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ABSTRACT 

DATA ANALYTICS WITH MAPREDUCE IN    

APACHE SPARK AND HADOOP SYSTEMS 

by 

Zongxuan Du 

MapReduce comes from a traditional problem solving method: separating a big 

problem and solving each small parts. With the target of computing larger dataset in 

more efficient and cheaper way, this is implement into a programming mode to deal 

with massive quantity of data. The users get a map function and use it to abstract 

dataset into key / value logical pair and then use a reduce function to group all value 

with the same key. With this mode, task can be automatic spread the job into clusters 

grouped by lots of normal computers. MapReduce program can be easily 

implemented and gain much more efficiency than tradition computing programs. In 

this paper there are some sample programs and one GRN detection algorithm 

program to study about it. 

Detecting gene regulatory networks (GRN), the regulatory molecules 

connection among various genes, is one of the main subjects in understanding gene 

biology. Although there are algorithms developed for this target, the increase of gene 

size and their complexity make the processing time more and more hard and slow. 

MapReduce mode with parallelize computing can be one way to overcome these 

problems. In this paper, a well-defined framework to parallelize mutual information 

algorithm is presented. The experiments and result performances shows the 

improvement of using parallelizing MapReduce model.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Objective 

The objective of this thesis is to overcome the growing dataset scale and the growing 

amount and complexity in gene analyze using map-reduce. We use TD-ARACNE 

method to measure gene connection and using mutual information based algorithms 

to get the connection in genes. Using the same dataset get from GRN and several 

different implementations to make sure in same accuracy based level, we can find 

the performance improvement for map-reduce and distributed computing.  

 

1.2 Background Information and Study Significance 

The basic result of biologic and genic study is to understand all constitutes of bio-

system and the operating mechanism. The conventional study approach is to study 

various gene through experiment, which focus on analyzing single genic function. 

However, it is far away from enough to indicate and understand organism. To study 

the connections and expressions between genes, systems biology research area 

appears.  

Systems biology is a subject that study all components (for example, genes, 

mRNA, proteins, etc.) in one bio-system such as a cell. As it studies all the genes 

and the connection, and the connection between different constituents in genes which 

influence the express and then influence the production of tissues, so it is very 

important. Because of it, the study of Gene Regulatory Network (GRN) is valued 
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high to all researchers. GRN is a kind of complicate biochemical system which is 

constitute by one or more groups of genes, protein and micro molecule and the 

mutual effect between them. 

As study GRN, one important point is to compute the inner connection and 

network out through given time-series gene expression profile data. However, as the 

scale of computing and gene quantity, it becomes harder and harder to use normal 

method get result both in reasonable time and keep high accuracy as difficult in 

computing and storing data. There are several new methods developed to resolve 

problems about storing and computing big quantity data and in this paper we talked 

about using these method on GRN computing area to get an improvement in gene 

connection study. 

 

1.3 Organization Structure 

This paper is mainly base on the implementation about one GRN computing 

approach TD-ARANCE. It begins with basic knowledge about GRN and the reason 

to focus on it. Then analyze more about TD-ARACNE approach and its more 

efficient distribution computing implementation. And later compare performance 

between the normal implement methods and the distribution approaches. The whole 

paper organized by four chapters, the structure is in follow: 

Chapter 1 is introduction. Firstly, introduce the objective of this paper. And 

then introduce the background information about the meaning of this research. 

Finally present the overall structure of this paper. 
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Chapter 2 is about the necessary theory of this paper and the implementation 

prepare. Theory includes ARACNE and TD-ARACNE, and preparing also include 

data handle and main used distribution approach: MapReduce. 

Chapter 3 is the main implementation done chapter. Using MapReduce and 

other approach such as spark, TD-ARACNE theory is been implemented in several 

ways to make a better performance comparison. 

Chapter 4 includes the performance analyze and conclusion about this 

research. 
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CHAPTER 2 

RESEARCH PREPARATION 

 

 

This paper’s work builds on regulatory network expression calculation algorithms 

which are named ARACNE (Margolin et al, 2006) and TD-ARACNE (Zoppoli et 

al., 2010). 

Between these two algorithms, ARACNE has already been a steady state 

algorithm and TD-ARACNE is considered to be a time-series algorithm, which is an 

upward extension of a steady state algorithm. So the work in this paper is mainly 

focus on TD-ARACNE. 

With the distribution approach apply, using map-reduce technology to 

implement TD-ARANCE algorithm and testing with standard dataset, the work in 

paper can be accurate and clearness. 

 

2.1 TD-ARACNE 

Time-Delay-ARACNE (Algorithm for Reconstruction of Accurate Cellular 

Networks) algorithm is a detecting method for mutual information network of time-

series gene expression. The basic idea is showed in Figure 2.1, the activation of a 

gene A is assumed can influence a gene B activation in successive time instants, this 

information is carried out in gene A and gene B connection.  

