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ABSTRACT 

RADIATIVE PROPERTIES OF SILICON RELATED MATERIALS 

by 

Scott Sanowitz 

The objective of this thesis is to study the optical properties of silicon, as a function 

of temperature, in the infrared range of wavelengths. The wavelength range, 

considered in this study, is between 1 micron and 20 microns. The temperature 

range observed is from 50 degrees Celsius to 1000 degrees Celsius.  Varying 

wafer thickness and doping are taken into account. The thickness of the native 

oxide, silicon dioxide, must be taken into account as well as its orientation (front 

side versus back side). The effect of layering wafers one onto another is 

investigated. It is shown that all these parameters affect the optical properties, 

emittance, reflectance, and transmittance, of a wafer and multiple layers of wafers.  

 The IR-563 Blackbody source is utilized as the infrared source. Emissivity 

measurements are performed using an Ex-Series FLIR camera and a Laser Grip 

-Model 1022.  A matrix method based approach is implemented to simulate the 

optical properties.  
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CHAPTER 1 

 

INTRODUCTION 

 

In the semiconductor industry, the two most crucial aspects for consideration are 

increased dimensions of the substrate and reduced device size. It is now more 

important than ever to minimize the temperature-time product, also known as the 

thermal budget, the process induced contamination, and the device failure.  A 

number of processes have been developed that follow these guidelines, such as. 

Rapid Thermal Processing (R.T.P), Rapid Thermal Chemical Vapor Disposition 

(R.T.C.V.D), and Metal Organic Molecular Beam Epitaxy (M.O.M.B.E).  In 

semiconductor device manufacturing, the most important process parameter is 

temperature. Even a slight change in temperature can result in a drastic altercation 

to the rate of the process. In order to properly produce a thermal model of R.T.P, 

one requires an understanding of the thermal properties of the material. Most of 

the processing in R.T.P occurs by radiation. Proper knowledge of the emissivity, 

reflectance and transmittance, in relation to the incident radiation of the wafer, is 

required. The behavior of the radiative properties of the materials under various 

temperatures must be accounted for.  

 The basic requirement of an RTP process is that the actual time-

temperature profile must closely follow the specified one, and that uniformity must 

be maintained in steady-state at the target temperature as well as during 

transients. Failure to exercise such control results in undesirable effects such as 
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the introduction of defects in the bulk wafer, and process variations. The main 

problem with the conventional equipment, used in manufacturing today, lies with 

the approach where optimal steady-state temperature uniformity for one set of 

process conditions is used to design the hardware geometry, leaving only one 

input variable, the lamp power, for control [1].  The lamp power for RTP is the point 

source for radiation. The lamp is of the tungsten-halogen variety.  

 This thesis will investigate the optical properties of silicon, particularly in the 

infrared range of wavelengths. The parameter of temperature and wavelength will 

be taken into account. The optical properties in the infrared range of the 

electromagnetic spectrum, from 1 to 20 microns, are investigated. Varying wafer 

thickness and doping effects are considered in this study. The addition of 

multilayers is considered in the modeling.  The following case studies are 

considered here: silicon dioxide on silicon; silicon nitride on silicon; thickness and 

front side versus back side; wafer orientation; silicon on silicon dioxide on silicon, 

also known as SIMOX (Separation by IMplanted OXygen), as well as SIMOX’s 

front side versus back side.  

 The infrared source, utilized in the experiment, was an IR-563 Blackbody 

source. This source generates radiation in the visible as well as infrared spectrum 

(the spectrum of interest in RTP).  The interaction of the radiation with silicon is 

imaged using an FLIR camera and a Laser-Grip Model 1022. A matrix method 

based approach was implemented to simulate the optical properties of the various 

materials. 
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 Over the next six chapters, the various parameters of wavelength, 

temperature and material will be explored. Chapter 2 presents the history and 

fundamentals of Blackbody radiation and Greybody radiation. An overview of the 

optical properties will be discussed as well as their relation to thermal properties. 

Chapter 3 will discuss general semiconductor fundamentals with a concise focus 

on silicon. Chapter 4 will discuss thermocouples and their implementation in 

processing. Chapter 5 will feature the experimental setup, simulation, and data 

interpretation. Chapter 6 will conclude with the findings of this research. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

2.1 History of Infrared Technology 

Like a number of great scientific discoveries, the infrared spectrum was discovered 

by accident. It was discovered in 1800 by Sir William Herschel, the Royal 

Astronomer to King George III who was already famous for his discovery of the 

planet Uranus. He was searching for optical filters which would reduce the 

brightness of the sun’s image during solar observations. While trying out different 

materials, he was astounded to find that some samples passed very little of the 

sun’s heat while others passed so much heat that it would damage the eye in a 

mere few seconds.  Hershel needed to find a material that would reduce the 

brightness of the sun while also obtaining a maximum reduction in heat.  He 

conducted an experiment. The experiment was conducted wherein he blackened 

mercury in a glass thermometer with ink and began to test the heating effects of 

various colors of the spectrum formed by sunlight passing through a glass prism.  

As the blackened thermometer slowly moved across the color spectrum, the 

temperature readings showed a steady increase from the violet end to the red end.  

When Herschel moved the thermometer into the dark regions beyond the red end 

of the spectrum, it showed an increase in temperature. Herschel knew that there 
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must be a point where the heating effect was maximized and this point was way 

beyond the red end of the spectrum. This is known today as infrared wavelengths.  

 Any experiment must overcome the strict scrutiny of the scientific 

community. Many of Herschel’s contemporaries tried using different glasses as 

prism to confirm the infrared spectrum.  Different glasses will provide different 

transparencies for the infrared. In 1830, an Italian named Macedonio Melloni 

discovered that when rock salt (NaCl) was made into lenses and prisms, it was 

extremely transparent to the infrared spectrum. Rock salt was to remain the 

principle infrared optical material until synthetic crystal growing was mastered by 

1930.   

 In 1829, Leopoldo Nobili invented the thermocouple. Melloni connected a 

bunch of thermocouples together to create a thermopile.  The thermopile was 40 

times as sensitive as the best thermometer of the day and could sense the heat 

from a person from three meters away. In 1840, Sir John Herschel, son of Sir 

William Herschel, developed a way to image the infrared spectrum. He used a thin 

film of oil that would evaporate when a heat pattern was focused on it. The thermal 

image could be seen by the reflecting light where the interference effects of the oil 

made the thermal image visible to the eye.  In 1880, Samuel Pierpont Langley 

invented the bolometer. The bolometer consisted of a thin blacked strip of platinum 

connected to a Wheatstone bridge circuit upon which infrared radiation was 

focused to a responsive galvanometer. The bolometer was said to detect heat from 

a cow from 400 meters away. Between 1900 and 1920, many patents were issued 

for devices that detected infrared. The military was especially interested in being 



 
 

6   
 

able to “see in the dark” and in developing torpedo guidance systems. In between 

World War I and II, the military did the foremost research on infrared applications. 

The image converter was invented and let soldiers see in the dark.  Since the 

1950’s, the military’s grasp of infrared research has been elevated and thermal 

imaging devices are available for civilian use today [2].  

 

2.2 Blackbody Radiation 

All radiation is in fact part of the electromagnetic spectrum. The spectrum is divided 

into arbitrary wavelength regions known as bands. They were historically split up 

into bands based on the method of detection. All the bands follow the same laws 

as each other and only differ in wavelength. 

 

 

Figure 2.1 Shows the bands of the electromagnetic spectrum at their respective 
wavelengths. 
Source: [3]. 
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  The study of infrared thermal imaging is known as thermography.  At the 

short wavelength end of the infrared spectrum lies a deep red color of light, while 

the long wavelength end lies in the blurred space merging towards microwave 

radio wavelengths, in the millimeter range. Further divided lines are made in the 

infrared spectrum into four sub-bands. They are known as the near infrared, 0.75-

3 µm; middle infrared, 3-6µm; far infrared, 6-15µm; and extreme infrared, 15-

100µm. These measurements are expressed in microns, µm, but wavelength 

measures are commonly found in nanometers, nm, and Angstroms, Å. 

 A blackbody is defined as an object which absorbs all incident radiation at 

all wavelengths. Kirchhoff’s law states that a body capable of absorbing all 

radiation at any wavelength is equally capable in the emission of radiation.  

 

αλ = ελ          (2.1) 

 

Stating the absorptivity, αλ, equals the emissivity, ελ.  The construction of blackbody 

source consists of an aperture in an isotherm cavity. The cavity does not change 

in temperature and is made of an opaque absorbing material.  The material is 

placed into a box that is light tight except for the aperture which is placed on one 

side of the box. All radiation that enters the hole is scattered and absorbed 

repeatedly by reflections, so that only an infinitesimal amount of radiation can 

escape. The blackness at the aperture is nearly equal to that of an ideal blackbody 

and is almost perfect for all wavelengths.   
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 Radiant flux is the energy from the electromagnetic radiation that is 

emitted, reflected, transmitted or received, per unit time. 

