

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ALGORITHMS FOR PRE-MICRORNA CLASSIFICATION

AND A GPU PROGRAM FOR WHOLE GENOME COMPARISON

by

Ling Zhong

MicroRNAs (miRNAs) are non-coding RNAs with approximately 22 nucleotides that are

derived from precursor molecules. These precursor molecules or pre-miRNAs often fold

into stem-loop hairpin structures. However, a large number of sequences with pre-

miRNA-like hairpin can be found in genomes. It is a challenge to distinguish the real pre-

miRNAs from other hairpin sequences with similar stem-loops (referred to as pseudo pre-

miRNAs). The first part of this dissertation presents a new method, called MirID, for

identifying and classifying microRNA precursors. MirID is comprised of three steps.

Initially, a combinatorial feature mining algorithm is developed to identify suitable

feature sets. Then, the feature sets are used to train support vector machines to obtain

classification models, based on which classifier ensemble is constructed. Finally, an

AdaBoost algorithm is adopted to further enhance the accuracy of the classifier ensemble.

Experimental results on a variety of species demonstrate the good performance of the

proposed approach, and its superiority over existing methods.

In the second part of this dissertation, A GPU (Graphics Processing Unit)

program is developed for whole genome comparison. The goal for the research is to

identify the commonalities and differences of two genomes from closely related

organisms, via multiple sequencing alignments by using a seed and extend technique to

choose reliable subsets of exact or near exact matches, which are called anchors. A

rigorous method named Smith-Waterman search is applied for the anchor seeking, but

takes days and months to map millions of bases for mammalian genome sequences. With

GPU programming, which is designed to run in parallel hundreds of short functions

called threads, up to 100X speed up is achieved over similar CPU executions.

ALGORITHMS FOR PRE-MICRORNA CLASSIFICATION

AND A GPU PROGRAM FOR WHOLE GENOME COMPARISON

by

Ling Zhong

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2016

Copyright © 2016 by Ling Zhong

ALL RIGHTS RESERVED

APPROVAL PAGE

ALGORITHMS FOR PRE-MICRORNA CLASSIFICATION

AND A GPU PROGRAM FOR WHOLE GENOME COMPARISON

Ling Zhong

Dr. Usman Roshan, Dissertation Advisor

Associate Professor, Department of Computer Science, NJIT

Date

Dr. Zhi Wei, Committee Member

Associate Professor, Department of Computer Science, NJIT

Date

Dr. James McHugh, Committee Member

Professor, Department of Computer Science, NJIT

Date

Dr. Andrew Sohn, Committee Member

Associate Professor, Department of Computer Science, NJIT

Date

Dr. Songhua Xu, Committee Member

Assistant Professor, Department of Information Systems, NJIT

Date

BIOGRAPHICAL SKETCH

Author: 	 Ling Zhong

Degree: 	 Doctor of Philosophy

Date: 	 August 2016

Undergraduate and Graduate Education

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2016

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2009

• Bachelor of Engineering in Flying Vehicle Design and Applied Mechanics,
Beijing University of Aeronautics and Astronautics, Beijing,
People’s Republic of China, 2001

Major: 	 Computer Science

Presentations and Publications:

Ling Zhong, Junilda Spirollari, Jason T. L. Wang and Dongrong Wen. (2014) "RNA
Classification and Structure Prediction: Algorithms and Case Studies,"
Biological Knowledge Discovery Handbook: Preprocessing, Mining and
Postprocessing of Biological Data, (eds. Mourad Elloumi and Albert Y.
Zomaya), Chapter 31, (pp. 685-702). Hoboken, New Jersey: John Wiley &
Sons, Inc.

Ling Zhong, Jason T. L. Wang, Dongrong Wen, Virginie Aris, Patricia Soteropoulos, and
Bruce A. Shapiro. (2013) "Effective Classification of MicroRNA Precursors
Using Feature Mining and AdaBoost Algorithms." OMICS: A Journal of
Integrative Biology 17(9): 486-493.

Ling Zhong, Jason T. L. Wang, Dongrong Wen, and Bruce A. Shapiro. (2012). "Pre-
miRNA Classification via Combinatorial Feature Mining and Boosting."
Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine: 369-372.

IV

 V

Michael Bao, Miguel Cervantes-Cervantes, Ling Zhong and Jason T. L. Wang. (2012).

"Searching for Non-coding RNAs in Genomic Sequences Using ncRNAscout."

Genomics, Proteomics & Bioinformatics 10(2): 114-121.

 VI

TABLE OF CONTENTS

Chapter

1 INTRODUCTION…………………………………………………………….......

2 EFFECTIVE CLASSIFICATION OF MICRORNA PRECURSURS USING

FEATURE MINING AND ADABOOST ALGORITHM……………….............

2.1 Background……………………...………………………………………..

2.2 Materials and Methods………………………………………………........

2.2.1 Datasets……………………………………………………………

2.2.2 Feature Pool………………………………………………….........

2.2.3 Combinatorial Feature Mining………………...………………….

2.2.4 Boosting…………………………………………………………...

2.3 Result……………………………………………………………………...

2.3.1 Performance Analysis of the MirID Method……………………..

2.3.2 Web Server…………………………………………….………….

2.4 Discussion……………………………………………………….………..

3 ALGORITHM FOR GENE NETWORK INFERENCE: A SURVEY..................

3.1 Background……………………………………………………….………

3.2 Unsupervised GRN Inference Algorithms Based on Steady-State Data….

3.2.1 Network Identification by Multiple Regression (NIR)…………...

3.2.2 GEne Network Inference with Ensemble of Trees (GENIE3)……

3.2.3 Relevance Networks…………………………………………….

3.2.4 Context Likelihood of Relatedness (CLR)………………………..

3.2.5 EULID…………………………………………………………….

3.2.6 Weighted Gene Co-expression Network Analysis GCNA)……...

Page

1

3

3

6

6

8

10

15

17

17

20

23

27

27

29

30

32

35

36

37

38

 VII

TABLE OF CONTENTS

(Continued)

Chapter

3.3 Unsupervised GRN Inference Algorithms Based on Time-Series Data.....

3.3.1 Time-delay ARACNE….…………………………………………

3.3.2 Banjo……..………………………………………………….........

3.3.3 Granger Causality…………….………………...…………………

3.3.4 DDGni………..…………………………………………………...

3.4 Unsupervised GRN Inference Algorithms Using Pipelines……………....

3.5 Supervised or Semi-Supervised GRN Inference Algorithms...….………..

3.6 Integrated Approaches to GRN Inference………………………………...

3.7 Some Preliminary Experimental Results………………………………….

4 A GPU PROGRAM FOR WHOLE GENOME COMPARISON...........................

4.1 Introduction……………………………………………………….………

4.2 Dataset…………………………………………………………………….

4.3 Implementation and Methods……………………………………………..

4.3.1 Needleman-Wunsch Algorithm…………………………………..

4.3.2 Smith-Waterman Algorithm………………………………………

4.3.3 Smith-Waterman Extended with Pecan…………………………...

4.4 Results…………………………………………………………………….

4.5 Discussion………………………………………………………………...

REFERENCES……………………………………………………………….……….

Page

38

38

40

40

42

43

44

46

48

56

56

58

59

62

64

65

68

75

76

 VIII

LIST OF TABLES

Table

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

Summary of Datasets…………………………………………………….

Accuracies of TripletSVM, PMirP, CFM and MirID on Twelve Species...

Accuracies of CFM and MirID on Nine Additional Species……………...

Number of Feature Sets for Each Species in MirID……………………….

Training Time in CPU for Each Species (in Seconds).................................

Sample Data for GENIE3…………………………………………………

Example Data for GENIE3………………………………………………..

Accuracy, Precision, and Recall of Tested GRN Algorithms.…………….

Results from MaxSSmap with Needleman-Wunsch, Various in

Accordance with Different Length of Reads………………………………

Results from MaxSSmap with Needleman-Wunsch on Read Length of

200…………………………………………………………………………

Results from MaxSSmap with Smith-Waterman………………………….

Results from Amended Pecan with MaxSSmap…………………………

Results Compared with Published Algorithm………..……………………

Page

7

20

21

22

23

33

33

55

69

71

73

74

75

 IX

LIST OF FIGURES

Figure

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

Sequence and structure of a hypothetical pre-miRNA and its dot- bracket

notation…………………………………………………………………….

Illustration of the merge and split operations on two feature sets……...….

Algorithm for combinatorial feature mining……………………………….

Results obtained by running NIR on DREAM4 knockout data………...…

Results obtained by running GENIE3 on DREAM4 knockout data……....

Results obtained by running CLR on DREAM4 knockout data……...…...

Results obtained by running TDARACNE on DREAM4 time series data..

Results obtained by running Banjo on DREAM4 time series data………...

Results obtained by running Inferelator on DREAM4 knockout data and

time series data……………………………………………………………..

First phrase of MaxSSmap. The whole reference genome is divided to six

same size fragments with ID numbers from 1 to 6 and fed into six threads

of the GPU. Each thread will execute with one fragment and the short

read, sliding the read with the fragment and looking for the maximum

scoring subsequence. The read is also mapped to the junctions between

fragments to make sure that the read is fully mapped to the

reference……………………………………………………………………

Procedures of the algorithm of Needleman-Wunsh. Given the input of two

sequences x and y, the score matrix is calculated via equations 3.1and 3.2.

The way to obtained the maximum value of each cell in the score matrix

is stored in the traceback matrix: diagonal (maked as D), up (marked as

U), or left (marked as L). By tracing back from the lower right corner of

the traceback matrix, the optimal alignment is built up……………………

Basic pair-HMM for sequence alignment for two sequences, x and y. State

M emits two residues, xi and yj, respectively from the two sequences,

presenting the two residues being aligned together. State Ix emits a residue

in sequence x aligned to a gap, and similarly state Iy emits a residue in

sequence y aligned to a gap too. The optimal similarity is obtained by

applying Needleman-Wunsch algorithm with suitable parameters. The

emission probability function p(.,.) at state M corresponds to a substitution

scoring matrix, at the same time affine gap penalty parameters can be

Page

10

12

14

49

50

51

52

53

54

61

64

 X

4.4

4.5

4.6

4.7

4.8

derived from the transition probabilities δ and ε (Durbin 1998)…………...

Backward Algorithm for calculation of posterior match probabilities…….

Trend of results from MaxSSmap with Needleman-Wunsch with different

read length………………………………………………………………….

Trend of results from MaxSSmap with Needleman-Wunsch with read

length fixed at 200…………………………………………………...…….

Comparison of outputs from MaxSSmap with Smith-Waterman………….

Trend of the outputs of Pecan according to different ratios……...………..

66

68

70

72

73

74

 1

CHAPTER 1

INTRODUCTION

This dissertation investigates several data mining problems that arise in the

computational systems biology field. In the first part of the dissertation, a new approach

for microRNA classification is presented. MicroRNAs (miRNAs) are non-coding RNAs

with approximately 22 nucleotides that are derived from precursor molecules. These

precursor molecules or pre-miRNAs often fold into stem-loop hairpin structures.

However, a large number of sequences with pre-miRNA-like hairpins can be found in

genomes. It is a challenge to distinguish the real pre-miRNAs from other hairpin

sequences with similar stem-loops (referred to as pseudo pre-miRNAs). Several

computational methods have been developed to tackle this challenge. This dissertation

presents a new method, called MirID, for identifying and classifying microRNA

precursors. Seventy-four features from the sequences and secondary structures of pre-

miRNAs were collected; some of these features were taken from previous studies on non-

coding RNA prediction while others were suggested in the RNA folding literature. MirID

is comprised of three steps. Initially, a combinatorial feature mining algorithm is

developed to identify suitable feature sets. Then, the feature sets are used to train support

vector machines to obtain classification models, based on which classifier ensemble is

constructed. Finally, an AdaBoost algorithm is adopted to further enhance the accuracy of

the classifier ensemble. Experimental results on a variety of species demonstrate the good

performance of the proposed approach, and its superiority over existing methods.

 2

In the second part of this dissertation, we present our effort to develop a GPU

(Graphics Processing Unit) program for whole genome comparison. The goal for the

research is to identify the commonalities and differences of two genomes from closely

related organisms, via multiple sequencing alignments by using a seed and extend

technique to choose reliable subsets of exact or near exact matches, which are called

anchors. A rigorous method named Smith-Waterman search will be applied for the

anchor seeking, but it takes days and months to map millions of bases for mammalian

genome sequences. With GPU programming, which is designed to run in parallel

hundreds of short functions called threads, algorithm running can achieve up to 100X

speed up over similar CPU executions.

 3

CHAPTER 2

EFFECTIVE CLASSIFICATION OF MICRORNA PRECURSURS USING

FEATURE MINING AND ADABOOST ALGORITHM

2.1 Background

MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) of approximately 22 nucleotides

that are known to regulate post-transcriptional expression of protein-coding genes (Bartel

2004, Bindra, Wang et al. 2010). Lee et al. (Lee, Feinbaum et al. 1993) first reported that

in C. elegans, lin-4 regulates the translation of lin-14 mRNA via an antisense RNA-RNA

interaction. Since then, many functions of miRNAs have been discovered (Aukerman and

Sakai 2003, Brennecke, Hipfner et al. 2003, Johnston and Hobert 2003, Bushati and

Cohen 2007, Mack 2007). They have been shown to play a very important role in the

transcriptional and post-transcriptional regulation of genes affecting protein levels. They

can have multiple mRNA targets as they bind to the targets with partial

complementarities in animals. In addition, the mRNA targets can be regulated by

multiple microRNAs. They are likely involved in regulation of all biological processes,

and are also found circulating in blood (Mitchell, Parkin et al. 2008, Scholer, Langer et al.

2011). Their expression has been shown to be correlated with the expression of

oncogenes in cancer cells (Sampson, Rong et al. 2007, Zhu, Wu et al. 2008), cancer risk

factors (Wang, Zhang et al. 2007) and drug metabolism (Tsuchiya, Nakajima et al. 2006,

Takagi, Nakajima et al. 2008, Gomez and Ingelman-Sundberg 2009, Pan, Gao et al.

2009). They hold a great potential for pharmacogenomics applications, such as the

tailoring of drugs to the specific cancers and monitoring the response to, and toxicity of,

the drugs in individual patients.

 4

MiRNAs are derived from pre-miRNAs that often fold into stem-loop hairpin

structures. These characteristic stem-loop structures are highly conserved in different

species (Lai, Tomancak et al. 2003). One challenging research problem is to distinguish

pre-miRNAs from other sequences with similar stem-loop structures (referred to as

pseudo pre-miRNAs). Many computational methods have been developed to tackle this

challenge. A common approach is to transform the classification of real and pseudo pre-

miRNAs to a feature selection problem.

Lim et al. (Lim, Glasner et al. 2003) reported some characteristic features in

phylogenetically conserved stem loop pre-miRNAs. Lai et al. (Lai, Tomancak et al. 2003)

considered hairpin structures predicted by mfold (Zuker 2003) as well as the nucleotide

divergence of pre-miRNAs. Xue et al. (Xue, Li et al. 2005) decomposed stem-loop

hairpin structures into local structure-sequence features, and used these features in

combination with a support vector machine to classify pre-miRNAs. Bentwich et al.

(Bentwich, Avniel et al. 2005) proposed a scoring function for pre-miRNAs with

thermodynamic stability and certain structural features, which capture the global

properties of the hairpin structures in the pre-miRNAs. Ng and Mishra (Ng and Mishra

2007) employed a Gaussian radial basis function kernel as a similarity measure for 29

global and intrinsic hairpin folding attributes, and characterized pre-miRNAs based on

their dinucleotide subsequences, hairpin folding, non-linear statistical thermodynamics

and topology. Huang et al. (Huang, Fan et al. 2007) evaluated features valuable for pre-

miRNA classification, such as the local secondary structure differences of the stem

regions of real pre-miRNA and pseudo pre-miRNA hairpins, and established correlations

between different types of mutations and the secondary structures of real pre-miRNAs.

 5

More recently, Zhao et al. (Zhao, Wang et al. 2010) considered structure-sequence

features and minimum free energy of RNA secondary structure, along with the double

helix structure with free nucleotides and base-pairing features. In general, the quality of

selected features directly affects the classification accuracy achieved by a method.

