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ABSTRACT

ALGORITHMS FOR PRE-MICRORNA CLASSIFICATION
AND A GPU PROGRAM FOR WHOLE GENOME COMPARISON

by
Ling Zhong

MicroRNAs (miRNAs) are non-coding RNAs with approximately 22 nucleotides that are
derived from precursor molecules. These precursor molecules or pre-miRNAs often fold
into stem-loop hairpin structures. However, a large number of sequences with pre-
miRNA-like hairpin can be found in genomes. It is a challenge to distinguish the real pre-
miRNAs from other hairpin sequences with similar stem-loops (referred to as pseudo pre-
miRNAS). The first part of this dissertation presents a new method, called MirID, for
identifying and classifying microRNA precursors. MirlD is comprised of three steps.
Initially, a combinatorial feature mining algorithm is developed to identify suitable
feature sets. Then, the feature sets are used to train support vector machines to obtain
classification models, based on which classifier ensemble is constructed. Finally, an
AdaBoost algorithm is adopted to further enhance the accuracy of the classifier ensemble.
Experimental results on a variety of species demonstrate the good performance of the
proposed approach, and its superiority over existing methods.

In the second part of this dissertation, A GPU (Graphics Processing Unit)
program is developed for whole genome comparison. The goal for the research is to
identify the commonalities and differences of two genomes from closely related
organisms, via multiple sequencing alignments by using a seed and extend technique to

choose reliable subsets of exact or near exact matches, which are called anchors. A



rigorous method named Smith-Waterman search is applied for the anchor seeking, but
takes days and months to map millions of bases for mammalian genome sequences. With
GPU programming, which is designed to run in parallel hundreds of short functions

called threads, up to 100X speed up is achieved over similar CPU executions.
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CHAPTER 1

INTRODUCTION

This dissertation investigates several data mining problems that arise in the
computational systems biology field. In the first part of the dissertation, a new approach
for microRNA classification is presented. MicroRNAs (miRNAs) are non-coding RNAs
with approximately 22 nucleotides that are derived from precursor molecules. These
precursor molecules or pre-miRNAs often fold into stem-loop hairpin structures.
However, a large number of sequences with pre-miRNA-like hairpins can be found in
genomes. It is a challenge to distinguish the real pre-miRNAs from other hairpin
sequences with similar stem-loops (referred to as pseudo pre-miRNASs). Several
computational methods have been developed to tackle this challenge. This dissertation
presents a new method, called MirID, for identifying and classifying microRNA
precursors. Seventy-four features from the sequences and secondary structures of pre-
miRNASs were collected; some of these features were taken from previous studies on non-
coding RNA prediction while others were suggested in the RNA folding literature. MirlD
is comprised of three steps. Initially, a combinatorial feature mining algorithm is
developed to identify suitable feature sets. Then, the feature sets are used to train support
vector machines to obtain classification models, based on which classifier ensemble is
constructed. Finally, an AdaBoost algorithm is adopted to further enhance the accuracy of
the classifier ensemble. Experimental results on a variety of species demonstrate the good

performance of the proposed approach, and its superiority over existing methods.



In the second part of this dissertation, we present our effort to develop a GPU
(Graphics Processing Unit) program for whole genome comparison. The goal for the
research is to identify the commonalities and differences of two genomes from closely
related organisms, via multiple sequencing alignments by using a seed and extend
technique to choose reliable subsets of exact or near exact matches, which are called
anchors. A rigorous method named Smith-Waterman search will be applied for the
anchor seeking, but it takes days and months to map millions of bases for mammalian
genome sequences. With GPU programming, which is designed to run in parallel
hundreds of short functions called threads, algorithm running can achieve up to 100X

speed up over similar CPU executions.



CHAPTER 2
EFFECTIVE CLASSIFICATION OF MICRORNA PRECURSURS USING
FEATURE MINING AND ADABOOST ALGORITHM
2.1 Background
MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) of approximately 22 nucleotides
that are known to regulate post-transcriptional expression of protein-coding genes (Bartel
2004, Bindra, Wang et al. 2010). Lee et al. (Lee, Feinbaum et al. 1993) first reported that
in C. elegans, lin-4 regulates the translation of lin-14 mRNA via an antisense RNA-RNA
interaction. Since then, many functions of miRNAs have been discovered (Aukerman and
Sakai 2003, Brennecke, Hipfner et al. 2003, Johnston and Hobert 2003, Bushati and
Cohen 2007, Mack 2007). They have been shown to play a very important role in the
transcriptional and post-transcriptional regulation of genes affecting protein levels. They
can have multiple mRNA targets as they bind to the targets with partial
complementarities in animals. In addition, the mRNA targets can be regulated by
multiple microRNAs. They are likely involved in regulation of all biological processes,
and are also found circulating in blood (Mitchell, Parkin et al. 2008, Scholer, Langer et al.
2011). Their expression has been shown to be correlated with the expression of
oncogenes in cancer cells (Sampson, Rong et al. 2007, Zhu, Wu et al. 2008), cancer risk
factors (Wang, Zhang et al. 2007) and drug metabolism (Tsuchiya, Nakajima et al. 2006,
Takagi, Nakajima et al. 2008, Gomez and Ingelman-Sundberg 2009, Pan, Gao et al.
2009). They hold a great potential for pharmacogenomics applications, such as the
tailoring of drugs to the specific cancers and monitoring the response to, and toxicity of,

the drugs in individual patients.



MiRNAs are derived from pre-miRNAs that often fold into stem-loop hairpin
structures. These characteristic stem-loop structures are highly conserved in different
species (Lai, Tomancak et al. 2003). One challenging research problem is to distinguish
pre-miRNAs from other sequences with similar stem-loop structures (referred to as
pseudo pre-miRNASs). Many computational methods have been developed to tackle this
challenge. A common approach is to transform the classification of real and pseudo pre-
miRNAs to a feature selection problem.

Lim et al. (Lim, Glasner et al. 2003) reported some characteristic features in
phylogenetically conserved stem loop pre-miRNAs. Lai et al. (Lai, Tomancak et al. 2003)
considered hairpin structures predicted by mfold (Zuker 2003) as well as the nucleotide
divergence of pre-miRNAs. Xue et al. (Xue, Li et al. 2005) decomposed stem-loop
hairpin structures into local structure-sequence features, and used these features in
combination with a support vector machine to classify pre-miRNAs. Bentwich et al.
(Bentwich, Avniel et al. 2005) proposed a scoring function for pre-miRNAs with
thermodynamic stability and certain structural features, which capture the global
properties of the hairpin structures in the pre-miRNAs. Ng and Mishra (Ng and Mishra
2007) employed a Gaussian radial basis function kernel as a similarity measure for 29
global and intrinsic hairpin folding attributes, and characterized pre-miRNAs based on
their dinucleotide subsequences, hairpin folding, non-linear statistical thermodynamics
and topology. Huang et al. (Huang, Fan et al. 2007) evaluated features valuable for pre-
miRNA classification, such as the local secondary structure differences of the stem
regions of real pre-miRNA and pseudo pre-miRNA hairpins, and established correlations

between different types of mutations and the secondary structures of real pre-miRNAs.



More recently, Zhao et al. (Zhao, Wang et al. 2010) considered structure-sequence
features and minimum free energy of RNA secondary structure, along with the double
helix structure with free nucleotides and base-pairing features. In general, the quality of
selected features directly affects the classification accuracy achieved by a method.

In this dissertation, we present a combinatorial feature mining method for pre-
mIiRNA classification. Our method, named MirlD, identifies and classifies an input RNA
sequence as a pre-miRNA or not. MirlD considers different combinations of features
extracted from pre-miRNAs. For each combination (or each set of features), we create a
support vector machine (SVM) model (Cortes and Vapnik 1995, Fan, Chen et al. 2005)
based on that feature set. SVM models whose accuracies are above a user-determined
threshold are then used to build a classifier ensemble. This classifier ensemble will be
refined through several iterations until its accuracy cannot be enhanced further. Next, we
construct new feature sets based on the best feature sets obtained so far by performing
pairwise merge and split operations on the best feature sets. Then, we repeat the above
procedure iteratively by building a SVM model based on each new feature set,
constructing a classifier ensemble from the SVM models whose accuracies are above the
newly computed threshold, and refining the ensemble until it cannot be improved further.
Finally, we output the best classifier ensemble obtained through this iterative procedure.
To further enhance the accuracy of the classifier ensemble, we apply a boosting algorithm
to the ensemble to obtain a strong classifier, which is used for pre-miRNA classification.

The study reported here extends our previous work (Zhong, Wang et al. 2012)
where we sketched the algorithms utilized by MirlD. The extensions include (1) a

detailed description of the MirID algorithms with a complete flowchart; (2) a larger data



set containing twenty one species, as opposed to eleven species considered in (Zhong,
Wang et al. 2012), with new sequences; (3) new feature values mined from these new
sequences and hence, new (SVM) classification models obtained from the new data; (4) a
thorough experimental study for evaluating the performance and behavior of the MirlD
algorithms; (5) a web server for online access as well as a downloadable tool for local use;

and (6) discussion of potential applications of the software in genomics and medicine.

2.2 Materials and Methods

2.2.1 Datasets

We collected real pre-miRNAs and pseudo pre-miRNAs from 21 species, some of which
were studied previously while others have not been explored. This collection is
comprehensive, covering a wide variety of species, from viruses to humans. The RNA
sequences were evenly divided into training data and test data. Table 2.1 presents a
summary of the data. The first column of Table 2.1 shows a species or organism name.
The second column of Table 2.1 shows the number of training sequences followed by the
number of test sequences with respect to the organism’s real pre-miRNAs. The third
column of Table 2.1 shows the number of training sequences followed by the number of
test sequences with respect to the organism’s pseudo pre-miRNAs. As an example,
referring to Arabidopsis thaliana in Table 2.1, its training set contains 66 real pre-
miRNASs and 923 pseudo pre-miRNAS; its test set contains 67 real pre-miRNAs and 924

pseudo pre-miRNAS.