 

                                                         Φ𝑒 =
𝜕𝑄

𝜕𝑡
         (2.2) 

 

where Φe is the radiant flux, Q is the electromagnetic energy and t is the time. 

Spectral flux is the radiant flux over wavelength or frequency. 

 

                                                            Φ𝑒,𝜆 =
𝜕Φ𝑒

𝜕𝜆
           (2.3)  

 

where Φe,λ is the spectral flux, Φe is the radiant flux and λ is the wavelength. λ, 

wavelength can be replaced by ν, the frequency [4]. When scientists, in the late 

19th to early 20th century, started plotting the spectral flux, they produced a graph 

with perplexing curves. 
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Figure 2.2 Shows the curves of spectral radiation, sometimes called intensity 
versus wavelength in microns. The wavelengths traverse through the infrared, 
visible, and ultraviolet bands. These curves are referred to as Planck’s curves.  
Source: [5]. 

 

At first, the scientists at that time could not come up with the equations 

governing these curves.  In 1896, Wilhelm Wien proposed an equation to model 

the spectral flux of a blackbody: 

 

                                                    𝐼(𝜈, 𝑇) =
2ℎ𝜈3

𝑐2 𝑒(
ℎ𝜈

𝑘𝑇
)
        (2.4)  

 

where, I(ν,T) is the amount of energy per unit surface area, time, solid angle and 

frequency, ν. T is temperature, h is Planck’s constant, k is Boltzmann’s constant 

and c is the speed of light. This was a good approximation of spectral flux, but only 
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for short wavelength and hence high frequencies.  In 1905, Lord Rayleigh and Sir 

James Jeans proposed an equation that fit the curves of the spectral flux for a 

blackbody at long wavelengths. 

  

                                                        𝑊𝜆𝑏 =
2𝑐𝑘𝑇

𝜆4          (2.5) 

 

Wλ,b is the spectral flux of a blackbody. This law, besides not fitting the curves for 

all wavelengths, has another devastating consequence. It predicted infinitely small 

wavelengths and approached zero as the energy emitted would approach infinity. 

This was known as the ultraviolet catastrophe for Rayleigh-Jeans law.  It would 

start to diverge from the spectral flux curves starting in the ultraviolet regions of the 

electromagnetic spectrum [6].  It was not until Max Planck quantized light into so 

called packets of radiation we now call photons that an accurate equation could 

describe the spectral flux curves for a black body: 

 

                               𝑊𝜆,𝑏 =
2𝜋ℎ𝑐2

𝜆5(exp(
ℎ𝑐

𝜆𝑘𝑇
)−1)

∗ 10−6   [
𝑊

𝑚2] (µ𝑚)                       (2.6) 

 

where Wλ,b is spectral emittance, c is the velocity of light, h is Planck’s constant, k 

is Boltzmann’s constant, T is temperature, and λ is wavelength in microns. 

Equation 2.6 accurately describes the family of curves seen in Figure 2.2. This is 
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known as Planck’s law and works for all range of wavelengths. We can see in 

Figure 2.2 that when the wavelength is zero, the spectral emittance is also zero. 

As the wavelengths increase slightly, the spectral emittance increases rapidly until 

it reaches a maximum at λmax. For very long wavelengths, the spectral emittance 

approaches zero. An intriguing aspect of the curves is the λmax, where the spectral 

emittance is at its highest value. The λmax occurs at shorter wavelengths for higher 

temperature.  

 By differentiating Planck’s formula with respect to λ and finding the 

maximum, one obtains Wien’s displacement law. 

 

𝜆𝑚𝑎𝑥 =
2898

𝑇
(𝜇𝑚)       (2.7)  

 

This formula is useful for describing a well-known phenomenon that, as the 

temperature of a thermal radiator increases, it will change colors from red to 

orange to yellow. A very hot star such as Sirius has a temperature of approximately 

11,000 K. Upon observation, it emits a bluish-white light. This star’s peak spectral 

radiance occurs in the ultraviolet spectrum at a wavelength of 0.27 µm. Our sun 

has a surface temperature of about 6,000 K and emits a yellow light. Its peak 

spectral emittance occurs in the middle of the visible spectrum with a wavelength 

at about 0.5 µm. At room temperature, i.e. 300 K, the peak spectral emittance 

occurs at 38 µm which is considered to be in the far infrared.  
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 By integrating Planck’s formula from a wavelength of λ = 0 to λ = ∞, the 

total radiant emittance can be obtained.  

 

                              𝑊𝑏 = 𝜎𝑇4  [
𝑊

𝑚2]                           (2.8) 

 

This is Stefan-Boltzmann’s law. Here, Wb is the total radiant emittance, σ is the 

Stefan-Boltzmann constant and T is the temperature in Kelvin. Graphically, like 

any integral, it represents the area under a curve. This curve in this instance is the 

Planck curve and Stefan-Boltzmann’s law calculates the area under it. When 

calculating the total emittance from λ = 0 to λ = λmax, the total radiant emittance is 

only about 25%. This represents approximately the amount of the sun’s radiation 

inside the visible spectrum.  

    

2.3 Greybody Radiation 

A blackbody is an idealization of radiators. Most real objects do not comply with 

the laws discussed previously though they may exhibit some blackbody behavior 

in certain wavelength ranges. There are three processes which prevent a real 

object from behaving like a blackbody. A percentage of the incident radiation may 

be absorbed, α; a percentage can be reflected, ρ; and a percentage can be 

transmitted, τ. The sum of these factors must always add to unity at any 

wavelength and temperature. 
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𝛼𝜆 + 𝜌𝜆 +  𝜏𝜆 = 1                      (2.9)  

 

For an opaque material, τλ = 0 and the equation 2.9 simplifies to: 

 

      𝜀𝜆 +  𝜌𝜆 = 1            (2.10) 

 

ελ is called spectral emissivity. It is the ratio of the spectral radiant power from an 

object to that from a blackbody at the same temperature and wavelength.  This 

can be expressed as the spectral radiance of the object to that of the blackbody 

as follows: 

 

𝜀𝜆 =  𝑊𝜆𝑜/𝑊𝜆𝑏                                   (2.11) 

 

In general, there are three types of radiators. A blackbody in which ελ = ε = 1, where 

ε is the emissivity from a blackbody; a greybody for which ελ is a constant less than 

one; a selective radiator for which ελ varies at different wavelengths.  For a 

greybody radiator, the Stefan-Boltzmann’s law becomes: 
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      𝑊 =  𝜀𝜎𝑇4 [
𝑊

𝑚2]       (2.12) 

 

The total emissive power from a greybody is the same as a blackbody at the same 

temperature and wavelength reduced in proportion to the value of ε from the 

greybody. 

Table 2.1 Common Materials’ Emissivity Corresponding to Various Temperatures  
 

Material Specification Temperature (oC) Emissivity 

Aluminum foil 27  0.04 

Aluminum sheet 100 0.09 

Brass oxidized 100 0.61 

Brass polished 200 0.03 

Brick fireclay 1000 0.75 

Brick masonry 35 0.94 

Bronze polished 50 0.1 

Copper polished 100 0.03 

Copper oxidized 20 0.78 

Gold polished 130 0.018 

Iron and Steel polished 100 0.07 

Iron galvanized sheet 92 0.07 

Lead shiny 250 0.08 

Nickel Oxide  500-650 0.52-0.59 

Source: [2]. 



 
 

15   
 

2.4 Basic Optical Properties 

When light passes from an optically thin medium into an optically dense medium, 

one observes that an angle forms between the refracted light beam and a line 

perpendicular to the surface. This angle is known as the angle of refraction, β. This 

angle of refraction is generally smaller than the angle of incidence, α, for light 

propagating from a rarer medium to a denser medium.  

 

Figure 2.3 Refraction of a light beam traversing a boundary from an optically 
rarer medium to an optically denser medium. 
Source: [7]. 
 

This is a well-known phenomenon that is used for the definition of the 

refractive power of a material. It is known as Snell’s law. 
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𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛽
=

𝑛𝑚𝑒𝑑

𝑛𝑣𝑎𝑐
= 𝑛                                               (2.13)   

 

where n is the index of refraction.  Commonly nvac   is arbitrarily set to unity. The 

phenomenon of refraction is caused by the change in velocities, when traversing 

different mediums. Thus, if light passes from vacuum, to a different medium, we 

find: 

 

                                                 𝑛 =
𝑐𝑣𝑎𝑐

𝑐𝑚𝑒𝑑
=

𝑐

𝑣
                                                    (2.14)  

 

where v is the velocity of light of some arbitrary medium.  The magnitude of the 

refractive index of light depends on the wavelength of the incident light. This 

property is known as dispersion.  To summarize, when light passes from vacuum 

to a medium, its velocity as well as its wavelength generally decrease to keep the 

frequency, and thus energy, constant [8]. 
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Table 2.2 Optical Constants for Some Materials at λ = 600nm 

Material n k W (nm) R% 

Copper 0.14 3.35 14.2 95.6 

Gold 0.21 3.21 14.7 98.9 

Al2O3 1.76 ~10-7  7.58 

Quartz 1.55 ~10-7 3 * 108 4.65 

Polyethylene 1.51 ~10-7  4.13 

Polystyrene 1.60 ~10-7  5.32 

Silicon 3.94 0.025 1,910 35.42 

GaAs 3.91 0.228 209 35.26 

            Source: [8]. 