In this dissertation, we present a combinatorial feature mining method for pre-

miRNA classification. Our method, named MirID, identifies and classifies an input RNA

sequence as a pre-miRNA or not. MirID considers different combinations of features

extracted from pre-miRNAs. For each combination (or each set of features), we create a

support vector machine (SVM) model (Cortes and Vapnik 1995, Fan, Chen et al. 2005)

based on that feature set. SVM models whose accuracies are above a user-determined

threshold are then used to build a classifier ensemble. This classifier ensemble will be

refined through several iterations until its accuracy cannot be enhanced further. Next, we

construct new feature sets based on the best feature sets obtained so far by performing

pairwise merge and split operations on the best feature sets. Then, we repeat the above

procedure iteratively by building a SVM model based on each new feature set,

constructing a classifier ensemble from the SVM models whose accuracies are above the

newly computed threshold, and refining the ensemble until it cannot be improved further.

Finally, we output the best classifier ensemble obtained through this iterative procedure.

To further enhance the accuracy of the classifier ensemble, we apply a boosting algorithm

to the ensemble to obtain a strong classifier, which is used for pre-miRNA classification.

The study reported here extends our previous work (Zhong, Wang et al. 2012)

where we sketched the algorithms utilized by MirID. The extensions include (1) a

detailed description of the MirID algorithms with a complete flowchart; (2) a larger data

 6

set containing twenty one species, as opposed to eleven species considered in (Zhong,

Wang et al. 2012), with new sequences; (3) new feature values mined from these new

sequences and hence, new (SVM) classification models obtained from the new data; (4) a

thorough experimental study for evaluating the performance and behavior of the MirID

algorithms; (5) a web server for online access as well as a downloadable tool for local use;

and (6) discussion of potential applications of the software in genomics and medicine.

2.2 Materials and Methods

2.2.1 Datasets

We collected real pre-miRNAs and pseudo pre-miRNAs from 21 species, some of which

were studied previously while others have not been explored. This collection is

comprehensive, covering a wide variety of species, from viruses to humans. The RNA

sequences were evenly divided into training data and test data. Table 2.1 presents a

summary of the data. The first column of Table 2.1 shows a species or organism name.

The second column of Table 2.1 shows the number of training sequences followed by the

number of test sequences with respect to the organism’s real pre-miRNAs. The third

column of Table 2.1 shows the number of training sequences followed by the number of

test sequences with respect to the organism’s pseudo pre-miRNAs. As an example,

referring to Arabidopsis thaliana in Table 2.1, its training set contains 66 real pre-

miRNAs and 923 pseudo pre-miRNAs; its test set contains 67 real pre-miRNAs and 924

pseudo pre-miRNAs.

 7

Table 2.1 Summary of Datasets

Species Real pre-miRNA Pseudo pre-miRNA

Arabidopsis thaliana 66, 67 923, 924

Caenorhabditis briggsae 66, 67 437, 438

Caenorhabditis elegans 84, 85 595, 596

Canis familiaris 161, 161 904, 905

Ciona intestinalis 160, 160 733, 734

Danio rerio 170, 170 1071, 1072

Drosophila melanogaster 81, 82 694, 694

Drosophila pseudoobscura 98, 99 495, 495

Epstein barr virus 12, 13 119, 119

Gallus gallus

Homo sapiens

241, 241

504, 504

1186, 1186

1999, 2000

Macaca mulatta 222, 223 1086, 1086

Medicago truncatula 111, 111 116, 116

Mus musculus 315, 315 2019, 2019

Oryza sativa 172, 172 522, 523

Physcomitrella patens 73, 74 703, 704

Populus trichocarpa 94, 95 809, 810

Pristionchus pacificus 60, 61 58, 58

Rattus norvegicus 193, 193 1238, 1238

Schmidtea mediterranea 72, 73 201, 202

Taeniopygia guttata 94, 95 483, 483

The real pre-miRNAs were downloaded from miRBase available at

http://www.mirbase.org/ (Kozomara and Griffiths-Jones 2011). We used RNAfold

(Hofacker 2003) to predict the secondary structures of all the RNA sequences. The

lengths of the real pre-miRNAs in the final dataset ranged from 60 to 120 nt. The pseudo

pre-miRNAs used in this study were collected from GenBank

(http://www.ncbi.nlm.nih.gov/genbank/). As in (Xue, Li et al. 2005), we searched for the

protein-coding regions of the genome sequences of the twenty one species in Table 2.1,

and divided the regions into short sequences. The lengths of these short sequences were

randomly generated, ranging from 60 to 120 nt. The pseudo pre-miRNAs were chosen

from these short sequences. The criteria used in choosing the pseudo pre-miRNAs are: (i)

 8

they have a stem-loop hairpin structure, (ii) they contain at least 18 base pairs, including

Watson-Crick and wobble base pairs, on the stem region of the stem-loop structure, and

(iii) their secondary structure has a maximum of -15 kcal/mol free energy without

multiple hairpin loops (Kozomara and Griffiths-Jones 2011). These criteria ensure that

the secondary structures of the pseudo pre-miRNAs are similar to those of the real pre-

miRNAs.

2.2.2 Feature Pool

In designing our pre-miRNA classification method, we examined multiple features

extracted from a pre-miRNA sequence and its secondary structure. Some of these

features were taken from our previous studies on ncRNA prediction (Wang and Wu 2006,

Griesmer, Cervantes-Cervantes et al. 2011) while others were suggested in the literature

(Sewer, Paul et al. 2005, Xue, Li et al. 2005, Zheng, Hsu et al. 2006). These features

included the sequence length, the number of base pairs, GC content, the number of

nucleotides contained in the hairpin loop (i.e., the loop size), the free energy of the

sequence’s secondary structure obtained from RNAfold (Hofacker 2003), the number of

bulge loops, and the size of the largest bulge loop in the secondary structure.

In addition, we considered the features described in (Zheng, Hsu et al. 2006).

These features included the difference of the lengths of the two tails in the secondary

structure where a tail represented the strand of unpaired bases in the 5’ or 3’ end of the

structure, the number of tails, and the length of the larger tail. Besides, several combined

features were considered. They included the ratio between the number of base pairs and

the sequence length, the length difference of two tails plus the larger tail length, the size

 9

of the hairpin loop plus the larger tail length, the size of the hairpin loop plus the largest

bulge size, the ratio between the larger tail length and the sequence length, the ratio

between the size of the hairpin loop and the sequence length, the ratio between the largest

bulge size and the sequence length, the ratio between the largest bulge size and the

number of base pairs, the normalized free energy (Spirollari, Wang et al. 2009), which is

the minimum free energy of the sequence’s secondary structure divided by the sequence

length, and the ratio between the normalized free energy and the GC content.

The next set of features included the triplets of structure-sequence elements

described in (Xue, Li et al. 2005). Here we used the dot-bracket notation (Hofacker 2003)

to represent an RNA secondary structure. Figure 2.1 shows the sequence and structure of

a hypothetical pre-miRNA and its dot-bracket notation. A triplet is composed of three

contiguous structure elements (bases or base pairs) (Liu, Wang et al. 2005) that

correspond to three contiguous nucleotides along with the middle nucleotide. For

example, consider the first three dots (bases) and their corresponding nucleotides AAA in

Figure 2.1. The middle nucleotide is A. Thus, the structure-sequence elements “A...”

constitute a triplet. As another example, consider the first three brackets (base pairs) and

their corresponding nucleotides UUG in Figure 2.1. The middle nucleotide is U. Thus,

the structure-sequence elements “U(((” constitute a triplet. There are 32 triplets, and

hence, 32 such features in total.

Finally, we considered the symmetric and asymmetric loops defined in (Sewer,

Paul et al. 2005). We refer to the portion of the sequence from the 5’ end to the hairpin

loop as the left arm, and the portion of the sequence from the hairpin loop to the 3’ end as

the right arm. In a symmetric (internal) loop, the number of nucleotides in the left arm

 10

equals the number of nucleotides in the right arm. In an asymmetric (internal) loop, the

number of nucleotides in the left arm is different from the number of nucleotides in the

right arm. Features related to these loops included the size of each loop, the average size

of the loops, and the average distance between the loops. Other features included the

proportion of A/C/G/U in the stem, and the proportion of A-U/C-G/G-U base pairs in the

stem. Totally, there are 74 features in the feature pool.

Figure 2.1 Sequence and structure of a hypothetical pre-miRNA and its dot-bracket

notation.

2.2.3 Combinatorial Feature Mining

MirID adopts a combinatorial feature mining algorithm for pre-miRNA classification.

Initially the algorithm randomly generates N feature sets from the feature pool. (The

default value of N used in this study is 100.) Each feature set contains between 1 and 150

features, randomly chosen with replacement from the feature pool. Some features may

repeatedly occur in a feature set; thus a bagging approach is used here (Breiman 1996).

 11

Duplicate features have more weights than the other features in the feature set. The

numbers 1 and 150 are chosen, to ensure that there are enough feature sets containing

duplicate features. We then build a SVM model based on each feature set using training

sequences, and apply the classification model to test sequences to calculate the accuracy

of the model. The SVM used in this study is the LIBSVM package downloaded from

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (Fan, Chen et al. 2005). We use the polynomial

kernel provided in the LIBSVM package. The polynomial kernel achieves the best

performance among all kernel functions included in the package.

Then, we remove the SVM models whose accuracies are less than a user-

determined threshold t. (The default value of t used in this study is 0.8.) The feature sets

used to build those removed SVM models are also eliminated from further consideration.

We construct a classifier ensemble from the remaining SVM models. The ensemble

works by taking the majority vote from the individual SVM models used to build the

classifier ensemble. This ensemble will be refined through several iterations until its

accuracy cannot be enhanced further. In each iteration, the user-determined threshold t is

incremented by a step value, so that more accurate SVM models are used to construct a

(hopefully) better classifier ensemble in the next iteration. (The default value of step used

in this study is 0.005.)

It is likely that different combinations of remaining features may yield an even

better classifier. Our algorithm then performs pairwise merge and split operations on the

set Sb of feature sets used to build the best classifier ensemble obtained so far. In doing so,

MirID takes four steps: (1) picks each pair of feature sets s1 and s2 in Sb; (2) merges s1

and s2 into a single feature set s3 with, say p, features; (3) randomly generates a number q,

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

 12

q < p; (4) randomly assigns q features in s3 into a set s’1 and assigns the remaining p - q

features into another set s’2. Thus, these four steps take two feature sets s1 and s2 in Sb as

input and produce two new feature sets s’1 and s’2 as output. Figure 2.2 illustrates how

the merge and split operations work on two feature sets.

Figure 2.2 Illustration of the merge and split operations on two feature sets.

These pairwise merge and split operations are applied to the feature sets used to

build the best classifier ensemble obtained so far, to generate new feature sets. The new

feature sets are then used to build new SVM models. Accurate new SVM models, whose

accuracies are greater than or equal to the newly computed threshold t, are then used to

build a new classifier ensemble. This procedure is repeated several times to obtain a best

classifier ensemble. Figure 2.3 summarizes our feature mining algorithm, whose output is

the best classifier ensemble along with the component SVM models (feature sets) used to

build the ensemble. Notice that in the feature mining algorithm in Figure 2.3, it is

 13

possible that, after removing SVM models/feature sets with accuracy < t, there is no

remaining feature set, and hence, Sr becomes empty. Under this circumstance, the

classifier ensemble constructed based on Sr is empty, and the accuracy of the classifier

ensemble is 0.

 14

Figure 2.3 Algorithm for combinatorial feature mining.

 15

2.2.4 Boosting

The performance of a classification algorithm can be further enhanced through boosting.

We apply AdaBoost (Freund and Schapire 1997, Schapire 1999, Bindewald and Shapiro

2006) to the classifier ensemble produced by our feature mining algorithm. Specifically,

we treat the classifier ensemble as a weak classifier and continue refining it into a strong

classifier through an iterative procedure. Let X be a set of sequences x1, x2, . . . , xm where

xi, 1 ≤ i ≤ m, is associated with a label yi such that

miRNA-pre pseudo a is if 1

miRNA -pre real a is if 1

i

i

i
x

x
y (2.1)

The AdaBoost algorithm works with K iterations. (The default value of K used in this

study is 20.) In iteration k, 1 ≤ k ≤ K, the algorithm updates a weight function Wk as

explained below, which will be used in selecting training sequences in iteration k + 1.

Initially, every sequence has an equal weight, i.e., W0(xi) = 1/m, 1 ≤ i ≤ m. In iteration k,

the algorithm samples 1/3 sequences with replacement from X based on the weight

function Wk-1 to form a training set Xk. The set Xk is then used to train a weak classifier Hk,

which classifies each sequence xi as either a real pre-miRNA or a pseudo pre-miRNA.

That is,

miRNA-pre pseudo a as classifies 1

miRNA -pre real a as classifies 1

ik

ik

ik
xH

xH
xH (2.2)

 16

Let Ek = [xi | Hk (xi) ≠ yi]. The error rate εk of Hk is:

ki Ex

ikk xW 1 (2.3)

Let

k

k

k ln

1

2

1
 (2.4)

The algorithm updates Wk for each sequence xi, 1 ≤ i ≤ m, as follows:

iik

k

ik

iik

k

ik

ik

yxHe
Z

xW

yxHe
Z

xW

xW
k

k

)(if
)(

)(if
)(

1

1

k

ikikik

Z

xHyexpxW
)(1

(2.5)

where Zk is a normalization factor chosen such that Wk is normally distributed. Thus, the

sequences causing classification errors in iteration k will have a greater probability of

being selected as training sequences for constructing the weak classifier Hk+1 in iteration

k+1. Using this technique, each weak classifier should have greater accuracy than its

predecessor. The final, strong classifier H combines the vote of each individual weak

 17

classifier Hk, 1 ≤ k ≤ K, where the weight of each weak classifier’s vote is a function of

its accuracy. Specifically, for an unlabeled test sequence x, H(x) is calculated as follows:

K

k

kk xHsignxH
1

 (2.6)

The function sign indicates that if the sum inside the parentheses is greater than or equal

to zero, then H classifies x as positive (i.e., a real pre-miRNA); otherwise H classifies x as

negative (i.e., a pseudo pre-miRNA).

2.3 Results

2.3.1 Performance Analysis of the MirID Method

We carried out a series of experiments to evaluate the proposed MirID method. All the

experiments were performed on a 2 GHz Pentium 4 PC having a memory of 2G bytes.

The operating system was Cygwin on Windows XP and the algorithms were

implemented in Perl. To understand the effect of boosting, we also considered using the

combinatorial feature mining algorithm alone to classify pre-miRNAs, and referred to it

as the CFM method. The performance measure used here is accuracy, defined as follows.

A method is said to classify a test sequence correctly if the sequence is a real pre-miRNA

(pseudo pre-miRNA, respectively) and the method indicates that the sequence is indeed a

real pre-miRNA (pseudo pre-miRNA, respectively). A method is said to classify a test

sequence incorrectly if the sequence is a real pre-miRNA (pseudo pre-miRNA,

respectively) but the method mistakenly indicates that the sequence is a pseudo pre-

miRNA (real pre-miRNA, respectively). For each species, the accuracy of a method is

 18

defined as the number of correctly classified test sequences of that species divided by the

total number of test sequences of that species.

We first evaluated how the number of initial feature sets, N, affects the

performance of CFM and MirID. As N increases, more feature sets are generated initially.

This allows the feature mining algorithm to construct a classifier ensemble using more

diverse feature sets, and hence, the accuracy of the classifier ensemble increases. On the

other hand, as N increases, the inner loop in Figure 2.3 is run more times; as a

consequence, the running time increases. MirID requires more time than CFM, due to the

extra time spent in boosting. MirID in general is more accurate than CFM, indicating the

benefit of including the boosting algorithm.

We next evaluated how the threshold, t, used in the feature mining algorithm

affects the performance of CFM and MirID. When t is very large (e.g., t > 0.95), the

accuracies of the methods drop sharply. This happens because the accuracies of most

SVM models are less than 0.95 (i.e., 95%), and hence, these SVM models are eliminated

from further consideration early in the feature mining algorithm, cf. Figure 2.3. When t

approaches 1, it is likely that the set Sb returned by the feature mining algorithm is an

empty set, and therefore the classifier ensemble constructed based on Sb is also empty,

yielding an accuracy of 0. As t increases, fewer feature sets qualify and the set Sr is

smaller. As a result, the inner loop in Figure 2.3 is executed fewer times, and hence, the

running time decreases.

Then we evaluated how the value, step, used to increment the threshold t in each

iteration of the inner loop in Figure 2.3 affects the performance of CFM and MirID. With

the default values of N and t used in this study, the feature mining algorithm is able to

 19

produce a classifier ensemble with high accuracy. The value of step has little impact on

the accuracies of the proposed methods. However, as step increases, fewer iterations of

the inner loop in Figure 2.3 are executed, and as a consequence, the running time

decreases.