Table 2.1 Summary of Datasets

Species Real pre-miRNA Pseudo pre-miRNA
Arabidopsis thaliana 66, 67 923, 924
Caenorhabditis briggsae 66, 67 437,438
Caenorhabditis elegans 84, 85 595, 596
Canis familiaris 161, 161 904, 905
Ciona intestinalis 160, 160 733,734
Danio rerio 170, 170 1071, 1072
Drosophila melanogaster 81, 82 694, 694
Drosophila pseudoobscura 98, 99 495, 495
Epstein barr virus 12,13 119, 119
Gallus gallus 241, 241 1186, 1186
Homo sapiens 504, 504 1999, 2000
Macaca mulatta 222,223 1086, 1086
Medicago truncatula 111,111 116, 116
Mus musculus 315, 315 2019, 2019
Oryza sativa 172,172 522,523
Physcomitrella patens 73,74 703, 704
Populus trichocarpa 94, 95 809, 810
Pristionchus pacificus 60, 61 58, 58
Rattus norvegicus 193, 193 1238, 1238
Schmidtea mediterranea 72,73 201, 202
Taeniopygia guttata 94, 95 483, 483

The real pre-miRNAs were downloaded from miRBase available at
http://www.mirbase.org/ (Kozomara and Griffiths-Jones 2011). We used RNAfold
(Hofacker 2003) to predict the secondary structures of all the RNA sequences. The
lengths of the real pre-miRNAs in the final dataset ranged from 60 to 120 nt. The pseudo
pre-miRNAs used in this study were collected from  GenBank
(http://www.ncbi.nlm.nih.gov/genbank/). As in (Xue, Li et al. 2005), we searched for the
protein-coding regions of the genome sequences of the twenty one species in Table 2.1,
and divided the regions into short sequences. The lengths of these short sequences were
randomly generated, ranging from 60 to 120 nt. The pseudo pre-miRNAs were chosen

from these short sequences. The criteria used in choosing the pseudo pre-miRNAs are: (i)



they have a stem-loop hairpin structure, (ii) they contain at least 18 base pairs, including
Watson-Crick and wobble base pairs, on the stem region of the stem-loop structure, and
(iii) their secondary structure has a maximum of -15 kcal/mol free energy without
multiple hairpin loops (Kozomara and Griffiths-Jones 2011). These criteria ensure that
the secondary structures of the pseudo pre-miRNAs are similar to those of the real pre-

miRNASs.

2.2.2 Feature Pool
In designing our pre-miRNA classification method, we examined multiple features
extracted from a pre-miRNA sequence and its secondary structure. Some of these
features were taken from our previous studies on ncRNA prediction (Wang and Wu 2006,
Griesmer, Cervantes-Cervantes et al. 2011) while others were suggested in the literature
(Sewer, Paul et al. 2005, Xue, Li et al. 2005, Zheng, Hsu et al. 2006). These features
included the sequence length, the number of base pairs, GC content, the number of
nucleotides contained in the hairpin loop (i.e., the loop size), the free energy of the
sequence’s secondary structure obtained from RNAfold (Hofacker 2003), the number of
bulge loops, and the size of the largest bulge loop in the secondary structure.

In addition, we considered the features described in (Zheng, Hsu et al. 2006).
These features included the difference of the lengths of the two tails in the secondary
structure where a tail represented the strand of unpaired bases in the 5 or 3 end of the
structure, the number of tails, and the length of the larger tail. Besides, several combined
features were considered. They included the ratio between the number of base pairs and

the sequence length, the length difference of two tails plus the larger tail length, the size



of the hairpin loop plus the larger tail length, the size of the hairpin loop plus the largest
bulge size, the ratio between the larger tail length and the sequence length, the ratio
between the size of the hairpin loop and the sequence length, the ratio between the largest
bulge size and the sequence length, the ratio between the largest bulge size and the
number of base pairs, the normalized free energy (Spirollari, Wang et al. 2009), which is
the minimum free energy of the sequence’s secondary structure divided by the sequence
length, and the ratio between the normalized free energy and the GC content.

The next set of features included the triplets of structure-sequence elements
described in (Xue, Li et al. 2005). Here we used the dot-bracket notation (Hofacker 2003)
to represent an RNA secondary structure. Figure 2.1 shows the sequence and structure of
a hypothetical pre-miRNA and its dot-bracket notation. A triplet is composed of three
contiguous structure elements (bases or base pairs) (Liu, Wang et al. 2005) that
correspond to three contiguous nucleotides along with the middle nucleotide. For
example, consider the first three dots (bases) and their corresponding nucleotides AAA in
Figure 2.1. The middle nucleotide is A. Thus, the structure-sequence elements “A...”
constitute a triplet. As another example, consider the first three brackets (base pairs) and
their corresponding nucleotides UUG in Figure 2.1. The middle nucleotide is U. Thus,
the structure-sequence elements “U(((” constitute a triplet. There are 32 triplets, and
hence, 32 such features in total.

Finally, we considered the symmetric and asymmetric loops defined in (Sewer,
Paul et al. 2005). We refer to the portion of the sequence from the 5’ end to the hairpin
loop as the left arm, and the portion of the sequence from the hairpin loop to the 3’ end as

the right arm. In a symmetric (internal) loop, the number of nucleotides in the left arm



equals the number of nucleotides in the right arm. In an asymmetric (internal) loop, the
number of nucleotides in the left arm is different from the number of nucleotides in the
right arm. Features related to these loops included the size of each loop, the average size
of the loops, and the average distance between the loops. Other features included the
proportion of A/C/G/U in the stem, and the proportion of A-U/C-G/G-U base pairs in the

stem. Totally, there are 74 features in the feature pool.

cVYu
A U
U U
G—U
A—U
U—A
c
A—U
G—C
U
U—A
U—G
AAA CCGGCC
5 3

5'AAA%l%l((?u?\c%l:?\({SUACUUUUl}Jl}JJ?\l}J{?UA?.(}BCCGGCC?

Figure 2.1 Sequence and structure of a hypothetical pre-miRNA and its dot-bracket
notation.

2.2.3 Combinatorial Feature Mining

MirID adopts a combinatorial feature mining algorithm for pre-miRNA classification.
Initially the algorithm randomly generates N feature sets from the feature pool. (The
default value of N used in this study is 100.) Each feature set contains between 1 and 150
features, randomly chosen with replacement from the feature pool. Some features may

repeatedly occur in a feature set; thus a bagging approach is used here (Breiman 1996).
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Duplicate features have more weights than the other features in the feature set. The
numbers 1 and 150 are chosen, to ensure that there are enough feature sets containing
duplicate features. We then build a SVM model based on each feature set using training
sequences, and apply the classification model to test sequences to calculate the accuracy
of the model. The SVM used in this study is the LIBSVM package downloaded from

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (Fan, Chen et al. 2005). We use the polynomial

kernel provided in the LIBSVM package. The polynomial kernel achieves the best
performance among all kernel functions included in the package.

Then, we remove the SVM models whose accuracies are less than a user-
determined threshold t. (The default value of t used in this study is 0.8.) The feature sets
used to build those removed SVM models are also eliminated from further consideration.
We construct a classifier ensemble from the remaining SVM models. The ensemble
works by taking the majority vote from the individual SVM models used to build the
classifier ensemble. This ensemble will be refined through several iterations until its
accuracy cannot be enhanced further. In each iteration, the user-determined threshold t is
incremented by a step value, so that more accurate SVM models are used to construct a
(hopefully) better classifier ensemble in the next iteration. (The default value of step used
in this study is 0.005.)

It is likely that different combinations of remaining features may yield an even
better classifier. Our algorithm then performs pairwise merge and split operations on the
set S, of feature sets used to build the best classifier ensemble obtained so far. In doing so,
MirlID takes four steps: (1) picks each pair of feature sets s; and s, in Sp; (2) merges s;

and s into a single feature set s3 with, say p, features; (3) randomly generates a number q,

11


http://www.csie.ntu.edu.tw/~cjlin/libsvm/

g < p; (4) randomly assigns q features in sz into a set s’; and assigns the remaining p - q
features into another set s ;. Thus, these four steps take two feature sets s; and s, in Sp as
input and produce two new feature sets s’; and s’ as output. Figure 2.2 illustrates how

the merge and split operations work on two feature sets.

Sq Sz

Merge

S3

Split

S S»

Figure 2.2 Illustration of the merge and split operations on two feature sets.

These pairwise merge and split operations are applied to the feature sets used to
build the best classifier ensemble obtained so far, to generate new feature sets. The new
feature sets are then used to build new SVM models. Accurate new SVM models, whose
accuracies are greater than or equal to the newly computed threshold t, are then used to
build a new classifier ensemble. This procedure is repeated several times to obtain a best
classifier ensemble. Figure 2.3 summarizes our feature mining algorithm, whose output is
the best classifier ensemble along with the component SVM models (feature sets) used to

build the ensemble. Notice that in the feature mining algorithm in Figure 2.3, it is

12



possible that, after removing SVM models/feature sets with accuracy < t, there is no
remaining feature set, and hence, S, becomes empty. Under this circumstance, the
classifier ensemble constructed based on S; is empty, and the accuracy of the classifier

ensemble is 0.
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Remove SVM models/feature sets
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based on the feature sets in 5,

=1+ step
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Y

Perform merge/split on feature sets in £ =08

Sy to generate new feature sets ™ e =0
8 := {new feature sets}
Output S, and the
L classifier ensemble

constructed based on S,

Figure 2.3 Algorithm for combinatorial feature mining.
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2.2.4 Boosting

The performance of a classification algorithm can be further enhanced through boosting.

We apply AdaBoost (Freund and Schapire 1997, Schapire 1999, Bindewald and Shapiro

2006) to the classifier ensemble produced by our feature mining algorithm. Specifically,

we treat the classifier ensemble as a weak classifier and continue refining it into a strong
classifier through an iterative procedure. Let X be a set of sequences X1, Xo, . . . , Xm Where
Xi, 1 <1< m, is associated with a label y; such that

+1 if x isareal pre - miRNA
Yi = (2.1)

-1 if X, is a pseudo pre - miRNA

The AdaBoost algorithm works with K iterations. (The default value of K used in this
study is 20.) In iteration k, 1 < k < K, the algorithm updates a weight function Wy as
explained below, which will be used in selecting training sequences in iteration k + 1.
Initially, every sequence has an equal weight, i.e., Wp(xj) = 1/m, 1 <i < m. In iteration Kk,
the algorithm samples 1/3 sequences with replacement from X based on the weight
function W,.; to form a training set Xx. The set Xy is then used to train a weak classifier Hy,
which classifies each sequence x; as either a real pre-miRNA or a pseudo pre-miRNA.

