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ABSTRACT 

ALGORITHMS FOR PRE-MICRORNA CLASSIFICATION  

AND A GPU PROGRAM FOR WHOLE GENOME COMPARISON 
 

by 

Ling Zhong 

 

MicroRNAs (miRNAs) are non-coding RNAs with approximately 22 nucleotides that are 

derived from precursor molecules. These precursor molecules or pre-miRNAs often fold 

into stem-loop hairpin structures. However, a large number of sequences with pre-

miRNA-like hairpin can be found in genomes. It is a challenge to distinguish the real pre-

miRNAs from other hairpin sequences with similar stem-loops (referred to as pseudo pre-

miRNAs). The first part of this dissertation presents a new method, called MirID, for 

identifying and classifying microRNA precursors. MirID is comprised of three steps. 

Initially, a combinatorial feature mining algorithm is developed to identify suitable 

feature sets. Then, the feature sets are used to train support vector machines to obtain 

classification models, based on which classifier ensemble is constructed. Finally, an 

AdaBoost algorithm is adopted to further enhance the accuracy of the classifier ensemble. 

Experimental results on a variety of species demonstrate the good performance of the 

proposed approach, and its superiority over existing methods.  

In the second part of this dissertation, A GPU (Graphics Processing Unit) 

program is developed for whole genome comparison. The goal for the research is to 

identify the commonalities and differences of two genomes from closely related 

organisms, via multiple sequencing alignments by using a seed and extend technique to 

choose reliable subsets of exact or near exact matches, which are called anchors. A 



 

 

rigorous method named Smith-Waterman search is applied for the anchor seeking, but 

takes days and months to map millions of bases for mammalian genome sequences. With 

GPU programming, which is designed to run in parallel hundreds of short functions 

called threads, up to 100X speed up is achieved over similar CPU executions. 
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CHAPTER 1 

INTRODUCTION 

 

This dissertation investigates several data mining problems that arise in the 

computational systems biology field. In the first part of the dissertation, a new approach 

for microRNA classification is presented. MicroRNAs (miRNAs) are non-coding RNAs 

with approximately 22 nucleotides that are derived from precursor molecules. These 

precursor molecules or pre-miRNAs often fold into stem-loop hairpin structures. 

However, a large number of sequences with pre-miRNA-like hairpins can be found in 

genomes. It is a challenge to distinguish the real pre-miRNAs from other hairpin 

sequences with similar stem-loops (referred to as pseudo pre-miRNAs). Several 

computational methods have been developed to tackle this challenge. This dissertation 

presents a new method, called MirID, for identifying and classifying microRNA 

precursors. Seventy-four features from the sequences and secondary structures of pre-

miRNAs were collected; some of these features were taken from previous studies on non-

coding RNA prediction while others were suggested in the RNA folding literature. MirID 

is comprised of three steps. Initially, a combinatorial feature mining algorithm is 

developed to identify suitable feature sets. Then, the feature sets are used to train support 

vector machines to obtain classification models, based on which classifier ensemble is 

constructed. Finally, an AdaBoost algorithm is adopted to further enhance the accuracy of 

the classifier ensemble. Experimental results on a variety of species demonstrate the good 

performance of the proposed approach, and its superiority over existing methods.  
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In the second part of this dissertation, we present our effort to develop a GPU 

(Graphics Processing Unit) program for whole genome comparison. The goal for the 

research is to identify the commonalities and differences of two genomes from closely 

related organisms, via multiple sequencing alignments by using a seed and extend 

technique to choose reliable subsets of exact or near exact matches, which are called 

anchors. A rigorous method named Smith-Waterman search will be applied for the 

anchor seeking, but it takes days and months to map millions of bases for mammalian 

genome sequences. With GPU programming, which is designed to run in parallel 

hundreds of short functions called threads, algorithm running can achieve up to 100X 

speed up over similar CPU executions. 
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CHAPTER 2 

EFFECTIVE CLASSIFICATION OF MICRORNA PRECURSURS USING 

FEATURE MINING AND ADABOOST ALGORITHM 

 

2.1 Background 

MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) of approximately 22 nucleotides 

that are known to regulate post-transcriptional expression of protein-coding genes (Bartel 

2004, Bindra, Wang et al. 2010). Lee et al. (Lee, Feinbaum et al. 1993) first reported that 

in C. elegans, lin-4 regulates the translation of lin-14 mRNA via an antisense RNA-RNA 

interaction. Since then, many functions of miRNAs have been discovered (Aukerman and 

Sakai 2003, Brennecke, Hipfner et al. 2003, Johnston and Hobert 2003, Bushati and 

Cohen 2007, Mack 2007). They have been shown to play a very important role in the 

transcriptional and post-transcriptional regulation of genes affecting protein levels. They 

can have multiple mRNA targets as they bind to the targets with partial 

complementarities in animals. In addition, the mRNA targets can be regulated by 

multiple microRNAs. They are likely involved in regulation of all biological processes, 

and are also found circulating in blood (Mitchell, Parkin et al. 2008, Scholer, Langer et al. 

2011). Their expression has been shown to be correlated with the expression of 

oncogenes in cancer cells (Sampson, Rong et al. 2007, Zhu, Wu et al. 2008), cancer risk 

factors (Wang, Zhang et al. 2007) and drug metabolism (Tsuchiya, Nakajima et al. 2006, 

Takagi, Nakajima et al. 2008, Gomez and Ingelman-Sundberg 2009, Pan, Gao et al. 

2009). They hold a great potential for pharmacogenomics applications, such as the 

tailoring of drugs to the specific cancers and monitoring the response to, and toxicity of, 

the drugs in individual patients. 
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MiRNAs are derived from pre-miRNAs that often fold into stem-loop hairpin 

structures. These characteristic stem-loop structures are highly conserved in different 

species (Lai, Tomancak et al. 2003). One challenging research problem is to distinguish 

pre-miRNAs from other sequences with similar stem-loop structures (referred to as 

pseudo pre-miRNAs). Many computational methods have been developed to tackle this 

challenge. A common approach is to transform the classification of real and pseudo pre-

miRNAs to a feature selection problem. 

Lim et al. (Lim, Glasner et al. 2003) reported some characteristic features in 

phylogenetically conserved stem loop pre-miRNAs. Lai et al. (Lai, Tomancak et al. 2003) 

considered hairpin structures predicted by mfold (Zuker 2003) as well as the nucleotide 

divergence of pre-miRNAs. Xue et al. (Xue, Li et al. 2005) decomposed stem-loop 

hairpin structures into local structure-sequence features, and used these features in 

combination with a support vector machine to classify pre-miRNAs. Bentwich et al. 

(Bentwich, Avniel et al. 2005) proposed a scoring function for pre-miRNAs with 

thermodynamic stability and certain structural features, which capture the global 

properties of the hairpin structures in the pre-miRNAs. Ng and Mishra (Ng and Mishra 

2007) employed a Gaussian radial basis function kernel as a similarity measure for 29 

global and intrinsic hairpin folding attributes, and characterized pre-miRNAs based on 

their dinucleotide subsequences, hairpin folding, non-linear statistical thermodynamics 

and topology. Huang et al. (Huang, Fan et al. 2007) evaluated features valuable for pre-

miRNA classification, such as the local secondary structure differences of the stem 

regions of real pre-miRNA and pseudo pre-miRNA hairpins, and established correlations 

between different types of mutations and the secondary structures of real pre-miRNAs. 
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More recently, Zhao et al. (Zhao, Wang et al. 2010) considered structure-sequence 

features and minimum free energy of RNA secondary structure, along with the double 

helix structure with free nucleotides and base-pairing features. In general, the quality of 

selected features directly affects the classification accuracy achieved by a method. 

In this dissertation, we present a combinatorial feature mining method for pre-

miRNA classification. Our method, named MirID, identifies and classifies an input RNA 

sequence as a pre-miRNA or not. MirID considers different combinations of features 

extracted from pre-miRNAs. For each combination (or each set of features), we create a 

support vector machine (SVM) model (Cortes and Vapnik 1995, Fan, Chen et al. 2005) 

based on that feature set. SVM models whose accuracies are above a user-determined 

threshold are then used to build a classifier ensemble. This classifier ensemble will be 

refined through several iterations until its accuracy cannot be enhanced further. Next, we 

construct new feature sets based on the best feature sets obtained so far by performing 

pairwise merge and split operations on the best feature sets. Then, we repeat the above 

procedure iteratively by building a SVM model based on each new feature set, 

constructing a classifier ensemble from the SVM models whose accuracies are above the 

newly computed threshold, and refining the ensemble until it cannot be improved further. 

Finally, we output the best classifier ensemble obtained through this iterative procedure. 

To further enhance the accuracy of the classifier ensemble, we apply a boosting algorithm 

to the ensemble to obtain a strong classifier, which is used for pre-miRNA classification. 

The study reported here extends our previous work (Zhong, Wang et al. 2012) 

where we sketched the algorithms utilized by MirID. The extensions include (1) a 

detailed description of the MirID algorithms with a complete flowchart; (2) a larger data 
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set containing twenty one species, as opposed to eleven species considered in (Zhong, 

Wang et al. 2012), with new sequences; (3) new feature values mined from these new 

sequences and hence, new (SVM) classification models obtained from the new data; (4) a 

thorough experimental study for evaluating the performance and behavior of the MirID 

algorithms; (5) a web server for online access as well as a downloadable tool for local use; 

and (6) discussion of potential applications of the software in genomics and medicine. 

 

2.2 Materials and Methods 

2.2.1 Datasets 

We collected real pre-miRNAs and pseudo pre-miRNAs from 21 species, some of which 

were studied previously while others have not been explored. This collection is 

comprehensive, covering a wide variety of species, from viruses to humans. The RNA 

sequences were evenly divided into training data and test data. Table 2.1 presents a 

summary of the data. The first column of Table 2.1 shows a species or organism name. 

The second column of Table 2.1 shows the number of training sequences followed by the 

number of test sequences with respect to the organism’s real pre-miRNAs. The third 

column of Table 2.1 shows the number of training sequences followed by the number of 

test sequences with respect to the organism’s pseudo pre-miRNAs. As an example, 

referring to Arabidopsis thaliana in Table 2.1, its training set contains 66 real pre-

miRNAs and 923 pseudo pre-miRNAs; its test set contains 67 real pre-miRNAs and 924 

pseudo pre-miRNAs. 

 

 

 

 



  7 

 

Table 2.1 Summary of Datasets 

 

Species Real pre-miRNA Pseudo pre-miRNA 

Arabidopsis thaliana 66, 67 923, 924 

Caenorhabditis briggsae 66, 67 437, 438 

Caenorhabditis elegans 84, 85 595, 596 

Canis familiaris 161, 161 904, 905 

Ciona intestinalis 160, 160 733, 734 

Danio rerio 170, 170 1071, 1072 

Drosophila melanogaster 81, 82 694, 694 

Drosophila pseudoobscura 98, 99 495, 495 

Epstein barr virus 12, 13 119, 119 

Gallus gallus 

Homo sapiens 

241, 241 

504, 504 

1186, 1186 

1999, 2000 

Macaca mulatta 222, 223 1086, 1086 

Medicago truncatula 111, 111 116, 116 

Mus musculus 315, 315 2019, 2019 

Oryza sativa 172, 172 522, 523 

Physcomitrella patens 73, 74 703, 704 

Populus trichocarpa 94, 95 809, 810 

Pristionchus pacificus 60, 61 58, 58 

Rattus norvegicus 193, 193 1238, 1238 

Schmidtea mediterranea 72, 73 201, 202 

Taeniopygia guttata 94, 95 483, 483 

 

The real pre-miRNAs were downloaded from miRBase available at 

http://www.mirbase.org/ (Kozomara and Griffiths-Jones 2011). We used RNAfold 

(Hofacker 2003) to predict the secondary structures of all the RNA sequences. The 

lengths of the real pre-miRNAs in the final dataset ranged from 60 to 120 nt. The pseudo 

pre-miRNAs used in this study were collected from GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/). As in (Xue, Li et al. 2005), we searched for the 

protein-coding regions of the genome sequences of the twenty one species in Table 2.1, 

and divided the regions into short sequences. The lengths of these short sequences were 

randomly generated, ranging from 60 to 120 nt. The pseudo pre-miRNAs were chosen 

from these short sequences. The criteria used in choosing the pseudo pre-miRNAs are: (i) 
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they have a stem-loop hairpin structure, (ii) they contain at least 18 base pairs, including 

Watson-Crick and wobble base pairs, on the stem region of the stem-loop structure, and 

(iii) their secondary structure has a maximum of -15 kcal/mol free energy without 

multiple hairpin loops (Kozomara and Griffiths-Jones 2011). These criteria ensure that 

the secondary structures of the pseudo pre-miRNAs are similar to those of the real pre-

miRNAs.  

