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ABSTRACT

KOH ETCHING OF SILICON

by
Ying Wang

In this research, a series of comparative etching experiments on silicon wafers have been

carried out using potassium hydroxide (KOH) for different experimental etching

conditions for concentration, temperature and time on (100) orientation p-type silicon

wafers. Besides the basic etching conditions, the position of the immersed wafer also has

unpredictable effect on the etching process. This may be attributed to the relative contact

position between the surface of the immersed wafer and the flow patterns of the stirred

etching solution.

The surface morphology analysis indicates that the specific position of the wafer, with

respect to the flow of the etchant, can lead to a higher quality of uniformly rough (100)

crystal face. The lowest reflectivity of etched sample is determined by using reflectivity

measurements. The study reveals that, besides conventional etching conditions, the etching

positions, which can be easily disregarded, are also potential conditions that have

significant influence on the etching results; this may become a principal condition for

etching of silicon by KOH.
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CHAPTER 1

INTRODUCTION

1.1 Objective

In order to fabricate high-efficiency crystalline Si solar cells, the surface light reflection

should be minimized, and the formation of uniformly rough surface of Si decreases the

surface reflection substantially. The uniformly rough structure includes random-rough and

inverted-rough topographies. Compared with random-rough, inverted-rough is a more

efficient single-side light trapping geometry since it has superior internal response coupled

with the path length enhancement and reduced front surface reflectance. This can improve

short-circuit current in solar cells [1,2].

Wet chemical etching has been extensively used in fabricating silicon microstructures

[3]. One example is to use silicon microstructures as a template for the replication of

polymer structures in molding and imprinting processes [4]. In molding and imprinting

processes, the quality of the template plays a crucial role in replicating the polymer

structures because the replication resolution reaches ranges below ten nanometers.

Therefore, any unwanted features such as surface roughness of the template should be

minimized. Previous works reporting on the dependence of the wet-etched silicon surface

roughness on the temperature and concentration of the etchants [5–7] have shown different

roughness characteristics in the crystallographic orientation of the silicon surfaces [8,9].

Minimizing the surface roughness of the template is especially important for the formation

of polymer replica for optical applications such as waveguides or mirrors to maintain low

light scattering loss.
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Silicon etching in alkaline solutions has been employed for many years but the

mechanism of the process has not been completely recognized yet, especially from the

point of view of etching anisotropy, which is associated with various configurations of

surface bonds. These bonds have been described in detail and classified in the literature

[10-14]. Also, the morphologies and etch rates of Si substrates with different

crystallographic orientations, etched in the solutions with different compositions, are

commonly known [6,14-16]. However, the connection between the results of etching and

the compositions of etching solutions is still under debate. The etching in KOH and TMAH

solutions, where the relations among the etch rates of particular planes (so called

anisotropy factor) are different, can be a good example. The process becomes more

complicated when tensioactive compounds or surfactants are added to the etching

solutions.

1.2 Background Information

Inverted-smooth patterns are formed by anisotropic etching of a patterned (1 0 0) Si

surface. Alkali metal hydroxides (e.g. KOH or NaOH) are the most common etchants for

anisotropic etching of Si [17-19]. However, as the alkaline-based solutions result in the

metal ion contamination, which is difficult to remove in the subsequent cleaning [20], it is

necessary to study organic alkaline etchants that do not introduce metal ions so that they

can be IC-fabrication compatible.

Wet anisotropic etching of silicon substrates is commonly used in micromechanics for

the fabrication of different MEMS structures including membranes, “bossed-type”

features, suspended beams, seismic masses, etc. In many practical applications, the
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problem of control of etched surface morphology is of the greatest importance. The

roughness of different silicon crystallographic planes etched in KOH and TMAH solutions

have been studied extensively in the last few years. A comprehensive survey of

characteristic patterns that are typical for different crystallographic orientations has been

delivered by sphere etching experiments [21–23]. Attempts have been undertaken to

correlate the etched surface appearance with three main close-packed silicon surfaces and

their vicinal [15,24]. There are many simulators for modelling the etched surface

morphology and vice versa, examination of different surface morphologies delivers the

necessary data for studying site-specific reaction kinetics by Monte Carlo simulations

[25,26].

Generally, the quality of etched surface is a complex matter. It depends on many

factors like crystallographic orientation of etched substrate, kind of etching solution and its

concentration as well as process parameters [15,22,23]. Change in surface morphology

with etching time and temperature have been reported [22,23]. It was observed that the

change in etchant concentration can have beneficial effect on some planes and deteriorate

the quality of the others. For example, it was reported [24] that the increase in KOH

concentration results in reduction of hillocks on (100) surface but causes their increase on

(110).

Figure 1.1 The difference between etching rates of (100) and (110) orientation.
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Source: Ronny Nawrodt, Silicon Surfaces – Silicon Loss and Silicon Treatments –,1st ELiTES General
Meeting, Tokyo, 04/10/2012.

Texturing for crystalline silicon solar cells is one of the major techniques employed to

improve the conversion efficiency by increasing the amount of light absorption [27].

Generally, for mono-crystalline silicon, both alkali hydroxide etchants such as potassium

hydroxide (KOH) or sodium hydroxide (NaOH) and simple and quaternary ammonium

hydroxide etchants, typically tetramethyl ammonium hydroxide (TMAH), are used by

mixing them with isopropyl alcohol (IPA), and then these mixed solutions are used to

anisotropically etch the silicon, leaving random pyramids on the surface [28-30]. Even

though these pyramids improve the short circuit current through effective photon trapping,

it is unclear how they affect the other properties.

1.3 Applications

Light management is crucial to solar cell design as it increases the path length of light in

the absorber layer, thereby enhancing the probability of electron-hole pair generation. By

engineering the reflective and refractive properties of the solar cell surfaces, we can trap

light within the active region to achieve physically thin, but optically thick solar cells.

Texturing the surface of solar cells is an effective light management technique,

providing both light trapping and anti-reflection properties [31–35]. The operational

spectrum of a single-junction silicon solar cell is from 300nm to 1200nm. In the ultraviolet

and visible spectrum where the photon energy is well above the bandgap energy of silicon,

all light coupled into the Si is absorbed before reaching the rear side of the cell. In contrast,

in the near-infrared region, the probability of a band transition of a photon-excited electron

reduces significantly. At these wavelengths, surface textures can preferentially direct light
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into the solar cell at angles outside the escape cone of silicon, resulting in light trapping and

increased absorption.