That is,

+1 H, classifies x; as a real pre - mIRNA

o : 2.2
-1 H, classifies x; asa pseudo pre - miRNA (22)

)
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Let Ex = [ x| Hk (Xi) # Yi]. The error rate g of H is:

& = sz—l(Xi )

X €Ey

Let

The algorithm updates Wy for each sequence x;, 1 <i<m, as follows:

szl(Xi) xe™ if Hk(xi) =Y
W, (X)) = K
) W_k_zl(xi) xe if Ho(x) %y,

k

_ W, (% )exp(= e yiH, (%))
Z,

(2.3)

(2.4)

(2.5)

where Z, is a normalization factor chosen such that W is normally distributed. Thus, the

sequences causing classification errors in iteration k will have a greater probability of

being selected as training sequences for constructing the weak classifier Hy.; in iteration

k+1. Using this technique, each weak classifier should have greater accuracy than its

predecessor. The final, strong classifier H combines the vote of each individual weak
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classifier Hy, 1 <k < K, where the weight of each weak classifier’s vote is a function of

its accuracy. Specifically, for an unlabeled test sequence x, H(x) is calculated as follows:

H(x)= sign(iak Hk(x)j (2.6)

k=1

The function sign indicates that if the sum inside the parentheses is greater than or equal
to zero, then H classifies x as positive (i.e., a real pre-miRNA); otherwise H classifies x as

negative (i.e., a pseudo pre-miRNA).

2.3 Results

2.3.1 Performance Analysis of the MirlD Method

We carried out a series of experiments to evaluate the proposed MirlD method. All the
experiments were performed on a 2 GHz Pentium 4 PC having a memory of 2G bytes.
The operating system was Cygwin on Windows XP and the algorithms were
implemented in Perl. To understand the effect of boosting, we also considered using the
combinatorial feature mining algorithm alone to classify pre-miRNAs, and referred to it
as the CFM method. The performance measure used here is accuracy, defined as follows.
A method is said to classify a test sequence correctly if the sequence is a real pre-miRNA
(pseudo pre-miRNA, respectively) and the method indicates that the sequence is indeed a
real pre-miRNA (pseudo pre-miRNA, respectively). A method is said to classify a test
sequence incorrectly if the sequence is a real pre-miRNA (pseudo pre-miRNA,
respectively) but the method mistakenly indicates that the sequence is a pseudo pre-

MIiRNA (real pre-miRNA, respectively). For each species, the accuracy of a method is
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defined as the number of correctly classified test sequences of that species divided by the
total number of test sequences of that species.

We first evaluated how the number of initial feature sets, N, affects the
performance of CFM and MirID. As N increases, more feature sets are generated initially.
This allows the feature mining algorithm to construct a classifier ensemble using more
diverse feature sets, and hence, the accuracy of the classifier ensemble increases. On the
other hand, as N increases, the inner loop in Figure 2.3 is run more times; as a
consequence, the running time increases. MirID requires more time than CFM, due to the
extra time spent in boosting. MirID in general is more accurate than CFM, indicating the
benefit of including the boosting algorithm.

We next evaluated how the threshold, t, used in the feature mining algorithm
affects the performance of CFM and MirID. When t is very large (e.g., t > 0.95), the
accuracies of the methods drop sharply. This happens because the accuracies of most
SVM models are less than 0.95 (i.e., 95%), and hence, these SVM models are eliminated
from further consideration early in the feature mining algorithm, cf. Figure 2.3. When t
approaches 1, it is likely that the set Sy returned by the feature mining algorithm is an
empty set, and therefore the classifier ensemble constructed based on S, is also empty,
yielding an accuracy of 0. As t increases, fewer feature sets qualify and the set S, is
smaller. As a result, the inner loop in Figure 2.3 is executed fewer times, and hence, the
running time decreases.

Then we evaluated how the value, step, used to increment the threshold t in each
iteration of the inner loop in Figure 2.3 affects the performance of CFM and MirlD. With

the default values of N and t used in this study, the feature mining algorithm is able to
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produce a classifier ensemble with high accuracy. The value of step has little impact on
the accuracies of the proposed methods. However, as step increases, fewer iterations of
the inner loop in Figure 2.3 are executed, and as a consequence, the running time
decreases.

We also conducted experiments to test different numbers of iterations, K, in the
boosting algorithm. It was found that when K is sufficiently large (e.g., K > 20), the
behavior of the boosting algorithm becomes stable, with the accuracy approaching 1. On
the other hand, when K is large, more running time will be needed.

Finally, we compared CFM and MirID with two closely related methods, PMirP
(Zhao, Wang et al. 2010) and TripletSVM (Xue, Li et al. 2005). Like our methods, both
PMirP and TripletSVM were implemented using support vector machines. PMirP
adopted a hybrid coding scheme, combining features such as free bases, base pairs,
minimum free energy of secondary structure, among others. TripletSVM used triplets of
structure-sequence elements, which also were included in our feature pool. Table 2.2
shows the accuracies of the four methods on twelve species taken from Table 2.1. These
twelve species were used to pre-train PMirP and TripletSVM, and available from the
tools. For each species, the highest accuracy yielded by a tool is in boldface. It can be
seen from Table 2.2 that MirlID is better than or as good as the existing tools on all the
species except Gallus gallus and Oryza sativa. For Gallus gallus and Oryza sativa,

PMIirP achieves higher accuracies.
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Table 2.2 Accuracies of TripletSVM, PMirP, CFM and MirID on Twelve Species

Species TripletSVM PMirP CFM MirlD
Arabidopsis thaliana 92 96 99 100
Caenorhabditis briggsae 96 97 98 100
Caenorhabditis elegans 86 86 97 98
Danio rerio 67 83 98 99
Drosophila melanogaster 92 96 97 99
Drosophila pseudoobscura 90 92 98 100
Epstein barr virus 100 80 98 100
Gallus gallus 85 100 96 96
Homo sapiens 93 95 93 95
Mus musculus 94 94 95 97
Oryza sativa 95 100 97 99
Rattus norvegicus 80 92 97 98

The unit of each number in the table is percentage (%).

2.3.2 Web Server

We have implemented MirlD wusing Perl into a web server, accessible at
https://web.njit.edu/~1z25/cgi-bin/boost/. The web server accepts a test sequence as input
and classifies the test sequence as a pre-miRNA or not. We pre-train our web server using
the training sequences given in Table 2.1. In addition to the twelve species available from
the PMirP and TripletSVM web servers (Xue, Li et al. 2005, Zhao, Wang et al. 2010), we
pre-train our web server using nine additional species (shown in Table 2.1 but not in
Table 2.2). Our tool achieves high accuracies on these nine species, as shown in Table
2.3. (The PMIrP and TripletSVM web servers were not pre-trained on these nine species,
and hence, we only show the results for CFM and MirID here.) MirID is more accurate

than CFM, due to the boosting algorithm.
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Table 2.3 Accuracies of CFM and MirID on Nine Additional Species

Species CFM MirlID
Canis familiaris 97 100
Ciona intestinalis 94 100
Macaca mulatta 96 96
Medicago truncatula 95 100
Physcomitrella patens 100 100
Populus trichocarpa 97 99
Pristionchus pacificus 96 100
Schmidtea mediterranea 95 99
Taeniopygia guttata 95 99

The unit of each number in the table is percentage (%).

Table 2.4 shows, for each species in Table 2.1, the number of feature sets
produced by our feature mining algorithm. Table 2.5 shows the CPU time (in seconds)
spent in pre-training the MirlD web server. The training time depends on the number of
feature sets, the number of features in each feature set, the number of iterations used by
the feature mining algorithm, and the number of iterations used in the boosting algorithm.
Notice that this training is done once, and no more training is needed on the test data. It

takes less than a second to classify an unlabeled test sequence.
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Table 2.4 Number of Feature Sets for Each Species in MirlD

Species

Number of feature sets

Arabidopsis thaliana
Caenorhabditis briggsae
Caenorhabditis elegans
Canis familiaris

Ciona intestinalis

Danio rerio

Drosophila melanogaster
Drosophila pseudoobscura
Epstein barr virus
Gallus gallus

Homo sapiens

Macaca mulatta
Medicago truncatula
Mus musculus

Oryza sativa
Physcomitrella patens
Populus trichocarpa
Pristionchus pacificus
Rattus norvegicus
Schmidtea mediterranea
Taeniopygia guttata

w e =
O EerRrRPRPROWRPRPLOAORMWOWOINRP,RPOR
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Table 2.5 Training Time in CPU for Each Species (in Seconds)

Species Training time (in seconds)
Arabidopsis thaliana 80
Caenorhabditis briggsae 348
Caenorhabditis elegans 103
Canis familiaris 153
Ciona intestinalis 269
Danio rerio 1272
Drosophila melanogaster 199
Drosophila pseudoobscura 196
Epstein barr virus 113
Gallus gallus 274
Homo sapiens 1530
Macaca mulatta 243
Medicago truncatula 104
Mus musculus 786
Oryza sativa 214
Physcomitrella patens 90
Populus trichocarpa 138
Pristionchus pacificus 63
Rattus norvegicus 349
Schmidtea mediterranea 478
Taeniopygia guttata 156

2.4 Discussion

In this chapter, we present a new method (MirID) and a web server for pre-miRNA
classification. Empirical results showed that MirlD outperforms two closely related
methods, PMirP and TripletSVM, on the majority of species tested in the experiments.
Since all the three methods were implemented using support vector machines with similar
features, we conclude that the superiority of our method is due to its novel feature mining
and boosting algorithms.

Both the feature mining and boosting algorithms contain user-specified
parameters. As indicated by our experimental results in the performance analysis section,

changing these parameter values may affect the running time and accuracy of our method.
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The MirlD web server adopts the default parameter values as used in this study, to
achieve good and stable performance. The server is able to process sequences of a variety
of species, from viruses to humans. It does not include bacteria, however. While there are
small regulatory RNAs in bacteria, bacteria do not have true miRNAs (Gottesman 2005,
Tjaden, Goodwin et al. 2006). Bacterial miRNA will be added to our server when such
data is validated and becomes available in public databases.

Currently, the MirlD web server is capable of classifying one test sequence at a
time, predicting whether the test sequence is a pre-miRNA or not. When multiple test
sequences must be classified, we suggest that the user run the tool locally in a batch mode.
Instructions for downloading the tool and running the tool locally can be obtained from

https://web.njit.edu/~1z25/cqi-bin/boost/MirlD-download.

MicroRNAs play important roles in most biological processes, including cell
proliferation, tissue differentiation, embryonic development, to name a few (Aukerman
(Aukerman and Sakai 2003, Brennecke, Hipfner et al. 2003, Johnston and Hobert 2003,
Bushati and Cohen 2007, Tang, Zhang et al. 2009, Xu, Yu et al. 2009). They interact with
target MRNAs at specific sites to induce cleavage of the message or inhibit translation
(John, Enright et al. 2004). They can have multiple MRNA targets as they bind to the
targets with partial complementarities in animals. In addition, an mRNA target can be
regulated by multiple miRNAs at different loci with different effects. This adds to the
complexity of finding out the mRNA targets in genomes (John, Enright et al. 2004).