 

2.2.2 Feature Pool 

In designing our pre-miRNA classification method, we examined multiple features 

extracted from a pre-miRNA sequence and its secondary structure. Some of these 

features were taken from our previous studies on ncRNA prediction (Wang and Wu 2006, 

Griesmer, Cervantes-Cervantes et al. 2011) while others were suggested in the literature 

(Sewer, Paul et al. 2005, Xue, Li et al. 2005, Zheng, Hsu et al. 2006). These features 

included the sequence length, the number of base pairs, GC content, the number of 

nucleotides contained in the hairpin loop (i.e., the loop size), the free energy of the 

sequence’s secondary structure obtained from RNAfold (Hofacker 2003), the number of 

bulge loops, and the size of the largest bulge loop in the secondary structure. 

In addition, we considered the features described in (Zheng, Hsu et al. 2006). 

These features included the difference of the lengths of the two tails in the secondary 

structure where a tail represented the strand of unpaired bases in the 5’ or 3’ end of the 

structure, the number of tails, and the length of the larger tail. Besides, several combined 

features were considered. They included the ratio between the number of base pairs and 

the sequence length, the length difference of two tails plus the larger tail length, the size 
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of the hairpin loop plus the larger tail length, the size of the hairpin loop plus the largest 

bulge size, the ratio between the larger tail length and the sequence length, the ratio 

between the size of the hairpin loop and the sequence length, the ratio between the largest 

bulge size and the sequence length, the ratio between the largest bulge size and the 

number of base pairs, the normalized free energy (Spirollari, Wang et al. 2009), which is 

the minimum free energy of the sequence’s secondary structure divided by the sequence 

length, and the ratio between the normalized free energy and the GC content. 

The next set of features included the triplets of structure-sequence elements 

described in (Xue, Li et al. 2005). Here we used the dot-bracket notation (Hofacker 2003) 

to represent an RNA secondary structure. Figure 2.1 shows the sequence and structure of 

a hypothetical pre-miRNA and its dot-bracket notation. A triplet is composed of three 

contiguous structure elements (bases or base pairs) (Liu, Wang et al. 2005) that 

correspond to three contiguous nucleotides along with the middle nucleotide. For 

example, consider the first three dots (bases) and their corresponding nucleotides AAA in 

Figure 2.1. The middle nucleotide is A. Thus, the structure-sequence elements “A...” 

constitute a triplet. As another example, consider the first three brackets (base pairs) and 

their corresponding nucleotides UUG in Figure 2.1. The middle nucleotide is U. Thus, 

the structure-sequence elements “U(((” constitute a triplet. There are 32 triplets, and 

hence, 32 such features in total. 

Finally, we considered the symmetric and asymmetric loops defined in (Sewer, 

Paul et al. 2005). We refer to the portion of the sequence from the 5’ end to the hairpin 

loop as the left arm, and the portion of the sequence from the hairpin loop to the 3’ end as 

the right arm. In a symmetric (internal) loop, the number of nucleotides in the left arm 
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equals the number of nucleotides in the right arm. In an asymmetric (internal) loop, the 

number of nucleotides in the left arm is different from the number of nucleotides in the 

right arm. Features related to these loops included the size of each loop, the average size 

of the loops, and the average distance between the loops. Other features included the 

proportion of A/C/G/U in the stem, and the proportion of A-U/C-G/G-U base pairs in the 

stem. Totally, there are 74 features in the feature pool. 

 

 

Figure 2.1 Sequence and structure of a hypothetical pre-miRNA and its dot-bracket 

notation. 

 

2.2.3 Combinatorial Feature Mining 

MirID adopts a combinatorial feature mining algorithm for pre-miRNA classification. 

Initially the algorithm randomly generates N feature sets from the feature pool. (The 

default value of N used in this study is 100.) Each feature set contains between 1 and 150 

features, randomly chosen with replacement from the feature pool. Some features may 

repeatedly occur in a feature set; thus a bagging approach is used here (Breiman 1996). 
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Duplicate features have more weights than the other features in the feature set. The 

numbers 1 and 150 are chosen, to ensure that there are enough feature sets containing 

duplicate features. We then build a SVM model based on each feature set using training 

sequences, and apply the classification model to test sequences to calculate the accuracy 

of the model. The SVM used in this study is the LIBSVM package downloaded from 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (Fan, Chen et al. 2005). We use the polynomial 

kernel provided in the LIBSVM package. The polynomial kernel achieves the best 

performance among all kernel functions included in the package. 

Then, we remove the SVM models whose accuracies are less than a user-

determined threshold t. (The default value of t used in this study is 0.8.) The feature sets 

used to build those removed SVM models are also eliminated from further consideration. 

We construct a classifier ensemble from the remaining SVM models. The ensemble 

works by taking the majority vote from the individual SVM models used to build the 

classifier ensemble. This ensemble will be refined through several iterations until its 

accuracy cannot be enhanced further. In each iteration, the user-determined threshold t is 

incremented by a step value, so that more accurate SVM models are used to construct a 

(hopefully) better classifier ensemble in the next iteration. (The default value of step used 

in this study is 0.005.) 

It is likely that different combinations of remaining features may yield an even 

better classifier. Our algorithm then performs pairwise merge and split operations on the 

set Sb of feature sets used to build the best classifier ensemble obtained so far. In doing so, 

MirID takes four steps: (1) picks each pair of feature sets s1 and s2 in Sb; (2) merges s1 

and s2 into a single feature set s3 with, say p, features; (3) randomly generates a number q, 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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q < p; (4) randomly assigns q features in s3 into a set s’1 and assigns the remaining p - q 

features into another set s’2. Thus, these four steps take two feature sets s1 and s2 in Sb as 

input and produce two new feature sets s’1 and s’2 as output. Figure 2.2 illustrates how 

the merge and split operations work on two feature sets. 

 

Figure 2.2 Illustration of the merge and split operations on two feature sets. 

 

These pairwise merge and split operations are applied to the feature sets used to 

build the best classifier ensemble obtained so far, to generate new feature sets. The new 

feature sets are then used to build new SVM models. Accurate new SVM models, whose 

accuracies are greater than or equal to the newly computed threshold t, are then used to 

build a new classifier ensemble. This procedure is repeated several times to obtain a best 

classifier ensemble. Figure 2.3 summarizes our feature mining algorithm, whose output is 

the best classifier ensemble along with the component SVM models (feature sets) used to 

build the ensemble. Notice that in the feature mining algorithm in Figure 2.3, it is 
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possible that, after removing SVM models/feature sets with accuracy < t, there is no 

remaining feature set, and hence, Sr becomes empty. Under this circumstance, the 

classifier ensemble constructed based on Sr is empty, and the accuracy of the classifier 

ensemble is 0. 
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Figure 2.3 Algorithm for combinatorial feature mining. 
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2.2.4 Boosting 

The performance of a classification algorithm can be further enhanced through boosting. 

We apply AdaBoost (Freund and Schapire 1997, Schapire 1999, Bindewald and Shapiro 

2006) to the classifier ensemble produced by our feature mining algorithm. Specifically, 

we treat the classifier ensemble as a weak classifier and continue refining it into a strong 

classifier through an iterative procedure. Let X be a set of sequences x1, x2, . . . , xm where 

xi, 1 ≤ i ≤ m, is associated with a label yi such that 
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The AdaBoost algorithm works with K iterations. (The default value of K used in this 

study is 20.) In iteration k, 1 ≤ k ≤ K, the algorithm updates a weight function Wk as 

explained below, which will be used in selecting training sequences in iteration k + 1. 

Initially, every sequence has an equal weight, i.e., W0(xi) = 1/m, 1 ≤ i ≤ m. In iteration k, 

the algorithm samples 1/3 sequences with replacement from X based on the weight 

function Wk-1 to form a training set Xk. The set Xk is then used to train a weak classifier Hk, 

which classifies each sequence xi as either a real pre-miRNA or a pseudo pre-miRNA. 

That is, 
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Let Ek = [ xi | Hk (xi) ≠ yi ]. The error rate εk of Hk is: 
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The algorithm updates Wk for each sequence xi, 1 ≤ i ≤ m, as follows: 
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where Zk is a normalization factor chosen such that Wk is normally distributed. Thus, the 

sequences causing classification errors in iteration k will have a greater probability of 

being selected as training sequences for constructing the weak classifier Hk+1 in iteration 

k+1. Using this technique, each weak classifier should have greater accuracy than its 

predecessor. The final, strong classifier H combines the vote of each individual weak 
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classifier Hk, 1 ≤ k ≤ K, where the weight of each weak classifier’s vote is a function of 

its accuracy. Specifically, for an unlabeled test sequence x, H(x) is calculated as follows: 
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  (2.6) 

                                                        

The function sign indicates that if the sum inside the parentheses is greater than or equal 

to zero, then H classifies x as positive (i.e., a real pre-miRNA); otherwise H classifies x as 

negative (i.e., a pseudo pre-miRNA). 

 

2.3 Results 

2.3.1 Performance Analysis of the MirID Method 

We carried out a series of experiments to evaluate the proposed MirID method. All the 

experiments were performed on a 2 GHz Pentium 4 PC having a memory of 2G bytes. 

The operating system was Cygwin on Windows XP and the algorithms were 

implemented in Perl. To understand the effect of boosting, we also considered using the 

combinatorial feature mining algorithm alone to classify pre-miRNAs, and referred to it 

as the CFM method. The performance measure used here is accuracy, defined as follows. 

A method is said to classify a test sequence correctly if the sequence is a real pre-miRNA 

(pseudo pre-miRNA, respectively) and the method indicates that the sequence is indeed a 

real pre-miRNA (pseudo pre-miRNA, respectively). A method is said to classify a test 

sequence incorrectly if the sequence is a real pre-miRNA (pseudo pre-miRNA, 

respectively) but the method mistakenly indicates that the sequence is a pseudo pre-

miRNA (real pre-miRNA, respectively). For each species, the accuracy of a method is 
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defined as the number of correctly classified test sequences of that species divided by the 

total number of test sequences of that species. 

We first evaluated how the number of initial feature sets, N, affects the 

performance of CFM and MirID. As N increases, more feature sets are generated initially. 

This allows the feature mining algorithm to construct a classifier ensemble using more 

diverse feature sets, and hence, the accuracy of the classifier ensemble increases. On the 

other hand, as N increases, the inner loop in Figure 2.3 is run more times; as a 

consequence, the running time increases. MirID requires more time than CFM, due to the 

extra time spent in boosting. MirID in general is more accurate than CFM, indicating the 

benefit of including the boosting algorithm. 

We next evaluated how the threshold, t, used in the feature mining algorithm 

affects the performance of CFM and MirID. When t is very large (e.g., t > 0.95), the 

accuracies of the methods drop sharply. This happens because the accuracies of most 

SVM models are less than 0.95 (i.e., 95%), and hence, these SVM models are eliminated 

from further consideration early in the feature mining algorithm, cf. Figure 2.3. When t 

approaches 1, it is likely that the set Sb returned by the feature mining algorithm is an 

empty set, and therefore the classifier ensemble constructed based on Sb is also empty, 

yielding an accuracy of 0. As t increases, fewer feature sets qualify and the set Sr is 

smaller. As a result, the inner loop in Figure 2.3 is executed fewer times, and hence, the 

running time decreases. 

Then we evaluated how the value, step, used to increment the threshold t in each 

iteration of the inner loop in Figure 2.3 affects the performance of CFM and MirID. With 

the default values of N and t used in this study, the feature mining algorithm is able to 
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produce a classifier ensemble with high accuracy. The value of step has little impact on 

the accuracies of the proposed methods. However, as step increases, fewer iterations of 

the inner loop in Figure 2.3 are executed, and as a consequence, the running time 

decreases. 

We also conducted experiments to test different numbers of iterations, K, in the 

boosting algorithm. It was found that when K is sufficiently large (e.g., K ≥ 20), the 

behavior of the boosting algorithm becomes stable, with the accuracy approaching 1. On 

the other hand, when K is large, more running time will be needed. 

Finally, we compared CFM and MirID with two closely related methods, PMirP 

(Zhao, Wang et al. 2010) and TripletSVM (Xue, Li et al. 2005). Like our methods, both 

PMirP and TripletSVM were implemented using support vector machines. PMirP 

adopted a hybrid coding scheme, combining features such as free bases, base pairs, 

minimum free energy of secondary structure, among others. TripletSVM used triplets of 

structure-sequence elements, which also were included in our feature pool. Table 2.2 

shows the accuracies of the four methods on twelve species taken from Table 2.1. These 

twelve species were used to pre-train PMirP and TripletSVM, and available from the 

tools. For each species, the highest accuracy yielded by a tool is in boldface. It can be 

seen from Table 2.2 that MirID is better than or as good as the existing tools on all the 

species except Gallus gallus and Oryza sativa. For Gallus gallus and Oryza sativa, 

PMirP achieves higher accuracies. 