As solar cell technology becomes increasingly competitive, accurately estimating the

light-trapping-induced current enhancement at an early stage of solar cell fabrication is

very important. It is therefore highly desirable to have a technique that accurately assesses

optical absorption enhancement, with the ability to distinguish between band-to-band

absorption and parasitic absorption [36,37]. Conventional methods such as photo-thermal

deflection and reflection (R) or transmission (T) measurements (A=1-R-T) provide

inaccurate estimates of absorption (A) and, hence, photocurrent generation as they

inevitably include parasitic absorption [38].

In a solar cell, only photons that excite an electron from the valence band to the

conduction band contribute to the photo-current generation. In the inverse process,

electron-hole pairs recombine and photons are emitted via band-to-band radiation, which

can be directly quantified from the measured photoluminescence (PL) spectrum [37,39–

43]. Therefore, by studying the PL spectrum of silicon wafers, we can derive the portion of

the absorbed photons that lead to effective electron-hole generation. In a silicon wafer,

both carrier densities and the optical properties of the sample determine the PL intensity at

a given wavelength. The carrier densities of the sample determine the internal generation

rate of emitted photons, while the optical properties determine the probability of a photon

escaping the sample and contributing to the measured spectrum [44]. There are a number of

studies in the literature that model the spectral distribution of photo/electroluminescence

emission of silicon wafers or solar cells [39–42,45]. The relationship between spectral
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photo-luminescence intensity per energy interval IPL and band-to-band transition

absorptivity can be described as follows [40,41,44]:
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In equation (1.1), C is a constant of proportionality, VFCF ..   is the difference in the

quasi-Fermi energies in the semiconductor, k is the Boltzmann constant, T is temperature in

Kelvin, and ћω is the photon energy. Quantifying the absolute absorptance, ABB, that

generates electron-hole pairs in a silicon wafer can provide a quick and accurate estimation

of the maximum possible current density Jsc in a solar cell without the need for a p-n

junction and current extraction. The methods for obtaining the absolute absorptance of

silicon solar cells and wafers from electroluminescence spectra and photoluminescence

spectra have been experimentally demonstrated by Trupke et al. and Barugkin et al.

[37,40].

(1.1)
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CHAPTER 2

REVIEW OF LITERATURE

2.1 Characteristics of KOH Etching

Potassium Hydroxide (KOH) etches silicon wafer at very different rates depending on

which crystal face is exposed. In silicon wafers, which is the single-crystal material, this

effect can allow very high anisotropy. The term "crystallographic etching" can also be

explained as "anisotropic etching along crystal planes".

Potassium hydroxide displays an etch rate selectivity 400 times higher in (100) crystal

directions than in (111) directions. It also displays high selectivity between lightly doped

and heavily boron-doped (p-type) silicon. KOH may introduce mobile potassium ions

into silicon dioxide; therefore, control is required in its use.

Etching a (100) silicon surface through a rectangular hole in a masking material, for

example, a hole in a layer of native oxide, creates a pit with flat sloping (111) oriented

sidewalls and a flat (100) oriented bottom. The (111) oriented sidewalls have an angle to

the surface of the wafer of:

 7.542tanarc

If the etching is continued "to completion", i.e. until the flat bottom disappears, the pit

becomes a trench with a V-shaped cross section. If the original rectangle was a perfect

square, the pit when etched to completion displays a pyramidal shape.

The undercut, , under an edge of the masking material is given by:

(2.1)
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where Rxxx is the etch rate in the <xxx> direction, T is the etch time, D is the etch depth

and S is the anisotropy of the material and etchant. Different etchants have different

anisotropies. Table 2.1 presents a table of common anisotropic etchants for silicon:

Table 2.1 Common Anisotropic Etchants for Silicon

Etchant
Operating
temp (°C)

R100 (μm/min
)

S=R100/R11

1
Mask materials

Ethylenediamine
pyrocatechol

(EDP)
110 0.47 17

SiO2, Si3N4, Au,
Cr, Ag, Cu

Potassium
hydroxide/Isopropyl

alcohol
(KOH/IPA)

50 1.0 400
Si3N4,

SiO2 (etches at
2.8 nm/min)

Tetramethylammonium
hydroxide
(TMAH)

80 0.6 37 Si3N4, SiO2

Source: https://en.wikipedia.org/wiki/Etching_(microfabrication).

2.2 Differences between Wet Etching and Dry Etching

Wet etching is a material removal process that uses liquid chemicals or etchants to remove

materials from a wafer. The specific patterns are defined by masks on the wafer. Materials

that are not protected by the masks are etched away by liquid chemicals. These masks are

deposited and patterned on the wafers in a prior fabrication step using lithography.

A wet etching process involves multiple chemical reactions that consume the original

reactants and produce new reactants. The wet etch process can be described by three basic

steps: (1) Diffusion of the liquid etchant to the structure that is to be removed; (2) The

reaction between the liquid etchant and the material being etched away. A

(2.2)
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reduction-oxidation (redox) reaction usually occurs. This reaction entails the oxidation of

the material and then dissolving the oxidized material. (3) Diffusion of the byproducts in

the reaction from the reacted surface.

On the other hand, in dry etching, plasmas or etchant gasses remove the substrate

material. The reaction that takes place can be done by utilizing high kinetic energy of

particle beams, chemical reaction or a combination of both.

(a) (b)

Figure 2.2.1 The plasma hits the silicon wafer with high energy to knock-off the Si atoms
on the surface. (a) The plasma atoms hitting the surface. (b) The silicon atoms being
evaporated off from the surface.
Source: Wet and Dry Etching Avinash P. Nayak, Logeeswaran VJ and M. Saif Islamǂ University of 
California, Davis. California.

Dry etching includes the removal of the material, typically a masked pattern

of semiconductor material, by exposing the material to a bombardment of ions (usually

a plasma of reactive gases, such as fluorocarbons, oxygen, chlorine, boron trichloride,

sometimes with addition of nitrogen, argon, helium and other gases) that dislodge portions

of the material from the exposed surface.

Physical dry etching requires high energy (kinetic energy of ion, electron, or photon)

beams to etch off the substrate atoms. When the high-energy particles knock out the atoms

from the substrate surface, the material evaporates after leaving the substrate. There is no

chemical reaction taking place and therefore only the material that is unmasked will be

removed.
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(a) (b)

Figure 2.2.2 Process of a reactive ion interacting with the silicon surface. (a) The

interaction between the reactive ion and the silicon atom. (b) A bond between the reactive

ion and the silicon atom then chemically removes the silicon atoms from the surface.
Source: Wet and Dry Etching Avinash P. Nayak, Logeeswaran VJ and M. Saif Islamǂ University of 

California, Davis. California.