The total number of microRNA discovered continues growing every day.
According to the latest miRBase release (version 19, August 2012), accessible at

http://www.mirbase.org, there are 2,019 unique mature human miRNAs up from 894 in
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the version 14. There seems to be a correlation between the tissue-specificity of a human
miRNA and the number of diseases the miRNA is associated with (Lu, Zhang et al.
2008). The fact that microRNAs are found circulating in blood (Mitchell, Parkin et al.
2008, Scholer, Langer et al. 2011) holds great promise for the development of diagnostic
tools that can be used in multiple ways, from non-invasive pregnancy diagnostic tests to
cancer diagnostics and treatment. A tool like MirlD for predicting pre-miRNAs will
contribute to our basic understanding of the roles played by microRNA in regulating
many biological processes, and their contribution to disease development and progression.

A potential application for the MirlID tool is in the area of individualized genomic
analysis. With the advent of high-throughput sequencing technologies, millions of short
reads can now be generated from a library of nucleotide sequences. These technologies
have catalyzed a new era of personalized medicine based on individualized genomic
analysis (Anderson and Schrijver 2010) Determining levels of known and novel
microRNA from small RNA sequencing data is an important subject in this new era (An,
Lai et al. 2013). With next-generation sequencing platforms, several prostate expressed
microRNAs related to prostate cancer have been identified (Ribas, Ni et al. 2009, Ostling,
Leivonen et al. 2011, Wang, Chatterjee et al. 2011, Watahiki, Wang et al. 2011, Martens-
Uzunova, Jalava et al. 2012). As a consequence, exploring microRNAs and their
functions continues to be a highly active area of research. The MirID tool developed from
this work can be used to assess aggregated RNAseq reads for pre-miRNA secondary
structure potential. The tool can be combined and integrated with other miRNA profiling

tools (Hendrix, Levine et al. 2010, Mathelier and Carbone 2010, Hackenberg, Rodriguez-
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Ezpeleta et al. 2011, Friedlander, Mackowiak et al. 2012) for applications to personalized

medicine.
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CHAPTER 3

ALGORITHM FOR GENE NETWORK INFERENCE: A SURVEY

3.1 Background

In living organisms, cells contain thousands of genes, working in concert to direct the
cells’ functions while ensuring their fitness, multiplication, and survival. Whereas some
genes are continuously expressed, others only do so in response to specific stimuli, at the
right time, and to the proper extent, thus ensuring appropriate functional outcomes. Some
genes have highly robust regulation mechanisms of their expression, which is controlled
by stringent programs. In eukaryotic species, for example, the control of developmental
gene expression is significantly similar in a given cell type from one individual to another
(Macneil and Walhout 2011). Nonetheless, the timing and scale for the expression of
other genes can be more variable, resulting in expression levels that frequently change
and which differ from cell to cell and from individual to individual. Research on gene
expression directing physiological responses to developmental cues and environmental
stresses is, therefore, greatly beneficial. Currently, we are focusing on the analysis of
differential gene expression at the level of systems biology. Gene regulatory networks
(GRNS) illustrate interactions between large numbers of genes and their regulatory
mechanisms. Graphic diagrams are applied to map all the interactions and visualize the
regulatory relationships. Further characterization of GRNs has already uncovered global
principles of gene regulation (MacNeil and Walhout 2011).

Specifically, we are using computing algorithms to infer gene regulatory networks

according to the expression values of genes and their changing platforms. This can be
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accomplished with basis on inferring causality. If gene A can cause gene B to switch to a
high expression value, then B can be stopped from taking such a value after making B
less responsive or A less active, or by interfering with the link from A to B. Conversely,
B can achieve a higher expression value if A’s expression value is increased itself, or by
enhancing the efficiency of the link from A to B. We call such a relationship a causal link.
The expression of gene A may influence the expression of gene B as follows: gene A is
transcribed to RNA and then translated to a protein, which in turn may bind to the
promoter of B, either allowing or preventing the transcription of gene B. Comparing the
expression values of A and B under particular circumstances versus wild-type data (i.e.,
expression values from the most common phenotype of a given organism), it can be
determined whether or not there is a relationship between genes A and B. Based on such
predictions, a gene regulatory network can be graphed (Lingeman and Shasha 2012).

In this chapter, we review state-of-the-art algorithms for the inference of gene
regulatory networks (GRNs) from microarray gene expression data. A gene regulatory
network is represented by a directed graph, in which nodes represent transcription factors
or genes and an edge represents the transcriptional regulation relationship between two
genes. The algorithms for GRN inference can be categorized into four groups:
unsupervised, semi-supervised, supervised and integrated methods. In unsupervised
algorithms, a network is unknown, and the algorithms predict the entire network using
time series or steady-state gene expression data. For supervised and semi-supervised
algorithms, a portion of a network is known in advance, possibly from publicly available
databases, and the algorithms use that portion as prior knowledge to predict remaining

edges in the network. Integrated methods combine unsupervised or supervised algorithms,
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coupled with prior knowledge from literature mining or information integration
techniques. Here, we survey the various techniques employed in the unsupervised, semi-
supervised, supervised and integrated methods, and present a taxonomy of existing

algorithms.

3.2 Unsupervised GRN Inference Algorithms Based on Steady-State Data

In this section we review six algorithms for inferring gene regulatory networks using
steady-state data. If the expression values of genes of one organism will not change
unless its conditions are changed in some way, this organism is said to be in steady state.
For instance, an organism is in a certain steady state if it under a low nutrients condition;
another state under a high nutrients condition; and yet another, if some mutation has
happened or transient effects have changed or disappeared altogether. Steady-state data
can be obtained from experiments where one or more genes have been knocked out or
from reported expression values that have been significantly changed or perturbed in
other way. If some changes in the network can be noticed when one gene is absent or it
has been perturbed, one can determine which other gene or genes it influences.

Many published algorithms were tested using the data are from DREAM4 in
silico datasets (Greenfield, Madar et al. 2010). DREAM stands for Dialogue for Reverse
Engineering Assessments and Methods and provides a set of networks that can be used to
develop and test GRNs. The networks presented by DREAM make some simplifications
of naturally occurring networks found in a cell, and the corresponding datasets are ideal

in their completeness. The datasets include results from knockout and knockdown
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experiments, multifactorial perturbations, time series and dual knockouts. These datasets

are considered as standard benchmark data in the field.

3.2.1 Network Identification by Multiple Regressions (NIR)
The way the Network Identification by Multiple Regression (NIR) (Gardner, di Bernardo
et al. 2003) infers gene networks is by using multiple regression. It uses steady-state data
resulting from a known initial perturbation. Basically, we assume that a gene network can
be described with a series of linear equations, approximately:

dX/dt = AX + U (3.1)
where X is an n by m matrix of steady-state expression data. In X, each column represents
an experiment and the rows represent genes. A is an n by n normally distributed matrix
that represents the network model, which implies that every gene’s expression is a linear
function of the sum of a row of coefficients from A and the gene values as a column from
X. U is an n by m matrix which represents the degree to which the gene is perturbed in
each experiment (values from 0 and 1). For example, the degree would be 1 if the gene is
totally knocked out. If a gene is knocked down, it might have a value of 0.5. Genes have
values of 0 if they are not perturbed at all. dX/dt shows how the expression values change
per unit of time. As NIR is applied with steady-state data (which means data would
change little time by time), dX/dt is 0. Therefore, the above equation can be reduced to:

~U=AX (3.2)

Our goal is to select a promising network model A by using multiple regressions. From
the beginning we just take one row a; from A and one column x; from X, and try to solve

uij of U. We need to achieve all the values in a;, and multiplied by x;, to have the sum of
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all results equals to —u;;. We will aim to get the best solution, as there would be many
possible answers.

A multiple linear regression model that can account for more than one
independent variable will be created as a solution in NIR. The independent variables
consist of one possible set of k out of n genes, where k is a user-defined parameter that
enforces sparsity in A in order to limit the number of dependencies between genes, and —
uij is the dependent value for the target gene/experiment. We repeat all these steps for
each gene/experiment combination. The solution matrix A is derived from the model in
which each gene has best weight.

NIT uses least squares regression to minimize the sum of squared errors (SSE):

m
SSEf = Z(yil —b{ - z))? (3.3)
=1

where k represents the number of genes being examined, i is the target gene, | is the
current experiment, y; is the negative perturbation value for gene i in experiments I, b are
the model weights for gene i, and z are the expression values from the currently selected
k genes in experiment . Our goal is to choose weights b to minimize the sum of squared
errors. In fact, the squared error presents the difference between how much the target
gene was perturbed and the perturbation that the current model shows. For example, if the
gene under a current perturbation has U have a value of 1, then we propose to find a
number k of weight b (at least one is non-zero) whose dot product with the current
expression values is equal to —1 (since yi = —ujj), which makes the error 0. All the edges
with a non-zero weight indicate that the source genes regulate the target gene i. The basic
technique to choose b weights consists of randomly initiating their values, then refining

them.
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3.2.2 GEne Network Inference with Ensemble of Trees (GENIE3)

GENIE3 (Huynh-Thu, Irrthum et al. 2010) is an algorithm by using an ensemble of
regression trees to predict networks. All the expression data applied to the GENIE3
algorithm are normalized to unit variance (i.e., variance of 1) and mean 0. There are three
steps in the algorithm: 1) builds up an ensemble of regression trees for each gene; 2)
ranks potential regulator in each regression tree; 3) ranks all of the inferred edges.

At first, GENIE3 creates a regression tree based on the mutation of expression
values of each gene g in the network. To create regression trees, the whole dataset is split
recursively into smaller subsets. According to the expression values of genes other than g,
the dataset will be split on the nodes of the regression tree. To avoid confusion with the
term node in the final result, the regression tree nodes here are called decision points.
Each sub-dataset divided by a decision point has a small variance in the target gene’s
expression values. For a single gene x other than g, we pick up a threshold, based on
which the division is made, according to the idea that if gene x causes a split in the
regression tree for target g, there is a potential causality from x to g. Then the expression
value of gene x in each experiment will be checked. The experiment with the expression
value of x above the threshold goes to one group or to another group if the expression
value is below the threshold. The splitting continued recursively until no more splits can
be made.

As an example, consider Table 3.1, which shows an example of data for GENIE3.
The basic idea of the GENIE3 algorithm is to split all the experiments into two groups
according to expression values so that each group has minimal variance on the target

gene.

32



Table 3.1 Sample Data for GENIE3

Genes
Experiments
Gl G2 G3 Target
El 0.4 0.8 0.4 0.5
E2 0.3 0.2 0.3 0.9
E3 0.5 0.3 0.7 0.8

Source: Lingeman, J. M. and D. Shasha (2012). Network inference in molecular biology. New York,

Springer.