 



 

5 

 

Figure 2.1 TimeDelay-ARACNE main idea. 

 

This time-delay network inference algorithm is mainly separate into three 

steps with the handle of original dataset as showed in Table 2.1. 

 

Table 2.1 Source Data Simple 

 

 

Generally, in step 1 we set a time point t (t > 1) which means the significant 

value changing. For each variable g, check the variable value g(t) with a user selected 

variable threshold τ :  

If 
( )

(1)

g t

g
 , then ( ) ( ) { }g t g t t   , variable g induced at time t. 
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If 
( ) 1

(1)

g t

g 
 , then - -( ) ( ) { }g t g t t  , variable g repressed at time t. 

After computing, the initial change of expression (IcE) comes from the 

minimum of g(t) : ( ) min{ ( ) ( )}IcE g g t g t   , then get the result just like Table 

2.2 shows. 

 

Table 2.2 Gene IcE value simple 

 

 

For step 2, we calculate time-delayed mutual information among gene groups 

between each two gene pairs ga gb. This calculation is for measuring how much one 

gene affects another gene. That is for every pair of genes data, ga and gb with initial 

change of expression IcE(ga) ≤ IcE(gb), I is calculated as follows:  

     
1 -

( , )
( , ) ( , ) log

( ) ( )

i i k
i i k a b

a b a b i i k
i n k a b

p g g
I g g p g g

p g p g





 

   

In here, n is time point numbers and k is the time shift used in the acquisition 

of the gene expression data; and ( , )i i k

a bp g g   is the calculated probability. The time 

delay calculate is like Figure 2.2 shows. 
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Figure 2.2 Time-Delay sample for two genes. 

 

Then the maximum value (infl value) calculated for each time shift in k is 

chosen and compared with a variable threshold ε. Bigger than ε means ga cause gb or 

gb depends on ga.  

The Influence (infl) as maximum time-time dependent I for ga and gb 

(Zoppoli et al., 2010) over k time delays is calculated as follows: 

1
( , ) max{ ( , )}k k

a b a b
k h

infl g g I g g
 

  

Where h is the total number of time shifts. 

In step 2, with the connection between each ga gb discovered by comparing 

with ε, we can get the previous influence network between each genes. 

At last step, in the network, between each two genes if their edge make a 

circle, compare the value of ( , )a binfl g g  and ( , )b ainfl g g : 

If ( , ) ( , )a b b ainfl g g infl g g  then remove ( , )a binfl g g . 

Else if ( , ) ( , )a b b ainfl g g infl g g , then remove ( , )b ainfl g g  



 

8 

For now from these three steps of TD-ARACN algorithm, we can detect 

expression network among genes using the large quantity of source gene dataset. 

 

2.2 MapReduce 

Generally, map-reduce is one kind of programming model which is used to handle 

large scale (over then 1 TB) of data. It’s a distribution computing approach which 

can fully utilize lots of computing resource to simplify and solve a big question. 

This programming model include two main concepts, map and reduce. Map 

function is implemented to mapping a group of value to new key-value groups using 

different inner logic and then puss them to reduce function, in reduce function they 

get the key and values and regroup them to computing to a much smaller value group 

to be result. As the shortest describe words on internet say: We want to count all the 

books in the library, you count up shelf #1, and I count up shelf #2. That’s map. The 

more people we get, the fester it goes. Now we get together and add our individual 

counts. That’s reduces. 

The general map-reduce big data handling process is like following: 

 

 

Figure 2.3 Work flue model for MapReduce. 
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Using pseudo-code to show, a map-reduce program is like: 

 Mapper 

map (String input_key, String input_value): 

for each count target ct in input_value: 

EmitIntermediate(ct, "1"); 

 Reducer 

reduce (String output_key,Iterator intermediate_values): 

int result = 0; 

for each v in intermediate_values: 

result += ParseInt(v); 

Emit (AsString(result)); 

 

2.2.1 Hadoop Study 

Hadoop is a distribution system architecture which is developed by Apache. 

The cores of Hadoop are include HDFS (Hadoop Distribute File System) and 

MapReduce.  

HDFS support the storage of big scale of data which normal computers. In 

file system connected and supported by normal computers, the big files are split into 

several small equally parts (64M for each part in normal) and store multiple times in 

different location in file systems and when reading, it can be read from different 

place in same time, which let the reading speed fast. 

MapReduce support the big data computing. Hadoop create one task to 

making map computing for each input split, handling the records in the split of each 
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task and then map will give out the result in key-value pair format. Hadoop 

responsible for range the map results with key pair and make it to be the input of 

reduce task. Reduce task do more computing for example add the value of pairs with 

same key together and to make the result to be the whole result of job store into 

HDFS.  