Chemical dry etching (also called vapor phase etching) does not use liquid chemicals

or etchants. This process involves a chemical reaction between etchant gases and the

silicon surface. The chemical dry etching process is usually isotropic and exhibits high

selectivity. Anisotropic dry etching has the ability to etch with finer resolution and higher

aspect ratio than isotropic etching. Due to the directional nature of dry etching,

undercutting can be avoided.

Figure 2.2.3 The RIE process. This process involves both physical and chemical reactions
to etch off the silicon.
Source: Wet and Dry Etching Avinash P. Nayak, Logeeswaran VJ and M. Saif Islamǂ University of 
California, Davis. California.

Reactive ion etching (RIE) uses both physical and chemical mechanisms to achieve

high levels of resolution. The process is one of the most diverse and most widely used
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process in industry and research. Since the process combines both physical and chemical

interactions, it is much faster. The high energy collision from the ionization helps to

dissociate the etchant molecules into more reactive species. In the RIE-process, cations are

produced from the reactive gases which are accelerated with high energy to the substrate

and chemically react with the silicon. The typical RIE gasses for Si are CF4, SF6 and

BCl2+Cl2.

2.3 Differences between Anisotropic Etching and Isotropic Etching

When a material is attacked by a liquid or vapor etchant, it is removed isotropically

(uniformly in all directions) or anisotropically (uniformity in vertical direction). The

difference between isotropic etching and anisotropic etching is shown in Figure 2.3.

Material removal rate for wet-etching is usually faster than the rates for many dry etching

processes and can easily be changed by varying temperature or the concentration of active

species.

In general, chemical wet etching process after pre-treatment, such as pattern

formation, is taking place on the substrate; the next step is to etch the substrate to obtain

certain surface structure. Based on the etching shape, the methods can be divided into two

kinds, one is isotropic etching with round shape, and the other is anisotropic etching with

sharp features.

Isotropic etching is an etching method which removes part of the substrate

non-directionally (Fig 2.3(a)), resulting in round corners. On the contrary, anisotropic

etching means each crystallographic orientation has different etching rates; so the corners

are sharp (Fig 2.3(b), (c)).The etching corners of isotropic etching (Fig 2.3(a)) are round,



12

and the etching rates of each planes are the same. The shape of anisotropic etching of (100)

oriented silicon is an isosceles with a base angle of 54.74° (Fig 2.3(b)). For anisotropic

etched (110) oriented silicon wafers (Fig 2.3(c)), U-shaped grooves tend to form.

Figure 2.3 Different results in etching of silicon. (a) Isotropic Etching of silicon; (b)
Anisotropic Etching of (100) silicon; (c) Anisotropic Etching of (110) silicon.
Source: Wet and Dry Etching Avinash P. Nayak, Logeeswaran VJ and M. Saif Islamǂ University of 
California, Davis. California.

As the most commonly used etchant for isotropic etching solution in silicon etching,

the HNA solution is a mixture of hydrofluoric acid (HF), nitric acid (HNO3) and acetic acid

(CH3COOH) [46]. The overall reaction is as follows:

(2.3)
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Si + HNO3 + 6HF→H2SiF6 + HNO2 + H2O + H2.

The reaction is a two-step process. At the beginning, silicon substrate is oxidized by

HNO3. After that, fluoride ions from HF solution form the soluble silicon compound

H2SiF6. The next step is to use acetic acid to prevent the dissociation of HNO3.

Due to the different etching rates in different silicon planes, anisotropic etching of

silicon is often used for making complex shapes, such as V-shaped grooves, U-shaped

grooves, pyramidal pits, and pyramidal cavities. The orientation of the silicon wafer and

the shape of the mask pattern determine the final etched shape. Most anisotropic etchants

for silicon are alkaline solutions and have the same overall reaction:

Si + 2OH- + H2O→SiO3
2- + 2H2.

Directional wet etching of silicon is well developed for applications in

microelectronics. Notable etchants include potassium hydroxide (KOH), ethylene

diaminepyrocatechol (EDP), and tetramethyl ammonium hydroxide (TMAH)

2.4 Definition of Undercut

In manufacturing, an undercut is a special type of recessed surface. In turning, it refers to a

recess in a diameter. In machining, it refers to a recess in a corner. In molding, it refers to a

feature that cannot be molded using only a single pull mold. In printed circuit

board construction, it refers to the portion of the copper that is etched away under

the photoresist. In welding, it refers to undesired melting and removal of metal near the

weld bead.

(2.4)
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Figure 2.4 Simplified schematic diagram of undercut
1. An isotropic etchant that creates an undercut; 2. An anisotropic etchant leaves no
undercut.
Source: https://upload.wikimedia.org/wikipedia/commons/7/72/Etch_anisotropy.png

Also, undercuts from etching are somewhat different from the undercuts explained

above, because it is a side effect, not an intentional feature. Undercuts from etching can

occur from two common causes. The first is over etching, which means the etchant was

applied too long. The second is due to an isotropic etchant, which means the etchant etches

in all directions equally. To overcome this problem, an anisotropic etchant is used.

2.5 Related Characterization

Raman Spectroscopy

Raman spectroscopy is a spectroscopic technique used to observe vibrational, rotational,

and other low-frequency modes in a system. Raman spectroscopy is commonly used in

chemistry to provide a fingerprint by which the molecules can be identified.

It relies on inelastic scattering, or Raman scattering, of monochromatic light, usually

from a laser in the visible, near infrared, or near ultraviolet range. The laser light interacts

with molecular vibrations, phonons or other excitations in the system, resulting in the
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energy of the laser photons being shifted up or down. The shift in energy gives information

regarding the vibrational modes in the system. Infrared spectroscopy yields similar, but

complementary, information.

Figure 2.5.1 Energy-level diagram showing the states involved in Raman signal. The line
thickness is roughly proportional to the signal strength from the different transitions.
Source: https://upload.wikimedia.org/wikipedia/commons/4/41/Raman_energy_levels.svg

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from

the illuminated spot is collected with a lens and sent through a monochromator. Elastic

scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering)

is filtered out, while the rest of the collected light is dispersed onto a detector by either a

notch filter or a band pass filter.

FTIR

Fourier transform infrared spectroscopy (FTIR) is a technique which is used to obtain

an infrared spectrum of absorption or emission of a solid, liquid or gas. An FTIR

spectrometer simultaneously collects high spectral resolution data over a wide spectral

range. This confers a significant advantage over a dispersive spectrometer which measures

intensity over a narrow range of wavelengths at a time.
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The term Fourier transform infrared spectroscopy originates from the fact that

a Fourier transform (a mathematical process) is required to convert the raw data into the

actual spectrum.