We also conducted experiments to test different numbers of iterations, K, in the

boosting algorithm. It was found that when K is sufficiently large (e.g., K ≥ 20), the

behavior of the boosting algorithm becomes stable, with the accuracy approaching 1. On

the other hand, when K is large, more running time will be needed.

Finally, we compared CFM and MirID with two closely related methods, PMirP

(Zhao, Wang et al. 2010) and TripletSVM (Xue, Li et al. 2005). Like our methods, both

PMirP and TripletSVM were implemented using support vector machines. PMirP

adopted a hybrid coding scheme, combining features such as free bases, base pairs,

minimum free energy of secondary structure, among others. TripletSVM used triplets of

structure-sequence elements, which also were included in our feature pool. Table 2.2

shows the accuracies of the four methods on twelve species taken from Table 2.1. These

twelve species were used to pre-train PMirP and TripletSVM, and available from the

tools. For each species, the highest accuracy yielded by a tool is in boldface. It can be

seen from Table 2.2 that MirID is better than or as good as the existing tools on all the

species except Gallus gallus and Oryza sativa. For Gallus gallus and Oryza sativa,

PMirP achieves higher accuracies.

 20

Table 2.2 Accuracies of TripletSVM, PMirP, CFM and MirID on Twelve Species

Species TripletSVM PMirP CFM MirID

Arabidopsis thaliana 92 96 99 100

Caenorhabditis briggsae 96 97 98 100

Caenorhabditis elegans 86 86 97 98

Danio rerio 67 83 98 99

Drosophila melanogaster 92 96 97 99

Drosophila pseudoobscura 90 92 98 100

Epstein barr virus 100 80 98 100

Gallus gallus

Homo sapiens

85

93
100

95

96

93

96

95

Mus musculus 94 94 95 97

Oryza sativa 95 100 97 99

Rattus norvegicus 80 92 97 98
The unit of each number in the table is percentage (%).

2.3.2 Web Server

We have implemented MirID using Perl into a web server, accessible at

https://web.njit.edu/~lz25/cgi-bin/boost/. The web server accepts a test sequence as input

and classifies the test sequence as a pre-miRNA or not. We pre-train our web server using

the training sequences given in Table 2.1. In addition to the twelve species available from

the PMirP and TripletSVM web servers (Xue, Li et al. 2005, Zhao, Wang et al. 2010), we

pre-train our web server using nine additional species (shown in Table 2.1 but not in

Table 2.2). Our tool achieves high accuracies on these nine species, as shown in Table

2.3. (The PMirP and TripletSVM web servers were not pre-trained on these nine species,

and hence, we only show the results for CFM and MirID here.) MirID is more accurate

than CFM, due to the boosting algorithm.

 21

Table 2.3 Accuracies of CFM and MirID on Nine Additional Species

Species CFM MirID

Canis familiaris 97 100

Ciona intestinalis 94 100

Macaca mulatta 96 96

Medicago truncatula 95 100

Physcomitrella patens 100 100

Populus trichocarpa 97 99

Pristionchus pacificus 96 100

Schmidtea mediterranea 95 99

Taeniopygia guttata 95 99

The unit of each number in the table is percentage (%).

Table 2.4 shows, for each species in Table 2.1, the number of feature sets

produced by our feature mining algorithm. Table 2.5 shows the CPU time (in seconds)

spent in pre-training the MirID web server. The training time depends on the number of

feature sets, the number of features in each feature set, the number of iterations used by

the feature mining algorithm, and the number of iterations used in the boosting algorithm.

Notice that this training is done once, and no more training is needed on the test data. It

takes less than a second to classify an unlabeled test sequence.

 22

Table 2.4 Number of Feature Sets for Each Species in MirID

Species Number of feature sets

Arabidopsis thaliana 1

Caenorhabditis briggsae 6

Caenorhabditis elegans 1

Canis familiaris 1

Ciona intestinalis 7

Danio rerio 11

Drosophila melanogaster 3

Drosophila pseudoobscura 4

Epstein barr virus 5

Gallus gallus

Homo sapiens

3

1

Macaca mulatta 1

Medicago truncatula 1

Mus musculus 3

Oryza sativa 3

Physcomitrella patens 1

Populus trichocarpa 1

Pristionchus pacificus 1

Rattus norvegicus 10

Schmidtea mediterranea 32

Taeniopygia guttata 5

 23

Table 2.5 Training Time in CPU for Each Species (in Seconds)

Species Training time (in seconds)

Arabidopsis thaliana 80

Caenorhabditis briggsae 348

Caenorhabditis elegans 103

Canis familiaris 153

Ciona intestinalis 269

Danio rerio 1272

Drosophila melanogaster 199

Drosophila pseudoobscura 196

Epstein barr virus 113

Gallus gallus

Homo sapiens

274

1530

Macaca mulatta 243

Medicago truncatula 104

Mus musculus 786

Oryza sativa 214

Physcomitrella patens 90

Populus trichocarpa 138

Pristionchus pacificus 63

Rattus norvegicus 349

Schmidtea mediterranea 478

Taeniopygia guttata 156

2.4 Discussion

In this chapter, we present a new method (MirID) and a web server for pre-miRNA

classification. Empirical results showed that MirID outperforms two closely related

methods, PMirP and TripletSVM, on the majority of species tested in the experiments.

Since all the three methods were implemented using support vector machines with similar

features, we conclude that the superiority of our method is due to its novel feature mining

and boosting algorithms.

Both the feature mining and boosting algorithms contain user-specified

parameters. As indicated by our experimental results in the performance analysis section,

changing these parameter values may affect the running time and accuracy of our method.

 24

The MirID web server adopts the default parameter values as used in this study, to

achieve good and stable performance. The server is able to process sequences of a variety

of species, from viruses to humans. It does not include bacteria, however. While there are

small regulatory RNAs in bacteria, bacteria do not have true miRNAs (Gottesman 2005,

Tjaden, Goodwin et al. 2006). Bacterial miRNA will be added to our server when such

data is validated and becomes available in public databases.

Currently, the MirID web server is capable of classifying one test sequence at a

time, predicting whether the test sequence is a pre-miRNA or not. When multiple test

sequences must be classified, we suggest that the user run the tool locally in a batch mode.

Instructions for downloading the tool and running the tool locally can be obtained from

https://web.njit.edu/~lz25/cgi-bin/boost/MirID-download.

MicroRNAs play important roles in most biological processes, including cell

proliferation, tissue differentiation, embryonic development, to name a few (Aukerman

(Aukerman and Sakai 2003, Brennecke, Hipfner et al. 2003, Johnston and Hobert 2003,

Bushati and Cohen 2007, Tang, Zhang et al. 2009, Xu, Yu et al. 2009). They interact with

target mRNAs at specific sites to induce cleavage of the message or inhibit translation

(John, Enright et al. 2004). They can have multiple mRNA targets as they bind to the

targets with partial complementarities in animals. In addition, an mRNA target can be

regulated by multiple miRNAs at different loci with different effects. This adds to the

complexity of finding out the mRNA targets in genomes (John, Enright et al. 2004).

The total number of microRNA discovered continues growing every day.

According to the latest miRBase release (version 19, August 2012), accessible at

http://www.mirbase.org, there are 2,019 unique mature human miRNAs up from 894 in

http://bioinformatics.njit.edu/MirID-download
http://bioinformatics.njit.edu/MirID-download
http://www.mirbase.org/

 25

the version 14. There seems to be a correlation between the tissue-specificity of a human

miRNA and the number of diseases the miRNA is associated with (Lu, Zhang et al.

2008). The fact that microRNAs are found circulating in blood (Mitchell, Parkin et al.

2008, Scholer, Langer et al. 2011) holds great promise for the development of diagnostic

tools that can be used in multiple ways, from non-invasive pregnancy diagnostic tests to

cancer diagnostics and treatment. A tool like MirID for predicting pre-miRNAs will

contribute to our basic understanding of the roles played by microRNA in regulating

many biological processes, and their contribution to disease development and progression.

A potential application for the MirID tool is in the area of individualized genomic

analysis. With the advent of high-throughput sequencing technologies, millions of short

reads can now be generated from a library of nucleotide sequences. These technologies

have catalyzed a new era of personalized medicine based on individualized genomic

analysis (Anderson and Schrijver 2010) Determining levels of known and novel

microRNA from small RNA sequencing data is an important subject in this new era (An,

Lai et al. 2013). With next-generation sequencing platforms, several prostate expressed

microRNAs related to prostate cancer have been identified (Ribas, Ni et al. 2009, Ostling,

Leivonen et al. 2011, Wang, Chatterjee et al. 2011, Watahiki, Wang et al. 2011, Martens-

Uzunova, Jalava et al. 2012). As a consequence, exploring microRNAs and their

functions continues to be a highly active area of research. The MirID tool developed from

this work can be used to assess aggregated RNAseq reads for pre-miRNA secondary

structure potential. The tool can be combined and integrated with other miRNA profiling

tools (Hendrix, Levine et al. 2010, Mathelier and Carbone 2010, Hackenberg, Rodriguez-

 26

Ezpeleta et al. 2011, Friedlander, Mackowiak et al. 2012) for applications to personalized

medicine.

 27

CHAPTER 3

ALGORITHM FOR GENE NETWORK INFERENCE: A SURVEY

3.1 Background

In living organisms, cells contain thousands of genes, working in concert to direct the

cells’ functions while ensuring their fitness, multiplication, and survival. Whereas some

genes are continuously expressed, others only do so in response to specific stimuli, at the

right time, and to the proper extent, thus ensuring appropriate functional outcomes. Some

genes have highly robust regulation mechanisms of their expression, which is controlled

by stringent programs. In eukaryotic species, for example, the control of developmental

gene expression is significantly similar in a given cell type from one individual to another

(Macneil and Walhout 2011). Nonetheless, the timing and scale for the expression of

other genes can be more variable, resulting in expression levels that frequently change

and which differ from cell to cell and from individual to individual. Research on gene

expression directing physiological responses to developmental cues and environmental

stresses is, therefore, greatly beneficial. Currently, we are focusing on the analysis of

differential gene expression at the level of systems biology. Gene regulatory networks

(GRNs) illustrate interactions between large numbers of genes and their regulatory

mechanisms. Graphic diagrams are applied to map all the interactions and visualize the

regulatory relationships. Further characterization of GRNs has already uncovered global

principles of gene regulation (MacNeil and Walhout 2011).

Specifically, we are using computing algorithms to infer gene regulatory networks

according to the expression values of genes and their changing platforms. This can be

 28

accomplished with basis on inferring causality. If gene A can cause gene B to switch to a

high expression value, then B can be stopped from taking such a value after making B

less responsive or A less active, or by interfering with the link from A to B. Conversely,

B can achieve a higher expression value if A’s expression value is increased itself, or by

enhancing the efficiency of the link from A to B. We call such a relationship a causal link.

The expression of gene A may influence the expression of gene B as follows: gene A is

transcribed to RNA and then translated to a protein, which in turn may bind to the

promoter of B, either allowing or preventing the transcription of gene B. Comparing the

expression values of A and B under particular circumstances versus wild-type data (i.e.,

expression values from the most common phenotype of a given organism), it can be

determined whether or not there is a relationship between genes A and B. Based on such

predictions, a gene regulatory network can be graphed (Lingeman and Shasha 2012).

In this chapter, we review state-of-the-art algorithms for the inference of gene

regulatory networks (GRNs) from microarray gene expression data. A gene regulatory

network is represented by a directed graph, in which nodes represent transcription factors

or genes and an edge represents the transcriptional regulation relationship between two

genes. The algorithms for GRN inference can be categorized into four groups:

unsupervised, semi-supervised, supervised and integrated methods. In unsupervised

algorithms, a network is unknown, and the algorithms predict the entire network using

time series or steady-state gene expression data. For supervised and semi-supervised

algorithms, a portion of a network is known in advance, possibly from publicly available

databases, and the algorithms use that portion as prior knowledge to predict remaining

edges in the network. Integrated methods combine unsupervised or supervised algorithms,

 29

coupled with prior knowledge from literature mining or information integration

techniques. Here, we survey the various techniques employed in the unsupervised, semi-

supervised, supervised and integrated methods, and present a taxonomy of existing

algorithms.

3.2 Unsupervised GRN Inference Algorithms Based on Steady-State Data

In this section we review six algorithms for inferring gene regulatory networks using

steady-state data. If the expression values of genes of one organism will not change

unless its conditions are changed in some way, this organism is said to be in steady state.

For instance, an organism is in a certain steady state if it under a low nutrients condition;

another state under a high nutrients condition; and yet another, if some mutation has

happened or transient effects have changed or disappeared altogether. Steady-state data

can be obtained from experiments where one or more genes have been knocked out or

from reported expression values that have been significantly changed or perturbed in

other way. If some changes in the network can be noticed when one gene is absent or it

has been perturbed, one can determine which other gene or genes it influences.

Many published algorithms were tested using the data are from DREAM4 in

silico datasets (Greenfield, Madar et al. 2010). DREAM stands for Dialogue for Reverse

Engineering Assessments and Methods and provides a set of networks that can be used to

develop and test GRNs. The networks presented by DREAM make some simplifications

of naturally occurring networks found in a cell, and the corresponding datasets are ideal

in their completeness. The datasets include results from knockout and knockdown

 30

experiments, multifactorial perturbations, time series and dual knockouts. These datasets

are considered as standard benchmark data in the field.

3.2.1 Network Identification by Multiple Regressions (NIR)

The way the Network Identification by Multiple Regression (NIR) (Gardner, di Bernardo

et al. 2003) infers gene networks is by using multiple regression. It uses steady-state data

resulting from a known initial perturbation. Basically, we assume that a gene network can

be described with a series of linear equations, approximately:

dX/dt = AX + U (3.1)

where X is an n by m matrix of steady-state expression data. In X, each column represents

an experiment and the rows represent genes. A is an n by n normally distributed matrix

that represents the network model, which implies that every gene’s expression is a linear

function of the sum of a row of coefficients from A and the gene values as a column from

X. U is an n by m matrix which represents the degree to which the gene is perturbed in

each experiment (values from 0 and 1). For example, the degree would be 1 if the gene is

totally knocked out. If a gene is knocked down, it might have a value of 0.5. Genes have

values of 0 if they are not perturbed at all. dX/dt shows how the expression values change

per unit of time. As NIR is applied with steady-state data (which means data would

change little time by time), dX/dt is 0. Therefore, the above equation can be reduced to:

–U = AX (3.2)

Our goal is to select a promising network model A by using multiple regressions. From

the beginning we just take one row ai from A and one column xj from X, and try to solve

uij of U. We need to achieve all the values in ai, and multiplied by xj, to have the sum of

 31

all results equals to –uij. We will aim to get the best solution, as there would be many

possible answers.

A multiple linear regression model that can account for more than one

independent variable will be created as a solution in NIR. The independent variables

consist of one possible set of k out of n genes, where k is a user-defined parameter that

enforces sparsity in A in order to limit the number of dependencies between genes, and –

uij is the dependent value for the target gene/experiment. We repeat all these steps for

each gene/experiment combination. The solution matrix A is derived from the model in

which each gene has best weight.

NIT uses least squares regression to minimize the sum of squared errors (SSE):

𝑆𝑆𝐸𝑖
𝑘 =∑(𝑦𝑖𝑙 − 𝑏𝑖

𝑇 ∙ 𝑧𝑙)
2

𝑚

𝑙=1

 (3.3)

where k represents the number of genes being examined, i is the target gene, l is the

current experiment, yil is the negative perturbation value for gene i in experiments l, b are

the model weights for gene i, and zl are the expression values from the currently selected

k genes in experiment l. Our goal is to choose weights b to minimize the sum of squared

errors. In fact, the squared error presents the difference between how much the target

gene was perturbed and the perturbation that the current model shows. For example, if the

gene under a current perturbation has U have a value of 1, then we propose to find a

number k of weight b (at least one is non-zero) whose dot product with the current

expression values is equal to –1 (since yil = –uil), which makes the error 0. All the edges

with a non-zero weight indicate that the source genes regulate the target gene i. The basic

technique to choose b weights consists of randomly initiating their values, then refining

them.

 32

3.2.2 GEne Network Inference with Ensemble of Trees (GENIE3)

GENIE3 (Huynh-Thu, Irrthum et al. 2010) is an algorithm by using an ensemble of

regression trees to predict networks. All the expression data applied to the GENIE3

algorithm are normalized to unit variance (i.e., variance of 1) and mean 0. There are three

steps in the algorithm: 1) builds up an ensemble of regression trees for each gene; 2)

ranks potential regulator in each regression tree; 3) ranks all of the inferred edges.