Additional constants are needed to characterize the optical 

properties of materials. Let us consider a plane-polarized wave that 

propagates along the z-direction and oscillates in the x-direction. We will 

negate possible effects due to magnetic fields. In this case, the electro-

magnetic wave equation will read as: 

 

                            
𝑐2𝜕2ℇ𝑥

𝜕𝑧2
=  𝜀

𝜕2ℇ𝑥

𝜕𝑡2
+

𝜎

𝜀𝑜
𝜕ℇ𝑥

𝜕𝑡
                                               (2.15)     
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where   Ɛx is the electric field strength, ε is the dielectric constant, σ is the 

conductivity, and εo is the permittivity of empty/free space. The solution of 

equation 2.15 is achieved using the following trial solution: 

 

                     ℇ𝑥 =  ℇ𝑜 exp [𝑖𝜔 (𝑡 −
𝑧𝑛

𝑐
)]                                                (2.16) 

 

where Ɛo is the maximal value of the electric field strength and ω = 2πν is 

the angular frequency.  Differentiating equation 2.16 once with respect to 

time and twice with respect to time and z and inserting these values into 

equation 2.15, one obtains: 

 

                             ň2 =  𝜀 −
𝜎

𝑜𝜔
𝑖                                                          (2.17)  

 

Equation 2.17 leads to an important result that the index of refraction is 

generally a complex number. We denote the complex index of refraction as 

ň. Like any complex number, it consists of two parts, a real part and an 

imaginary part. The imaginary part of the index of refraction is often 

represented by k. 

 

                                ň = 𝑛 − 𝑖𝑘                                                             (2.18)     
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 k is often referred to as the damping constant, absorption constant, 

attenuation coefficient or extinction coefficient. Values for k for some 

materials are given in Table 2.2.  

 

                                           ň2 = 𝑛2 − 𝑘2 − 2𝑛𝑘𝑖                                  (2.19) 

 

 Equating the real and imaginary parts between equations 2.17 and 2.18 

yields an important relation between electrical and optical constants. 

 

                                               𝜀 = 𝑛2 − 𝑘2                                            (2.20) 

                                              𝜎 = 4𝜋𝜀𝑜𝑛𝑘𝜈                                           (2.21) 

 

Looking back at equation 2.17, there is a difference between two dielectric 

constants, a real one and an imaginary one. The dielectric constant can be 

rewritten as: 

 

                                          έ = 𝜀1 − 𝑖 𝜀2                                                (2.22) 

 

Equating the real and imaginary parts between equations 2.22 and 2.19, we 

obtain: 
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                                       𝜀1 = 𝑛2 − 𝑘2                                                  (2.23) 

                                       𝜀2 = 2𝑛𝑘                                                        (2.24) 

 

Similarly, as with the index of refraction, ε1 and ε2 are the real and imaginary parts 

of the complex dielectric constant, έ. Keep in mind that ε1 is identical to ε in 

equation 2.20.  

 If we now return to the trial solution of the electric wave equation and insert 

the complex dielectric constant, we obtain: 

 

                                       Ɛ𝑥 =  Ɛ𝑜 exp [𝑖𝜔 (𝑡 −
𝑧(𝑛−𝑖𝑘)

𝑐
)]                                   (2.25) 

 

which can be rewritten as:  

 

                                    Ɛ𝑥 =  Ɛ𝑜 exp [−
𝜔𝑘

𝑐
𝑧] exp [𝑖𝜔 (𝑡 −

𝑧𝑛

𝑐
)]                          (2.26) 

 

Equation 2.26 represents a damped wave. This means that, in matter, the 

amplitude of the wave decreases exponentially with an increasing z value. The 

constant k determines how much the amplitude decreases, the degree of damping 

of the light wave.  
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Figure 2.4 Example of a damped oscillation. One can see that the amplitude is 
decreasing exponentially. 
Source: [9].  
 

 The field strength, Ɛ, is difficult to measure in an experimental setting. Thus 

the intensity, I, can be measured effortlessly with such devices as the 

photodetector. The intensity equals the square of the field strength. 

 

                                        𝐼 =  Ɛ2 =  𝐼o exp(−
2𝜔𝑘

𝑐
𝑧)                                         (2.27) 
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The distance at which the intensity of the light wave, which travels through a 

medium, has decreased by 1/e or approximately 37% is known as the 

characteristic penetration depth, W. 

 

                                               
𝐼

𝐼𝑜
=

1

𝑒
                                                                (2.28) 

                                      𝑧 = 𝑊 =
𝑐

2𝜔𝑘
=

𝜆

4𝜋𝑘
                                                    (2.29) 

 

Table 2.2 presents some values for W for light having a constant wavelength of  

λ = 600 nm. The inverse of W is called absorption coefficient and is given by: 

 

                                              𝛼 =
4𝜋𝑘

𝜆
=

𝜎

𝑛𝑐 𝑜
                                                    (2.30) 

 

The ratio between the transmitted light intensity, I, and the incident light intensity, 

Io, is known as Beer-Lambert law. It is given by: 

 

                                     
𝐼

𝐼𝑜
= exp (−

2𝜔𝑘𝑧

𝑐
) = exp(−𝛼𝑧)                                    (2.31) 
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Not all incident light is transformed into other energy forms, such as heat, but 

instead may be reflected, scattered or, as above, transmitted. It should be noted 

that Beer-Lambert’s law breaks down for substances that are highly scattering in 

nature. 

 Many materials can be categorized by the way they reflect light. For metals, 

light penetrates at only a short distance. Thus only a small part of the impinging 

energy is converted to heat. The majority of the energy is reflected. In contrast, for 

glass, light penetrates much farther than metals, approximately seven orders of 

magnitude more. As consequence, very little light is reflected by glass. However, 

a very thick piece of glass, about 1 to 2 meters, will dissipate the impinging energy 

into heat [8]. 

 The ratio between the reflected intensity, IR, and the incoming intensity, Io, 

is known as the reflectivity. It is given by: 

 

                                                        𝑅 =
𝐼𝑅

𝐼𝑜
                                                      (2.32) 

 

Similarly, the ratio between the transmitted intensity, IT, and the impinging light 

intensity, Io is known as transmissivity, or transmittance. 

 

                                                       𝑇 =
𝐼𝑇

𝐼𝑜
                                                       (2.33) 
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Due to experimental data, the reflectivity, R, is known to only depend on values of 

the index of refraction, n. Generally, the index of refraction is a complex number, 

however, R must remain a real number, so the modulus must be taken. 

 

                                                         𝑅 = |
ň−1

ň+1
|

2

                                               (2.34)  

 

which yields: 

 

                                                      𝑅 =  
(𝑛−1)2+𝑘2

(𝑛+1)2+𝑘2                                             (2.35)   

 

Equation 2.35 is known as Beer’s equation. Reflectivity is a dimensionless material 

constant and is often given in a percentage of the incoming light. Table 2.2 lists 

these percentages for a few materials. Like the index of refraction, reflectivity is a 

function of the wavelength of light, λ. Reflectivity can also be expressed as a 

function of ε1 and ε2: 

                                                                      𝑅 =  
𝑛2+𝑘2+1−2𝑛

𝑛2+𝑘2+1+2𝑛
.                                                (2.36) 

 

                                             𝑛2 + 𝑘2 =  √𝜀1
2 +  𝜀2 

2                                           (2.37)   
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                                            2𝑛 =  √2(√𝜀1
2 + 𝜀2

2 + 𝜀1)                                     (2.38)   

 

By substitution of 2.37 and 2.38 into 2.36, we get: 

 

                                      𝑅 =  

√ 1
2+ 2 

2 +1−√2(√ 1
2+ 2

2+ 1) 

√ 1
2+ 2 

2 +1+√2(√ 1
2+ 2

2+ 1) 

                                       (2.39)    

 

Thus the relationship between the complex dielectric constant and reflectivity is 

derived as above.  
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CHAPTER 3 

FUNDAMENTALS OF SEMICONDUCTORS 

 

3.1 Characteristics of Semiconductors 

The study of semiconductors and their application in electronic devices has led to 

marvelous advances in the technology industry. Semiconducting elements can be 

found in column IV of the periodic table and its surrounding neighbor columns. 