Although Hadoop has the positive aspects for example have high computing 

ability, big date storage ability and highly fault tolerance ability, it still have some 

weakness. The job have only map and reduce two phase, so developers need to do 

lots of work to express their computing target and also need to take lots of energy to 

manage the relationship between jobs when there are lots of job in one mission. It 

also have a bad performance when handling iterative data.  

 

2.2.2 Spark Study 

Apache Spark in a new big data handling engine. It provide a crowded abstract of 

distribution system memory to support the application which need working set. 

The abstract is called RDD (Resilient Distributed Dataset). It’s an unchanged 

record set, which is also the programming model of spark. RDD is mainly group 

with three parts: partitions, functions and dependencies. We can imagine RDD to a 

very big list. Because it is so big, we need to separate it into several parts, which are 

partitions. So RDD is grouped by many partitions. Because we need to calculate each 

partitions, we use function for computing each split. RDD need have dependency for 

each partitions.  

Spark provide two functions based on RDD, the transformation and the 
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action. In these two functions, transformation is used to define a new RDD, include 

map, flatMap, filter, union, sample, join, groupByKey, ReduceByKey,cros, 

sortByKey, mapValues and so on. And action is to return a result, include collect, 

reduce, count, save, lookupKey. RDD must use transformation to make transform. 

Which are operators like map or reduce.  

In spark, all the RDD transformations are lazy. Which means when RDD1 

use transformation to RDD2, the real computing is not done, they just store this 

function. Until face the action, the computing functions then will be trigger. For 

example, when moving into trigger action, it is found that there is no RDD3, so trace 

back to RDD2 and then find it also not be triggered, so back to RDD1 to start the 

function. 

 

2.3 Data Preparation 

There are two parts of data for our study. The first part of dataset are web pages come 

from Wiki database. The form of these files are web page xml code, which consist 

all page context which can be detected by word-count program for several words we 

determine. All the xml files are downloaded from dumps.wikimedia.org. We select 

the wiki 20160305-2015025 pages for our test.The whole size of dataset is about 

10GB  

Another part of dataset is obtained from gene expression omnibus (GEO) 

public database. The dataset we select to use is identified as GSE10158. This dataset 

consists with 7312 gene transcripts, each line contains a gene name (id) and its 

expression grouped by 43 time points. While computing, TD-ARACNE map-reduce 
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program will read each gene and also all other gene information from HDFS to 

process the gene network. For there are 7312 genes in total, and we need to compute 

(geneX, geneY) and (geneY, geneX) both, so the total lines are 7312 * 7312 = 

53465344 lines. And the file size is 26.8 GB. 
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CHAPTER 3 

MAPREDUCE IMPLEMENTATION 

 

 

The implementation is separated into two parts. In the first, we talking about the 

basic MapReduce programming logic and use basic map-reduce principle to 

implement map-reduce structure into Hadoop and Spark programming. The map-

reduce mode is extend to read web pages and count several words appearance times. 

Then, with the knowledge of TD-ARACNE, we implement this mutual information 

computing algorithm into map-reduce format and testing with our GEO dataset for 

performance study. 

 

3.1 Map-Reduce Simple Application Implementation 

The basic map-reduce thought is like the pseudo-code showed in second section, the 

map method get source input data, separate it into treatable pieces and then abstract 

the keys out, which are the assigned words like ‘country’ and ‘fish’ in here. With 

those abstracted keys, in map stage we always give them a value pair ‘1’ to group 

the key-value pair and then export them out. Those key-value pairs becomes the 

input of reduce method. In the reduce stage we sum the value of words with same 

key and give the final result out. 

 

3.1.1 Programming Implementation with Hadoop 

For Hadoop programming, we extend map and reduce methods and select the key-

value pairs for each stages. In program the map and reduce data flow is like following: 

Input => Map => Mapper Output => Combiner => Sort and Shuffle => Reduce => 
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Final Output. 

Among the whole process, there is one stage called combiner, which is 

between map and reduce sections. The combiner is for preparing work to merge the 

same keys, its do the work just like reducer. The different between combiner and 

reduce method is this combiner section begins just follow each map section and only 

merge the same keys for the output of each map to relieve reduce method’s stress, 

while reduce stage handle all the output. In our program, we do not need it because 

the job is not complex, so we set the combiner to null. Another stages, sort and 

shuffle stage is for transporting correct result into right reduce method, which is 

controlled by system.  

The whole program include three elements: mapper, reducer and invoker.  

First we create map function with dataset file as its input and context variable. 

In the map function we appoint several English words: ‘country, education, and fish’ 

to be the target words we want to count from web pages then input them into a hash 

set. After that the source dataset is split into lines and then into words. While there 

is a word equal to target words in hash group, we generate one key-value pair (word, 

‘1’) and use context variable to pass it out. 

Second we create reduce function with word and its value counts to be input. 