At first, GENIE3 creates a regression tree based on the mutation of expression

values of each gene g in the network. To create regression trees, the whole dataset is split

recursively into smaller subsets. According to the expression values of genes other than g,

the dataset will be split on the nodes of the regression tree. To avoid confusion with the

term node in the final result, the regression tree nodes here are called decision points.

Each sub-dataset divided by a decision point has a small variance in the target gene’s

expression values. For a single gene x other than g, we pick up a threshold, based on

which the division is made, according to the idea that if gene x causes a split in the

regression tree for target g, there is a potential causality from x to g. Then the expression

value of gene x in each experiment will be checked. The experiment with the expression

value of x above the threshold goes to one group or to another group if the expression

value is below the threshold. The splitting continued recursively until no more splits can

be made.

As an example, consider Table 3.1, which shows an example of data for GENIE3.

The basic idea of the GENIE3 algorithm is to split all the experiments into two groups

according to expression values so that each group has minimal variance on the target

gene.

 33

Table 3.1 Sample Data for GENIE3

Experiments

Genes

G1 G2 G3 Target

E1 0.4 0.8 0.4 0.5

E2 0.3 0.2 0.3 0.9

E3 0.5 0.3 0.7 0.8

Source: Lingeman, J. M. and D. Shasha (2012). Network inference in molecular biology. New York,

Springer.

In Table 3.1, the ideal split is to have experiments E1 alone in one group, and E2

and E3 in the other group. It is clear that G2 is the potential source gene because G2’s

value in E1 is distinguished from its value in E2 and E3. Here the threshold is defined as

0.5 as it is between G2’s E1 and E3 values. Any values above 0.5 go to group 1, and any

values less than or equal to 0.5 go to group 2.

Table 3.2 Example Data for GENIE3

Experiments

Genes

G1 G2 G3 Target

Group 1 0.4 0.8 0.4 0.5

Group 2

0.3 0.2 0.3 0.9

0.5 0.3 0.7 0.8

Source: Lingeman, J. M. and D. Shasha (2012). Network inference in molecular biology. New York,

Springer

Table 3.2 shows example data for GENIE3 with the dataset split into two groups,

thus minimizing the variance of each of the groups.

 34

When the expression value of G2 is above 0.5, the target gene has low expression

values, whereas with a value below 0.5, the target gene displays high expression values.

Thus, we have identified a potential causal edge, in which G2 has a repressive effect on

the target gene.

The algorithm of Random Forests (Breiman 2001) is applied here to find robust

splits in their responses to trivial changes in the data. With averaging predictions,

Bootstrapping and random feature selection are used in Random Forests and reduce

variance across the dataset. From the original dataset, 2/3 data is randomly picked up

with replacement to generate every tree in a Random Forest ad a bootstrap training. Each

tree is built later with K random splits at each decision node. Here K is normally defined

as K = √𝑝 − 1 or K = p -1 where p is the number of known potential regulators also

termed as transcription factors. The randomly chosen split which will reduces mostly the

variance of the target gene’s expression values is defined as a decision split.

We calculate an importance score for each decision point in a tree:

I(N) = #SVar(S) - #StVar(St) - #SfVar(Sf) (3.4)

where N is the current decision point to be evaluated, S is the subset of experiments lower

in the tree than the decision point N, St is the subset of experiments on the true branches

of decision point N, and Sf is the subset of experiments on the false branches. Var(.)

denotes the variance of the target gene in a subset, and # is defined as the number of

experiments in corresponding subset. The importance score is to measure how much

variance shown by splitting the dataset on the gene at the decision point with threshold. If

the score is high, it presents that the variance is significantly reduced and probably this

gene regulate the target gene, as shown in the example above. If the score is low, the split

https://www.google.com/search?espv=2&biw=1455&bih=705&q=define+significantly&sa=X&ved=0ahUKEwiwhfzO99zMAhUCHT4KHbcwBA4Q_SoIHzAA

 35

did not considerably reduce the variance which means the gene may not regulate the

target gene.

After the tree for gene g is generated, the influence of every other gene on g is

ranked. By summing up all of the importance scores of the nodes at which a potential

regulator gene x was selected to split, we can get a final score for x. A zero score is

appointed to the genes that are never selected to split. All the final scores of potential

regulator genes are ranked to define which genes x are most crucial to regulate gene g.

3.2.3 Relevance Networks

The tool of relevance networks was developed by Butte and Kohane (Butte and Kohane

2000). It measures the mutual information (MI) between gene expression profiles to infer

interactions. Let Xi represent the vector of expression values of gene i and let Xj represent

the vector of expression values of gene j. The mutual information I between the discrete

variables Xi and Xj is defined as:

𝐼(𝑋𝑖 , 𝑋𝑗) = ∑ ∑ 𝑝(𝑥𝑖, 𝑥𝑗)

𝑥𝑗∈𝑋𝑗𝑥𝑖∈𝑋𝑖

log(
𝑝(𝑥𝑖, 𝑥𝑗)

𝑝(𝑥𝑖)𝑝(𝑥𝑗)
) (3.5)

wherep(𝑥𝑖,𝑦𝑗) is the joint probability density function between Xi (the expression profile

of gene i) and Xj (the expression profile of gene j), and 𝑝(𝑥𝑖) and 𝑝(𝑦𝑗) are the marginal

probability density functions of Xi and Xj, respectively. Marginal probability density

functions collect the probability densities of a subset of the data, which denotes the

expression profiles of each gene, and the functions are used to present how likely x the

expression value is in the expression profile of its gene X. In a expression profile X, if a

probability of x is low, it would be expected by other values in X. Whereas, if x is high, it

 36

means there is a potential edge between genes X and Y. Here Xi and Xj are required to be

discrete variables. The approach of equal-width binning (Meyer, Lafitte et al. 2008) is

used for discretization and empirical entropy estimation.

3.2.4 Context Likelihood of Relatedness (CLR)

The basic idea of Context Likelihood of Relatedness (CLR) (Faith, Hayete et al. 2007) is

to form a matrix of mutual information scores by calculating the mutual information

between each pair of genes in the network. These scores are then compared to a

background distribution and a z-score is calculated. A potential mutual information edge

will be indicated between the two genes in the network with a high z-score, as a low z-

score shows up no edge existing. Only undirected edges can generated by CLR because

of the bidirectional nature of mutual information. If we have discovered the transcription

factors, the directionality can be estimated based on one of the genes is exactly a

transcription factor.

At the beginning, the mutual information can be calculated as shown in relevance

networks in the section of 3.2.3. After a matrix of mutual information scores for each

gene is calculated, the likelihood of each pair of scores (a z-score) is estimated by CLR,

and they are compared with a background mutual information distribution, namely MIi

and MIj, respectively. The two distributions represent only one row of the mutual

information values of gene i and gene j. Our plan is to check the distance between a

mutual information score and the rest of the mutual information scores other than that

gene. If the score is much higher than most of the other scores, an edge is most likely

here. As we mentioned before, all genes only depend on a small number of other genes,

 37

hence, the scores of all the genes can be used as a background distribution. Most of the

mutual information scores can be used as a background noise distribution as they would

not equal to zero because of measurement noise or indirect edges. After the z-score for

each pair of genes has been calculated, the final step is to calculate the CLR score which

is calculated for each pair of genes:

𝑓(𝑍𝑖 , 𝑍𝑗) = √𝑍𝑖
2 + 𝑍𝑗

2 (3.6)

Zi and Zj are the z-scores computed from the background distribution above. 𝑓(𝑍𝑖 , 𝑍𝑗) is

used to measure the joint likelihood, which gives out a single score for each pair of genes

compared to the score of each other pair of genes. In the final step, the CLR scores are

ranked and the top N scores are applied to generate a network. However, we must choose

the value of N carefully, because we cannot confirm the N is invalid or not if the gold

standard is unknown. Actually, with the computational analyst the ranking can be

provided as the topmost ranked genes will be tested by the experimentalist.

3.2.5 EULID

EUCLID (Maetschke, Madhamshettiwar et al. 2013) is an approach by using the

Euclidean distance between the normalized expression profiles X’i and X’j to indicate the

interaction weights between gene i and gene j:

𝑤𝑖𝑗 = √∑(𝑋𝑖𝑘
′ − 𝑋𝑗𝑘

′)2

𝑘

 (3.7)

In this method, profiles are normalized by computing the absolute difference of

expression values Xik to the median expression in profile 𝑋𝑖𝑘
′ = |𝑋𝑖𝑘 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑖)|, and

k is from 1 to m (the number of experiments).

 38

3.2.6 Weighted Gene Co-expression Network Analysis (WGCNA)

WGCNA (Langfelder and Horvath 2008) is a collection of inference methods which are

correlation-based to amplify high correlation coefficients by increasing the absolute value

to the power of β (‘softpower’) with β ≥ 1:

𝑤𝑖𝑗 = |𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗)|
𝛽
= |
𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝜎𝑋𝜎𝑌
|

𝛽

=
𝐸(𝑋𝑖𝑋𝑗) − 𝐸(𝑋𝑖)𝐸(𝑋𝑗)

√𝐸(𝑋𝑖
2) − 𝐸2(𝑋𝑖)√𝐸(𝑋𝑗

2) − 𝐸2(𝑋𝑗)

 (3.8)

The network predicted by WGCNA is an undirected graph. We choose the node (which is

a gene) with the highest amount of edges as a regulator, so that all the edges attached to it

are directed to all its neighbors. Here, wij represents a weighted edge between gene i and

gene j, cov is covariance, E is expected value, the sum of each expression value

multiplied with its probability. With the network constructed, genes are clustered.

Basically, WGCNA uses the algorithm of correlation network.

3.3 Unsupervised GRN Inference Algorithms Based on Time-Series Data

Time-series data collect the information of the values of genes at a series of time points in

succession. With this temporal information, we can try to infer directionality of edges, or

extract causal relations between genes. In this section, we present three algorithms for

inferring gene regulatory networks from time series data.

3.3.1 Time-delay ARACNE

Time-delay ARACNE (Zoppoli, Morganella et al. 2010) is an algorithm based on mutual

information to detect time series networking. There are three steps in the algorithm

(Margolin, Nemenman et al. 2006). At first, the expression values of each gene are

 39

scanned and the time point at which the values suddenly vary is found. Then, a ratio of

the change of expression values is used to determine whether the gene is induced or

repressed. Second, the mutual information value is calculated for each gene pair. An edge

is created if there is a nonzero mutual information value comes out. Third, all the edges

created are tested with a certain threshold, and the edges with low data processing

inequality are pruned away.

The algorithm evaluates the first time point at which a gene g is induced or

repressed by comparing the expression value at time 1 to the expression value at time t.

The parameter τ is defined as a threshold then if the expression value is varied above this

amount, the gene is considered being induced or repressed.

If the ratio between the expression at t and the initial expression value is greater

than τ, then the gene is considered expressed at time t, as follows:

𝑔+𝑖𝑓𝜏 <
𝑔(𝑡)

𝑔(𝑙)
 (3.9)

On the contrary, once the ratio between the expression value at t and the initial

expression value is lower than 1/ τ, the expression of this gene can be considered as

repressed.

𝑔−𝑖𝑓
1

𝜏
>
𝑔(𝑡)

𝑔(𝑙)
 (3.10)

If the expression value does not meet either of these two conditions, it would not

be considered expressed or repressed at time t.

We have three advantages to evaluating at which time point a gene start to be

induced or repressed: First, it allows us to infer causal events in the time series. Gene g

can effects x only if g is induced or repressed before gene x. Second, computation time

 40

can be speed up by reducing the number of possible edges to calculate in previous step.

Third, dependencies between genes can be detected at each time point. This is followed

by network building and trimming, using Data Processing Inequality.

3.3.2 Banjo

Banjo (Yu, Smith et al. 2004) stands for Bayesian Network Inference with Java Objects.

This is a special tool because the expression values of each gene can be predicted from its

parents’ expression values and some values of itself at previous time points. Basically,

Banjo needs to search all possible networks, and has a score system to pick up the best

one. The score system includes two metrics, the Bayesian Dirichlet Equivalence (BDE)

and the Bayesian Dirichlet Criterion. It also includes some search strategies which are

combined with the scoring matrices: greedy, simulated annealing, and genetic algorithm.

Based on previous uses on Banjo, the greedy search algorithm with Bayesian Dirichlet

Equivalence (BDE) scoring will be used as defaults (Elati, Neuvial et al. 2007). BDE

used here is calculated with the log of the marginal likelihood P(D|G), where D is data

and G is network graph.

3.3.3 Granger Causality

Mukhopadhyay (Mukhopadhyay and Chatterjee 2007) and Shojaie (Shojaie and

Michailidis 2010) introduced a method called Granger Causality to analyze time-series

gene expression data to predict gene networks, which is a statistical hypothesis approach

to decide if one time series is useful to predict other time series. The basic idea is that a

time series X is said to Granger-cause Y if it can be shown, usually through a series of t-

 41

tests and F-tests on lagged values of X (and with lagged values of Y also included), that

those X values provide statistically significant information about future values of Y. Here

X is the time vector of expression values of the source gene, and Y is the time vector of

expression values of the target gene. To test the null hypothesis that X does not Granger-

cause Y, we need to find the proper lagged values of Y to include in a formal auto

regression of Y:

𝑦𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 +…+𝑎𝑚𝑦𝑡−𝑚 + 𝑟𝑡 (3.11)

Here rt is residual, and it is the difference between the observed expression value and the

estimated function value. Next, the autoregression is augmented by including lagged

values of X:

𝑦𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 +…+𝑎𝑚𝑦𝑡−𝑚 + 𝑏1𝑥𝑡−1 +⋯+ 𝑏𝑞𝑥𝑡−𝑞 + 𝑟𝑡 (3.12)

In this expression, yt and xt are stationary time series values of Y and X at time t, xt-j (0 ≤j

≤ q) is the value of X at time t-j, yt-i (0 ≤ i ≤m) is the value of Y at time t-i; ai and bj

(0≤i≤m, 0≤j≤q)are the coefficient values we need to find by autoregression. And q is the

longest lag length when the lagged value of x is remarkable, and m is the longest lag

length when the lagged value of y is remarkable. We retain in this regression all lagged

values x's (x ∈X) that are individually remarkable based on their t-statistics, given that

collectively they add explanatory power to the regression according to an F-test (whose

null hypothesis offers no explanatory power when jointly added by the x's, which means

X and Y has no relationship.). The t-statistics for each individual ai and bj is a ratio of the

difference of the regression result from its notional value (normal zero, indicated that no

relationship) and its standard error, which can be presented as follows:

 42

𝑡�̂� =
�̂� − 𝛽0

𝑠. 𝑒. (�̂�)
 (3.13)

where β0 is a known constant normally set to zero, and s. e. (�̂�) is the standard error of

the estimator β̂, which is either ai or bj. The F-test can be calculated as:

𝐹 =
𝑆𝑆𝑅𝑋 − 𝑆𝑆𝑅𝑌

𝑆𝑆𝑅𝑌
(𝑇 − 1) (3.14)

SSRX and SSRY are the sum of squared residuals of X and Y, respectively. Residuals

present the difference between estimated values and actual values. T is the total number

of time point. In the notation of the above augmented regression.

3.3.4 DDGni

DDGni stands for Dynamic delay gene-network inference, applying for high-temporal

data by using gapped local alignment. The basic idea is that, if gene A is regulating gene

B, the expression pattern of the target gene B is stimulated by the expression pattern of its

regulator gene A, i.e., they share similar expression pattern with some time windows

(expression delay). The method also considers the cases of multi-regulators and multi-

targets with different time windows.

To compute the gapped local alignment of expression patterns of gene A and gene

B, we need to extract their expression values at all time pointes, consider A has x number

of time points, while B has y number of time points.

𝐴 = 𝑎1, 𝑎2, 𝑎3… , 𝑎𝑥𝐵 = 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑦 (3.15)

Since a regulator and its target share a similar expression trend despite the

magnitude of the variations of expression values, all the expression values (a’s and b’s)

are normalized first.

 43

𝑠′(𝑖, 𝑗) =
𝑠(𝑖, 𝑗) − �̅�(𝑖, 𝑗)

𝑠𝑚𝑎𝑥(𝑖, 𝑗)
 (3.16)

where

𝑠(𝑖, 𝑗) = 𝑒−𝛼×𝑑(𝑎𝑖,𝑏𝑗), 0 ≤ 𝑖 ≤ 𝑥, 0 ≤ 𝑗 ≤ 𝑦 (3.17)

Here α is the measure of the steepness which is set as 1.7, and 𝑑(𝑎𝑖,𝑏𝑗) is the distance

between time points ai and bj.