In Table 3.1, the ideal split is to have experiments E1 alone in one group, and E2
and E3 in the other group. It is clear that G2 is the potential source gene because G2’s
value in E1 is distinguished from its value in E2 and E3. Here the threshold is defined as

0.5 as it is between G2’s E1 and E3 values. Any values above 0.5 go to group 1, and any

values less than or equal to 0.5 go to group 2.

Table 3.2 Example Data for GENIE3

Genes
Experiments
Gl G2 G3 Target
Group 1 0.4 0.8 0.4 0.5
0.3 0.2 0.3 0.9
Group 2
0.5 0.3 0.7 0.8

Source: Lingeman, J. M. and D. Shasha (2012). Network inference in molecular biology. New York,

Springer

Table 3.2 shows example data for GENIE3 with the dataset split into two groups,

thus minimizing the variance of each of the groups.
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When the expression value of G2 is above 0.5, the target gene has low expression
values, whereas with a value below 0.5, the target gene displays high expression values.
Thus, we have identified a potential causal edge, in which G2 has a repressive effect on
the target gene.

The algorithm of Random Forests (Breiman 2001) is applied here to find robust
splits in their responses to trivial changes in the data. With averaging predictions,
Bootstrapping and random feature selection are used in Random Forests and reduce
variance across the dataset. From the original dataset, 2/3 data is randomly picked up
with replacement to generate every tree in a Random Forest ad a bootstrap training. Each
tree is built later with K random splits at each decision node. Here K is normally defined
as K=,/p—1or K =p -1 where p is the number of known potential regulators also
termed as transcription factors. The randomly chosen split which will reduces mostly the
variance of the target gene’s expression values is defined as a decision split.

We calculate an importance score for each decision point in a tree:

I(N) = #SVar(S) - #5\Var(S;) - #S:Var(Sy) (3.4)
where N is the current decision point to be evaluated, S is the subset of experiments lower
in the tree than the decision point N, S; is the subset of experiments on the true branches
of decision point N, and St is the subset of experiments on the false branches. Var(.)
denotes the variance of the target gene in a subset, and # is defined as the number of
experiments in corresponding subset. The importance score is to measure how much
variance shown by splitting the dataset on the gene at the decision point with threshold. If
the score is high, it presents that the variance is significantly reduced and probably this

gene regulate the target gene, as shown in the example above. If the score is low, the split
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did not considerably reduce the variance which means the gene may not regulate the
target gene.

After the tree for gene g is generated, the influence of every other gene on g is
ranked. By summing up all of the importance scores of the nodes at which a potential
regulator gene x was selected to split, we can get a final score for x. A zero score is
appointed to the genes that are never selected to split. All the final scores of potential

regulator genes are ranked to define which genes x are most crucial to regulate gene g.

3.2.3 Relevance Networks
The tool of relevance networks was developed by Butte and Kohane (Butte and Kohane
2000). It measures the mutual information (MI) between gene expression profiles to infer
interactions. Let X; represent the vector of expression values of gene i and let X; represent
the vector of expression values of gene j. The mutual information | between the discrete
variables X;and X; is defined as:

p(Xi, X;)

1(X,, X)) = x;l x;{} p(x;, x;) log <p(xl)p(xj)> (3.5)
where p(x; y;) is the joint probability density function between X; (the expression profile
of gene i) and X; (the expression profile of gene j), and p(x;) and p(y;) are the marginal
probability density functions of X; and X;, respectively. Marginal probability density
functions collect the probability densities of a subset of the data, which denotes the
expression profiles of each gene, and the functions are used to present how likely x the
expression value is in the expression profile of its gene X. In a expression profile X, if a

probability of x is low, it would be expected by other values in X. Whereas, if x is high, it
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means there is a potential edge between genes X and Y. Here X; and X; are required to be
discrete variables. The approach of equal-width binning (Meyer, Lafitte et al. 2008) is

used for discretization and empirical entropy estimation.

3.2.4 Context Likelihood of Relatedness (CLR)

The basic idea of Context Likelihood of Relatedness (CLR) (Faith, Hayete et al. 2007) is
to form a matrix of mutual information scores by calculating the mutual information
between each pair of genes in the network. These scores are then compared to a
background distribution and a z-score is calculated. A potential mutual information edge
will be indicated between the two genes in the network with a high z-score, as a low z-
score shows up no edge existing. Only undirected edges can generated by CLR because
of the bidirectional nature of mutual information. If we have discovered the transcription
factors, the directionality can be estimated based on one of the genes is exactly a
transcription factor.

At the beginning, the mutual information can be calculated as shown in relevance
networks in the section of 3.2.3. After a matrix of mutual information scores for each
gene is calculated, the likelihood of each pair of scores (a z-score) is estimated by CLR,
and they are compared with a background mutual information distribution, namely Ml;
and MlI;, respectively. The two distributions represent only one row of the mutual
information values of gene i and gene j. Our plan is to check the distance between a
mutual information score and the rest of the mutual information scores other than that
gene. If the score is much higher than most of the other scores, an edge is most likely

here. As we mentioned before, all genes only depend on a small number of other genes,
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hence, the scores of all the genes can be used as a background distribution. Most of the
mutual information scores can be used as a background noise distribution as they would
not equal to zero because of measurement noise or indirect edges. After the z-score for
each pair of genes has been calculated, the final step is to calculate the CLR score which

is calculated for each pair of genes:
f(Z.2) = |2} + 2} (3.6)

Z; and Z; are the z-scores computed from the background distribution above. f(Z;, Z;) is
used to measure the joint likelihood, which gives out a single score for each pair of genes
compared to the score of each other pair of genes. In the final step, the CLR scores are
ranked and the top N scores are applied to generate a network. However, we must choose
the value of N carefully, because we cannot confirm the N is invalid or not if the gold
standard is unknown. Actually, with the computational analyst the ranking can be

provided as the topmost ranked genes will be tested by the experimentalist.

3.25 EULID
EUCLID (Maetschke, Madhamshettiwar et al. 2013) is an approach by using the
Euclidean distance between the normalized expression profiles X’j and X" to indicate the

interaction weights between gene i and gene j:

Wij = \/Z(Xi,k - Xj,k)z (3.7)
k

In this method, profiles are normalized by computing the absolute difference of

expression values X to the median expression in profile X;,, = |X;;, — median(X;)|, and

k is from 1 to m (the number of experiments).
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3.2.6 Weighted Gene Co-expression Network Analysis (WGCNA)
WGCNA (Langfelder and Horvath 2008) is a collection of inference methods which are
correlation-based to amplify high correlation coefficients by increasing the absolute value

to the power of f (‘softpower’) with > 1:

cov(X;, X;)

Ox Oy

b E(X.X;) — EX)E (X))

wij = |corr(X, X;)| N 2\ _ 2
E(X*) - E2(X) |E(X;*) — E*(X))

The network predicted by WGCNA is an undirected graph. We choose the node (which is
a gene) with the highest amount of edges as a regulator, so that all the edges attached to it
are directed to all its neighbors. Here, w;; represents a weighted edge between gene i and
gene j, cov is covariance, E is expected value, the sum of each expression value
multiplied with its probability. With the network constructed, genes are clustered.

Basically, WGCNA uses the algorithm of correlation network.

3.3 Unsupervised GRN Inference Algorithms Based on Time-Series Data
Time-series data collect the information of the values of genes at a series of time points in
succession. With this temporal information, we can try to infer directionality of edges, or
extract causal relations between genes. In this section, we present three algorithms for

inferring gene regulatory networks from time series data.

3.3.1 Time-delay ARACNE
Time-delay ARACNE (Zoppoli, Morganella et al. 2010) is an algorithm based on mutual
information to detect time series networking. There are three steps in the algorithm

(Margolin, Nemenman et al. 2006). At first, the expression values of each gene are
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scanned and the time point at which the values suddenly vary is found. Then, a ratio of
the change of expression values is used to determine whether the gene is induced or
repressed. Second, the mutual information value is calculated for each gene pair. An edge
is created if there is a nonzero mutual information value comes out. Third, all the edges
created are tested with a certain threshold, and the edges with low data processing
inequality are pruned away.

The algorithm evaluates the first time point at which a gene g is induced or
repressed by comparing the expression value at time 1 to the expression value at time t.
The parameter 7 is defined as a threshold then if the expression value is varied above this
amount, the gene is considered being induced or repressed.

If the ratio between the expression at t and the initial expression value is greater

than z, then the gene is considered expressed at time t, as follows:
grift< FIO) (3.9

On the contrary, once the ratio between the expression value at t and the initial
expression value is lower than 1/ z, the expression of this gene can be considered as

repressed.

1 g(@®)
7”7 9

If the expression value does not meet either of these two conditions, it would not

g~ if (3.10)
be considered expressed or repressed at time t.
We have three advantages to evaluating at which time point a gene start to be

induced or repressed: First, it allows us to infer causal events in the time series. Gene g

can effects x only if g is induced or repressed before gene x. Second, computation time
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can be speed up by reducing the number of possible edges to calculate in previous step.
Third, dependencies between genes can be detected at each time point. This is followed

by network building and trimming, using Data Processing Inequality.

3.3.2 Banjo

Banjo (Yu, Smith et al. 2004) stands for Bayesian Network Inference with Java Objects.
This is a special tool because the expression values of each gene can be predicted from its
parents’ expression values and some values of itself at previous time points. Basically,
Banjo needs to search all possible networks, and has a score system to pick up the best
one. The score system includes two metrics, the Bayesian Dirichlet Equivalence (BDE)
and the Bayesian Dirichlet Criterion. It also includes some search strategies which are
combined with the scoring matrices: greedy, simulated annealing, and genetic algorithm.
Based on previous uses on Banjo, the greedy search algorithm with Bayesian Dirichlet
Equivalence (BDE) scoring will be used as defaults (Elati, Neuvial et al. 2007). BDE
used here is calculated with the log of the marginal likelihood P(D|G), where D is data

and G is network graph.