In the reduce function we get all the pair and sum its counts value based on shuffled 

same words key. 

After the implementation of map and reduce functions, we write an invoker 

function to set the context variable and set map and reduce class to call our methods 

and run whole process. 
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3.1.2 Programming Implementation with Spark 

Although Spark comes from MapReduce and appear to solve traditional Hadoop 

MapReduce slow disc reading problem, it have little different programming logic. 

In Hadoop the typical points are:  

1. Usually using key-value pair to be map and reduce function input and 

output 

      2. One key is for one reduce in Reducer class process 

      3. Every mapper or reducer may process every kind of key or value instead 

of using a standard data format. 

      While in Spark, the input is a resilient distributed dataset. And also there is 

no obvious key-value pair, instead, we use Scala’s tuple. This kind of tuple is made 

by (a, b) language logic such as (line.length, 1). One of a traditional map function in 

Hadoop is expressed into and RDD, (line.length, 1) tuple. If one RDD owns tuples, 

it relay other function like reduceByKey() to handle it. 

      The first task to make this programming is to create a sparkContext object to 

tell Spark how to access the clusters. Then use RDD function API which is called 

JavaRDD and JavaPairRDD to transform the input file and call mapToPair function 

to write our word detect and count method to process new Tuples with words (key) 

and numbers (value). After that use reduceByKey to runn total and count the 

numbers and give result. 
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3.2 TD-ARACNE Program Implementation 

Based on the algorithm we talked in chapter 2, we implement it into MapReduce 

program. The main logical is showed in Figure 3.2. 

 

Figure 3.1 TD-ARACNE MapReduce implementation model 

 

There is a main driver function reads data from HDFS, set some environment 

variables and invoke MapReduce program. The mapper response to do the 

calculations as we see from chapter 2. First we abstract the data of two genes as each 

key-value pairs. So the key is set such as <geneA_Data> and value can be set like 

<geneB_Data>. As in our dataset each gene has 43 different time point expressions, 

every keys and values are included with gene identifier like ‘at_bosr_Data_’ and its 

expression data like ‘7.243512342’. Firstly we computes two genes’ IcE( initial 
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change of expression) values. If IcE from geneA is no more than geneB, we can 

compute to detect time-delayed mutual information between to genes. With the 

compare of infl and threshold, we can get whether the max infl between these two 

genes is bigger than threshold, if so, we know geneA cause geneB and make it to the 

output with the key-value pair format of the geneA identifier and geneB indentifer 

as key, their max infl as value. The reducer function get this key-value pair from 

mapper and check if there is same key while we reverse the identifier of geneA 

geneB into geneB geneA. If there are same ones, compare their infl value and delete 

the smaller one. So the result can be like: ats_b231_Data_ -> ats_b567_Data_. 

Which is the connection network among those genes. 

The logic of this implementation can be write like: 

 

Input: Gene Dataset :{Gene(1) Gene(2)},{Gene(2) Gene(1)} …. , {Gene(n-1) 

Gene(n)},{Gene(n) Gene(n-1)} 

 

Mapper 

IcE_A = calculate ICE(geneA); 

IcE_B = calculate IcE(geneB); 

If (IcE_A <= IcE_B): 

InfoMax = max (calculate Mutual Information (geneA, geneB) with time delay 

1,2,3); 

If (InfoMax >= threshold): 

key= geneA-geneB,  value = InfoMax; 
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Output(key, value); 

 

Reducer(key, value) 

Get key(geneA-geneB), reverse it to keyTemp(geneB-geneA) 

For : all keys :  

If( there is other keys same as keyTemp) :  

compare their value pairs, delete small one; 

        end For; 

key = geneX from key(geneX,geneY) 

value = geneY from key(geneX,geneY) 

Outpu(key, value); 

 

Output: Network graph: {Gene(a) -> Gene(b},  ….. Gene(x) -> Gene(y)} 
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CHAPTER 4 

PERFORMANC MEASURE AND ANALYSIS 

 

 

4.1 Performance Contrast  

For easy to compare and get the accuracy result, for non- MapReduce and 

MapReduce performance compare, we use TD-ARACNE program to measure. For 

the compare of Hadoop and Spark computing, the simple wordcount program can be 

more useful because the inner logic can be easy to handle and unify. 

For how MapReduce paralleling can improve the computing efficiency, we 

use standalone server to run a TD-ARACNE java sequential program compare with 

TD-ARACNE Hadoop MapReduce program. For easy to compare, the source data 

is been separated into from 1000 genes to 7000 genes. As it showed in Table 4.1. 

The difference appears after computing more than 4000 genes and as the Figure 4.1 

shows, the curve for sequential program test rise faster and faster as the gene number 

become larger while MapReduce program do not have much rise in time using.  
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Figure 4.1 Parallel sequential program comparison result. 