Then an alignments matrix M (x by y) is created:

𝑀𝑖𝑗 = 𝑚𝑎𝑥

{

𝑀𝑖−1,𝑗−1 + 𝑠

′(𝑖, 𝑗)

𝑀𝑖−1,𝑗 − 𝑝

𝑀𝑖,𝑗−1 − 𝑝

0 }

 (3.18)

Mij is the score for position i in series A and position j in series b, s’(i,j) is the normalized

similarity between the time point ai and bj, and p is the gap penalty, chosen as 0.3. The

alignment score N is calculated as:

𝑁 = [
𝑀𝑎𝑥(𝑀)

𝐿
]𝑀𝑖𝑗 = 𝑚𝑎𝑥

{

𝑀𝑖−1,𝑗−1 + 𝑠

′(𝑖, 𝑗)

𝑀𝑖−1,𝑗 − 𝑝

𝑀𝑖,𝑗−1 − 𝑝

0 }

 (3.19)

where L is the alignment length. By choosing up a threshold for N, the top high alignment

scores detemind the edge of the regulatory network.

3.4 Unsupervised GRN Inference Algorithms Using Pipelines

For gene network inference, various algorithms can be used to build up a pipeline, and

each algorithm is fed with different types of data, in turn based on different experiments

within the same gene network. A consensus network can be generated by combining the

inferential abilities of different methods. Also, a pipeline can be a sequence of algorithms

 44

in which the output of one algorithm becomes the input of the next algorithm in the

sequence. All these attempts are made to get a better performance for predicting gene

regulatory networks. For example, Inferelator 2.0 (Madar, Greenfield et al. 2009) is a

pipeline combining three algorithms: Median-Corrected Z-Scores (MCZ), Time-lagged

Context Likelihood of Relatedness (tlCLR), and Inferelator 1.0.

3.5 Supervised or Semi-Supervised GRN Inference Algorithms

Maetschke et al. (Maetschke, Madhamshettiwar et al. 2013) defined supervised, semi-

supervised and unsupervised algorithms for inference of gene regulatory networks.

Usually, there is no data can be used by unsupervised methods to adjust internal

parameters. Supervised methods, on the other hand, by collecting information about

known interactions for training and testing all given data, both positive and negative

training samples, optimize parameters such as weights or thresholds. Otherwise, only part

of the data can be used by semi-supervised methods for parameter optimization, i.e., a

subset of network interactions discovered, sometimes even only positive training samples.

The only method described in their paper is Support Vector Machine (SVM) (Cortes and

Vapnik 1995). By applying containing supervised learning models which are associated

learning algorithms to analyze data and recognize patterns, this method can be used for

classification and regression analysis. With the input of a set of input data, SVM predicts

each one of them belonging to either of two possible classes, so it is a non-probabilistic

binary linear classifier. Provided a set of training examples, each of which is labeled to

one or other classes, the training algorithm of generates a model to label new examples

with one category or the other. An SVM model presents the examples as points in space,

 45

and makes a gap as big as possible to divide all the examples to separate categories.

Based on which side of the gap the examples to be predicted fell on, they are labeled with

a category after being mapped into the same space.

Mordelet et al. (Mordelet and Vert 2008) have developed a method for the

inference of gene regulatory networks called SIRENE (Supervised Inference of

Regulatory Networks). It needs both gene expression data and a list of regulation

relationships discovered between transcription factors and target genes. The list is

obtained from the databases of regulations which are characterized with experiments and

publicly available, e.g., RegulonDB for Escherichia coli genes (Faith, Hayete et al. 2007).

To get negative samples, they collected all genes that are not regulated by a certain

transcription factor and divided them into three subsets. Then they trained the SVM with

all the positive examples and two of the three subsets of negative samples. The training

process was repeated three times and each on took just one subset of negative samples

apart.

In a paper by Cerulo et al. (Cerulo, Elkan et al. 2010), three methods are

compared for predicting gene regulatory networks from only positive and unlabeled data

derived from the tool GeneNetWeaver (http://gnw.sourceforge.net), which is used to

generate in silico benchmarks in the DREAM3 challenge initiative (Stolovitzky, Monroe

et al. 2007, Marbach, Schaffter et al. 2009). The three methods are considered semi-

supervised methods and they are PosOnly, PSEUDO-RANDOM, and SVMOnly. PosOnly

uses a model of conditional probabilities to define negative samples (Elkan and Noto

2008). Let x be a feature vector and let y = {0, 1} and s = {0, 1} be binary labels. Let s =

1 if the example x is labeled, and let s = 0 if x is unlabeled. Positive examples are labeled,

http://gnw.sourceforge.net/

 46

i.e., if s = 1, then y = 1; while unlabeled examples, with s = 0, may be either positive y =

1 or negative y = 0 . The probabilistic binary classifier is applied to learn f(x) such that f(x)

= p(y = 1|x), defined to be the conditioned probability of being positive provided a

feature vector x. PSEUDO-RANDOM selects negative samples according to an

assumption that a regulatory network has a structure like a tree without or containing few

cycles. SVMOnly considers all unlabeled examples as negative. The result showed that

PosOnly outperforms significantly both methods PSEUDO-RANDOM and SVMOnly in

simulated data, while the other two tools have a slightly lower performance in

experimental data.

3.6 Integrated Approaches to GRN Inference

Marbach et al. (Marbach, Roy et al. 2012) have developed and applied methods for

transcriptional regulatory network inference from diverse functional genomics datasets,

and have demonstrated the effectiveness of their approach for gene function and gene

expression prediction. The network inference problem is formed to a machine-learning

framework, with input features consisting of transcription factor (TF), evolutionarily-

conserved sequence motifs, gene expression, and chromatin modification datasets, to

predict regulatory edges by binding all the above features. The authors predicted ~300k

regulatory edges in a network of ~600 TFs and 12k target genes by applying these

methods to Drosophila melanogaster. An inferred network is applied to identify putative

functions for hundreds of previously unlabeled genes (Lee and Tzou 2009), as a lot of

these genes are in nervous system development defined independently according to the

patterns of tissue-specific expression. At last, the regulatory network is used as a function

 47

of TF expression to predict the levels of target gene expression, and in integrative

networks remarkably better performance of prediction is achieved than for motif or ChIP-

based networks. A compatible relationship is discovered by their work between physical

evidence of regulatory interactions such as TF binding or motif conservation and

functional evidence like coordinated expression or chromatin patterns, and the power of

data integration is revealed for network inference based on the studies of gene regulation

at the systems level.

Literature mining is another way to develop gene regulation networks by

collecting the information about gene interactions from previously published literature. If

some research already published shows that a gene can regulate other genes based on

biological experiments, this scene would be applied to the basic part of the network. All

pertinent information about a particular gene family can be searched, collected, and

postulated as a gene regulation network.

Djebbari et al. (Djebbari and Quackenbush 2008) described in their paper how

they did such a search in PubMed (McEntyre and Lipman 2001): two genes are assumed

between them may be an interaction if both and only two of them are described in a

single article indexed in PubMed. According to the relative number of articles talking

about those genes together, weights would assigned to interactions. The prior

probabilities for two genes A and B related is shown by assigning a co-occurrence edge

weight, which obtained by summing up how many times the work “interaction”

mentioned in the literature, relative to the total number of manuscripts surveyed:

𝑝(𝐴, 𝐵) =
𝑤(𝐴, 𝐵)

𝑤(𝑒)𝑒∈𝐸
𝑚𝑎𝑥 (3.20)

 48

where w(A, B) and w(e) present the weight of edge (A, B) in the set of edges E. Then they

seed this prior network to bootstrapping. In each bootstrap iteration, the features of

interest are checked such like directed edge, undirected edge, order relation, and Markov

relation. The confidence of overall bootstrap can be evaluated by measuring how many

times a specific feature appears related to the total number of iterations, which thus

supports chosen features. They also collected interactive data from high-throughput yeast

two hybrid protein-protein interaction (PPI) screenings.

Haibe-Kains et al. (Haibe-Kains, Olsen et al. 2012) developed a web-based

application called Predictive Networks (PN) to evaluate experimentally derived gene lists

in the context of large-scale gene interaction networks. The PN analytical pipeline has

two steps. At the beginning a comprehensive set of gene interactions extracted from a

bunch of sources that are publicly available by applying text-mining algorithms. The

second step consists of using these ‘known’ interactions together with gene expression

data to infer robust gene networks by using supervised approaches, including regression

and Bayesian methods. The PN web application can be accessed from

http://predictivenetworks.org.

3.7 Some Preliminary Experimental Results

We evaluated the performance of some of the unsupervised gene network inference

algorithms surveyed in this dissertation. The NIR algorithm was implemented in

MATLAB 7 and run on a Linux platform. We tested the NIR algorithm using DREAM4

knock out data. Figure 3.1 shows the network predicted by the NIR algorithm, and the

standard network, i.e., the ground truth, provided by DREAM4.

http://predictivenetworks.org/

 49

Figure 3.1 Results obtained by running NIR on DREAM4 knockout data. (A) The

network predicted by the NIR algorithm. (B) The standard network from DREAM4.

(A)

(B)

 50

The GENIE3 algorithm was implemented in R and run on a Windows platform.

We tested the GENIE3 algorithm using DREAM4 knock out data. Figure 3.2 shows the

network predicted by the GENIE3 algorithm and the standard network, i.e., the ground

truth, provided by DREAM4.

Figure 3.2 Results obtained by running GENIE3 on DREAM4 knockout data. (A) The

network predicted by the GENIE3 algorithm. (B) The standard network from DREAM4.

(A)

(B)

 51

The CLR algorithm was implemented in MATLAB 2011 and run on a Windows

platform. We tested the CLR algorithm using DREAM4 knock out data. Figure 3.3

shows the network predicted by the CLR algorithm and the standard network, i.e., the

ground truth, provided by DREAM4.

Figure 3.3 Results obtained by running CLR on DREAM4 knockout data. (A) The

network predicted by the CLR algorithm. (B) The standard network from DREAM4.

(A)

(B)

 52

The time-delay ARACNE, or TDARACNE, algorithm was implemented in R and

run on a Windows platform. We tested the time-delay ARACNE algorithm using

DREAM4 time series data. Figure 3.4 shows the network predicted by the TDARACNE

algorithm and the standard network, i.e., the ground truth, obtained from DREAM4.

Figure 3.4 Results obtained by running TDARACNE on DREAM4 time series data. (A)

The network predicted by the TDARACNE algorithm. (B) The standard network from

DREAM4.

(A)

(B)

 53

The Banjo algorithm was implemented in Java 7.0 and run on a Windows

platform. We tested the Banjo algorithm using DREAM4 time series data. Figure 3.5

shows the network predicted by the Banjo algorithm and the standard network, i.e., the

ground truth, obtained from DREAM4.

Figure 3.5 Results obtained by running Banjo on DREAM4 time series data. (A) The

network predicted by the Banjo algorithm. (B) The standard network from DREAM4.

(A)

(B)

 54

All the algorithms in the pipeline of Inferelator were implemented in R and run on

a Linux platform. We tested Inferelator using both steady-state data (specifically,

DREAM4 knockout data) and DREAM4 time series data. Figure 3.6 shows the network

predicted by Inferelator and the standard network, i.e., the ground truth, obtained from

DREAM4.

(A) (B)

Figure 3.6 Results obtained by running Inferelator on DREAM4 knockout data and time

series data. (A) The network predicted by Inferelator. (B) The standard network from

DREAM4.

In evaluating the performance of the network prediction algorithms, we use

measures including accuracy, precision, and recall. We use TP (true positive) to denote

the number of positive edges that are predicted correctly. A positive edge is one that

appears in the ground truth where the ground truth is the standard network provided by

 55

DREAM4. We use TN (true negative) to denote the number of negative edges that are

predicted correctly. A negative edge is one that does not appear in the ground truth. We

use FN (false negative) to denote the number of positive edges that are incorrectly

predicted as negative. We use the FP (false positive) to denote the number of negative

edges that are incorrectly predicted as positive. Then

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3.21)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.22)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.23)

The accuracy, precision, and recall of the six tools tested in this dissertation

proposal are shown in the following table.

Table 3.3 Accuracy, Precision, and Recall of Tested GRN Algorithms

Algorithm Accuracy Precision Recall

Algorithms using steady-state data

NIR 0.8 0.4 0.266667

GEINE3 0.786517 0.357143 0.333333

CLR 0.758621 0.25 0.2

WGCNA 0.756 0.267 0.267

Algorithms using time-series data

TDARACNE 0.818182 0.461538 0.4

Banjo 0.702128 0.157895 0.2

Algorithms using both steady-state data and time series data

Inferelator 0.786517 0.357143 0.333333

 56

CHAPTER 4

A GPU PROGRAM FOR WHOLE GENOME COMPARISON

4.1 Introduction

A multiple sequence alignment (MSA) is related sets by partitioning residues such like

amino acids or nucleotides from a given set of sequences. As the prerequisite for most

phylogenetic and evolutionary analyses, MSA is the basic biological sequence analysis

for the research of the relationship about evolutionary homology (Wallace, Blackshields

et al. 2005) (Edgar and Batzoglou 2006) (Notredame 2007). Most of the MSAs attempt to

align every residue in all the sequences, which is called "global alignments". The

methods include mutational processes dealing with residue substitution, subsequence

insertion, and subsequence deletion (Notredame 2007). After the whole-genome

sequences has been discovered, it raises an interest in MSAs for whole genomes, which is

called whole-genome alignment (WGA), covering all kinds of sequences: genes,

promoters, repetitive regions, etc. This research requires more analyses about genome

rearrangements, such like inversions, translocations, chromosome fusions, chromosome

fissions, and reciprocal translocations. Meanwhile, another tools can also model

unbalanced rearrangements which will copy number change, like tandem and segmental

duplications (Blanchette, Kent et al. 2004, Miller, Rosenbloom et al. 2007, Paten, Herrero

et al. 2008, Angiuoli and Salzberg 2011, Paten, Earl et al. 2011). The development for

whole genome alignment is becoming more critical to figure out the selective forces

acting across genomes, improve analysis of many potential functional elements such like

the identification of conserved non-coding functional elements (Lindblad-Toh, Garber et

 57

al. 2011), along with cis-regulatory elements (Kellis, Patterson et al. 2003), enhancers,

and non-coding RNAs (Earl, Nguyen et al. 2014).

 Our work focuses on searching anchors, termed as non-gap alignment segments of

local alignments, for whole genomes via multiple sequence alignments. To identify the

commonalities and differences of two genomes from closely related organisms, for

example, human and gorilla, various programs have been developed for sequencing

alignment, applied to the whole genomes by using a seed-and-extend technique,

beginning from exact or close exact matches and choosing a reliable subset of them,

which is called anchors, then chaining all the anchors corresponding to the reference

genome with overlapped or duplicated anchors removed and minimum of gaps remaining.

 Several approaches for multiple sequence alignments to search anchors are

available. We started with LASTZ (Harris 2007) and SSEARCH (Pearson 2000). LASTZ

is a drop-in replacement for BLASTZ (Schwartz, Kent et al. 2003), which recognizes

primary anchors as high-scoring local alignments before any other tools. The anchors

start from pairs of spaced 12-mers with possibly one transition, and then are extended in

two stages, if substitutions and gaps are allowed. The method is also applied for finding

new, secondary matches between consecutive primary matches (Lippert, Zhao et al.

2005). On the other hand, SSEARCH does a rigorous Smith-Waterman search (Smith and

Waterman 1981) for similarity between a query sequence and a group of sequences of the

same type, i.e., chromosome or protein. This may be the most sensitive method available

for similarity searches.

 Compared to LASTZ, SSEARCH can be very slow, taking days and months to

map millions of bases for mammalian genome sequences. This is the reason why we need

 58

to rely on programming in GPU (Graphics Processing Unit). The GPU is designed to run

in parallel hundreds of short functions called threads, which are organized into blocks

then in turn organized into grids. Parallel algorithms running on GPUs can often achieve

up to 100x speedup over similar CPU algorithms. Our plan is to apply the GPU program

via the algorithm of MaxSSmap (Turki and Roshan 2014) for the multiple sequence

alignments with whole genome sequences to search anchors in evolutionary analysis,

increasing accuracy and speed of processing at the same time.

4.2 Dataset

The dataset used to test our alignment program via GPU is extracted from a competitive

assessment of whole genome alignment methods named Alignathon (Earl, Nguyen et al.