Table 3.1 Partial Periodic Table with Semiconductors 

II III IV V VI 

 B 

Boron 

C 

Carbon 

N 

Nitrogen 

 

Mg 

Magnesium 

Al 

Aluminum 

Si 

Silicon 

P 

Phosphorous 

S 

Sulfur 

Zn 

Zinc 

Ga 

Gallium 

Ge 

Germanium 

As 

Arsenic 

Se 

Selenium  

Cd 

Cadmium  

In 

Indium  

Sn 

Tin 

Sb 

Antimony 

Te 

Tellurium 

Hg 

Mercury 

 Pb 

Lead 

  

 Source: [11]. 
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Column IV represents the elemental semiconductors, silicon, Si and 

germanium, Ge.  The elements from columns III and V, as well as the elements 

form columns II and VI, make up intermetallic, or compound semiconductors.  The 

variety of semiconductor materials has given way for many designs and 

fabrications of electronic and optoelectronic devices. For example, germanium 

was used in the early days of semiconductor use for diodes and transistors. Silicon 

is now predominantly used for diodes, rectifiers, solar cells, transistors, memory 

devices and integrated circuits. The III-V compounds are used in high-speed 

devices requiring the emission or absorption of light. GaAs, GaN, InP and GaP are 

such compounds that are fabricated in the use of light emitting diodes (LEDs).  

Fluorescent materials such as those seen in television screens are generally the 

II-VI compounds, such as ZnS. Light detectors commonly consist of InSb, CdSe, 

or other compounds such as PbTe and HgCdTe.  Silicon and germanium are also 

widely used as infrared and nuclear radiation detectors [11].  

 Materials are categorized based on their resistivity (or conversely 

conductivity). Insulators have a high resistivity, while metals have a low resistivity. 

Semiconductors have a resistivity which is in-between insulators and metals [10]. 

The optical and electronic properties of semiconductor materials are significantly 

affected by the addition of impurities. These foreign elements may be added 

precisely in controlled amounts. These impurities are utilized to vary the resistivity 

of the semiconductor. The process of the controlled addition of impurities is called 

doping. 
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 There are two types of dopants found in semiconductors, n-type dopants 

and p-type dopants. N- type doping results in an overall negative charge to an 

otherwise neutral semiconductor. Each atom of the n-type dopant contributes a 

conduction electron giving way to excess conduction electrons and hence a net 

negative charge. For example, consider if silicon was doped with phosphorous. 

Each phosphorous atom now contributes conduction electrons making the silicon 

n-type. 

                               

Figure 3.1 Shows the impurity, phosphorous, added to crystalline silicon along 
the lattice. The addition of phosphorous and its subsequent substitution of a 
silicon atom in the silicon lattice makes the silicon n-type. 
Source: [10]. 
 
 

P-type doping results in an overall positive charge to an otherwise neutral 

semiconductor. Each atom of the p-type dopant contributes a hole giving way to a 

lattice that contains more holes than conduction electrons, hence a net positive 

charge. For example, consider if silicon is now doped with boron. Each boron atom 

now contributes a hole. The number of holes will outnumber the conduction 

electrons making the silicon p-type.  
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Figure 3.2 Shows the impurity of boron added to crystalline silicon along the 
lattice. The addition of boron and its subsequent substitution of a silicon atom in 
the silicon lattice makes the silicon p-type. 
Source: [10]. 
 
 

Another defining characteristic of semiconductors is its energy band gap. At 

0K, semiconductors have the same band structure as insulators, a filled valence 

band separated from an empty conduction band. The difference between 

insulators, metals and semiconductors lies with the size of the band gap, Eg. Eg is 

much smaller in a semiconductor than an insulator, while Eg in a metal is non-

existent for the valence band and conduction band overlap. The concentration of 

conduction electrons, ni, depends on the band gap Eg, and the absolute 

temperature. (For intrinsic silicon) 

 

                              𝑛𝑖 = 5.2 ∗ 1015 exp [
−𝐸𝑔

2𝑘𝑇
]  𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/𝑐𝑚3                              (3.1) 
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ni is approximately 1 x 103 electrons/cm3 at 300K and ni is approximately 1 x 105 

electrons/cm3 at 600K.  A relatively small band gap in semiconductors allows for 

the excitation of electrons from the lower valence band to the upper conduction 

band by the proper amount of thermal or optical energy.  For example, at room 

temperature, a semiconductor with a 1eV band gap will have a significant amount 

of electrons excited across the band gap into the conduction band. However, an 

insulator with 10eV band gap will have a negligible number of excitations [11]. 

 

 

Figure 3.3 Shows the difference in band structure between metals, 
semiconductors and insulators. One can see the band gap increasing from 
metals, where it is non-existent, to semiconductors, to the largest band gap given 
by insulators. 
Source: [12]. 
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At 0K, all the electrons are in the valence band of a semiconductor. As the 

temperature increases, some electrons are excited to the conduction band. This 

leaves some electrons in the conduction band and empty states in the valence 

band. These empty states in the valence band are referred to as holes. By the 

excitation of an electron from the valence band to the conduction band, a 

conduction electron is created and a hole forms. Conduction electrons and holes 

form in pairs, electron-hole pairs.  

 There are two classes of semiconductors both categorized by their 

respective band gaps. The two classes of band gaps lead to direct and indirect 

energy gaps. If the semiconductor has a direct band gap, the minima of the 

conduction curve is aligned with the maxima of the valence curve. If the 

semiconductor has an indirect band gap, the minima of the conduction curve does 

not align with the maxima of the valence curve. Some examples of indirect band 

gap semiconductors are silicon, AlSb, and germanium.  Some direct band gaps 

are GaAs and InP. 
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                      (a) 

                     
                     (b) 

Figure 3.4 (a) shows a direct energy band gap for a semiconductor. (b) shows 
an indirect energy band gap for a semiconductor. 
Source: [13]. 

  

 

For a direct transition from the valence band to the conduction band, an 

electron only needs a photon to excite it. Its momentum in the lattice will remain 

the same. For an indirect transition, the electron will still be excited by a photon, 
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thus, gaining energy, but its lattice momentum will change due to a phonon 

propelling the electron into the conduction band.   

Table 3.2 Energy Gaps for Some Group IV Elements at 0K 

Element Eg (eV) 

Carbon (diamond) 5.48 

Si 1.17 

Ge 0.74 

Sn (gray) 0.08 

Source: [8]. 

 

3.2 Properties of Silicon 

Silicon is the 14th element in the periodic table. In a single crystal form, silicon 

exhibits the diamond lattice structure. The atomic density of silicon is 5.2 x 1022 

atoms/cm3. Silicon has four valence electrons and can covalently bond to its four 

nearest neighbors. Pure silicon has a lattice constant of 5.43086 Å. The nearest 

neighbor distance between the atoms in the diamond lattice is 2.35163 Å. The 

intrinsic carrier concentration is about 1010 cm-3 at 300K.  The conduction electron 

mobility in lightly doped silicon is 1350 cm2/V, while that of hole mobility is 475 

cm2/V at 300K. The shear stress for silicon is 3.61 x 107 dyne/cm2. Due to silicon’s 

shear stress factor, it is possible for silicon to be made into 300mm and 450 mm 

wafers [14]. 
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 Silicon remains the semiconductor of choice for the fabrication of 

semiconductor devices and microcircuits. Silicon is chosen for these applications 

due to the fact that silicon is an elemental semiconductor. It can be subjected to a 

wide variety of processing steps without any concern of decomposition that is the 

situation with compound semiconductors. Also, silicon can be fabricated into 

microcircuits that are capable of high temperature operation.  Silicon is available 

for surface passivation treatments. For instance, forming a layer of thermally grown 

SiO2, provides the device with protection. Silicon may be utilized in the majority of 

the applications in the semiconductor industry, but it is not the best choice for some 

applications. Due to silicon’s indirect band gap, many functions cannot be 

delivered by silicon. These include lasers, light-emitting diodes, and a variety of 

optoelectronic devices.  Silicon in the form of silica and silicates comprises 

approximately 25% of the earth’s crust, making it quite abundant in nature 

compared to other semiconducting materials.  
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CHAPTER 4 

THERMOCOUPLES 

 

4.1 Thermocouple Theory 

Temperature is the most important process parameter in RTP and, for that matter, 

in most semiconductor processes. In order to measure temperature effectively and 

safely, a thermocouple device is utilized. Thermocouples provide a wide and useful 

temperature range, are inherently differentiable, are rugged, are reliable and 

inexpensive, and usually give a fast response. A thermocouple consists of two 

wires of dissimilar metals. These two wires are joined together at one end, called 

the measurement junction. The other end, where the wires are not joined is 

connected to the signal conditioning circuitry traces, typically made of copper. The 

junction between the thermocouple metals and the copper traces is called the 

reference junction [15].  

 

 
 
Figure 4.1 An example of a typical thermocouple circuit.  
Source: [16]. 
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Thermocouples have advantages and disadvantages. Starting with the 

pros, depending on the metal wires used, a thermocouple is capable of measuring 

temperature in the range of -200 oC to +2500 oC. Thermocouples are rugged 

devices, meaning, they are immune to shock and vibration and suitable for 

hazardous environments. Thermocouples are small and have a low thermal 

capacity; they respond quickly to temperature changes, especially if the sensing 

junction is exposed. They can respond to rapidly changing temperature within a 

few milliseconds. Thermocouples require no excitation power, they are not prone 

to self-heating and are intrinsically safe.  