 

Table 4.1 Result for parallel sequential program comparison 

              Gene 
               Number

 Result
    In Seconds

Parallel 

Program

1000 2000 3000 4000 5000 6000 7000

48 89 142 187 222 257 329

25 76 233 470 675 979 1694
Sequential

Program

 

 

In the comparison between Hadoop and Spark program, we use wordcount 

programs with same logic and same wiki page dataset. With all other testing 

parameter keep the same, we can get the experiment result just like Table 4.2 shows. 
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Table 4.2 Data for Spark Hadoop against experiment 

Spark

Input

Data

Size

Time

Using
Rate

10GB 52 s 197M/s

10GB 132 s 78M/sHadoop

 

 

4.2 Performance Analyzing 

From the sequential parallel mode comparison test result, we can find that at first 

time when data size is not much, standalone sequential program can have better 

efficient that parallel MapReduce program. This is because the system will spend 

lots of time to start and destroy map and reduce tasks from the cluster pool. And also 

data transform will spend large quantity of time. In this experiment and more other 

experiments, we can find that if we control system to run too much mappers in cloud, 

the performance will decline by spending much time on task dispatch. But as the size 

of source data raise, MapReduce program shows its stable performance in dealing 

with large quantity of data, while sequence program uses much more time to 

compute. By the size raise, sequential program uses about 5 times processing time 

to compute same kind of program compare with MapReduce program. 

However, MapReduce program based on Hadoop also have its problem. The 

basic idea of computing based on HDFS, which means mapper and reducer get data 
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from HDFS grouped with hard drivers and put result back into HDFS, keep the 

security of tasks out of the one normal computer break problem but also spend much 

time in data transform, copy and move from and into hard driver. To overcome this, 

Spark put all the computing into memory which can reduce the data settle time. From 

the Table 4.2 test wordcount result we can see that with 10GB data use to run same 

logic wordcount program, Spark use less time than Hadoop. With the raise of dataset 

there are more separated pieces of task and more mappers, the performance of Spark 

will be better and better than Hadoop. 
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CHAPTER 5 

CONCLUSION AND DISCUSSION 

 

 

From the experiment we get that MapReduce computing has its own limitation, a 

fairly large number of data can let us gain the benefit from using the cloud computing 

resource. But how large the data can give us benefit by using MapReduce computing? 

From our experiment, we find that we MapReduce computing has benefit when the 

dataset size is larger than about 5GB and obvious different can be seen only after the 

data size raises to 15GB. But this result can be more accuracy only after testing 

enough mapdreduce programs with different algorithm and different purpose, which 

cannot be done in this paper but can be a good topic in my further study. 

      Also in the performance comparison for Hadoop against Spark, we can find 

that RDD in-memory computing gives Spark obvious efficient improve. My Spark 

wordcount program is programmed by JAVA, it’s a good experiment to compare the 

efficient to run same logical Spark program with different language with huge size 

of data. As I believe, as scala the language to build Spark, the program under scala 

will performances better than other languages, but its need experiments to confirm. 

Also in the experiment of this paper, I implement the Spark TD-ARACNE program 

with JAVA, however, with the unstable of running performance, I cannot get a useful 

experiment result for it. I will continuous work on it and get the final performance 

comparison among standalone program, Hadoop program and Spark program for 

TD-ARACNE. In the predictable result, Spark TD-ARACNE program will also have 

the best performance. 
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Overall, the MapReduce model parallelizing can become more and more 

valuable and powerful as it provide an easy and cheap approach to analysis large 

scale of data. For example, in bioinformatics area, more and more algorithms will be 

implemented into MapReduce format to meet the fast growing of data size.  

  



 

25 

APPENDIX A 

SOUCE CODE  

 

A.1 Hadoop WordCount 

import java.io.IOException; 

import java.util.Arrays; 

import java.util.HashSet; 

import java.util.regex.Pattern; 

import org.apache.hadoop.conf.Configured; 

import org.apache.hadoop.util.Tool; 

import org.apache.hadoop.util.ToolRunner; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.LongWritable; 

import org.apache.hadoop.io.Text; 

 

import org.apache.log4j.Logger; 

 

public class WordCount extends Configured implements Tool { 

 

    private static final Logger LOG = Logger.getLogger(WordCount.class); 

 

    public static void main(String[] args) throws Exception { 

        int res = ToolRunner.run(new WordCount(), args); 

        System.exit(res); 

    } 

 

    public int run(String[] args) throws Exception { 

        Job job = Job.getInstance(getConf(), "wordcount"); 

        job.setJarByClass(this.getClass()); 

        // Use TextInputFormat, the default unless job.setInputFormatClass is used 

        FileInputFormat.addInputPath(job, new Path(args[0])); 