2014). Alignathon used three test sets, two of them were simulated datasets created by

forward-time simulation with the EVOLVER tool (Edga, Asimeno et al. 2009). The first

set models a phylogeny of great ape containing the genomes such as humans,

chimpanzees, gorillas, and orangutans, all with the same evolutionary relationships. Our

program tested tentatively two genomes from this set, humans and gorillas. No doubt that

the outcome has impressively high accuracy, above 0.8 and 0.9 respectively in precise

and recall. But our research focuses on distant related organisms; in consequence the

major dataset we used for our program is the second simulated dataset from Alignathon,

which is about a mammalian phylogeny containing genomes as humans, mice, rats, cows,

and dogs. We chose two distant related organisms, cow and mouse, from this set. The

two genomes that are mainly tested in our program are the chromosome C from species

 59

cow and the chromosome O from species mouse. The phylogenetic distance between

these two genomes is 0.60 (Earl, Nguyen et al. 2014).

4.3 Implementation and Methods

The algorithm used for the genome alignment in our research is called MaxSSmap (Turki

and Roshan 2014). The running platform is CUDA 6.0 implementing on NVIDIA GPUs.

The GPU, as graphics processing unit, is designed to execute hundreds of small functions

called threads at the same time in parallel. All the threads are bundled into blocks which

then are organized into grids. While the MaxSSmap is running, only one grid are applied,

and the number of blocks is set to the total number of fragments, the contiguous parts

with constant length defined by the user, from the reference genome sequence, normally

the cow genome in our research. The number of fragments is determined by how many

threads in a block are executed simultaneously. By default the value is set to 256.

 The query genome sequence, normally the mouse genome, is divided into short

length reads. The length of the reads is not necessary to be constant. The input of the

MaxSSmap program is the whole reference genome and a read. The program has two

steps. The first to identify a local region of the reference genome, in our case is to locate

the fragment ID number by sliding the short read through the whole reference genome

and picking up the maximum scoring subsequence (Bates and Constable 1985, Bentley

1986). The maximum scoring subsequence is defined to maximize the sum of a region in

the original sequence. For instance, the original sequence contains a list of real numbers

{x1, x2, ..., xn}, and the maximum scoring subsequence should be the contiguous

subsequence { xi, ..., xj } whose sum xi + ... + xj (0 ≤ i, j ≤ n) is maximized. For DNA

 60

sequences, the list of real numbers is replaced as the cost score list under two aligned

sequences with same length and without gaps. The cost scores can be defined from a

position specific scoring matrix presenting base call probabilities, or a substitution

scoring matrix, or a trivial match or mismatch cost. In Figure 4.1 we show up a brief

overview of the first phase of MaxSSmap program. Each thread of the GPU is input the

read and one fragment of the reference genome, and each fragment is assigned with an ID

number, from 0, 1, 2, ... and so on. In each thread the read is sliding through the fragment

and the maximum scoring subsequence is computed. To consider the cross junctions

between fragments, the neighboring fragments are also included to map the read in each

thread. The output of the execution is the fragment numbers with the highest and second

highest scores. With the assistant of the second highest score, redundant false positives

can be removed if we set up a threshold of the ratio of the second highest score and the

first highest score.

 61

Figure 4.1 First phrase of MaxSSmap. The whole reference genome is divided to six

same size fragments with ID numbers from 1 to 6 and fed into six threads of the GPU.

Each thread will execute with one fragment and the short read, sliding the read with the

fragment and looking for the maximum scoring subsequence. The read is also mapped to

the junctions between fragments to make sure that the read is fully mapped to the

reference.

Source: Turki, T. and U. Roshan (2014). "MaxSSmap: a GPU program for mapping divergent short reads

to genomes with the maximum scoring subsequence." BMC Genomics 15: 969.

 The second step of MaxSSmap program is applying a gap-allowed alignment

method to align the read with the region of the reference genome starting at the identified

fragment picked up from the first step. To obtain enough nucleotides as the read to

achieve the alignment, spanning the fragments to the right is necessary at most time.

Furthermore, we tested three algorithms in this phrase, Needleman-Wunsch (Needleman

and Wunsch 1970), Smith-Waterman (Smith and Waterman 1981), and the extention for

the Smith-Waterman approach, by feeding the outputs of local alignments to an genome-

wide mammalian consistency based alignment method named Pecan (Paten, Herrero et al.

2008), to pursuit for higher accuracy for computing genome aligments. In the rest context

Fragment 0

Break to same length

Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

Input:

A short read

The whole reference
genome

 62

of this paper, we will elaborate in detail the three alignment methods, their results from

our experiments with the two mammlian genome sequences, cow chromosome C and

mouse chromsome O, and the analyses and comparison among the three algorithms and

other published alignment tools.

4.3.1 Needleman-Wunsch Algorithm

The algorithm of Needleman-Wunsh (Needleman and Wunsch 1970) is extensively

applied for finding similarities and determining whether significant homology exists

between nucleotide or protain sequences. Although the method was originally published

in more than 40 years ago, it is still widely used in recent eras for optimal global

alignment, particularly when the quality of the global alignment is of the utmost

importance. It was one of the first applications of dynamic programming to compare

biological sequences. The basic idea of the algorithm is to build up the best alignment by

using optimal alignments of smaller subsequences, meanwhile to reduce the massive

number of possibilities that need to be considered, yet still guarantees that the best

solution will be found. Based on a divide and conquer strategy, the algorithm consists of

the following steps:

1. Divide the problem into smaller sub problems. In the alignment algorithm, we

break the sequences to be aligned to based pairs, which also contain the gapped

alignments.

2. Solve the smaller problems optimally. The scores of all the probabilities of base

pairs are computed and stored in the trace back table. We trace the base pairs from

the end of the two sequences, and define the optimal alignments according to the

best scores.

3. Use the sub-problem solutions to construct an optimal solution for the original

problem. By tracing the optimal base pairs (including gaps) step by step, the final

alignment with maximum match and best score is obtained.

 63

The basic mathematic equation for Needleman-Wunsh algorithm is shown as follow:

𝐷(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝐷(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗)

𝐷(𝑖 − 1) + 𝑔

𝐷(𝑗 − 1) + 𝑔

 (4.1)

The equation 4.1 helps us to create recursively the trace back matrix D(i, j) indexed by

the residues of two sequences x and y, with a boundry condition such that:

𝐷(𝑖, 0) = 𝑔 × 𝑖

𝐷(0, 𝑗) = 𝑔 × 𝑗
(4.2)

Where g is the gap penalty. The substitutuon score s(xi, yj) is for the residues i and j in the

two sequences x and y respectively.

 Therefore, we need two matrix tables for the trace back process. One is to store

the maximum scores calculated by the equation 4.1, the other is for the trace back records,

containing the information how the maximum scores are obtained: 1) two residues align

together, the case named "diagonal", or "match/mismatch", 2) a gap is inserted in the

sequence x, the case named "up", in some literatures it is also called "deletion", 3) a gap

is inserted in the sequence y, the case named "left", or "insertion". A trival example

presenting in Figure 4.2 will illuminate the exact procedures how to optimize an

alignment.

 64

Figure 4.2 Procedures of the algorithm of Needleman-Wunsh. Given the input of two

sequences x and y, the score matrix is calculated via equations 3.1and 3.2. The way to

obtained the maximum value of each cell in the score matrix is stored in the traceback

matrix: diagonal (maked as D), up (marked as U), or left (marked as L). By tracing back

from the lower right corner of the traceback matrix, the optimal alignment is built up.

4.3.2 Smith-Waterman Algorithm

Another computing method for local sequence alignment was also tested in our GPU

program in the second phrase of MaxSSmap. This is an method called Smith-Waterman

Algorithm (Smith and Waterman 1981) for comparison similiar to the algorithm of

Needleman-Wunsh, but the difference between them is that the Smith-Waterman

Algorithm performs local sequence alignment instead of global alignment consisting of

the whole input sequences; that is, for determining similar regions between two strings or

nucleotide or protein sequences. Hence, only part of the string of each input sequence is

 T T C A T

 0 -1 -2 -3 -4 -5

T -1 1 0 -1 -2 -3

T -2 0 2 1 0 -1

A -3 -1 1 2 2 1

C -4 -2 0 2 2 2

 T T C A T

 0 L L L L L

T U D D L L D

T U D D L L D

A U U U D D L

C U U U D D D

Input

Sequence x: TTCAT

Sequence y: TTAC

Cost

Match: 1

Mismatch: 0

Gap penalty: -1

Score matrix

Traceback matrix

Alignment:

TTCAT

TT-AC

 65

contained in the output aligment. The mathematic expression for the Smith-Waterman

Algorithm is presenting as below:

𝑀(𝑖, 𝑗) = 𝑚𝑎𝑥 {

𝑀(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗)

𝑀(𝑖 − 1) + 𝑔

𝑀(𝑗 − 1) + 𝑔
0

 (4.3)

with a distinct initial condition from the algorithm of Needleman-Wunsh:

𝑀(𝑖, 0) = 0

𝑀(0, 𝑗) = 0

(4.4)

Comparing the equation 4.3 with the equation 4.1, one more condition is appended to

calculate the optimal similarity by setting up a zero to prevent calculating negative

similarity which indicates that no similarity up to xi and yj. The alogrithm yields an

alignment consisting of a series of local alignments with optimal similarities in specific

regions of the two input sequences, which have not any association among them.

4.3.3 Smith-Waterman Extended with Pecan

The algorithm of Pecan was developed as a tool for large-scale probabilitic consistency

alignment (Paten, Herrero et al. 2008). It implements the similar basic objective function

as the tool of Probcons (Do, Mahabhashyam et al. 2005), an animo acid aligner. The

basic idea of these two approches is derived from the concept of a pair-hidden Markov

model (pair-HMM) (Durbin 1998). Figure 4.3 shows the conceptual graph of pair-HMM

that specifies the probability distribution over all alignments between a pair of sequences.

 66

Figure 4.3 Basic pair-HMM for sequence alignment for two sequences, x and y. State M

emits two residues, xi and yj, respectively from the two sequences, presenting the two

residues being aligned together. State Ix emits a residue in sequence x aligned to a gap,

and similarly state Iy emits a residue in sequence y aligned to a gap too. The optimal

similarity is obtained by applying Needleman-Wunsch algorithm with suitable

parameters. The emission probability function p(.,.) at state M corresponds to a

substitution scoring matrix, at the same time affine gap penalty parameters can be derived

from the transition probabilities δ and ε (Durbin 1998).

Source: Do, C. B., M. S. Mahabhashyam, et al. (2005). "ProbCons: Probabilistic consistency-based

multiple sequence alignment." Genome Res 15(2): 330-340.

The algorithm Pecan hace four main phrase:

1. Create a "constraint map" consisting of a set of alignment constraints that satisfy

that the two residues xi and yj has a constraint i < j.

2. Calculate a set of pairwise posterior match probabilities according to the

constraint map created in step 1.

3. Modify the set of posterior match probabilities using the consistency transformed

with the reference from a third sequence z out of the group.

 67

4. Combine the transformed posterior match probabilities into a multiple alignment

by applying a method of progressive alignment.

By the reason that only two genome sequences are going to be compared in our GPU

program, we ignore the last two steps of Pecan. The original source to create a constraint

map in the first phrase is a set of alignment anchors which are continuous un-gapped

series of one or more aligned pairs, produced by using Exonerate (Slater and Birney 2005)

in the original Pecan program. We modified the Pecan scripts and computed the

constraint map with the local alignments yielded from the Smith-Waterman algorthm.

 The objective to create the constraint map is to gain more efficiency for the

program by avoiding conflicts among the anchor chain and choosing a colinear and non-

overlapping chain of anchor constraints to construct an alignment band. Based on the

alignment band the posterior match probablitlies are calculated by using backward

algorithm to set up the pair-hidden Markov model (Paten, Herrero et al. 2008). In order to

describe the backward calculation for pair HMM to produce posterior match probablitlies,

we introduce a new notation xi ◊ yj, which means that xi is aligned to yj. Then based on

the standard conditional probability therory we have

𝑃(𝑥, 𝑦, 𝑥𝑖 ◊ 𝑦𝑗) = 𝑃(𝑥1…𝑖 , 𝑦1…𝑗,𝑥𝑖 ◊ 𝑦𝑗)𝑃(𝑥𝑖+1…𝑛, 𝑦𝑗+1…𝑚|𝑥1…𝑖, 𝑦1…𝑗,𝑥𝑖 ◊ 𝑦𝑗)

= 𝑃(𝑥1…𝑖, 𝑦1…𝑗,𝑥𝑖 ◊ 𝑦𝑗)𝑃(𝑥𝑖+1…𝑛, 𝑦𝑗+1…𝑚|𝑥𝑖 ◊ 𝑦𝑗)

(4.5)

where n is the length of sequence x, and m is the length of sequence y, with 0 ≤ i ≤ n and

0 ≤ j ≤ m. The first term of equation 4.5 is the forward probability while the second term

is the corresponding probability b
M

 (i, j) which can be calculated via backward algorithm

as shown in Figure 4.4.

 68

Figure 4.4 Backward Algorithm for calculation of posterior match probablitlies. No

special termination step is needed, since only the values of 𝑏∗(𝑖, 𝑗) where 𝑖, 𝑗 ≥ 1are

required to calculate.

Source: Durbin, R. (1998). Biological sequence analysis : probabalistic models of proteins and nucleic

acids. Cambridge, UK New York, Cambridge University Press.

 Then we can use Bayes theorem to obtain

𝑃(𝑥𝑖 ◊ 𝑦𝑗|𝑥, 𝑦) =
𝑃(𝑥, 𝑦, 𝑥𝑖 ◊ 𝑦𝑗)

𝑃(𝑥, 𝑦)

(4.6)

And similar values for the posterior probabilities of using specific insert states (the

anchor chain in our program) can also be produced.

4.4 Results

Due to the test set for out GPU program is from the Alignathon assessment, we also

applied the same comparison tool to test the results. All the output files were transferred

to multiple alignment format (MAF), and compared with the simulated truth file provided

from the project Alignathon. Given two input MAF files, the comparator tool calculates

Algorithm: Backward calculation for pair HMMs

Initialization:

 𝑏𝑀(𝑛,𝑚) = 𝑏𝑋(𝑛,𝑚) = 𝑏𝑌(𝑛,𝑚) = 𝜏

 All𝑏∗(𝑖, 𝑚 + 1), 𝑏∗(𝑛 + 1, 𝑗) are set to 0.

Recursion: 𝑖 = 𝑛, …1, 𝑗 = 𝑚,… ,1except(𝑛,𝑚)

 𝑏𝑀(𝑖, 𝑗) = (1 − 2𝛿 − 𝜏)𝑝𝑥𝑖+1𝑦𝑗+1𝑏
𝑀(𝑖 + 1, 𝑗 + 1)

 +𝛿[𝑞𝑥𝑖+1𝑏
𝑋(𝑖 + 1, 𝑗) + 𝑞𝑦𝑗+1𝑏

𝑌(𝑖, 𝑗 + 1)]

 𝑏𝑋(𝑖, 𝑗) = (1 − 휀 − 𝜏)𝑝𝑥𝑖+1𝑦𝑗+1𝑏
𝑀(𝑖 + 1, 𝑗 + 1) + 휀𝑞𝑥𝑖+1𝑏

𝑋(𝑖 + 1, 𝑗)

 𝑏𝑌(𝑖, 𝑗) = (1 − 휀 − 𝜏)𝑝𝑥𝑖+1𝑦𝑗+1𝑏
𝑀(𝑖 + 1, 𝑗 + 1) + 휀𝑞𝑦𝑖+1𝑏

𝑌(𝑖 + 1, 𝑗)

 69

the precision, recall, and F-score, which is a standard method for combining precision

and recall into a single value, as shown in equation 4.7:

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4.7)

 As described in the section of implement and methods, we implemented three

algorithms for our GPU program for genome comparison. The first one is MaxSSmap

with similarities computing with the Needleman-Wunsch algorithm, the second is

MaxSSmap with the comparison procedure executed with Smith-Waterman algorithm,

and the last on is the extension of the second approach, by importing the output of the

MaxSSmap with Smith-Waterman to the Pecan algorithm, and calculating a better

comparison. In this section we list all the results from these three methods, with various

parameters, such like read length, the step to extract reads from query genome (the mouse

genome in our experiments), the overlap of each read and the one following it, etc.