The cons of using thermocouples - a substantial signal conditioning is 

necessary to convert the thermocouple voltage into a viable temperature reading. 

Signal conditioning requires a large investment in design time to avoid introducing 

errors that degrade accuracy. In addition to inherent inaccuracies in thermocouples 

due to their metallurgical properties, a thermocouple measurement is only as 

accurate as the reference junction temperature can be measured, approximately 

1 oC to 2oC. Thermocouples consist of two dissimilar metals; in some 

environments, corrosion over time may result in deteriorating accuracy. Hence, 

thermocouples need great care and maintenance.  When measuring microvolt-

level signal changes, noise from stray electrical and magnetic fields can be a 

problem. Twisting the wire pair can greatly reduce magnetic field pickup. Using a 

shielded cable or running wires in metal conduit and guarding can reduce the 

electric field pickup. The measuring device should provide signal filtering.  
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As stated before, it is not easy measuring voltages generated by 

thermocouples into an accurate temperature reading. The voltage signal is small 

and the temperature-voltage relationship is non-linear. The most common 

thermocouple types are J, K, and T. At room temperature, their voltage varies at 

52 µV/oC, 41 µV/oC, and 41 µV/oC, respectively. Other thermocouple types have 

an even smaller voltage change with temperature.  

Table 4.1 Voltage Change vs. Temperature Rise (Seebeck Coefficient) for 
various Thermocouple Types at 25 oC 

 

Thermocouple Type Seebeck Coefficient 
(µV/oC) 

E 61 

J 52 

K 41 

N 27 

R 9 

S 6 

T 41 

             Source: [15] Courtesy Analog Devices, Inc. 

 

 

 The principle on which thermocouples operate was discovered in 1821 by 

Thomas Johann Seebeck.  Seebeck observed that, when two wires of dissimilar 

metals are joined in a closed circuit, an electromotive force (emf) is generated if 

the two junctions are maintained at different temperatures. This thermal emf 

induces an electric current to flow continuously through the circuit and is known as 
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Seebeck emf in honor of its discoverer [17]. Take two electrical conductors labeled 

A and B, whose junctions are exposed to different temperatures, T1 and T2. The 

thermal emf of this circuit, EAB, is expressed by: 

 

                              𝐸𝐴𝐵 = 𝑓[𝐴, 𝐵, (𝑇2 − 𝑇1)]                                                       (4.1)  

 

EAB, the thermal emf, is a vector quantity. Its magnitude and direction depend on 

the material characteristics of A and B as well as the temperature difference 

between the two junctions, T2 – T1, provided A and B are homogenous in 

composition.   

  

Figure 4.2 A circuit diagram describing a thermocouple in a voltmeter circuit. 
Source: [17] Courtesy of ASM. 
 
 
 

Describing Figure 4.2; thermoelement A is represented by battery EA and 

resistance RA. EA is the emf output of thermoelement A and RA is the resistance of 
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thermoelement A.  Similarly, EB is the emf output of thermoelement B and RB is 

the resistance of thermoelement B. The voltage drop between the terminals of A 

and B is given by the following equation: 

 

                       𝑉𝐴𝐵 =  𝐸𝐴 −  𝐸𝐵 − 𝐼(𝑅𝐴 +  𝑅𝐵 +  𝑅𝑆)                                            (4.2) 

 

where Rs is the resistance of the large resistor in series with the thermocouple to 

minimize the effect of the resistance of the thermoelements. If EA – (EA + VAB) is 

positive, the thermoelectric current, I, will flow continuously from A to B. In this 

particular example, A is termed the positive thermoelement while B is the negative 

thermoelement of the thermocouple.  

 

 

Figure 4.3 A circuit diagram describing a thermocouple in a potentiometer circuit.  
Source: [17] Courtesy of ASM. 
 

 

In Figure 4.3, a potentiometer is connected across the terminals in place of 

the voltmeter. A bucking voltage is applied at the potentiometer until it is equal in 
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magnitude and opposite in direction to the thermoelectric voltage, EAB. At null 

balance, there is no current flow. All the IR terms in equation 4.2 become zero. 

Under this condition: 

 

                                               𝑉𝐴𝐵 =  𝐸𝐴𝐵 =  𝐸𝐴 − 𝐸𝐵                                         (4.3) 

 

The measured emf at the potentiometer VAB is the thermal emf of the thermocouple 

AB. It can be observed that thermal emf is a bulk property. It is independent of the 

resistance and hence, the diameter of the wire. 

 Thermoelectric power at a given temperature T is defined as the rate of 

change of thermal emf with respect to temperature. The thermoelectric power of 

the thermocouple AB at temperature T is the slope of its emf/temperature curve.  

 

                               𝑇ℎ𝑒𝑟𝑚𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 =
∆𝐸

∆𝑇
                                               (4.4) 

 

In using a thermocouple for temperature measurement, it is essential that 

the thermoelectric power of the thermocouple be fairly large and uniform within the 

applicable temperature range [18]. In case the emf/temperature relationship of 

thermocouple AB is well established, we may determine the temperature 

difference between T2 and T1 by measuring the generated thermal emf, EAB, with 
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a potentiometer. The thermocouple does not measure the temperature of the 

junction T2, but rather measures the temperature difference T2 – T1.  

 Thermocouples are separated into types based on their thermoelectric 

output.  A type J thermocouple is widely used for its versatility and low cost. It 

consists of positive thermoelement iron and negative thermoelement 44Ni-55Cu 

alloy. The thermoelectric power of the type J thermocouple is about 55 µV/oC. Type 

K thermocouples are also widely used in industrial applications.  They consist of 

positive thermoelement 90Ni-9Cr alloy and a negative thermoelement 94% Ni alloy 

containing traces of silicon, manganese, aluminum, iron and cobalt. The 

thermoelectric power of a type K thermocouple is about 40 µV/oC. For cryogenic 

measurements, a type T thermocouple is utilized. The positive thermoelement is 

copper and the negative thermoelement consists of 44Ni-55Cu. The positive 

thermoelement in a type E thermocouple is 90Ni-9Cr and the negative element is 

44Ni-55Cu. The thermoelectric power of type E is the highest among all standard 

thermocouples.  Type N is known as the Nicrosil/Nisil thermocouple. It was 

developed for oxidation resistance. The positive thermoelement is Nicrosil, which 

consists of 14 Cr, 1.4 Si, 0.1 Mg, bal Ni. The negative thermoelement is Nisil, which 

consists of 4.4 Si, 0.1 Mg, bal Ni. Type S thermocouples are widely used in 

industrial laboratories as a standard of calibration of base-metal thermocouples 

and other temperature sensing instruments. The thermoelectric output of a type S 

thermocouple is approximately 6 µV/oC. The positive thermoelement in type S is 

Pt-10Rh and the negative thermoelement is high purity platinum. Type R 

thermocouples consist of a positive thermoelement Pt-13Rh and a negative 
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thermoelement of Pt. It is very similar to a type S but has a slightly higher emf. 

Type B thermocouples consist of positive thermoelement Pt-30Rh and negative 

thermoelement Pt-6Rh. Type B is less sensitive than type R or type S, but may be 

used in still air or inert atmospheres at temperatures approaching upwards of 1700 

oC [17]. 
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CHAPTER 5 

EXPERIMENTAL METHODS AND DATA ANALYSIS 

 

5.1 Calibration via Blackbody Source 

Every experiment requires calibration. The instruments utilized in these initial 

experiments were an IR-563 Blackbody source, an FLIR Camera EX- Series and 

a Laser Grip Model-1022.  The setup was utilized to study the interaction of infrared 

radiation with various silicon wafers. The wafers varied in oxide thickness and 

orientation, their front side or back side. The IR-563 Blackbody was set in 

temperature intervals of usually of 50 oC or 100 oC, thus, using temperature of the 

Blackbody cavity as a control. The wafer was held by a clamping apparatus so that 

it would be positioned in front of the IR-563 Blackbody source. The FLIR camera 

was set to a proper emissivity and temperature measurements of various silicon 

wafers were made, while the infrared radiation was interacting with silicon – in 

transmission mode as well as reflection mode. A Laser Grip Model 1022 IR 

thermometer was used to verify the FLIR camera’s findings.  It must be noted here 

that the Blackbody source is a broadband source.  No monochromatic source was 

used in these experiments. 
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Table 5.1 FLIR Camera Where the Emissivity is Set to 0.7 and Laser Grip Model 
1022 Where the Emissivity is Set to 0.7 Temperature Readings for a 150mm 
Silicon Wafer with an Oxide Thickness of 110nm and a Mass of 4.01g 

Temperature of the 
Blackbody (oC) 

Temperature readout of 
FLIR Camera (oC)          

(ε = 0.7) 

Temperature readout of 
Laser Grip Model-1022 

(oC) (ε =0.7) 

50 43.0 21.1 

100 69.0 54.1 

200 152.0 124.0 

250 190.0 156.0 

300 224.0 182.0 

 

 

 As can be seen from Table 5.1, there were many inconsistencies between the 

two temperature readouts, with the Laser Grip Model-1022 reading a temperature 

always lower than the FLIR camera while set at the same emissivity. Both 

instruments are highly sensitive to light and movement and the experimental setup 

was not ideal to combat these sources of error.   