 

 

 

 

 

 



  20 

 

Table 2.2 Accuracies of TripletSVM, PMirP, CFM and MirID on Twelve Species 

 

Species TripletSVM  PMirP CFM MirID 

Arabidopsis thaliana 92 96 99 100 

Caenorhabditis briggsae 96 97 98 100 

Caenorhabditis elegans 86 86 97 98 

Danio rerio 67 83 98 99 

Drosophila melanogaster 92 96 97 99 

Drosophila pseudoobscura 90 92 98 100 

Epstein barr virus 100 80 98 100 

Gallus gallus 

Homo sapiens 

85 

93             
100 

95 

96 

93 

96 

95 

Mus musculus 94 94 95 97 

Oryza sativa 95 100 97 99 

Rattus norvegicus 80 92 97 98 
The unit of each number in the table is percentage (%). 

 

2.3.2 Web Server 

We have implemented MirID using Perl into a web server, accessible at 

https://web.njit.edu/~lz25/cgi-bin/boost/. The web server accepts a test sequence as input 

and classifies the test sequence as a pre-miRNA or not. We pre-train our web server using 

the training sequences given in Table 2.1. In addition to the twelve species available from 

the PMirP and TripletSVM web servers (Xue, Li et al. 2005, Zhao, Wang et al. 2010), we 

pre-train our web server using nine additional species (shown in Table 2.1 but not in 

Table 2.2). Our tool achieves high accuracies on these nine species, as shown in Table 

2.3. (The PMirP and TripletSVM web servers were not pre-trained on these nine species, 

and hence, we only show the results for CFM and MirID here.) MirID is more accurate 

than CFM, due to the boosting algorithm. 
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Table 2.3 Accuracies of CFM and MirID on Nine Additional Species 

  

Species CFM MirID 

Canis familiaris 97 100 

Ciona intestinalis 94 100 

Macaca mulatta 96 96 

Medicago truncatula 95 100 

Physcomitrella patens 100 100 

Populus trichocarpa 97 99 

Pristionchus pacificus 96 100 

Schmidtea mediterranea 95 99 

Taeniopygia guttata 95 99 

The unit of each number in the table is percentage (%). 

 

Table 2.4 shows, for each species in Table 2.1, the number of feature sets 

produced by our feature mining algorithm. Table 2.5 shows the CPU time (in seconds) 

spent in pre-training the MirID web server. The training time depends on the number of 

feature sets, the number of features in each feature set, the number of iterations used by 

the feature mining algorithm, and the number of iterations used in the boosting algorithm. 

Notice that this training is done once, and no more training is needed on the test data. It 

takes less than a second to classify an unlabeled test sequence.  
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Table 2.4 Number of Feature Sets for Each Species in MirID     

 

Species Number of feature sets 

Arabidopsis thaliana 1 

Caenorhabditis briggsae 6 

Caenorhabditis elegans 1 

Canis familiaris 1 

Ciona intestinalis 7 

Danio rerio 11 

Drosophila melanogaster 3 

Drosophila pseudoobscura 4 

Epstein barr virus 5 

Gallus gallus 

Homo sapiens 

3 

1 

Macaca mulatta 1 

Medicago truncatula 1 

Mus musculus 3 

Oryza sativa 3 

Physcomitrella patens 1 

Populus trichocarpa 1 

Pristionchus pacificus 1 

Rattus norvegicus 10 

Schmidtea mediterranea 32 

Taeniopygia guttata 5 
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Table 2.5 Training Time in CPU for Each Species (in Seconds) 

 

Species Training time (in seconds) 

Arabidopsis thaliana 80 

Caenorhabditis briggsae 348 

Caenorhabditis elegans 103 

Canis familiaris 153 

Ciona intestinalis 269 

Danio rerio 1272 

Drosophila melanogaster 199 

Drosophila pseudoobscura 196 

Epstein barr virus 113 

Gallus gallus 

Homo sapiens 

274 

1530 

Macaca mulatta 243 

Medicago truncatula 104 

Mus musculus 786 

Oryza sativa 214 

Physcomitrella patens 90 

Populus trichocarpa 138 

Pristionchus pacificus 63 

Rattus norvegicus 349 

Schmidtea mediterranea 478 

Taeniopygia guttata 156 

 

2.4 Discussion 

In this chapter, we present a new method (MirID) and a web server for pre-miRNA 

classification. Empirical results showed that MirID outperforms two closely related 

methods, PMirP and TripletSVM, on the majority of species tested in the experiments. 

Since all the three methods were implemented using support vector machines with similar 

features, we conclude that the superiority of our method is due to its novel feature mining 

and boosting algorithms. 

Both the feature mining and boosting algorithms contain user-specified 

parameters. As indicated by our experimental results in the performance analysis section, 

changing these parameter values may affect the running time and accuracy of our method. 
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The MirID web server adopts the default parameter values as used in this study, to 

achieve good and stable performance. The server is able to process sequences of a variety 

of species, from viruses to humans. It does not include bacteria, however. While there are 

small regulatory RNAs in bacteria, bacteria do not have true miRNAs (Gottesman 2005, 

Tjaden, Goodwin et al. 2006). Bacterial miRNA will be added to our server when such 

data is validated and becomes available in public databases.  

Currently, the MirID web server is capable of classifying one test sequence at a 

time, predicting whether the test sequence is a pre-miRNA or not. When multiple test 

sequences must be classified, we suggest that the user run the tool locally in a batch mode. 

Instructions for downloading the tool and running the tool locally can be obtained from  

https://web.njit.edu/~lz25/cgi-bin/boost/MirID-download.  

MicroRNAs play important roles in most biological processes, including cell 

proliferation, tissue differentiation, embryonic development, to name a few (Aukerman 

(Aukerman and Sakai 2003, Brennecke, Hipfner et al. 2003, Johnston and Hobert 2003, 

Bushati and Cohen 2007, Tang, Zhang et al. 2009, Xu, Yu et al. 2009). They interact with 

target mRNAs at specific sites to induce cleavage of the message or inhibit translation 

(John, Enright et al. 2004). They can have multiple mRNA targets as they bind to the 

targets with partial complementarities in animals. In addition, an mRNA target can be 

regulated by multiple miRNAs at different loci with different effects. This adds to the 

complexity of finding out the mRNA targets in genomes (John, Enright et al. 2004).  

The total number of microRNA discovered continues growing every day. 

According to the latest miRBase release (version 19, August 2012), accessible at 

http://www.mirbase.org, there are 2,019 unique mature human miRNAs up from 894 in 

http://bioinformatics.njit.edu/MirID-download
http://bioinformatics.njit.edu/MirID-download
http://www.mirbase.org/
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the version 14. There seems to be a correlation between the tissue-specificity of a human 

miRNA and the number of diseases the miRNA is associated with (Lu, Zhang et al. 

2008).  The fact that microRNAs are found circulating in blood (Mitchell, Parkin et al. 

2008, Scholer, Langer et al. 2011) holds great promise for the development of diagnostic 

tools that can be used in multiple ways, from non-invasive pregnancy diagnostic tests to 

cancer diagnostics and treatment. A tool like MirID for predicting pre-miRNAs will 

contribute to our basic understanding of the roles played by microRNA in regulating 

many biological processes, and their contribution to disease development and progression.  

A potential application for the MirID tool is in the area of individualized genomic 

analysis. With the advent of high-throughput sequencing technologies, millions of short 

reads can now be generated from a library of nucleotide sequences. These technologies 

have catalyzed a new era of personalized medicine based on individualized genomic 

analysis (Anderson and Schrijver 2010) Determining levels of known and novel 

microRNA from small RNA sequencing data is an important subject in this new era (An, 

Lai et al. 2013). With next-generation sequencing platforms, several prostate expressed 

microRNAs related to prostate cancer have been identified (Ribas, Ni et al. 2009, Ostling, 

Leivonen et al. 2011, Wang, Chatterjee et al. 2011, Watahiki, Wang et al. 2011, Martens-

Uzunova, Jalava et al. 2012). As a consequence, exploring microRNAs and their 

functions continues to be a highly active area of research. The MirID tool developed from 

this work can be used to assess aggregated RNAseq reads for pre-miRNA secondary 

structure potential. The tool can be combined and integrated with other miRNA profiling 

tools (Hendrix, Levine et al. 2010, Mathelier and Carbone 2010, Hackenberg, Rodriguez-
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Ezpeleta et al. 2011, Friedlander, Mackowiak et al. 2012) for applications to personalized 

medicine.   



  27 

 

CHAPTER 3 

ALGORITHM FOR GENE NETWORK INFERENCE: A SURVEY 

 

3.1 Background 

In living organisms, cells contain thousands of genes, working in concert to direct the 

cells’ functions while ensuring their fitness, multiplication, and survival. Whereas some 

genes are continuously expressed, others only do so in response to specific stimuli, at the 

right time, and to the proper extent, thus ensuring appropriate functional outcomes. Some 

genes have highly robust regulation mechanisms of their expression, which is controlled 

by stringent programs. In eukaryotic species, for example, the control of developmental 

gene expression is significantly similar in a given cell type from one individual to another 

(Macneil and Walhout 2011). Nonetheless, the timing and scale for the expression of 

other genes can be more variable, resulting in expression levels that frequently change 

and which differ from cell to cell and from individual to individual. Research on gene 

expression directing physiological responses to developmental cues and environmental 

stresses is, therefore, greatly beneficial. Currently, we are focusing on the analysis of 

differential gene expression at the level of systems biology. Gene regulatory networks 

(GRNs) illustrate interactions between large numbers of genes and their regulatory 

mechanisms. Graphic diagrams are applied to map all the interactions and visualize the 

regulatory relationships. Further characterization of GRNs has already uncovered global 

principles of gene regulation (MacNeil and Walhout 2011). 

Specifically, we are using computing algorithms to infer gene regulatory networks 

according to the expression values of genes and their changing platforms.  This can be 
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accomplished with basis on inferring causality. If gene A can cause gene B to switch to a 

high expression value, then B can be stopped from taking such a value after making B 

less responsive or A less active, or by interfering with the link from A to B. Conversely, 

B can achieve a higher expression value if A’s expression value is increased itself, or by 

enhancing the efficiency of the link from A to B. We call such a relationship a causal link. 

The expression of gene A may influence the expression of gene B as follows: gene A is 

transcribed to RNA and then translated to a protein, which in turn may bind to the 

promoter of B, either allowing or preventing the transcription of gene B. Comparing the 

expression values of A and B under particular circumstances versus wild-type data (i.e., 

expression values from the most common phenotype of a given organism), it can be 

determined whether or not there is a relationship between genes A and B. Based on such 

predictions, a gene regulatory network can be graphed (Lingeman and Shasha 2012). 

In this chapter, we review state-of-the-art algorithms for the inference of gene 

regulatory networks (GRNs) from microarray gene expression data. A gene regulatory 

network is represented by a directed graph, in which nodes represent transcription factors 

or genes and an edge represents the transcriptional regulation relationship between two 

genes. The algorithms for GRN inference can be categorized into four groups: 

unsupervised, semi-supervised, supervised and integrated methods. In unsupervised 

algorithms, a network is unknown, and the algorithms predict the entire network using 

time series or steady-state gene expression data. For supervised and semi-supervised 

algorithms, a portion of a network is known in advance, possibly from publicly available 

databases, and the algorithms use that portion as prior knowledge to predict remaining 

edges in the network. Integrated methods combine unsupervised or supervised algorithms, 
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coupled with prior knowledge from literature mining or information integration 

techniques. Here, we survey the various techniques employed in the unsupervised, semi-

supervised, supervised and integrated methods, and present a taxonomy of existing 

algorithms. 

 

3.2 Unsupervised GRN Inference Algorithms Based on Steady-State Data 

In this section we review six algorithms for inferring gene regulatory networks using 

steady-state data. If the expression values of genes of one organism will not change 

unless its conditions are changed in some way, this organism is said to be in steady state. 

For instance, an organism is in a certain steady state if it under a low nutrients condition; 

another state under a high nutrients condition; and yet another, if some mutation has 

happened or transient effects have changed or disappeared altogether. Steady-state data 

can be obtained from experiments where one or more genes have been knocked out or 

from reported expression values that have been significantly changed or perturbed in 

other way. If some changes in the network can be noticed when one gene is absent or it 

has been perturbed, one can determine which other gene or genes it influences. 