        FileOutputFormat.setOutputPath(job, new Path(args[1])); 

        job.setMapperClass(Map.class); 

        job.setReducerClass(Reduce.class); 

        job.setOutputKeyClass(Text.class); 
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        job.setOutputValueClass(IntWritable.class); 

        return job.waitForCompletion(true) ? 0 : 1; 

    } 

 

    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { 

         

        private static final Pattern UNDESIRABLES = 

Pattern.compile("[(){},.;!+\"?<>%]"); 

        private final static IntWritable one = new IntWritable(1); 

        private Text word = new Text(); 

        private long numRecords = 0; 

        private static final Pattern WORD_BOUNDARY = 

Pattern.compile("\\s*\\b\\s*"); 

        private String elements[] = { "education", "politics", "sports", "agriculture" };  

        private HashSet<String> dict = new 

HashSet<String>(Arrays.asList(elements)); 

 

        public void map(LongWritable offset, Text lineText, Context context) 

                throws IOException, InterruptedException { 

            String line = lineText.toString(); 

            Text currentWord = new Text(); 

            for (String word : WORD_BOUNDARY.split(line)) { 

                if (word.isEmpty()) { 

                    continue; 

                } 

                String cleanWord = 

UNDESIRABLES.matcher(word.toString()).replaceAll(""); 

                if(dict.contains(cleanWord)) { 

                  context.write(new Text(cleanWord), one); 

                } 

            } 

        } 

    } 

 

    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { 

 

        @Override 

        public void reduce(Text word, Iterable<IntWritable> counts, Context context) 

                throws IOException, InterruptedException { 

            int sum = 0; 

            for (IntWritable count : counts) { 

                sum += count.get(); 

            } 

            context.write(word, new IntWritable(sum)); 

        } 

    } 
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} 

 

A.2 Spark WordCount 

import org.apache.spark.SparkConf; 

import org.apache.spark.api.java.JavaPairRDD; 

import org.apache.spark.api.java.JavaRDD; 

import org.apache.spark.api.java.JavaSparkContext; 

import org.apache.spark.api.java.function.FlatMapFunction; 

import org.apache.spark.api.java.function.Function; 

import org.apache.spark.api.java.function.Function2; 

import org.apache.spark.api.java.function.PairFunction; 

import scala.Tuple2; 

 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.List; 

 

public class WordCount2 { 

 

    public static void main(String[] argv){ 

        if (argv.length != 2) { 

            System.err.printf("Usage: %s [generic options] <input> <output>\n", 

                    WordCount.class.getSimpleName()); 

            return; 

        } 

        String inputPath = argv[0]; 

        String outputPath = argv[1]; 

 

        System.out.printf("Starting WordCount program with %s as input %s as 

output\n", inputPath,outputPath); 

 

        SparkConf conf = new 

SparkConf().setAppName("WordCount").setMaster("local"); 

        JavaSparkContext sc = new JavaSparkContext(conf); 

 

        JavaRDD<String> file = sc.textFile(inputPath); 

 

        JavaRDD<String> words = file.flatMap(new FlatMapFunction<String, 

String>() { 

            @Override 

            public Iterable<String> call(String s) throws Exception { 

                return Arrays.asList(s.split(" ")); 

            } 

        }); 
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        words = words.filter(new Function<String, Boolean>() { 

            @Override 

            public Boolean call(String s) throws Exception { 

                System.out.println("Inside filter words ->" +s); 

                if( s.trim().length() == 0) 

                    return false; 

                return true; 

            } 

        }); 

 

        JavaPairRDD<String, Integer> wordToCountMap = words.mapToPair(new 

PairFunction<String, String, Integer>() { 

            @Override 

            public Tuple2<String, Integer> call(String s) throws Exception { 

                return new Tuple2<String, Integer>(s,1); 

            } 

        }); 

 

        JavaPairRDD<String, Integer> wordCounts = 

wordToCountMap.reduceByKey(new Function2<Integer, Integer, Integer>() { 

            @Override 

            public Integer call(Integer first, Integer second) throws Exception { 

                return first + second; 

            } 

        }); 

 

        wordCounts.saveAsTextFile(outputPath); 

 

    } 

} 

 

A.3 TD-ARACNE 

import java.io.BufferedReader; 

import java.io.InputStreamReader; 

import java.net.URI; 

import java.util.LinkedHashMap; 

import alorgithm.AracneMain; 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.FileSystem; 

import org.apache.hadoop.fs.Path; 

 

public class ARACNEDriver { 

 

    public static boolean timeDelay = true; 
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    public static boolean setNumReducers = false; 

    public static int numberOfReducers = 1; 

    public static boolean setNumGenes = false; 

    public static int numberOfGenes = 1000; 

    public static boolean setNumMappers = false; 

    public static int numberOfMappers = 10; 

 //public static double threshold = 1.2; 

