective optimization problem for transit frequency setting, minimizing total 

user travel time and fleet size simultaneously, and suggested different solutions considering 

the trade-off between the two conflicting objectives.  

In addition to mathematical programming techniques and simulation-based analysis 

methods in transit network optimization, few studies integrated simulation and 

optimization to find optimal values of decision variables. A simulation-based optimization 

approach integrates an optimizer guiding the search direction and a simulator for 

performance evaluation. With this approach, the analytical objective function is replaced 

with a simulation model. The simulation input is the decision variables and output is 

usually fitness value used by the optimizer in the process of searching for an optimal 

solution.  

Although simulation-based optimization has been documented in other areas  

(Gen et al., 1996; Liu, 2001), a little has been done in the field of transit planning. 

Mazloumi et al. (2012) applied ACO and GA to solve a schedule-based optimization model 
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to determine the optimal time points and slack time, with the objective of minimizing total 

cost incurred with the schedule (i.e., passenger waiting time, delay penalty, total operation 

time). In their study, possible time points are predefined among the entire set of stops, and 

the slack times at each time points were only chosen from three possible values (i.e., 0, 1, 

2 minutes). The system was simulated with VISSIM and the outputs of the simulation 

model were sent back to the optimization algorithms to calculate the objective value.  

Li et al. (2013) developed an expected value model for optimizing the multiple bus 

headways for a single bus route, where stochastic simulation and genetic algorithm were 

integrated to solve bi-level objective functions. Two objectives were considered in their 

study, which included maximizing operator profit as the upper level model, and minimizing 

expected waiting time as the lower level model. Sun et al. (2014) developed a multi-

objective optimization model for train routing and scheduling on a high-speed railway 

network. The model integrated route selection and train control optimization module with 

simulation module for scheduling.  

As shown in these studies, the simulation-based optimization enables searching for 

an optimal solution for many complicated problems that may not be easily mathematically 

formulated and solved. The system dynamics could also be well represented with this 

approach. However, due to the inherent characteristics of simulation, a global optimal 

solution is sometimes difficult to find. Considering the planning for time points with 

headway-based strategies, since real-time headway information is often necessary in the 

optimization process, the simulation-based optimization could be applied to solve the 

problem with carefully calibrated simulation models mimicking real world vehicle 

operations. 
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 Summary 

It is revealed that traffic congestion and dwell time fluctuation at stops could result in 

additional travel time, which would affect both passengers and operators. Neglecting the 

impact of travel time variability in stop and headway optimization may lead to poor 

decision- making due to underestimated operating cost and passenger travel time. However, 

the influence of traffic flow and demand fluctuation on headway variance, as well as the 

impact of such variation on the optimal service planning, has not been thoroughly 

investigated. 

Regarding setting time points for improving service reliability, it is recognized that 

the number and locations of time points for holding early-arrived vehicles have significant 

effects on both operator and passenger costs. Although previous studies stated that the best 

location for a time point depends on the demand distribution and network configuration, 

the optimal number and locations of time points were not theoretically determined. 

Various solution methods were applied to solve the optimization problems for bus 

route planning, each with its advantages and disadvantages. Traditional derivative methods 

are effective in solving the optimization of decision variables (e.g., bus route, stops, and 

headway), yet they could only be applied for the models with continuous decision variables. 

The exhaustive search algorithms ensure that an optimal solution could be found, however, 

the computation time will increase exponentially with the expansion of problem scale. 

Heuristic/metaheuristic algorithms, on the other hand, could provide an optimal/near-

optimal solution within a reasonable time span, which are commonly applied for large-

scale complicated problems. Although, parameters involved in the heuristic/metaheuristic 

algorithms should be fine-tuned to avoid converging towards local optima.
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CHAPTER 3 

3.METHODOLOGY 

 

 

This chapter presents three models applied for planning for a given bus route to achieve 

optimal pre-defined objectives. Model I determines optimal stop spacing and headway for 

a given feeder bus route with many-to-one/one-to-many demand. To investigate the impact 

of headway variance on the objective of profit maximization and planning of stops and 

headway, Model I is developed based on some simplified conditions, such as the limitation 

of bus stop locations and passenger demand distribution. The decision variables (i.e., 

headway and stop spacing) are optimized and their relationship with headway variance is 

explored.  

It is expected that with Model I considering headway variance, a more cost-efficient 

and profitable system could be yielded, compared to the traditional model without such 

consideration. Also, the responses of objective values to model parameters (e.g., demand 

level and traffic congestion level) are expected to be different in the proposed model since 

it reflects a more realistic situation than the traditional model. With such concept being 

proved with Model I, Model II is developed to optimize stop locations and headway for a 

given conventional bus route. It intends to optimize stop locations and headway 

considering many-to-many demand to maximize operator profit. To take into account 

stochastic nature of bus operations, headway variance at each stop is modeled as a function 

of travel time variance between stops and demand fluctuations at stops. In this way, the 
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interactions between traffic conditions, passenger activities, and bus operations can be 

analyzed.  

 To further enhance system performance in terms of reliability and investigate the 

effects of control points in a bus route with optimal setting suggested by Model II, Model 

III is developed to optimize time points (if necessary) based on a headway-based 

controlling approach. Model III takes the input headway, fleet size and stop locations from 

the optimization results of Model II, and simultaneously minimizes average user cost and 

average operator cost for the study bus route with optimal time points. 

 The derivations of the three models are presented in the following sections. The 

variables and their definitions involved in the model development are summarized in 

Appendix A. 

 

 Model I – The Basic Model 

The objective of this model is to optimize stop spacing and dispatching headway of a given 

feeder bus route considering the impact of stochastic vehicle arrivals and many-to-one/one-

to-many travel patterns, which maximizes operator’s profit considering demand elasticity.  

 

3.1.1 Route Configuration 

A general feeder bus route is illustrated in Figure 3.1, where Ds repesents an origin terminal 

located in a residential area, and De represents the destination, which may be located in a 

Central Business District or at a major transit terminal. Let I be the set of stops and i is an 

index of stop. The route length is L, and S stands for the stop spacing. 
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Figure 3.1 Model I – A general feeder bus route. 

 

3.1.2 Assumptions 

The assumptions considered to formulate Model I are discussed below: 

1. For a general feeder bus route shown in Figure 3.1, the travel demand pattern is 

many-to-one/one-to-many.  Buses pick up passengers from the origin (denoted as 

Ds) and all intermediate stops in the residential area, and then buses drop them off 

at the destination (denoted as De). The number of passengers travelling on the 

reverse direction is negligible.  
 

2. The potential demand is uniformly distributed along the route over a period of time, 

which is sensitive to travel time. 
 

3. Passenger arrives at the stops randomly. 
 

4. Bus stops may be located any places along the study route.  
 

5. Bus acceleration and deceleration delay per stop is constant. 
 

6. The design service capacity is always greater than the demand, and the vehicle size 

is always sufficient to pick up all waiting passengers. 
 

7. Bus ticket price is fixed and flat per passenger trip. 

 

3.1.3 Model Formulation 

In this section, the objective operator’s profit is formulated, in which the impact of 

headway variance to vehicle and passenger travel times are considered. 
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Operator’s Profit 

The objective total profit denoted as Pb is defined as total revenue (Rb) minus operator cost 

(Cb). Thus, 

 b b b
P R C   (3.1) 

 

Revenue 

The total revenue is the sum of fare paid by all passengers who are sensitive to travel time 

will be introduced later. Thus, 

 b i

i I

R f b


    (3.2) 

where f represents fare and i
b is the actual demand at stop i. 

 

Operator Cost 

The operator cost is the product of fleet size, denoted as F, and the average bus operating 

cost, denoted as b
u . The fleet size can be determined by the ratio of bus round-trip travel 

time ( r
T ) to headway H. Thus,  

 r
b b

T
C u

H
   (3.3) 

Note that r
T  consists of vehicle running time, stop delay (i.e., 

acceleration/deceleration delay and dwell time) and recovery time due to travel time 

fluctuation. Let Q be the actual demand, and l
t  is the recovery time at terminal. For the 

study feeder bus route, r
T can be formulated as: 

 
2

r s l

b

L
T nd t Q H

V
      (3.4) 
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where s
d is acceleration/deceleration per stop, and   is the average boarding time per 

passenger. 

The first component on the right hand side of Equation 3.4 is the round-trip link 

travel time from terminal Ds to terminal De and then back to terminal Ds. The second 

component is acceleration/deceleration delay at all stops, where n is the number of stops 

per direction. The third component is the recovery time at the destination terminal. The last 

component is dwell time to serve boarding passengers. Note that since only one-way 

demand is considered, acceleration/deceleration delay and dwell time only appear on one 

direction.  

 

1. Demand Function 

Considering elasticity of demand (Kocur and Hendrickson, 1982; Chang and Schonfeld, 

1993; Spasovic et al, 1994), actual demand is a function of potential demand, expected 

travel time, and fare. In this study, fare is given and fixed, the main factor influencing 

passenger’s mode choice is the expected travel time. Based on the previous study  

(van Nes and Bovy, 2000), the actual demand is formulated as a function of expected travel 

time and reference travel time. Thus,  

 
exp( )

,
exp( )

t i
i i

it

e T
b q i

e T


 


  (3.5) 

where i
q is the potential demand at stop i and identical for all i, t

e is the coefficient factor 

of travel time . i
T  and iT represent the expected and reference travel times from stop i to 

the destination terminal, respectively. i
T  consists of 

iwt as the expected wait time, 
ivt as the 

expected in-vehicle travel time, and 
iat as the average access time for passengers to stop i. 
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Note that, the reference travel time defined here is the expected travel time without variance, 

such that if travel time is deterministic, iT  is equal to i
T  and the actual demand at stop i 

equals the potential demand. 

 

2. Wait Time 

The users’ wait time depends on the service frequency of the bus route, headway variance 

at stops and passengers’ arrival behavior. For short headway services, passengers’ arrivals 

at stops are random. Therefore, the average wait time at stop i, denoted as 
iwt , is a function 

of mean and variance of headway (Welding, 1957): 

 
2

1
2i

i
w

H
t ,   i 

H

 
   

 
  (3.6) 

where H and i
  represent average headway and headway variance at stop i, respectively.  

As discussed earlier, i
  is assumed to increases as stop i further away from the 

departing terminal, due to unexpected delays en-route (e.g., link length, traffic conditions, 

number of intersections) and at stops (e.g., stop locations, boarding/alighting passengers, 

and fare collection methods). Thus, 

 1 ,
i i ei

   i       (3.7) 

where ei
  is the variation caused by en-route factors when buses travelling from stops 1i   

to i . In this study, the link length between each pair of consecutive stops is identical. For 

planning purposes, the travel time variation between each pair of stops is assumed to be 

identical along the route without further analysis of traffic condition and geographic 

variations. However, with more data collected for the study route, the empirical model of 
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ei
  along the route can be incorporated in Equation 3.7. For now, let α represent the 

increment of headway variation per stop. Thus,  

 1 ,
i i

  i       (3.8) 

With Equation 3.8, the relationship between headway variance and stop location is 

illustrated in Figure 3.2. Note that the proposed model is able to adapt any form of Equation 

3.7 (e.g., developed from empirical data) to compute the impact of headway variance to 

the components in the objective function. 

 

 
Figure 3.2 Headway variance vs. stop.  

 

3. In-Vehicle Time 

The expected in-vehicle travel time for passengers boarding at stop i is the sum of expected 

running time 
ivt  and stop delay. The stop delay consists of acceleration/deceleration delay 

( s
d ) and dwell time at downstream stops. The expected in-vehicle running time 

ir
t is 
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calculated through dividing the distance from stop i to the destination by the average speed 

b
V . Thus, 

 
1

1

( ) ,
i

n

v i s k

k ib

L i S
t n i d b H i

V
 



 

 
        (3.9) 

where [1, ]i n  is stop index, with the original terminal ( 1i  ) and the destination terminal 

( i n ). 

In Equation 3.9, the expected link travel time is calculated as i

b

L i S

V


 
 , where 

i
 is the extra time added to the mean travel time as a buffer time to ensure on-time arrivals 

due to service unreliability. In the case study, i
  is set as one standard deviation of travel 

time from stop i to the destination terminal. The acceleration/deceleration delay is 

represented as ( )
s

n i d  the number of downstream stops from stop i multiplied by 

acceleration/deceleration delay per stop. The term of
1

1

n

k

k i

b H


 

 stands for the sum of 

expected dwell times at the downstream stops of stop i. 

 

4. Access Time 

With the consideration that passengers are distributed along the bus route, the access path 

of each passenger is a segment on the route from passenger location to the stop. Hence, the 

average access time is the average access distance (i.e., a quarter of stop spacing S) divided 

by access speed, denoted as pV . Thus, 

 
4ia

p

S
t

V
   (3.10) 
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Objective Function 

Therefore, the objective profit (i.e., Equation 3.1) is revenue (i.e., Equation 3.2) minus 

operator cost (i.e., Equation 3.3), which is reformulated as: 

 

2

b

s l

b
b i

i I

u

L
nd Q H t

V
max. P f b

H





  

    (3.11) 

The decision variables in the model are headway and stop spacing. Due to the 

interrelationship between stop spacing and headway as well as the consideration of demand 

elasticity with respect to travel time, it is tedious to solve the problem with traditional 

derivative methods. As summarized in the literature review, heuristic/metaheuristic 

algorithms are most commonly used in similar problems.  

The capacity constraint (Equation 3.12) is applied to ensure that the service capacity 

is greater than or equal to the demand Q. 