The Fourier transform deconvolutes a signal (a function of time) into the frequencies

that constitute the signal. The Fourier transform of a function of time itself is

a complex-valued function of frequency, whose absolute value represents the amount of

that frequency present in the original function, and whose complex argument is the phase

offset of the basic sinusoid in that frequency. The Fourier transform is called the frequency

domain representation of the original signal. The term Fourier transform refers to both the

frequency domain representation and the mathematical operation that associates the

frequency domain representation to a function of time. The Fourier transform is not limited

to functions of time, but in order to have a unified language, the domain of the original

function is commonly referred to as the time domain.

Figure 2.5.2 Schematic diagram of a FTIR.

Source: https://upload.wikimedia.org/wikipedia/commons/a/a1/FTIR_Interferometer.png
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UV-VIS-NIR

A Ultraviolet-visible-near-infrared spectroscopy (UV-VIS-NIR) refers to absorption

spectroscopy or reflectance spectroscopy in the ultraviolet-visible spectral region. This

means it uses light in the visible and adjacent (near-UV and near-infrared [NIR]) ranges.

The absorption or reflectance in the visible range directly affects the perceived color of the

chemicals involved. In this region of the electromagnetic spectrum, molecules undergo

electronic transitions. This technique is complementary to fluorescence spectroscopy, in

that fluorescence deals with transitions from the excited state to the ground state, while

absorption measures transitions from the ground state to the excited state.

Figure 2.5.3 Schematic of UV- visible spectrophotometer.
Source: https://upload.wikimedia.org/wikipedia/commons/9/95/Schematic_of_UV-_visible_
spectrophotometer.png.

Black-Body Infrared Radiation System

The infrared detector used in measuring infrared radiation was from © FLIR® Systems, Inc.

The two main types of detectors are thermal and photonic (photodetectors).
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The thermal effects of the incident IR radiation can be followed through many

temperature dependent phenomena. Bolometers and microbolometers are based on

changes in resistance. Thermocouples and thermopiles use the thermoelectric effect.

Golay cells follow thermal expansion. In IR spectrometers, the pyroelectric detectors are

the most widespread. The response time and sensitivity of photonic detectors can be much

higher, but usually these have to be cooled to reduce thermal noise. The materials in these

are semiconductors with narrow band gaps. Incident IR photons can cause electronic

excitations. In photoconductive detectors, the resistivity of the detector element is

monitored. Photovoltaic detectors contain a p-n junction on which photoelectric current

appears upon illumination.

SEM

A scanning electron microscope (SEM) is a type of electron microscope that produces

images of a sample by scanning it with a focused beam of electrons. The electrons interact

with atoms in the sample, producing various signals that contain information about the

sample's surface, topography and composition. The electron beam is generally scanned in

a raster scan pattern, and the beam's position is combined with the detected signal to

produce an image. SEM can achieve resolution better than 1 nanometer. Specimens can be

observed in high vacuum, in low vacuum, in wet conditions (in environmental SEM), and

at a wide range of cryogenic or elevated temperatures.

The most common SEM mode is detection of secondary electrons emitted by atoms

excited by the electron beam. The number of secondary electrons that can be detected

depends, among other things, on the angle at which the beam meets the surface of the

specimen, i.e. on specimen topography. By scanning the sample and collecting the



19

secondary electrons that are emitted using a special detector, an image displaying the

topography of the surface is created.

Figure 2.5.4 Schematic of SEM.
Source: https://upload.wikimedia.org/wikipedia/commons/0/0d/Schema_MEB_%28en%29.svg

2.6 Fundamental Knowledge of Fluid Mechanics

Flow Field and Flow Lines

Flow field is a kind of occupied space when fluid flows.

In a flow field, fluid flow is characterized by a velocity vector field in

three-dimensional space, within the framework of continuum mechanics. Streamlines,

streaklines, and pathlines are field lines resulting from this vector field description of the

flow. They differ only when the flow changes with time: that is, when the flow is

not steady.
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(1) Streamlines are a family of curves that are instantaneously tangent to the velocity

vector of the flow. These show the direction that a massless fluid element will travel at any

point in time.

(2) Streaklines are the loci of points of all the fluid particles that have passed continuously

through a particular spatial point in the past. Dye steadily injected into the fluid at a fixed

point extends along a streakline.

(3) Pathlines are the trajectories that individual fluid particles follow. These can be

thought of as "recording" the path of a fluid element in the flow over a certain period. The

direction the path takes will be determined by the streamlines of the fluid at each moment

in time.

(4) Timelines are the lines formed by a set of fluid particles that are marked at a previous

instant in time, creating a line or a curve that is displaced in time as the particles move.

By definition, different streamlines in a flow do not intersect at the same instant,

because a fluid particle cannot have two different velocities at the same point. Similarly,

streaklines cannot intersect with themselves or other streaklines, because two particles

cannot be present at the same location at the same instant of time, unless the point of origin

of one of the streaklines also belongs to the streakline of the other point of origin. However,

pathlines are allowed to intersect with themselves or other pathlines (except the starting

and end points of the different pathlines, which need to be distinct).

Streamlines and timelines provide a snapshot of some flowfield characteristics,

whereas streaklines and pathlines depend on the full time-history of the flow. However,

often sequences of timelines (and streaklines) at different instants—being presented either
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in a single image or with a video stream—may be used to provide insight in the flow and its

history.

Boundary Layer

In physics and fluid mechanics, a boundary layer is the layer of fluid in the immediate

vicinity of a bounding surface where the effects of viscosity are significant.

Laminar boundary layers can be loosely classified according to their structure and the

circumstances under which they are created. The thin shear layer which develops on an

oscillating body is an example of a Stokes boundary layer, while the Blasius boundary

layer refers to the well-known similarity solution near an attached flat plate held in an

oncoming unidirectional flow. When a fluid rotates and viscous forces are balanced by

the Coriolis effect (rather than convective inertia), an Ekman layer forms. In the theory of

heat transfer, a thermal boundary layer occurs. A surface can have multiple types of

boundary layer simultaneously.

The viscous nature of airflow reduces the local velocities on a surface and is

responsible for skin friction. The layer of air over the wing's surface that is slowed down or

stopped by viscosity is the boundary layer. There are two different types of boundary layer

flow: laminar and turbulent.

(1) Laminar Boundary Layer Flow

The laminar boundary is a very smooth flow, while the turbulent boundary layer

contains swirls or "eddies." The laminar flow creates less skin friction drag than the

turbulent flow, but is less stable. Boundary layer flow over a wing surface begins as a

smooth laminar flow. As the flow continues from the leading edge, the laminar boundary

layer increases in thickness.
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(2) Turbulent Boundary Layer Flow

At some distance back from the leading edge, the smooth laminar flow breaks down

and transitions to a turbulent flow. From a drag standpoint, it is advisable to have the

transition from laminar to turbulent flow as far aft on the wing as possible, or have a large

amount of the wing surface within the laminar portion of the boundary layer. The low

energy laminar flow, however, tends to break down more suddenly than the turbulent layer.