Table 4.1 Results from MaxSSmap with Needleman-Wunsch, Various in Accordance

with Different Length of Reads

Reference genome: simCow.chrC, 33408597 bases

Query genome: simMouse.chrO, 3949899 bases

Read

Length

Step True

Positive

False

Positive

False

Negative

Precision Recall F-score

1000 100 41200 343642 1828051 10.7% 2.2% 0.036

500 100 121906 464123 1767345 20.8% 6.5% 0.099

250 100 238906 540904 1650904 30.6% 12.6% 0.179

200 50 298963 888271 1590288 25.2% 15.8% 0.194

150 50 295916 1013809 1593635 22.6% 15.6% 0.185

100 50 233729 979345 1655522 19.3% 12.4% 0.151

50 25 149589 1772374 1739662 7.8% 7.9% 0.079

The results from Table 4.1 shows up the performance of the algorithm

MaxSSmap with Needleman-Wunsch approach which calculate the similarities in the

second phrase. The longest read length yields the less false positive and the lowest F-

 70

score. And there is a peak of F-score with a specific read length of 200. This trend is also

graphed in Figure 4.5.

Figure 4.5 Trend of results from MaxSSmap with Needleman-Wunsch with different

read length.

Therefore the most of rest experiments for the GPU program are based on the read length

of 200. Table 4.2 presents all the results of MaxSSmap with Needleman-Wunsch based

on a list of ascending steps, the intervals to cut reads from the query genome. The Figure

4.6 presents the trend of precision, recall, and F-score of all these experiments.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 500 250 200 150 100 50

Precision

Recall

Fscore

Read
Length

 71

Table 4.2 Results from MaxSSmap with Needleman-Wunsch on Read Length of 200

Read

Length

Step Overlap True

Positive

False

Positive

False

Negative

Precision Recall F-score

200 5 195 165679 302919 1723572 35.4% 8.8% 0.141

200 10 190 175227 305508 1714024 36.5% 9.3% 0.148

200 15 185 174917 319453 1714334 35.4% 93% 0.147

200 20 180 182322 329623 1706929 35.6% 9.7% 0.152

200 25 175 184720 330369 1704531 35.9% 9.8% 0.154

200 30 170 190208 343733 1699043 35.6% 10.1% 0.157

200 35 165 193450 356178 1695801 35.2% 10.2% 0.159

200 40 160 196868 365196 1692383 35.0% 10.4% 0.161

200 45 155 203448 377316 1685803 35.0% 10.8% 0.165

200 50 150 210434 387820 1678817 35.2% 11.1% 0.169

200 55 145 217764 402344 1671487 35.1% 11.5% 0.174

200 60 140 222479 415696 1666772 34.9% 11.8% 0.176

200 65 135 226616 436323 1662635 34.2% 12.0% 0.178

200 70 130 229272 441390 1659979 34.2% 12.1% 0.179

200 75 125 228393 452800 1660858 33.5% 12.1% 0.178

200 80 120 238191 475023 1651060 33.4% 12.6% 0.183

200 85 115 239737 499613 1649514 32.4% 12.7% 0.182

200 90 110 244804 510741 1644447 32.4% 13.0% 0.185

200 95 105 250658 525303 1638593 32.3% 13.3% 0.188

200 100 100 251922 548718 1637329 31.5% 13.3% 0.187

200 105 95 261394 571980 1627857 31.4% 13.8% 0.192

200 110 90 265090 599648 1624161 30.7% 14.0% 0.193

200 115 85 266187 623076 1623064 29.9% 14.1% 0.192

200 120 80 268965 652207 1620286 29.2% 14.2% 0.191

200 125 75 277157 688233 1612094 28.7% 14.7% 0.194

200 130 70 279334 715235 1609917 28.1% 14.8% 0.194

200 135 65 286987 757896 1602264 27.5% 15.2% 0.196

200 140 60 289490 796505 1599761 26.7% 15.3% 0.195

200 145 55 294021 843710 1595230 25.8% 15.6% 0.194

200 150 50 298963 888271 1590288 25.2% 15.8% 0.194

200 155 45 307068 957968 1582183 24.3% 16.3% 0.195

200 160 40 312467 1019601 1576784 23.5% 16.6% 0.194

200 165 35 317541 1095894 1571710 22.5% 16.8% 0.192

200 170 30 324668 1199881 1564583 21.3% 17.2% 0.190

200 175 25 331634 1314967 1557617 20.1% 17.6% 0.188

200 180 20 339605 1469755 1549646 18.8% 18.0% 0.184

200 185 15 349260 1685460 1539991 17.2% 18.5% 0.178

200 190 10 360624 2001187 1528627 15.3% 19.1% 0.170

200 195 5 377133 2583476 1512118 12.7% 20.0% 0.156

 72

Figure 4.6 Trend of results from MaxSSmap with Needleman-Wunsch with read length

fixed at 200.

 From Table 4.2 and Figure 4.6, we can find the peak of F-score is produced with

the step 135. In consequence, the group of parameters, read length of 200 and step of 135,

is also the major concern for the next two program implementing with Smith-Waterman

and pecan, along with the parameters group of read length of 100 and step 0f 100, and

the one of 1000 and 100 in read length and step, respectively.

 Table 4.3 presents the results from MaxSSmap with Smith-Waterman in the

second phase. The output of Smith-Waterman for each read has two alignments

companied with two scores, the best similarity and the second. And we set up a threshold

of the ratio of the best score and the second one, to reduce the false positives due to

repeats. Table 4.3 shows all the results with and without the threshold.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

Precision

Recall

Fscore

Step

 73

Table 4.3 Results from MaxSSmap with Smith-Waterman

Read

Length

Step Overlap True

Positive

False

Positive

False

Negative

Precision Recall F-

score

Ratio

200 135 95 393589 4098681 1495662 8.8% 20.8% 0.123 n/a

200 135 95 310226 684460 1579025 31.2% 16.4% 0.215 0.9

 500 400 100 373365 1921706 1515886 16.3% 16.4% 0.164 n/a

500 400 100 303272 371965 1585979 44.9% 16.1% 0.237 0.9

 1000 900 100 273458 784081 1615793 25.9% 14.5% 0.186 n/a

1000 900 100 230524 183387 1658727 55.7% 12.2% 0.200 0.9

And the comparison of precision, recall, and F-score depending on the three

parameter groups is presented in Figure 4.7.

Figure 4.7 Comparison of outputs from MaxSSmap with Smith-Waterman.

 From Table 4.3 and Figure 4.7, the most recent best F-score is yielded with the

parameter group consisting read length at 500 and step at 100, along with the threshold of

the ratio of best and second scores set up at 0.9.

0

0.1

0.2

0.3

0.4

0.5

0.6

200 200 500 500 1000 1000

Precision

Recall

Fscore

Ratio 0.9

Ratio 0.9

Ratio 0.9

Read
length

 74

 To pursuing better performance, we import these output from MaxSSmap and

Smith-Waterman to the algorithm of Pecan, replacing the exonerate execution in the

original procedures. Table 4.4 presents the results from the amended Pecan with

MaxSSmap.

Table 4.4 Results from Amended Pecan with MaxSSmap

Read

Length

Step Overlap True

Positive

False

Positive

False

Negative

Precision Recall F-score Ratio

500 400 100 335203 286083 1554048 54.0% 17.7% 0.267 n/a

500 400 100 345714 206787 1543537 62.6% 18.3% 0.283 0.9

500 400 100 344852 207077 1544399 62.5% 18.3% 0.283 0.85

500 400 100 346935 194771 1542316 64.0% 18.4% 0.285 0.8

500 400 100 344117 186397 1545134 64.9% 18.2% 0.284 0.75

500 400 100 343201 174552 1546050 66.3% 18.2% 0.285 0.7

And the graph presents the trend of the outputs of Pecan according to different ratios:

Figure 4.8 Trend of the outputs of Pecan according to different ratios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 0.9 0.85 0.8 0.75 0.7

Precision

Recall

Fscore

Ratio

 75

Finally, we compare our best results with the published algorithm with the same input in

Table 4.5.

Table 4.5 Results Compared with Published Algorithm

 True

Positive

False

Positive

False

Negative

Precision Recall F-score

GPU 346935 194771 1542316 64.0% 18.4% 0.285

Pecan 294888 294157 1594363 50.1% 15.6% 0.238

Lastz 595362 270983879 1293889 2.2% 31.5% 0.005

Exonerate 114420 7118484 1774831 1.6% 6.1% 0.025

4.5 Discussion

From the experimental results demonstrated in the last section, we can conclude that the

GPU program combined with the Smith-Waterman and Pecan has a better performance

than other previously published algorithms. The F-score of GPU is more than 20% higher

than Pecan, and much better than the two comparison tools: Lastz and Exonerate. The

reason we chose the two input genomes, cow and mouse, is that the two organisms from

the Alignathon test sets have the largest phylogenetic distance at 0.6. The outcomes from

the experiments exhibit that the GPU program combined with efficient alignment tools

has a strong capacity to calculate the similarities of distant related species.

 Even for the first two tools we tested in our experiments, the MaxSSmap with

Needleman-Wunsch, and with Smith-Waterman, higher F-scores yields than the two

previous published alignment tools, Lastz and Exonerate. The GPU program can not only

execute with efficient time consuming, but also produce competitive performance in

genome alignment.

 76

REFERENCES

An, J., Lai, J., Lehman, M. L. and Nelson, C. C. (2013). "miRDeep*: an integrated

application tool for miRNA identification from RNA sequencing data." Nucleic

Acids Res 41(2): 727-737.

Anderson, M. and Schrijver, I. (2010). "Next generation DNA sequencing and the future

of genomic medicine." Genes 1(1): 32-69.

Angiuoli, S. V. and Salzberg, S. L. (2011). "Mugsy: fast multiple alignment of closely

related whole genomes." Bioinformatics 27(3): 334-342.

Aukerman, M. J. and Sakai, H. (2003). "Regulation of flowering time and floral organ

identity by a MicroRNA and its APETALA2-like target genes." Plant Cell

15(11): 2730-2741.

Bartel, D. P. (2004). "MicroRNAs: genomics, biogenesis, mechanism, and function." Cell

116(2): 281-297.

Bates, J. L. and Constable, R. L. (1985). "Proofs as programs." ACM Trans Program

Land Syst 7: 113-136.

Bentley, J. L. (1986). Programming pearls. Reading, Mass., Addison-Wesley.

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A.,

Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y. and Bentwich, Z. (2005).

"Identification of hundreds of conserved and nonconserved human

microRNAs." Nat Genet 37(7): 766-770.

Bindewald, E. and Shapiro, B. A. (2006). "RNA secondary structure prediction from

sequence alignments using a network of k-nearest neighbor classifiers." RNA

12(3): 342-352.

Bindra, R. S., Wang, J. T. L. and Bagga, P. S. (2010). "Bioinformatics methods for

studying microRNA and ARE-mediated regulation of post-transcriptional gene

expression." International Journal of Knowledge Discovery in Bioinformatics

1(3): 97-112.

Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M., Baertsch,

R., Rosenbloom, K., Clawson, H., Green, E. D., Haussler, D. and Miller, W.

(2004). "Aligning multiple genomic sequences with the threaded blockset

aligner." Genome Res 14(4): 708-715.

Breiman, L. (1996). "Bagging predictors." Machine Learning 24: 123-140.

 77

Breiman, L. (2001). "Random Forests." Machine Learning 45(1).

Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. and Cohen, S. M. (2003). "bantam

encodes a developmentally regulated microRNA that controls cell proliferation

and regulates the proapoptotic gene hid in Drosophila." Cell 113(1): 25-36.

Bushati, N. and Cohen, S. M. (2007). "microRNA functions." Annual Review of Cell and

Developmental Biology 23: 175-205.

Butte, A. J. and Kohane, I. S. (2000). "Mutual information relevance networks: functional

genomic clustering using pairwise entropy measurements." Pac Symp

Biocomput: 418-429.

Cerulo, L., Elkan, C. and Ceccarelli, M. (2010). "Learning gene regulatory networks

from only positive and unlabeled data." BMC Bioinformatics 11: 228.

Cortes, C. and Vapnik, V. (1995). "Support-vector networks." Machine Learning 20:

273-297.

Djebbari, A. and Quackenbush, J. (2008). "Seeded Bayesian Networks: constructing

genetic networks from microarray data." BMC Systems Biology 2: 57.

Do, C. B., Mahabhashyam, M. S., Brudno, M. and Batzoglou, S. (2005). "ProbCons:

Probabilistic consistency-based multiple sequence alignment." Genome Res

15(2): 330-340.

Durbin, R. (1998). Biological sequence analysis : probabalistic models of proteins and

nucleic acids. Cambridge, New York: Cambridge University Press.

Earl, D., Nguyen, N., Hickey, G., Harris, R. S., Fitzgerald, S., Beal, K., Seledtsov, I.,

Molodtsov, V., Raney, B. J., Clawson, H., Kim, J., Kemena, C., Chang, J. M.,

Erb, I., Poliakov, A., Hou, M., Herrero, J., Kent, W. J., Solovyev, V., Darling,

A. E., Ma, J., Notredame, C., Brudno, M., Dubchak, I., Haussler, D. and Paten,

B. (2014). "Alignathon: a competitive assessment of whole-genome alignment

methods." Genome Res 24(12): 2077-2089.

Edga, R., Asimeno, G., Batzoglou, S. and Sidow, A. (2009). "EVOLVER. ."

http://www.drive5.com/evolver/ (accessed on May 5, 2016).

Edgar, R. C. and Batzoglou, S. (2006). "Multiple sequence alignment." Current Opinion

in Structural Biology 16(3): 368-373.

Elati, M., Neuvial, P., Bolotin-Fukuhara, M., Barillot, E., Radvanyi, F. and Rouveirol, C.

(2007). "LICORN: learning cooperative regulation networks from gene

expression data." Bioinformatics 23(18): 2407-2414.

http://www.drive5.com/evolver/

 78

Elkan, C. and Noto, K. (2008). "Learning classifiers from only positive and unlabeled

data." KDD'08: Proceeding of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, New York, NY,

USA:ACM 2008: 213-220.

Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S.,

Collins, J. J. and Gardner, T. S. (2007). "Large-scale mapping and validation of

Escherichia coli transcriptional regulation from a compendium of expression

profiles." PLoS Biol 5(1): e8.

Fan, R., Chen, P. and Lin, C. (2005). "Working set selection using the second order

information for training SVM." Journal of Machine Learning Research 6:

1889-1918.

Freund, Y. and Schapire, R. E. (1997). "A decision-theoretic generalization of on-line

learning and an application to boosting." Journal of Computer and System

Sciences 55: 119-139.

Friedlander, M. R., Mackowiak, S. D., Li, N., Chen, W. and Rajewsky, N. (2012).

"miRDeep2 accurately identifies known and hundreds of novel microRNA

genes in seven animal clades." Nucleic Acids Res 40(1): 37-52.

Gardner, T. S., di Bernardo, D., Lorenz, D. and Collins, J. J. (2003). "Inferring genetic

networks and identifying compound mode of action via expression profiling."

Science 301(5629): 102-105.

Gomez, A. and Ingelman-Sundberg, M. (2009). "Epigenetic and microRNA-dependent

control of cytochrome P450 expression: a gap between DNA and protein."

Pharmacogenomics 10(7): 1067-1076.

Gottesman, S. (2005). "Micros for microbes: non-coding regulatory RNAs in bacteria."

Trends Genet 21(7): 399-404.

Greenfield, A., Madar, A., Ostrer, H. and Bonneau, R. (2010). "DREAM4: Combining

genetic and dynamic information to identify biological networks and dynamical

models." PLoS One 5(10): e13397.

Griesmer, S. J., Cervantes-Cervantes, M., Song, Y. and Wang, J. T. (2011). "In silico

prediction of noncoding RNAs using supervised learning and feature ranking

methods." International Journal of Bioinformatics Research and Applications

7(4): 355-375.

Hackenberg, M., Rodriguez-Ezpeleta, N. and Aransay, A. M. (2011). "miRanalyzer: an

update on the detection and analysis of microRNAs in high-throughput

sequencing experiments." Nucleic Acids Res 39(Web Server issue): W132-138.

 79

Haibe-Kains, B., Olsen, C., Djebbari, A., Bontempi, G., Correll, M., Bouton, C. and

Quackenbush, J. (2012). "Predictive networks: a flexible, open source, web

application for integration and analysis of human gene networks." Nucleic

Acids Res 40(Database issue): D866-875.

Harris, R. S. (2007). "Improved pairwise alignment of genomic DNA." Ph.D. Thesis,

Pennsylvania State University.

Hendrix, D., Levine, M. and Shi, W. (2010). "miRTRAP, a computational method for the

systematic identification of miRNAs from high throughput sequencing data."

Genome Biol 11(4): R39.

Hofacker, I. L. (2003). "Vienna RNA secondary structure server." Nucleic Acids Res

31(13): 3429-3431.