 
C

Q
H

   (3.12) 

where C is bus capacity and the right hand side in Equation 3.12 represents the hourly 

service capacity. Therefore, the maximum headway, denoted as M
H , can be derived as: 

 
M

C
H

Q
  (3.13) 

 

System Performance  

From the perspectives of transit users (i.e., passengers) and operator, the definitions of a 

‘good’ system may be different. For passengers, bus services with short headways and high 

accessibility is favorable because of less travel time. On the other hand, the operator prefers 

a system with low operator cost while maintaining certain level of service to satisfy the 
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demand. To investigate system performance, average user cost and the average operator 

cost are applied to assess system attractiveness (i.e., users’ perspective) and cost 

effectiveness (i.e., operators’ perspective). 

 

Average Operator Cost 

As defined earlier, the total demand of the route is denoted as Q, and the total operator cost 

is represented by Cb. Therefore, the average operator cost, denoted as cb, is the operator 

cost divided by demand. Thus, 

 b
b

C
c

Q
   (3.14) 

 

Average User Cost 

Similar to the average operator cost, the average user cost is total user cost divided by 

demand. Let Cu be the total user cost. Then, the average user cost denoted as cu, is 

formulated as follows. 

 u
u

C
c

Q
   (3.15) 

Total user cost consists of three major components: access cost, wait cost, and in-

vehicle cost, which are the products of total access time, wait time, in-vehicle time and the 

corresponding values of time, respectively. Thus, the user cost associated with these time 

segments can be formulated in Equation 3.16:  

 u a v w
C C C C     (3.16) 

where , ,
a v w

C C  and C  represent access cost, in-vehicle cost, and wait cost respectively.  

The wait cost at stop i is the product of boarding demand, average wait time, and 

the value of passenger wait time. Thus, total wait cost is the sum of wait costs at all stops: 
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2

(1 )
2

i
w w i

i I

H
C u b

H





    (3.17) 

where w
u  is the value of passenger wait time. 

The in-vehicle cost ( v
C ) is the product of the total in-vehicle time for all the 

passengers (i.e., running time and in-vehicle delay) and the value of users’ in-vehicle time, 

v
u . Thus, 

 v v v
C u t  (3.18) 

where v
t is total in-vehicle time experienced by passengers boarding from all stops along 

the route, where the in-vehicle time at stop i is explained in Equation 3.9. Therefore, the 

in-vehicle cost is: 

 
1

1

( ( ) )
n

v v i i s k

i I k ib

L i S
C u b n i d b H

V
 



  

 
        (3.19) 

The access cost ( a
C ) is defined as the product of total demand, the average access 

time ( a
t ), and the value of users’ access time ( a

u ). Thus, 

 
4

a a

p

S
C u Q

V
   (3.20) 

 

 Model II – The Enhanced Model 

The objective of Model II is to optimize stop locations and dispatching headway for a 

conventional bus route with many-to-many travel demand considering headway variation 

at stops induced by stochastic bus travel time and dwell time fluctuation. Model II is 

enhanced from Model I for dealing with specific many-to-one demand pattern to a more 

generalized many-to-many demand pattern considering feasible locations for bus stops. 



 

 

51 

Considering demand elasticity, it is expected that the outcome of the model could improve 

transit service reliability while achieving maximum operator profit.  

 

3.2.1 Route Configuration 

Unlike the basic model, Model II optimizes dispatching headway and discrete stop 

locations along a general bus route as shown in Figure 3.3. The study bus route length is L, 

and a set of potential stop locations is denoted as I. A set of origin-destination demand 

pairs is denoted as O and demand pair o ( o O ) is denoted as qo. For passengers travelling 

from one community x to another y, let DKo and DLo represent the access distance from 

origin x to the nearest stop Ko and the distance from the destination y to the nearest stop Lo, 

respectively.  

 
Expected Demand Pair o

Service 
Direction

Expected Passengers

Terminal 
Origin

Terminal 
Destination

Stop i

Stop j

 
Figure 3.3 Model II – A general conventional bus route. 

 

3.2.2 Assumptions 

To formulate the objective profit function, the following assumptions are made: 

1. The potential demand distribution is heterogeneous along the route, and the actual 

demand at stops is influenced by the expected travel time.  
 

2. Passengers always choose the nearest stops and will arrive at the stops randomly. 
 

3. Eligible stop locations, including potential and existing stops, are given. Compare 

to boarding, alighting activities move quick enough such that the dwell time is 

proportion to the number of boarding passengers (Daganzo, 2009).  
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4. Service capacity is always greater than demand and the vehicle size is large enough 

to pick up all waiting passengers. 
 

5. Fare is fixed and flat. 

 

3.2.3 Model Formulation 

The objective of Model II is to maximize operator’s profit, which is total revenue minus 

the operator cost. 

 

Operator’s Profit 

As formulated in Equation 3.21, the objective total profit denoted as Pb is defined as total 

revenue (Rb) minus the operator cost (Cb), Thus, 

 b b b
P R C   (3.21) 

 

Revenue  

Revenue considered here is total fare revenue paid by the passenger, which is the fare f

per passenger trip multiplied by the actual demand. Similar to what is formulated in Section 

3.1, the actual boarding demand at stop i is a function of the potential demand, expected 

travel time, and reference travel time. Thus, 

 
exp( )

,
exp( )

i

t o
i o

o B t o

e T
b q i

e T


 


  (3.22) 

where o
q is the expected demand of the demand pair o, i

b is the actual demand at stop i, 

i
B  a set of demand pairs originating at stop i ( i

B O ), t
e is the coefficient factor of travel 

time. o
T  and oT  represent the expected and reference travel times for the demand pair o, 

respectively. The formulation of o
T  is explained later in this section. Therefore, the 

revenue, product of actual demand and fare, is formulated as Equation 3.23: 
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  (3.23) 

 

Operator Cost  

The operator cost is the product of fleet size (F) and the average bus operating cost ( b
u ). 

The required fleet size for the bus route is defined as the round-trip bus travel time divided 

by headway. Thus, 

 r
b b

T
C u

H
  (3.24) 

where r
T is vehicle round-trip travel time, consisting of vehicle running time between stops, 

intersection delay, acceleration/deceleration delay, dwell time at stops, and recovery time 

at the terminal. Thus, 

 2( )r b x s i l

i I

T t X d N d b t


        (3.25) 

where X is number of intersections over the route, N is number of bus stops over the route,

x
d is the average intersection delay, s

d  is the acceleration/deceleration delay per stop, b
t

is the total vehicle running time (i.e., route length divided by average speed), and l
t  is the 

recovery time at the destination terminal due to travel time variance. 

 

Expected Travel Time 

The expected travel time for any demand pair o includes three components: access/egress 

time, wait time, and in-vehicle time, which are discussed as follows. 
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1. Access/Egress Time 

For any demand pair o, they will choose a pair of stops with minimum access/egress time 

(denoted as Ko and Lo, respectively) to board and alight. After determining the access stops, 

the average access/egress time 
oat for this demand pair is equal to the average access/egress 

distance divided by the average passenger accessing speed: 

 ,o o

o

K L

a

p

D D
t o O

V


    (3.26) 

where Vp is average access speed. 

 

2. Wait Time 

The users’ wait time depends on bus service headway, headway variance, and passenger 

arrival pattern. For short headways, passengers tend to arrive at stops randomly. Therefore, 

the average wait time at stop i , denoted as 
iwt , is formulated as (Welding, 1957): 

 ,
2 2i

i
w

H
t i I

H


     (3.27) 

where i
  is the headway variance at stop i, and H is the average headway. 

The headway variance at stops significantly affects the user wait time, which tends 

to increase as the stop approaching the end of the route due to unexpected delay en-route 

and at stops (Adebisi, 1986). The headway variance at stop i, denoted as i
 , is a function 

of the headway variance of stop i-1, dwell time at stop i-1, distance between stops i-1 and 

i, passenger arrival rate at stop i-1, and as formulated as Equation 3.28 (Derivation shown 

in Appendix B). Thus,  

 2 2

1 1 1(1 4 2 ) 2i i i i i lb b l           (3.28) 
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where, 1i
l   represents the distance between stops i-1 and i, and  is the average passenger 

boarding time. For simplicity, travel time variance between a pair of consecutive stops is 

treated as the product of link length and the unit travel time variance ( l
 ). However, if 

sufficient travel time data between stops could be collected, a more realistic segment-level 

travel time variance function could be obtained and applied in the model to replace 

Equation 3.28.  

 

3. In-vehicle Time 

The in-vehicle travel time consists of four components: vehicle running time from an origin 

to a destination, delay at intersections, dwell time at stops, and acceleration/deceleration 

delay while buses approaching and exiting stops.  

For demand o
q  travelling from stop Ko to stop Lo, the in-vehicle time is affected 

by travel distance, number of stops and intersections between Ko and Lo and average 

vehicle speed. Thus, the in-vehicle travel time for the demand pair o, denoted as 
ovt , is the 

sum of cruise time (the link distance divided by the average cruising speed, as /
o b

l V ), 

extra planning time due to travel time variation (represented as o
 ), intersection delay (the 

product of number of intersections and the average intersection delay, as o x
X d ), expected 

dwell time (the expected boarding demand at all intermediate stops between Ko and Lo 

multiplied by average boarding time, as
1

1

o

o

L

j

j K

b


 

 ), and finally the total stop delay (the 

product of number of intermediate stops and average stop delay, represented as o s
N d ). 

Thus, 
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where o
l  is the distance between stops Ko and Lo for demand pair o, b

V  is average bus 

speed, o
X is the number of intersections between stops Ko and Lo, o

N is the number of 

stops between stops Ko and Lo.  

The average intersection delay x
d consists of non-random delay induced by signal 

timing (i.e., the ratio of green time to the cycle time), overflow delay induced by random 

arrivals and oversaturation, and acceleration and deceleration delay (Tirachini and Hensher, 

2011). In this study, x
d is treated as an exogenous variable of the proposed model and set 

as constant. 

 

Objective Function 

To summarize, the objective profit is a function of dispatching headway and stop locations. 

The headway H is a continuous variable and I is a set of stops to be optimized. To maximize 

the total profit, the optimal headway and stop locations under the influence of travel time 

variance and the service capacity constraint must be found.  Thus, 

 
. ( , ) ( , ) ( , )

s. t .
b b b

M

Max   P H I R H I C H I

        H H

 


  (3.30) 

where M
H  is the maximum headway such that the service capacity is always greater than 

or equal to the demand. 

The discrete modelling approach of stop locations and headway as well as the 

consideration of travel time elasticity of demand increase the complexity of the problem, 

which is categorized as mixed-integer non-linear optimization problem. While a heuristic 
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algorithm is able to handle this type of problems, it is not efficient if the solution pool is 

large. Therefore, the single-objective GA is applied to solve Model II.  

 

System Performance 

The average user cost and the average operator cost are also used as indices of 

attractiveness and effectiveness of a system to users and the operator, respectively. 

 

User Cost 

The user cost considered in Model II consists of access/egress cost (Ca), wait cost (Cw),  

in-vehicle travel cost (Cv), as discussed below. 

 

1. Access/Egress Cost  

The access/egress cost Ca is the product of the value of passenger access time (denoted as 

a
u ) and total access/egress time (i.e., sum-product of actual demand multiplied by the 

associated average access/egress time for all demand pairs). Thus, 

 
exp( )

exp( ) o

t o
a a o a

o O t o

e T
C u q t

e T


 


  (3.31) 

where 
oat is the average access/egress time for demand pair o. 

 

2. Wait Cost  

The wait cost is the product of the value of passenger wait time w
u , and the total wait time. 

The total wait time is the boarding demand at stop i, denoted as i
b , multiplied by the 

associated wait time for all i. Thus,  

 
iw w i w

i I

C u b t


    (3.32) 

where i
b  is determined by Equation 3.22 and 

iwt is determined using Equation 3.27. 
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3. In-vehicle Cost  

The in-vehicle cost v
C is the product of the total in-vehicle time and the value of passenger 

in-vehicle time v
u . The total in-vehicle time is equal to the actual demand multiplied by 

the associated in-vehicle time for all demand pairs. Thus, 

 
exp( )

exp( ) o

t o
v v o v

o O t o

e T
C u q t

e T





   (3.33) 

where 
ovt is determined by Equation 3.29. 

 

 Model III – The Extended Model 

With Models I and II, the headway and stop (spacing) of a feeder bus route and a 

conventional bus system can be optimized to maximize the operator’s profit considering 

travel time variance. However, if the travel time variance over the route is too high to 

maintain reliable bus operation even with the optimal setting of stop (spacing) and headway, 

setting a number of control time points would be necessary to improve the service 

reliability.  

Considering stochastic vehicle arrivals, Model III optimizes time points (or control 

points) based on a headway-based vehicle control strategy for improving system reliability. 

It could be integrated with Model II to optimize stop, headway and time points for a new 

bus route. With the availability of real world bus operation data, Model III can also be 

implemented in a given bus route to find optimal control points for better system 

performance.  
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3.3.1 Route Configuration 

For any bus route with many-to-many demand pattern, assumes buses operate from the 

origin terminal Ds to the destination terminal De as shown in Figure 3.4. The length of the 

route is L, the set of stops is defined as I which consists of two sets of stops Ic and Iuc for 

controlled and uncontrolled stops, respectively. Other parameters are inherited from Model 

II, including bi as the boarding demand at stop i. 

 

 
Figure 3.4 Model III route configuration. 