Many published algorithms were tested using the data are from DREAM4 in 

silico datasets (Greenfield, Madar et al. 2010). DREAM stands for Dialogue for Reverse 

Engineering Assessments and Methods and provides a set of networks that can be used to 

develop and test GRNs. The networks presented by DREAM make some simplifications 

of naturally occurring networks found in a cell, and the corresponding datasets are ideal 

in their completeness. The datasets include results from knockout and knockdown 
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experiments, multifactorial perturbations, time series and dual knockouts. These datasets 

are considered as standard benchmark data in the field. 

 

3.2.1 Network Identification by Multiple Regressions (NIR) 

The way the Network Identification by Multiple Regression (NIR) (Gardner, di Bernardo 

et al. 2003) infers gene networks is by using multiple regression. It uses steady-state data 

resulting from a known initial perturbation. Basically, we assume that a gene network can 

be described with a series of linear equations, approximately: 

dX/dt = AX + U (3.1) 

where X is an n by m matrix of steady-state expression data. In X, each column represents 

an experiment and the rows represent genes. A is an n by n normally distributed matrix 

that represents the network model, which implies that every gene’s expression is a linear 

function of the sum of a row of coefficients from A and the gene values as a column from 

X. U is an n by m matrix which represents the degree to which the gene is perturbed in 

each experiment (values from 0 and 1). For example, the degree would be 1 if the gene is 

totally knocked out. If a gene is knocked down, it might have a value of 0.5. Genes have 

values of 0 if they are not perturbed at all. dX/dt shows how the expression values change 

per unit of time. As NIR is applied with steady-state data (which means data would 

change little time by time), dX/dt is 0. Therefore, the above equation can be reduced to: 

–U = AX (3.2) 

Our goal is to select a promising network model A by using multiple regressions. From 

the beginning we just take one row ai from A and one column xj from X, and try to solve 

uij of U. We need to achieve all the values in ai, and multiplied by xj, to have the sum of 
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all results equals to –uij. We will aim to get the best solution, as there would be many 

possible answers. 

A multiple linear regression model that can account for more than one 

independent variable will be created as a solution in NIR. The independent variables 

consist of one possible set of k out of n genes, where k is a user-defined parameter that 

enforces sparsity in A in order to limit the number of dependencies between genes, and –

uij is the dependent value for the target gene/experiment. We repeat all these steps for 

each gene/experiment combination. The solution matrix A is derived from the model in 

which each gene has best weight. 

NIT uses least squares regression to minimize the sum of squared errors (SSE): 

𝑆𝑆𝐸𝑖
𝑘 =∑(𝑦𝑖𝑙 − 𝑏𝑖

𝑇 ∙ 𝑧𝑙)
2

𝑚

𝑙=1

 (3.3) 

where k represents the number of genes being examined, i is the target gene, l is the 

current experiment, yil is the negative perturbation value for gene i in experiments l, b are 

the model weights for gene i, and zl are the expression values from the currently selected 

k genes in experiment l. Our goal is to choose weights b to minimize the sum of squared 

errors. In fact, the squared error presents the difference between how much the target 

gene was perturbed and the perturbation that the current model shows. For example, if the 

gene under a current perturbation has U have a value of 1, then we propose to find a 

number k of weight b (at least one is non-zero) whose dot product with the current 

expression values is equal to –1 (since yil = –uil), which makes the error 0. All the edges 

with a non-zero weight indicate that the source genes regulate the target gene i. The basic 

technique to choose b weights consists of randomly initiating their values, then refining 

them. 
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3.2.2 GEne Network Inference with Ensemble of Trees (GENIE3) 

GENIE3 (Huynh-Thu, Irrthum et al. 2010) is an algorithm by using an ensemble of 

regression trees to predict networks. All the expression data applied to the GENIE3 

algorithm are normalized to unit variance (i.e., variance of 1) and mean 0. There are three 

steps in the algorithm: 1) builds up an ensemble of regression trees for each gene; 2) 

ranks potential regulator in each regression tree; 3) ranks all of the inferred edges. 

At first, GENIE3 creates a regression tree based on the mutation of expression 

values of each gene g in the network. To create regression trees, the whole dataset is split 

recursively into smaller subsets. According to the expression values of genes other than g, 

the dataset will be split on the nodes of the regression tree. To avoid confusion with the 

term node in the final result, the regression tree nodes here are called decision points. 

Each sub-dataset divided by a decision point has a small variance in the target gene’s 

expression values. For a single gene x other than g, we pick up a threshold, based on 

which the division is made, according to the idea that if gene x causes a split in the 

regression tree for target g, there is a potential causality from x to g. Then the expression 

value of gene x in each experiment will be checked. The experiment with the expression 

value of x above the threshold goes to one group or to another group if the expression 

value is below the threshold. The splitting continued recursively until no more splits can 

be made.  

As an example, consider Table 3.1, which shows an example of data for GENIE3. 

The basic idea of the GENIE3 algorithm is to split all the experiments into two groups 

according to expression values so that each group has minimal variance on the target 

gene. 
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Table 3.1 Sample Data for GENIE3 

Experiments 

Genes 

G1 G2 G3 Target 

E1 0.4 0.8 0.4 0.5 

E2 0.3 0.2 0.3 0.9 

E3 0.5 0.3 0.7 0.8 

Source: Lingeman, J. M. and D. Shasha (2012). Network inference in molecular biology. New York, 

Springer. 

 

In Table 3.1, the ideal split is to have experiments E1 alone in one group, and E2 

and E3 in the other group. It is clear that G2 is the potential source gene because G2’s 

value in E1 is distinguished from its value in E2 and E3. Here the threshold is defined as 

0.5 as it is between G2’s E1 and E3 values. Any values above 0.5 go to group 1, and any 

values less than or equal to 0.5 go to group 2. 

 

Table 3.2 Example Data for GENIE3  

Experiments 

Genes 

G1 G2 G3 Target 

Group 1 0.4 0.8 0.4 0.5 

Group 2 

0.3 0.2 0.3 0.9 

0.5 0.3 0.7 0.8 

Source: Lingeman, J. M. and D. Shasha (2012). Network inference in molecular biology. New York, 

Springer 

 

Table 3.2 shows example data for GENIE3 with the dataset split into two groups, 

thus minimizing the variance of each of the groups. 
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When the expression value of G2 is above 0.5, the target gene has low expression 

values, whereas with a value below 0.5, the target gene displays high expression values. 

Thus, we have identified a potential causal edge, in which G2 has a repressive effect on 

the target gene. 

The algorithm of Random Forests (Breiman 2001) is applied here to find robust 

splits in their responses to trivial changes in the data. With averaging predictions, 

Bootstrapping and random feature selection are used in Random Forests and reduce 

variance across the dataset. From the original dataset, 2/3 data is randomly picked up 

with replacement to generate every tree in a Random Forest ad a bootstrap training. Each 

tree is built later with K random splits at each decision node. Here K is normally defined 

as K = √𝑝 − 1 or K = p -1 where p is the number of known potential regulators also 

termed as transcription factors. The randomly chosen split which will reduces mostly the 

variance of the target gene’s expression values is defined as a decision split. 

We calculate an importance score for each decision point in a tree: 

I(N) = #SVar(S) - #StVar(St) - #SfVar(Sf) (3.4) 

where N is the current decision point to be evaluated, S is the subset of experiments lower 

in the tree than the decision point N, St is the subset of experiments on the true branches 

of decision point N, and Sf is the subset of experiments on the false branches. Var(.) 

denotes the variance of the target gene in a subset, and # is defined as the number of 

experiments in corresponding subset. The importance score is to measure how much 

variance shown by splitting the dataset on the gene at the decision point with threshold. If 

the score is high, it presents that the variance is significantly reduced and probably this 

gene regulate the target gene, as shown in the example above. If the score is low, the split 

https://www.google.com/search?espv=2&biw=1455&bih=705&q=define+significantly&sa=X&ved=0ahUKEwiwhfzO99zMAhUCHT4KHbcwBA4Q_SoIHzAA
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did not considerably reduce the variance which means the gene may not regulate the 

target gene. 

After the tree for gene g is generated, the influence of every other gene on g is 

ranked. By summing  up all of the importance scores of the nodes at which a potential 

regulator gene x was selected to split, we can get a final score for x. A zero score is 

appointed to the genes that are never selected to split. All the final scores of potential 

regulator genes are ranked to define which genes x are most crucial to regulate gene g. 

 

3.2.3 Relevance Networks 

The tool of relevance networks was developed by Butte and Kohane (Butte and Kohane 

2000). It measures the mutual information (MI) between gene expression profiles to infer 

interactions. Let Xi represent the vector of expression values of gene i and let Xj represent 

the vector of expression values of gene j. The mutual information I between the discrete 

variables Xi and Xj is defined as: 

𝐼(𝑋𝑖 , 𝑋𝑗) = ∑ ∑ 𝑝(𝑥𝑖, 𝑥𝑗)

𝑥𝑗∈𝑋𝑗𝑥𝑖∈𝑋𝑖

log(
𝑝(𝑥𝑖, 𝑥𝑗)

𝑝(𝑥𝑖)𝑝(𝑥𝑗)
) (3.5) 

wherep(𝑥𝑖,𝑦𝑗) is the joint probability density function between Xi (the expression profile 

of gene i) and Xj (the expression profile of gene j), and 𝑝(𝑥𝑖) and 𝑝(𝑦𝑗) are the marginal 

probability  density functions of Xi and Xj, respectively. Marginal probability density 

functions collect the probability densities of a subset of the data, which denotes the 

expression profiles of each gene, and the functions are used to present how likely x the 

expression value is in the expression profile of its gene X. In a expression profile X, if a 

probability of x is low, it would be expected by other values in X. Whereas, if x is high, it 
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means there is a potential edge between genes X and Y. Here Xi and Xj are required to be 

discrete variables. The approach of equal-width binning (Meyer, Lafitte et al. 2008) is 

used for discretization and empirical entropy estimation. 

 

3.2.4 Context Likelihood of Relatedness (CLR) 

The basic idea of Context Likelihood of Relatedness (CLR) (Faith, Hayete et al. 2007) is 

to form a matrix of mutual information scores by calculating the mutual information 

between each pair of genes in the network. These scores are then compared to a 

background distribution and a z-score is calculated. A potential mutual information edge 

will be indicated between the two genes in the network with a high z-score, as a low z-

score shows up no edge existing. Only undirected edges can generated by CLR because 

of the bidirectional nature of mutual information. If we have discovered the transcription 

factors, the directionality can be estimated based on one of the genes is exactly a 

transcription factor. 

At the beginning, the mutual information can be calculated as shown in relevance 

networks in the section of 3.2.3. After a matrix of mutual information scores for each 

gene is calculated, the likelihood of each pair of scores (a z-score) is estimated by CLR, 

and they are compared with a background mutual information distribution, namely MIi 

and MIj, respectively. The two distributions represent only one row of the mutual 

information values of gene i and gene j. Our plan is to check the distance between a 

mutual information score and the rest of the mutual information scores other than that 

gene. If the score is much higher than most of the other scores, an edge is most likely 

here. As we mentioned before, all genes only depend on a small number of other genes, 
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hence, the scores of all the genes can be used as a background distribution.  Most of the 

mutual information scores can be used as a background noise distribution as they would 

not equal to zero because of measurement noise or indirect edges. After the z-score for 

each pair of genes has been calculated, the final step is to calculate the CLR score which 

is calculated for each pair of genes: 

𝑓(𝑍𝑖 , 𝑍𝑗) = √𝑍𝑖
2 + 𝑍𝑗

2 (3.6) 

Zi and Zj are the z-scores computed from the background distribution above. 𝑓(𝑍𝑖 , 𝑍𝑗) is 

used to measure the joint likelihood, which gives out a single score for each pair of genes 

compared to the score of each other pair of genes. In the final step, the CLR scores are 

ranked and the top N scores are applied to generate a network. However, we must choose 

the value of N carefully, because we cannot confirm the N is invalid or not if the gold 

standard is unknown. Actually, with the computational analyst the ranking can be 

provided as the topmost ranked genes will be tested by the experimentalist. 

 

3.2.5 EULID 

EUCLID (Maetschke, Madhamshettiwar et al. 2013) is an approach by using the 

Euclidean distance between the normalized expression profiles X’i and X’j to indicate the 

interaction weights between gene i and gene j: 

𝑤𝑖𝑗 = √∑(𝑋𝑖𝑘
′ − 𝑋𝑗𝑘

′ )2

𝑘

 (3.7) 

In this method, profiles are normalized by computing the absolute difference of 

expression values Xik to the median expression in profile 𝑋𝑖𝑘
′ = |𝑋𝑖𝑘 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑖)|, and 

k is from 1 to m (the number of experiments). 