 

 

 

 



 

4
5
 

 

 

Figure 5.1 Shows the experimental setup with the IR -563 Blackbody Source and clamping apparatus.
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Figure 5.2 Shows three different (a, b, c) infrared images obtained by the FLIR 
camera. 

 

(a)                                                                                                           (b) 

                         (C) 
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The infrared images shown in Figure 5.2 are obtained in a mode of the FLIR 

camera called hot spot. The hot spot is marked by the red crosshairs in the infrared 

images. These red crosshairs will always point to the highest temperature. The 

point with the highest temperature obtained by the crosshairs was the temperature 

noted for data in Table 5.1. The higher the temperature of the Blackbody cavity, 

the brighter the hot spot would glow, indicating an increase in temperature 

detected through the wafer.  

 The next experiment conducted was more complicated in depth and 

procedure requiring two wafers in alignment on the same clamping apparatus. The 

goal was to see how multilayers would affect the temperature read out. At first, the 

Blackbody cavity temperature was measured with the FLIR camera at an 

emissivity set at 1.0. Then each wafer was measured separately using the FLIR 

camera set at emissivity 0.7, front side and back side to compare differences. Then 

the two wafer temperatures, in alignment with one another, were measured using 

the FLIR camera at an emissivity of 0.7, taking into account both front sides and 

both back sides. 
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Table 5.2 Temperature Measurements of Wafer #1 and Wafer #2 Separately 
Wafer #1 is a 0.7 mm Silicon Wafer with a 208nm Layer of Native Oxide (SiO2) 
Wafer #2 is a 0.7mm Silicon Wafer with a 419nm Layer of Native Oxide 

 

T of 
Blackbody 

(oC) 

T of 
Blackbody 
using FLIR 
(ε = 1) (oC) 

T of Wafer 
#1 Front 

side 
(oC) 

T of Wafer 
# 1 Back 

side 
(oC) 

T of Wafer 
#2 Front 

side 
(oC) 

T of Wafer 
#2 Back 

side 
(oC) 

50 62 47.1 47.1 48 48 

100 69 51.9 51.4 52.2 52.2 

150 104 66.4 63 67.5 66 

200 120 74.3 75.4 79.5 79.4 

250 161 89.4 87.7 96 97 

300 188 105 106 114 115 

350 210 122 120 129 131 

400 267 152 152 158 163 
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At these temperatures, there is not much difference in the back side versus 

front side.  Wafer #2 with its thicker oxide layer, in general, reads a higher 

temperature than Wafer #1 with its thinner oxide layer. It is obvious that, in the 

presence of a silicon wafer, the radiation from the Black body source is transmitted, 

reflected and emitted. Some of the radiation is turned into thermal energy read by 

the FLIR camera.  

 

Figure 5.3 Shows both wafer temperature measurements, front side and back 

side. 
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During these measurements, both wafers are in alignment with one another; 

the overall thickness of both wafers is much greater than the individual wafers. 

This thickness affects the temperature readouts. 

  

Table 5.3 Wafers #1 and #2 in Alignment with Measurements Taken with 
Respect to their Front and Back Sides 

T of 
Blackbody 

(oC) 

T of 
Blackbody 
using FLIR 

(ε=0.7) 
(oC) 

T of Wafer 
#1/#2 

Front side 
(oC) 

T of Wafer 
#1/#2 Back 

side 
(oC) 

T of Wafer 
#2/#1 

Front side 
(oC) 

T of Wafer 
#2/#1 Back 

side 
(oC) 

50 62 57.3 43 44.1 44.1 

100 69 44 43.5 43.8 43.5 

150 104 47.3 47.3 47.3 47.3 

200 120 52 52.4 50.3 52 

250 161 58.4 58 56.4 55.8 

300 188 65.8 66 66 65.8 

350 210 72 72 73.5 72.7 

400 267 85.5 83.1 83.5 80.5 
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At these temperatures, there is not much difference in the front side versus 

back side. There is a difference in the overall temperature readout. The wafers, in 

alignment, produce an overall thicker target for the incident radiation. The thicker 

target is shown to reduce the temperature obtained by the FLIR camera. This leads 

to more radiation being reflected and absorbed than transmitted through both 

wafers.  

 

 

Figure 5.4 Shows both wafers in alignment with each other during temperature 
measurement. There is a greater difference in temperature between the FLIR 
camera readout of the Blackbody and the single wafer versus the camera readout 
of the Blackbody and the layered wafers.  
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 IR cameras use radiosity to approximate greybody emissivity.  Radiosity is 

defined as the ratio of emitted to reflected radiant energy coming from a target and 

received by an IR camera.  

 

𝐿(𝑇) =  ∫ 𝑃𝑙(𝜆, 𝑇𝑡𝑔𝑡𝜀(𝜆)𝑠(𝜆)𝜏(𝜆, 𝑇𝑎𝑡𝑚)𝑑𝜆 + ∫ 𝑃𝑙(𝜆, 𝑇𝑏𝑘(1 −
𝜆2

𝜆1

𝜆2

𝜆1

𝜀(𝜆))𝑠(𝜆)𝜏(𝜆, 𝑇𝑎𝑡𝑚)𝑑𝜆                                                                                        (5.1)                                                                                                     

 

L(T) is the radiosity, Pl(λ,T) is Planck’s function, T is temperature; tgt is target or 

object, bk is background, atm is atmosphere; ε(T) is the emissivity, s(T) is the 

detector and system optical response and τ(λ,T) is the atmospheric transmission, 

all at wavelength, λ [19].   

 For a greybody, approximating the radiosity, it is assumed that the 

emissivity is independent of wavelength; thus equation 5.1 can be written as: 

 

𝐿(𝑇) =  𝜀 ∫ 𝑃𝑙(𝜆, 𝑇𝑡𝑔𝑡)𝑠(𝜆)𝜏(𝜆, 𝑇𝑎𝑡𝑚)𝑑𝜆 + (1 − 𝜀) ∫ 𝑃𝑙(𝜆, 𝑇𝑏𝑘)𝑠(𝜆)𝜏(𝜆, 𝑇𝑎𝑡𝑚)𝑑𝜆
𝜆2

𝜆1

𝜆2

𝜆1
                                                                                                                                                    

                                                                                                                          (5.2) 

 

Combining equation 5.1 and 5.2, assuming now that τ(λ,Tatm) =1, for the 

measurement done close enough to the target, and solving for emissivity yields: 
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                             𝜀 =  
∫ [𝑃𝑙(𝜆,𝑇𝑡𝑔𝑡)−𝑃𝑙(𝜆,𝑇𝑏𝑘)] (𝜆)𝑠(𝜆)𝑑𝜆

𝜆2
𝜆1

∫ [𝑃𝑙(𝜆,𝑇𝑡𝑔𝑡)−𝑃𝑙(𝜆,𝑇𝑏𝑘)]𝑠(𝜆)𝑑𝜆
𝜆2

𝜆1

                                       (5.3)  

 

This solution coincides with the algorithm used by IR camera manufactures to 

determine temperature and emissivity using the radiosity equation.   

 

5.2 Multi-Rad 

The simulations were performed using the software Multi-Rad. Multi-Rad was 

developed at Massachusetts Institute of Technology by Jeffrey P. Hebb, Justine 

Cave, David Wang, Shwan MacFarland, and Klavs F. Jensen. Multi-Rad uses thin 

film optics method for predicting the reflectance and transmittance of a multilayer 

thin film stack for a particular wavelength and angle of incidence. The thin film 

optics method treats the electromagnetic radiation as a wave; so it captures the 

interference effects in each layer [20].  The assumptions made for thin film optics 

are follows: the surface of the stack and all interfaces between films are optically 

smooth; the interfaces between the films are parallel; the dimensions of the sample 

in the direction parallel to the interfaces is much larger than the wavelength; the 

optical constants within a particular layer do not vary in the direction perpendicular 

to the interface. The thin film optics are implemented in a 2 x 2 matrix method of 

multilayers. Another assumption is that the materials are isotropic, which means 

the optical constants are not dependent on the crystallographic direction.   
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 The equation is modeled for N layer interfaces and N+1 layers. A i and Bi 

are the amplitudes of the forward and backward propagating electric field vectors 

on the left side of the interface, i. The prime notation on A’N+1 and B’N+1 indicates 

that these are amplitudes on the right side of interface N. Light is incident on 

interface 1, with angle of incident θ1. This is the central equation of multilayer 

theory relating the amplitudes on the left side of interface 1 with those on the right 

side of interface N: 

 

                      (
𝐴1

𝐵1
) = [∏ 𝑃𝑖𝐷𝑖

−1𝐷𝑖+1] [
𝐴′

𝑁+1

𝐵′
𝑁+1

] = [
𝑚11 𝑚12

𝑚21 𝑚22
] [

𝐴′
𝑁+1

𝐵′
𝑁+1 

]𝑁
𝑖=1      (5.4) 

 

where Pi is the propagation matrix, Di is the dynamical matrix and mij is an element 

of the transfer function matrix. The propagation matrix accounts for the effect of 

absorption and interference within a layer bounded by two interfaces. Layer 1 is 

not bounded by two interfaces; so the propagation matrix P1 is set to equal the 

identity matrix. For layers 2, 3 …N, the propagation matrix is as follows: 

 

                                                    𝑃𝑖 = [𝑒𝑖𝜑𝑖 0
0 𝑒−𝑖𝜑𝑖

]                                          (5.5) 

 

where φi = 2πňidicosθi/λ is the phase shift. The complex index of refraction is  

ňi = ni + iki, where n is the index of refraction and k is the extinction coefficient. The 
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thickness of the layer is d, θi is the complex angle, and λ is wavelength of the 

incident wave.  