 

3.3.2 Assumptions 

Since this model applies a headway-based control strategy, which assumes that bus 

headways are available where needed, to incorporate the headway-based control strategy 

into the time point optimization model, a simulation model is developed to mimic real 

world bus operations. To set up the simulation, basic assumptions are made and listed 

below. 

1. Passengers’ arrival follows a Poisson distribution, where the arrival rate is 

estimated from given boarding distribution dictated by the stop locations. 
 

2. Passengers’ alighting follows a binomial distribution, where the possibility of 

alighting at each stop is calculated using given boarding/alighting data. 
 

3. Vehicle dwell time is dependent on boarding demand as alighting happens quickly 

enough to be neglected (Daganzo, 2009).  
 

4. Passengers are not prohibited from boarding into a crowded bus. 
 

5. Bus overtaking is not allowed. 
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6. Link travel time between any pair of consecutive stops follows a Gamma 

distribution, where the shape parameter k and scale θ are determined based on mean 

and variance of link travel time between the pair of stops. 

 

3.3.3 Model Formulation 

The objective functions considered in Model III include minimizing average operator cost 

and minimizing average user cost. The bus control strategy applied in the model is 

described below. 

 

Bus Control Strategy 

Assume that the headways at stops are available when needed. Consider a bus m, arrives 

at a control point i at m

iA , with awaiting boarding demand m

ib . Its preceding bus departed 

at 1m

iD
 , and the estimated departure time of its following bus is 1m

iD
 . If no holding occurs, 

the headways between bus m and its preceding/following buses are calculated in the 

following equations, respectively.  

 1m m m

i i ih T T
   (3.34) 

 1 1m m m

i i ih T T
    (3.35) 

where m

ih is the forward headway between bus m and its preceding bus m-1 without 

holding, 1m

ih
 is the estimated backward headway between bus m and its following bus m+1.  

Let the headway control strength be  , and H defines the minimum headway 

as a basis of a control threshold. Based on the previous studies (Fu and Yang, 2002;  

Cats et al., 2011, 2012), the bus control strategy applied in this study considers both 

forward and backward headways to keep even headways while restricting maximum 

allowable holding time with the minimum headway constraint.  
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Define the average headway of 1m

ih
 and m

ih as 
m

i
h . With m

iD  representing the 

actual departure time of bus m, the control strategy is formulated in Equation 3.36. If stop 

i is not a controlled stop, the actual departure time of bus m equals the sum of bus arrival 

time and dwell time. Otherwise, the forward and backward headways will be checked for 

bus holding decision. The bus will be held within a maximum allowable holding range if 

the forward headway is shorter than backward headway. 

 
1 1max{ ,min( , )}m m m m m

m
i i i i i c

i m m

i i uc

A b D h D H           i ID
A b                                                                   i I     

 


       
  

 (3.36) 

Then, the holding time of bus m at stop i, denoted as m

i , is the actual departure 

time minus the sum of actual arrival time and the initial dwell time: 

 
1 1max{0,min( , ) ( )}

0

m m m m m
m

i i i i i c
i

uc

D h D H A b          i I
                                                                                        i I

 
        

 
 (3.37) 

 

Average User Cost 

The average user cost is equal to total user cost divided by total demand of the study period. 

The total user cost considered here consists of wait cost, in-vehicle cost considering bus 

holding. Note that the stop locations are given, the access cost is constant and will not affect 

the optimal solution. Thus, it is not included in the objective function. 

 

1. Wait Time 

For bus m, a number of boarding passengers, m

ib , arrive at stop i between the departure time 

of the preceding bus m-1 and the arrival time of bus m. The average wait time is half the 

headway, assuming random passenger arrivals. Let M be the set of buses travelling through 
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the route during the study period. The total wait time at stop i is the number of boarding 

passengers multiplied by the average wait time for all stop i and bus m: 

 
2

m
m i

w i

i I m M

h
T b

 

  (3.38) 

Additional passengers will board on bus m while the bus is hold at i, and their wait 

time is half of the holding time. Let the number of passengers arriving at stop i during m

i  

be m

ix . The total wait time for these passengers is represented as follows. 

 
2

m
m i

x i

i I m M

T x


 

  (3.39) 

 

2. In-vehicle Time 

Due to bus holding, there will be additional in-vehicle wait time for through passengers 

travelling from stop i to i+1. Let m

ir be the through passengers in bus m at stop i, the total 

additional wait time during the study period is represented as follows. 

 
m m

vw i i

i I m M

T r 
 

   (3.40) 

Let m

it  be the link travel time for bus m from stop i to stop i+1, since through 

passengers at stop i is m

ir  and passengers arriving during bus holding is m

ix , the total link 

travel time is calculated as follows. 

  m m m

v i i i

i I m M

T r x t
 

   (3.41) 

Therefore, as defined earlier, the average user cost is the ratio between total user 

cost and total demand. Total user cost is the sum of user in-vehicle cost and wait cost. Total 

demand consists of initial boarding demand ( m

ib ) and additional boarding passengers ( m

ix ) 

during holding. The formulation is given in Equation 3.42. 
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 (3.42) 

 

Average Operator Cost 

The total operator cost is the total bus operating hours multiplied by the unit operating cost 

( b
u ). The time components involved in the controlled operation include link travel time, 

holding time at controlled stops, and recovery time at the destination terminal. Link travel 

time includes dwell time for passenger boarding/alighting, acceleration/deceleration delay, 

and intersection delay. Therefore, the average operator cost, which is the total operator cost 

divided by the total demand during the study period, is formulated as follows. 

 
 
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 

 
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 





 (3.43) 

where m

lt  is the recovery time for bus m.  

To summarize, the objective functions are minimizing average operator cost and 

minimizing user cost. The decision variables considered in the model are the number and 

locations of time points. A simulation model is integrated in the optimization model for 

mimicking real world bus operations and providing real-time headway information for 

applying the control strategy. A simulated-based multi-objective GA is applied to solve the 

model and strike a balance between two conflicting objectives. 

 

 Summary 

Three models are developed in this chapter, where the first proof-of-concept model is 

applied to investigate the influence of headway variance on the optimal service planning 
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in a simplified network. The second model applies to a more general bus route, and the 

final model optimizing time points for service reliability improvement. The relationships 

between the three models are represented in Figure 3.5. 

 

 
 

Figure 3.5 Model descriptions and applications. 

 

For a feeder bus route with many-to-one/one-to-many demand pattern, Model I 

optimizes stop spacing and dispatching headway for profit maximization with the 

consideration of headway variance and travel time elasticity of demand. Since both 

headway and stop spacing are continuous decision variables, the problem is categorized as 

constrained nonlinear multivariable minimization problem. It is found that the optimal stop 

spacing is represented as a function of headway and the optimal headway is also related to 
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stop spacing. The consideration of demand elasticity with respect to travel time makes the 

problem more complicated to solve with traditional derivation methods. A single-objective 

Genetic Algorithm is applied to find an optimal/near-optimal solution of the problem. 

Model I applies to a simplified network, which emphasizes the analysis of the relationship 

between travel time variability and planning of stop spacing and headway. 

For a conventional bus route with many-to-many heterogeneous demand pattern, 

Model II optimizes stop locations and dispatching headway for profit maximization with a 

more generalized headway variance model. The discrete modelling approach of stops and 

continuous variable of headway makes it a mixed-integer, non-linear programming 

problem, which is difficult to solve with traditional exact optimization methods. A single-

objective Genetic Algorithm is applied to solve the problem. Model II can be used to 

determine optimal stop locations and headway for a new conventional bus route. It also 

applies in an existing bus route for modifying headway and stop location for better system 

performance.  

For a given conventional bus route with predefined dispatching headway and stop 

locations, Model III optimizes the number of time points to strike a balance between two 

conflicting objectives: minimizing average user cost and minimizing average operator cost. 

Since it is a simulation-based optimization problem with multiple objective functions, a 

dedicated simulation model is integrated in a multi-objective Genetic Algorithm. Model III 

applies to an existing bus route for vehicle control point optimization to improve service 

reliability. Also, it is flexible to be integrated with Model II for simultaneously optimizing 

stop location, headway, and time points for a new bus route.
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CHAPTER 4 

4.SOLUTION ALGORITHMS 

 

 

As discussed in Chapter 3, it is tedious to optimize the developed models with traditional 

exact algorithms. Heuristic/metaheuristic algorithms have been applied to solve similar 

transit network design problems, among which Genetic algorithm (GA) has been proved 

as an effective algorithm and commonly used to solve transit planning problems  

(e.g., Chien et al., 2001; Chakroborty, 2003; Fan and Machemehl, 2006). GA-based 

algorithms are applied to solve the developed models, which are discussed in this chapter. 

 

 Single-Objective GA 

GA is a search heuristic mimicking the process of natural selection, which is applied to 

find optimal or near optimal solutions of optimization and search problems (Mitchell, 

1998). It adopts the concept of ‘survival of the fittest’, and involves mutation and 

reproduction in the selection process. In general, the proposed GA starts from generating 

an initial collection of possible solutions of an optimization problem, which is called a 

population. Each possible solution (or individual) is represented by a chromosome in the 

initial population. The fitness of each individual is evaluated in each iteration, which is 

usually represented by the objective value of the study optimization problem. Then, next 

generation population will be generated through a combination of genetic operators  

(i.e., selection, crossover, and mutation). The iteration process is repeated until a 

termination condition has been reached, i.e., no further improvement is observed, fixed 



 

 

67 

number of generations or maximum computation time has been reached, the search process 

with GA will be terminated and the final best individual will be recorded as the optimal 

solution. The below steps explain the procedures commonly involved in a GA. 

1.  Initialization 

GA searches for the optimal solution directly from the solution pool, therefore, the 

very first step is generating initial population with a set of possible solutions. Each 

solution (or individual) is coded and represented by a chromosome. 
 

2. Evaluation 

To start the selection process, each chromosome in the population is evaluated 

against a fitness function, which is usually the objective function in the original 

problem. 
 

3. Evolution 

a. After evaluation of the population, some individuals with best fitness values are 

chosen as elite, which are preserved in the next generation. 
 

b. Other individuals of the next generation (i.e., children) are produced from a set 

of selected members from the population (i.e., parents) through two operators: 

mutation and crossover, which will be discussed later. 
 

4. Termination Check 

Stop GA if any of termination criteria is satisfied, and record the final best solution 

as the optimization result. Otherwise, go to Step 2 for further evolution. Common 

termination criteria include 1) solution being found 2) no further improvement being 

observed 3) fixed number of generations being reached 4) allocated computation 

time being reached. 

 

Initialization 

The binary representation of the decision variables can be categorized into two groups, 

encoding integer variables such as number of stops (converted from stop spacing) and 

headway (in minutes), and encoding binary variables such as stop locations and time points. 

The representation is illustrated in Figure 4.1. 
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Figure 4.1 GA binary encoding.  

 

Evaluation and Selection 

From one generation, some members of the population will be selected to produce 

offspring based on the fitness values. Commonly used selection functions including 

stochastic universal sampling, roulette wheel selection, and tournament selection. In this 

study, the stochastic universal sampling method is applied. With this method, the 

individuals are mapped to continuous segments of a line where the length of each segment 

is equivalent to the individual’s fitness value. Uniformly distributed pointers are placed 

over the line, whose number equals to the total number of individuals to be selected. 

Assume that a total of 9 individuals in the population, 4 individuals are to be 

selected, which leads to the upper bound of ¼ for a random number as selection spacing. 

If the number 0.2 is randomly generated from the range [0, 0.25] as the spacing, a pointer 

will be placed every 0.2 to select the individuals. The selection process is illustrated as in 

Figure 4.2. 

 

 
Figure 4.2 GA selection. 
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Mutation 

Mutation is one of two operators that produce offspring through operations of the selected 

parents. It takes one parent to generate one child. With the binary encoding, the mutation 

operates in one bit, whose location is determined by the algorithm used for mutation. By 

converting that one bit from 1 to 0 or vice versa, the value of variable in the offspring is 

changed. Figure 4.3 provides an example of mutation in the selected parent. 

 

 
Figure 4.3 Mutation operation. 

 

Crossover 

Crossover is another operator to produce offspring from the parents. Unlike mutation, it 

operates in two parents and creates two children. Commonly used methods include single-

point, two-point, scattered crossover. The methods are similar in their logic but different 

in the points where the crossover happens. Figure 4.4 provides an example of scattered 

crossover. 

 

 Multi-Objective GA 

In the context of multi-objective optimization, more objectives are involved which are 

often conflicting with each other. In this case, one extreme solution may not satisfy both 

objective functions, since the optimal solution for one objective may not necessary be the 

optimal for another. The concept of domination is used in the optimization, where a feasible 

solution is said to dominate another feasible solution (or non-dominated by another 

1       0 1      1 0 0      0 0      1 1 

1       0 1      1 0 0      0 0      1 1 

1 0 

0 0 

Mutation 

Parent 

Child 
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solution) if this solution is no worse than the other solution with respect to all objective 

values and strictly better in at least one objective value. In a bi-objective optimization 

problem, the best solution would be a non-dominated set of solutions (i.e., Pareto front), 

where no improvement can be made in one objective without worsening another objective. 

Therefore, the ultimate goal of a solution algorithm for multi-objective problems is to find 

the Pareto Front.  

 

 
Figure 4.4 Crossover operation. 