Huang, T. H., Fan, B., Rothschild, M. F., Hu, Z. L., Li, K. and Zhao, S. H. (2007).

"MiRFinder: an improved approach and software implementation for genome-

wide fast microRNA precursor scans." BMC Bioinformatics 8: 341.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. and Geurts, P. (2010). "Inferring regulatory

networks from expression data using tree-based methods." PLoS One 5(9).

John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C. and Marks, D. S. (2004).

"Human MicroRNA targets." PLoS Biol 2(11): e363.

Johnston, R. J. and Hobert, O. (2003). "A microRNA controlling left/right neuronal

asymmetry in Caenorhabditis elegans." Nature 426(6968): 845-849.

Kellis, M., Patterson, N., Endrizzi, M., Birren, B. and Lander, E. S. (2003). "Sequencing

and comparison of yeast species to identify genes and regulatory elements."

Nature 423(6937): 241-254.

Kozomara, A. and Griffiths-Jones, S. (2011). "miRBase: integrating microRNA

annotation and deep-sequencing data." Nucleic Acids Res 39(Database issue):

D152-157.

Lai, E. C., Tomancak, P., Williams, R. W. and Rubin, G. M. (2003). "Computational

identification of Drosophila microRNA genes." Genome Biol 4(7): R42.

Langfelder, P. and Horvath, S. (2008). "WGCNA: an R package for weighted correlation

network analysis." BMC Bioinformatics 9: 559.

Lee, R. C., Feinbaum, R. L. and Ambros, V. (1993). "The C. elegans heterochronic gene

lin-4 encodes small RNAs with antisense complementarity to lin-14." Cell

75(5): 843-854.

 80

Lee, W. P. and Tzou, W. S. (2009). "Computational methods for discovering gene

networks from expression data." Brief Bioinform 10(4): 408-423.

Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. and Bartel, D. P. (2003). "Vertebrate

microRNA genes." Science 299(5612): 1540.

Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M. F., Parker, B. J., Washietl, S.,

Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E., Ward, L. D., Lowe, C. B.,

Holloway, A. K., Clamp, M., Gnerre, S., Alfoldi, J., Beal, K., Chang, J.,

Clawson, H., Cuff, J., Di Palma, F., Fitzgerald, S., Flicek, P., Guttman, M.,

Hubisz, M. J., Jaffe, D. B., Jungreis, I., Kent, W. J., Kostka, D., Lara, M.,

Martins, A. L., Massingham, T., Moltke, I., Raney, B. J., Rasmussen, M. D.,

Robinson, J., Stark, A., Vilella, A. J., Wen, J., Xie, X., Zody, M. C., Baldwin,

J., Bloom, T., Chin, C. W., Heiman, D., Nicol, R., Nusbaum, C., Young, S.,

Wilkinson, J., Worley, K. C., Kovar, C. L., Muzny, D. M., Gibbs, R. A., Cree,

A., Dihn, H. H., Fowler, G., Jhangiani, S., Joshi, V., Lee, S., Lewis, L. R.,

Nazareth, L. V., Okwuonu, G., Santibanez, J., Warren, W. C., Mardis, E. R.,

Weinstock, G. M., Wilson, R. K., Delehaunty, K., Dooling, D., Fronik, C.,

Fulton, L., Fulton, B., Graves, T., Minx, P., Sodergren, E., Birney, E.,

Margulies, E. H., Herrero, J., Green, E. D., Haussler, D., Siepel, A., Goldman,

N., Pollard, K. S., Pedersen, J. S., Lander, E. S. and Kellis, M. (2011). "A high-

resolution map of human evolutionary constraint using 29 mammals." Nature

478(7370): 476-482.

Lingeman, J. M. and Shasha, D. (2012). Network inference in molecular biology. New

York: Springer.

Lippert, R. A., Zhao, X., Florea, L., Mobarry, C. and Istrail, S. (2005). "Finding anchors

for genomic sequence comparison." J Comput Biol 12(6): 762-776.

Liu, J., Wang, J. T., Hu, J. and Tian, B. (2005). "A method for aligning RNA secondary

structures and its application to RNA motif detection." BMC Bioinformatics 6:

89.

Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W. and Cui, Q. (2008). "An

analysis of human microRNA and disease associations." PLoS One 3(10):

e3420.

Mack, G. S. (2007). "MicroRNA gets down to business." Nat Biotechnol 25(6): 631-638.

Macneil, L. T. and Walhout, A. J. (2011). "Gene regulatory networks and the role of

robustness and stochasticity in the control of gene expression." Genome Res

21(5): 645-657.

 81

MacNeil, L. T. and Walhout, A. J. (2011). "Gene regulatory networks and the role of

robustness and stochasticity in the control of gene expression." Genome Res 21:

645-657.

Madar, A., Greenfield, A., Ostrer, H., Vanden-Eijnden, E. and Bonneau, R. (2009). "The

Inferelator 2.0: a scalable framework for reconstruction of dynamic regulatory

network models." Conference proceedings : 2009 Annual International

Conference of the IEEE Engineering in Medicine and Biology Society 2009:

5448-5451.

Maetschke, S. R., Madhamshettiwar, P. B., Davis, M. J. and Ragan, M. A. (2013).

"Supervised, semi-supervised and unsupervised inference of gene regulatory

networks." Brief Bioinform.

Marbach, D., Roy, S., Ay, F., Meyer, P. E., Candeias, R., Kahveci, T., Bristow, C. A. and

Kellis, M. (2012). "Predictive regulatory models in Drosophila melanogaster by

integrative inference of transcriptional networks." Genome Res 22(7): 1334-

1349.

Marbach, D., Schaffter, T., Mattiussi, C. and Floreano, D. (2009). "Generating realistic in

silico gene networks for performance assessment of reverse engineering

methods." Journal of Computational Biology 16(2): 229-239.

Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R.

and Califano, A. (2006). "ARACNE: an algorithm for the reconstruction of

gene regulatory networks in a mammalian cellular context." BMC

Bioinformatics 7 Suppl 1: S7.

Martens-Uzunova, E. S., Jalava, S. E., Dits, N. F., van Leenders, G. J., Moller, S.,

Trapman, J., Bangma, C. H., Litman, T., Visakorpi, T. and Jenster, G. (2012).

"Diagnostic and prognostic signatures from the small non-coding RNA

transcriptome in prostate cancer." Oncogene 31(8): 978-991.

Mathelier, A. and Carbone, A. (2010). "MIReNA: finding microRNAs with high

accuracy and no learning at genome scale and from deep sequencing data."

Bioinformatics 26(18): 2226-2234.

McEntyre, J. and Lipman, D. (2001). "PubMed: bridging the information gap." CMAJ

164(9): 1317-1319.

Meyer, P. E., Lafitte, F. and Bontempi, G. (2008). "minet: A R/Bioconductor package for

inferring large transcriptional networks using mutual information." BMC

Bioinformatics 9: 461.

 82

Miller, W., Rosenbloom, K., Hardison, R. C., Hou, M., Taylor, J., Raney, B., Burhans, R.,

King, D. C., Baertsch, R., Blankenberg, D., Kosakovsky Pond, S. L.,

Nekrutenko, A., Giardine, B., Harris, R. S., Tyekucheva, S., Diekhans, M.,

Pringle, T. H., Murphy, W. J., Lesk, A., Weinstock, G. M., Lindblad-Toh, K.,

Gibbs, R. A., Lander, E. S., Siepel, A., Haussler, D. and Kent, W. J. (2007).

"28-way vertebrate alignment and conservation track in the UCSC Genome

Browser." Genome Res 17(12): 1797-1808.

Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-

Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin,

D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman,

R., Vessella, R. L., Nelson, P. S., Martin, D. B. and Tewari, M. (2008).

"Circulating microRNAs as stable blood-based markers for cancer detection."

Proceedings of the National Academy of Sciences U S A 105(30): 10513-10518.

Mordelet, F. and Vert, J. P. (2008). "SIRENE: supervised inference of regulatory

networks." Bioinformatics 24(16): i76-82.

Mukhopadhyay, N. D. and Chatterjee, S. (2007). "Causality and pathway search in

microarray time series experiment." Bioinformatics 23(4): 442-449.

Needleman, S. B. and Wunsch, C. D. (1970). "A general method applicable to the search

for similarities in the amino acid sequence of two proteins." Journal of

Molecular Biology 48(3): 443-453.

Ng, K. L. and Mishra, S. K. (2007). "De novo SVM classification of precursor

microRNAs from genomic pseudo hairpins using global and intrinsic folding

measures." Bioinformatics 23(11): 1321-1330.

Notredame, C. (2007). "Recent evolutions of multiple sequence alignment algorithms."

PLoS Comput Biol 3(8): e123.

Ostling, P., Leivonen, S. K., Aakula, A., Kohonen, P., Makela, R., Hagman, Z., Edsjo, A.,

Kangaspeska, S., Edgren, H., Nicorici, D., Bjartell, A., Ceder, Y., Perala, M.

and Kallioniemi, O. (2011). "Systematic analysis of microRNAs targeting the

androgen receptor in prostate cancer cells." Cancer Res 71(5): 1956-1967.

Pan, Y. Z., Gao, W. and Yu, A. M. (2009). "MicroRNAs regulate CYP3A4 expression

via direct and indirect targeting." Drug Metab Dispos 37(10): 2112-2117.

Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D. and Haussler, D. (2011).

"Cactus: Algorithms for genome multiple sequence alignment." Genome Res

21(9): 1512-1528.

 83

Paten, B., Herrero, J., Beal, K., Fitzgerald, S. and Birney, E. (2008). "Enredo and Pecan:

genome-wide mammalian consistency-based multiple alignment with

paralogs." Genome Res 18(11): 1814-1828.

Pearson, W. R. (2000). "Flexible sequence similarity searching with the FASTA3

program package." Methods in Molecular Biology 132: 185-219.

Ribas, J., Ni, X., Haffner, M., Wentzel, E. A., Salmasi, A. H., Chowdhury, W. H.,

Kudrolli, T. A., Yegnasubramanian, S., Luo, J., Rodriguez, R., Mendell, J. T.

and Lupold, S. E. (2009). "miR-21: an androgen receptor-regulated microRNA

that promotes hormone-dependent and hormone-independent prostate cancer

growth." Cancer Res 69(18): 7165-7169.

Sampson, V. B., Rong, N. H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., Petrelli, N. J.,

Dunn, S. P. and Krueger, L. J. (2007). "MicroRNA let-7a down-regulates MYC

and reverts MYC-induced growth in Burkitt lymphoma cells." Cancer Res

67(20): 9762-9770.

Schapire, R. E. (1999). "A brief introduction to boosting." In Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence: 1401-1406.

Scholer, N., Langer, C. and Kuchenbauer, F. (2011). "Circulating microRNAs as

biomarkers - True Blood?" Genome Med 3(11): 72.

Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D.

and Miller, W. (2003). "Human-mouse alignments with BLASTZ." Genome

Res 13(1): 103-107.

Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M. J., Tuschl, T.,

van Nimwegen, E. and Zavolan, M. (2005). "Identification of clustered

microRNAs using an ab initio prediction method." BMC Bioinformatics 6: 267.

Shojaie, A. and Michailidis, G. (2010). "Discovering graphical Granger causality using

the truncating lasso penalty." Bioinformatics 26(18): i517-523.

Slater, G. S. and Birney, E. (2005). "Automated generation of heuristics for biological

sequence comparison." BMC Bioinformatics 6: 31.

Smith, T. F. and Waterman, M. S. (1981). "Identification of common molecular

subsequences." Journal of Molecular Biology 147(1): 195-197.

Spirollari, J., Wang, J. T., Zhang, K., Bellofatto, V., Park, Y. and Shapiro, B. A. (2009).

"Predicting consensus structures for RNA alignments via pseudo-energy

minimization." Bioinformatics and Biology Insights 3: 51-69.

 84

Stolovitzky, G., Monroe, D. and Califano, A. (2007). "Dialogue on reverse-engineering

assessment and methods: the DREAM of high-throughput pathway inference."

Annals of the New York Academy of Sciences 1115: 1-22.

Takagi, S., Nakajima, M., Mohri, T. and Yokoi, T. (2008). "Post-transcriptional

regulation of human pregnane X receptor by micro-RNA affects the expression

of cytochrome P450 3A4." Journal of Biological Chemistry 283(15): 9674-

9680.

Tang, Y. F., Zhang, Y., Li, X. Y., Li, C., Tian, W. and Liu, L. (2009). "Expression of

miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process

of adipose-derived stem cells." OMICS 13(4): 331-336.

Tjaden, B., Goodwin, S. S., Opdyke, J. A., Guillier, M., Fu, D. X., Gottesman, S. and

Storz, G. (2006). "Target prediction for small, noncoding RNAs in bacteria."

Nucleic Acids Res 34(9): 2791-2802.

Tsuchiya, Y., Nakajima, M., Takagi, S., Taniya, T. and Yokoi, T. (2006). "MicroRNA

regulates the expression of human cytochrome P450 1B1." Cancer Res 66(18):

9090-9098.

Turki, T. and Roshan, U. (2014). "MaxSSmap: a GPU program for mapping divergent

short reads to genomes with the maximum scoring subsequence." BMC

Genomics 15: 969.

Wallace, I. M., Blackshields, G. and Higgins, D. G. (2005). "Multiple sequence

alignments." Current Opinion in Structural Biology 15(3): 261-266.

Wang, J. T. L. and Wu, X. (2006). "Kernel design for RNA classification using Support

Vector Machines." International Journal of Data Mining and Bioinformatics

1(1): 57-76.

Wang, T., Zhang, X., Obijuru, L., Laser, J., Aris, V., Lee, P., Mittal, K., Soteropoulos, P.

and Wei, J. J. (2007). "A micro-RNA signature associated with race, tumor size,

and target gene activity in human uterine leiomyomas." Genes Chromosomes

Cancer 46(4): 336-347.

Wang, W. L., Chatterjee, N., Chittur, S. V., Welsh, J. and Tenniswood, M. P. (2011).

"Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and

mRNA expression in LNCaP cells." Molecular Cancer 10: 58.

Watahiki, A., Wang, Y., Morris, J., Dennis, K., O'Dwyer, H. M., Gleave, M., Gout, P. W.

and Wang, Y. (2011). "MicroRNAs associated with metastatic prostate cancer."

PLoS One 6(9): e24950.

 85

Xu, C. F., Yu, C. H. and Li, Y. M. (2009). "Regulation of hepatic microRNA expression

in response to ischemic preconditioning following ischemia/reperfusion injury

in mice." OMICS 13(6): 513-520.

Xue, C., Li, F., He, T., Liu, G. P., Li, Y. and Zhang, X. (2005). "Classification of real and

pseudo microRNA precursors using local structure-sequence features and

support vector machine." BMC Bioinformatics 6: 310.

Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. and Jarvis, E. D. (2004). "Advances to

Bayesian network inference for generating causal networks from observational

biological data." Bioinformatics 20(18): 3594-3603.

Zhao, D., Wang, Y., Luo, D., Shi, X., Wang, L., Xu, D., Yu, J. and Liang, Y. (2010).

"PMirP: a pre-microRNA prediction method based on structure-sequence

hybrid features." Artificial Intelligence in Medicine 49(2): 127-132.

Zheng, Y., Hsu, W., Lee, M. L. and Wong, L. S. (2006). "Exploring Essential Attributes

for Detecting MicroRNA Precursors from Background Sequences." Lecture

Notes in Computer Science, Springer 4316: 15.

Zhong, L., Wang, J. T. L., Wen, D. and Shapiro, B. A. (2012). "Pre-miRNA classification

via combinatorial feature mining and boosting." In Proceedings of the

International Conference on Bioinformatics and Biomedicine: 369-372.

Zhu, H., Wu, H., Liu, X., Evans, B. R., Medina, D. J., Liu, C. G. and Yang, J. M. (2008).

"Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-

glycoprotein expression in human cancer cells." Biochem Pharmacol 76(5):

582-588.

Zoppoli, P., Morganella, S. and Ceccarelli, M. (2010). "TimeDelay-ARACNE: Reverse

engineering of gene networks from time-course data by an information

theoretic approach." BMC Bioinformatics 11: 154.

Zuker, M. (2003). "Mfold web server for nucleic acid folding and hybridization

prediction." Nucleic Acids Res 31(13): 3406-3415.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Effective Classification of Microrna Precursurs Using Feature Mining and Adaboost Algorithm
	Chapter 3: Algorithm for Gene Network Inference: A Survey
	Chapter 4: A GPU Program for Whole Genome Comparison
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