  38 

 

3.2.6 Weighted Gene Co-expression Network Analysis (WGCNA) 

WGCNA (Langfelder and Horvath 2008) is a collection of inference methods which are 

correlation-based to amplify high correlation coefficients by increasing the absolute value 

to the power of β (‘softpower’) with β ≥ 1: 

𝑤𝑖𝑗 = |𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗)|
𝛽
= |
𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝜎𝑋𝜎𝑌
|

𝛽

=
𝐸(𝑋𝑖𝑋𝑗) − 𝐸(𝑋𝑖)𝐸(𝑋𝑗)

√𝐸(𝑋𝑖
2) − 𝐸2(𝑋𝑖)√𝐸(𝑋𝑗

2) − 𝐸2(𝑋𝑗)

 (3.8) 

The network predicted by WGCNA is an undirected graph. We choose the node (which is 

a gene) with the highest amount of edges as a regulator, so that all the edges attached to it 

are directed to all its neighbors. Here, wij represents a weighted edge between gene i and 

gene j, cov is covariance, E is expected value, the sum of each expression value 

multiplied with its probability. With the network constructed, genes are clustered. 

Basically, WGCNA uses the algorithm of correlation network. 

 

3.3 Unsupervised GRN Inference Algorithms Based on Time-Series Data 

Time-series data collect the information of the values of genes at a series of time points in 

succession. With this temporal information, we can try to infer directionality of edges, or 

extract causal relations between genes. In this section, we present three algorithms for 

inferring gene regulatory networks from time series data. 

 

3.3.1 Time-delay ARACNE 

Time-delay ARACNE (Zoppoli, Morganella et al. 2010) is an algorithm based on mutual 

information to detect time series networking. There are three steps in the algorithm 

(Margolin, Nemenman et al. 2006). At first, the expression values of each gene are 
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scanned and the time point at which the values suddenly vary is found. Then, a ratio of 

the change of expression values is used to determine whether the gene is induced or 

repressed. Second, the mutual information value is calculated for each gene pair. An edge 

is created if there is a nonzero mutual information value comes out. Third, all the edges 

created are tested with a certain threshold, and the edges with low data processing 

inequality are pruned away. 

The algorithm evaluates the first time point at which a gene g is induced or 

repressed by comparing the expression value at time 1 to the expression value at time t. 

The parameter τ is defined as a threshold then if the expression value is varied above this 

amount, the gene is considered being induced or repressed. 

If the ratio between the expression at t and the initial expression value is greater 

than τ, then the gene is considered expressed at time t, as follows: 

𝑔+𝑖𝑓𝜏 <
𝑔(𝑡)

𝑔(𝑙)
 (3.9) 

On the contrary, once the ratio between the expression value at t and the initial 

expression value is lower than 1/ τ, the expression of this gene can be considered as 

repressed. 

𝑔−𝑖𝑓
1

𝜏
> 
𝑔(𝑡)

𝑔(𝑙)
 (3.10) 

If the expression value does not meet either of these two conditions, it would not 

be considered expressed or repressed at time t. 

We have three advantages to evaluating at which time point a gene start to be 

induced or repressed: First, it allows us to infer causal events in the time series. Gene g 

can effects x only if g is induced or repressed before gene x. Second, computation time 
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can be speed up by reducing the number of possible edges to calculate in previous step. 

Third, dependencies between genes can be detected at each time point. This is followed 

by network building and trimming, using Data Processing Inequality. 

 

3.3.2 Banjo 

Banjo (Yu, Smith et al. 2004) stands for Bayesian Network Inference with Java Objects. 

This is a special tool because the expression values of each gene can be predicted from its 

parents’ expression values and some values of itself at previous time points. Basically, 

Banjo needs to search all possible networks, and has a score system to pick up the best 

one. The score system includes two metrics, the Bayesian Dirichlet Equivalence (BDE) 

and the Bayesian Dirichlet Criterion. It also includes some search strategies which are 

combined with the scoring matrices: greedy, simulated annealing, and genetic algorithm. 

Based on previous uses on Banjo, the greedy search algorithm with Bayesian Dirichlet 

Equivalence (BDE) scoring will be used as defaults (Elati, Neuvial et al. 2007). BDE 

used here is calculated with the log of the marginal likelihood P(D|G), where D is data 

and G is network graph. 

 

3.3.3 Granger Causality 

Mukhopadhyay (Mukhopadhyay and Chatterjee 2007) and Shojaie (Shojaie and 

Michailidis 2010) introduced a method called Granger Causality to analyze time-series 

gene expression data to predict gene networks, which is a statistical hypothesis approach 

to decide if one time series is useful to predict other time series. The basic idea is that a 

time series X is said to Granger-cause Y if it can be shown, usually through a series of t-
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tests and F-tests on lagged values of X (and with lagged values of Y also included), that 

those X values provide statistically significant information about future values of Y. Here 

X is the time vector of expression values of the source gene, and Y is the time vector of 

expression values of the target gene. To test the null hypothesis that X does not Granger-

cause Y, we need to find the proper lagged values of Y to include in a formal auto 

regression of Y: 

𝑦𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 +…+𝑎𝑚𝑦𝑡−𝑚 + 𝑟𝑡 (3.11) 

Here rt is residual, and it is the difference between the observed expression value and the 

estimated function value. Next, the autoregression is augmented by including lagged 

values of X: 

𝑦𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 +…+𝑎𝑚𝑦𝑡−𝑚 + 𝑏1𝑥𝑡−1 +⋯+ 𝑏𝑞𝑥𝑡−𝑞 + 𝑟𝑡 (3.12) 

In this expression, yt and xt are stationary time series values of Y and X at time t, xt-j (0 ≤j 

≤ q) is the value of X at time t-j, yt-i (0 ≤ i ≤m) is the value of Y at time t-i; ai and bj 

(0≤i≤m, 0≤j≤q)are the coefficient values we need to find by autoregression. And q is the 

longest lag length when the lagged value of x is remarkable, and m is the longest lag 

length when the lagged value of y is remarkable. We retain in this regression all lagged 

values x's (x ∈X) that are individually remarkable based on their t-statistics, given that 

collectively they add explanatory power to the regression according to an F-test (whose 

null hypothesis offers no explanatory power when jointly added by the x's, which means 

X and Y has no relationship.). The t-statistics for each individual ai and bj is a ratio of the 

difference of the regression result from its notional value (normal zero, indicated that no 

relationship) and its standard error, which can be presented as follows: 
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𝑡�̂� =
�̂� − 𝛽0

𝑠. 𝑒. (�̂�)
 (3.13) 

where β0 is a known constant normally set to zero, and s. e. (�̂�) is the standard error of 

the estimator β̂, which is either  ai or bj. The F-test can be calculated as: 

𝐹 =
𝑆𝑆𝑅𝑋 − 𝑆𝑆𝑅𝑌

𝑆𝑆𝑅𝑌
(𝑇 − 1) (3.14) 

SSRX  and SSRY  are the sum of squared residuals of X and Y, respectively. Residuals 

present the difference between estimated values and actual values. T is the total number 

of time point. In the notation of the above augmented regression. 

 

3.3.4 DDGni 

DDGni stands for Dynamic delay gene-network inference, applying for high-temporal 

data by using gapped local alignment. The basic idea is that, if gene A is regulating gene 

B, the expression pattern of the target gene B is stimulated by the expression pattern of its 

regulator gene A, i.e., they share similar expression pattern with some time windows 

(expression delay). The method also considers the cases of multi-regulators and multi-

targets with different time windows. 

To compute the gapped local alignment of expression patterns of gene A and gene 

B, we need to extract their expression values at all time pointes, consider A has x number 

of time points, while B has y number of time points. 

𝐴 = 𝑎1, 𝑎2, 𝑎3… , 𝑎𝑥𝐵 = 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑦 (3.15) 

Since a regulator and its target share a similar expression trend despite the 

magnitude of the variations of expression values, all the expression values (a’s and b’s) 

are normalized first.  
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𝑠′(𝑖, 𝑗) =
𝑠(𝑖, 𝑗) − �̅�(𝑖, 𝑗)

𝑠𝑚𝑎𝑥(𝑖, 𝑗)
 (3.16) 

where 

𝑠(𝑖, 𝑗) =  𝑒−𝛼×𝑑(𝑎𝑖,𝑏𝑗), 0 ≤ 𝑖 ≤ 𝑥, 0 ≤ 𝑗 ≤ 𝑦 (3.17) 

Here α is the measure of the steepness which is set as 1.7, and 𝑑(𝑎𝑖,𝑏𝑗) is the distance 

between time points ai and bj. 

Then an alignments matrix M (x by y) is created: 

𝑀𝑖𝑗 = 𝑚𝑎𝑥

{
 

 
𝑀𝑖−1,𝑗−1 + 𝑠

′(𝑖, 𝑗)

𝑀𝑖−1,𝑗 − 𝑝

𝑀𝑖,𝑗−1 − 𝑝

0 }
 

 
 (3.18) 

Mij is the score for position i in series A and position j in series b, s’(i,j) is the normalized 

similarity between the time point ai and bj, and p is the gap penalty, chosen as 0.3. The 

alignment score N is calculated as: 

𝑁 = [
𝑀𝑎𝑥(𝑀)

𝐿
]𝑀𝑖𝑗 = 𝑚𝑎𝑥

{
 

 
𝑀𝑖−1,𝑗−1 + 𝑠

′(𝑖, 𝑗)

𝑀𝑖−1,𝑗 − 𝑝

𝑀𝑖,𝑗−1 − 𝑝

0 }
 

 
 (3.19) 

where L is the alignment length. By choosing up a threshold for N, the top high alignment 

scores detemind the edge of the regulatory network. 

 

3.4 Unsupervised GRN Inference Algorithms Using Pipelines 

For gene network inference, various algorithms can be used to build up a pipeline, and 

each algorithm is fed with different types of data, in turn based on different experiments 

within the same gene network. A consensus network can be generated by combining the 

inferential abilities of different methods. Also, a pipeline can be a sequence of algorithms 
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in which the output of one algorithm becomes the input of the next algorithm in the 

sequence. All these attempts are made to get a better performance for predicting gene 

regulatory networks. For example, Inferelator 2.0 (Madar, Greenfield et al. 2009) is a 

pipeline combining three algorithms: Median-Corrected Z-Scores (MCZ), Time-lagged 

Context Likelihood of Relatedness (tlCLR), and Inferelator 1.0. 

 

3.5 Supervised or Semi-Supervised GRN Inference Algorithms 

Maetschke et al. (Maetschke, Madhamshettiwar et al. 2013)  defined supervised, semi-

supervised and unsupervised algorithms for inference of gene regulatory networks. 

Usually, there is no data can be used by unsupervised methods to adjust internal 

parameters. Supervised methods, on the other hand, by collecting information about 

known interactions for training and testing all given data, both positive and negative 

training samples, optimize parameters such as weights or thresholds. Otherwise, only part 

of the data can be used by semi-supervised methods for parameter optimization, i.e., a 

subset of network interactions discovered, sometimes even only positive training samples. 

The only method described in their paper is Support Vector Machine (SVM) (Cortes and 

Vapnik 1995). By applying containing supervised learning models which are associated 

learning algorithms to analyze data and recognize patterns, this method can be used for 

classification and regression analysis. With the input of a set of input data, SVM predicts 

each one of them belonging to either of two possible classes, so it is a non-probabilistic 

binary linear classifier. Provided a set of training examples, each of which is labeled to 

one or other classes, the training algorithm of generates a model to label new examples 

with one category or the other. An SVM model presents the examples as points in space, 
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and makes a gap as big as possible to divide all the examples to separate categories. 

Based on which side of the gap the examples to be predicted fell on, they are labeled with 

a category after being mapped into the same space.  

Mordelet et al. (Mordelet and Vert 2008) have  developed a method for the 

inference of gene regulatory  networks called SIRENE (Supervised Inference of 

Regulatory Networks). It needs both gene expression data and a list of regulation 

relationships discovered between transcription factors and target genes. The list is 

obtained from the databases of regulations which are characterized with experiments and 

publicly available, e.g., RegulonDB for Escherichia coli genes (Faith, Hayete et al. 2007). 

To get negative samples, they collected all genes that are not regulated by a certain 

transcription factor and divided them into three subsets. Then they trained the SVM with 

all the positive examples and two of the three subsets of negative samples. The training 

process was repeated three times and each on took just one subset of negative samples 

apart. 