Reynolds Number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that is used to

help predict similar flow patterns in different fluid flow situations.

The Reynolds number can be defined for several different situations where a fluid is

in relative motion to a surface. These definitions generally include the fluid properties of

density and viscosity, plus a velocity and a characteristic length or characteristic

dimension. This dimension is a matter of convention – for example radius and diameter are

equally valid to describe spheres or circles, but one is chosen by convention. For aircraft or

ships, the length or width can be used. For flow in a pipe or a sphere moving in a fluid, the

internal diameter is generally used today. Other shapes such as rectangular pipes or

non-spherical objects have an equivalent diameter defined. For fluids of variable density

such as compressible gases or fluids of variable viscosity such as non-Newtonian fluids,

special rules apply. The velocity may also be a matter of convention in some

circumstances, notably stirred vessels. The Reynolds number is defined in equation 2.5 for

each case, where:

v

LL vv

forceviscous

forceinertial
Re 




(2.5)
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v is the maximum velocity of the object relative to the fluid (SI units: m/s)

L is a characteristic linear dimension, (travelled length of the fluid; hydraulic diameter

when dealing with river systems) (m)

 is the dynamic viscosity of the fluid(Pa·s or N·s/m2 or kg/(m·s))

 is the kinematic viscosity (


  ) (m2/s)

 is the density of the fluid (kg/m3). Note that multiplying the Reynolds number by

LLv yields
L

Lv 22




, which is the ratio of the inertial forces to the viscous force.

Boundary layer is taken as the distance between the surface of object and the outside

fluid current where the velocity is increasing along the direction of the normal line from

zero to same as free flow velocity of outside, U (specifically speaking, it equals to 0.990 or

0.995U).

The thickness of boundary layer has relationship with the Reynolds number of the

flow, the conditions of the free flow, surface roughness of the object, shape of the object

and the extended field. From the head (leading edge) of the flow-passed object, the

thickness of the boundary layer thickens and gradually increases in the direction of the

flow from zero. When the Reynolds number of an atmosphere flow, Rex=10, 1m from the

leading edge, the thickness of the boundary layer in the upper flow on the plate is 3.5mm.

On the smooth plate, the thickness of boundary layer in laminar flow is shown as

follows:

  Uvxx 

or

(2.6)
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  xx Rex 

Rex=Ux/ , where  is the viscosity of the fluid. When it is written in equation, constant

value will differ according to the velocity percentage of selected boundary layer (such as,

0.90, 0.99 or 0.995U); commonly, it is in the range of 3.46 to 5.64.

On the smooth plate, the thickness of the boundary layer in upper turbulent flow is as

follows:

  5
xRexx 

Its ratio constant is approximately 0.37. It can be seen that there exists randomness

while measuring the boundary layer so that it can give accurate values. Therefore, in this

study, the boundary layer is discussed briefly based on the theory of fluid mechanics for

describing the influence of different immersed positions of silicon wafers to be etched.

(2.7)

(2.8)
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CHAPTER 3

EXPERIMENTAL

3.1 Research Purpose

In this research study, the goal is to etch silicon wafers using KOH solution with simplified

devices, compare the differences in surface morphology of samples to determine the better

etching conditions and finally obtain uniformly surface-etched silicon wafers, which can

be used in the fabrication of solar cells. The objective is to make the etching process to be

controllable and predictable, including surface morphology and etch rates.

3.2 Substrate

P-type front-surface polished and backside masked Shin-Etsu (SEH AMERICA, INC.)

silicon wafers with (1 0 0) orientation, 14.8-17.2μm thickness and 14-21Ω-cm resistivity 

were used for studying the anisotropic etching experiments.

The etchant in etching solutions were prepared from analytical grade potassium

hydroxide pellets, PX1480-1, GR ACS by EMD Millipore Corporation, an affiliate of

Merck KGaA, Darmstadt, Germany. The properties of KOH are given in Table 3.2.

Table 3.2 Basic properties of Potassium hydroxide (KOH)

Molecular structure Molar mass Density Boiling point Melting point

56.1056 g/mol 2.12 g/cm3 2,421°F

(1,327°C)

762.8°F

(406°C)

Source: Wikipedia, https://en.wikipedia.org/wiki/Potassium_hydroxide.
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The distilled water, used for the experiments, was supplied by the Chemistry

Department at NJIT.

3.3 Apparatus

The etching experiments used a magnetic heating agitator, a thermometer, a magnetic

stirrer, two ring stands (one for fastening the thermometer, another for fastening the silicon

wafer), many clips for fastening related instruments, a beaker for reaction vessel and any

other fundamental laboratory equipment for preparing solution and surface cleaning, such

as beakers, volumetric flasks, electronic balance, liquid dropper, stirrer glass rod,

medicine spoon, weighing papers and so on.

The experimental system was setup in a chemical hood to ensure that the system is on

a horizontal platform. During the etching process, the hood is operated in air bleeding

mode.

The beaker for reaction was located at the center of the heating agitator so that the

magnetic stirrer would not hit the wall of the beaker during stirring.

The immersed position of thermometer is away from the bottom of the beaker with the

distance of one fourth the height of the beaker. In this way, it could measure the

temperature of etching solution as accurate as possible because the large fluctuations in

temperature may have negative influence on the etching results. Besides, the thermometer

cannot also be in contact with the wall of the beaker and the stirrer.

The stirring speed was controlled in low level to avoid forming vigorous eddy currents

in the center of the solution.

With the aid of ring stand and clips, the immersed position and direction of silicon
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wafer could be adjusted.

The established experimental apparatus is shown below, (the two ring stand is omitted

in this diagram)

Figure 3.3 Simplified schematic diagram of experimental apparatus.

An aluminum foil was used to cover the top of the beaker in order to reduce the loss of

water by evaporation, which would change the etchant concentration in the solution with

increasing reaction time.

3.4 Procedure

P-type front side polished silicon wafers with (100) orientation, were used for investigating

the anisotropic etching experiments. After the standard surface cleaning process using

acetone and methanol, wafers were dried in room temperature and pressure. After the

moisture was removed, KOH etching was carried out at various concentrations (1mol/L
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and 2mol/L) and different temperatures (50°C and 70°C) with different etching time (30

minutes, 60 minutes). Additionally, in order to determine the best immersed wafer position

in the experiments for etching uniformity, vertical, tangent and parallel positions were

examined with the etching condition of 1mol/L KOH solution at 70°C for 60 minutes.