3.3.3 Granger Causality

Mukhopadhyay (Mukhopadhyay and Chatterjee 2007) and Shojaie (Shojaie and
Michailidis 2010) introduced a method called Granger Causality to analyze time-series
gene expression data to predict gene networks, which is a statistical hypothesis approach
to decide if one time series is useful to predict other time series. The basic idea is that a

time series X is said to Granger-cause Y if it can be shown, usually through a series of t-

40



tests and F-tests on lagged values of X (and with lagged values of Y also included), that
those X values provide statistically significant information about future values of Y. Here
X is the time vector of expression values of the source gene, and Y is the time vector of
expression values of the target gene. To test the null hypothesis that X does not Granger-
cause Y, we need to find the proper lagged values of Y to include in a formal auto
regression of Y:
Ve =09+ a1 Vi1 + QYeo + o+ QnYiem + 11 (3.11)
Here r is residual, and it is the difference between the observed expression value and the
estimated function value. Next, the autoregression is augmented by including lagged
values of X:
Ve =00+ a1Ye-1 + AYe2+ ot ApYeom t biXeq + o+ bgxe_g + 1 (3.12)
In this expression, y; and x; are stationary time series values of Y and X at time t, X (0 </
< q) is the value of X at time t-j, y¢; (0 < i <m) is the value of Y at time t-i; a; and bj
(0<i<im, 0gj<g)are the coefficient values we need to find by autoregression. And q is the
longest lag length when the lagged value of x is remarkable, and m is the longest lag
length when the lagged value of y is remarkable. We retain in this regression all lagged

values x's (x € X) that are individually remarkable based on their t-statistics, given that

collectively they add explanatory power to the regression according to an F-test (whose
null hypothesis offers no explanatory power when jointly added by the x's, which means
X and Y has no relationship.). The t-statistics for each individual a; and bj is a ratio of the
difference of the regression result from its notional value (normal zero, indicated that no

relationship) and its standard error, which can be presented as follows:
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__B=b,
o se. )

(3.13)

where B, is a known constant normally set to zero, and s.e. (8) is the standard error of

the estimator B, which is either a; or b;. The F-test can be calculated as:

_ SSRy — SSRy _ (3.14)
~ SSRy ( ) '
SSRy and SSRy are the sum of squared residuals of X and Y, respectively. Residuals
present the difference between estimated values and actual values. T is the total number

of time point. In the notation of the above augmented regression.

3.3.4 DDGni
DDGni stands for Dynamic delay gene-network inference, applying for high-temporal
data by using gapped local alignment. The basic idea is that, if gene A is regulating gene
B, the expression pattern of the target gene B is stimulated by the expression pattern of its
regulator gene A, i.e., they share similar expression pattern with some time windows
(expression delay). The method also considers the cases of multi-regulators and multi-
targets with different time windows.

To compute the gapped local alignment of expression patterns of gene A and gene
B, we need to extract their expression values at all time pointes, consider A has x number
of time points, while B has y number of time points.

A =ay,a3,a;3 ...,axB = by, by, b3, ..., b, (3.15)

Since a regulator and its target share a similar expression trend despite the

magnitude of the variations of expression values, all the expression values (a’s and b’s)

are normalized first.
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(3.16)

where

s(i,j) = e”4@b) 0 <i<x,0<j<y (3.17)
Here « is the measure of the steepness which is set as 1.7, and d(a; b;) is the distance
between time points a; and b;.

Then an alignments matrix M (x by y) is created:

Mi_,j—p
M ,—p
0 )

M;; = max (3.18)

Mi_qj-1+ S,(i'j)l

Mi; is the score for position i in series A and position j in series b, s°(i,j) is the normalized
similarity between the time point a; and bj, and p is the gap penalty, chosen as 0.3. The

alignment score N is calculated as:

M;_qj_1+ s'(L,))
Max(M -
N = [ﬂ] M;; = max Miyj=p (3.19)
L Mij1—p
\ 0 )

where L is the alignment length. By choosing up a threshold for N, the top high alignment

scores detemind the edge of the regulatory network.

3.4 Unsupervised GRN Inference Algorithms Using Pipelines
For gene network inference, various algorithms can be used to build up a pipeline, and
each algorithm is fed with different types of data, in turn based on different experiments
within the same gene network. A consensus network can be generated by combining the

inferential abilities of different methods. Also, a pipeline can be a sequence of algorithms
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in which the output of one algorithm becomes the input of the next algorithm in the
sequence. All these attempts are made to get a better performance for predicting gene
regulatory networks. For example, Inferelator 2.0 (Madar, Greenfield et al. 2009) is a
pipeline combining three algorithms: Median-Corrected Z-Scores (MCZ), Time-lagged

Context Likelihood of Relatedness (tICLR), and Inferelator 1.0.

3.5 Supervised or Semi-Supervised GRN Inference Algorithms
Maetschke et al. (Maetschke, Madhamshettiwar et al. 2013) defined supervised, semi-
supervised and unsupervised algorithms for inference of gene regulatory networks.
Usually, there is no data can be used by unsupervised methods to adjust internal
parameters. Supervised methods, on the other hand, by collecting information about
known interactions for training and testing all given data, both positive and negative
training samples, optimize parameters such as weights or thresholds. Otherwise, only part
of the data can be used by semi-supervised methods for parameter optimization, i.e., a
subset of network interactions discovered, sometimes even only positive training samples.
The only method described in their paper is Support Vector Machine (SVM) (Cortes and
Vapnik 1995). By applying containing supervised learning models which are associated
learning algorithms to analyze data and recognize patterns, this method can be used for
classification and regression analysis. With the input of a set of input data, SVM predicts
each one of them belonging to either of two possible classes, so it is a non-probabilistic
binary linear classifier. Provided a set of training examples, each of which is labeled to
one or other classes, the training algorithm of generates a model to label new examples

with one category or the other. An SVM model presents the examples as points in space,
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and makes a gap as big as possible to divide all the examples to separate categories.
Based on which side of the gap the examples to be predicted fell on, they are labeled with
a category after being mapped into the same space.

Mordelet et al. (Mordelet and Vert 2008) have developed a method for the
inference of gene regulatory networks called SIRENE (Supervised Inference of
Regulatory Networks). It needs both gene expression data and a list of regulation
relationships discovered between transcription factors and target genes. The list is
obtained from the databases of regulations which are characterized with experiments and
publicly available, e.g., RegulonDB for Escherichia coli genes (Faith, Hayete et al. 2007).
To get negative samples, they collected all genes that are not regulated by a certain
transcription factor and divided them into three subsets. Then they trained the SVM with
all the positive examples and two of the three subsets of negative samples. The training
process was repeated three times and each on took just one subset of negative samples
apart.

In a paper by Cerulo et al. (Cerulo, Elkan et al. 2010), three methods are
compared for predicting gene regulatory networks from only positive and unlabeled data

derived from the tool GeneNetWeaver (http://gnw.sourceforge.net), which is used to

generate in silico benchmarks in the DREAM3 challenge initiative (Stolovitzky, Monroe
et al. 2007, Marbach, Schaffter et al. 2009). The three methods are considered semi-
supervised methods and they are PosOnly, PSEUDO-RANDOM, and SVMOnly. PosOnly
uses a model of conditional probabilities to define negative samples (Elkan and Noto
2008). Let x be a feature vector and let y = {0, 1} and s = {0, 1} be binary labels. Let s =

1 if the example x is labeled, and let s = 0 if x is unlabeled. Positive examples are labeled,
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i.e., if s =1, then y = 1; while unlabeled examples, with s = 0, may be either positive y =
1 or negative y = 0 . The probabilistic binary classifier is applied to learn f(x) such that f(x)
= p(y = 1|x), defined to be the conditioned probability of being positive provided a
feature vector x. PSEUDO-RANDOM selects negative samples according to an
assumption that a regulatory network has a structure like a tree without or containing few
cycles. SVMOnly considers all unlabeled examples as negative. The result showed that
PosOnly outperforms significantly both methods PSEUDO-RANDOM and SVMOnly in
simulated data, while the other two tools have a slightly lower performance in

experimental data.

3.6 Integrated Approaches to GRN Inference
Marbach et al. (Marbach, Roy et al. 2012) have developed and applied methods for
transcriptional regulatory network inference from diverse functional genomics datasets,
and have demonstrated the effectiveness of their approach for gene function and gene
expression prediction. The network inference problem is formed to a machine-learning
framework, with input features consisting of transcription factor (TF), evolutionarily-
conserved sequence motifs, gene expression, and chromatin modification datasets, to
predict regulatory edges by binding all the above features. The authors predicted ~300k
regulatory edges in a network of ~600 TFs and 12k target genes by applying these
methods to Drosophila melanogaster. An inferred network is applied to identify putative
functions for hundreds of previously unlabeled genes (Lee and Tzou 2009), as a lot of
these genes are in nervous system development defined independently according to the

patterns of tissue-specific expression. At last, the regulatory network is used as a function
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of TF expression to predict the levels of target gene expression, and in integrative
networks remarkably better performance of prediction is achieved than for motif or ChIP-
based networks. A compatible relationship is discovered by their work between physical
evidence of regulatory interactions such as TF binding or motif conservation and
functional evidence like coordinated expression or chromatin patterns, and the power of
data integration is revealed for network inference based on the studies of gene regulation
at the systems level.

Literature mining is another way to develop gene regulation networks by
collecting the information about gene interactions from previously published literature. If
some research already published shows that a gene can regulate other genes based on
biological experiments, this scene would be applied to the basic part of the network. All
pertinent information about a particular gene family can be searched, collected, and
postulated as a gene regulation network.

Djebbari et al. (Djebbari and Quackenbush 2008) described in their paper how
they did such a search in PubMed (McEntyre and Lipman 2001): two genes are assumed
between them may be an interaction if both and only two of them are described in a
single article indexed in PubMed. According to the relative number of articles talking
about those genes together, weights would assigned to interactions. The prior
probabilities for two genes A and B related is shown by assigning a co-occurrence edge
weight, which obtained by summing up how many times the work “interaction”

mentioned in the literature, relative to the total number of manuscripts surveyed:

(3.20)
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where w(A, B) and w(e) present the weight of edge (A, B) in the set of edges E. Then they
seed this prior network to bootstrapping. In each bootstrap iteration, the features of
interest are checked such like directed edge, undirected edge, order relation, and Markov
relation. The confidence of overall bootstrap can be evaluated by measuring how many
times a specific feature appears related to the total number of iterations, which thus
supports chosen features. They also collected interactive data from high-throughput yeast
two hybrid protein-protein interaction (PPI) screenings.

Haibe-Kains et al. (Haibe-Kains, Olsen et al. 2012) developed a web-based
application called Predictive Networks (PN) to evaluate experimentally derived gene lists
in the context of large-scale gene interaction networks. The PN analytical pipeline has
two steps. At the beginning a comprehensive set of gene interactions extracted from a
bunch of sources that are publicly available by applying text-mining algorithms. The
second step consists of using these ‘known’ interactions together with gene expression
data to infer robust gene networks by using supervised approaches, including regression
and Bayesian methods. The PN web application can be accessed from

http://predictivenetworks.org.