 

The multi-objective solution algorithm applied in the dissertation is a controlled 

elitist GA based on the Non-Dominated Sorting GA II (NSGA-II) developed by Deb (2001), 

where detailed explanation of this algorithm is presented. Deb (2001) assumes two goals 

in the multi-objective optimization: to find a set of non-dominated solutions with least 

distance to a true Pareto-optimal set and to maximize the diversity in the non-dominated 

solution set. In the process of evolution, the controlled elitist GA favors individuals which 

could represent both lateral diversity and diversity along a Pareto front. In this case, some 

individuals with lower fitness values may also be preserved in the offspring if they could 

1       0 1      1 1 0      0 0      1 1 1 0 

1       0 0      1 0 0      1 1      0 1 0 0 
Crossover 

Parent 1 

Parent 2 

1       1 0       0 1 0      0 0      0 1 1 0 

1       0 0      1 1 0      1 1      0 1 1 0 Child 1 

0       1 1      0 0 1      0 0      1 0 0 1 Child 2 

Mask 
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help increase the diversity of the population. Through controlling the elitism, this algorithm 

reduces the probability of convergence to a suboptimal solution set and guarantees 

diversity and spread of the optimal solutions.  

An illustration of Pareto front is shown in Figure 4.5, where two minimization 

objectives are involved in the optimization problem (i.e., a MIN-MIN problem). The blue 

dots represent feasible solutions for the problem, and the Pareto front is represented by the 

curved line. In this study, two objectives including minimizing average user cost and 

minimizing average operator cost are applied, and the solution algorithm tries to find a set 

of decision variables (e.g., stop locations or time points) which achieves Pareto optimality 

between users and the operator. 

 

 
Figure 4.5 The Pareto front in a multi-objective solution pool. 
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 Simulation-based GA 

The simulation-based multi-objective GA is applied to solve Model III, where the objective 

values are estimated with a simulation model. The framework is represented in Figure 4.6. 

The solution procedure starts with population initialization (i.e., the first generation) with 

GA, where a set of possible solutions is generated randomly. In the algorithm, the stop 

locations are coded in binary, where the location of control point is marked as ‘1’, and all 

other stops are marked as ‘0’. For example, if the number of stops of a bus route is 10 and 

only one control point is designated at the fourth stop, then this solution will be coded as 

‘0001000000’.   

Each solution in the initialized population will be transmitted to the simulation 

model as an input. For each solution generated from GA, a set of simulation runs with 

different random seeds will be conducted to generate the expected value for each of the 

objectives. Then, the expected values are sent back to GA as the fitness value of that 

solution. That is, the simulation model takes a set of control points as the input, and 

provides the average user and operator costs as the outputs to be sent back to GA.  

With the fitness values of the population estimated by the simulation model, the 

GA process continues with genetic operators (i.e., crossover and mutation) to generate the 

offspring as the next generation. The solutions keep evolving until any of the stop criteria 

is satisfied. Then, the GA stops, and the best solution in the last generation will be recorded 

as the optimal solution. 
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Figure 4.6 Simulation-based genetic algorithm framework. 

 

The flow chart of the simulation model is shown in Figure 4.7. It runs from time 0 

till a pre-defined time with 1-second update interval, and includes three major functions 

for bus simulation, which are explained below. When the simulation ends, besides the 

average user and operator costs, it also provides vehicle trajectories and stop records for 

further evaluation. 

 

1. Bus dispatching check 

At each time step, the simulator will check whether it is time to dispatch an 

outbound bus according to the pre-defined headway. If the bus number is less than 

the fleet size, it means that the dispatching is able to maintain the scheduled 

headway, a new bus will be dispatched with an assigned ID. When the bus number 

exceeds the fleet size, headway checking will be skipped since the dispatching is 

dependent on the returning bus from inbound direction. Therefore, besides headway 

checking, bus arrival time at the outbound dispatching terminal will also be checked 

at each time step for new bus dispatching, and same check is conducted at the 

inbound dispatching terminal. 

 

2. Stop handling 

When a bus arrives at a stop (i.e., current time step equals to any bus arrival time at 

next stop), its arrival time, alighting passengers and current boarding passengers 

waiting at the stop are recorded immediately. If this stop is not a control point, the 

departure time of the bus will be current time plus dwell time due to passengers’ 
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boarding/alighting activities, and the average waiting time for passengers at this 

stop will be half the headway.  
 

If the stop is a control point, the holding time will be checked based on the 

pre-defined holding strategy, which will in turn lead to updated boarding 

passengers and average waiting time. The departure time will be current time plus 

dwell time and holding time. 
 

After calculating the departure time, the link travel time to next stop will be 

generated based on the assumed travel time distribution. Then, an expected arrival 

time at next stop as well as average passenger in-vehicle time will be recorded. 

 

3. Terminal handling 

When the first outbound bus gets to the destination, a recovery time will be assigned, 

which is related to route travel time variability. After that, this bus will be 

dispatched for inbound service. For all the buses travelling in the network, if there 

is a record showing ‘next stop’ is the inbound destination terminal (i.e., outbound 

origin terminal), a new bus is ready to be added in the outbound bus pool, whose 

dispatching time is either the estimated arrival time of the corresponding inbound 

bus plus the dwell time for passenger handling, or one headway plus departure time 

of last bus, whichever is bigger. 
 

 

 Summary 

Three GA-based algorithms were explained in this chapter, including single-objective, 

multi-objective and simulation-based GA.  

The single-objective GA fits the optimization problem developed in Models I and 

II, with the objective function of maximizing profit, whereas the multi-objective GA is 

applied to solve the problems in the sensitivity analysis for analyzing the trade-off between 

objectives of users and the operator. The simulation-based GA was developed to solve 

Model III for optimizing time points with a headway-based control strategy. The solution 

algorithms applied in the dissertation are coded in Matlab. With the developed models and 



 

 

75 

algorithms, case studies are conducted and presented in Chapter 5 for investigating model 

capability and effectiveness. 

 

 
Figure 4.7 Simulation flow chart. 
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CHAPTER 5 

5.CASE STUDIES 

 

 

This chapter is assessing the three models developed in Chapter 3 in three case studies, 

respectively. The single-objective GA is applied to solve Model I, which is presented in 

Section 5.1 – Case Study I. The trade-off between the objectives for the operator and users 

is analyzed in the sensitivity analysis. Similarly, case study II is discussed in Section 5.2, 

which investigates the applicability and capability of Model II. Case study III is presented 

in Section 5.3, where the optimization results of Model III solved by the simulation-based 

multi-objective GA are discussed. Finally, the findings of case studies are summarized. 

 

 Case Study I 

A bus transit route of 5.15-mile-long in Chengdu, China is applied to demonstrate the 

applicability of the developed model. The actual many-to-many demand was collected for 

the study route during the morning peak period, with the directional demand of 125 pass/hr 

outbound and 23 pass/hr inbound. Since Model I applies to a feeder bus route with many-

to-one/one-to-many demand pattern, the demand is assumed uniformly distributed along 

the route with hourly demand of 148 pass/hr. 

The input parameters used in the analysis are given in Table 5.1. The average 

vehicle cruising speed is 25 mph and the average operating cost is 40 $/bus-hr. The 

dispatching headway variance at the terminal is assumed to be zero. Average 

acceleration/deceleration delay and average passenger boarding time are 10 seconds and 6 



 

 

77 

seconds, respectively. The average access speed of passengers to the bus route is 2 mph. 

The values of access time, wait time, and in-vehicle time are 8 $/pass-hr, 16 $/pass-hr, and 

8 $/pass-hr, respectively. To evaluate the impact of headway variance to stop spacing and 

headway, three scenarios are defined: 

Scenario 1: Headway variance is null, subject to deterministic bus arrivals at stops 

Scenario 2: Actual profit for Scenario 1 when implemented in the route with headway 

variance increment per stop of 1 min2/stop. 

Scenario 3: Headway variance is a linear monotonic function which increases as the 

number of bus stops increases. The headway variance increment per stop 

is assumed as 1 min2/stop. 

 

Table 5.1 Model Parameters and Baseline Values 

Parameter Definition Unit Value 

C Bus capacity spaces/bus 60 

ds Average acceleration/deceleration delay per stop sec 10 

L Route length mi 5.15 

Q Potential route demand pass/hr 148 

ua Value of access time $/pass-hr 8 

uv Value of in-vehicle time $/pass-hr 8 

ub Average bus operating cost $/bus-hr 40 

uw Value of wait time $/pass-hr 16 

Vb Average bus speed mph 25 

Vp Average walking speed mph 2 

c Dispatching headway variance min2 0 

α Increment of headway variance per stop min2/stop 1 

ρ Average boarding time per passenger sec 6 

f Fare $/trip 1.5 

et Coefficient of travel time  0.03 

 

5.1.1 Optimization Results 

The total profits with respect to stop spacing and headway under Scenarios 1 and 3 are 

illustrated in Figure 5.1 a and b, respectively. When headway and stop spacing increases, 
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the operator profit increases. It is noticed that when the headway variance is not considered 

(Scenario 1), the profit tends to be overestimated, and the changes of profit with stop 

spacing and headway is not significant. As shown in Figure 5.1 a, the range of profit is 

considerably small when the headway and stop spacing vary from their minimum values 

to the maxima.  

In contrast, for Scenario 3 as shown in Figure 5.1 b, because of the influence of 

headway variance, the trend of profit with stop spacing and headway is obvious. For 

instance, under low stop spacing and low headway (i.e., high operator cost), although 

access time is short for the passengers, high variance in travel time lead to demand decrease 

due to travel time elasticity. Therefore, the profit is significantly small (always negative) 

when the headway and stop spacing are small, reflecting unrealistic configurations in terms 

of profit.  

  

 

 
Figure 5.1 Profit vs. stop spacing and headway under different scenarios. 

The analysis of profit also indicates that the objective functions in both Scenarios 

1 and 3 are concave. Many near-optimal solutions are available since the objective value 

(operator’s profit) increases slowly near the optimized values of the decision variables. The 
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major implication is that minor justification of optimized decision variables to 

accommodate geographic and service constraints will not significantly affect the objective 

value. The result is similar to the findings in the previous study conducted by van Nes and 

Bovy (2000). 

The optimization results under each scenario are listed in Table 5.2. Ther average 

operator cost per passenger as well as average total cost per passenger are also calculated 

to reflect system cost effectiveness. As indicated in the table, the optimized headway and 

stop spacing are smaller under null headway variance scenario (Scenario 1). However, 

when the headway and stop spacing under Scenario 1 are implemented in a route where 

bus operations are easily interrupted by traffic, significantly increased user cost and 

operator cost due to underestimation of travel time variation can be observed (Scenario 2). 

Especially, the fleet size estimated in Scenario 1 is not enough to meet the demand 

requirement due to service fluctuation, which leads to fleet size increase and ultimately 

lower-than-estimated profit (-21 $/hr under Scenario 2 vs. 62 $/hr under Scenario 1). 

Under Scenario 3, the optimized number of stops is less but the optimized headway 

is greater than those optimized under Scenario 1, respectively. Since the wait time and in-

vehicle time significantly increase with the headway variance over the route, less stops 

could lead to shorter expected travel time (i.e., more demand). Compared with Scenario 2, 

the required fleet size is reduced through optimized configuration of stop spacing and 

headway with the consideration of variation along the route.  

Therefore, although the initial results from a traditional model without considering 

headway variance (Scenario 1) seems appealing (e.g., high projected demand, low 

operating cost, high profit), it turns out to be a poor planning if implemented in the actual 
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route (Scenario 2). On the contrary, through taking into account the fact of headway 

variance, the proposed model reflects the actual route situation and provides a more reliable 

projection of both demand and profit. As a result, the system recommended from the 

proposed model (Scenario 3) perform better in terms of both average total cost and average 

operator cost compared with that under Scenario 2. 

 

Table 5.2 Optimization Results under Different Scenarios 

Variable Scenario 1 Scenario 2 Scenario 3 

H (min) 10.4 10.4 12.0 

S (mi) 0.37 0.37 0.47 

n 14 14 11 

Fleet Size 4 6 5 

CW ($/hr) 205 214 240 

CA ($/hr) 55 55 68 

CI ($/hr) 156 154 149 

CU ($/hr) 417 423 458 

CO ($/hr) 160 240 200 

Demand (pass/hr) 148 146 146 

Revenue ($/hr) 222 219 219 

Profit ($/hr) 62 -21 19 

Average Operator Cost per 

Passenger ($/hr-pass) 
1.1 1.6 1.4 

Average Total Cost per Passenger 

($/hr-pass) 
3.9 4.6 4.5 

 

5.1.2 Sensitivity Analysis 

Although in the previous section, a set of optimization solution is provided which achieves 

the maximum profit, such solution may not be the most favorable one for the passengers. 

Often, if there is no hard constraint on the operator cost, the exploration of other alternate 

solutions is desirable from the standpoint of transit users. 



 

 

81 

Trade-off between the Operator’s and Users’ Objectives 

To further investigate possible alternatives and the trade-off between the objectives of the 

operator and passengers under different scenarios, the average operator cost and average 

user cost as defined in Chapter 3, are applied for monitoring system efficiency and 

attractiveness. For each scenario to be analyzed (e.g., a different demand level), two 

objectives, namely minimizing average operator cost and minimizing average user cost, 

are applied to find the optimization solutions. As discussed in Chapter 4, the set of 

optimization solutions of this multi-objective optimization problem forms a Pareto front 

(i.e., Pareto optimality), which is also called a trade-off curve for the conflicting objectives. 