After etching process, the samples were rinsed carefully by distilled water and dried at

room temperature and pressure.

It is worth noting that the procedure did not involve HF (Hydrofluoric acid)

pre-cleaning during surface cleaning process.

All the experiments were carried out in a closed glass vessel with a constant

temperature bath. A magnetic stirrer rotating at a speed of 200 rpm was used continuously

during etching to facilitate uniform etching.

3.5 Characterization Methods

After etching, wafer surfaces were examined by scanning electron microscopy (SEM) to

investigate the surface morphology. Profilometer was used to determine the change in

morphology in etched silicon wafer. The surface reflectivity was measured using a

Graseby Infrared Cavity Black-body Reference.

The characterization methods used in this study included the following: (i) Raman

spectroscopy to analyze vibration of molecules for identifying the species in silicon wafers;

(ii) Profilometer to estimate the change in thickness of silicon wafers during the etching

process; (iii) SEM to compare the surface morphology; and (iii) Infrared black-body

reference to measure reflectivity.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Comparison of Silicon Etch Rates in Different Conditions of KOH Solutions

In order to analyze the etching characteristics of KOH and to obtain a better control of the

etch process for a uniformly rough surface, the silicon etch rates at different concentrations

and temperatures of KOH solutions have been investigated. The Raman spectra of the

etched samples are shown in Fig 4.1.1.

Figure 4.1.1 Raman spectra of samples. A. Substrate silicon wafer without any
treatment; B. Sample etched in 1mol/L, 70°C, 1h; C. Sample etched in 1mol/L, 70°C,
0.5h;D. Sample etched in 1mol/L, 50°C, 1h; E. Sample etched in 2mol/L, 70°C, 1h.
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From Figure 4.1.1, it can be seen that there is a strong peak at ~ 522cm-1 indicating the

vibration modes of silicon atoms. Other weak peaks appear at ~300cm-1 and ~900cm-1

(Integrated Chemical Database, http://rruff.info/Silicon). Although there are no accurate

references to identify these two weak peaks, it can hardly be ruled out that the possibility of

these two weak peaks can be attributed to the dopants or impurities (the substrate silicon

wafer is p-type which is mentioned above) in the silicon wafer.

In order to investigate the surface profiles of the etched wafers, samples after etching

under various etching conditions were measured by a profilometer. Fig. 4.1.2 shows the

results of the Si (100) plane at different KOH concentrations, temperatures and etching

times. The results were obtained using Dektak3 profilometer. During the measurements,

there was mechanical failure due to the inability to adjust the level of the profilometer

along the horizontal. Moreover, the profilometer did not provide any option to collect the

output data. Therefore, the screenshots of these profilometer data are presented in Figure

4.1.2.

(a)
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(b)

(c)
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(d)

(e)

Figure 4.1.2 Screenshots of profilometer spectrograms of samples. (a) Substrate silicon
wafer without any treatment; (b) Sample etched in 1mol/L, 70°C, 1h; (c) Sample etched in
1mol/L, 70°C, 0.5h; (d) Sample etched in 1mol/L, 50°C, 1h; (e) Sample etched in 2mol/L,
70°C, 1h.

Since there are no masks on the surface of the silicon wafers, in this study, the

existence of undercut is not considered. Also, lack of patterning means that the etched
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thickness cannot be measured as there are no surfaces to be taken as the basis for such

measurements. However, the surface distribution of peaks and forms of pyramidal or

hillock structures can be seen on the surface of the etched silicon wafer in the

spectrograms.

Although, there is a right slant within a few micrometers in Fig 4.1.2(a), it is clear that

the silicon wafer, without any etching treatment, has a straight and smooth surface. This

suggests that within random selected linearity region of 600μm, the profilometer can show 

the trends in distribution of pyramidal and hillock structures and their thickness. According

to this, Fig 4.1.2(b) shows that, in the 600μm region, the absolute values of peaks tend to be 

similar in where there are no extreme high or wide peaks, which means that the surface

roughness is uniform and the etch rate is similar for the peak structures during the etch

process; Fig 4.1.2(c) shows that, ignoring interference between 0-300μm may be caused by 

any mechanical errors or impurities on the surface of the silicon wafer. In the region of

300-600μm, there were several different sizes and scales of peaks, which means that the 

etching reaction did not sufficiently and uniformly take place and some areas with low

potential barriers on the surface tended to react faster than other areas within short etching

time. Fig 4.1.2(d) shows that there are different sizes of peaks, which indicates that

uniform pyramidal or hillock structures did not form on the surface because of low

temperature. Fig 4.1.2(e) shows that there appears a flat area zone and short peaks, which

indicates that, with increase in concentration of the etchant, the etch rates increase

simultaneously and lead to shrinkage in pyramidal structure and tend to disappear where

they will form flat areas in the end.



34

Above all, Fig 4.1.2 shows that the (100) plane etch rates increase with increase in

temperature, Increase in solution concentration can also increase the reaction rate. The

increase in both temperature and solution concentration may have adverse effects on the

formation of uniform pyramidal or hillock structures.

According to the model of etching process, investigated by Seidel et al. [17], the etch

rate of silicon depends on the amount of hydroxide ions and free water concentration (R ≈ 

[H2O]a × [OH−]b) in etching solution. With the increase in concentration of solution, the

content of hydroxide ions increases. However, because the ionized ions (K+, OH−),

resulting from the dissociation of resolved KOH molecule, undergo hydration in the

solution, they consume quite an essential portion of water. Therefore, the combined effect

of the increased hydroxide ions and the decreased free water concentration leads to slight

decrease in the (1 0 0) plane etch rate with KOH concentrations.

The (1 1 1)/(1 0 0) etch rate ratio can be calculated by dividing etched depth of the (1 1

1) plane by the etched depth of the (1 0 0) plane. The etched depth of the (1 1 1) plane can

be calculated by multiplying the overhanging oxide depth by sin 54.74° (see in Equation (2)

) to analyze the influence of differences in etching conditions. However, with limited data

and measurement methods, in this study, this part of the analysis was not realized.
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4.2 Comparison of Surface Morphologies Etched by Different Conditions of KOH

Solutions and Different Immersed Positions

In KOH solution, because of large amount of OH- in solution, the etch rate will change

depending on different etching conditions. Etching produces a few tiny bubbles of H2,

which will overflow resulting in a decrease in the etching reaction. The SEM images show

the surface morphology of silicon surfaces etched under different etching conditions (time,

temperature and concentration). By comparing surface morphologies, the better etching

conditions that lead to better surface uniformity can be identified.