In a paper by Cerulo et al. (Cerulo, Elkan et al. 2010), three methods are 

compared for predicting gene regulatory networks from only positive and unlabeled data 

derived from the tool GeneNetWeaver (http://gnw.sourceforge.net), which is used to 

generate in silico benchmarks in the DREAM3 challenge initiative (Stolovitzky, Monroe 

et al. 2007, Marbach, Schaffter et al. 2009). The three methods are  considered semi-

supervised methods and they are PosOnly, PSEUDO-RANDOM, and SVMOnly. PosOnly 

uses a model of conditional probabilities to define negative samples (Elkan and Noto 

2008). Let x be a feature vector and let y = {0, 1} and s = {0, 1} be binary labels. Let s = 

1 if the example x is labeled, and let s = 0 if x is unlabeled. Positive examples are labeled, 

http://gnw.sourceforge.net/
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i.e., if s = 1, then y = 1; while unlabeled examples, with s = 0, may be either positive y = 

1 or negative y = 0 . The probabilistic binary classifier is applied to learn f(x) such that f(x) 

= p(y = 1|x), defined to be the conditioned probability of being positive provided a 

feature vector x. PSEUDO-RANDOM selects negative samples according to an 

assumption that a regulatory network has a structure like a tree without or  containing few 

cycles. SVMOnly considers all unlabeled examples as negative. The result showed that 

PosOnly outperforms significantly both methods PSEUDO-RANDOM and SVMOnly in 

simulated data, while the other two tools have a slightly lower performance in 

experimental data. 

 

3.6 Integrated Approaches to GRN Inference 

Marbach et al. (Marbach, Roy et al. 2012) have developed and applied methods for 

transcriptional regulatory network inference from diverse functional genomics datasets, 

and have demonstrated the effectiveness of their approach for gene function and gene 

expression prediction. The network inference problem is formed to a machine-learning 

framework, with input features consisting of transcription factor (TF), evolutionarily-

conserved sequence motifs, gene expression, and chromatin modification datasets, to 

predict regulatory edges by binding all the above features. The authors predicted ~300k 

regulatory edges in a network of ~600 TFs and 12k target genes by applying these 

methods to Drosophila melanogaster. An inferred network is applied to identify putative 

functions for hundreds of previously unlabeled genes (Lee and Tzou 2009), as a lot of 

these genes are in nervous system development defined independently according to the 

patterns of tissue-specific expression. At last, the regulatory network is used as a function 



  47 

 

of TF expression to predict the levels of target gene expression, and in integrative 

networks remarkably better performance of prediction is achieved than for motif or ChIP-

based networks. A compatible relationship is discovered by their work between physical 

evidence of regulatory interactions such as TF binding or motif conservation and 

functional evidence like coordinated expression or chromatin patterns, and the power of 

data integration is revealed for network inference based on the studies of gene regulation 

at the systems level. 

Literature mining is another way to develop gene regulation networks by 

collecting the information about gene interactions from previously published literature. If 

some research already published shows that a gene can regulate other genes based on 

biological experiments, this scene would be applied to the basic part of the network. All 

pertinent information about a particular gene family can be searched, collected, and 

postulated as a gene regulation network. 

Djebbari et al. (Djebbari and Quackenbush 2008) described in their paper how 

they did such a search in PubMed (McEntyre and Lipman 2001):  two genes are assumed 

between them may be an interaction if both and only two of them are described in a 

single article indexed in PubMed. According to the relative number of articles talking 

about those genes together, weights would assigned to interactions. The prior 

probabilities for two genes A and B related is shown by assigning a co-occurrence edge 

weight, which obtained by summing up how many times the work “interaction” 

mentioned in the literature, relative to the total number of manuscripts surveyed: 

𝑝(𝐴, 𝐵) =
𝑤(𝐴, 𝐵)

𝑤(𝑒)𝑒∈𝐸
𝑚𝑎𝑥  (3.20) 
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where w(A, B) and w(e) present the weight of edge (A, B) in the set of edges E. Then they 

seed this prior network to bootstrapping. In each bootstrap iteration, the features of 

interest are checked such like directed edge, undirected edge, order relation, and Markov 

relation. The confidence of overall bootstrap can be evaluated by measuring how many 

times a specific feature appears related to the total number of iterations, which thus 

supports chosen features. They also collected interactive data from high-throughput yeast 

two hybrid protein-protein interaction (PPI) screenings. 

Haibe-Kains et al. (Haibe-Kains, Olsen et al. 2012) developed a web-based 

application called Predictive Networks (PN) to evaluate experimentally derived gene lists 

in the context of large-scale gene interaction networks. The PN analytical pipeline has 

two steps. At the beginning a comprehensive set of gene interactions extracted from a 

bunch of sources that are publicly available by applying text-mining algorithms. The 

second step consists of using these ‘known’ interactions together with gene expression 

data to infer robust gene networks by using supervised approaches, including regression 

and Bayesian methods. The PN web application can be accessed from 

http://predictivenetworks.org. 

 

3.7 Some Preliminary Experimental Results 

 

We evaluated the performance of some of the unsupervised gene network inference 

algorithms surveyed in this dissertation. The NIR algorithm was implemented in 

MATLAB 7 and run on a Linux platform. We tested the NIR algorithm using DREAM4 

knock out data.  Figure 3.1 shows the network predicted by the NIR algorithm, and the 

standard network, i.e., the ground truth, provided by DREAM4. 

http://predictivenetworks.org/
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Figure 3.1 Results obtained by running NIR on DREAM4 knockout data. (A) The 

network predicted by the NIR algorithm. (B) The standard network from DREAM4.  

 

(A) 

(B) 
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The GENIE3 algorithm was implemented in R and run on a Windows platform. 

We tested the GENIE3 algorithm using DREAM4 knock out data.  Figure 3.2 shows the 

network predicted by the GENIE3 algorithm and the standard network, i.e., the ground 

truth, provided by DREAM4. 

 

Figure 3.2 Results obtained by running GENIE3 on DREAM4 knockout data. (A) The 

network predicted by the GENIE3 algorithm. (B) The standard network from DREAM4.   

 

(A) 

(B) 
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The CLR algorithm was implemented in MATLAB 2011 and run on a Windows 

platform. We tested the CLR algorithm using DREAM4 knock out data.  Figure 3.3 

shows the network predicted by the CLR algorithm and the standard network, i.e., the 

ground truth, provided by DREAM4. 

 

Figure 3.3 Results obtained by running CLR on DREAM4 knockout data. (A) The 

network predicted by the CLR algorithm. (B) The standard network from DREAM4.   

 

(A) 

(B) 
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The time-delay ARACNE, or TDARACNE, algorithm was implemented in R and 

run on a Windows platform. We tested the time-delay ARACNE algorithm using 

DREAM4 time series data.  Figure 3.4 shows the network predicted by the TDARACNE 

algorithm and the standard network, i.e., the ground truth, obtained from DREAM4. 

 

Figure 3.4 Results obtained by running TDARACNE on DREAM4 time series data.  (A) 

The network predicted by the TDARACNE algorithm. (B) The standard network from 

DREAM4.   

(A) 

(B) 
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The Banjo algorithm was implemented in Java 7.0 and run on a Windows 

platform. We tested the Banjo algorithm using DREAM4 time series data. Figure 3.5 

shows the network predicted by the Banjo algorithm and the standard network, i.e., the 

ground truth, obtained from DREAM4. 

 

 

                                                              

Figure 3.5 Results obtained by running Banjo on DREAM4 time series data.  (A) The 

network predicted by the Banjo algorithm. (B) The standard network from DREAM4.   

(A) 

(B) 
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All the algorithms in the pipeline of Inferelator were implemented in R and run on 

a Linux platform. We tested Inferelator using both steady-state data (specifically, 

DREAM4 knockout data) and DREAM4 time series data. Figure 3.6 shows the network 

predicted by Inferelator and the standard network, i.e., the ground truth, obtained from 

DREAM4. 

 

 

(A)                                                                    (B) 

Figure 3.6 Results obtained by running Inferelator on DREAM4 knockout data and time 

series data.  (A) The network predicted by Inferelator. (B) The standard network from 

DREAM4.   

 

In evaluating the performance of the network prediction algorithms, we use 

measures including accuracy, precision, and recall. We use TP (true positive) to denote 

the number of positive edges that are predicted correctly. A positive edge is one that 

appears in the ground truth where the ground truth is the standard network provided by 
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DREAM4. We use TN (true negative) to denote the number of negative edges that are 

predicted correctly. A negative edge is one that does not appear in the ground truth. We 

use FN (false negative) to denote the number of positive edges that are incorrectly 

predicted as negative. We use the FP (false positive) to denote the number of negative 

edges that are incorrectly predicted as positive. Then 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3.21) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.22) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.23) 

The accuracy, precision, and recall of the six tools tested in this dissertation 

proposal are shown in the following table. 

 

Table 3.3 Accuracy, Precision, and Recall of Tested GRN Algorithms 

Algorithm Accuracy Precision Recall 

Algorithms using steady-state data 

NIR 0.8 0.4 0.266667 

GEINE3 0.786517 0.357143 0.333333 

CLR 0.758621 0.25 0.2 

WGCNA 0.756 0.267 0.267 

Algorithms using time-series data 

TDARACNE 0.818182 0.461538 0.4 

Banjo 0.702128 0.157895 0.2 

Algorithms using both steady-state data and time series data 

Inferelator 0.786517 0.357143 0.333333 
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CHAPTER 4 

A GPU PROGRAM FOR WHOLE GENOME COMPARISON 

 

4.1 Introduction 

A multiple sequence alignment (MSA) is related sets by partitioning residues such like 

amino acids or nucleotides from a given set of sequences. As the prerequisite for most 

phylogenetic and evolutionary analyses, MSA is the basic biological sequence analysis 

for the research of the relationship about evolutionary homology (Wallace, Blackshields 

et al. 2005) (Edgar and Batzoglou 2006) (Notredame 2007). Most of the MSAs attempt to 

align every residue in all the sequences, which is called "global alignments". The 

methods include mutational processes dealing with residue substitution, subsequence 

insertion, and subsequence deletion (Notredame 2007). After the whole-genome 

sequences has been discovered, it raises an interest in MSAs for whole genomes, which is 

called whole-genome alignment (WGA), covering all kinds of sequences: genes, 

promoters, repetitive regions, etc. This research requires more analyses about genome 

rearrangements, such like inversions, translocations, chromosome fusions, chromosome 

fissions, and reciprocal translocations. Meanwhile, another tools can also model  

unbalanced rearrangements which will copy number change, like tandem and segmental 

duplications (Blanchette, Kent et al. 2004, Miller, Rosenbloom et al. 2007, Paten, Herrero 

et al. 2008, Angiuoli and Salzberg 2011, Paten, Earl et al. 2011). The development for 

whole genome alignment is becoming more critical to figure out the selective forces 

acting across genomes, improve analysis of many potential functional elements such like 

the identification of conserved non-coding functional elements (Lindblad-Toh, Garber et 
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al. 2011), along with cis-regulatory elements (Kellis, Patterson et al. 2003), enhancers, 

and non-coding RNAs (Earl, Nguyen et al. 2014). 

 Our work focuses on searching anchors, termed as non-gap alignment segments of 

local alignments, for whole genomes via multiple sequence alignments. To identify the 

commonalities and differences of two genomes from closely related organisms, for 

example, human and gorilla, various programs have been developed for sequencing 

alignment, applied to the whole genomes by using a seed-and-extend technique, 

beginning from exact or close exact matches and choosing a reliable subset of them, 

which is called anchors, then chaining all the anchors corresponding to the reference 

genome with overlapped or duplicated anchors removed and minimum of gaps remaining. 

 Several approaches for multiple sequence alignments to search anchors are 

available. We started with LASTZ (Harris 2007) and SSEARCH (Pearson 2000). LASTZ 

is a drop-in replacement for BLASTZ (Schwartz, Kent et al. 2003), which recognizes 

primary anchors as high-scoring local alignments before any other tools. The anchors 

start from pairs of spaced 12-mers with possibly one transition, and then are extended in 

two stages, if substitutions and gaps are allowed. The method is also applied for finding 

new, secondary matches between consecutive primary matches (Lippert, Zhao et al. 

2005). On the other hand, SSEARCH does a rigorous Smith-Waterman search (Smith and 

Waterman 1981) for similarity between a query sequence and a group of sequences of the 

same type, i.e., chromosome or protein. This may be the most sensitive method available 

for similarity searches. 

 Compared to LASTZ, SSEARCH can be very slow, taking days and months to 

map millions of bases for mammalian genome sequences. This is the reason why we need 
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to rely on programming in GPU (Graphics Processing Unit). The GPU is designed to run 

in parallel hundreds of short functions called threads, which are organized into blocks 

then in turn organized into grids. Parallel algorithms running on GPUs can often achieve 

up to 100x speedup over similar CPU algorithms. Our plan is to apply the GPU program 

via the algorithm of MaxSSmap (Turki and Roshan 2014) for the multiple sequence 

alignments with whole genome sequences to search anchors in evolutionary analysis, 

increasing accuracy and speed of processing at the same time. 