 The dynamical matrix accounts for reflection and refraction at the interface 

i, relating amplitudes of the reflected and refracted waves on either side of the 

interface. The dynamical matrix is given according to the state of the polarization 

of the wave: 

 

                                         𝐷𝑖 = ( 
1 1

ň𝑖𝑐𝑜𝑠𝜃𝑖 ň𝑖𝑐𝑜𝑠𝜃𝑖
)  𝑠 𝑤𝑎𝑣𝑒                             (5.6) 

                                        𝐷𝑖 = (
𝑐𝑜𝑠𝜃𝑖 𝑐𝑜𝑠𝜃𝑖

ň𝑖 ň𝑖
) 𝑝 𝑤𝑎𝑣𝑒                                      (5.7)  

 

where s and p indicate that the electric field vector is perpendicular and parallel 

to the plane of incidence.  Given the angle of incidence, the complex angles for 

the other layers are calculated in succession using the complex form of Snell’s 

Law. 

                                                sin 𝜃𝑖+1 =  
ň𝑖

ň𝑖+1
𝑠𝑖𝑛𝜃𝑖                                           (5.8) 

 

5.3 Simulation of Two Wafers with Different Thin Film Layers 

These experiments were simulated with the aforementioned Multi-Rad program. 

The simulation consists of two silicon wafers both of 0.7mm in thickness. The 
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doping of the wafers will remain constant at the intrinsic doping of silicon which is 

3.2 x 105 Ohm-cm. The temperature will remain constant at 650oC, the temperature 

of annealing. The wafers will contain two different layers, one of SiO2, and one with 

Si3N4. The thickness of these thin film layers will be the main parameter in these 

simulations. Lastly, the front side and backside effects will be taken into account. 

Reflectance, transmittance and emittance will be evaluated. For reflectance: 

 

Figure 5.5 Shows the Reflectance of two Silicon wafers (a) with 10nm SiO2 oxide 

layer and (b) with 10 nm Si3N4 at 650 oC. 

 

        From Figure 5.5, it can be seen that there is not much difference between the 

two different thin film layers. Also, the front side back side effects show little 

difference. There is a very small thickness of film on these wafers. For a thicker 

layer of film, we obtain: 
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Figure 5.6 Shows the Reflectance of two silicon wafers (a) 1000nm SiO2 oxide 
layer and (b) 1000nm Si3N4 nitride layer. 
 
 

From Figure 5.6, there is significant difference in the results of the SiO2 and 

the Si3N4 layer. For this thicker thin film layer, the results for the front side (thin film 

layer closest to IR source) look much different from those for the back side (thin 

film layer farthest from IR source). The results for the back side look as if there is 

no thin film on the substrate and appear much like the 10nm thin film thickness 

sample. When examining the results for the front side, there are significant 

differences.  

 For transmittance, a new family of curves is produced. The transmittance is 

only significant for the 1-5 microns range of wavelengths. The results appear as in 

Figure 5.7. 
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Figure 5.7 Shows the Transmittance for two wafers (a) 10nm SiO2 oxide layer 

and (b) 10nm Si3N4 nitride layer. 

 

          For this thin film, the peak transmittance, for the two wafers, appear to be 

identical. Their front side back side effects are negligible. For a thicker layer of film, 

we obtain: 
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Figure 5.8 Shows the Transmittance for two wafers (a) 1000nm SiO2 oxide 
thickness and (b) 1000nm Si3N4 nitride thickness. 

 

From Figure 5.8, we can see a difference in the results of the transmittance. 

The peak transmittance for Si3N4/Si is more than that of SiO2/Si.  Yet the font side 

back side effects for both wafers are negligible. Since the optical depth is kept 

constant, irrespective of the orientation of the wafer, the transmittance will remain 

the same for the front side and back side of the wafer [23].  

 Emissivity is an important parameter in semiconductor processing. It is 

defined as the ratio of the radiance of a given object to that of a blackbody at the 

same wavelength, temperature and surface conditions. One must know emissivity 
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to perform a proper temperature determination of an object [21].  For normal 

incidence, the emissivity, ε(λ) of a plane-parallel specimen is given by: 

 

                                        𝜀(𝜆) =
[1−𝑅(𝜆)][1−𝑇(𝜆)]

[1−𝑅(𝜆)𝑇(𝜆)]
                                                 (5.9) 

 

where λ is the wavelength, R(λ) is the true reflectance and T(λ) is the true 

transmittance.  R(λ) and T(λ) can be related to the optical constants n(λ) and k(λ) 

by: 

 

                                                   𝑅(𝜆) =
[𝑛(𝜆)−1]2+𝑘(𝜆)2

[𝑛(𝜆)+1]2+𝑘(𝜆)2                                    (5.10) 

                                      𝑇(𝜆) = exp[ −𝛼(𝜆)𝑡] = exp [−
4𝜋𝑘(𝜆)𝑡

𝜆
]                       (5.11) 

 

where α(λ) is the absorption coefficient and the t is the thickness of the material. 

From equation 5.9, it can be seen that, for an opaque body, when T(λ) = 0, from 

Kirchhoff’s law the emissivity is [22]: 

  

                                             𝐴(𝜆) = 𝜀(𝜆) = [1 − 𝑅(𝜆)]                                   (5.12) 

 

where, 𝐴(𝜆) is the absorptance and 𝜆 is the wavelength. 
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Effects such as light trapping and multiple internal reflections are dependent on 

the angle of incidence, surface roughness, interface roughness, etc. The 

experimentally measured apparent transmittance, T*(λ), and the apparent 

reflectance, R*(λ), are related to the true transmittance, T(λ), and the real 

reflectance, R(λ).  They are given by the following equations: 

 

                                             𝑇∗(𝜆) = 𝑇(𝜆) 
(1−𝑅(𝜆))

2

(1−𝑅(𝜆)2𝑇(𝜆)2)
                                  (5.13) 

                                      𝑅∗(𝜆) = 𝑅(𝜆) {1 + 
𝑇(𝜆)2(1−𝑅(𝜆))

2

1−𝑅(𝜆)2𝑇(𝜆)2 }                                (5.14) 

 

Equations 5.13 and 5.14 are the result of considering multiple internal reflections.  
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Figure 5.9 Shows Emittance for various SiO2 oxide thicknesses of (a) 10nm (b) 
30nm (c) 50nm and (d) 1000nm. 

 

From Figure 5.9, it can be seen that, as thickness increases, the front side 

back side effects become more important. For 1000nm thick films, the results for 

the front side are drastically different from those for the back side. 
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Figure 5.10 Shows Emittance for various Si3N4 thicknesses of (a) 10nm (b) 30nm 
(c) 50nm and (d) 1000nm. 

 

Figure 5.10 shows that, as nitride thickness increases, the front side back 

side differences become more prominent. For 1000nm nitride thickness, the results 

for the front side are drastically different from those of the back side.  
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 For 1000nm thick films, the results also become more distinguishable 

between the SiO2 and the Si3N4 as seen below: 

 

Figure 5.11 Shows Emittance for both wafers with layers of, (a) SiO2, and (b) 

S3N4 at 1000nm thickness. 

 

Figure 5.11 shows that, for 1000nm film thickness, the front side of SiO2/Si 

behaves much more differently from the front side of Si3N4/Si. The results for 

Si3N4/Si front side is always more than that for its back side. In contrast, the results 

for SiO2/Si front side dip below its results for the back side for over a short range 

of wavelengths.  