(a)
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(b)

(c)
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(d)

Figure 4.2.1 SEM images of etched Si surface morphology showing pyramidal and hillock
structures. (a) Sample etched in 1mol/L, 70°C, 1h; (b) Sample etched in 1mol/L, 70°C,
0.5h; (c) Sample etched in 1mol/L, 50°C, 1h; (d) Sample etched in 2mol/L, 70°C, 1h.

Generally, the surfaces of all samples look like suede. With lower EHT, the image is

more detailed and difference in WD means different heights of sample appear. The

formation of pyramids and hills on silicon surface, after etching, can affect the ability to

trap light in the final solar cell structure. In order to enhance light trapping, the silicon

surface should be rough enough for incident light to go through multiple reflections

repeatedly so that, in each time of reflection, the incident light will lose intensity through

refraction and absorption. In other words, in order to enhance light trapping, there is a need

to form uniform rough surface with optimized roughness characteristics, namely pyramidal

and hillock structures, on the silicon surface after etching. Moreover, optimized roughness
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is also a reference standard to evaluate etching results as a preliminary step. In the

following part, comparisons of different etching conditions will be discussed.

Difference in Etching Time

Comparison studies of the SEM images of sample (a) and (b), which were etched for

different etching time, is discussed in this section. In sample (b), with 30 minutes of

etching time, it can be seen that the silicon surface produces generally large hills with

different sizes. The diameters of big hills can reach 10μm or more (refer to supplementary 

diagram Fig 6.2(a)) because the etching reaction is not uniform and is in progress within

the short etching time. At this point of reaction, there exist a large number of defects, with

lower potential barrier and higher chemical activity on the surface of the silicon wafer,

which can be etched easily by alkali ions than other areas. When etching time is increased

to 60 minutes in sample (a), the etch hills become smaller and more regular in size, though

there still exist a few big hills; the diameter decreases to approximately 300nm, some part

of smaller hills tend to disappear because of the collapse in etch hillock structure. The hills

are arranged closely and embody a uniform roughness. As a result, it is concluded that

samples etched in 1mol/L, 70°C, 1h have better surface morphology.

Difference in Etching Temperature

In this section, a comparison of the SEM images of sample (a) and (c), which were

etched at different etching temperatures, is presented. In sample (c) with 50°C of etching

temperature, it can be seen that the silicon surface produces uneven size of hills. The

diameter of bigger hills can reach 1μm or more and they are not closely arranged. There 

was no appearance of regular and ordered pyramidal structure. When etching temperature

is increased to 70°C in sample (a), the size of etch hills become more uniform. The
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increased temperature will quicken the etch rate. It can be inferred that, in going to higher

temperatures, the etch hills will finally disappear. It is thus clear that temperature has

significant influence on forming pyramidal structures. It is the optimal condition for

obtaining the best etching results and beyond it, the etching results will turn worse because

of the disappearance of etch hills.

Difference in Etchant Concentration

A comparison of the SEM images of sample (a) and (d), which were etched with

different concentrations of etchant (KOH) is presented in this study. In sample (d), with

2mol/L of KOH, it can be seen that the silicon surface produces smaller and dispersive etch

hills and black underside, which means the etch hills completely disappear in those areas.

Although the resolution is different, in supplementary diagram Fig 6.2(b), many stages of

such disappearance of etching hills can be observed. In the early stages of disappearance,

the hills are attacked in a way to be expected considering its shape, namely the top

disappears, followed by the protruding (110) orientation. This etching proceeds quickly

and the new generated surface, which is nearby, is of (100) orientation. The early stage

continues until the side faces of the hillock are completely etched away. On the contrary, in

sample (a) with 1mol/L of KOH, the bottom areas cannot be seen. It is thus clear that the

etchant concentration also has significant influence on etching results and should be

controlled.

Geometrically speaking, experimental evidence shows that the concentration and

temperature of the etchant are the main parameters that influence the size and number of

the pyramidal structures and etch hills; however, these pyramidal etch hillocks are unstable
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and sensitive to change in etching solution. It is necessary to balance the parameters

discussed above to reach ideal etching results.

Sample Position

As the research progressed, the etching results showed that the specific parallel position

(with respect to the etchant) can lead to much higher quality of smooth and uniform (100)

crystal faces and uncontaminated surfaces than that of other positions such as change in

angles (Table 4.2). Hence, for the study of the effect caused by different immersed position

of silicon wafer in etching solution，a set of samples were etched in 1mol/L KOH solution

at 70°C for 60minutes for three different immersed positions: parallel, tangent and vertical.

(1) (2) (3)
Figure 4.2.2 Photograph of etched samples immersed in different positions. (1)Sample
etched in parallel position; (2)Sample etched in tangent position; (3)Sample etched in
vertical position. All the samples were etched in 1mol/L KOH solution at 70 ◦C for 60
minutes.

Fig 4.2.2 shows the etched surfaces of silicon wafers etched in three different

immersed positions. From the visible effects, it can be observed that the surface of vertical

position silicon wafer seems to be less uniformly etched and even “violently” damaged in
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certain areas. The surface of tangent position silicon wafer seems to be better than that of

the vertical position. There is still considerable non-uniformity on the etched surface. By

contrast, the surface of parallel immersed silicon wafer appears to be more uniformly

etched than the other two samples.

(1) (2) (3)
Figure 4.2.3 Optical micrograph of etched sample immersed in different positions. (1)
Sample etched in parallel position; (2) Sample etched in tangent position; (3) Sample
etched in vertical position. All the samples were etched in 1mol/L KOH solution at 70 ◦C
for 60 minutes.

Fig 4.2.3 shows the optical micrographs of etched surface of silicon wafers etched in

three different immersed positions. The sample etched in parallel position was much more

uniform than other positions.

The surface morphologies of silicon wafers with (100) orientation, etched in vertical,

tangent and parallel, have been analyzed using profilometer as shown in the supplementary

diagram Fig 6.1. From Fig 6.1(a), it can be found that the (100) surface is etched

unsatisfactorily in tangent position. Although there were hills formed on the surface,

altitudes of etch hills and distribution of roughness can hardly meet the requirement of

enhanced light trapping. From Fig 6(b), it can be seen that the (1 0 0) surface is etched

non-uniformly. The extreme high hills mean that the etch rates were not uniform on the

surface which lead to such areas with low potential barriers that are etched quickly and

other areas that are etched slowly.

S i Top view without sample
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With limited knowledge and data, this research attempts to give explanations that are

in accord with the theory of fluid mechanics. Table 4.2 shows three different kinds of

immersed position. After surface morphology analysis, it can be inferred that there may

exist some factors other than chemical reaction, such as physical effects or mechanics of

fluid flow, the relative contact position between immersed wafer and flow patterns of the

stirred etching solution, that have potential influence on etching results. On the basis of the

theory of fluid mechanics, a boundary layer forms in the interface between fluid and

surface of silicon wafer during etching reaction when the flow velocity is in a certain range

of values. Within the boundary layer, the flow velocity begins to increase gradually from

zero at the surface of the silicon wafer to the velocity of outside flow in etching solution.