Such optimality is a state of resource allocation where it is impossible to make any single 

objective better off without making others worse off. Therefore, any solution in the curve 

satisfies the criteria that it is no worse than the other solution with respect to all objective 

values and strictly better in at least one objective value.  

Shown in Figure 5.2 are the trade-off curves between these two objectives achieved 

by a set of optimized stop spacings and headways under different scenarios. Same as the 

definition in Section 5.1.1, let Scenario 1 represent the model results with null-headway-

variance, Scenario 2 be the actual results for Scenario 1, and Scenario 3 represent the 

proposed model results with headway-variance. 

The curves for Scenarios 1 and 3 are the Pareto fronts solved with respective models, 

whereas the curve for Scenario 2 consists of the actual costs if implementing the 

optimization results from Scenario 1. Similar to the findings discussed in Section 5.1.1, 

ignoring the impact of headway variance results in underestimated average user cost and 
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average operator costs with the optimized stop spacing and headway of Scenario 1  

(refer to results of Scenario 2). 

Considering the impact of headway variance (Scenario 3), both of the average user 

and operator costs yielded by optimized stop spacing and headway increase compared to 

those under Scenario 1. However, since the proposed model did consider the stochastic 

nature of bus operations, as shown in Figure 5.2, better planning of stops and headway 

effectively lower the average operator and user costs (as compared to Scenario 2).  

Also included in Figure 5.2 are the optimization results with maximum profit 

objective functions for these scenarios as presented in Table 5.2. It should be noted that, 

comparing with other alternate solutions achieving Pareto optimality, the average user 

costs are higher for all scenarios with the optimization results yielding maximum profit. 

Therefore, if average operator cost could be slightly adjusted, other configurations of 

headway and stop spacings may be considered to lower the user cost, according to the 

trade-off curve. 

The boxplots of corresponding profits are represented in Figure 5.3, which show 

the descriptive statistics of the profits calculated form the optimization solutions for each 

scenario. The upper bound and lower bound of the box are the third and first quartiles of 

the profits, with the box representing the likely range of variation. The black bars above 

and below the box define the full range of variation (i.e., the maximum and minimum 

values, respectively), and the red line inside the box indicates the median value of the profit. 

Although revealed from Figure 5.2 that average user cost and average operator cost 

under Scenario 1 and Scenario 3 are significantly different, there is not much difference in 

terms of yielded profit. Thus, in the multi-objective optimization model, the operator’s 
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profit is not as emphasized as in the single objective (i.e., profit maximization) model. 

However, comparing the profits under Scenario 1 and Scenario 2, the overestimation of 

profit with a traditional model ignoring the impact of headway variance can still be 

observed. 

 

 
Figure 5.2 Average operator cost vs. average user cost under different scenarios. 

  

The boxplots of corresponding optimized stop spacings and headways for Scenarios 

1 and 3 are plotted in Figure 5.4. In the figure, the box shows the descriptive statistics of 

the values for each variable (i.e., stop spacing, headway) for each scenario.  

To achieve the Pareto front for the average user and operator costs considering 

headway variation, both of the optimized headways and stop spacings are recommended to 

be increased (Scenario 3). Especially, under Scenario 3, short stop spacing is considered 

not appropriate in terms of profit maximization due to accumulated headway variance 

along the stops over the route, and all values are higher than 0.4 mile. A t-test is conducted 



 

 

84 

to evaluate the statistical significance of the difference between the optimized stop spacings 

for Scenarios 1 and 3. With null hypothesis of equal mean and a confidence level of 0.9, 

the result shows there is a statistically significant difference between two set of stop 

spacings.  

 

 
Figure 5.3 Profits under different scenarios. 

 

Looking into the optimized headways under both scenarios, it is found that the 

median headway under Scenario 3 is higher than that under Scenario 1, and more headways 

are distributed near the upper bound (i.e., 0.2 hr). Due to wide spread of headways and 

close distance between two median values, T-test is conducted to investigate whether such 

difference is statistically significant. The same null hypothesis and confidence level 

discussed above is set, and the result suggests that null hypothesis can be rejected. 

Therefore, two set of headways under Scenarios 1 and 3 are considered as significantly 

different with 90% confidence level.  
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Therefore, it is proved that incorporating headway variance in the optimization 

model has significantly changed the configurations of stop spacing and headway for a given 

feeder bus route. 

 

 
Figure 5.4 Boxplots of stop spacing and headway for scenarios 1 and 3. 

 

Influence of Model Parameters 

Concluded from the above analysis that headway variance does have an influence on the 

objective values as well as on the optimized stop spacing and headway. Furthermore, 

statistically, such significant influence cannot be neglected in the planning process. Since 

such findings come from only one specific set of model parameters, sensitivity analyses by 

varying route design parameters (i.e., demand level, headway variance increment) are also 
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conducted to assess the result differences from Model I and the traditional model without 

considering headway variance.   

 

Demand Level 

The responses of objectives to demand level changes are analyzed for the models without 

and with headway variance, as shown in Figure 5.5 a and b, respectively. Demand level – 

1 represents the base condition, while demand level 2 is two multiplied by the base demand 

and so on. 

It was found that with both models, when the demand level increases, the average 

operator costs yielded by the Pareto-optimal set are reduced. The closer curves under high 

demand levels with headway variance reflect that there are lower bounds towards which 

the average user cost and operator cost could be reduced when the demand level increases. 

Comparing Figure 5.5 a and b under a same demand level, it was found that no significant 

difference is revealed in the range of average operator cost, while it is obvious that the 

average user costs are higher when the headway variance is considered.  

 

 
Figure 5.5 Average user and operator costs vs. demand level.  
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The corresponding optimized headways and stop spacings are plotted in Figures 

5.6 and 5.7, respectively. Shown in Figure 5.6 are headways from the Pareto-optimal set 

for both the proposed model considering headway variance and the traditional model not 

considering headway variance under different demand levels. It is observed that without 

considering headway variance, the median value of headways is similar for different 

demand levels. In contrast, considering headway variance, the median of headways reduces 

while the range shrinks significantly, revealing that with the proposed model, the optimized 

headways are more sensitive to demand changes. 

Similarly, the boxplot of optimized stop spacings with the traditional model without 

headway variance (Figure 5.7 a) as well as the results from one-way Analysis of Variance 

(ANOVA) indicate that no significant differences exist in the mean and variance of stop 

spacings among different demand levels. With the proposed model, the optimized stop 

spacings increase significantly, indicating that short spacing is not recommended due to 

stochastic vehicle arrivals. Also, the differences in mean and variance of stop spacings 

among demand levels are revealed based on the results of statistical analysis. 

In summary, based on the analysis of trade-off curve and corresponding Pareto-

optimal set, when the headway variance is considered in the optimization model, longer 

headways and stop spacings are recommended. Also, the proposed model with 

consideration of headway variance is more sensitive to demand changes. Considering the 

steep curves under high demand levels (Figure 5.5) and the shallow ranges of optimized 

headways and stop spacings (Figures 5.6 and 5.7), it is reflected that a small change in the 

headway could lead to a significant increase in the average user cost. Therefore, it is 
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especially critical to choose proper stop spacing and headway for highest cost effectiveness 

and system attractiveness under high-demand condition. 

 

Headway Variance Increment 

When traffic congestion gets worse, the headway variance of bus operations is expected to 

be higher due to such influence. Therefore, it is necessary to understand how the stop 

spacing and headway should be adjusted if the variance is increased. Figure 5.8 illustrates 

the optimized objective values vs. headway variance increment (i.e., α). While the average 

user cost will inevitably increase due to large service interruption, the model suggests that 

stop spacing and headway should be increased in response to the change for more cost-

effective and attractive operation.  

Decomposing the average user cost into average access cost, wait cost, and in-

vehicle cost, the trend for each cost component is illustrated in Figure 5.9. It is found that 

when the headway variance is considered in the model, the impact of large traffic 

disturbances on the average in-vehicle costs could be neglected with rearranged stop 

spacings and headways (Figure 5.9 b). However, the average wait cost, majorly affected 

by headway variance, is inevitably increased due to increased headway variance  

(Figure 5.9 c). Due to widened stop spacings in response to increased headway variance, 

the average access cost also rises (Figure 5.9 a). As a result, as shown in Figure 5.9 d, the 

overall average user cost significantly increases with the increase of headway variance.  
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Figure 5.6 Boxplot for optimized headways vs. demand level.  

 

 
Figure 5.7 Boxplot for optimized stop spacings vs. demand level.  
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Figure 5.8 Optimized stop spacing, headway, and costs vs. α.  

 
Figure 5.9 User cost components vs. α.  

 

 Case Study II 

The enhanced model is applied to optimize dispatching headway and stop locations for the 

same bus route as in case study I. A total of 30 intersections are counted along the route. 
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The existing operation serves 16 stops with a 5-minute dispatching headway. The average 

stop spacing is 0.36 miles, and the minimum spacing between two stops is 0.12 miles. The 

directional demands are 125 pass/hr and 23 pass/hr for outbound and inbound, respectively. 

Considering the geographic condition and existing stops, there are 43 feasible stop 

locations for model inputs. The start and end stops of the route are fixed and serve as bus 

terminals. Pre-determined stop locations due to political, passenger demand, traffic, 

geometric and other practical concerns could also be taken care of in the optimization 

process. Following the assumptions in case study I, the average vehicle cruising speed is 

25 mph, and the average passenger access speed to bus stops is 2 mph. All vehicles are 

dispatched on time from the terminals. The average delay per intersection and the average 

acceleration/deceleration delay per stop are both 10 seconds, and the average passenger 

boarding time is 6 seconds. The vehicle travel time over the route varies, whose variance 

is 4-min2/mile, which is an approximately equivalent assumption to 1 min2/stop headway 

variance in case study I. The model parameters are summarized in Table 5.3. Based on the 

survey, the directional cumulative boarding and alighting demand distributions are 

illustrated in Figures 5.10.  

 

5.2.1 Optimization Results 

Considering travel time variation, the optimization results were found for the proposed 

model and compared with those under existing operation and the traditional model without 

considering variation, described as follows.  

Scenario 1: Existing operation 

The stop locations and headway configuration under existing operation is used 

to calculate the objective value 
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Scenario 2: Optimization results without considering travel time variation 

Under this scenario, the traditional model without considering travel time 

variation is solved against the same objective – maximizing operator’s profit. 
 

Scenario 3: Actual profit for Scenario 2 when implemented in the route with variance 

Since the optimized solution under Scenario 2 cannot reflect the actual situation 

where stochastic vehicle arrivals present, the operator’s profit is re-calculated 

taking into account 4-min2/mile travel time variance. 
 

Scenario 4: Optimization results considering travel time variance 

Under this scenario, the proposed model considering travel time variance of 4 

min2/mile is solve to maximize the operator’s profit. 
 

Scenario 5: Optimized headway with existing stops by the proposed model 

The operation headway is re-optimized with existing stops using the proposed 

model considering 4-min2/mile travel time variance. 

 

Table 5.3 Model Parameters of the Case Study 

Variables Descriptions Values Units 

X  Total number of intersections 30  

c  Dispatching headway variance 0 min2 

s
d

 

Average delay per stop due to 

acceleration/deceleration 
10 s 

L  Route length 5.15 miles 

x
d

 
Average delay per intersection 10 s 

a
u

 
Value of passenger access time 8 $/pass-hr 

o
u

 
Unit operating cost 40 $/bus-hr 

v
u

 
Value of passenger in-vehicle time 8 $/pass-hr 

w
u

 
Value of passenger waiting time 16 $/pass-hr 

t


 
Travel time variance 4 min2/mile 

b
V

 
Average bus cruising speed 25 mph 

pV
 

Average passenger walking speed 2 mph 

  Average passenger boarding time 6 s 
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Figure 5.10 Cumulative outbound and inbound demand distribution. 

 

Based on the parameters listed in Table 5.3, a total user cost of 981 $/hr and operator 

cost of 480 $/hr was estimated with existing stops and dispatching headway when headway 

variance exists, resulting in a negative profit (Scenario 1 in Table 5.4). Due to extremely 

short headway, the fleet size requirement is high enough to produce a high operator cost 

and negative profit.  

Under Scenario 2, the maximum profit of 62 $/hr was yielded by the optimized 

configuration of 12 stops and 10-min headway. The null variance assumption for Scenario 

2 makes it possible to increase the number of stops in order to lower the access cost. Due 

to neglecting travel time variation, vehicle round-trip travel time is inevitably 

underestimated, thus, implementing such stop and headway configuration will lead to 

unexpected short of vehicles. Therefore, to satisfy the same level of demand, the fleet size 

needs to be enlarged which ultimately leads to a higher operator cost and in turn lower 
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profit (Scenario 3). Also, due to travel time elasticity of demand, underestimation of travel 

time also means overestimation of the actual demand (147 pass/hr under Scenario 3 vs. 148 

pass/hr under Scenario 2). 