3.7 Some Preliminary Experimental Results
We evaluated the performance of some of the unsupervised gene network inference
algorithms surveyed in this dissertation. The NIR algorithm was implemented in
MATLAB 7 and run on a Linux platform. We tested the NIR algorithm using DREAM4
knock out data. Figure 3.1 shows the network predicted by the NIR algorithm, and the

standard network, i.e., the ground truth, provided by DREAMA4.
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Figure 3.1 Results obtained by running NIR on DREAM4 knockout data. (A) The
network predicted by the NIR algorithm. (B) The standard network from DREAM4.
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The GENIE3 algorithm was implemented in R and run on a Windows platform.
We tested the GENIE3 algorithm using DREAM4 knock out data. Figure 3.2 shows the
network predicted by the GENIE3 algorithm and the standard network, i.e., the ground

truth, provided by DREAM4.
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Figure 3.2 Results obtained by running GENIE3 on DREAM4 knockout data. (A) The
network predicted by the GENIE3 algorithm. (B) The standard network from DREAM4.
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The CLR algorithm was implemented in MATLAB 2011 and run on a Windows
platform. We tested the CLR algorithm using DREAM4 knock out data. Figure 3.3
shows the network predicted by the CLR algorithm and the standard network, i.e., the

ground truth, provided by DREAMA4.

(B)

Figure 3.3 Results obtained by running CLR on DREAM4 knockout data. (A) The
network predicted by the CLR algorithm. (B) The standard network from DREAMA4.



The time-delay ARACNE, or TDARACNE, algorithm was implemented in R and
run on a Windows platform. We tested the time-delay ARACNE algorithm using

DREAM4 time series data. Figure 3.4 shows the network predicted by the TDARACNE

algorithm and the standard network, i.e., the ground truth, obtained from DREAMA4.
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Figure 3.4 Results obtained by running TDARACNE on DREAM4 time series data. (A)
The network predicted by the TDARACNE algorithm. (B) The standard network from
DREAMA4,
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The Banjo algorithm was implemented in Java 7.0 and run on a Windows
platform. We tested the Banjo algorithm using DREAM4 time series data. Figure 3.5
shows the network predicted by the Banjo algorithm and the standard network, i.e., the

ground truth, obtained from DREAMA4.
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Figure 3.5 Results obtained by running Banjo on DREAM4 time series data. (A) The
network predicted by the Banjo algorithm. (B) The standard network from DREAMA4.
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All the algorithms in the pipeline of Inferelator were implemented in R and run on
a Linux platform. We tested Inferelator using both steady-state data (specifically,
DREAM4 knockout data) and DREAMA4 time series data. Figure 3.6 shows the network
predicted by Inferelator and the standard network, i.e., the ground truth, obtained from

DREAMA4.
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Figure 3.6 Results obtained by running Inferelator on DREAM4 knockout data and time
series data. (A) The network predicted by Inferelator. (B) The standard network from
DREAM4.
In evaluating the performance of the network prediction algorithms, we use
measures including accuracy, precision, and recall. We use TP (true positive) to denote

the number of positive edges that are predicted correctly. A positive edge is one that

appears in the ground truth where the ground truth is the standard network provided by
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DREAM4. We use TN (true negative) to denote the number of negative edges that are
predicted correctly. A negative edge is one that does not appear in the ground truth. We
use FN (false negative) to denote the number of positive edges that are incorrectly
predicted as negative. We use the FP (false positive) to denote the number of negative

edges that are incorrectly predicted as positive. Then

TP+ TN
= 3.21
AeCuracy = Tp Y FP+ TN + FN (3:21)
TP
ision = ——— 3.22
precision = zo——0 (3.22)
TP
- 3.23
recall TP+ FN (3.23)

The accuracy, precision, and recall of the six tools tested in this dissertation

proposal are shown in the following table.

Table 3.3 Accuracy, Precision, and Recall of Tested GRN Algorithms

Algorithm Accuracy Precision Recall
Algorithms using steady-state data

NIR 0.8 0.4 0.266667
GEINE3 0.786517 0.357143 0.333333
CLR 0.758621 0.25 0.2
WGCNA 0.756 0.267 0.267
Algorithms using time-series data

TDARACNE 0.818182 0.461538 0.4
Banjo 0.702128 0.157895 0.2
Algorithms using both steady-state data and time series data

Inferelator 0.786517 0.357143 0.333333
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CHAPTER 4

A GPU PROGRAM FOR WHOLE GENOME COMPARISON

4.1 Introduction
A multiple sequence alignment (MSA) is related sets by partitioning residues such like
amino acids or nucleotides from a given set of sequences. As the prerequisite for most
phylogenetic and evolutionary analyses, MSA is the basic biological sequence analysis
for the research of the relationship about evolutionary homology (Wallace, Blackshields
et al. 2005) (Edgar and Batzoglou 2006) (Notredame 2007). Most of the MSAs attempt to
align every residue in all the sequences, which is called "global alignments”. The
methods include mutational processes dealing with residue substitution, subsequence
insertion, and subsequence deletion (Notredame 2007). After the whole-genome
sequences has been discovered, it raises an interest in MSAs for whole genomes, which is
called whole-genome alignment (WGA), covering all kinds of sequences: genes,
promoters, repetitive regions, etc. This research requires more analyses about genome
rearrangements, such like inversions, translocations, chromosome fusions, chromosome
fissions, and reciprocal translocations. Meanwhile, another tools can also model
unbalanced rearrangements which will copy number change, like tandem and segmental
duplications (Blanchette, Kent et al. 2004, Miller, Rosenbloom et al. 2007, Paten, Herrero
et al. 2008, Angiuoli and Salzberg 2011, Paten, Earl et al. 2011). The development for
whole genome alignment is becoming more critical to figure out the selective forces
acting across genomes, improve analysis of many potential functional elements such like

the identification of conserved non-coding functional elements (Lindblad-Toh, Garber et
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al. 2011), along with cis-regulatory elements (Kellis, Patterson et al. 2003), enhancers,
and non-coding RNAs (Earl, Nguyen et al. 2014).

Our work focuses on searching anchors, termed as non-gap alignment segments of
local alignments, for whole genomes via multiple sequence alignments. To identify the
commonalities and differences of two genomes from closely related organisms, for
example, human and gorilla, various programs have been developed for sequencing
alignment, applied to the whole genomes by using a seed-and-extend technique,
beginning from exact or close exact matches and choosing a reliable subset of them,
which is called anchors, then chaining all the anchors corresponding to the reference
genome with overlapped or duplicated anchors removed and minimum of gaps remaining.

Several approaches for multiple sequence alignments to search anchors are
available. We started with LASTZ (Harris 2007) and SSEARCH (Pearson 2000). LASTZ
is a drop-in replacement for BLASTZ (Schwartz, Kent et al. 2003), which recognizes
primary anchors as high-scoring local alignments before any other tools. The anchors
start from pairs of spaced 12-mers with possibly one transition, and then are extended in
two stages, if substitutions and gaps are allowed. The method is also applied for finding
new, secondary matches between consecutive primary matches (Lippert, Zhao et al.
2005). On the other hand, SSEARCH does a rigorous Smith-Waterman search (Smith and
Waterman 1981) for similarity between a query sequence and a group of sequences of the
same type, i.e., chromosome or protein. This may be the most sensitive method available
for similarity searches.

Compared to LASTZ, SSEARCH can be very slow, taking days and months to

map millions of bases for mammalian genome sequences. This is the reason why we need
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to rely on programming in GPU (Graphics Processing Unit). The GPU is designed to run
in parallel hundreds of short functions called threads, which are organized into blocks
then in turn organized into grids. Parallel algorithms running on GPUs can often achieve
up to 100x speedup over similar CPU algorithms. Our plan is to apply the GPU program
via the algorithm of MaxSSmap (Turki and Roshan 2014) for the multiple sequence
alignments with whole genome sequences to search anchors in evolutionary analysis,

increasing accuracy and speed of processing at the same time.

4.2 Dataset
The dataset used to test our alignment program via GPU is extracted from a competitive
assessment of whole genome alignment methods named Alignathon (Earl, Nguyen et al.
2014). Alignathon used three test sets, two of them were simulated datasets created by
forward-time simulation with the EVOLVER tool (Edga, Asimeno et al. 2009). The first
set models a phylogeny of great ape containing the genomes such as humans,
chimpanzees, gorillas, and orangutans, all with the same evolutionary relationships. Our
program tested tentatively two genomes from this set, humans and gorillas. No doubt that
the outcome has impressively high accuracy, above 0.8 and 0.9 respectively in precise
and recall. But our research focuses on distant related organisms; in consequence the
major dataset we used for our program is the second simulated dataset from Alignathon,
which is about a mammalian phylogeny containing genomes as humans, mice, rats, cows,
and dogs. We chose two distant related organisms, cow and mouse, from this set. The

two genomes that are mainly tested in our program are the chromosome C from species
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cow and the chromosome O from species mouse. The phylogenetic distance between

these two genomes is 0.60 (Earl, Nguyen et al. 2014).

4.3 Implementation and Methods

The algorithm used for the genome alignment in our research is called MaxSSmap (Turki
and Roshan 2014). The running platform is CUDA 6.0 implementing on NVIDIA GPUs.
The GPU, as graphics processing unit, is designed to execute hundreds of small functions
called threads at the same time in parallel. All the threads are bundled into blocks which
then are organized into grids. While the MaxSSmap is running, only one grid are applied,
and the number of blocks is set to the total number of fragments, the contiguous parts
with constant length defined by the user, from the reference genome sequence, normally
the cow genome in our research. The number of fragments is determined by how many
threads in a block are executed simultaneously. By default the value is set to 256.

The query genome sequence, normally the mouse genome, is divided into short
length reads. The length of the reads is not necessary to be constant. The input of the
MaxSSmap program is the whole reference genome and a read. The program has two
steps. The first to identify a local region of the reference genome, in our case is to locate
the fragment 1D number by sliding the short read through the whole reference genome
and picking up the maximum scoring subsequence (Bates and Constable 1985, Bentley
1986). The maximum scoring subsequence is defined to maximize the sum of a region in
the original sequence. For instance, the original sequence contains a list of real numbers
{X1, X2, ..., Xn}, and the maximum scoring subsequence should be the contiguous

subsequence { X;, ..., Xj } whose sum x; + ... + X; (0 <, j < n) is maximized. For DNA
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sequences, the list of real numbers is replaced as the cost score list under two aligned
sequences with same length and without gaps. The cost scores can be defined from a
position specific scoring matrix presenting base call probabilities, or a substitution
scoring matrix, or a trivial match or mismatch cost. In Figure 4.1 we show up a brief
overview of the first phase of MaxSSmap program. Each thread of the GPU is input the
read and one fragment of the reference genome, and each fragment is assigned with an ID
number, from 0, 1, 2, ... and so on. In each thread the read is sliding through the fragment
and the maximum scoring subsequence is computed. To consider the cross junctions
between fragments, the neighboring fragments are also included to map the read in each
thread. The output of the execution is the fragment numbers with the highest and second
highest scores. With the assistant of the second highest score, redundant false positives
can be removed if we set up a threshold of the ratio of the second highest score and the

first highest score.
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Input:

A short read

The whole reference

genome
Break to same length

Fragment O Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

Figure 4.1 First phrase of MaxSSmap. The whole reference genome is divided to six
same size fragments with ID numbers from 1 to 6 and fed into six threads of the GPU.
Each thread will execute with one fragment and the short read, sliding the read with the
fragment and looking for the maximum scoring subsequence. The read is also mapped to
the junctions between fragments to make sure that the read is fully mapped to the
reference.