    //public static double epsilon = 0.37; 

    public static double threshold = 1.2; 

    public static double epsilon = 0.97; 

    public static int[] kArray = new int[]{1, 2, 3}; 

    public static int distributionArraySize = 200; 

 

    public static double getThreshold() { 

        return threshold; 

    } 

 

    public static double getEpsilon() { 

        return epsilon; 

    } 

 

    public static int[] getKArray() { 

        return kArray; 

    } 

 

    public static int getDistributionSize() { 

        return distributionArraySize; 

    } 

 

    public static void main(String[] args) throws Exception { 

        String inputFile = args[0]; 

        String outputFile = args[1]; 

 

        long start = System.currentTimeMillis(); 

        System.out.println("input file: " + inputFile); 

        Configuration conf = new Configuration(); 

        for (String a : args) { 

 

            if (a != null && (a.trim().toLowerCase().indexOf("threshold") > -

1)) { 

                threshold = Double.parseDouble(a.trim().split("=")[1].trim()); 

            } 

            if (a != null && (a.trim().toLowerCase().indexOf("epsilon") > -1)) { 

                epsilon = Double.parseDouble(a.trim().split("=")[1].trim()); 

                System.out.println("Setting epsilon: " + a + " " + epsilon); 

            } 
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            if (a != null && 

(a.trim().toLowerCase().indexOf("numberofshits") > -1)) { 

                int shifts = Integer.parseInt(a.trim().split("=")[1].trim()); 

                kArray = new int[shifts]; 

                for (int i = 0; i < shifts; i++) { 

                    kArray[i] = (i + 1); 

                } 

            } 

            if (a.trim().indexOf("countonly") > -1) { 

                boolean countOnly = new Boolean("" + 

a.trim().split("=")[1]).booleanValue(); 

                conf.setBoolean("countOnly", countOnly); 

                System.out.println("Count only process: " + a + " " + 

countOnly); 

            } 

            if (a.trim().indexOf("timedelay") > -1) { 

                timeDelay = new Boolean("" + 

a.trim().split("=")[1]).booleanValue(); 

                System.out.println("timedelay: " + a + " " + timeDelay); 

            } 

            if (a.trim().indexOf("numreducers") > -1) { 

                setNumReducers = true; 

                numberOfReducers = Integer.parseInt(a.trim().split("=")[1]); 

                System.out.println("Setting number of reducers to: " + 

numberOfReducers); 

            } 

            if (a.trim().indexOf("nummappers") > -1) { 

                setNumMappers = true; 

                numberOfMappers = Integer.parseInt(a.trim().split("=")[1]); 

                System.out.println("Setting number of mappers to: " + 

numberOfMappers); 

            } 

            if (a.trim().indexOf("numgenes") > -1) { 

                setNumGenes = true; 

                numberOfGenes = Integer.parseInt(a.trim().split("=")[1]); 

                System.out.println("Using number of genes : " + 

numberOfGenes); 

            } 

            if (a.trim().indexOf("distributionarraysize") > -1) { 

                distributionArraySize = Integer.parseInt(a.trim().split("=")[1]); 

                System.out.println("Setting number of distributionArraySize 

to: " + distributionArraySize); 

            } 

        } 

        if (timeDelay) { 
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            System.out.println("Processing Time Delay Mutual Information 

Algorithm"); 

        } else { 

            System.out.println("Processing Steady State Mutual Information 

Algorithm"); 

        } 

 

        AracneMain.main(args); 

 

    } 

} 

 

 

import access.ARACNEDriver; 

import support.ARACNETDCalculator; 

import org.apache.commons.logging.Log; 

import org.apache.commons.logging.LogFactory; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.conf.*; 

import org.apache.hadoop.io.*; 

import org.apache.hadoop.mapred.*; 

 

import java.io.IOException; 

import java.util.Iterator; 

  

 

 

public class AracneMain  { 

 Log log = LogFactory.getLog(AracneMain.class); 

  

 public static class FPRMapper extends MapReduceBase implements 

Mapper<LongWritable, Text, Text, Text>  { 

  public Log log = LogFactory.getLog(FPRMapper.class); 

     ARACNETDCalculator atdc = null; 

  

     @Override      

     public void map(LongWritable key, Text value, OutputCollector<Text, Text> 

output, Reporter reporter) throws IOException {   

      try {     

       String[] data = (""+value).split("\t"); 

 

       String[] tokensA = (""+data[0]).split("__DATA__"); 

       String[] tokensB = (""+data[1]).split("__DATA__"); 

       String geneA = tokensA[0]; 

       String geneB = tokensB[0]; 

       String[] gA = tokensA[1].split(","); 
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       String[] gB = tokensB[1].split(","); 

       double ice = atdc.calculateIce(gA); 

       double iceB = atdc.calculateIce(gB); 

       if(ice == iceB){ 

        String result = 

atdc.getMutualInformationResultReverse( geneA,  geneB,  gA,  gB); 

        if(result.indexOf("-->") > -1) { 

         //String[] tokens = result.trim().split("-->"); 

         output.collect(new Text(result), new Text(""));  