 

Table 5.4 Results for Optimized and Existing Operations 

Variables 
Scenarios 

1 2 3 4 5 

Headway (min) 5 10 10 12 12 

Fleet Size (buses) 12 4 6 5 5 

Number of Stops 16 12 12 9 16 

Demand (pass/hr) 146 148 147 147 146 

User In-Vehicle Cost ($/hr) 731 271 576 441 731 

User Access Cost ($/hr) 109 146 145 206 110 

User Wait Cost ($/hr) 141 198 218 242 252 

Total User Cost ($/hr) 981 615 939 889 1,093 

Operator Cost ($/hr) 480 160 240 200 200 

Revenue ($/hr) 219 222 221 221 219 

Profit ($/hr) -261 62 -19.5 21 19 

Average Operating Cost 

per Passenger ($/pass-hr) 
3.3 1.1 1.6 1.4 1.4 

Average User Cost ($/pass-

hr) 
6.7 4.2 6.4 6.0 7.5 

Average Total Cost per 

Passenger ($/pass-hr) 
10.0 5.3 8.0 7.4 8.9 

 

The results from the proposed model is represented as Scenario 4, showing that 

compared to the existing configuration, the total profit was significantly improved with the 

optimized configuration of 12-min headway and 9 stops. The required fleet size is reduced 

to half of the existing one, leading to reduced operator cost. Meanwhile, proper 

arrangement of stops and headway results in increased demand and reduced user cost. 

Comparing the results under Scenario 3, because of less stops and longer headway under 

Scenario 4, the operator cost is well controlled which leads to an increase in the profit. 
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Therefore, the average operating cost and average total cost are lowered, confirming that a 

more cost-efficient system could be achieved with the proposed model.  

To further investigate the influence of stop optimization with the developed model, 

Scenario 5 were created by keeping existing stop configuration and optimizing the 

headway with the proposed model. Although the configuration of existing stop and 

optimized headway seems to provide a more appealing result than the configuration of 

existing stop and headway, the cost-efficiency of such system is still lower than that yielded 

by the proposed model (similar profit but much lower average total cost per passenger).  

Shown in the upper panel of Figure 5.11, the optimized stop locations in Scenario 

4 are quite different from the existing ones (Scenario 1). It is understandable that due to 

dense intersections and travel time variance, fewer stops are suggested placed along the 

route. In the meantime, to accommodate the demand, stops are located in the high demand 

segments. 

 

5.2.2 Sensitivity Analysis 

In this section, system performance in terms of reliability is examined for the scenarios 

created in the previous section. Then, the trade-off between average operator cost and 

average user cost is further examined. 
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Figure 5.11 Optimized and existing stop locations vs. average load.  

 

Service Reliability 

As discussed earlier, bus service reliability has been regarded as a key indicator of transit 

system performance. By definition in Transit Capacity and Quality of Service Manual 

(TCQSM) (Kittelson & Associates, 2003), the headway coefficient of variation ( h
c ) can 

be used to measure the bus bunching effect and indicate the level of service (LOS), which 

is the standardized measure of headway dispersions. Each category of LOS, corresponding 

range of h
c and the description are presented Table 5.5. For instance, when h

c  is smaller 

than 0.21, bus service is provided like clockwork, yielding LOS A representing the best 

bus performance. In contrast, if h
c  is larger than 0.75, most vehicles bunch, the worst 

performance is observed and defined as LOS E. In this section, the definition of LOS and 

h
c  are applied to investigate service reliability under the influence of travel time variance.  
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Table 5.5 Fixed-Route Headway Adherence and Level of Service 

LOS h
c  Passenger and Operator Perspective 

A 0.00 - 0.21 Service provided like clockwork 

B 0.22 - 0.30 Vehicles slightly off headway 

C 0.31 - 0.39 Vehicles often off headway 

D 0.40 - 0.52 Irregular headways, with some bunching 

E 0.53 - 0.74 Frequent bunching 

F ≥ 0.75 Most vehicles bunched 

Source: Transit Capacity and Quality of Service Manual (Kittelson & Associates, 2003) 

 

As a result, the stop-level headway coefficient of variation is calculated with the 

optimization result yielded under each scenario (i.e., existing operation as Scenario 1, 

optimized result without travel time variance as Scenario 3, and with variance as Scenario 

4). The trends of h
c and the categories of LOS are illustrated in Figure 5.11, and the orange, 

blue and red lines represent Scenarios 1, 3, and 4, respectively. As shown in the figure, the 

optimized configuration of headway and stops from both models significantly improve 

service reliability compared to existing operation. Although service reliability is inevitably 

deteriorated at downstream stops because of propagated headway variation, the LOSs at 

all stops are improved with optimized configurations of headways and stops.  

By comparing the headway coefficient of variation under Scenarios 3 and 4, the 

proposed model considering travel time variance performs better in controlling service 

deterioration. Since h
c  at the downstream stops are lowered, the LOS has been improved 

with the proposed model. 
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Figure 5.12 Headway coefficient of variation under different scenarios. 

 

 

To determine the LOS on a route basis, the average headway coefficient of variation 

hc for all stops was calculated (i.e., sum of stop level h
c  divided by the total number of 

stops). Basic descriptive statistics for stop level h
c  under each scenario is plotted in Figure 

5.13 with hexagram point in each category indicating route level hc .  

Under Scenario 1, the LOS at most stops with existing operation are worse than E, 

where most vehicles bunched together due to combined effects of traffic congestion and 

short headway. However, under Scenario 5, although the travel time variance remains the 

same, the values of h
c  are significantly reduced due to optimized headway with the 

proposed model taking into account travel time variance.  

With the configurations recommended by the optimization model without 

consideration of travel time variance (Scenario 3), both of the stop-level h
c  and route-

level hc  are improved, comparing with the existing operation. However, since half of the 
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stops experiencing LOS E, the route LOS falls in category D (i.e., irregular headways with 

some bunching).  

Under Scenario 4 (optimization with consideration of variance), the LOS is further 

enhanced compared to those under Scenario 3. With more stops having lower h
c , the route 

LOS is improved to C. Although due to inherent traffic condition, the optimization of 

headway and stops is not able to yield a higher route LOS, most of the stop LOS have been 

improved significantly.  

Comparing Scenario 4 with Scenario 5, the values of h
c  at the end of route are 

similar (as indicated by similar maximum and 75th percentile values). However, the stop 

level LOS at the upstream segments of the route are significantly improved as indicated by 

much lower 25th percentile value under Scenario 4, due to optimized stop locations. 

 

 
Figure 5.13 Boxplots of stop-level h

c  under different scenarios.  
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Trade-off between the Operator’s and Users’ Objectives 

To further investigate the trade-off between the objectives of the users and the operator, 

similar to Case Study I, the average user and operator costs are applied to optimize the 

headway and stop spacing considering travel time variance.  

Figure 5.14 a shows the Pareto front by solving the multi-objective optimization 

model with two conflicting objectives, achieved by a set of optimized configurations with 

similar stop locations but varying headways. The trade-off curve between average user cost 

and average operator cost suggests a relatively insensitive average user cost to headway. 

This is consistent with single profit-maximization objective: when the demand elasticity to 

the travel time variance is low, the users’ benefit is prone to be sacrificed for higher profit. 

Note that with the single-objective optimization model, the optimized stop and 

headway yield a pair of (1.4, 6.0) average operator cost and average user cost, as shown 

with the blue square in Figure 5.14 a. Obviously, the single-objective approach limits the 

interpretation of the model results with only one pre-defined relationship between the users 

and operator. Although it is helpful when the emphasis of the system is clear, sometimes 

such approach may fail to tell the whole story. Moreover, in this case study, even with 

consideration of demand elasticity, the optimization results with single objective still 

substantially favor the operator over the users. In this case, it is useful to illustrate the trade-

off in a multi-objective approach, showing the relationship among objectives and also the 

sensitivity of each objective with decision variables. 

Shown in Figure 5.14 b, the corresponding optimized headways range from 3 min 

to 12 min. With the same set of stop configuration, shorter headway is preferred to achieve 

a lower average user cost. If a lower operator cost is desired, however, higher headway 
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shall be selected. Figure 5.14 b is also helpful in the process of decision-making. For 

instance, if there is a range of average operator cost can be allocated (e.g., 1~3 $/pass-hr), 

the range of feasible headways is between 5~12min. Therefore, depending on the goal  

(e.g., minimizing average user cost, or minimizing average operator cost, or balance these 

two costs), slight modification of headway is able to yield anticipated results. 

 

 
Figure 5.14 Average operator and user costs vs. optimized headway. 

 

Travel Time Elasticity of Demand 

Implied from the above discussion, the elasticity of demand may impact the optimization 

results due to the influenced sensitivity of average operator cost and average user cost to 

travel time variance. In light of this, sensitivity analysis is conducted to investigate how 

the elasticity affects the configurations of stops and headways. The travel time elasticity of 

demand (et), changing from 0.03 to 0.21 with an interval of 0.06, is applied to solve the 

multi-objective optimization problem.  

Shown in Figure 5.15 a, although the travel time variance is constant, due to higher 

travel time elasticity, the average user cost gets higher due to reduced demand. According 
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to the optimization solutions, whereas the stop locations should be rearranged when 

demand is highly sensitive to the travel time variance, the distributions of headways 

satisfying Pareto optimality, as shown in Figure 5.15 b, are not statistically different among 

these four scenarios according to the ANOVA result. 

 

 
Figure 5.15 Average operator and user costs vs. travel time elasticity. 

 

Travel Time Variance 

In addition, to understand how the model behaves when the travel time variance along the 

route is changed, sensitivity analysis is conducted. The travel time variance t
 varies from 

4 to 16 min2/mile (i.e., the standard deviation of travel time varies from 2 to 4 min/mile) 

with an interval of 4 min2/mile. Instead of utilizing the single-objective function, the multi-

objective optimization model is applied to better understand the changes in user and 

operator costs respectively. As a result of increased travel time variance, the optimized 

headways increase as shown in Figure 5.16. In addition, when the travel time variance is 

getting higher, not only the median of headways increases, but also the number of possible 

headways achieving Pareto optimality reduces. 
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Figure 5.16 Boxplot of optimized headways vs. travel time variance. 

 

Looking into the trade-off curves for the average use and operator costs  

(Figure 5.17 a), it is found that as 
t

  increases, both of the average operator and user costs 

increase due to larger variation. Also observed from the shape of Pareto front, the feasible 

solution pool satisfying the Pareto optimality shrinks when the variance gets higher. It is 

notable that the increase of costs with travel time variance is not linear and the gaps are 

reducing. Correspondingly, the operator’s profits and total user costs are shown in Figure 

5.17 b. With the increase of travel time variance, it is not possible for the service to be 

profitable due to high operator cost as well as high travel time that leads to reduced demand 

and revenue. However, it should be noted that such conclusion is based on the short 

headway service. If the demand level is too low to maintain short headway, long headway 

service should be considered. Since passengers’ behavior are different under short and long 

headway services, more investigations need to be conducted in the future research. 
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Figure 5.17 Average user and operator costs, operator profit vs. υt.  

 

 Case Study III 

In this case study, Model III is applied to find proper number and locations of time points 

to improve bus service performance. The simulation-based optimization is applied to solve 

the problem. Bus stops, as the simulation inputs, are from the optimized solution generated 

by Model II (i.e., the planning model), consisting of 9 stops from the origin terminal to the 

destination terminal. The list of stops is shown in the Table 5.6 and the locations of the 

stops are shown in Figure 5.18. The headway is 12 minutes and fleet size is 5 according to 

the optimization result from Model II. The boarding/alighting profiles along the route are 

represented in Figure 5.19, showing that for the outbound direction, both of the boarding 

and alighting are higher downstream rather than upstream. 

 

 



 

 

105 

 
Figure 5.18 Stop locations along the route. 

 

Same set of model parameters with the previous case study is applied, including an 

average of 10-second intersection delay, average of 6-second unit boarding time, an 

average of 25 mph cruising speed, 4 min2/mile travel time variance, $40/bus-hr unit 

operator cost, $8/pass-hr value of in-vehicle time, and $16/pass-hr value of wait time.  

 

Table 5.6 Simulation Inputs - Stops, Distances and Intersections 

Stop No Distance Intersections 

1 0.00 0 

2 0.25 0 

3 0.74 3 

4 1.16 5 

5 2.10 8 

6 2.66 11 

7 3.75 18 

8 4.89 27 

9 5.15 30 

 

 

30 repeats of 4-hour simulation with same parameters and different random seeds 

were conducted under no control scenario for model calibration. The average demand from 

the simulation model is 145 pass/hr, with average operator cost of 1.3$/hr, and 4.6$/hr of 

average user cost. The demand is slightly less than forecasted demand due to simulation 

variation, while the average headway at each stop is very close to the scheduled headway 
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– within 30-second variation. Shown in Figure 5.20, the headway coefficient of variation 

for the simulation model well reflects the results from Model II. The overall trend and stop 

level of service are the same as the planning model, although small deviations occur along 

the route.   

 

 
Figure 5.19 Outbound hourly boarding and alighting demand. 

 

Overall, the simulation model can be applied to reflect the planning model when 

there is no control along the route, and therefore is able to be used for further bus holding 

analysis and optimization. To present system performance under traffic congestion, the 

outbound bus trajectories from one simulation run are drawn in Figure 5.21. It is found that 

the headways at upstream stops are relatively stable because of fewer boarding/alighting 

demand (i.e., less disruption). In contrast, service deterioration appears and becomes more 

significant when the buses travel further downstream. In the study route, more demand is 
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concentrated in the middle and downstream of the route, meanwhile, intersections are more 

along the downstream segment of the route than the upstream. Therefore, it is reasonable 

that a small headway fluctuation from upstream turns into a huge deviation, leading to 

significantly increased headway coefficient of variation at downstream stops as shown in 

Figure 5.20. 

 

 
Figure 5.20 Comparison of headways and h

c  from planning and simulation models. 
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Figure 5.21 Simulated bus trajectories with no control. 