 

5.4 Simulation of SIMOX 
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of a layer of thin film silicon, a layer of buried silicon dioxide and the substrate layer 

of silicon. The simulations for the radiative properties of SIMOX were performed 

using the software known as Rad-Pro. Rad-Pro stands for radiative properties. It 

was developed by The Georgia Institute of Technology and National Institute of 

Standards [24]. The aforementioned Multi-Rad, which simulates radiative 

properties of silicon wafers with thin film coating, is limited in its approach when 

compared to Rad-Pro. Multi-Rad relies on pre-existing experimental data; its 

accuracy is limited to wavelength, temperature, and dopant concentration, which 

may not be always quite consistent and accurate. Rad-Pro allows users to predict 

the directional, spectral and temperature dependence of the radiative properties 

for the multilayer structures of silicon and related materials. Users can choose to 

use the formation for coherent, incoherent, and opaque substrates.  

 Since most silicon wafers are thick enough to be opaque in the wavelength 

range of 0.5µm and 1.0µm, the silicon substrate can be regarded as a semi-infinite 

medium. A wafer with a thin-film coating in the opaque region can be modeled as 

a multi-layer structure of thin films only. The transfer-matrix method can be used 

to calculate the radiative properties of a silicon wafer with thin films in the opaque 

region. Interferences in the silicon substrate are generally not observable from 

measurements because the wafer thickness is much greater than the coherent 

length. In this case, the incoherent formulation, or geometric optics should be used 

to predict the radiative properties of the substrate. To get rid of the fringes due to 

the thick substrate, the current version of Rad-Pro treats the thin film coatings as 

coherent, but the substrate as incoherent. The optical constants n, the refractive 
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index, and k, the extinction coefficient, of a material are complex functions of 

wavelength and temperature. They also depend on crystalline structure as well as 

doping levels. To calculate the optical constants of lightly doped silicon, whose 

dopant concentrations are less than 1015 cm-3, carefully selected empirical 

expressions are used. On the other hand, the Drude model is employed to consider 

doping effects on the optical constants in silicon. Rad-Pro allows for the user to 

select the optical model of silicon between the empirical models for lightly doped 

silicon and the Drude model for doped silicon at any dopant concentration for a 

given dopant type.  

 When dealing with MOS transistors, one idealizes to high switching speed, 

high channel mobility, smaller short channel, and a lower kink effect. These 

electrical properties can be obtained by utilizing an ultra-thin silicon on insulator 

(SOI) layer [25]. One method to fabricate SOI wafers is to implant oxygen into the 

silicon called a separation by implantation of oxygen (SIMOX). The challenge in 

optical characterization of SIMOX is due to the built in multi-layers.  

 The SIMOX wafers contain a layer of thin film silicon as the top layer, a layer 

of buried silicon dioxide and a substrate of silicon. In this study, we consider the 

following parameters: the layer of thin film silicon is 200 nm thick; the layer of oxide 

is 400 nm thick and the silicon substrate is 0.7 mm thick. The thickness of the 

simulated SIMOX wafer remains constant throughout. The control in this simulation 

is the temperature. The temperature range investigated include: 30 oC, 650 oC, 

and 1300 oC. The front side back side effects are compared. The optical properties 

of emittance, transmittance and reflectance are shown in Figure 5.12. 
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Figure 5.12 Shows the Reflectance of front side vs. backside of SIMOX at:  
(a) 30oC, (b) 650oC and (c) 1300oC. 
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1300 oC, both back side and front side reflectance are seen to change over the 

given wavelength, yet, the changes in reflectance of front side and back side differ.  

 

 

Figure 5.13 The Transmittance of front side and back side of SIMOX at: (a) 
30oC, (b) 650oC and (c) 1300oC. Note the transmittance range in (b) from  
0.0-0.18. 
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Like in the previous simulation, using a wafer with a layer of SiO2 and 

comparing it to a wafer with a layer of Si3N4, the front side and back side 

transmittance were always equal. The same is true for SIMOX when comparing 

front side and back side effects of transmittance; the two sides are optically 

equivalent (optical reciprocity). This is due to the fact that the thicknesses are the 

same throughout the experiment and the transmittance value is due to the 

thickness of the material. At 30oC, (a) the transmittance varies significantly 

throughout the wavelength considered. At 650oC, (b) the transmittance shows a 

nice peak. At 1300oC, the transmittance is effectively zero. The transmittance 

decreases with increasing temperatures and becomes zero after 700oC for the 

entire wavelength range. The decrease in transmittance is due to silicon becoming 

intrinsic as a result of an increase in free carrier density with increasing 

temperature [25].  
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 Figure 5.14 The Emittance of front side and back side of SIMOX at: (a) 30oC, (b) 
650oC and (c) 1300oC. 
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front side and back side emittance are not equal yet are close in behavior. For (b), 

at 650oC in Figure 5.14, the backside emittance varies in the shorter wavelength 

range and reaches a constant value as wavelength increases. The front side in (b) 

varies throughout the wavelength range. For (c), the front side and back side vary 

throughout the wavelength range. The front side and back side exhibit much 

different behavior from each other at 1300oC. 

 Many of the aforementioned optical phenomenon can be described in great 

detail using scattering theory. In the general case of incident radiation upon a 

medium, reciprocity theorem underlies the many assumptions and simplifications 

utilized to model the behavior, such as, monochromatic illuminations, finite size of 

scattering region, unique illumination, and detection direction. Reciprocity relates 

the input and output waves in pairs, irrespective of the presence or absence of 

other waves. When dealing specifically with electromagnetic wave propagation in 

a medium, the wave equation for an electric field is augmented with an index of 

refraction term [26]. 

 

                                       ∇2𝐸 = (
𝑛2

𝑐2) (
𝜕2𝐸

𝜕𝑡2 ) + (
∇𝑛2

𝑛2  𝐸)                                                  (5.15) 

 

Scattering can be characterized by a scattering amplitude derived from a scattering 

potential, F(r). This equation below is known as the scalar Helmholtz equation and 

is given by: 
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                                  ∇2𝐸𝑖(𝑟) + 𝑘2𝐸𝑖(𝑟) =  −4𝜋𝐹(𝑟)𝐸𝑖(𝑟)                                         (5.16) 

 

The solution to the total field from a wave incident with wave vector k, with incident 

beam direction denoted by ŝ1 and outgoing beam direction denoted by ŝ2, and a 

scattering amplitude represented by f(ŝ2, ŝ1), is given as: 

 

                               𝐸1(𝑟ŝ) = exp[𝑖𝑘ŝ1 . 𝑟ŝ] +
𝑓(ŝ2,ŝ1) exp[𝑖𝑘𝑟]

𝑟
                                         (5.17) 

 

The simplest scope of optical reciprocity is to provide the transmission at normal 

incidence of collimated light through a stack of polarization changing elements. 

Transmission through each element can be described by its Jones matrix for 

coherent incident light. For incoherent incident light, the transmission can be 

provided by its Mueller matrix. A simple example of a Jones matrix for a linear 

polarizer combined quarter wave plate with a polarizing direction of 45o is given 

as: 

                                              𝑀 =
1

√2
 (

1 𝑖
1 𝑖

)                                                                    (5.18)   

 

A Jones matrix of an optically active medium introduces a phase angle, δ, between 

right and left circularly polarized waves and is provided by: 
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                                               𝑀 = (
𝑐𝑜𝑠

𝛿

2
𝑠𝑖𝑛

𝛿

2

−𝑠𝑖𝑛
𝛿

2
𝑐𝑜𝑠

𝛿

2

)                                                 (5.19) 

 

An example of a Mueller matrix for incoherent incident light that propagates 

through a quarter wave plate facing along the vertical axis is given by: 

 

                                          𝑀 =
1

2
( 

1 0
0 1
0 0
0 0

  
0 0
0 0

     
0 −1
1 0

)                                                    (5.20)    

 

Through reciprocity and coherence theory, Kirchhoff’s law can be derived for all 

angles [27].  

 

5.5 Comparison with the Literature  

Sato has performed extensive studies on emissivity of silicon [28].  Sato’s results 

of temperature and wavelength dependent emissivity are shown in Figure 5.15. 
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Figure 5.15 Emissivity curves at different temperatures. 

Source: [29]. 

 The simulated results of emissivity of silicon, in this study, are consistent 

with those of Sato.  Such comparisons with the emissivity of SIMOX, in the 

literature, lead to similar results. 

 

 

 

 

 

 

 



 

75   
 

CHAPTER 6 

CONCLUSION 

Radiative properties of silicon related materials have been presented in this study.  

Fundamentals of blackbody radiation and its applications to semiconductor 

processing have been described.  Temperature measurement techniques such as 

thermocouples, imaging pyrometry in the form of infrared camera and single point 

infrared detector have been considered.  Emissivity models in the form of Multi-

Rad and Rad-Pro have been utilized to simulate the wavelength and temperature 

dependence of optical properties of silicon related materials and structures, in the 

wavelength range of 1 to 20 microns.  Optical reciprocity has been examined for 

various case studies of layers on silicon substrates.  The wavelength and 

temperature dependence of the radiative properties of SIMOX [Separation by ion 

IMplantation of OXygen] wafers have been examined. 
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