         //output.collect(new Text(tokens[0].trim()), new 

Text(tokens[1].split("\t")[0].trim()));  

 

        } 

       } else if (ice < iceB) { 

        String result = atdc.getMutualInformationResult( geneA,  

geneB,  gA,  gB); 

        if(result.indexOf("-->") > -1) { 

         output.collect(new Text(result) , new Text(""));  

//         output.collect(new Text(geneA.trim()), new 

Text(geneB.trim()));  

 

        }  

       } 

      }catch(Exception e) { 

         

      } 

     }          

         

     /** 

      * configures the result directory from the current job 

      * (non-Javadoc) 

      * @see 

org.apache.hadoop.mapred.MapReduceBase#configure(org.apache.hadoop.mapred

.JobConf) 

      */ 

      @Override 

      public void configure(JobConf job) { 

        

       atdc = new ARACNETDCalculator(); 

      } 

 } 

 public static class FPRReducer  extends MapReduceBase implements 

Reducer<Text, Text, Text, Text>  { 

  private Text result = new Text(); 

   

  @Override 
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     public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, 

Text> output, Reporter reporter) throws IOException { 

   StringBuffer genes = new StringBuffer(); 

   while (values.hasNext()) { 

    Text val = values.next(); 

    genes.append(val.toString()); 

   // output.collect(new Text(key  +  " --> " + val),new Text("")); 

 

   } 

   result.set(genes.toString()); 

   output.collect(key, new Text( result)); 

  } 

 } 

   public static void main(String[] args) throws Exception { 

 

      String inputFile = args[0]; 

      String outputFile = args[1]; 

  

      String algorithmName = "AracneMain"; 

      long start = System.currentTimeMillis(); 

      System.out.println("input file: " + inputFile); 

         Configuration conf = new Configuration(); 

         JobConf jobConf = new JobConf(conf); 

         String optionalName = ""; 

         for(String a : args){ 

       if(a.trim().indexOf("timedelay") > -1) { 

        ARACNEDriver.timeDelay = new 

Boolean(""+a.trim().split("=")[1]).booleanValue(); 

        System.out.println("timedelay: " + a + " "  + 

ARACNEDriver.timeDelay);  

       }     

       if(a.trim().indexOf("optionalname") > -1) { 

        optionalName = a.trim().split("=")[1]; 

        System.out.println("a : " + a + " "  + optionalName);  

       }   

      } 

         algorithmName = algorithmName + "" + optionalName; 

         if(ARACNEDriver.setNumGenes) { 

          algorithmName = algorithmName + "" + optionalName + "_" + 

ARACNEDriver.numberOfGenes + " genes" ;  

         } 

         if(ARACNEDriver.timeDelay) { 

          System.out.println("Processing Time Delay Mutual Information 

Algorithm"); 

         } else { 
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          System.out.println("Processing Steady State Mutual Information 

Algorithm");          

         } 

         System.out.println("Processing Algorithm : " + algorithmName); 

         jobConf.setJobName(algorithmName); 

          

         if(ARACNEDriver.setNumReducers) { 

          System.out.println("Setting number of reducers to: " + 

ARACNEDriver.numberOfReducers); 

          jobConf.setNumReduceTasks(ARACNEDriver.numberOfReducers); 

         } 

         if(ARACNEDriver.setNumMappers) { 

          System.out.println("Setting number of mappers  to: " + 

ARACNEDriver.numberOfMappers); 

          jobConf.setNumMapTasks(ARACNEDriver.numberOfMappers); 

         } 

         jobConf.setJarByClass(ARACNEDriver.class); 

         jobConf.setMapperClass(FPRMapper.class); 

         jobConf.setReducerClass(FPRReducer.class); 

         jobConf.setCombinerClass(FPRReducer.class); 

         jobConf.setOutputKeyClass(Text.class); 

         jobConf.setOutputValueClass(Text.class); 

   

       //  jobConf.setMapOutputKeyClass(Text.class); 

       //  jobConf.setMapOutputValueClass(Text.class); 

   

         jobConf.setInputFormat(TextInputFormat.class); 

         jobConf.setOutputFormat(TextOutputFormat.class); 

          

         FileInputFormat.setInputPaths(jobConf, new Path(inputFile)); 

         FileOutputFormat.setOutputPath(jobConf, new Path(outputFile)); 

     

         System.out.println("Num Reduce Tasks: " + 

jobConf.getNumReduceTasks()); 

         JobClient.runJob(jobConf); 

      System.out.println("Finished all in using " + algorithmName+ " : " + 

(System.currentTimeMillis() - start )/1000 + "  second(s) ") ; 

 

      

   } 

} 
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