 

5.3.1 Optimization Results 

Applying the control strategy into the system, the simulation model is embedded into the 

Genetic Algorithm, where the control points are set as decision variables, and minimizing 

average user cost and minimizing average operator cost are the two conflicting objectives. 

Figure 5.22 shows the trade-off between average operator cost and average user cost under 

different control point settings, where the controlled stops for each combination of average 

operator cost and average user cost in the Pareto front are presented. Also, as shown with 

blue square point, both of the average operator and user costs are higher under uncontrolled 

operations than controlled operations. It is reflected through the trend of trade-off curve 

and its solutions that more time points lead to higher average user cost but lower operator 

cost.  
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Since the headway-based strategy is applied in the optimization, it is reasonable 

that with more time points, service regularity is improved and the usage of vehicles are 

more cost efficient, so that the average operator cost could be reduced. However, setting 

more time points, on the other hand, means higher possibility of holding buses, which 

ultimately leads to more in-vehicle travel time. Although the waiting time may benefit from 

regular service, specific combinations of demand pattern and control point locations might 

result in higher average user cost, as illustrated in Figure 5.22. 

 

 
Figure 5.22 Average user and operator costs vs. time points. 

 

To illustrate the impact of control points, the set of optimized control point that 

yields minimum operator cost is chosen to conduct system performance analysis. Figure 

5.23 shows the locations of control points vs. the outbound boarding and alighting demand. 

The blue square points in the upper-level panel stand for the control points, whereas the 

blue and red lines in the lower-panel of the figure represent stop-level outbound boarding 
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and alighting, respectively. Similar to the findings from previous studies reviewed earlier 

in Chapter 2, one of the control points is placed in the upstream segment of the route to 

minimize fluctuation from upstream, and the other two are placed at the stops where the 

peak boarding demand are found to alleviate demand influence on headway deviation.  

 

 
Figure 5.23 Optimized time points vs. outbound boarding/alighting profile. 

Summarized from the simulation results, Figure 5.24 shows the comparison among 

three stop-level headways, where in the Legend, ‘Controlled’ means average stop-level 

headway with optimized control points, ‘Uncontrolled’ means average headway without 

any control, and ‘planned’ headway is the optimized headway from Model II, which is also 

the input of the simulation model. 

The inherent characteristics of headway-based control strategy imply the increase 

of average headway, which could be explained with two simple cases involved in the 

control procedure. First, if a headway is long, it may not meet the control criteria, and then 
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the bus will only dwell for passenger on/off activities. Second, if a headway is short, it 

probably meets the control criteria, and then the bus will be held for a certain time to ensure 

enough headways of this bus with the leading and following buses. As a result, such 

controlling strategy will lead to a little higher average headway than uncontrolled operation, 

as shown in Figure 5.24. 

 

 
Figure 5.24 Comparison of simulated headways and planned headway. 

 

 Although the average headway may be slightly increased, when one looks into 

service reliability in terms of headway coefficient of variation, significant improvement is 

achieved under controlled operation. In Figure 5.25, the headway coefficients of variation 

are compared among three scenarios, where the red dotted line represents the results from 

the optimization model II, the black dotted line is the performance with simulated 

uncontrolled operation, and the blue line shows the results under controlled operation. It is 

found that after the upstream control point, service reliability is immediately improved with 
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much lower cvh value. Due to high boarding and alighting demand at downstream stops, 

the effects of control points are not significant compared to the upstream control point. 

However, two downstream control points are effective in curbing service deterioration, 

indicated through the slower increase of headway variation compared to the other two 

scenarios. 

 

 
Figure 5.25 Headway coefficient of variation vs. time points. 

  

 To visualize the operations with control points, bus trajectories are drawn within  

4-hour simulation as shown Figure 5.26. The black dots in y-axis indicate the controlling 

locations along the route, whereas the x-axis represents the elapsed time during simulation. 

Compared with the uncontrolled bus trajectories shown in Figure 5.20, not only headways 

at upstream stops are regular, but also the headway regularity at downstream stops is 
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significantly improved. Although some buses may get closer after the last control point, no 

bunching occurs under controlled operation. 

 

 
Figure 5.26 Simulated bus trajectories with control. 

As discussed before, the control points have different influences on passengers’ 

wait time and in-vehicle travel time. With the simulation results, the average wait time and 

in-vehicle time per stop for outbound direction are calculated for both controlled and 

uncontrolled scenarios (Figure 5.27). For the uncontrolled operation, the average in-vehicle 

time only consists of dwell time and link travel time, whereas under controlled operation, 

the average in-vehicle time also include the extra holding time at stops. 

In Figure 5.26 a, the black line series represent the uncontrolled operation and the 

red line series are for the controlled operation. For the average wait time, each point 

represents the average wait time at a stop. Since no outbound boarding demand at the last 

two stops (i.e., the stops at 4.89 mile and 5.15 mile), the average wait times for these stops 
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are not calculated. For any segment between a pair of consecutive stops, the average in-

vehicle time is the sum of segment travel time, holding time, bus dwell time, and bus 

acceleration/deceleration delay. As shown in Figure 5.26 a, the stop-level average wait 

time evens out under controlled operation because of more regular headways after 

controlling, though passengers at some stops may experience a little long wait time due to 

slightly increased headways. On the other hand, due to additional holding time to ensure 

service regularity, the average in-vehicle travel times for the controlled segments are 

increased. 

Represented in Figure 5.26 b are the outbound bus travel time distributions under 

controlled and uncontrolled operations. With the results of 30 replications of 4-hour 

simulation run, the orange bars stand for the percentage of outbound travel time of each 

range for uncontrolled operations, the blue bars are for the controlled operations. The 

overlays are shown in dark orange. Although longer travel times are expected in a system 

with control points, the impact of longer travel times on bus operation may be compensated 

by the improvement of service reliability, as reflected by reduction in the operator cost  

(i.e., higher cost efficiency). 
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Figure 5.27 Average passenger wait and in-vehicle Time, outbound bus travel times under 

controlled and uncontrolled operations. 

 

5.3.2 Comparative Analysis 

For comparison, the simulation and optimization results from a traditional model without 

considering travel time variance are also analyzed. Same simulation settings are applied 

except for the scheduled headway and stop locations, which come from the optimal results 

of Scenario 2 (i.e., a traditional model without considering travel time variance) in  

Section 5.2. 

It is found from the simulation that the average stop-level headway is 11 min 

instead of 10-min optimized headway, leading to an average user cost of 4.4 $/pass-hr and 

1.6 $/pass-hr average operator cost. Therefore, for the planner using the traditional model 

to estimate resource requirement and profit, the situation exists that due to large 

(unexpected) fluctuation and underestimated fleet size, maintaining the suggested headway 

is impossible. Sequentially, the whole system needs to be modified in order to satisfy the 
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projected demand, or otherwise suffer from ridership decline. Either way, the result is clear: 

unexpected increase from the projected operator cost.  

Shown in Figure 5.28, the headway coefficient of variation from simulation model 

is compared with that from planning model for calibration and further analysis. In addition, 

the stop level cvh under Scenario 4 (i.e., the proposed Model II) is included for comparison. 

Consistent with the results from the planning models, the simulation results also reveal a 

significant difference of cvh between the proposed and traditional models.  

 

 
Figure 5.28 Headway coefficient of variation under different scenarios. 

A sample of bus trajectory from simulation model is illustrated in Figure 5.29, 

indicating that due to improper planning, buses are often off headways and bunching also 

occurs. The deterioration of service not only appears at downstream stops, but also exists 

in the upstream segments. On the contrary, with optimized stops and headway from the 
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proposed model, large headway deviation only occurs in the downstream segments as 

shown in Figure 5.20.  

 

 
Figure 5.29 Simulated bus trajectories under scenario 2. 

 Optimizing the number and locations of time points for the stop and headway 

configuration under Scenario 2, a similar Pareto front could be observed: less control points 

leads to lower average user cost but higher average operator cost, and higher user cost and 

lower operator cost if more control points are assigned along the route. Take the set of 

control points yielding the least operator cost for instance, the system performance is 

analyzed and presented as follows. 

 A set of five time points is selected which reduces the average operator cost by 0.3 

$/pass-hr and average user cost by 0.1 $/pass-hr. The time points are shown in Figure 5.30 

together with outbound passenger boarding/alighting profiles, which are recommended to 

be placed downstream due to dense stops (i.e., higher headway fluctuation is expected due 
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to the interactions of passenger activities, traffic conditions and bus operations, as shown 

in Figure 5.29) in order to lower the operator cost.  

 

 
Figure 5.30 Optimized time points vs. outbound boarding/alighting profile. 

 

After applying the control points in the bus route, service reliability in terms of 

headway coefficient of variation is presented in Figure 5.31. The red lines represent 

simulation results for Scenario 2, with dark red for controlled and light red for uncontrolled 

operation. The gray dotted lines represent results for Scenario 4 as comparison, with dark 

gray for controlled and light for uncontrolled operations. 

 In general, after controlling, the stop level of service is improved for both scenarios. 

For instance, for Scenario 2, several downstream stops experiencing LOS D before 

controlling, whereas only one stop experiencing LOS D after introducing the control points. 
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Since the arrival headway is applied for calculating headway coefficient of variation, it is 

explainable that the variation is decreased at the immediate downstream stops of the control 

points. 

 Looking into the reliability for the controlled operation under Scenario 2, although 

headway coefficients of variation at downstream stops are lowered due to densely allocated 

control points, LOS at upstream stops are not improved, if not worsen. It is obvious that 

compared to Scenario 4, the controlling effects with the optimal stop locations and 

headway under Scenario 2 is nothing better, although more time points (i.e., higher average 

operator cost) are placed along the route. 

 The reason that upstream stops suffer from severer service deterioration after 

controlling under Scenario 2 may be explained with vehicle trajectory data. As the inter-

arrival time is used for headway calculation, when it comes to the outbound dispatching 

terminal, the headways and their variance are actually dependent on the inbound vehicle 

arrivals. Since no control points near the outbound dispatching terminal, it is 

understandable that inbound buses may suffer from large deviations, leading to high 

headway coefficient of variation. 
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Figure 5.31 Headway coefficient of variation vs. control points under different scenarios. 

 

An example from controlled bus trajectories is used for illustration as shown in 

Figure 5.32. Light grey lines are the outbound bus movements, whereas the orange dotted 

lines stand for inbound bus movements. The locations of time points are represented by the 

black dots located in y-axes. It is clear to see that with control points, the service regularity 

is significantly improved although there are still several irregular headways especially in 

the outbound direction. However, associated with the locations of time points, it is 

reasonable that the outbound headways are more regular at downstream stops (upper part 

in Figure 5.32), whereas the headway deviations at the stops near the outbound dispatching 

terminal are much larger than those stops near the inbound dispatching terminal. 



 

 

121 

 
Figure 5.32 Controlled bus trajectories under scenario 2. 

 

 Summary 

In this chapter, three case studies for the three proposed models were conducted to examine 

the capability and effectiveness of the developed models. Particularly, the input parameters 

were modified to fit model requirements. Sensitivity analysis were also conducted to 

investigate the relationship between input parameters (e.g., demand level, travel time 

variance level, etc.) and system performance. 

 The results not only presented maximized operator profit under demand elasticity 

with optimized decision variables, but illustrated service reliability in terms of headway 

coefficient of variation before and after optimization, with and without considering 

stochastic vehicle arrivals. The trade-offs between the objectives of users and operators 
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under different system settings were also analyzed against decision variables to provide a 

clearer picture for decision making. The findings are summarized in the following chapter. 
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CHAPTER 6 

6.CONCLUSIONS 

 

 

This chapter summarizes the findings from the previous chapters and concludes the 

dissertation with further research possibilities. 

 

 Findings 

Stochastic bus arrivals caused by variable en-route travel time and dwell time at stops not 

only cost more wait and in-vehicle time but also suggest a greater fleet size managed by 

the transit supplier to maintain regular service. Previous planning models tended to 

overlook the influence of stochastic vehicle arrivals, which led to unrealistic results. 

Moreover, under congestion condition, implementing the planning model without 

considering variability could result in poor system performance and reduced transit 

attractiveness. 

To solve the problem, this dissertation proposed new models to analyze the 

influence of travel time variability and optimize various decision variables (i.e., headway, 

stops, and time points) for maximum profit operation. A series of three models were 

developed and applied in the real world case study in Chengdu, China. With Model I as a 

proof-of-concept, the second model enhanced the first model through generalizing to fit a 

more realistic bus route. Finally, the third model extended Model II by optimizing another 

planning parameter (i.e., time point) to further improve system performance in terms of 

reliability. 
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In particular, Model I was applied to optimize stop spacing and headway, where the 

impacts of stochastic vehicle arrivals on both users and the operator were considered. As 

headway variance increased with the number of stops, the user wait times at downstream 

stops were found higher than those boarding at upstream stops. Therefore, the stop spacing, 

yielding the maximum profit suggested by the traditional model without considering 

headway variance, was shorter than that was obtained in this study. Furthermore, the total 

profit function was found relatively flat near the optimum, which implied that minor 

changes in the solution allowed transit operators considerable flexibility in fitting the stop 

locations to local circumstances without significant change in the profit.  

Sensitivity analyses were conducted in terms of demand level and headway 

variance increment. Two additional indices (i.e., average operator cost per passenger for 

cost-effectiveness, and average user cost for system attractiveness) were also applied to 

further investigate the trade-offs between conflicting objectives for the users and the 

operator when the model parameters change. With increasing demand, the proposed model 

I was more capable to reflect the impact of demand changes on the average user and 

operator costs, with increased stop spacing and decreased headway. Also suggested by the 

proposed model I, when the headway variance increases, even though stop spacing and 

headway were increased responding to the change of congestion level, both of the average 

operator cost and average user cost were unavoidably increasing. 