 

4.2 Dataset 

The dataset used to test our alignment program via GPU is extracted from a competitive 

assessment of whole genome alignment methods named Alignathon (Earl, Nguyen et al. 

2014). Alignathon used three test sets, two of them were simulated datasets created by 

forward-time simulation with the EVOLVER tool (Edga, Asimeno et al. 2009). The first 

set models a phylogeny of great ape containing the genomes such as humans, 

chimpanzees, gorillas, and orangutans, all with the same evolutionary relationships. Our 

program tested tentatively two genomes from this set, humans and gorillas. No doubt that 

the outcome has impressively high accuracy, above 0.8 and 0.9 respectively in precise 

and recall. But our research focuses on distant related organisms; in consequence the 

major dataset we used for our program is the second simulated dataset from Alignathon, 

which is about a mammalian phylogeny containing genomes as humans, mice, rats, cows, 

and dogs. We chose two distant related organisms, cow and mouse, from this set. The 

two genomes that are mainly tested in our program are the chromosome C from species 
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cow and the chromosome O from species mouse. The phylogenetic distance between 

these two genomes is 0.60 (Earl, Nguyen et al. 2014). 

 

4.3 Implementation and Methods 

The algorithm used for the genome alignment in our research is called MaxSSmap (Turki 

and Roshan 2014). The running platform is CUDA 6.0 implementing on NVIDIA GPUs. 

The GPU, as graphics processing unit, is designed to execute hundreds of small functions 

called threads at the same time in parallel. All the threads are bundled into blocks which 

then are organized into grids. While the MaxSSmap is running, only one grid are applied, 

and the number of blocks is set to the total number of fragments, the contiguous parts 

with constant length defined by the user, from the reference genome sequence, normally 

the cow genome in our research. The number of fragments is determined by how many 

threads in a block are executed simultaneously. By default the value is set to 256.  

 The query genome sequence, normally the mouse genome, is divided into short 

length reads. The length of the reads is not necessary to be constant. The input of the 

MaxSSmap program is the whole reference genome and a read. The program has two 

steps. The first to identify a local region of the reference genome, in our case is to locate 

the fragment ID number by sliding the short read through the whole reference genome 

and picking up the maximum scoring subsequence (Bates and Constable 1985, Bentley 

1986). The maximum scoring subsequence is defined to maximize the sum of a region in 

the original sequence. For instance, the original sequence contains a list of real numbers 

{x1, x2, ..., xn}, and the maximum scoring subsequence should be the contiguous 

subsequence { xi, ..., xj } whose sum xi + ... + xj (0 ≤ i, j ≤ n) is maximized. For DNA 
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sequences, the list of real numbers is replaced as the cost score list under two aligned 

sequences with same length and without gaps. The cost scores can be defined from a 

position specific scoring matrix presenting base call probabilities, or a substitution 

scoring matrix, or a trivial match or mismatch cost. In Figure 4.1 we show up a brief 

overview of the first phase of MaxSSmap program. Each thread of the GPU is input the 

read and one fragment of the reference genome, and each fragment is assigned with an ID 

number, from 0, 1, 2, ... and so on. In each thread the read is sliding through the fragment 

and the maximum scoring subsequence is computed. To consider the cross junctions 

between fragments, the neighboring fragments are also included to map the read in each 

thread. The output of the execution is the fragment numbers with the highest and second 

highest scores. With the assistant of the second highest score, redundant false positives 

can be removed if we set up a threshold of the ratio of the second highest score and the 

first highest score. 
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Figure 4.1 First phrase of MaxSSmap. The whole reference genome is divided to six 

same size fragments with ID numbers from 1 to 6 and fed into six threads of the GPU. 

Each thread will execute with one fragment and the short read, sliding the read with the 

fragment and looking for the maximum scoring subsequence. The read is also mapped to 

the junctions between fragments to make sure that the read is fully mapped to the 

reference. 

 
Source: Turki, T. and U. Roshan (2014). "MaxSSmap: a GPU program for mapping divergent short reads 

to genomes with the maximum scoring subsequence." BMC Genomics 15: 969. 

 

 

 The second step of MaxSSmap program is applying a gap-allowed alignment 

method to align the read with the region of the reference genome starting at the identified 

fragment picked up from the first step. To obtain enough nucleotides as the read to 

achieve the alignment, spanning the fragments to the right is necessary at most time. 

Furthermore, we tested three algorithms in this phrase, Needleman-Wunsch (Needleman 

and Wunsch 1970), Smith-Waterman (Smith and Waterman 1981), and the extention for 

the Smith-Waterman approach, by feeding the outputs of local alignments to an genome-

wide mammalian consistency based alignment method named Pecan (Paten, Herrero et al. 

2008), to pursuit for higher accuracy for computing genome aligments. In the rest context 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fragment 0 

Break to same length 

Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 

Input: 
 
A short read 
 
The whole reference 
genome 
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of this paper, we will elaborate in detail the three alignment methods, their results from 

our experiments with the two mammlian genome sequences, cow chromosome C and 

mouse chromsome O, and the analyses and comparison among the three algorithms and 

other published alignment tools. 

 

4.3.1 Needleman-Wunsch Algorithm 

The algorithm of Needleman-Wunsh (Needleman and Wunsch 1970) is extensively 

applied for finding similarities and determining whether significant homology exists 

between nucleotide or protain sequences. Although the method was originally published 

in more than 40 years ago, it is still widely used in recent eras for optimal global 

alignment, particularly when the quality of the global alignment is of the utmost 

importance. It was one of the first applications of dynamic programming to compare 

biological sequences. The basic idea of the algorithm is to build up the best alignment by 

using optimal alignments of smaller subsequences, meanwhile to reduce the massive 

number of possibilities that need to be considered, yet still guarantees that the best 

solution will be found. Based on a divide and conquer strategy, the algorithm consists of 

the following steps:  

1. Divide the problem into smaller sub problems. In the alignment algorithm, we 

break the sequences to be aligned to based pairs, which also contain the gapped 

alignments. 

2. Solve the smaller problems optimally. The scores of all the probabilities of base 

pairs are computed and stored in the trace back table. We trace the base pairs from 

the end of the two sequences, and define the optimal alignments according to the 

best scores. 

3. Use the sub-problem solutions to construct an optimal solution for the original 

problem. By tracing the optimal base pairs (including gaps) step by step, the final 

alignment with maximum match and best score is obtained. 
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The basic mathematic equation for Needleman-Wunsh algorithm is shown as follow: 

𝐷(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝐷(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗)

𝐷(𝑖 − 1) + 𝑔

𝐷(𝑗 − 1) + 𝑔

 (4.1) 

 

The equation 4.1 helps us to create recursively the trace back matrix D(i, j) indexed by 

the residues of two sequences x and y, with a boundry condition such that: 

𝐷(𝑖, 0) = 𝑔 × 𝑖 

𝐷(0, 𝑗) = 𝑔 × 𝑗 
(4.2) 

Where g is the gap penalty. The substitutuon score s(xi, yj) is for the residues i and j in the 

two sequences x and y respectively. 

 Therefore, we need two matrix tables for the trace back process. One is to store 

the maximum scores calculated by the equation 4.1, the other is for the trace back records, 

containing the information how the maximum scores are obtained: 1) two residues align 

together, the case named "diagonal", or "match/mismatch", 2) a gap is inserted in the 

sequence x, the case named "up", in some literatures it is also called "deletion", 3) a gap 

is inserted in the sequence y, the case named "left", or "insertion". A trival example 

presenting in Figure 4.2 will illuminate the exact procedures how to optimize an 

alignment. 
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Figure 4.2 Procedures of the algorithm of Needleman-Wunsh. Given the input of two 

sequences x and y, the score matrix is calculated via equations 3.1and 3.2. The way to 

obtained the maximum value of each cell in the score matrix is stored in the traceback 

matrix: diagonal (maked as D), up (marked as U), or left (marked as L). By tracing back 

from the lower right corner of the traceback matrix, the optimal alignment is built up. 

 

4.3.2 Smith-Waterman Algorithm 

Another computing method for local sequence alignment was also tested in our GPU 

program in the second phrase of MaxSSmap. This is an method called Smith-Waterman 

Algorithm (Smith and Waterman 1981) for comparison similiar to the algorithm of 

Needleman-Wunsh, but the difference between them is that the Smith-Waterman 

Algorithm performs local sequence alignment instead of global alignment consisting of 

the whole input sequences; that is, for determining similar regions between two strings or 

nucleotide or protein sequences. Hence, only part of the string of each input sequence is 

  T T C A T 

 0 -1 -2 -3 -4 -5 

T -1 1 0 -1 -2 -3 

T -2 0 2 1 0 -1 

A -3 -1 1 2 2 1 

C -4 -2 0 2 2 2 

  T T C A T 

 0 L L L L L 

T U D D L L D 

T U D D L L D 

A U U U D D L 

C U U U D D D 

Input 
 
Sequence x:  TTCAT 

 
Sequence y:  TTAC 

Cost 
 
Match: 1 
 
Mismatch: 0 
 
Gap penalty: -1 

Score matrix 

 
Traceback matrix 

 

Alignment:  

 

TTCAT  

TT-AC 
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contained in the output aligment. The mathematic expression for the Smith-Waterman 

Algorithm is presenting as below: 

𝑀(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝑀(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗)

𝑀(𝑖 − 1) + 𝑔

𝑀(𝑗 − 1) + 𝑔
0

 (4.3) 

with a distinct initial condition from the algorithm of Needleman-Wunsh: 

𝑀(𝑖, 0) = 0 

𝑀(0, 𝑗) = 0 

(4.4) 

Comparing the equation 4.3 with the equation 4.1, one more condition is appended to 

calculate the optimal similarity by setting up a zero to prevent calculating negative 

similarity which indicates that no similarity up to xi and yj. The alogrithm yields an 

alignment consisting of a series of local alignments with optimal similarities in specific 

regions of the two input sequences, which have not any association among them. 

 

4.3.3 Smith-Waterman Extended with Pecan 

The algorithm of Pecan was developed as a tool for large-scale probabilitic consistency 

alignment (Paten, Herrero et al. 2008). It implements the similar basic objective function 

as the tool of Probcons (Do, Mahabhashyam et al. 2005), an animo acid aligner. The 

basic idea of these two approches is derived from the concept of a pair-hidden Markov 

model (pair-HMM) (Durbin 1998). Figure 4.3 shows the conceptual graph of pair-HMM 

that specifies the probability distribution over all alignments between a pair of sequences.  



  66 

 

 

Figure 4.3 Basic pair-HMM for sequence alignment for two sequences, x and y. State M 

emits two residues, xi and yj, respectively from the two sequences, presenting the two 

residues being aligned together. State Ix emits a residue in sequence x aligned to a gap, 

and similarly state Iy emits a residue in sequence y aligned to a gap too. The optimal 

similarity is obtained by applying Needleman-Wunsch algorithm with suitable 

parameters. The emission probability function p(.,.) at state M corresponds to a 

substitution scoring matrix, at the same time affine gap penalty parameters can be derived 

from the transition probabilities δ and ε (Durbin 1998). 

 
Source: Do, C. B., M. S. Mahabhashyam, et al. (2005). "ProbCons: Probabilistic consistency-based 

multiple sequence alignment." Genome Res 15(2): 330-340. 

 

The algorithm Pecan hace four main phrase: 

1. Create a "constraint map" consisting of a set of alignment constraints that satisfy 

that the two residues xi and yj has a constraint  i < j. 

 

2. Calculate a set of pairwise posterior match probabilities according to the 

constraint map created in step 1. 

 

3. Modify the set of posterior match probabilities using the consistency transformed 

with the reference from a third sequence z out of the group. 
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4. Combine the transformed posterior match probabilities into a multiple alignment 

by applying a method of progressive alignment. 

 

By the reason that only two genome sequences are going to be compared in our GPU 

program, we ignore the last two steps of Pecan. The original source to create a constraint 

map in the first phrase is a set of alignment anchors which are continuous un-gapped 

series of one or more aligned pairs, produced by using Exonerate (Slater and Birney 2005) 

in the original Pecan program. We modified the Pecan scripts and computed the 

constraint map with the local alignments yielded from the Smith-Waterman algorthm. 