Source: Turki, T. and U. Roshan (2014). "MaxSSmap: a GPU program for mapping divergent short reads
to genomes with the maximum scoring subsequence.”" BMC Genomics 15: 969.

The second step of MaxSSmap program is applying a gap-allowed alignment
method to align the read with the region of the reference genome starting at the identified
fragment picked up from the first step. To obtain enough nucleotides as the read to
achieve the alignment, spanning the fragments to the right is necessary at most time.
Furthermore, we tested three algorithms in this phrase, Needleman-Wunsch (Needleman
and Wunsch 1970), Smith-Waterman (Smith and Waterman 1981), and the extention for
the Smith-Waterman approach, by feeding the outputs of local alignments to an genome-
wide mammalian consistency based alignment method named Pecan (Paten, Herrero et al.

2008), to pursuit for higher accuracy for computing genome aligments. In the rest context
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of this paper, we will elaborate in detail the three alignment methods, their results from
our experiments with the two mammlian genome sequences, cow chromosome C and
mouse chromsome O, and the analyses and comparison among the three algorithms and

other published alignment tools.

4.3.1 Needleman-Wunsch Algorithm

The algorithm of Needleman-Wunsh (Needleman and Wunsch 1970) is extensively
applied for finding similarities and determining whether significant homology exists
between nucleotide or protain sequences. Although the method was originally published
in more than 40 years ago, it is still widely used in recent eras for optimal global
alignment, particularly when the quality of the global alignment is of the utmost
importance. It was one of the first applications of dynamic programming to compare
biological sequences. The basic idea of the algorithm is to build up the best alignment by
using optimal alignments of smaller subsequences, meanwhile to reduce the massive
number of possibilities that need to be considered, yet still guarantees that the best
solution will be found. Based on a divide and conquer strategy, the algorithm consists of
the following steps:

1. Divide the problem into smaller sub problems. In the alignment algorithm, we

break the sequences to be aligned to based pairs, which also contain the gapped
alignments.

2. Solve the smaller problems optimally. The scores of all the probabilities of base
pairs are computed and stored in the trace back table. We trace the base pairs from
the end of the two sequences, and define the optimal alignments according to the
best scores.

3. Use the sub-problem solutions to construct an optimal solution for the original
problem. By tracing the optimal base pairs (including gaps) step by step, the final
alignment with maximum match and best score is obtained.
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The basic mathematic equation for Needleman-Wunsh algorithm is shown as follow:

D(i—1,j—1)+s(x,y))
D(i,j) = max Di-1D+g (4.1)
DG-D+g

The equation 4.1 helps us to create recursively the trace back matrix D(i, j) indexed by
the residues of two sequences x and y, with a boundry condition such that:
D(i,0) =g xi
(4.2)
D(0,j) =g %]
Where g is the gap penalty. The substitutuon score s(x;, y;) is for the residues i and j in the
two sequences x and y respectively.

Therefore, we need two matrix tables for the trace back process. One is to store
the maximum scores calculated by the equation 4.1, the other is for the trace back records,
containing the information how the maximum scores are obtained: 1) two residues align
together, the case named "diagonal”, or "match/mismatch”, 2) a gap is inserted in the
sequence X, the case named "up”, in some literatures it is also called "deletion”, 3) a gap
is inserted in the sequence vy, the case named "left", or "insertion". A trival example

presenting in Figure 4.2 will illuminate the exact procedures how to optimize an

alignment.
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Cost
Input

Match: 1
Sequence X: TTCAT

Mismatch: O

Sequence y. TTAC
Gap penalty: -1

Score matrix Traceback matrix

T T C A T T T C A T

0 1 -2 3 -4 -5 0O L L L L L

T -1 1 0 -1 -2 -3 T U D D L L D

T 2 0 2 1 0 -1 T U D\DéL L D

A 3 -1 1 2 2 1 A U U U D‘\D L

c 4 2 0 2 2 2 c U U uU D D\D
Alignment: TTCAT
TT-AC

Figure 4.2 Procedures of the algorithm of Needleman-Wunsh. Given the input of two
sequences x and y, the score matrix is calculated via equations 3.1and 3.2. The way to
obtained the maximum value of each cell in the score matrix is stored in the traceback
matrix: diagonal (maked as D), up (marked as U), or left (marked as L). By tracing back
from the lower right corner of the traceback matrix, the optimal alignment is built up.
4.3.2 Smith-Waterman Algorithm

Another computing method for local sequence alignment was also tested in our GPU
program in the second phrase of MaxSSmap. This is an method called Smith-Waterman
Algorithm (Smith and Waterman 1981) for comparison similiar to the algorithm of
Needleman-Wunsh, but the difference between them is that the Smith-Waterman
Algorithm performs local sequence alignment instead of global alignment consisting of

the whole input sequences; that is, for determining similar regions between two strings or

nucleotide or protein sequences. Hence, only part of the string of each input sequence is
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contained in the output aligment. The mathematic expression for the Smith-Waterman
Algorithm is presenting as below:

MG-1,j—-1) +s(x,y))

o Mi-1)+g
M(i,j) = max MG—1)+g (4.3)
0

with a distinct initial condition from the algorithm of Needleman-Wunsh:
M(i,0) =0
(4.4)
M(0,j) =0
Comparing the equation 4.3 with the equation 4.1, one more condition is appended to
calculate the optimal similarity by setting up a zero to prevent calculating negative
similarity which indicates that no similarity up to x; and y;. The alogrithm yields an

alignment consisting of a series of local alignments with optimal similarities in specific

regions of the two input sequences, which have not any association among them.

4.3.3 Smith-Waterman Extended with Pecan

The algorithm of Pecan was developed as a tool for large-scale probabilitic consistency
alignment (Paten, Herrero et al. 2008). It implements the similar basic objective function
as the tool of Probcons (Do, Mahabhashyam et al. 2005), an animo acid aligner. The
basic idea of these two approches is derived from the concept of a pair-hidden Markov
model (pair-HMM) (Durbin 1998). Figure 4.3 shows the conceptual graph of pair-HMM

that specifies the probability distribution over all alignments between a pair of sequences.
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1-26

Figure 4.3 Basic pair-HMM for sequence alignment for two sequences, x and y. State M
emits two residues, x; and y;, respectively from the two sequences, presenting the two
residues being aligned together. State I, emits a residue in sequence x aligned to a gap,
and similarly state l, emits a residue in sequence y aligned to a gap too. The optimal
similarity is obtained by applying Needleman-Wunsch algorithm with suitable
parameters. The emission probability function p(.,.) at state M corresponds to a
substitution scoring matrix, at the same time affine gap penalty parameters can be derived
from the transition probabilities ¢ and ¢ (Durbin 1998).

Source: Do, C. B., M. S. Mahabhashyam, et al. (2005). "ProbCons: Probabilistic consistency-based
multiple sequence alignment." Genome Res 15(2): 330-340.

The algorithm Pecan hace four main phrase:

1. Create a "constraint map" consisting of a set of alignment constraints that satisfy
that the two residues x; and y; has a constraint i <j.

2. Calculate a set of pairwise posterior match probabilities according to the
constraint map created in step 1.

3. Modify the set of posterior match probabilities using the consistency transformed
with the reference from a third sequence z out of the group.
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4. Combine the transformed posterior match probabilities into a multiple alignment
by applying a method of progressive alignment.

By the reason that only two genome sequences are going to be compared in our GPU
program, we ignore the last two steps of Pecan. The original source to create a constraint
map in the first phrase is a set of alignment anchors which are continuous un-gapped
series of one or more aligned pairs, produced by using Exonerate (Slater and Birney 2005)
in the original Pecan program. We modified the Pecan scripts and computed the
constraint map with the local alignments yielded from the Smith-Waterman algorthm.

The objective to create the constraint map is to gain more efficiency for the
program by avoiding conflicts among the anchor chain and choosing a colinear and non-
overlapping chain of anchor constraints to construct an alignment band. Based on the
alignment band the posterior match probablitlies are calculated by using backward
algorithm to set up the pair-hidden Markov model (Paten, Herrero et al. 2008). In order to
describe the backward calculation for pair HMM to produce posterior match probablitlies,
we introduce a new notation x; ¢ y;, which means that x; is aligned to y;. Then based on

the standard conditional probability therory we have

P(x,y,x,0y) = P01 i,¥1.% 0 ¥ )P(Xiv1mw Virrom|X100 V1., % 0 ¥;)
(4.5)
=P(x1. 5 ¥1.;% 0 ¥ )P(Xiv1.n Vis1.m|Xi 0 V})
where n is the length of sequence x, and m is the length of sequence y, with 0 <i <nand
0 <j <m. The first term of equation 4.5 is the forward probability while the second term

is the corresponding probability b (i, j) which can be calculated via backward algorithm

as shown in Figure 4.4.
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Algorithm: Backward calculation for pair HMMs
Initialization:
bM(n,m) = b*(n,m) =b¥(n,m) =1
Allb*(i,m+ 1),b*"(n+ 1,j) are set to 0.
Recursion: i = n,...1,j = m, ...,1 except (n, m)
bM(i,j)=(1-26 —T)prlyijM(i +1,j+1)
+ 68[qy,,, b +1,)) + qy].HbY(i,j + 1]
bX(L,j)=01—¢— T)pxmyj“bM(i +1,j+1) +eqy, b*({I+1,))

by(le) = (1 —&— T)pxi+1yj+1bM(i + 11] + 1) + gqyi+1by(i + 11])

Figure 4.4 Backward Algorithm for calculation of posterior match probablitlies. No
special termination step is needed, since only the values of b*(i,j) where i,j > 1 are
required to calculate.

Source: Durbin, R. (1998). Biological sequence analysis : probabalistic models of proteins and nucleic
acids. Cambridge, UK New York, Cambridge University Press.

Then we can use Bayes theorem to obtain

P(x,y,xi Oy]) (46)
P(x,y)

P(x; 0 yilx,y) =

And similar values for the posterior probabilities of using specific insert states (the

anchor chain in our program) can also be produced.

4.4 Results
Due to the test set for out GPU program is from the Alignathon assessment, we also
applied the same comparison tool to test the results. All the output fil