The diffusion of reactants, needed for the etching reaction, will take place in this boundary

layer. The thickness of boundary layer is inversely proportional to the flow velocity which

is determined by the Reynolds number (Re) illustrated in the literature review. Eliminating

other interference factors, for example the size of the beaker, shape of silicon wafer, even

size of clips and so on, and only focusing on the flow velocity, boundary layer thickness

and etch rate (etching reaction rate), after taking flow field and streamlines (the trail of

fluid flowing) into consideration, the vertical position has the minimum velocity across the

surface among three positions because of the minimum momentum of fluid flow. With

lower flow velocities, it has more stagnant reactants and products between silicon wafer

and etching solution. This causes unequal etch rates across the surface of the silicon wafer

which could lead to lower and less uniform etching rates and poorer surface morphologies.

The analytic order of flow velocity among three positions is: parallel > tangent > vertical.

With the analysis of microscope images, it is clear that parallel position has better surface
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performance than others, which indicate that it has led to more complete and uniform

reaction between silicon wafer and etching solution when flow velocity is high across the

surface. As a result, interestingly, the performance of surface morphology (the uniformity

and smoothness) is: parallel > tangent > vertical. Thus, higher flow velocities lead to more

complete etching reactions.

However, at the present stage, these discussions still remain a hypothesis. In order to

explain this phenomenon, more data, with more sensitive measurements, is needed.
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4.3 Surface Reflectivity Analysis

Surface reflectivity is a critical parameter for the performance of solar cells. In general, the

UV-VIS(-NIR) spectroscopy will be the best choice for measuring the reflectivity because

it can provide reflectivity data of samples for a wide range of wavelengths. However, in

this study, the samples were measured by black-body infrared radiation system instead of

UV-VIS spectroscopy. Table 4.3 summarizes the various IR images of samples after

etching in different conditions. The polished front-side of the silicon wafers were etched

and, by contrast, the masked backsides of each sample of the silicon wafer were taken as

the reference images for comparison.

An infrared imager, manufactured by FLIR® Systems, Inc., was used as the infrared

detector for measuring the response from the sample in the infrared range of wavelengths.

The thermal effects of the incident IR radiation can be followed by many temperature

dependent phenomena. Bolometers and microbolometers respond to changes in

resistance. Thermocouples and thermopiles use the thermoelectric effect. Golay cells

follow thermal expansion. In IR spectrometers, the pyroelectric detectors are the most

widespread. The response time and sensitivity of photonic detectors can be much higher,

but usually these have to be cooled to cut thermal noise. The materials in these

are semiconductors with narrow band gaps. Incident IR photons can cause electronic

excitations. In photoconductive detectors, the resistivity of the detector element is

monitored. Photovoltaic detectors contain a p-n junction on which photoelectric current

appears upon illumination.

Although the measured wavelength was limited in infrared, it can still indicate the

strength and intensity of the sample surface reflectivity.
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Table 4.3 Reflectivities Measured with Black-Body Infrared Radiation System

Front side (etched) Backside(masked)

(a)

(b)

(c)

(d)

(a) Sample etched in 1mol/L, 70°C, 1h; (b) Sample etched in 1mol/L, 70°C, 0.5h;
(c) Sample etched in 1mol/L, 50°C, 1h; (d) Sample etched in 2mol/L, 70°C, 1h.
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The temperature values in these images, captured by the infrared detector, not only

reflect the real temperature of the surfaces of the samples but also suggest the intensity of

reflectivity at this point. However, during the measurement, in order to direct the focus of

the camera, the relative positions of the black-body source, sample and FLIR camera were

changed, which led to inaccuracy in measurement and unreliability of the measured data.

Yet, in basic analysis of reflectivity, although there exists fluctuation in temperature, it can

be seen that the sample etched in 2mol/L KOH solution at 70°C for 1hour has the lowest

temperature which indicates that this sample has the lowest reflectivity among all the

samples. The etching condition corresponding to this sample might be interpreted as the

optimal condition.

With more reliable and accurate data, the optimal condition for etching can be

determined and this will be the further work for the future.



48

CHAPTER 5

CONCLUSION

In this work, comparative etching experiments of using KOH solution on silicon wafers

have been carried out for different etchant concentrations (1mol and 2mol) and different

temperatures (50°C and 70°C) with different etching time (30minutes and 60minutes) to

prepare uniformly rough surfaces. Furthermore, in order to investigate the best immersed

position that maybe have potential influence on etching results during the etching

experiments, positions of vertical, tangent and parallel were examined and the samples

were respectively etched in 1mol/L KOH solution at 70°C for 60 minutes. It has been

found that the change in temperature and etchant concentration have significant influence

on etching results. More importantly, the surface morphology analysis shows that

increased temperature can contribute to form more arranged pyramidal and hillock

structures. Additionally, parallel immersed position has uniform etch rate than any other

immersed position after preliminary analysis according to the fluid mechanics and suggests

a hypothesis of relation between etch rate, fluid velocity and boundary layer. Finally, the

preliminary reflectivity analysis of the samples shows that minimum reflectivity is

observed with etching condition of 2mol/L, 70°C for 60 minutes, which can be considered

as reaching the ideal etching condition in the present study. In summary, without common

etching conditions, the immersed position also has attractive influence in forming

uniformly rough surface, which means that the etching process needs to manage all

conditions well so that light entrapment will be enhanced.
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FUTURE WORK

It has to be recognized that there is still extensive work that needs to be done on the subject

in the future. The samples need to be prepared, measured and analyzed with more

controlled and sensitive measurement methods.

Firstly, more experiments, with varied etching conditions, must be performed in order

to determine the optimal etching condition.

Secondly, the relationship between the etch rate uniformity and fluid velocity must be

established with sufficient experimental data.

Thirdly, complete analysis of reflectivity, for a wide range of wavelengths, is required

to be able to quantify light trapping.
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SUPPLIMENTARY DIAGRAMS

(a)

(b)

Figure 6.1 Screenshots of profilometer spectrograms of samples. (a) Sample etched in
tangent position; (b) Sample etched in vertical position. All of them were etched in 1mol/L
KOH solution at 70°C for 60minutes.
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(a)

(b)
Figure 6.2 SEM images of etched Si surface morphology showing pyramidal and hillock
structures.(a) Sample etched in 1mol/L, 70°C, 0.5h; (d) Sample etched in 2mol/L, 70°C,
1h.
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