 The objective to create the constraint map is to gain more efficiency for the 

program by avoiding conflicts among the anchor chain and choosing a colinear and non-

overlapping chain of anchor constraints to construct  an alignment band. Based on the 

alignment band the posterior match probablitlies are calculated by using backward 

algorithm to set up the pair-hidden Markov model (Paten, Herrero et al. 2008). In order to  

describe the backward calculation for pair HMM to produce posterior match probablitlies, 

we introduce a new notation xi ◊ yj, which means that xi is aligned to yj. Then based on 

the standard conditional probability therory we have 

𝑃(𝑥, 𝑦, 𝑥𝑖 ◊ 𝑦𝑗) = 𝑃(𝑥1…𝑖 , 𝑦1…𝑗,𝑥𝑖 ◊ 𝑦𝑗)𝑃(𝑥𝑖+1…𝑛, 𝑦𝑗+1…𝑚|𝑥1…𝑖, 𝑦1…𝑗,𝑥𝑖 ◊ 𝑦𝑗) 

= 𝑃(𝑥1…𝑖, 𝑦1…𝑗,𝑥𝑖 ◊ 𝑦𝑗)𝑃(𝑥𝑖+1…𝑛, 𝑦𝑗+1…𝑚|𝑥𝑖 ◊ 𝑦𝑗) 

(4.5) 

where n is the length of sequence x, and m is the length of sequence y, with 0 ≤ i ≤ n and 

0 ≤ j ≤ m. The first term of equation 4.5 is the forward probability while the second term 

is the corresponding probability b
M

 (i, j) which can be calculated via backward algorithm 

as shown in Figure 4.4. 
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Figure 4.4 Backward Algorithm for calculation of posterior match probablitlies. No 

special termination step is needed, since only the values of 𝑏∗(𝑖, 𝑗) where 𝑖, 𝑗 ≥ 1are 

required to calculate. 

 
Source: Durbin, R. (1998). Biological sequence analysis : probabalistic models of proteins and nucleic 

acids. Cambridge, UK New York, Cambridge University Press. 

 

 Then we can use Bayes theorem to obtain 

𝑃(𝑥𝑖 ◊ 𝑦𝑗|𝑥, 𝑦) =
𝑃(𝑥, 𝑦, 𝑥𝑖 ◊ 𝑦𝑗)

𝑃(𝑥, 𝑦)
 

(4.6) 

And similar values for the posterior probabilities of using specific insert states (the 

anchor chain in our program) can also be produced. 

 

4.4 Results 

Due to the test set for out GPU program is from the Alignathon assessment, we also 

applied the same comparison tool to test the results. All the output files were transferred 

to multiple alignment format (MAF), and compared with the simulated truth file provided 

from the project Alignathon. Given two input MAF files, the comparator tool calculates 

Algorithm: Backward calculation for pair HMMs 

Initialization: 

 𝑏𝑀(𝑛,𝑚) = 𝑏𝑋(𝑛,𝑚) = 𝑏𝑌(𝑛,𝑚) = 𝜏 

 All𝑏∗(𝑖, 𝑚 + 1), 𝑏∗(𝑛 + 1, 𝑗) are set to 0. 

Recursion: 𝑖 = 𝑛, …1, 𝑗 = 𝑚,… ,1except(𝑛,𝑚) 

 𝑏𝑀(𝑖, 𝑗) = (1 − 2𝛿 − 𝜏)𝑝𝑥𝑖+1𝑦𝑗+1𝑏
𝑀(𝑖 + 1, 𝑗 + 1) 

   +𝛿[𝑞𝑥𝑖+1𝑏
𝑋(𝑖 + 1, 𝑗) + 𝑞𝑦𝑗+1𝑏

𝑌(𝑖, 𝑗 + 1)] 

 𝑏𝑋(𝑖, 𝑗) = (1 − 휀 − 𝜏)𝑝𝑥𝑖+1𝑦𝑗+1𝑏
𝑀(𝑖 + 1, 𝑗 + 1) + 휀𝑞𝑥𝑖+1𝑏

𝑋(𝑖 + 1, 𝑗) 

 𝑏𝑌(𝑖, 𝑗) = (1 − 휀 − 𝜏)𝑝𝑥𝑖+1𝑦𝑗+1𝑏
𝑀(𝑖 + 1, 𝑗 + 1) + 휀𝑞𝑦𝑖+1𝑏

𝑌(𝑖 + 1, 𝑗) 
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the precision, recall, and F-score, which is a standard method for combining precision 

and recall into a single value, as shown in equation 4.7: 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4.7) 

 As described in the section of implement and methods, we implemented three 

algorithms for our GPU program for genome comparison. The first one is MaxSSmap 

with similarities computing with the Needleman-Wunsch algorithm, the second is 

MaxSSmap with the comparison procedure executed with Smith-Waterman algorithm, 

and the last on is the extension of the second approach, by importing the output of the 

MaxSSmap with Smith-Waterman to the Pecan algorithm, and calculating a better 

comparison. In this section we list all the results from these three methods, with various 

parameters, such like read length, the step to extract reads from query genome (the mouse 

genome in our experiments), the overlap of each read and the one following it, etc. 

 

Table 4.1 Results from MaxSSmap with Needleman-Wunsch, Various in Accordance 

with Different Length of Reads 

 
Reference genome: simCow.chrC, 33408597 bases 

Query genome: simMouse.chrO, 3949899 bases 

Read 

Length 

Step True 

Positive 

False 

Positive 

False 

Negative 

Precision Recall F-score 

1000 100 41200 343642 1828051 10.7% 2.2% 0.036 

500 100 121906 464123 1767345 20.8% 6.5% 0.099 

250 100 238906 540904 1650904 30.6% 12.6% 0.179 

200 50 298963 888271 1590288 25.2% 15.8% 0.194 

150 50 295916 1013809 1593635 22.6% 15.6% 0.185 

100 50 233729 979345 1655522 19.3% 12.4% 0.151 

50 25 149589 1772374 1739662 7.8% 7.9% 0.079 

 

The results from Table 4.1 shows up the performance of the algorithm 

MaxSSmap with Needleman-Wunsch approach which calculate the similarities in the 

second phrase. The longest read length yields the less false positive and the lowest F-
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score. And there is a peak of F-score with a specific read length of 200. This trend is also 

graphed in Figure 4.5.  

 

Figure 4.5 Trend of results from MaxSSmap with Needleman-Wunsch with different 

read length. 
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Table 4.2 Results from MaxSSmap with Needleman-Wunsch on Read Length of 200 

 
Read 

Length 

Step Overlap True 

Positive 

False 

Positive 

False 

Negative 

Precision Recall F-score 

200 5 195 165679 302919 1723572 35.4% 8.8% 0.141 

200 10 190 175227 305508 1714024 36.5% 9.3% 0.148 

200 15 185 174917 319453 1714334 35.4% 93% 0.147 

200 20 180 182322 329623 1706929 35.6% 9.7% 0.152 

200 25 175 184720 330369 1704531 35.9% 9.8% 0.154 

200 30 170 190208 343733 1699043 35.6% 10.1% 0.157 

200 35 165 193450 356178 1695801 35.2% 10.2% 0.159 

200 40 160 196868 365196 1692383 35.0% 10.4% 0.161 

200 45 155 203448 377316 1685803 35.0% 10.8% 0.165 

200 50 150 210434 387820 1678817 35.2% 11.1% 0.169 

200 55 145 217764 402344 1671487 35.1% 11.5% 0.174 

200 60 140 222479 415696 1666772 34.9% 11.8% 0.176 

200 65 135 226616 436323 1662635 34.2% 12.0% 0.178 

200 70 130 229272 441390 1659979 34.2% 12.1% 0.179 

200 75 125 228393 452800 1660858 33.5% 12.1% 0.178 

200 80 120 238191 475023 1651060 33.4% 12.6% 0.183 

200 85 115 239737 499613 1649514 32.4% 12.7% 0.182 

200 90 110 244804 510741 1644447 32.4% 13.0% 0.185 

200 95 105 250658 525303 1638593 32.3% 13.3% 0.188 

200 100 100 251922 548718 1637329 31.5% 13.3% 0.187 

200 105 95 261394 571980 1627857 31.4% 13.8% 0.192 

200 110 90 265090 599648 1624161 30.7% 14.0% 0.193 

200 115 85 266187 623076 1623064 29.9% 14.1% 0.192 

200 120 80 268965 652207 1620286 29.2% 14.2% 0.191 

200 125 75 277157 688233 1612094 28.7% 14.7% 0.194 

200 130 70 279334 715235 1609917 28.1% 14.8% 0.194 

200 135 65 286987 757896 1602264 27.5% 15.2% 0.196 

200 140 60 289490 796505 1599761 26.7% 15.3% 0.195 

200 145 55 294021 843710 1595230 25.8% 15.6% 0.194 

200 150 50 298963 888271 1590288 25.2% 15.8% 0.194 

200 155 45 307068 957968 1582183 24.3% 16.3% 0.195 

200 160 40 312467 1019601 1576784 23.5% 16.6% 0.194 

200 165 35 317541 1095894 1571710 22.5% 16.8% 0.192 

200 170 30 324668 1199881 1564583 21.3% 17.2% 0.190 

200 175 25 331634 1314967 1557617 20.1% 17.6% 0.188 

200 180 20 339605 1469755 1549646 18.8% 18.0% 0.184 

200 185 15 349260 1685460 1539991 17.2% 18.5% 0.178 

200 190 10 360624 2001187 1528627 15.3% 19.1% 0.170 

200 195 5 377133 2583476 1512118 12.7% 20.0% 0.156 



  72 

 

 

Figure 4.6 Trend of results from MaxSSmap with Needleman-Wunsch with read length 

fixed at 200. 

 

 From Table 4.2 and Figure 4.6, we can find the peak of F-score is produced with 
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Table 4.3 Results from MaxSSmap with Smith-Waterman 

Read 

Length 

Step Overlap True 

Positive 

False 

Positive 

False 

Negative 

Precision Recall F-

score 

Ratio 

200 135 95 393589 4098681 1495662 8.8% 20.8% 0.123 n/a 

200 135 95 310226 684460 1579025 31.2% 16.4% 0.215 0.9 

          500 400 100 373365 1921706 1515886 16.3% 16.4% 0.164 n/a 

500 400 100 303272 371965 1585979 44.9% 16.1% 0.237 0.9 

          1000 900 100 273458 784081 1615793 25.9% 14.5% 0.186 n/a 

1000 900 100 230524 183387 1658727 55.7% 12.2% 0.200 0.9 

 

And the comparison of precision, recall, and F-score depending on the three 

parameter groups is presented in Figure 4.7.  

 
Figure 4.7 Comparison of outputs from MaxSSmap with Smith-Waterman. 
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 To pursuing better performance, we import these output from MaxSSmap and 

Smith-Waterman to the algorithm of Pecan, replacing the exonerate execution in the 

original procedures. Table 4.4 presents the results from the amended Pecan with 

MaxSSmap. 

Table 4.4 Results from Amended Pecan with MaxSSmap 

 
Read 

Length 

Step Overlap True 

Positive 

False 

Positive 

False 

Negative 

Precision Recall F-score Ratio 

500 400 100 335203 286083 1554048 54.0% 17.7% 0.267 n/a 

500 400 100 345714 206787 1543537 62.6% 18.3% 0.283 0.9 

500 400 100 344852 207077 1544399 62.5% 18.3% 0.283 0.85 

500 400 100 346935 194771 1542316 64.0% 18.4% 0.285 0.8 

500 400 100 344117 186397 1545134 64.9% 18.2% 0.284 0.75 

500 400 100 343201 174552 1546050 66.3% 18.2% 0.285 0.7 

 

And the graph presents the trend of the outputs of Pecan according to different ratios: 

 

Figure 4.8 Trend of the outputs of Pecan according to different ratios. 
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Finally, we compare our best results with the published algorithm with the same input in 

Table 4.5. 

Table 4.5 Results Compared with Published Algorithm 

 
 True 

Positive 

False 

Positive 

False 

Negative 

Precision Recall F-score 

GPU 346935 194771 1542316 64.0% 18.4% 0.285 

Pecan 294888 294157 1594363 50.1% 15.6% 0.238 

Lastz 595362 270983879 1293889 2.2% 31.5% 0.005 

Exonerate 114420 7118484 1774831 1.6% 6.1% 0.025 

 

 

4.5 Discussion 

From the experimental results demonstrated in the last section, we can conclude that the 

GPU program combined with the Smith-Waterman and Pecan has a better performance 

than other previously published algorithms. The F-score of GPU is more than 20% higher 

than Pecan, and much better than the two comparison tools: Lastz and Exonerate. The 

reason we chose the two input genomes, cow and mouse, is that the two organisms from 

the Alignathon test sets have the largest phylogenetic distance at 0.6. The outcomes from 

the experiments exhibit that the GPU program combined with efficient alignment tools 

has a strong capacity to calculate the similarities of distant related species. 

 Even for the first two tools we tested in our experiments, the MaxSSmap with 

Needleman-Wunsch, and with Smith-Waterman, higher F-scores yields than the two 

previous published alignment tools, Lastz and Exonerate. The GPU program can not only 

execute with efficient time consuming, but also produce competitive performance in 

genome alignment. 
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