To further examine the influence of headway variance as well as enhance the model 

to be applied in more generalized network, Model II was developed to optimize stop 

locations and dispatching headway, which maximized operator profit considering demand 

elasticity. The headway variance was modelled to consider the joint effects of stop-to-stop 
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travel time, intersection delay, and the variation of dwell time over space and time. Finally, 

with the proposed model and solution algorithm, a case study in Chengdu CBD area in 

China was conducted. According to the results of the case study, it was found that the 

model was effective for a proper service planning so that the profit was significantly 

increased and the LOS of the study route was elevated, compared to both existing 

configuration and the configuration suggested by the traditional model without considering 

variance. The results also suggested that ignoring the impact of travel time variability in 

the service planning optimization led to poor planning decision and costed more to both 

transit users and supplier.  

With the concern that the variance control through stop and headway optimization 

may not be efficient enough especially under high congestion condition, the third model - 

a simulation-based optimization model of time points was developed for further 

performance improvement, where a headway-based bus control strategy was applied. The 

developed model aimed at achieving the equilibrium of average user cost and average 

operator cost through finding the Pareto optimality between these two objectives.  

To solve the problem, a multi-objective genetic algorithm was applied, in which 

the fitness value was estimated through simulation. A dedicated simulation model was 

developed and calibrated with the results from Model II. The decision variable of genetic 

algorithm was the input of the simulation model, and the output of the simulation model 

served as a basis for fitness evaluation in the genetic algorithm. 

Taking the inputs (i.e., dispatching headway and stop locations) from the 

optimization results yielded by Model II, the developed model was examined against 

system performance. It was found that through control point optimization, service 
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reliability was significantly improved in terms of headway coefficient of variation. The 

side effect was, however, due to extra holding time at the controlling stops, the total travel 

time as well as stop-level headway was increased. On the other hand, passengers benefited 

from reduced waiting time at the cost of increased in-vehicle time. 

The results showed that the headway-based holding strategy effectively improved 

system reliability. However, it should be noted that such effects were based on current 

configuration, where the deviation of headway was intermediate, with only downstream 

stops experiencing bus bunching. Situations may exist when most of the buses are late or 

demand level is very high, so that the effectiveness of adding control points should be 

further investigated. Although under extreme congestion conditions, it is hardly possible 

to control bus operation effectively, the proposed model provided the idea that how the 

planning and operation can be integrated to improve bus level of service under stochastic 

vehicle arrivals. Future studies are listed in the next section. 

 

 Future Studies 

This research attempted to provide mathematical models to deal with general feeder and 

conventional bus routes that are extendable for future applications. To enhance the 

developed models in adapting other real-world cases, calibration of input parameters 

should be conducted. To expand the proposed models for incorporating other influencing 

factors in the decision-making process, the following research is recommended. 

1. Due to lack of link travel time information of the study route, the average travel 

time variance per mile was assumed. Actual link travel time information shall be 

collected, so that the functional form of travel time variance can be calibrated to 

match the actual traffic situation.  
 



 

 

127 

2. Random passenger arrivals assumed in this study is based on short-headway 

operations. Since passenger arrivals patterns are influenced by headway, they 

should be studied in the future research and incorporated into the proposed models. 
 

3. Investigation of travel time and travel time variance elasticity of demand for Model 

II will lead to an enhanced model, which incorporates both mobility and reliability 

factors into passenger choices. 
 

4. Introducing proper time points reduces headway variance. The bus route with 

reduced headway variance may allow additional stops to lower passenger access 

cost, which in turn leads to further modification of time points. Such interaction 

could be taken into account by integrating Model III with Model II, where time 

points, stops, and headway could be optimized simultaneously with a bi-level 

modelling approach. 
 

5. Vehicle controlling strategies applied in the simulation model have an influence on 

system performance in terms of reliability. Therefore, Model III could be further 

enhanced by considering and comparing different controlling strategies. 
 

6. Although the average dispatching headway is optimized by Model II, during bus 

operating, the actual headways could be adjusted based on operational and 

controlling needs. The investigation of such possibility could be integrated into 

Model III for enhancement. 
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7.APPENDIX A 

  VARIABLE DEFINITIONS 

 

The variables used in the dissertation and their definitions are summarized in Table A.1. 

Table A.1 Variables and Definitions 

Variable Definition Unit Value 

i
A  a set of demand pairs ending at stop i - - 

m

iAT  arrival time of bus m at stop i - - 

i
B  a set of demand pairs originating at stop i - - 

C  bus capacity spaces/veh 60 

a
C  access/egress cost $/hr - 

b
C  operator cost $/hr - 

t
C  total cost $/hr - 

u
C  user cost $/hr - 

v
C  in-vehicle cost $/hr - 

w
C  wait cost $/hr - 

Ko
D  

access distance of qo from its origin to the nearest 

stop Ko  
mile - 

Lo
D  

access distance of qo its destination to the nearest 

stop Lo 
mile - 

m

iDT  departure time of bus m at stop i - - 

F  fleet size - - 

H  average headway hr - 

mH  minimum headway hr - 

M
H  maximum headway hr - 

I  set of potential stop locations - - 

c
I  set of controlled stops - - 

uc
I  set of uncontrolled stops - - 

o
K  boarding stop of qo - - 
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Table A.1 Variables and Definitions - Continued 

Variable Definition Unit Value 

L  bus route length mile - 

o
L  alighting stop of qo - - 

M  
set of buses travelling through the route during the 

study time period 
- - 

N  number of potential stops over the route - - 

o
N  number of stops between stops Ko and Lo - - 

O  set of OD demand pairs - - 

Q  demand along the bus route pass/hr - 

i
Q  hourly served passengers at stop i pass/hr - 

S  stop spacing mile - 

1S  outbound origin terminal - - 

n
S  outbound destination terminal - - 

o
T  expected average travel time for demand pair o hr - 

oT  reference travel time for demand pair o hr - 

r
T  round-trip bus travel time hr - 

v
T  total in-vehicle travel time hr - 

vw
T  

total additional wait time for through passengers 

due to holding 
hr - 

b
V  average bus cruising speed mph 25 

pV  average passenger access speed mph 2 

X  total number of intersections over the route - - 

i
X  

number of intersections between stop i and stop 

i+1 
- - 

o
X  number of intersections between stops Ko and Lo - - 

i
a  number of alighting passengers at stop i pass/hr - 

i
b  number of boarding passengers at stop i pass/hr - 

m

ib  number of boarding passengers at stop i for bus m - - 

c  dispatching headway variance min2/mile 0 

b
c  average operator cost $/pass-hr - 
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Table A.1 Variables and Definitions - Continued 

Variable Definition Unit Value 

u
c  average user cost $/pass-hr - 

h
c  stop level headway coefficient of variation - - 

hc  route level headway coefficient of variation - - 

s
d  average acceleration/deceleration delay per stop second 10 

x
d  average intersection delay second 10 

t
e  coefficient of travel time - 0.03 

f  fare $/pass-trip 1.5 

m

ih  headway between bus m and its preceding bus m-1 hr - 

1m

ih
  

estimated headway between bus m and its 

following bus m+1 
hr - 

m

i
h  the average headway of and  hr - 

1i
l   distance between stops i-1 and i mile - 

o
l  

distance between stops Ko and Lo for demand pair 

o 
mile - 

i
q  potential demand at stop i pass/hr - 

o
q  potential demand for OD pair o pass/hr - 

m

ir  through passengers in bus m at stop i  - 

iat  average passenger access/egress time for 

passengers boarding at stop i 
hr/pass - 

oat  average passenger access/egress time for demand 

pair o 
hr/pass - 

b
t  total vehicle running travel time hr - 

m

it  link travel time for bus m from stop i to stop i+1 - - 

l
t  

recovery time at terminal due to service 

unreliability 
hr - 

m

lt  recovery time for bus m - - 

iwt  average passenger wait time at stop i hr/pass - 

ivt  average passenger in-vehicle time for  passengers 

boarding at stop i 
hr/pass - 

ovt  average passenger in-vehicle time for demand pair 

o 
hr/pass - 

a
u  value of passenger access time $/(pass-hr) 8 
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Table A.1 Variables and Definitions - Continued 

Variable Definition Unit Value 

b
u  unit operating cost $/(veh-hr) 40 

v
u  value of passenger in-vehicle time $/(pass-hr) 8 

w
u  value of passenger wait time $/(pass-hr) 16 

ei
  variance caused by en-route factors hr2 0 

i
  headway variance at stop i hr2/mile - 

t
  unit travel time variance min2/mile 4 

m

ix  
number of passengers arriving at stop i during 

holding period of bus m 
- - 

  increment of headway variance per stop min2/stop 1 

  control strength - 1 

i
  

additional budgeted time due to service 

unreliability for demand boarding at stop i 
hr - 

o
  

additional budgeted time due to service 

unreliability for demand pair o 
hr - 

  average passenger boarding/alighting time second 6 

m

i  holding time at stop i for bus m second - 
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8.APPENDIX B 

DERIVATION OF HEADWAY VARIANCE 

 

This section explains the derivation of headway variance for Model II, which is based on 

the study conducted by Adebisi (1986). In the formulation of headway variance, the 

influences of intersection delay as well as link travel time variation are taken into account. 

Let I be the set of stops, and i is an index of stop, as defined earlier. Assume that 

passenger arrival at each stop is uniformly distributed within a certain period, with arrival 

rate i
  varying with stop and a standard deviation of zero. Assume the average travel time 

per mile is t and the variance is t
 . The intersections are independent, and for each 

intersection, there will be an average delay x
d without variance.  

Therefore, the average travel time from stop i to stop 1i  , denoted as ( )
i

E t , and 

the variance, denoted as 
it

 , could be represented as follows:  

 ( )
i i i x

E t l t X d     (B.1) 

 
it i tl   (B.2) 

i
l : the route length between stops i and i+1 

i
X : the number of intersections between stops i and i+1 

Suppose that bus m arrives at stop i at m

iT , the dwell time due to passenger 

boarding/alighting is m

id , the acceleration/deceleration delay time at stop i  ( s
d ) is fixed 

and identical for all stops. The travel time from stop i to stop 1i   for bus m is denoted as

m

i
t  . Thus, bus arrival time at the immediate downstream stop, stop 1i  , should be  

 1

m m m m

i i i s iT T d d t      (B.3) 
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Let 
1

m

ih 
 be the headway between the bus m and the bus m-1 at stop 1i  , then 

 1

1 1 1

m m m

i i ih T T


     (B.4) 

Substitute Equation 5.17 with Equation 5.16, the headway 1

m

ih  could be 

reformulated as 

 1

m m m m

i i i ih h q t       (B.5) 

where m

iq is the demand difference between bus m and bus m-1.   

The average difference of link travel time between trips, i
t and the variance of 

travel time difference, 
it

 , are as follows: 

 0, 2(1 )
i ii t t tt        (B.6) 

where t
  is the correlation coefficient between m

it and 1m

it
  for all i and m. Especially, 

when the link travel times are independent under unstable traffic condition, t
  tends to be 

0, when the traffic condition is relatively stable, t
  tends to be 1. Similarly, the average of 

boarding difference and the variance of such difference are as follows. 

 0, 2(1 )
i ii q q qq        (B.7) 

where q is the correlation coefficient between m

iq and 1m

iq
  for all i and m. Especially under 

congestion conditions, short headways are usually followed by long headways, making q  

close to -1. If the travel time variation is minor, the headway between vehicle arrivals at 

stops would be relatively regular, q tends to be 0. Therefore, the average headway at stop 

i, denoted as ( )
i

E h , will be identical for all stops, could be represented as follows:  

 ( ) ,
i

E h H i I    (B.8) 
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The headway variance at stop i, i
 can be formulated as: 

 1 1,

1 1 1 1 1 1

1

( , ) ( , ) ( , )

i i i

i i i i i i

i i q t

q h q t h t
               

   

    
 

     

  

   

  

    
 (B.9) 

1 1( , ) :
i iq h
   Covariance of the headway at stop i-1 and the boarding demand difference at 

stop i-1 

1 1( , ) :
i iq t
    Covariance of travel time difference of stops i-1 to i and the boarding demand 

difference at stop i-1. Since these two variables are independent, the covariance is zero 

1 1( , ) :
i ih t
   Covariance of travel time difference of stops i-1 to i and the headway at stop i-

1. These two variables are independent, so the covariance is zero 

The boarding demand for bus m at stop i, m

iq  , could be estimated through the 

following formulation: 

 
1

m
i

m
i

T
m

i i
T

q b dt


    (B.10) 

From the above equation, the average boarding demand over a headway, i
q  , and its 

variance
iq  could be formulated. 

 2,
ii i q i iq b H b     (B.11) 

Under the situation that long headways are followed by short headways, the 

covariance of the headway and the difference of boarding/alighting demand at stop i-1, 

1 1( , )i iq h
  could then be represented as

1 1( , ) 1 12
i iq h i ib 
    . When the successive headways 

are independent, 
1 1( , ) 1 1i iq h i ib 
    . 

If congestion exists suggesting an unstable traffic condition, t
 is close to 0 and q  

tends to be -1. Therefore, the headway variance at stop i could be reformulated as: 

 2 2

1 1 1 1 1(1 2 ) 4 2i i i i i i tb b l               (B.12) 
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